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CORRESPONDENCE THEORY

1 INTRODUCTION TO THE SUBJECT

Correspondenes

When possible worlds semantis arrived around 1960, one of its most harm-

ing features was the disovery of simple onnetions between existing inten-

sional axioms and ordinary properties of the alternative relation among

worlds. Deades of syntati labour had produed a jungle of intensional

axiomati theories, for whih a perspiuous semanti setting now beame

available. For instane, typial ompleteness theorems appeared suh as the

following:

A modal formula is a theorem of S4 if and only if it is true in

all reexive, transitive Kripke frames.

Indeed, S4 may also be shown to be the modal logi of the partial orders;

whih mathes the most famous modal logi with perhaps the most basi

type of lassial relational struture. Suh mathings extend to logis higher

up in the S4-spetrum. For instane, S4.2 with its additional axiom

��p! ��p

is omplete with respet to those frames whih are reexive, transitive and

direted, or onuent:

8xyz((Rxy ^Rxz)! 9u(Ryu ^Rzu))

Again, the latter ondition is a `diamond property' of lassial fame.

Completeness results suh as these have inspired a ourishing area of

intensional Completeness Theory, witness the lassi

[

Segerberg, 1971

℄

. It

took modal logiians some time, however, to realise that there are also diret

semanti equivalenes involved here, having nothing to do with dedution in

modal logis. Indeed, the whole present Correspondene Theory arose out

of simple observations suh as the following, made in the early seventies.

EXAMPLE 1. The T -axiom �p ! p is true in a Kripke frame hW;Ri if

and only if R is reexive.

Here, `true in a frame' means true in all worlds, under all assignments to

the proposition letters.
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Proof. `)': Consider any w 2 W . If �p ! p is true in hW;Ri, then, in

partiular, it is true at w under the assignment V with

V (p) = fv 2W j Rwvg:

Thus, �p will be at w true by de�nition | and, hene, also p: i.e. Rww.

`(': By reexivity, truth at all R-alternatives implies atual truth. �

EXAMPLE 2. The S4-axiom �p! ��p is equivalent to transitivity.

Proof. By an analogous argument. �

EXAMPLE 3. The S4.2-axiom ��p! ��p de�nes diretedness.

Proof. `)': Consider arbitrary w; v; u 2 W suh that Rwv;Rwu. Let the

assignment V have

V (p) = fs 2W j Rvsg:

Immediately, this gives truth of �p at v. Therefore, ��p is true at w,

whene ��p must hold as well. It follows that �p is true at u; i.e. u has

some R-suessor in V (p) | whene v; u share a ommon R-suessor.

`(': If ��p is true at W , say beause of some v with Rwv verifying �p,

then �p will be true at all R-suessors of w. For, all of these share at least

one suessor with v, by diretedness. �

Not all orrespondenes are equally simple. For instane, S4.2 has a

ompanion logi S4.1 obtained by enrihing S4 with the `MKinsey Axiom'

��p! ��p. This onverse of the S4.2 axiom turns out to be muh more

omplex. A well-known ompleteness theorem says that S4.1 axiomatises

the modal theory of those Kripke frames whih are reexive, transitive as

well as atomi:

8x9y(Rxy ^ 8z(Ryz! z = y)):

(Notie that we need identity here, in addition to the prediate onstant R.)

We shall see later in Setion 2.2 that the S4.1 axioms together (just) manage

to de�ne the above threefold relational ondition, but that the MKinsey

Axiom does not de�ne atomiity on its own (it is weaker). Indeed, this

simple modal priniple does not possess a �rst-order relational equivalent

at all | a disovery made independently by several people around 1975.

Modal Formulas as Conditions on the Alternative Relation

The general piture emerging here is that of modal axioms expressing ertain

`lassial' onstraints on the alternative relation in frames where they are

valid. With hindsight, this observation is hardly surprising. After all, given
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some valuation, the lauses of the basi Kripke truth de�nition amount to a

translation from modal formulas into lassial ones involving R. Thus, e.g.,

�p! p beomes 8y(Rxy ! Py)! Px

�p! ��p beomes 8y(Rxy ! Py)!

! 8y(Rxy ! 8z(Ryz! Pz));

while the MKinsey Axiom ��p! ��p beomes

8y(Rxy ! 9z(Ryz ^ Pz))! 9y(Rxy ^ 8z(Ryz! Pz)):

Here the parameter `x' refers to the urrent world of evaluation, while unary

prediate onstants P (Q; : : :) denote the sets of worlds where the orre-

sponding proposition letter p (q; : : :) holds.

Let us pause, to realise how, by this simple observation alone, many estab-

lished results about lassial prediate logi an be transferred straightaway

to modal logi. For instane, for Kripke frames plus a �xed assignment

(the modal `models' of Setion 2.1), Compatness and L�owenheim{Skolem

results are immediate. If, e.g. a set of modal formulas is �nitely satis�able in

Kripke models (given suitable assignments), then its lassial transription

will be �nitely satis�ed too. Hene, by ordinary ompatness, the latter set

is simultaneously satis�ed in some struture hW;R;P;Q; : : :i: whih forms

a Kripke frame um assignment verifying the original set.

But, this perspetive is not quite the one we need.

In the evaluation of modal formulas aording to the above truth def-

inition, two fators are intermingled: the relational pattern of the worlds

and the partiular `fats', i.e. the assignment. But the latter | the par-

tiular denotations of onstants P;Q; : : : | is not relevant to the role of

modal formulas as relational onstraints. Indeed, these may even obsure

the issue. When, e.g. V (p) equals W; �p ! p holds in all worlds | but

this observation is ompletely uninformative about the true ontent of this

axiom (viz. reexivity).

In order to arrive at the proper perspetive, one simply abstrats from

the e�ets of partiular assignments, by means of a universal quanti�ation

over the unary prediates in the preeding translation. Thus, for instane,

�(p _ q)! (�p _�q)

now beomes

8P8Q (8y(Rxy ! (Py _Qy))! (8y(Rxy ! Py)_

_8y(Rxy ! Qy))):

Notie that modal formulas now get seond-order transriptions, as opposed

to the earlier �rst-order ones.
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The parameter `x' has remained: the present relational onditions are still

`loal' in some atual world. A `global' ondition is obtained by perform-

ing one more universal quanti�ation, this time with respet to this world

parameter. The distintion is not without importane. The loal version is

more suitable for the original Kripke strutures hW;R;w

0

i, in whih some

`atual world' w

0

�gured prominently, as well as for `non- normal' modal se-

mantis, in whih ertain worlds are distinguished from others. The global

reading is the more ommon one, however, whih will be predominant in

the sequel.

Again, the very point of view embodied in the above translation is sig-

ni�ant | even though some of the earlier transfer phenomena are lost.

What is lost, for instane, are most useful forms of ompatness, as well as

the L�owenheim{Skolem property. There is no automati guarantee through

seond-order logi that, if a modal formula is true in some unountable

Kripke frame (i.e. under all valuations) it will be true in its ountable

elementary subframes (again, under all valuations). Still, this very phe-

nomenon will be used to drive a wedge between `essentially �rst-order' and

`essentially seond-order' modal axioms in Setion 2.2. Moreover, not all

is lost. The above transriptions are very simple seond-order formulas,

viz. so-alled �

1

1

-sentenes, with all seond-order quanti�ers ourring in

a universal pre�x in front of a �rst-order matrix. From lassial logi, we

still now a few things about �

1

1

-sentenes, that will turn out useful. (Cf.

the hapters on Higher Order Logi and Algorithms in Volume 1 of this

Handbook for bakground.)

One suh thing is involved in the following obvious question. In the light

of earlier examples of orrespondene, the present seond-order transrip-

tions are exeedingly umbersome. Compare, e.g. for the T -axiom �p! p,

8xRxx with 8x8P (8y(Rxy! Py)! Px):

Yet it was the disovery of the former simple �rst-order equivalents that

motivated the above investigation in the �rst plae. Now for some modal

formulas, the seond-order omplexity may be unavoidable | witness the

example of MKinsey's Axiom. But at least, there arises an obvious basi

Query: Whih modal formulas de�ne �rst- order relational onditions |

and how do they manage it?

By the above perspetive, lassial soures provide one immediate answer.

A �

1

1

-sentene is �rst-order de�nable if and only if it is preserved under the

formation of ultraproduts, a fundamental onstrution in lassial model

theory. Through the above transription, the same riterion applies to

modal formulas. (The tehnial ins and outs of this point, as well as of

related ones in this introdution, are postponed until the relevant setions:

Setions 2.1 and 2.2 in this ase.)
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Modal Correspondene Theory

The preeding query has been the starting point for a systemati study of

lassial de�nability of modal formulas, when viewed as relational priniples.

Now the mentioned ultraprodut haraterisation is a very abstrat, global

one, rather removed from the atual business of �nding orrespondenes.

Also historially, it is a rather late development | and we shall therefore

turn to more onrete themes, as they evolved.

At �rst sight, proving �rst-order de�nability seems a simple matter: just

�nd an equivalent, and show that it works. Still, there is the question

how muh system there is to this ativity. For instane, Examples 1{3

exhibited regularities in their proofs. And indeed, loser inspetion reveals

that reexivity, transitivity and diretedness may be obtained from the

seond-order transriptions of the S4.2-axioms through ertain substitutions

of `minimal' de�nable assignments.

The heuristis behind this method is simply this. If, e.g. �p! p is true

at x, then the most `parsimonious' way of verifying the anteedent (i.e. by

having V (p) = fy j Rxyg) arries maximal information about the whole

impliation. This essentially, is why the substitution of Rxu for Pu in

8x8P (8y(Rxy! Py)! Px)

yields the equivalent formula

8x(8y(Rxy ! Rxy)! Rxx):

By the universal validity of the anteedent, the latter may be simpli�ed to

the usual statement of reexivity. A ompletely analogous line of thought

produes transitivity from the transription of �p ! ��p. Some om-

pliations arise with anteedents as in ��p ! ��p; but the general idea

remains the same. In this way, one disovers a large reursive lass of modal

formulas with e�etively obtainable �rst-order equivalents.

Nevertheless, this method of substitutions also has de�nite limits. No-

tably, it does not work for all �rst-order de�nable modal formulas | as

will be proved in Setion 2.2 for the ase of S4.1. In onnetion with this

matter, the exat ombinatorial omplexity of the set of �rst-order de�nable

modal formulas is still unknown | but there are reasons for fearing that

it is not even arithmetially de�nable (let alone, reursive or reursively

enumerable).

Disproving �rst-order de�nability is a more diÆult matter. Indeed, how

should one go about this at all? The ommon pattern in all examples in the

literature omes to this: �nd some semanti preservation property of �rst-

order sentenes, whih is laked by the modal formula under onsideration.

Thus, e.g. the earliest published ontribution by the present author was an

example showing how the MKinsey Axiom sins against the L�owenheim{
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Skolem theorem. It holds in a ertain unountable Kripke frame (to be

presented in Setion 2.2.) without holding in any of a ertain group of its

ountable elementary subframes. A lassial example of this phenomenon

ours when Dedekind Continuity (itself a �

1

1

-property) is added to the

�rst-order ordering theory of the rationals. The resulting �

1

1

-sentene has

unountable models (notably, the reals); but, it even laks ountable models

altogether.

The modal examples of `essentially seond-order' axioms to be found in

Setion 2.2 will serve to delimit the range of the above method of substi-

tutions. As so often, the MKinsey Axiom again provides an illuminating

example. The above heuristis of `minimal veri�ation' typially fails for

anteedents suh as ��p, expressing some dependeny | and �rst-order

failure is immediate.

Besides the modal half of the story, so to speak, there also exists the

opposite diretion, looking from lassial formulas to modal ones. Again,

this inspires a basi

Query. Whih �rst-order relational onditions are modally de�nable?

The `positive' side of this matter again onerns the establishing of valid

equivalenes. Thus, for instane, how does one �nd a modal de�nition for

suh a lassial favourite as onnetedness

8xyz((Rxy ^Rxz)! (Ryz _Rzy)))?

This time, the heuristis onsists in imagining a situation where the property

fails, together with a way of `maximally exploiting' this failure through

modal formulas. In the above partiular ase, supposing that Rxy;Rxz;

:Ryz;:Rzy, one sets �p true at y (with p false at z) and �q true at z

(with q false at y). This has the e�et of verifying the following formula at

x:

�(�p ^ :q) ^ �(�q ^ :p):

Now, the original property itself will orrespond to the negation of this

modal `failure desription', i.e.

:(�(�p ^ :q) ^ �(�q ^ :p)):

By some familiar equivalene transformations, this beomes

�(�p! q) _�(�q ! p);

a priniple known from the literature as Geah's Axiom.

It remains to be shown, of ourse, that onversely, failure of this axiom

implies failure of onnetedness; but this is immediate. In order to ross-

hek, one might also apply the earlier method of substitutions to (some
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suitable transform of) the Geah Axiom: and indeed, onnetedness will

ensue.

The `negative' side again onsists of disproofs. Here as well, these turn out

to possess a partiular interest | as we are fored to ontemplate `typial

behaviour' of modal formulas. A standard example is the following. Al-

though reexivity was modally de�nable, irreexivity turns out intratable:

8x:Rxx. But, failed attempts are no de�nite refutations. What we need

is some semanti property of modal formulas, as relational onditions on

Kripke frames, whih is not shared by this partiular �rst-order sentene.

At this point, the modal model theory of Setion 2.1 omes in. There,

one �nds that the following mappings play a fundamental role in the trans-

mission of modal truth between Kripke frames: a p-morphism is a funtion

f from a frame hW

;

R

1

i to a frame hW

2

; R

2

i whih

1. preserves R

1

, and

2. `almost' preserves R

2

, in the following sense:

`If R

2

f(w)v, then there exists some u 2 W

1

suh that (a) R

1

wu and

(b) f(u) = v'.

Under di�erent names, this notion has had a areer in standard logi already,

e.g. the `Mostowski ollapse' in set theory is of this kind.

For the purposes of the present example, it need only be reorded that

subjetive p-morphisms preserve truth of modal formulas on Kripke frames.

But then, irreexivity may be dismissed: it holds in the frame of the natural

numbers with the usual order, but it fails in its p-morphi image (!) arising

from the ontration to one single reexive point.

This example will have given a taste of the atual �eld-work in this area

of Correspondene Theory. There also arises the more general question,

of ourse, whether some ombination of modally valid preservation require-

ments manages to haraterise all and only the modally de�nable �rst-order

sentenes. This is indeed the ase, and an elegant result to this e�et |

involving p-morphisms as well as other basi onstrutions, will be proved

in Setion 2.4.

The preeding survey by no means exhausts the range of questions that

an be investigated in Correspondene Theory | but it does onvey the

spirit.

Correspondene and Completeness

Three pillars of wisdom support the edi�e of Modal Logi. There is the

ubiquitous Completeness Theory, the present Correspondene, or, more gen-

erally, De�nability Theory | and �nally, the Duality Theory between Kripke

frames and `modal algebras' (f. Setion 2.3 below) has beome an area of its

own. Connetions between the latter two will beome apparent as Setion
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2 unfolds | in partiular, the above-mentioned haraterisation of modally

de�nable �rst-order sentenes will be obtained as a onsequene of the las-

si Birkho� Theorem of Universal Algebra, applied to modal algebra.

The relation between orrespondene and ompleteness is less vital to

subsequent developments. Moreover, it turns out to be rather omplex |

and indeed, only partially understood. Nevertheless, for those readers who

are familiar with the basi notions of Completeness Theory, the following

sketh of issues may serve to bring questions of orrespondene loser to

traditional onerns.

The early ompleteness theorems in modal logi were brought under one

heading in

[

Segerberg, 1971

℄

: `modal logi L is determined by a lass R of

Kripke frames', i.e. L axiomatises the modal theory of R (on the basis of

the minimal logi K).

As before, two perspetives emerge here. First, one may start with a

given lass R, asking for a reursive axiomatisation L of its modal theory.

In general, there is no guarantee for suess here; but there is one helpful

observation involving �rst-order de�nability.

FACT 4. If R is elementary (i.e. de�ned by a single �rst-order sentene),

then its modal theory is reursively axiomatisable.

Proof. Let � = �(R;=) de�ne R. A modal formula ' belongs to the

theory of R if and only if it holds in all frames in R. This may be restated

as follows:

� � 8x8P

1

: : :8P

n

�(');

where �(') is the earlier �rst-order translation of ', while p

1

; : : : ; p

n

are

the proposition letters ourring in the latter formula. Now, the prediate

variables P

1

; : : : ; P

n

do not our in the �rst-order sentene �, and, there-

fore the above impliation is equivalent to � � 8x�('). But this is an

ordinary �rst-order impliation. So, sine the latter notion is reursively

axiomatisable, the same must be true for membership of the modal theory

of R.

Axiomatisable, yes, but axiomatisable on the basis of the minimal modal

logi K? Even this is true, hoosing a suitable reursive set of axioms as in

the proof of Craig's Theorem in lassial logi and notiing that K ontains

modus ponens (whih is all that is needed). �

Thus, in retrospet, the earlier ompleteness theorems for reexive, transi-

tive orders (and other elementary lasses) were quite preditable.

The diretion from lasses of frames to logis is not the urrent one in

modal logi; being more appropriate to areas suh as tense logi, where

temporal strutures often preede temporal theories. Usually, one already

possesses a ertain logi L, asking for a lassR of Kripke frames with respet

to whih it is omplete. (Notie that, if any lass R suÆes, then the whole

lass of Kripke frames validating L will.)
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Nowadays, we know that not all modal logis are in fat omplete in

the above sense, ontrary to earlier expetations. This is the ontent of

the elebrated `modal inompleteness theorems' in

[

Fine, 1974; Thomason,

1974

℄

. But it has been hoped that, at least, all �rst-order de�nable axiom

sets are omplete. (Indeed, a defetive proof to this e�et has irulated.)

Even this more modest expetation was frustrated in

[

van Benthem, 1978

℄

:

FACT 5. The modal logi L with harateristi axioms

�p! p

��p! ��p

(�p ^�(p! �p))! p

is �rst-order de�nable: its frames are just those satisfying the ondition

8xy(Rxy $ x = y):

But the harateristi axiom of the modal theory of the latter lass of frames,

viz. �p$ p, is not minimally derivable from L.

The relevant orrespondene will be proved in Setion 2.2. For the mo-

ment, it may be notied that the third axiom de�nes a notion of `safe return':

from any R-suessor of a world x, one an always return to x by following

some �nite R-hain of R-suessors of x.

The relevant argument is highly nontrivial, far outside the range of our

earlier method of substitutions. Nevertheless, even the latter has its rele-

vane for ompleteness theory, as we shall see presently.

What the modal inompleteness theorems show is that the minimal modal

logi K is to weak to produe all modally valid inferenes. But of ourse,

there may be stronger reasonable `base logis'. One partiular example

arises from the method of substitutions. For instane, in proving the equiv-

alene of substitution instanes with more urrent �rst-order onditions,

one uses an extremely natural seond-order logi K

2

with the following

dedutive apparatus:

Some �rst-order base omplete with respet to modus ponens,

similar axioms for the seond-order quanti�ers;

with the following form of `�rst-order instantiation' allowed for �rst-order

formulas  

8x'(X)! '( ):

Through the earlier seond-order transription, K

2

may be used as a modal

base logi.

Here is an example of some fame. In the metamathematis of arithmeti-

al provability (f.

[

Boolos, 1979

℄

or Smory�nski's in a later volume of this

Handbook), the following two modal axioms are basi:

�p! ��p; �(�p! p)! �p (`L�ob's Axiom'):
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The semanti import of the latter will be established in Setion 2.2: it

holds in those Kripke frames whose alternative relation is transitive, while

possessing a well-founded onverse. Moreover, transitivity is K

2

-derivable

from L�ob's Axiom, by the substitution of

Rxu ^ 8y(Ruy! Rxy) for Pu:

(The anteedent beomes universally valid, while the onsequent expresses

transitivity.) An advantage of K

2

over K? No, around 1975, Dik de Jongh

and Giovanni Sambin found a K-dedution for the �rst axiom from the

seond after all. The two dedutions are related, but systemati onnetions

between K-dedutions and K

2

-dedutions have not been explored up to

date.

Nevertheless, K

2

is non-onservative over K in the modal realm. In

[

van

Benthem, 1979b

℄

we �nd the following inompleteness theorem.

FACT 6. The modal axiom

��? _�(�(�p! p)! p);

with ? the falsum, de�nes the same lass of Kripke frames as ��? _ �?.

But, the latter formula is not K-derivable from the former | even though

it is K

2

-derivable.

Again, there is a orrespondene involved here. But the idea is illustrated

by a simple K

2

-dedution at the bak of this result:

1. 8P (8y(Rxy ! (8z(Ryz! Pz)! Py))! Px) (

0

�(�p! p)! p

0

),

2. 8y(Rxy ! (8z(Ryz ! z 6= x)! y 6= x)) ! x 6= x (x 6= u for Pu),

3. :8y(Rxy ! (8z(Ryz! z 6= x)! y 6= x)),

4. 9y(Rxy ^ 8z(Ryz! z 6= x) ^ y = x),

5. Rxx ^ 8z(Rxz ! z 6= x)

6. x 6= x: a ontradition (?).

That K

2

, in its turn, must be modally inomplete (as is any proposed

reursively axiomatised base logi) follows from the general inompleteness

results in

[

Thomason, 1975

℄

.

First-order de�nability does not imply ompleteness. But, when a modal

logi is both �rst-order de�nable and omplete, it enjoys a very pleasant

form of the latter property | viz. with respet to the underlying frame of

its own Henkin model. (`First-order de�nability plus ompleteness imply

anoniity': f.

[

Fine, 1975; van Benthem, 1980

℄

.) Suh anonial modal

logis will be haraterised semantially in Setion 2.4: notie that many
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of the familiar text book examples are of this kind. In fat, a anonial

ompleteness proof, suh as that for S4, often proeeds by means of �rst-

order onditions on the Henkin model, indued by the orresponding axioms.

The relation between these familiar `Henkin arguments' and the above

method of substitutions is at present still rather mysterious. Sahlqvist

[

1975

℄

ontains many examples of parallels; but Fine

[

1975

℄

presents a problem.

The modal formula

��(p _ q)! �(�p _�q)

axiomatises a anonial modal logi, without being �rst-order de�nable.

Thus, we are still far from omplete larity in the area between ompleteness

and orrespondene.

Variations and Generalisations

Logial model theory may be viewed as a marriage between ontology and

language (or `mathematis' and `linguistis'). Aordingly, the semantis of

propositional modal logi, our paradigm example up till now, exhibits the

familiar triangle

language strutures

interpretation

Or, from the above translational point of view, the omponents are

prima faie language representation language

translation

All these `degrees of freedom' may be varied in intensional logi | and thus

there appears a whole family of `orrespondene theories'. We shall explore

some examples of reognised importane in Setion 3. Here, let us just think

about the various possibilities and their impliations.

Even within the domain of propositional modal logi, alternatives have

been proposed for Kripke-type relational semantis. Jennings, Johnstone

and Shoth

[

1980

℄

ontains the proposal to work with ternary alternative

relations, employing the following notion of neessity:

�' is true at x if 8yz(Rxyz ! '(y) _ '(z)):

Their motivation was, amongst others, to reate room for `non-umulation'

of neessities: the `Aggregation Axiom'

�p ^�q ! �(p ^ q)

will no longer be valid. What happens to earlier orrespondenes in this new

light? Old boundaries start shifting; e.g. �p! p remains �rst-order de�n-

able, but �p ! ��p beomes essentially seond-order on this semantis.
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This is ompensated for by the phenomenon of formerly unexiting prin-

iples, suh as the Aggregation Axiom (whih was trivially valid before)

springing into unexpeted bloom:

EXAMPLE 7. �p ^�q ! �(p ^ q) de�nes

8xyz(Rxyz! (y = z _ Rxyy _Rxzz)):

Proof. `)': Suppose the ondition fails at x; y; z. Setting

V (p) = W = fzg; V (q) = W � fyg;

will then verify �p;�q at x, while �(p ^ q) is falsi�ed (by Rxyz).

`(': Suppose that �p;�q hold at x, and onsider Rxyz. Either y = z,

whene y veri�es both p and q (by Rxyy and the truth de�nition), or Rxyy,

implying the same onlusion, or Rxzz, in whih ase z veri�es both p and

q. So, �(p ^ q) holds at x. �

As for the general theorems, forming the bakbone of the subjet, nothing

essential hanges in this ternary semantis.

This example hanged both the strutures and the form of the truth

de�nition. What may not be generally realised is the variety o�ered even

when �xing the two parameters of `language' and `strutures'. Therefore, a

short digression is undertaken here.

The Kripke truth de�nition is not sarosant | other lauses would have

been quite imaginable. Thus, for instane, we may make the following

OBSERVATION 8. The truth de�nition `�' is true at x if 8y((Rxy _

Ryx) ! '(y))' yields as a modal base logi KB; i.e. the minimal logi

K plus the Brouwer Axiom p! ��p.

Proof. The Brouwer Axiom de�nes symmetry of the alternative relation; as

may be seen by substituting u = x for Pu. And indeed KB is omplete with

respet to the lass of symmetri Kripke frames. Hene, any non-theorem

' of KB is falsi�ed on some symmetri frame hW;Ri. But, on symmetri

frames R oinides with the relation �xy. (Rxy _ Ryx) (i.e. R united with

its onverse

�

R); whene ' also fails by the new evaluation.

Conversely, if ' has a ounter-example hW;Ri under the new truth de�-

nition, then it has hW;R [

�

Ri for an ordinary symmetri ounter-example;

whene it is outside of KB. �

Thus, there is a possible trade-o� between truth de�nition and require-

ments on the alternative relation. The exat extent of this phenomenon

remains to be investigated. Notie for example how KB is equally well

generated by the following truth de�nition:

�' is true at x if 8y((Rxy ^ Ryx)! '(y)):
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The general priniple behind suh examples is this.

FACT 9. If C(R) is any ondition on R, and (x; y) some formula in R;=

suh that

1. If C(R) is satis�ed, then R and �xy:(x; y) oinide,

2. �xy:(x; y) satis�es C,

then the modal logi determined by (the Kripke frames obeying) C may

also be generated without onditions through the truth de�nition

�' is true at x if 8y((x; y)! '(y)):

This rather subversive shift in perspetive will not be investigated in this

ontribution. At this point, it merely serves to remind us that not a single

aspet of the semanti enterprise is immune to revision.

Leaving the realm of modal logi, of the many intensional andidates for

a orrespondene perspetive, only a few have been explored up to date. In

Setion 3, some important examples are reviewed briey, viz. tense logi,

onditional logi and intuitionisti logi. These illustrate, in asending or-

der, ertain diÆulties whih tend to make Correspondene Theory rather

more diÆult (often also: more exiting) in many ases. These diÆul-

ties have to do with `pre-onditions' on the alternative relation (not very

serious), and the phenomenon of `admissible assignments' (rather more seri-

ous), to be explained in due ourse. Nevertheless, for instane, Intuitionisti

Correspondene Theory will turn out to possess also some elegant features

laked by its modal predeessor.

A few examples, even without proof, will render the above remarks more

onrete. In tense logi, the orrespondene runs between temporal axioms

and properties of the temporal order (`before', `earlier than').

EXAMPLE 10 (`Hamblin's Axiom'). (p^Hp)! FHp de�nes disreteness

of Time:

8x9y>x8z<y (z = x _ z < x):

In the logi of ounterfatual onditionals, onditional inferenes are re-

lated to the behaviour of the omparative similar ordering C among alter-

native worlds.

EXAMPLE 11 (Stalnaker's Axiom of `Conditional Exluded Middle').

(p) q) _ (p) :q) de�nes linearity of alternative worlds:

8xyz(y = z _ Cxyz _ Cxzy):

Finally, in intuitionisti logi, (`intermediate') axioms impose onstraints

upon the possible growth patterns of stages of knowledge.
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EXAMPLE 12 (`Weak Exluded Middle'). :p _ ::p de�nes `loal onver-

gene' of growing stages, i.e. diretedness:

8xyz((x � y ^ x � z)! 9u(y � u ^ z � u)):

Proofs, and further explorations are postponed until the relevant setions.

At this stage, the experiened reader may predit that two nuts will be

espeially diÆult to rak for any Correspondene Theory.

The �rst of these onerns the earlier tait restrition to propositional

logi: what happens in the prediate ase? In Setion 2.5 we shall see that

no essential problems seem to arise | although the �eld remains largely

unexplored.

A more formidable problem arises when the truth de�nition for the in-

tensional operators itself beomes of higher-order omplexity. In that ase,

e.g. a searh for possible �rst-order equivalents of intensional axioms seems

rather pointless. This eventuality arises when disjuntion is evaluated bar-

wise in Beth semantis for intuitionisti logi (i.e. ' _  is true at x if

the '-worlds and  -worlds together form a barrier interseting eah branh

passing through x).

The last word has not been said here, however. Philosophially, it seems

a rather unsatisfatory division of semanti labour to let the truth de�nition

absorb strutural omplexity (in this ase: the seond-order behaviour of

branhes). The latter should be loated where it belongs, viz. in the stru-

tures themselves. And indeed, the Beth semantis admits of a two-sorted

�rst-order reformulation in terms of nodes and paths, whih generates a

Correspondene Theory of the usual kind.

All this is not to say that there are no limits to the useful appliation of

a orrespondene perspetive. But, these are to be found in philosophial

relevane, rather than tehnial impossibility. One should study orrespon-

denes only as long as they serve the purpose of semanti enlightenment |

whih is the shedding of light upon one oneptual framework by relating

it systematially to another.

2 MODALITY

In this hapter, modal orrespondene theory will be surveyed against the

bakground of modal model theory and modal algebra, whose basis are

explained. (Cf. the hapter by Bull and Segerberg in this volume for the

neessary bakground.)

2.1 Modal Model Theory

The basi strutures of modal semantis are introdued: frames, models

and general frames. These may be studied either purely lassially, or
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with a spei�ally modal purpose. In both ases, the emphasis is not upon

suh strutures in isolation, but upon their `ategorial ontext': what are

their relations with other strutures, and whih of these relations are truth-

preserving? Thus, we will introdue the modal preservation operations of

generated subframe, disjoint union, p-morphi image and ultra�lter exten-

sion. Moreover, the fundamental lassial formation of ultraproduts will be

used as well. All these notions will appear again and again in later setions.

Semanti strutures. The strutures used in the Kripke truth de�nition are

models M , i.e. triples hW;R; V i, where W is a nonempty set of worlds, R

is a binary alternative relation on W , and V is a valuation assigning sets of

worlds V (p) to proposition letters p. The notion expliated then beomes

M � '[w℄ : `' is true in M at w':

In our orrespondene theory we also want to see the bare bones: a frame

F is a ouple hW;Ri as above, but without a valuation. There is nothing

intrinsially `modal' about all this, of ourse. Frames are just the `direted

graphs' of Graph Theory.

In Setions 2.3 and 2.4, a third notion of modal struture will be required

as well | intermediate, in a sense between models and frames. A general

frame F is a ouple hF;Wi, or alternatively, a triple hW;R;Wi suh that

F = hW;Ri is a frame, and W is a set of subsets of W , losed under the

formation of omplements, unions and modal projetions. Formally,

if X 2W; then W �X 2W

if X;Y 2W; then X [ Y 2W

if X 2W; then �(X) =

def

fw 2W j 9v 2 X : Rwvg 2W:

The following example illustrates the e�et of restrited sets W. Con-

sider the frame hN;�i, where N is the set of natural numbers. Its modal

theory ontains suh priniples as �p! p;�p! ��p and Geah's Axiom:

together forming the logi S4.3. Typially left out is the MKinsey Axiom

��p! ��p; as it may be falsi�ed in some in�nite alternation of p;:p: say

by V (p) = f2n j n 2 Ng. But now, onsider the struture hN;�;Wi, where

W onsists of all �nite and all o�nite subsets of N . It is easily heked

that all three losure onditions obtain for W. Thus, we have a general

frame here. Its logi ontains the earlier one (`a fortiori'); but it also adds

priniples. Notably, the MKinsey Axiom an no longer be falsi�ed, as the

above `tell-tale' valuation is no longer admissible. Thus, S4.1 holds in this

general frame, although it does not in the underlying `full frame'. And fur-

ther inreases in the modal theory are possible, by restriting W even more;

e.g. there is even a most austere hoie, viz. W = f;; Ng, whih yields a

general frame validating the `lassial logi' with axiom �p $ p | whih

was still invalid in the previous general frame. Thus, one single underlying

frame may still generate a hierarhy of modal logis.
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The original algebrai motivation for this notion (due to Thomason

[

1972

℄

)

will be given in Setion 2.3. But here already, a diret logial reason may

be given. Kripke frames are so-alled `standard models' for modal formulas,

onsidered as seond-order �

1

1

-sentenes: the universal prediate quanti�ers

range over all sets of possible worlds. An intermediate possibility would have

been to allow also `general models' in the sense of Henkin

[

1950

℄

: in whih

this seond-order range may be restrited, say to some set W. Usually, suh

ranges are to be losed under ertain mild onditions of de�nability | in

order to verify reasonable forms of the universal instantiation (or `ompre-

hension') axiom. This, of ourse, is preisely what happened in the above.

The uses of this notion lie partly in modal Completeness Theory, partly in

modal algebra. For the moment, it will not be a major onern.

Semanti questions. Given a formal language, interpreted in ertain stru-

tures, a plethora of questions arises onerning the interplay between more

`linguisti' and more `strutural' (or `mathematial') notions. We mention

only a few fundamental ones.

Arguably the `�rst question' of any model theory is that onerning the

relation between linguisti indistinguishability (equality of modal theories)

and strutural indistinguishability (isomorphism) of semanti strutures.

How far do the webs of language and ontology diverge? In lassial logi, we

know that (�rst-order) elementary equivalene oinides with isomorphism

on the �nite strutures, but no higher up: isomorphism then beomes by

far the �ner sieve.

Now, the modal language on models behaves like the �rst-order language

of the �rst translation in the introdution: nothing spetaular results. But

the seond-order notion seems more interesting in this respet. (Equality of

seond-order theories is quit`e strong: modulo the Axiom of Construtibility,

it even implies isomorphism in all ountable frames; f.

[

Ajtai, 1979

℄

). From

Van Benthem

[

1985

℄

, whih treats the analogous question for tense logi in

Chapter 2.2.1, we extrat

THEOREM 13. Finite Kripke frames that are generated by a single point

(f. below) are isomorphi if and only if they possess the same modal theory.

But, the ountable Kripke frames Z�Z (the integers, with eah point replaed

by a opy of the integers) and Q �Z (the rationals, treated likewise) possess

the same modal theory, without being isomorphi.

In tense logi, the latter result means that the formal language an-

not distinguish between loally disrete/globally disrete and loally dis-

rete/globally dense Time. (The latter may well be that of our World.)

In the ontext of modal logi, no suh appealing interpretation is possible,

whene we forego further disussion of the above result.

From now on, we will on�ne attention to a single theme, whih again,

is harateristi for muh of what goes on in Model Theory.
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Truth-preserving operations. In evaluating the truth of a modal formula '

at a world w we only have to onsider w itself, (possibly) its R-suessors,

(possibly) their R-suessors, etetera. Thus, only that part of the frame is

involved whih is `R-generated' by w, so to speak. In general, one never has

to look beyond R-losed environments of w: an observation summed up in

the following notion and result.

DEFINITION 14. M

1

(= hW

1

; R

1

; V

1

i) is a generated submodel of M

2

(=

hW

2

; R

2

; V

2

i) (notation: M

1

�

!M

2

) if

1. W

1

�W

2

2. R

1

= R

2

restrited to W

1

,

3. V

1

(p) = V

2

(p)\W

1

, for all proposition letters p; i.e. M

1

is an ordinary

submodel of M

2

, whih has the additional feature that

4. W

1

is losed under passing to R

2

-suessors.

The next result is the famous `Generation Theorem' of Segerberg

[

1971

℄

.

THEOREM 15. If M

1

�

! M

2

, then for all worlds w 2 W

1

and all modal

formulas ', M

1

� '[w℄ i� M

2

� '[w℄.

This is what happens inside a single model. When omparisons are de-

sired between evaluation in distint models, a more external onnetion is

required.

DEFINITION 16. A relation C is a zigzag onnetion between two models

M

1

;M

2

if

1. domain (C) = W

1

, range (C) = W

2

,

(a) if Cwv and w

0

2 W

1

with R

1

ww

0

, then Cw

0

v

0

for some v

0

2 W

2

with R

2

vv

0

(`forth hoie')

(b) If Cwv and v

0

2 W

2

with R

2

vv

0

, then Cww

0

for some w

0

2 W

1

with R

1

ww

0

(`bak hoie')

2. if Cwv, then w; v verify the same proposition letters.

Starting from the basi ase (3), the bak-and-forth lauses ensure that

evaluation of suessive modalities in modal formulas yield the same results

on either side:

THEOREM 17. If M

1

is zigzag-onneted to M

2

by C, then, for all worlds

w 2 W

1

; v 2W

2

with Cwv, and all modal formulas ',

M

1

� '[w℄ i� M

2

� '[w℄:

Notation. M

1 

!

M

2

for zigzag-onneted models (by some C).
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By a result in Van Benthem

[

1976

℄

, the Generation Theorem and the

preeding `Zigzag Theorem' ombined are harateristi for modal formulas

as �rst-order formulas in the sense of the introdution:

THEOREM 18. A �rst-order formula '(x) in the language with R;P;Q; : : :

is logially equivalent to some modal transription if and only if it is invari-

ant for generated submodels and zigzag onnetions (in the above sense).

For the ase of pure frames, the above notions and results lead to the

following three preservation results.

DEFINITION 19. F

1

is a generated subframe of F

2

(F

1

�

! F

2

) if

1. W

1

�W

2

,

2. R

1

= R

2

restrited to W

1

,

3. W

1

is R

2

-losed in W

2

.

In general logi, this type of situation is often desribed by saying that the

`onverse frame' hW

2

;

�

R

2

i is an end extension of hW

1

;

�

R

1

i: the added worlds

all ome `at the end'.

From Theorem 15 we derive preservation under generated subframes:

COROLLARY 20. If F

1

�

! F

2

, then F

2

� ' implies F

1

� ', for all modal

formulas '.

Here `F � '' means `' is true in F ', in the global seond-order sense of

the introdution: at all worlds, under all valuations.

But Theorem 15 also has an `upward' direted moral.

DEFINITION 21. The disjoint union �fF

i

ji 2 Ig of a family of frames

F

i

= hW

i

; R

i

i is the disjoint union of the domains W

i

, with the obvious

oordinate relations R

i

.

Another diret appliation is preservation under disjoint unions:

COROLLARY 22. If F

i

� ' (all i 2 I), then �fF

i

ji 2 Ig � ', for all modal

formulas '.

Next, turning to Theorem 17, one now needs a onnetion between frames

whih an be turned into a suitable zigzag relation between models over

them.

DEFINITION 23. A zigzag morphism from F

1

to F

2

is a funtion: W

1

!

W

2

satisfying

1. R

1

ww

0

implies R

2

f(w)f(w

0

),

i.e. f is an ordinary R-homomorphism; whih has the additional bak-

ward property that

2. if F

2

f(w)v, then there exists u 2 W

1

with R

1

wu and f(u) = v.



CORRESPONDENCE THEORY 343

This notion was mentioned under its urrent, but rather uninformative

name of `p-morphism' in the introdution. Here is one more example:

the map from nodes to levels (ounting from the top) is a zigzag

morphism from the in�nite binary tree (with the desendant

relation) onto the natural numbers (with the usual ordering).

Notie also that injetive (1-1) zigzag morphisms are even just isomor-

phisms.

Theorem 17 now implies the `p-morphism' theorem of Segerberg

[

1971

℄

.

COROLLARY 24. If f is a zigzag morphism from F

1

onto F

2

, then, for all

modal formulas '; F

1

� ' implies F

1

� '.

For more `loal' versions of these results, the reader is referred to

[

van

Benthem, 1983

℄

.

More examples, and appliations of Corollaries 20, 22, and 24 will be

found in Setion 2.4. A quik impression may be gained from the following

sample observation (D. C. Makinson). The modal theory of any Kripke

frame is either ontained in the lassial modal logi (harateristi axiom

�p$ p) or the `absurd' modal logi (harateristi axiom �(p^ :p)). For,

any frame F either ontains end points without R-suessors, or it is serial

(8x9yRxy). In the former ase, suh an end point by itself forms a generated

subframe, and by Corollary 20, the logi of the frame is ontained in that

of the subframe | whih is the absurd one. In the latter ase, ontration

to one single reexive point is a zigzag morphism, and by Corollary 24, the

logi of the frame is ontained in that of the reexive point | whih is the

lassial one.

We onlude by noting that these three notions are easily adapted to

general frames, taking due preautions onerning the various sets W

1

;W

2

.

Here are the three neessary additions:

In 19: add `W

1

= fX \W

1

j X 2W

2

g'.

In 21: add `the new W

2

remains essentially the old W

1

' (but for the

disjointness proedure used).

In 23: add the following `ontinuity requirement', reminisent of topology:

`for all X 2W

2

; f

�1

[X ℄ 2W

1

'.

These will be needed in the duality theory of Setion 2.3.

Propositions and possible worlds. Another harateristi feature of modal

semantis is the analogy between propositions and sets of possible worlds;

as well as (moving up one stage in set-theoreti abstration) that between

possible worlds and maximal sets of propositions. Indeed, many philosophers

would deny that there exist any di�erenes here. Let us investigate.

The ideal setting here are general frames hW;R;Wi: the range is learly

identi�able with a olletion of `propositions' over W .
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Now, if worlds are to be onsidered as sets of propositions, then some ob-

vious desiderata govern the onnetion between a world w and propositions

X;Y assoiated with w:

1. X 2 w or Y 2 w if and only if X [ Y 2 w (`analysis')

2. X 62 w if and only if W �X 2 w (`deisiveness').

Aordingly, one onsiders only subsets w of W satisfying these two ondi-

tions. These are preisely the so-alled ultra�lters on W.

What about the alternative relation to be imposed?

Again, a ommon idea is that a world v is R-aessible to w if it `satis�es

all w's modal prejudies', i.e. whenever �' is true at w, ' should be true at

v. The same idea may be expressed as follows: whenever ' is true at v;�'

should be true at w. In the present ontext, this beomes the following

stipulation:

Rwv if for all X 2 v; �(X) 2 w:

In this proess, no new propositions have been reated, whene the former

propositions X now reappear as sets

�

X = fw j X 2 wg.

These onsiderations motivate

DEFINITION 25. The ultra�lter extension ue(G) of a general frame G =

hW;R;Wi is the general frame hue(W;W); ue(R;W); ue(W)i, with

1. ue(W;W) is the set of all ultra�lters on W,

2. ue(R;W)wv, if for eah X 2W suh that X 2 v; �(X) 2 w,

3. ue(W) is f

�

X j X 2Wg.

What this onstrution has done is to re-reate G one level higher up in

the set-theoreti air, so to speak, and some alulation will prove

THEOREM 26. G and ue(G) verify the same modal formulas.

Still, not everything need have remained the same: the world pattern

of hW;Ri may di�er from that of hue(W;W); ue(R;W)i. First, eah old

world w 2 W generates an ultra�lter fX 2 W j w 2 Xg and, hene,

a orresponding new world in ue(W;W). But, unless W satis�es ertain

separation priniples for worlds, di�erent old worlds may be identi�ed to a

single new one. (In the earlier example of hN;�; f;; Ngi, only a single new

world remains, where there used to be in�nitely many!) On the other hand,

the onstrution may also introdue worlds that were not there before. For

instane, on the earlier general frame hN;�, (o-)�nite setsi, the o-�nite

sets form an ultra�lter whih indues a `point at in�nity' in the resulting

ultra�lter extension. Indeed, it is easily seen that the latter onsists of

hN;�i followed by just that in�nite point.
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In Setion 2.3, neessary and suÆient onditions will be formulated guar-

anteeing that a general frame is `stable' under the onstrution of ultra�lter

extensions. In any ase, it turns out that the proess stabilises after one step

at the most. Now, these onsiderations also apply to `full' Kripke frames.

DEFINITION 27. The ultra�lter extension ue(F ) of a frame F = hW;Ri is

the frame hue(W ); ue(R)i, with

1. ue(W ) is the set of all ultra�lters on W ,

2. ue(R)wv if for eah X �W suh that X 2 v; �(X) 2 w.

This time, Theorem 26 does not hold, however. For, it only says that the

modal theory of the general frame hW;R; power set of W i oinides with

that of the indued general frame aording to De�nition 25. Now, the

latter is, in general, a restrition of the full frame hue(W ); ue(R)i. Hene,

we an only onlude to anti-preservation under ultra�lter extensions:

COROLLARY 28. If ue(F ) � ', then F � ', for all modal formulas '.

Still, this strutural notion an be made a little more familiar by onnet-

ing it with previous model-theoreti operations. First, the above-mentioned

onnetion between old worlds and new worlds is 1-1 this time, and indeed

isomorphi (onsider suitable singleton sets):

THEOREM 29. F lies isomorphially embedded in ue(F ).

In general, this annot be strengthened to `embedded as a generated

subframe'. But, another onnetion with the earlier preservation notions

may be drawn from

[

van Benthem, 1979a

℄

.

THEOREM 30. ue(F ) is a zigzag-morphi image of some frame F

0

whih

is elementarily equivalent to F .

Proof. One expands F to (F;X)

X�W

, and then passes on to a suitably

saturated elementary extension, by ordinary model theory. From the latter,

a anonial funtion from worlds to ultra�lters on F exists, whih turns out

to be a zigzag morphism. �

Ultraproduts and de�nability. New, modally inspired notions onerning

frames have been forged in the above. But old lassial onstrutions may

be onsidered as well. Of the various possibilities, only one is seleted

here, viz. the formation of ultraproduts. (For many other examples, f.

[

van Benthem, 1985, Chapter I.2.1

℄

.) Its use has been indiated in the

introdution already.

The basi theory (and heuristis) of the notion of `ultraprodut' has been

given in the Higher Order Logi hapter in volume 1 of this Handbook. (Cf.

also

[

Chang and Keisler, 1973, Chapters 4.1 and 6.1

℄

.) We reall some of

its outstanding features and uses.
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DEFINITION 31. For any family of Kripke frames fF

i

j i 2 Ig with an

ultra�lter U on I , the ultraprodut �

U

F

i

is the frame hW;Ri with

1. W is the set of lasses f

�

, for all funtions f 2 �fW

i

j i 2 Ig, where

f

�

is the equivalene lass of f in the relation f � g , fi 2 I j f(i) =

g(i)g 2 U ,

2. R is the set of ouples hf

�

; g

�

i for whih fi 2 I j R

i

f(i)g(i)g 2 U .

This de�nitional equivalene is lifted by indution to

THEOREM 32 (` Lo�s Equivalene'). For all ultraproduts, and all �rst-order

formulas '(x

1

; : : : ; x

n

),

�

U

F

i

� '[f

1

�

; : : : ; f

n

�

℄ i� fi 2 I j F

i

� '[f

1

(i); : : : ; f

n

(i)℄g 2 U:

Thus, in partiular, all �rst-order sentenes ' are preserved under ultra-

produts in the following sense:

if F

i

� '(all i 2 I); then �

u

F

i

� ':

Conversely, `Keisler's Theorem' tells us that this is also enough.

THEOREM 33. A lass of Kripke frames is elementary if and only if both

that lass and its omplement are losed under the formation of ultraproduts

and isomorphi images.

Proof. Cf.

[

Chang and Keisler, 1973, Chapter 6.2

℄

. �

A somewhat more liberal notion of de�nability, viz. by means of arbitrary

sets of �rst-order formulas, yields so-alled �-elementary lasses. Here the

relevant haraterisation employs a speial ase of ultraproduts.

DEFINITION 34. An ultrapower �

U

F is an ultraprodut with in eah o-

ordinate i the same frame F .

Notie that by the  Lo�s Equivalene, �

U

F is elementarily equivalent to

F , i.e. both frames possess the same �rst-order theory.

THEOREM 35. A lass of Kripke frames is �-elementary if and only if it

is losed under the formation of ultraproduts and isomorphi images, while

its omplement is losed under the formation of ultrapowers.

All these notions will be used in the modal orrespondene theory of the

next setion. In this onnetion, it should be observed that, as for the other

kinds of modal semanti struture, ultraproduts of models and of general

frames are easily de�ned using the above heuristis. These will not be used

in the sequel however. (Cf.

[

van Benthem, 1983

℄

.)
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The above de�nability question for lassial model theory leads to a lear

modal task: `to haraterise the modally de�nable lasses of Kripke frames'.

In setion 2.4 this matter will be investigated.

We have arrived at the interplay between lassial and modal model the-

ory, whih lies at the heart of modal orrespondene theory.

2.2 Correspondene I: From Modal to Classial Logi

Through the translation given in the Introdution, modal formulas may be

viewed as de�ning onstraints on the alternative relation in Kripke frames.

Some of these onstraints are �rst-order de�nable, others are not. Examples

are presented of both, after whih the former lass is explored. A mathemat-

ial haraterisation is given for it, in terms of ultrapowers, and methods

are developed for (dis-)proving membership of the lass. The limits of these

methods are established as well.

First-order de�nability. The lass of modal formulas to be studied here is

de�ned as follows.

DEFINITION 36. M1 onsists of all modal formulas ' for whih a �rst-

order sentene � (in R;=) exists suh that

F � ' i� F � �; for all Kripke frames F:

Various examples of formulas in M1 have ourred in the Introdution.

For purposes of illustration, see Table 1 below.

As these are all rather easy to establish, some readers may desire a more

omplex example. Here it is, straight from the inompleteness Example 5

in the Introdution.

THEOREM 37. The onjuntion of the formulas �p! p;��p! ��p and

(�p ^�(p! �p))! p is in M1.

Proof. We shall show that this onjuntion de�nes the same lass as the

lassial axiom �p$ p, i.e. 8xy(Rxy $ x = y).

The argument requires several stages.

1. �p! p imposes reexivity,

2. �p ^�(p! �p)! p says the following:

8xy(Rxy ! 9n9z

1

; : : : ; z

n

(Rxz

1

^ : : : ^Rxz

n

^

^Ryz

1

^ : : : ^ Rz

n

x)).

In other words, from any R-suessor y of x, one may return to x by way

of some �nite hain of R-suessors of x. In ase the hain is empty, this

redues to just: Ryx.

This (seond-order!) equivalene is proved as follows (I. L. Humberstone):

`)': Consider any y with Rxy. Let the good points be those R-suessors z
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Table 1.

Modal formula Condition

�p! p 8xRxx

�p! ��p 8xy(Rxy ! 8z(Ryz ! Rxz))

��p! ��p 8xy(Rxy ! 8z(Rxz ! 9u(Ryu ^ Rzu)))

�(p _ q)! �p _�q 8xy(Rxy ! 8z(Rxz ! z = y))

�(�p! q) _�(�q ! p) 8xy(Rxy ! 8z(Rxz ! (Ryz _ Rzy)))

p! �p 8xy(Rxy ! y = x)

�? 8x:9yRxy

p! ��p 8xy(Rxy ! Ryx)

of x whih an be reahed from y through some �nite hain (possibly empty)

of R-suessors of x. Then, set V (p) equal to the set of all R-suessors of

good points. This assignment produes the following e�ets.

1. p is true at y (y being a suessor of y, by reexivity), and, hene, �p

is true at x.

2. Any R-suessor of x verifying p is itself a good point, whene all its

R-suessors belong to V (p).

It follows that �(p ! �p) is true at x. Therefore, p itself must be true

at x: i.e. x is R-suessor of some good point, whih was preisely to be

proved.

`(': Truth of p in x is disovered by merely following the relevant hain.

3. Now, having seured reexivity and `safe return', we an �nd out what

the MKinsey Axiom says in the present ontext.

First, notie that all R-suessors of any point x may be divided

up into onentri shells S

n

(x), where S

n

(x) onsists of those R-

suessors y of x whih return to x by n R- arrows (between R-

suessors of x) but no less. For instane, S

0

(x) only onsists of x

itself, S

1

(x) ontains immediate R- predeessors. Notie also that, if

y 2 S

n+1

(x), then it must have some R-suessor in S

n

(x).

The MKinsey Axiom makes this whole hierarhy ollapse. Set V (p) =

[fS

2n

(x) j n = 0; 1; 2; : : :g. Then ��p will be true at x, as follows

from the above piture. For, if Rxy, and y 2 S

n

(x), then either n is

even | whene p holds at y (by de�nition) and so �p (by reexivity),

or n is odd | whene y has an R-suessor in S

n�1

(x) verifying p:

whih again veri�es �p at y.

It follows that ��p must be true at x. So, �p holds at some R-

suessor of x. Whih one? In the present situation, this an only be
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x itself. But then again, this means that there an be no shells S

n

(x)

with n odd. Thus, there is only S

0

(w) : 8y(Rxy ! y = x).

4. Combining (1) and (3), the required onlusion follows: the three

axioms together imply 8xy(Rxy $ y = x), and are obviously implied

by it. �

The very unexpetedness of this argument will have made it lear that

there is a reative side to establishing orrespondenes.

Global and loal de�nability. Originally, Kripke introdued frames hW;R;w

0

i,

with a designated `atual world' w

0

. From that point of view, the study of

`loal' equivalene beomes natural:

F � '[w℄ i� � �[w℄;

where the �rst-order formula � has one free variable now. The reader may

have notied already that previous orrespondene arguments often provide

loal versions as well. For instane, we had

F � �p! p[w℄ i� F � Rxx[w℄

F � �p! ��p[w℄ i� F � 8y(Rxy ! 8z(Ryz ! Rxz))[w℄:

The loal notion is the more informative one, in that loal orrespondene

of ' with �(x) implies global orrespondene of ' with 8x�(x); but not

onversely. Indeed,

[

van Benthem, 1976

℄

ontains an example of a formula

in M1 whih has no loal �rst-order equivalent at all! On the other hand,

there are also irumstanes under whih the distintion ollapses | e.g.

on the transitive Kripke frames (W. Dziobiak; f.

[

van Benthem, 1981a

℄

).

Finally, a word of warning. Loal validity of, e.g. �p! ��p means `loal

transitivity', no more. The frame hN; fh0; ni j n 2 Ng[fhn; n+1i j n 2 Ngi

is loally transitive in 0, without being transitive.

First-order unde�nability. There is a threshold of omplexity below whih

seond-order phenomena do not our.

THEOREM 38. All modal formulas without nestings of modal operators are

in M1.

Proof. Cf.

[

van Benthem, 1978

℄

: a ombinatorial lassi�ation suÆes. �

EXAMPLE 39. L�ob's Axiom �(�p! p)! �p is outside of M1.

Proof. It suÆes to establish the following Claim: L�ob's Axiom de�nes

transitivity plus well-foundedness of the onverse of the alternative relation

(i.e. there are no asending sequenes xRx

1

Rx

2

Rx

3

; : : :). For, by a well-

known lassial ompatness argument, the latter ombination annot be

�rst-order de�nable (e.g. notie that it holds in hN;>i, but not in its non-

isomorphi ultrapowers).

First, assume that L�ob's Axiom fails in F ; i.e. for some V and w,
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1. hF; V i � �(�p! p)[w℄, but

2. hF; V i 6� �p[w℄

Also, assume transitivity of R: we will refute the well-foundedness of

�

R, by

onstruting an endless asending sequene of worlds wRw

1

Rw

2

: : :.

Step 1: Chose any w

1

with Rww

1

where p fails (by (2)). By (1), �p! p

is true at w

1

, whene �p fails again.

Step 2: hose any w

2

with Rw

1

w

2

where p fails. By (1) and transitivity,

�p! p is true at w

2

, etetera: an endless sequene is on its way.

Next, failure of either of the two relational onditions results in failure

of L�ob's Axiom. If transitivity fails, say Rwv;Rvu;:Rwu, then V (p) =

W � fv; ug veri�es �(�p! p) at w, while falsifying �p.

If well-foundedness fails, say wRw

1

Rw

2

; : : :, then V (p) = W � fw;w

1

;

w

2

; : : :g produes the same e�et. �

More omplex unde�nability arguments will be disussed later on.

First-order de�nability and ultraproduts. Modal formulas ould be regarded

as �

1

1

-sentenes, witness the Introdution. Now, for the latter sentenes,

ultraproduts provide the touhstone for �rst-order de�nability:

THEOREM 40. A �

1

1

-sentene in R;= is �rst-order de�nable if and only

if it is preserved under ultraproduts.

Proof. `)': This follows from the  Lo�s Equivalene (f. Setion 2.1).

`(': Consider a typial suh sentene:

8P

1

: : :8P

n

'(P

1

; : : : ; P

n

; R;=) (' �rst-order):

Clearly it is preserved under isomorphisms (and so is its negation). More-

over, its negation (a `�

1

1

-sentene') is preserved under ultraproduts (f.

[

Chang and Keisler, 1973, Chapter 4.1

℄

, for the easy argument). So, given

the assumption on the sentene itself, Keisler's Theorem (33) applies. �

COROLLARY 41. A modal formula is in M1 if and only if it is preserved

under ultraproduts.

A seond appliation says that no generalisation of our topi is obtained

by allowing arbitrary sets of de�ning �rst-order onditions.

COROLLARY 42. If a modal formula has a �-elementary de�nition, it has

an elementary de�nition.

Proof. �-elementary lasses are losed under the formation of ultraprod-

uts. �
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This haraterisation of M1 is rather aspei�, as it holds for all �

1

1

-

sentenes. Later on, we will exploit the spei�ally modal harater of our

formulas to do better. Moreover, the haraterisation is rather abstrat,

as ultraproduts are hard to visualise. Therefore, we now turn to more

onrete methods for separating formulas inside M1 from those outside.

Formulas beyond M1: Compatness and L�owenheim{Skolem arguments. In

pratie, non�rst-order de�nability often shows up in failure of the Com-

patness and L�owenheim{Skolem theorems. The �rst was involved in the

example of L�ob's Axiom, the seond will be presented now.

EXAMPLE 43 (MKinsey's Axiom). ��p! ��p is outside of M1.

Proof. Consider the following unountably in�nite Kripke frame

F = hW;Ri:



f

�

�

a

�

b

n

�

b

0

n

�

b

1

n

W = fag [ fb

n

; b

0

n

; b

1

n

j n 2 Ng [ f

f

j f : N ! f0; 1gg

R = fha; b

n

i; hb

n

; b

0

n

i; hb

n

; b

1

n

i; hb

0

n

; b

0

n

i; hb

1

n

; b

1

n

i j n 2 Ng[

fha; 

f

i j f : N ! f0; 1gg [ fh

f

; b

f(n)

n

i j n 2 N; f : N ! f0; 1gg:

We observe two things.

1. F � ��p! ��p:

Thanks to the presene of the reexive endpoints b

0

n

; b

1

n

, the validity of

the MKinsey Axiom is obvious everywhere, exept for a.

So, suppose that, under some valuation V;��p is true at a. By assump-

tion, �p is true at eah b

n

, and hene p is true at b

0

n

or b

1

n

. Now, pik any

funtion f : N ! f0; 1g suh that b

f(n)

n

is a p-world (eah n 2 N). Then

�p holds at 

f

, and hene ��p at a.

By the downward L�owenheim{Skolem theorem, F possesses a ountable

elementary substruture F

0

whose domain ontains (at least) a; b

n

; b

0

n

; b

1

n

(all n 2 N). As F is unountable, many worlds (

f

) must be missing in
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W

0

. Fix any one of these, say 

f

0

. Notie, for a start, that 

1�f

0

annot

be in W

0

either. (For, the existene of `omplementary' -worlds is �rst-

order expressible; and F

0

veri�es the same �rst-order formulas at eah of its

worlds as F .) Now, setting

V (p) = fb

f

0

(n)

n

j n 2 Ng

will verify ��p at a, while falsifying ��p. Thus, we have shown

2. F

0

2 ��p! ��p.

We may onlude that the MKinsey Axiom is not �rst-order de�nable

| not being preserved under elementary subframes. �

In pratie, failure of L�owenheim{Skolem or ompatness properties is an

infallible mark of being outside of M1. The reader may also think this to

be the ase in theory, by the famous Lindstr�om Theorem. (Cf. Volume 1,

hapters by Hodges or van Benthem and Doets.) But there is a little-realised

problem: the Lindstr�om Theorem does not work for languages with a �xed

�nite voabulary (f.

[

van Benthem, 1976

℄

). In our ase of R;=, there do

exist proper extensions of prediate logi satisfying both the L�owenheim and

ompatness properties. These are not modal examples, however | and it

may well be the ase, for all we know, that a modal formula ' belongs to M1

if and only if the logi obtained by adding ' to the �rst-order prediate logi

in R;= as a propositional onstant has the L�owenheim and ompatness

properties. Indeed, up till now, all unde�nability arguments (inluding the

above) have always been found reduible to ompatness arguments alone.

The �nal haraterisation of M1. Corollary 41 may be improved by noting

the following fat about Kripke frames, onneting the modal and lassial

notions of Setion 2.1.

LEMMA 44. �

U

F

i

�

! �

U

� fF

i

j i 2 Ig.

Thus, ultraproduts are generated subframes of suitable ultrapowers.

A seond idea omes from the preeding setion: outside of M1, we

enountered non preservation under elementary equivalene, a notion tied

up with ultrapowers by the Keisler{Shelah Theorem (f.

[

Chang and Keisler,

1973, Chapter 6.1

℄

). We arrive at the main result of

[

van Benthem, 1976

℄

.

THEOREM 45. (i) A modal formula is in M1 if and only if (ii) it is pre-

served under ultrapowers if and only if (iii) it is preserved under elementary

equivalene.

Proof. (i) ) (iii) ) (ii) are immediate. (ii) ) (i): If ' is preserved under

ultrapowers, then, by Lemma 44, it is also preserved under ultraproduts

| beause disjoint unions preserve modal truth (Corollary 22). Now apply

Corollary 41. �
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Again, this insight saves us some spurious generalisations. Besides `�-

elementary', there are two more levels in the de�nability hierarhy

elementary

�-elementary �-elementary

��- elementary

higher-order

A �-elementary lass is de�ned by an in�nite disjuntion of �rst-order sen-

tenes (�-elementary lasses by in�nite onjuntions). The prime example

of this phenomenon is �niteness. ��-elementary lasses arise from in�nite

disjuntions of in�nite onjuntions, or vie versa: both ases (and all pur-

ported `higher' ones) ollapse | and the hierarhy stops here, even in las-

sial logi. The reason lies in the simple observation that a lass of frames

is ��-elementary if and only if it is losed under elementary equivalene.

But the preeding result has a

COROLLARY 46. Modal formulas are either elementary, or essentially

higher-order.

Unfortunately, even this better haraterisation does not yield muh e�e-

tive information onerning the members of M1. For, there are no syntati

riteria for preservation under ultrapowers. From

[

van Benthem, 1983

℄

, we

will ite the atalogue of what little we know.

DIGRESSION 47.

1. �

1

1

-sentenes in R;= of the purely universal form

8P

1

: : :8P

m

8x

1

: : :8x

n

' (' quanti�er-free)

are preserved under ultraproduts. This tells us that p! �p, i.e.

8P8x(Px! 8y(Rxy ! Py))

must be in M1: but that was lear without suh heavy artillery.

2. �

1

1

-sentenes in R;= of the universal-existential form

8P

1

: : :8P

m

9x

1

: : : 9x

n

' (' quanti�er-free)

are preserved under ultrapowers. This is of no help whatsoever, as

modal formulas have at least one universal �rst-order quanti�er (8x).

3. Further presents will not be forthoming: any �

1

1

-sentene in R;= is

logially equivalent to one of the form

8P

1

: : :8P

m

8x

1

: : :8x

n

9y

1

: : : 9y

n

' (' quanti�er-free)

So, all omplexity ours at this level already.
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Thus, other ways are to be developed for desribing M1 e�etively.

The method of substitutions. There is a ommon syntati pattern to many

examples of �rst- order de�nable modal formulas: ertain anteedents, in

ombination with ertain onsequents enable one to `read o�' equivalents.

Starting from the earlier examples �p ! p;��p ! ��p, one may notie

suessively that onjuntions and disjuntions are admissible as well; as

long as one avoids �� or �(: : : _ : : :) ombinations to the left.

A typial instane is the following result from

[

Sahlqvist, 1975

℄

:

THEOREM 48. Modal formulas '!  are in M1, provided that

1. ' is onstruted from the forms p;�p;��p; : : : ;?;>, using only ^;_

and �, while

2. ' is onstruted from proposition letters, ?;>, using ^;_;� and �.

This theorem aounts for ases suh as

�(p ^�q)! �(p _ �p _ q)

whih de�nes

8xy(Rxy ! 8z(Rxz ! (z = y _Rzy _ Ryz))):

Proof. The heuristis of the Introdution works: for eah `minimal veri�-

ation' of the anteedent, the onsequent must hold. For further tehnial

information (e.g. the monotoniity of the onsequent is vital too), f.

[

van

Benthem, 1976

℄

, whih also ontains generalisations of the theorem. �

That �� is fatal, is shown by the MKinsey Axiom. The Fine Axiom

��(p _ q) ! �(�p _ �q) does the same for �(: : : _ : : :). Finally, the L�ob

Axiom (in the equivalent form �p! �(p^�:p)) demonstrates the danger

of `negative' parts in the onsequent. Thus, in a sense, we have a `best

result' here.

Notie that the lass desribed is rather typial for modal axioms, whih

often assume this impliational form. Indeed, the most harateristi modal

axioms are even simply redution priniples of the form

(modal operators) p! (modal operators) p.

THEOREM 49. A modal redution priniple is in M1 if and only if it is

of one of the following four types:

1.

~

Mp! � : : :�� : : :�p,

2. � : : :�� : : :�p!

~

Mp,

3. � : : : (i times) : : :�

~

Mp!

~

N

~

Mp (where length (

~

N) = i),
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4.

~

N

~

Mp! � : : : (i times) : : :�

~

Mp (where length (

~

N) = i).

Proof. Cf.

[

van Benthem, 1976

℄

for the rather laborious argument. �

Thus at least, important parts ofM1 have been lassi�ed. This partiular

theorem �nishes a projet begun in

[

Fith, 1973

℄

.

A general method of proof for Theorem 48 onsists of the method of

substitutions, introdued in the introdution. Here we shall merely illustrate

how it works: a justi�ation may be found in

[

van Benthem, 1983

℄

.

EXAMPLE 50. Write ��p! ��p as

8P8x(9y(Rxy ^ 8z(Ryz! Pz))! 8u(Rxu! 9v(Ruv ^ Pv))):

Rewrite this to the equivalent

8xy(Rxy ! 8P (8z(Ryz! Pz)! 8u(Rxu! 9v(Ruv ^ Pv)))):

Substitute for P : �z:Ryz, to obtain

8xy(Rxy ! (8z(Ryz! Ryz)! 8u(Rxu! 9v(Ruv ^ Ryv)))):

This is equivalent to

8xy(Rxy ! 8u(Rxu! 9v(Ruv ^Ryv)));

i.e. diretedness (onuene).

Write �(p ^�q)! �(p _ �p _ q) as

8xy(Rxy ! 8P ((Py ^ 8z(Ryz ! Qz))! 8u(Rxu! (Pu_

_9v(Ruv ^ Pv) _Qu)))):

Substitute for P : �z�y=z, and for Q : �z:Ryz, to obtain (an equivalent of)

the earlier onnetedness.

Write �(p ^�p)! p as

8xy(Rxy ! 8P ((Py ^ 8z(Ryz! Pz))! Px)):

Substitute for P : �z �y=z _ Ryz, to obtain (an equivalent of)

8xy(Rxy ! (Ryx _ y = x)):

Write ��p! �p as

8x8P (8y(Rxy! 8z(Ryz ! Pz))! 8u(Rxu! Pu)):
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Substitute for P : �z � R

2

xz; i.e. �z � 9v(Rxv ^ Rvz), to obtain (modulo

logial equivalene)

8x8u(Rxu! 9v(Rxv ^ Rvu));

i.e., density of the alternative relation.

In general, substitutions will be disjuntions of forms R

n

yz(n = 0; 1; 2; : : :);

the ases 0, 1 standing for =; R, respetively.

Despite these advanes, the range of the method of substitutions has it

limits. To see this, here is an example of a formula in M1 with a quite

di�erent spirit.

EXAMPLE 51. The onjuntion of the K4.1 axioms, i.e. �p ! ��p,

��p! ��p is in M1.

Proof. �p ! ��p de�ned transitivity and, therefore, it suÆes to prove

the following

Claim. On the transitive Kripke frames, MKinsey's Axiom de�nes atom-

iity:

8x9y(Rxy ^ 8z(Ryz! z = y)):

From right to left, the impliation is lear. From left to right, however, the

argument runs deeper.

Assume that F is a transitive frame, ontaining a world w 2W suh that

8y(Rwy ! 9z(Ryz ^ z 6= y)):

Using some suitable form of the Axiom of Choie (it is as serious as this

. . . ), �nd a subset X of w's R-suessors suh that

1. 8y 2 W (Rwy ! 9z 2 XRyz)

2. 8y 2 W (Rwy ! 9z 2 (W �X)Ryz).

Setting V (p) = X then falsi�es the MKinsey Axiom at w. �

This omplexity is unavoidable. We an, for example, prove

THEOREM 52. (�p ! ��p) ^ (��p ! ��p) is not equivalent to any

onjuntion of its �rst-order substitution instanes.

Proof. Here is where the earlier general frame hN;�, �nite and o�nite

setsi omes in. First, an ordinary model-theoreti

Observation. The �nite and o�nite sets of natural numbers are preisely

those �rst-order de�nable in hN;�i, possibly using parameters.

Now, it was notied already in Setion 2.1 that the above formula holds

in this general frame | and hene so do all its �rst-order substitution
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instanes. But the latter also hold in the full frame hN;�i. So, if our

formula were de�ned by them, it would also hold in the full frame: whih

it does not. �

So, although he method of substitutions arves out a large, and important

part of M1, it does not fully desribe the latter lass.

The omplexity of M1. The method of substitutions desribes a part of M1

whih may even be shown to be reursively enumerable (f.

[

van Benthem,

1983

℄

). But M1 overowed its boundaries. Indeed, there are reasons to

believe that M1 is not reursively enumerable | probably not even arith-

metially de�nable. For, in the general ase of �

1

1

-sentenes, we know

THEOREM 53. First-order de�nability of �

1

1

-sentenes is not an arithmeti-

al notion.

Proof. (Cf.

[

van Benthem, 1983

℄

or the Higher Order Logi Chapter in

Volume 1 of this Handbook.) �

Other topis. Various other questions had to be omitted here. At least,

one example should be mentioned, viz. that of relative orrespondenes. On

several oasions, a restrition to transitive Kripke frames produed inter-

esting shifts: global and loal �rst-order de�nability ollapse, the MKinsey

Axiom beomes elementary, et. A sample result is in

[

van Benthem, 1976

℄

.

THEOREM 54. On the transitive Kripke frames, all modal redution prin-

iples are �rst-order de�nable.

Thus, `pre-onditions' on the alternative relation are worth onsidering.

In areas suh as tense logi, our temporal intuitions even require them.

2.3 Modal Algebra

An alternative to Kripke semanti strutures is o�ered by so-alled `modal

algebras', in whih the modal language may be interpreted as well. The

realm of modal algebras has its own mathematial struture, with subalge-

bras, diret produts and homomorphi images as key notions. Now, bak-

and-forth onnetions may be established between these two realms, through

the Stone Representation. A ategorial parallel emerges between the above

triad of notions and the basi triad of Setion 2.1: zigzag-morphi images,

disjoint unions and generated subframes, respetively. Moreover, the earlier

`possible worlds onstrution' for ultra�lter extensions will be seen to arise

naturally from the Stone Representation.

The algebrai perspetive. As in other areas of logi, the modal propositional

language may also be interpreted in algebrai strutures. These assume the
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form of a Boolean Algebra (needed to interpret the propositional base)

enrihed with a unary operation, in order to apture the modal operator.

DEFINITION 55. A modal algebra is a tuple

A = hA; 0; 1;+;

0

; �i;

where hA; 0; 1;+;

0

i is a Boolean Algebra and � is a unary operator satisfying

the equations

1. (x+ y)

�

= x

�

+ y

�

2. 0

�

= 0.

Notie that � orresponds to possiblity (�): the neessity hoie would

have yielded equations

1

0

. (x � y)

�

= x

�

� y

�

2

0

. 1

�

= 1.

This algebrai perspetive at one yields a ompleteness result.

THEOREM 56. A modal formula is derivable in the minimal modal logi K

if and only if it reeives value 1 in all modal algebras under all assignments.

The onept of evaluation at the bak of this goes as follows. Let V

assign A-values to proposition letters. Then, V may be lifted to all formulas

through the reursive lauses

V (:') = V (')

0

V (' _  ) = V (') + V ( )

V (�') = V (')

�

; et.

Thus, a modal formula is read as a `polynomial' in

0

;+; �.

The proof of the ompleteness Theorem 56 omes heap. First, one shows

by indution on the length of proofs that all K-theorems are `polynomials

idential to 1'. Conversely, one onsiders the so-alled Lindenbaum Alge-

bra of the modal language, whose elements are equivalene lasses of K-

provably equivalent modal formulas, with operations de�ned in the obvious

way through the onnetives. The value 1 in this algebra is awarded to all

and only the K-theorems: hene non- theorems are disquali�ed as polyno-

mials idential to 1.

Suh uses of modal algebra are a joy to some (f.

[

Rasiowa and Sikorski,

1970

℄

); to others they show that the algebrai approah is merely `syntax in

disguise'. After all, the above result may be viewed as a re-axiomatisation

of K, no more. For instane, notie that the hard work in the usual (Henkin

type) model-theoreti ompleteness theorems onsists in showing that non-

theorems an be refuted in set-theoreti (Kripke)-models. To put this into

a slogan, whih will beome fully omprehensible at the end of this hapter:
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HENKIN = LINDENBAUM + STONE.

Nevertheless, the algebrai perspetive has further uses, whih are be-

ing disovered only gradually. First, notie that it o�ers a more general

framework than Kripke semantis. For the above Lindenbaum onstrution

to work, one only needs the priniple of Replaement of Equivalents; i.e.

modally, losure under the rule

if ` '$  ; then ` �'$ � :

(Algebraially, this just amounts to an identity axiom.)

The above additional equations represent optional further hoies.

But even in the realm of the above modal algebra, there exists a whole

disipline of universal algebrai notions and results, whih turn out to be

appliable to modal logi in surprising ways. Two instrutive referenes

are

[

Goldblatt, 1979

℄

and

[

Blok, 1976

℄

. Here we shall only skim the surfae,

taking what is needed for the modal de�nability results of Setion 2.4. Thus,

we shall need the following three fundamental algebrai notions.

DEFINITION 57. A

1

is a modal subalgebra of A

2

if A

1

� A

2

, and the

operations of A

2

oinide with those of A

1

on A

1

.

DEFINITION 58. The diret produt �fA

i

j i 2 Ig of a family of modal

algebras fA

i

j i 2 Ig onsists of all funtions in the Cartesian produt

�fA

i

j i 2 Ig, with operations de�ned omponent-wise:

f + g = (f(i) +

i

g(i))

i

; f

�

= (f(i)

�

i

)

i

; et.

DEFINITION 59. A funtion f is a homomorphism from A

1

to A

2

if it

respets all operations:

f(a+

1

b) = f(a) +

2

f(b); f(a

�

1

) = f(a)

�

2

; et.

These three operations are fundamental in algebra beause they har-

aterise algebrai equational de�nability. This is the ontent of `Birkho�'s

Theorem':

A lass of algebras is de�ned by the validity of a ertain set of algebrai

equations (under all assignments) if and only if that lass is losed under the

formation of subalgebras, diret produts and homomorphi images. (For

a proof, f.

[

Gr�atzer, 1968

℄

.) There is muh more to Universal Algebra, of

ourse, but this is what we shall need in the sequel.

Kripke frames indue modal algebras. In order to tap the above resoures,

a systemati onnetion is needed between the earlier semanti strutures

and modal algebras.

To begin with, eah Kripke frame F = hW;Ri gives rise to the following

modal algebra

A(F ) = hP (W );?;W;[;�; �i
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where � is the modal projetion of 2.1:

�(X) = fw 2W j 9v 2 XRwvg (X �W ):

As for truth of modal formulas, it is immediate that a modal formula '

is true in F if and only if its orresponding modal equation a(') is idential

to 1 in the algebra A(F ). For instane, truth of

��(p _ q)! �(�p _�q);

or equivalently

:�:�:(p _ q) _ �(:�:p _ :�:q)

is equivalent to the validity of the identity

(x+ y)

0

�

0

�

0

+ (x

0

�

0

+ y

0

�

0

)

�

= 1:

Thus, A maps single Kripke frames to modal algebras. But what happens

to the harateristi modal onnetions between frames, as in Setion 2.1?

We shall take them one by one.

First, if F

1

is a generated subframe of F

2

, then the obvious restrition

map sending X � W

2

to X \W

1

is a modal homomorphism from A(F

2

)

onto A(F

1

). (The key observation is that R

2

-losure of W

1

guarantees

homomorphi respet for the projetion operator �.) Next, the algebra

indued by a disjoint union �fF

i

j i 2 Ig is isomorphi, in a natural way,

to the diret produt �fA(F

i

) j i 2 Ig. One simply assoiates a set X of

worlds in the former with the funtion (X \W

i

)

i2I

.

Finally, and this happy ending will be preditable by now, if F

2

is a

zigzag-morphi image of F

1

through f , then the stipulation

A(f)(X) =

def

f

�1

[X ℄

de�nes an isomorphism between A(F

2

) and a subalgebra of A(F

1

). (This

time, the two relational lauses in the de�nition of `zigzag morphism' ensure

that A(f) respets projetions.) Notie the reversal in diretion in the latter

ase: this is a ommon phenomenon in these `ategorial onnetions'.

Modal algebras indue Kripke strutures. There is a road bak. Conversely,

modal algebras may be `represented' as if they had ome from an underlying

base frame. The idea of this so-alled Stone Representation is as follows.

(It is due to J�onsson and Tarski around 1950.)

Worlds w are to be reated suh that an element a in the algebra may

be thought of as the set of w `in a'. But then, the desired orrespondene

between algebrai and set-theoreti operations beomes:

no set w is in 0, all sets w are in 1;

w is in a+ b i� w is in a or w is in b;

w is in a

0

i� w is not in a:
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Thus, as w searhes through A `where it belongs', it piks out a set X suh

that

0 62 X; 1 2 X;

a+ b 2 X i� a 2 X or b 2 X;

a

0

2 X i� a 62 X:

Suh sets X are alled ultra�lters on A. Thus, let

W (A) = all ultra�lters on A:

A suitable alternative relation may be found through the same motivation

as in Setion 2.1.

hw; vi 2 R(A) i� for eah a 2 A; if a 2 v; then a

�

2 w:

So, eah modal algebra A indues a Kripke frame

F (A) = hW (A); R(A)i:

This time, truth in A and truth in F (A) need not orrespond, however. For,

F (A) may harbour many more sets of worlds than just those orresponding

to the elements a of the algebra | and hene it ontains additional potential

falsi�ers. Thus, the impliation goes only one way. The equation t

1

= t

2

is

valid in A, where the polynomials t

1

; t

2

orrespond to the modal formulas

'

1

; '

2

, when '

1

$ '

2

is true in F (A). A omplete equivalene is only

restored by hanging F (A) to the general frame

F (A) = hW (A); R(A);W(A)i;

where W(A) onsists of all sets of the form

fw 2W (A) j a 2 wg (a 2 A):

So, what we now get is a two-way onnetion between modal algebras and

general frames | and here lies the genesis of the latter notion. Two ways;

for, it is easily seen that all previous insights about the mapping A apply

equally well to general frames, instead of merely `full' frames.

Again, the interest of the present onnetion may be gauged by seeing

what happens to the three fundamental algebrai operations when trans-

lated through F into Kripke-semanti terms.

First, if A

1

is a modal subalgebra of A

2

, then the obvious restrition map

sending ultra�lters w on A

2

to ultra�lters w\A

1

on A

1

is a zigzag morphism

from F (A

2

) onto F (A

1

).

Next, the diret produt of a family fA

i

j i 2 Ig has an F -image ontaining

the disjoint union �fF (A

i

) j i 2 Ig. No isomorphism need obtain, however:

a slight aw in our orrespondene.
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But �nally, if A

2

is a homomorphi image of A

1

through f , then the map

F (f), de�ned by setting

F (f)(w) =

def

f

�1

[w℄;

sends A

2

-ultra�lters to A

1

-ultra�lters, in suh a way that it embeds F (A

2

)

isomorphially as a generated subframe of F (A

1

).

Bak and forth. So far, so good. Modal algebras indue general frames,

and these, in their turn, indue modal algebras. But, what happens on a

return-trip?

One ase is simple, by onstrution:

THEOREM 60. A(F (A)) is isomorphi to A.

The onverse diretion is more diÆult. (F (A(G)) need not be isomorphi

to F , for general frames G. This is preisely what we noted in onnetion

with `possible world onstrutions' in Setion 2.1. But, as was announed

there, it an be asertained whih onditions on general frames G do guar-

antee suh an isomorphism.

DEFINITION 61. A general frame G = hW;R;Wi is desriptive if it satis-

�es Leibniz' Priniple for identity:

1. 8xy 2W (x = y $ 8Z 2W(x 2 Z $ y 2 Z))

as well as Leibniz' Priniple for alternatives:

2. 8xy 2W (Rxy $ 8Z 2W(y 2 Z ! x 2 �(Z))):

Moreover, it should satisfy Saturation:

3. eah subset ofW with the �nite intersetion property has a non-empty

total intersetion.

The following basi result is in

[

Goldblatt, 1979

℄

.

THEOREM 62. F (A(G)) is isomorphi to G if and only if G is desriptive.

The standard examples of desriptive frames are the general frames de-

rived from Henkin models in modal ompleteness proofs, by taking for W

the range of modally de�nable sets of worlds. It may also be notied that

general frames G whih are themselves of the form F (A) are always de-

sriptive. Thus, for ertain theoretial purposes, the `proper' bijetive or-

respondene may be said to be that between modal algebras and desriptive

frames, whih are `stable' under the possible worlds onstrution desribed

in Setion 2.1.

The ategorial onnetion. The above onnetions between modal algebras

and Kripke strutures run deeper than might appear at �rst sight. The
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general piture is that of two mathematial worlds, or `ategories', whih

turn out to be quite similar in struture:

hModal algebras, homomorphisms intoi

hGeneral frames, zigzag morphisms intoi:

The earlier onsiderations may be summed up in the following two shemata:

f

G

1

G

2

A(f)

A(G

1

) A(G

2

)

f

A

1

A

2

F (f)

F (A

1

) F (A

2

)

So, A;F are what a ategory theorist would all `ontravariant' funtors.

Therefore, information onerning the one ategory may sometimes be trans-

ferred to the other. Thus, a `ategorial transfer' arises, of whih we mention

a few phenomena. (The following passage an be skipped by readers unfa-

miliar with Category Theory or Universal Algebra).

The ategory of modal algebras has among its internal limit onstru-

tions the formation of terminals (viz. the degenerate single point algebras)

and pull-baks. Hene, it is losed under �nite limits in general. Through

A;F , we may derive that the ategory of general frames is losed under

�nite o-limits, spei�ally under initials (allowing the empty frame) and

push-outs. (In this onnetion, the `adjointness' behaviour of A;F may be

investigated.) The preservation behaviour of modal formulas under suh

limit onstrutions remains to be studied.

An algebraially well-motivated notion is that of a free algebra. What

orresponds to these in the realm of general frames? A surprising onne-

tion with modal ompleteness theory appears. The Stone representations

of free algebras are essentially Henkin general frames (proposition letters

orrespond to free generators of the algebra). The latter strutures were

haraterised semantially in

[

Fine, 1975

℄

, in terms of ertain `universal em-

bedding' properties with respet to zigzag morphisms. This turns out to

follow diretly, as the dual of the `homomorphi extension' de�nition of free

algebras.

Our �nal example onerns another algebrai lassi, the notion of a

subdiretly irreduible modal algebra (used with great versatility in

[

Blok,

1976

℄

). These turn out to orrespond almost (not quite) to rooted gen-

eral frames whose domain onsists of one root world together with its R-

suessors, their R-suessors, etetera. The famous Birkho� Theorem stat-

ing that

Every (modal) algebra is a subdiret produt of subdiretly ir-

reduibles,
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may then be ompared with the simple Kripke-semanti observation that

Every general frame is a zigzag-morphi image of the disjoint

union of its rooted generated subframes.

These examples will have made it lear how the ategorial onnetion be-

tween modal algebra and possible worlds semantis an be a very rewarding

perspetive.

2.4 From Classial to Modal Logi

Reversing the diretion of the earlier orrespondene study (Setion 2.2),

there arises

DEFINITION 63. P1 is the set of all �rst-order sentenes in R;= for whih

a modal formula exists de�ning the same lass of Kripke frames.

All earlier examples of formulas in M1 also provide examples for P1, of

ourse. Therefore, here are some more general results straightaway.

Some methods exist for proving the existene of modal de�nitions.

THEOREM 64. Eah �rst-order sentene of the form 8xU', where U is a

(possibly empty) sequene of restrited universal quanti�ers, of the form

8u(Rvu! (with u; v distint)

followed by a matrix ' of atomi formulas u = v;Ruv ombined through

^;_, belongs to P1.

Proof. The relevant ombinatorial argument is based on the heuristis

explained in the introdution. Cf.

[

van Benthem, 1976

℄

. �

Some examples of formulas of this type are

reexivity: 8xRxx; transitivity: 8x8y(Rxy ! 8z(Ryz! Rxz))

and

onnetedness: 8x8y(Rxy ! 8z(Rxz ! (Rzy _ Ryz))):

Disproving de�nability proeeds through ounter-examples to preserva-

tion behaviour.

EXAMPLE 65.

1. 9xRxx is outside of P1.

It holds in hf0; 1g; fh1; 1igi; but not in its generated subframe hf0g;?i.

2. 8x8yRxy is outside of P1.
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It is preserved under generated subframes, but not under disjoint unions.

On hf0g; fh0; 0igi and hf1g; fh1; 1igi, the relation is universal; but not on

hf0; 1g; fh0; 0i; h1; 1igi.

3. 8x:Rxx is outside of P1.

It is preserved under generated subframes and disjoint unions; but not under

zigzag-morphi images, witness the Introdution.

4. 8x9y(Rxy ^ Ryy) is outside of P1.

It is preserved under all three operations mentioned up till now, but not

inversely under the formation of ultra�lter extensions. It an be shown to

hold in ue(hN;<i), while failing in hN;<i.

An important general result is asting its shadows here

[

Goldblatt and

Thomason, 1974

℄

:

THEOREM 66. An elementary lass of Kripke frames is modally de�nable

if and only if it is losed under the formation of generated subframes, disjoint

unions and zigzag-morphi images, while its omplement is losed under the

formation of ultra�lter extensions.

Proof. This argument is given in heuristi outline here, as it is one of the

most elegant appliations of algebrai results in modal semantis.

Evidently, modally de�nable lasses of Kripke frames exhibit all the listed

losure phenomena: the surprising diretion leads from `losure' to `de�n-

ability'.

First, notie that one losure ondition an be added for free, by an

earlier result. Theorem 30 implies that our lass R of frames is itself losed

under the formation of ultra�lter extensions: if F 2 R, then the relevant

elementary equivalent F

0

2 R (R being elementary), and hene so is its

zigzag-morphi image ue(F ).

Now the obvious strategy is to show that R equals MOD(Th

mod

(R)),

i.e. the lass of Kripke frames verifying eah modal formula whih is valid

throughout R. The nontrivial inlusion here requires us to show that

if F

�

� Th

mod

(R); then F

�

2 R; for every Kripke frame F

�

:

And here is where an exursion into the realm of modal algebra will help.

F

�

veri�es Th

mod

(R), and hene A(F

�

) veri�es the equational theory of the

lass fA(G) j G 2 Rg. (Reall the earlier orrespondene between modal

formulas and polynomials.) By Birkho�'s Theorem, in a suitable version,

this implies that A(F

�

) must be onstrutible as a homomorphi image of

some subalgebra of some diret produt �fA(G

i

) j i 2 Ig, with G

i

2 R. In

a piture,
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surjetive

A(F

�

) A � �fA(G

i

) j i 2 Ig:

homomorphism

Now the latter algebra is isomorphi to A(�fG

i

j i 2 Ig), by the earlier

duality. Moreover, the latter disjoint union belongs to R | by the given

losure onditions. So, the piture beomes, for some G 2 R:

surjetive

A(F

�

) A � A(G):

homomorphism

Now, the transformation F turns this into the orresponding row

embedding as surjetive

FA(F

�

) F (A) FA(G):

generated subframe zigzag morphism

But then, �nally, the following walk through the diagrams suÆes. G 2

R) FA(G) = ue(G) 2 R (by the above observation)) F (A) 2 R (losure

under zigzag images) ) FA(F

�

) 2 R (losure under generated subframes)

) F

�

2 R (`anti-losure' under ultra�lter extensions). �

Atually, this result does not yet haraterise P1, as it talks about modal

de�nability by any set, �nite or in�nite. The additional strengthenings

needed for zeroing in on P1 are hardly enlightening, however.

The result also says a little bit more. Adding losure under ultra�lter

extensions, while removing the ondition of elementary de�nability, yields

a haraterisation of those lasses of Kripke frames de�nable by means of

a anonial modal logi in the sense of the Introdution (i.e. one whih is

omplete with respet to its Henkin frames). Moreover, the above proof

heuristis may also be used to formulate a general losure ondition on

lasses of Kripke frames neessary and suÆient for de�nability by means

of just any set of modal formulas (`SA-onstrutions'; f.

[

Goldblatt and

Thomason, 1974

℄

).

As with the earlier ultrapower haraterisation of M1, the above har-

aterisation gives no e�etive information onerning the formulas in P1.

What is needed are `preservation theorems' giving the syntati ash value

of the given four losure onditions. Several of these have been given in

[

van

Benthem, 1976

℄

, extending earlier results, e.g. of Feferman and Kreisel.

Here is an idea. Preservation under generated subframes allows only

formulas onstruted from atomi formulas and their negations, using

8;^;_ as well as restrited existential quanti�ers 9v(Ruv^ (u; v

distint).
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Preservation under disjoint unions admits only one single universal quanti-

�er in front: all others are to be restrited to the form 8v(Ruv !). Finally,

preservation under zigzag images forbids the negations, and we are left with

THEOREM 67. A �rst-order sentene is preserved under the formation

of generated subframes, disjoint unions and zigzag-morphi images if and

only if it is equivalent to one of the form 8x�(x), where �(x) has been

onstruted from atomi formulas using only onjuntion, disjuntion and

restrited quanti�ers.

Proof. By elementary hain onstrutions, as in

[

Chang and Keisler, 1973,

Chapter 3.1

℄

. �

For preservation under ultra�lter extensions, only some partial results have

been found. (After all, the lass of sentenes preserved under suh a omplex

operation need not even be e�etively enumerable.)

As for the total omplexity of P1, this may well be onsiderable | as

was the ase with M1. Are the two lasses perhaps reursive in eah other?

2.5 Modal Prediate Logi

As in muh tehnial work in this area, modal propositional logi has been

studied up till now. Modal prediate logi, however important in philo-

sophial appliations, is muh less understood. (Cf. Chapter 2.5 in this

Handbook.) Nevertheless, in the ase of Correspondene Theory, an exuse

for the neglet may be found in Theorem 69 below.

The un�nished state of the art shows already in the fat that no om-

monly aepted notion of semanti struture, or truth de�nition exists.

Hene, we �x one partiular, reasonably motivated hoie as a basis for

the following sketh of a prediate-logial variant of the earlier theory.

The language is the ordinary one of prediate logi, with added modal

operators. Strutures are tuples

M = hW;R;D; V i;

where the skeleton hW;R;Di is a Kripke frame with a domain funtion D

assigning sets of individuals D

w

to eah world w 2 W . The valuation V

supplies the interpretation of the nonlogial voabulary at eah world.

The truth de�nition expliates the notion

`'(x) is true in M at w for d';

where the sequene d assigned to the free individual variables x omes from

D

w

. Its key options are embodied in the lauses for the individual quanti-

�ers: these are to range over D

w

, plus that for the modal operator:
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�'(x) is true at w for d if, for eah R-alternative v for w suh

that d is in D

v

; '(x) is true at v for d.

Thus, neessity means `truth in all alternatives, where de�ned'.

As before, truth in a skeleton (at some world, for some sequene of in-

dividuals) means truth under all possible valuations. Again, in this way

modal axioms start expressing properties of R;D | and their interplay.

The relevant mathing `working language' on the lassial side will now

be a two-sorted one: one sort for worlds, another for individuals. Its basi

prediates are the two sortal identities, R between worlds, as well as the

sort-rossing Exw : `x is in the domain of w', or `x exists at w'.

EXAMPLE 68. The Baran Formula 8x�Ax! �8xAx de�nes

8wv(Rwv ! 8x(Exv ! Exw)):

Proof. `(': Assume 8x�Ax at w, and onsider any R-alternative v. For

all d 2 D

v

; d 2 D

w

(by the given ondition), whene �Ad holds at w |

and, hene, Ad holds at v.

`)': The Baran Formula will hold under the following partiular assign-

ment: V

u

(A; d) = 1 if Rwu and d 2 D

w

.

This V veri�es the anteedent, and hene the onsequent. The relational

ondition follows. �

Thus, the Baran Formula expresses an interation between R and D.

This is not aidental. For pure R-priniples, we have the following onser-

vation result.

THEOREM 69. There exists an e�etive translation from sentenes ' of

modal prediate logi to formulas p(') of modal propositional logi suh

that,

if ' is equivalent to some pure R;=-sentene �, then p(') al-

ready de�nes � in the sense of Setion 2.2.

Proof. pmerely rosses out quanti�ers in some suitable way. For full details

(here and elsewhere) f.

[

van Benthem, 1983

℄

. �

Besides the Baran Formula, there are three further fundamental `de

re/de dito interhanges'. One of these provides a new example of non-�rst-

order de�nability.

EXAMPLE 70.

1. �8xAx! 8x�Ax is universally valid,

2. 9x�Ax! �9xAx de�nes 8wv(Rwv ! 8x(Exw ! Exv)),
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3. �9xAx! 9x�Ax de�nes an essentially higher-order ondition onR;=

; E.

Despite the super�ial resemblane to the MKinsey Axiom of setion

2.2., the proof for the latter result is quite di�erent from that of Example

43. Interested readers may notie that the above priniple holds in worlds

with a �nite hain of overlapping two-element suessors:

f1; 2g; f2; 3g; f3; 4g; : : : ; fn� 1; ng; fn; n+ 1g:

But, it may fail in the presene of in�nite suh hains, and then ompatness

lurks.

Further systemati reetion on the above `positive' result yields a method

of substitutions again, with an outome like that of Theorem 48:

THEOREM 71. Formulas of the form ' !  , with ' onstruted from

atomi formulas pre�xed by a (possibly empty) sequene of 8;�, using only

^;_; 9 and �, and  onstruted from atomi formulas using ^;_; 9;� as

well as 8;�, are all uniformly �rst-order de�nable.

The global mathematial haraterisation of �rst-order de�nability re-

mains essentially the same in this area, whene it is omitted here.

Something whih does not generalise easily, however, is the algebrai ap-

proah of Setion 2.3. This is an endemi problem in lassial (and intuition-

isti) logi already: elegant algebraization stops at the gates of prediate

logi. There ould be an area of `modal ylindri algebra' of ourse (f.

[

Henkin et al., 1971

℄

), but none exists yet. (For an interesting related area,

f. the extension of modal propositional algebra to the modal program al-

gebra of dynami logiians (f.

[

Kozen, 1979

℄

or the Dynami Logi hapter

in volume 5 of this Handbook).) As a onsequene, we still lak an elegant

haraterisation of the modally de�nable fragment of the present two-sorted

�rst-order language.

What we do have, however, is suh a haraterisation for that same lan-

guage with parametrised prediate onstants A(w;�) for the prediate on-

stants A(�) of the modal prediate logi. Thus, this is the appropriate

language for the �rst-order transription of the above truth de�nition. The

Baran Formula, for example, beomes

8x(Exw ! 8v((Ewv ^ Exv)! Avx))!

! 8v(Rwv ! 8x(Exv ! Avx)):

As in Theorem 18, two harateristi modal relations suÆe for har-

aterising the modal transriptions among the lass of all formulas of this

language. In order to end on an optimisti note, here is the relevant result.

First, modal prediate logi knows generated submodels, just as in Se-

tion 2.1. Moreover, the earlier zigzag relations may be enrihed so as to in-

orporate individual bak-and-forth hoies, as in the Ehrenfeuht{Fra��ss�e

approah to �rst-order de�nability.
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DEFINITION 72. A zigzag onnetion C between two models M

1

;M

2

re-

lates �nite sequenes (w; x) of equal length (w a world, x a sequene of

individuals in the domain of w) in suh a way that

1. all suh sequenes our: those from M

1

in the domain, those from

M

2

in the range of C

2. if C(w; x)(v; y) and w

0

2 W

1

, with R

1

ww

0

; x 2 D

w

, then C(w

0

; x)(v

0

; y)

for some v

0

2 W

2

with R

2

vv

0

; y 2 D

v

0

,

and analogously in the opposite diretion (`world zigzag')

3. if C(w; x)(v; y) and d 2 D

w

,

then C(w; x� d)(v; y� e) for some e 2 D

v

,

and vie versa. (`individual zigzag')

4. if C(w; x)(v; y), then the map (x)

i

! (y)

i

is a partial isomorphism

between hD

w

; V

w

i and hD

v

; V

v

i.

Now, transriptions of modal formulas are invariant for generated sub-

models and zigzag onnetions, in the obvious sense. E.g. the latter have

been made preisely in suh a way that for modal ',

' is true at w for x i� ' is true at v for y, when C(w; x)(v; y):

THEOREM 73. A formula ' = '(w; x) of the two-sorted world/individual

language is (equivalent to the transription of) a modal formula if and only

if it is invariant for generated submodels and zigzag onnetions.

Proof. This follows from the main proof in

[

van Benthem, 1981b

℄

. �

On the whole, exiting tehnial results are yet sare in modal prediate

logi | and Correspondene Theory is no exeption.

2.6 Higher-Order Correspondene

Modal formulas de�ne seond-order (�

1

1

) onditions on the alternative re-

lation in all ases, and �rst-order onditions in some. In the perspetive of

abstrat model theory, two possible generalisations arise here.

Instead of the �rst-order target language, one may onsider suitable ex-

tensions. For instane, in Theorem 37, the relevant relational ondition

was de�nable in L

!

1

;!

: �rst-order logi with ountable onjuntions and

disjuntions. Not all modal formulas beome de�nable here, however. E.g.

L�ob's Axiom de�ned a form of well-foundedness, whih is known to be be-

yond L

!

1

!

, or indeed any language of the L

1!

-family. On the other hand,

this time for instane, the de�ning ondition is already in `weak seond-

order logi' L

2

, allowing quanti�ation over �nite sets of individuals. Thus,
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various wider lasses of de�nability ould be onsidered for modal formulas,

short of �

1

1

. And, in fat, even the latter ase itself is interesting. Whih

�

1

1

-sentenes, for example, admit of modal de�nitions?

Given the general lak of semanti haraterisations for suh higher logis,

suh haraterisations for their modal fragments are also diÆult to obtain.

One observation might be that both L

!

1

!

and L

2

have the property of

invariane for partial isomorphism (f. van Dalen's hapter in Volume 1 of

this Handbook). It will be of interest to study this preservation ondition

on modal formulas. In fat, no ounter-examples have been disovered yet;

but these do exist in tense logi. (The rationals hQ;<i and the reals hR;<i

are a lassial example of partially isomorphi strutures, but there exists a

tense-logial formula expressing Dedekind Completeness, whih is valid on

the latter, though not on the former frame.)

On the other hand, the modal propositional language ould itself be

strengthened, notably by the introdution of propositional quanti�ers 8p; 9p,

whih have ourred in various plaes in the literature (f. Garson's hapter

in Volume 3 of this Handbook). Thus, e.g. 8p(��p ! 9q��q) would be-

ome an admissible formula, but also �9p�p! �8q��q. Atually, there is

a hoie here, whether to allow the propositional quanti�ers in the sope of

modal operators or not. Heneforth, we onsider the seond, more restrited

option.

In the usual manner, a prenex hierarhy arises here, with all propositional

quanti�ers in front, of whih the original modal formulas form the �

1

1

-part

(universal pre�x). The next simplest ases are �

1

1

(existential pre�x) and

�

1

2

. In fat, the latter has a reasonable motivation through the modal `rules'

mentioned in Setion 3.2 below.

It has been observed by Gabbay that the following rule de�nes irreex-

ivity of Kripke frames:

`if F � (�p ^ :p)! '[w℄ (with ' p-free), then F � '[w℄':

The general pattern here is that of `F � '[w℄ only if F �  [w℄', i.e. an

impliation of two �

1

1

-formulas, whih is �

1

2

. (It may be written either in

the form 89 or 98.)

Atually, the above spei� example is already �

1

1

, as it amounts to

8pq((�p ^ :p) ! q) ! 8qq, i.e. 8p((�p ^ :p) ! ?) ! 8qq, i.e. 8p((�p ^

:p) ! ?) ! ?, i.e. 9p(�p ^ :p). Another relevant observation is that

impliations of the above form 8 ! 8, if �rst-order de�nable at all, already

have a �rst-order de�nable onsequent. We do not go into these spei�

matters here, but note a general issue.

As often in higher-order logi, we are interested in hierarhy results. For

instane, how muh power of �rst-order de�nability is added at eah stage?

It is evident that �

1

1

-de�nability adds essentially just all negations of the

(loal) priniples in P1 (f. Setion 2.4), while �

1

2

adds onjuntions and

disjuntion aross P1 and the latter `mirror image'.



372 JOHAN VAN BENTHEM

Query. Does the seond-order prenex hierarhy indue an asending or-

responding hierarhy of modally de�nable �rst-order priniples about the

alternative relation?

This possibly asending hierarhy annot exhaust all �rst-order prini-

ples, as higher-order modal formulas do retain one basi preservation prop-

erty: their loal truth is invariant under passing to generated subframes.

(The Generation Theorem 15 yields this onsequene all the way up, not

just for the original modal �

1

1

-formulas.) But then, we know what this

semanti onstraint means in syntati terms for �rst-order formulas (f.

[

van Benthem, 1976, Chapter 6

℄

). These will be the `almost-restrited' ones

onsisting of one universal quanti�er followed by a ompound of atomi

formulas with negation, onjuntion and restrited quanti�ers 9y(Rxy^).

The other preservation properties of Setion 2.1 are lost, however. As

was observed earlier, irreexivity (8x:Rxx) beomes de�nable and, hene,

preservation under zigzag morphisms fails. Anti-preservation under ultra�l-

ter extensions fails, beause the earlier example 8x9y(Rxy ^Ryy) beomes

de�nable as well. (A straightforward de�nition uses a propositional quan-

ti�er within a modal sope: �8p(�p ! p). But there is a nonembedded

substitute in the form of 9p(�p ^ 8q�(p! (�q ! q))).)

Thus, we arrive at the following

Question. Can every almost-restrited �rst-order formula 8x'(x) be de-

�ned at some level in the modal propositional quanti�er hierarhy?

Using `simulation' of restrited �rst-order quanti�ation by propositional

quanti�ers, one may indeed handle most obvious ases. Here is one illustra-

tion of the proedure

Example. Let '(x) be 9y(Rxy ^ 8z(Ryz ! (Rzz _ (Rzy ^ Rzx)))). The

idea is to de�ne fxg; fyg; fzg, in a sense, as far as neessary (i.e. on the set

onsisting of x, its R-, R

2

- and R

3

-suessors) | and then to express all

desired relations between these by means of modal formulas:

9p

x

(p

x

^ 8q

x

(((p

x

^ q

x

) _ �(p

x

^ q

x

) _ ��(p

x

^ q

x

) _ ���(p

x

^

q

x

)) ! (�(p

x

! q

x

) ^ ��(p

x

! q

x

) ^ ���(p

x

! q

x

))) [this

makes p

x

unique to the extent indiated℄ ^ 9p

y

(�p

y

^ [same

uniqueness statement℄ ^ 8p

z

((�(p

y

^ �p

z

)^ [same uniqueness

statement℄) ! (8q

z

��(p

z

! (�q

z

! q

z

))[i.e. `Rzz'℄ _ ��(p

z

^

�p

x

^ �p

y

)[i.e. `Rzy ^ Rzx'℄)))).

Aordingly, our onjeture is that the above question has a positive

answer.

We onlude with one further

Question. Does the addition of propositional quanti�ers within modal

sopes add any power of expression?
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3 OTHER INTENSIONAL NOTIONS

Modal logi is only one branh, be it a paradigmati one, of intensional logi

in general. But also in other intensional areas, a Correspondene Theory is

possible. In some ases, the generalisation runs smoothly: existing notions

and results may be applied at one, or after only minor modi�ation. A

ase in point is tense logi, to be treated in Setion 3.1. More hallenging

generalisations arise when the relevant intensional semantis exhibit strong

peuliarities, diverging from the earlier modal ase. Sometimes, these as-

sume the form of pre-onditions on the alternative relation; but maybe the

most important hurdle is when a restrition is prolaimed on `admissible as-

signments'. Both phenomena our in onditional logi, the topi of Setion

3.2. That, even under suh irumstanes, an interesting Correspondene

Theory may remain, is shown by the example of intuitionisti logi in Se-

tion 3.3.

These two new features do not exhaust the possible semanti variation.

One may also move to the interplay of di�erent kinds of intensional op-

erators, for instane, using orrespondene to onnet di�erent alternative

relations.

Example. In dynami logi, two modal operators �;�

�

�gure, whih may

be provided with two alternative relations R;R

�

. (Reall that

a

means

`after every suessful omputation of a', while the intuitive meaning of

a

�

is to be: `after any �nite number of runs of a'.) Now, from a orrespondene

point of view, the well-known Segerberg Axioms

�

�

p! �p

�

�

p! ��

�

p

�

�

(p! �p)! (�p! �

�

p)

de�ne preisely the ondition that

R

�

oinides with the transitive losure of R.

The very exotiness of this example to many readers may help to show that

Correspondene Theory is omnipresent.

No systemati developments will be given in the following setions. Their

purpose is to onvey an impression of notions and themes, through mainly

illustrative examples. Indeed, here is where the reader may wish to arry

on the torh herself.

3.1 Tense Logi

Traditionally, tense-logial strutures have been taken to be temporal orders

hT;<i, where T onsists of the points in Time, ordered by preedene <

(`earlier than', `before'). The simplest formal language to be hosen has
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been that of Prior, adding operators G (`it is always going to be'), H (`it

has always been') to some propositional base. We add F (`future'), P

(`past') as derived notions. (Cf. the hapter on Basi Tense logi in volume

6 for the neessary bakground in tense logi.)

Of the amazing diversity of `ontologial' and `linguisti' questions on-

erning this temporal semantis, only a few themes will be mentioned here.

(Cf.

[

van Benthem, 1985

℄

for a varied exploration.)

Explaining philosophial dita. In his famous paper `The Unreality of Time',

the philosopher MTaggart enuniated several temporal priniples. One of

these reads

[

MTaggart, 1908

℄

:

\If one of the determinations past, present and future an ever

be applied to (an event), then one of them has always been and

always will be appliable, though of ourse not always the same

one."

When translated into Priorean axioms, this beomes a list:

1. Pq ! H(Fq _ q _ Pq)

2. Pq ! GPq

3. q ! HFq

4. q ! GPq

5. Fq ! HFq

6. Fq ! G(Fq _ q _ Pq).

What do these priniples mean? The answer may be obtained through the

method of substitutions (�tted to the temporal ase | but suh generali-

sations will be presupposed taitly heneforth).

EXAMPLE 74.

1. de�nes left-onnetedness: 8x8y < x8z < x(y < z _ z < y _ y = z);

2. de�nes transitivity: 8x8y < x8z > x y < z,

3. de�nes >,

4. de�nes >.

If G;H had been interpreted through di�erent relations <

G

; <

H

, then (3)

and (4) would have expressed that <

H

is the onverse relation of <

G

.

5. de�nes transitivity again: 8x8y > x8z < x z < y,
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6. de�nes right-onnetedness: 8x8y > x8z > x(y < z _ z < y _ y = z).

Thus, the MTaggart temporal piture is one of linear ow.

An inompleteness theorem. Simple transfer of earlier modal results es-

tablishes the seminal inompleteness result of

[

Thomason, 1972

℄

, in a very

simple version.

THEOREM 75. The tense logi axiomatised by

H(Hp! p)! Hp (L�ob's Axiom)

GFp! FGp (MKinsey Axiom)

is inomplete.

Proof. Spei�ally, this logi holds in no frame | and yet it is not inon-

sistent.

First, as to the former statement, reall from Setion 2.2 that

1. L�ob's Axiom de�nes transitivity of > and well-foundedness of <.

By the former, < is transitive as well (transitivity is `independent of the

temporal diretion', or isotropi (f.

[

van Benthem, 1985

℄

)). Thus, in this

speial ase, Example 51 applies, and we have

2. MKinsey's Axiom de�nes atomiity: 8x9y > x8z > y z = y.

A onsequene of the latter property is 8x9y > x y < y (f. Example

65(4)). So, the temporal order must ontain instantaneous loops : : : < y <

y < y < : : :, whih ontradits well-foundedness. Therefore, our logi holds

in no frame.

Nevertheless, it does hold in a general frame, viz. an earlier example from

Setion 2.1: hN;<;Wi, with

W = fX � N j X is �nite or N �X is �niteg:

The reason was that refutations for the MKinsey Axiom are no longer

`admissible', as these involve in�nite alterations. (Thomason gives a speu-

lation at this point onerning the Seond Law of Thermodynamis: `event

patterns stabilise'.) But then, the logi annot be inonsistent: its K-

theorems hold in all general frames where it is valid. �

Tense-logial axioms for the temporal order. In

[

van Benthem, 1985

℄

, the

following fundamental axioms are derived for any temporal order indued

by a omparative (in the linguisti sense) `earlier than'.

1. irreexivity: 8x :x < x (`no vorties in Time')
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2. transitivity: 8x8y > x8z > y z > x (`ow')

3. almost-onnetedness: (`arrows are omparative yard stiks')

8x8y > x8z (x < z _ z < y)

A version of the latter priniple may also be found as the key axiom in

Leibniz' relational theory of Spae-Time (f.

[

Winnie, 1977

℄

).

Whih tense-logial axioms orrespond? From Setion 2.4, we know that

(1) is unde�nable, (2) yields Gp ! GGp, while (3) just fails to fall under

Theorem 67. What the latter result does give is a orrespondene between

8x8y > x8z > y8u > x(y < u _ u < z)

and

(F (p ^ Fq) ^ Fr)! (F (p ^ Fr) _ F (r ^ Fq)):

Another example onerns partiular temporal orders. One an never

hope to fully de�ne suh frames ategorially by their tense-logial theories.

For, by the Generation Theorem, tense-logial formulas annot distinguish

between one single, or several parallel ows of Time | whih latter piture

is so familiar from ontemporary siene �tion. Still, if disjoint unions of

frames are disregarded, we have

THEOREM 76. hN;<i is de�ned ategorially by the axioms

H(Hp! p)! Hp

Pp! H(Fp _ p _ Pp)

Fp! G(Fp _ p _ Pp)

FT

G(Gp! p)! (FGp! Gp)

The proof is omitted here.

But, e.g. the integers hZ;<i annot be thus de�ned; as the ontration to

a single point remains a zigzag morphism preserving their theory. (hN;<i

was una�ited this time: in tense logi, zigzag morphism have two bakward

relational lauses | whene, the earlier ontration fails to quality.)

Time and modality. Combined modal-tense logis with two alternative re-

lations R;< have been repeatedly proposed. For instane, in

[

White, 1981

℄

we �nd a logi with harateristi axioms

Gp! GGp; Fp! G(Fp _ p _ Pp); PT (D4.3)

Pq ! �Pq (`irrevoable past'):

This logi is laimed to be appropriate for an analysis of the famous Diodor-

ean `Master Argument', identifying possibility with atual or future truth |

a version of what was later to beome known as the priniple of Plenitude:

all metaphysial possibilities are eventually realised in this World.
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Our analysis of this laim runs as follows. Gp! GGp de�nes transitivity

for <, the MTaggart Axiom de�nes right-onnetedness; while PT de�nes

left-suession: 8x9y y < x. The additional `mixing postulate' de�nes

8xy(Rxy ! 8z(z < x! z < y)):

Claim (1). 8xy(Rxy ! (y < x _ y = x _ x < y)).

Proof. Assume Rxy. Let z < x (by left-suession). Then z < y (`mix').

The onlusion follows by right-onnetedness. �

Claim (2). 8xy(Rxy ! (x < y _ x = y)).

Proof. If Rxy and y < x, then y < y (`mix'): ontra irreexivity. �

The outome is this: without ever using transitivity, but with irreexiv-

ity (whih is presupposed in White's whole set-up), a relational ondition

follows whih is indeed de�ned by the Diodorean hallenge:

�p! (Fp _ p):

This is only one of the many possible semantis for temporal modalities,

of ourse. The orrespondene aspet of, e.g. the Oamist `branhing time'

of

[

Burgess, 1979

℄

remains to be explored.

Alternative temporal ontologies. Reently `interval strutures' have been

proposed as an alternative for the above traditional point ontology. From

the manifesto of

[

Humberstone, 1979

℄

, a piture emerges of triples

hI;�; <i;

where � is inlusion among intervals, and < total preedene.

Here again, orrespondenes prove useful in exploring proposed prini-

ples. The language has the ordinary tense-logi operators, as well as a

modality � (`in all subintervals'). In this notation, Humberstone's base

logi has for its basi axioms

1. Fp! �Fp

2. F�p! Fp

3. �F�p! (�p _ Fp).

By the earlier method of substitutions, equivalents may be found illumi-

nating these:

1. de�nes 8x8y>x8z�x y > z,
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a property known as left monotoniity,

2. de�nes 8x8y>x8z�y z > z,

its dual property of right monotoniity. Finally,

3. de�nes 8x8y � x8z > y (9u � z : u � x _ 9u � z : u > x),

a form of a priniple known as onvexity. (`Strethes of time should be

uninterrupted'.)

Starting from the other side, one may impose basi postulates on �; <,

asking for de�nitions in this `interval tense logi'. For <, these might be

the earlier-mentioned ones, for �, a minimum seems to be the requirement

of partial order, while monotoniity (and onvexity) take are of minimal

onnetions between <;�. This would add only two axioms to the preeding

ones, viz. S4 for inlusion. The further ondition of anti-symmetry is not

de�nable | as may be seen by noting that the map n 7! n (modulo 2)

is a �-zigzag morphism sending the anti-symmetri frame hZ;�i to the

non-antisymmetri one hf0; 1g; fh0; 0i; h0; 1i; h1; 0i; h1; 1igi.

Many more examples of further orrespondenes on top of this foundation

may be found in Chapter II.3.2 of

[

van Benthem, 1985

℄

.

3.2 Conditionals

From among the teeming multitude of `onditional logis', three speimens

have been inluded here. As no work of the present kind has been done in

this area at all, the following onsiderations are still very muh �rst steps.

(Cf. the Conditional Logi hapter in volume 5 for a disussion of onditional

logis.)

Construtive impliation

Perhaps the single most e�etive argument in favour of onstrutive, as op-

posed to lassial impliation is the natural dedution analysis. The natural

rules for !-introdution and !-elimination give us only a fragment of all

lassial pure !-tautologies; axiomatised by

(A1) '! ( ! ')

(A2) ('! ( ! �))! (('!  )! ('! �))

plus the rule of modus ponens. A priniple notably outside of this lass is

Peire's Law

(('!  )! ')! ':

But really, the same elegane shows up in the Henkin ompleteness proof.

In the usual proof, one starts from a given onsistent set | and then has
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to extend this arbitrarily to just any maximally onsistent one, in order to

`break down' impliations aording to the lassial truth table. A anonial

model onstrution rather uses a unique natural model, viz. that onsistent

set together with all its onsistent extensions, exploiting the evident deom-

position rule

� ` '!  if and only if 8�

0

� � : if �

0

` ', then �

0

`  :

A perfet math arises with the following semantis. Strutures are gen-

eral frames F = hW;R;Wi, where R orresponds to the above inlusion

relation, and W onsists of all R-hereditary sets of worlds. (Propositions

represent R-umulative knowledge on this view.)

A diret study of the above logi on these frames would yield rather

lumsy onditions. One ase will be exhibited, as it illustrates a variant

onept of orrespondene, viz. orrespondene for rules rather than axioms.

EXAMPLE 77. Modus Ponens de�nes the ondition `every world belongs

to some �nite R-loop'.

Proof. `(': Suppose that xRx

1

R : : :Rx

n

Rx. Let V (p); V (q) be R-heredit-

ary subsets of W , suh that p; p! q hold at x. Then, suessively, p; q hold

at x

1

; : : : ; x

n

, and �nally at x.

`)': Suppose that x belongs to no �nite R-loop. Set V (p) := the smallest

R-hereditary set ontaining x; V (q) = the R-hereditary losure of fy j Rxyg.

This veri�es p; p! q at x; without verifying q. �

What will be done instead is to postulate the partial order behaviour of

�: reexivity, transitivity and antisymmetry. Finer peuliarities of (A1),

(A2) remain undetetable below this threshold.

Further restritions on R may now be imposed by stronger axioms; e.g.

we an see why Peire's Law is harateristi for lassial logi.

EXAMPLE 78. Peire's Law de�nes the restrition to single points:

8xy(Rxy ! y = x):

Proof. `(': A simple alulation suÆes.

`)': Suppose that Rxy; x 6= y. Set V (q) = ?; V (p) = fz j Rxz ^ x 6= zg.

This makes (p ! q) ! p true at x (notie that p ! q is false at x itself),

while falsifying p. (By the way, that V is admissible, i.e. that V (p) is R-

hereditary, follows from the above general assumption.) �

But `intermediate' impliation axioms exist as well.

EXAMPLE 79. The following priniple

((p! q)! p)! (((q ! r)! q)! p)
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de�nes a maximal length 3 for R-hains:

8xy(Rxy ! 8z(Ryz! (x = y _ y = z _ 8u(Rzu! z = u)))):

Proof. Here is the relevant ounter-example for the argument in the `)'-

diretion. Assume that xRyRzRu, while x 6= y; y 6= z; z 6= u. Set V (r) =

;; V (q) = fv j Ruv ^ u 6= vg [ fv j Ryv ^ :Rvzg; V (p) = fv j Ryv ^ y 6= vg.

The priniple will be falsi�ed at y. �

It has not been possible to �nd other types of intermediate example.

Hene, we onlude with a

Conjeture. All priniples of pure onstrutive impliation de�ne �rst-

order onstraints on R; viz. restritions to some �nite hain length.

Relevant impliation

Of the various proposed semantis for relevane logi, here is a perspiu-

ous example from

[

Gabbay, 1976, Chapter 15

℄

. Strutures are now tuples

hW;R; V; 0i, where 0 is a speial world providing a vantage point from whih

to ompare other worlds through the ternary relation R. Intuitively, R

a

b

is to mean that b is `inluded' in , at least from the perspetive of a. (One

might think of, for example, `a-loal inlusion': a \ b � a \ .) No prior

onditions are imposed on this relation.

This is not to say that these are not to be found at all. For instane, it

may be shown that the mentioned loal inlusion relation is haraterised

by two betweenness axioms:

1. R

a

b$ R

b

a (interhanging boundaries)

2. (R

a

b ^ R

d

ae ^ R

d

be)! R

d

e

(I.e. if  2 [a; b℄; a 2 [d; e℄; b 2 [d; e℄, then  2 [d; e℄: a form of onvexity.)

The expliation of impliation reads as follows:

' !  is true at a i�, for all b;  suh that R

a

b, if ' is true at

b, then  is true at .

As it stands, this de�nition makes no impliation laws universally valid.

To obtain at least some indubitable priniple, one therefore imposes a re-

strition on valuations. The most urgent ase is that of p! p. On the above

bare semantis, it would orrespond to 8xyz(R

x

yz ! y = z), ollapsing the

ternary relation. To avoid this, one again requires `umulation':

valuations V are only to assign subsets X of W subjet to the

onstraint that 8xy 2W (R

0

xy ! (x 2 X ! y 2 X)).



CORRESPONDENCE THEORY 381

If this onstraint is to extend automatially to sets X de�ned by omplex

impliational formulas, then a mild form of transitivity is to be imposed on

the ternary relation after all:

8xyzu((R

0

xy ^R

y

zu)! R

x

zu):

Notie how this relates perspetives from di�erent vantage points.

But then, if reasonable forms of transitivity have beome respetable, we

also add (�)8xyzu((R

0

xy ^ R

0

yz)! R

0

xz).

Now, at last, some genuine orrespondenes arise | of a `loal' sort (f.

Setion 2.2).

EXAMPLE 80.

1. Modus Ponens de�nes R

0

00,

2. Axiom A1 de�nes a urious form of `transitivity':

8xyzu((R

0

xy ^R

y

zu)! R

0

xu).

Proof. (Case (1) only) `(': This diretion is immediate.

`)': Let V (p) = f0g [ fx j R

0

0xg; V (q) = fx j R

0

0xg. By the above

priniple (�), both assignments are admissible. Clearly, both p and p ! q

are true at 0, whene also q: i.e. R

0

00. �

Obviously, the seond priniple is not very plausible | but then, neither

is (A1) for a relevane logiian.

A more interesting phenomenon in relevane logi, from the present point

of view, is the treatment of negation. This formerly inonspiuous notion is

now interpreted using a `reversal operation'

+

on worlds:

:' is true at a i� ' is true at a

+

.

In this light, new ombined orrespondenes appear, suh as that between

Contraposition and the reversal law

8xy(R

0

xy ! R

0

y

+

x

+

):

Correspondene Theory may be applied to any kind of semanti entity.

Counterfatual impliation

Ramsey told us to evaluate onditionals as follows. Make the minimal ad-

justment of your stok of beliefs needed to aommodate the anteedent:

then see if the onsequent follows. Various syntati and semanti imple-

mentations of this view exist, of whih that of

[

Lewis, 1973

℄

has deservedly

won the greatest favour. A ounterfatual ' !  is true in a world, on his
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aount, if  is true in all worlds most similar to that world given that '

holds in them.

As the preeding aount has some diÆulties in the in�nite ase, let us

onsider �nite models hW;C; V i, where C is a ternary relation of ompara-

tive similarity:

C

x

yz for: `y is loser to x than z is'.

Lewis gives three basi onditions on the relation `no loser':

1. transitivity: 8xyzu((:C

x

yz ^ :C

x

zu)! :C

x

yu),

2. onnetedness: 8xyz(:C

x

yz _ :C

x

zy),

3. egoentrism: 8xy(:C

x

xy ! x = y).

Rewriting these for `loser', one �nds to one's surprise that (2) is rather

weak, being merely

2

0

. asymmetry: 8xyz(C

x

yz ! :C

x

zy).

On the other hand, (1) beomes a strong priniple

1

0

. 8xyu(C

x

yu! 8z(C

x

yz _ C

x

zu)),

whih we knew as almost-onnetedness bak in Setion 3.1.

From asymmetry and almost-onnetedness, one may derive ordinary

transitivity and irreexivity, whene the three `omparative' axioms of Se-

tion 3.1 emerge. These priniples justify the appealing piture of `similarity

spheres' around the referene world x.

The tendeny has been sine 1973 to retain only transitivity and irreex-

ivity as fundamental pre-onditions on C, leaving various forms of onnet-

edness as optional extras. Thus, one �nds an axiomatisation of this austere

minimal onditional logi in

[

Burgess, 1981

℄

.

The truth de�nition in this ase may be taken to be the following:

' !  is true at w if w holds in all '-worlds C-losest to w:

Indeed, this lause veri�es the following list of priniples without further

ado:

p ! p;

p ! q; p ! r ` p ! q ^ r;

p ^ q ! p;

p ! r; q ! r ` p _ q ! r:

It is only the last one whih requires transitivity:

p ! q ^ r ` p ^ q ! r:
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Egoentrism is restored by adding the priniple of Modus Ponens:

p ! q; p ` q

But, the original Lewis logi ontained even further priniples, suh as the

formidable

((p _ q) ! p) _ :((p _ q) ! r) _ q ! r:

What does it express? As it happens, it restores almost-onnetedness.

Proof. First, the axiom is valid under this additional assumption | by the

above disussion.

Next, suppose almost-onnetedness fails; i.e. for some xyzu we have:

C

x

yz;:C

x

yu;:C

x

uz. By transitivity, it follows that :C

x

zu. Now, set

V (p) = fyg; V (q) = fz; ug; V (r) = fy; ug. Then z is q-losest among the

worlds falsifying r. The two p _ q-losest worlds y; u both verify r. Finally,

p fails in the p_ q-losest world u. Thus, Lewis' axiom has been refuted. �

Finally, to mention an example outside of Lewis' original logi, there is

the Stalnaker priniple of `Conditional Exluded Middle':

p ! q ^ p !:q:

As was stated in the Introdution, this axiom even requires the similarity

order to be a linear one. In the present �nite ase, this means that the

above truth de�nition redues to:

' !  is true at w if  holds in the losest '-alternative to w:

And that was the original Stalnaker expliation of onditionals.

The previous examples were all onditional axioms without nestings of

!. This is typial for most urrent logis in this area. Relational onditions

mathing these have invariably been found to be �rst-order ones. Hene, in

view of Theorem 38, here is our

Conjeture. All ounterfatual axioms without nestings of onditionals

are �rst-order de�nable.

The reason for this restrition lies in the motivation for the present area.

Entailment onditionals suh as onstrutive impliation, or modal entail-

ment have often been proposed out of dissatisfation with lassial `nested

priniples', suh as, say, p! (q ! p) or Peire's Law. The non-nested las-

sial fragment was not alled into question. Counterfatual onditionals,

however, typially disobey lassial impliational logi at the level of non-

nested inferenes, suh as the monotoniity rule from p! q to p ^ r ! q.

Nevertheless, there are intrinsi reasons to be found inside the above

semantis for onsidering nested axioms after all. For, one obvious omission
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in the above list of semanti onditions was the lak of index priniples

relating the perspetives of di�erent worlds. For instane, when we read C

for a moment as relative proximity in Eulidean spae, we �nd the following

Triangle Inequality

8xyz((C

x

yz ^ C

z

xy)! C

y

xz):

And there are other elegant priniples of this kind.

Now, it is easily seen that suh index priniples are just what is involved

when nested ounterfatuals are evaluated: the perspetive starts shifting.

Thus, it will be rewarding to have orrespondenes here as well. One, not

too exiting example is the following. The Absorption Law

p ! (q ! r) ` (p ^ q) ! r

de�nes the index priniple

8xyz(C

x

yz ! 8u:C

y

uz):

Better examples are still to be found. Indeed, e.g. the ounterfatual logi of

Eulidean spae, the most natural geometri representation of our similarity

pitures, is still a mystery.

3.3 Intuitionisti Logi

Construtive onditional logi is only a part of the full intuitionisti logi,

whose Kripke semantis extends the earlier onstrutive models. In this

setion, a sketh will be given of an Intuitionisti Correspondene Theory.

(For details on intuitionisti logi, f. van Dalen's hapter in volume 7 of

this Handbook.)

Kripke semantis, intermediate axioms and orrespondene.

DEFINITION 81. An intuitionisti Kripke model M is a tuple hW;�; V i,

where � is a partial order (`possible growth') on W (`stages of knowledge').

The valuation V assigns �-losed subsets of W to proposition letters (`u-

mulation of knowledge').

The truth de�nition has the following familiar pattern,

M 2 ?[w℄ for all w 2W;

M � '!  [w℄ if M �  [v℄ for all v � w suh that M � '[v℄;

M � ' ^  [w℄ if M � '[w℄ and M �  [w℄;

M � ' _  [w℄ if M � '[w℄ or M �  [w℄:

Negation is de�ned as usual (:' beoming '! ?).
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The pre-ondition of partial order was motivated earlier on. But, other

hoies may be defended as well. As is well-known, the above semantis was

derived from the modal one, through the G�odel translation g:

g(p) = �p

g('!  ) = �(g(')! g( ))

g(' ^  ) = g(') ^ g( )

g(' _  ) = g(') _ g( )

g(?) = ?:

Now, there is a whole range of modal logis whose `intuitionisti fragment'

(through g ) oinides with intuitionisti propositional logis. Amongst

others, we have the

THEOREM 82. Let X be any modal logi in the range from S4 to S4.Grz

= S4 plus the Grzegorzyk Axiom

�(�(p! �p)! p)! p:

Then, for all intuitionisti formulas '; ' is intuitionistially provable in

Heyting's logi if and only if g(') is a theorem of X.

The earlier modal orrespondenes yield a orresponding semanti range,

between `pre-orders' (reexive and transitive) and `trees':

EXAMPLE 83. Grzegorzyk's Axiom de�nes the ombination of (i) reex-

ivity, (ii) transitivity, and (iii) well-foundedness in the following sense: `from

no w is there an asending hain w = w

1

� w

2

� : : : with w

i

6= w

i+1

(i =

1; 2; : : :)'.

Proof. This goes more or less like the losely related Axiom of L�ob. By the

way, notie that (iii) implies anti-symmetry. Note also that, semantially,

Grzegorzyk's axiom alone implies the S4-laws: syntati derivations to

math were found around 1979 by W. J. Blok and E. Pledger. �

Thus, a ase may also be made for the Tree of Knowledge as a basis for

intuitionisti semantis. Nevertheless, we shall stik to partial orders for a

start.

Above S4Grz, modal logis start produing greater g-fragments | the

so-alled intermediate logis, asending to full lassial logi. Intermediate

axioms impose various restritions on the pattern of growth for knowledge,

lassial logi foring the existene of single (`omplete') nodes.

EXAMPLE 84. (i) Exluded Middle p _ :p de�nes 8x8y(x � y ! x = y).

Proof.`(' is immediate.

`)': Suppose x � y; x 6= y. (By anti-symmetry then y 6� x.) Set

V (p) = fz j y � zg. This falsi�es both p and :p at x. �
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(ii) Weak Exluded Middle :p _ ::p de�nes diretedness.

Proof. `(': Suppose that :p fails at x; say p holds at y � x. Then

onsider any z � x. As it shares a ommon suessor with y, and V (p) is

�-hereditary, it has a suessor verifying p, whene :p fails at z. So ::p

holds at x.

`)': Suppose that x � y; z, where y; z share no ommon suessors. Set

V (p) = fu j z � ug. (Like above, this is a �-losed set.) Notie that

x; y 62 V (p). It follows that :p fails at x (onsider z), but ::p fails as well

(onsider y). �

(iii) Conditional Choie (p! q) _ (q ! p) de�nes onnetedness.

Proof. `(': Suppose that p ! q fails at x; i.e. some y � x has p true,

but q false. Now onsider any z � x suh that q holds. Either z � x, but

then, by �-heredity, q is true at y (quod non), or y � z, and so, again by

�-heredity, p is true at z, i.e. q ! p is true at x.

`)': Let x � y; z with y 6� z; z 6� y. Set V (p) = fu j y � ug; V (q) = fu j

z � ug. Then p! q fails at x (wath y), and q ! p fails as well (wath z).

�

Muh more forbidding priniples than these have been proposed as inter-

mediate axioms. But surprisingly, these usually turned out to be �rst-order

de�nable:

EXAMPLE 85. (i) The Stability Priniple (::p! p)! (p _ :p) de�nes

8x:9yz (x � y ^ x � z ^ :9u(y � u ^ z � u) ^

^ 8u(8s(u � s! 9t(s � t ^ z � t))! :9v(u � v ^ y � v))):

(ii) The Kreisel-Putnam Axiom (:p ! (q _ r)) ! ((:p ! q) _ (:p ! r))

de�nes

8x:9yz (x � y ^ x � z ^ :y � z ^ :z � y ^

^ 8u((x � u ^ u � y ^ u � z)! 9v(u � v ^ :y � v ^ :z � v))):

No matter how omplex suh axioms may seem at �rst sight, proofs of

the above assertions are quite simple exerises in `imagining what a ounter-

example would look like'.

This reurrent experiene led to the following onjeture in

[

van Benthem,

1976

℄

:

All intermediate axioms express �rst-order onstraints on growth

of knowledge.

Two onjetures refuted. The earlier hope was all but given up in the �rst

version of this hapter; as `Sott's Rule' turned out to be an essentially
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higher-order intermediate inferene. The relevant argument was sharpened

somewhat by P. Rodenburg:

THEOREM 86. Sott's Axiom ((::p ! p) ! (p _ :p)) ! (:p _ ::p)

de�nes no �rst-order ondition on partial orders.

Proof. An elaborate L�owenheim{Skolem argument works, in the spirit of

Example 43. As an illustration of the non-triviality of our present subjet

matter, it follows here.

Step 1: Consider the following Kripke frame hW;�i:

�

� �

� � � �

d



X

� � 

�

�

�

�

�

�

�

A

A

A

A

A

A

A

X

W onsists of the in�nite binary tree T , together with, for eah node  in

T and eah �-hereditary, o�nal set X in T



(i.e. the subtree with root ),

some point d



X

. � is the usual order on T , together with

�  � d



X

� x, for all x 2 X

� d



X

� d



X

0

, if X

0

� X .

Claim. Sott's Axiom is true in hW;�i.

Proof. First, let  2 T be a putative refutation. I.e., for some valuation

V ,

1. (::p! p)! p _ :p is true at ,

2. :p _ ::p is false at .
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Then onsider the node d



X

, where X is the o�nal hereditary set

T



\ (V (p) [ V (:p)):

One veri�es suessively that ::p! p is true at d



X

, whereas both p;:p are

false. (E.g. if p were true at d



X

, then p is true throughout X , whene ::p is

true at  | whereas (2) says the opposite.) Thus, we have a ontradition

with (1).

A similar argument works for the ase where  is of the form d



X

itself.

Step 2: A matter of ardinality:

Claim. The above Kripke frame is unountable.

Proof. In partiular, there are 2

�

0

nodes of the form d



X

. For, eah subset

Y of N may be oded as follows, using (distint) hereditary o�nal subsets

Y

+

of the in�nite binary tree. Let Y = fy

1

; y

2

; y

3

; : : :g.

�

�

�

�

�

�

�

Y

+

Y

+

Y

1

Y

2

et. going down the extreme right branh using the extreme left branhes

to ode y

1

; y

2

; y

3

; : : :.

For all nodes not arrived at in this way, one makes Y

+

o�nal by means

of the following stipulation:

�

� �

� �

Y

+

� �

y

3

, et.

�

y

1

�

Y

+

�

y

2

�

Y

+

Step 3: Take any ountable elementary substruture F of hW;�i ontaining

the original binary tree.
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Claim. Sott's Axiom may be falsi�ed in F .

Proof. Consider T as a double tree

�



0



1

� �



2

and again T



2

a ountable sequene of `trees on a string':

�



2

� �

T

1

� �

T

3

� �

T

3

Let D

X

1

; D

X

2

; : : : be an enumeration of the points d

C

0

X

remaining in F .

Notie that, for eah i 2 N ,

1. �nite intersetions T

i

\X

1

\ : : :\X

n

are still hereditary o�nal in T

i

,

2. the total intersetion T

i

\ fX

j

j j = 1; 2; : : :g is empty.

As for the latter observation, it suÆes to see that the assertion

8x9d

C

0

X

with d

C

0

6� x;

whih holds in hW;�i, an be expressed in �rst-order terms in hW;�i; and,

hene, it has remained valid in the elementary substruture F .

Now, de�ne

X

�

1

= X

1

X

�

n+1

= X

1

\ : : :X

k

for the smallest k suh that T

n+1

\X

1

\

: : : \X

k

�

6=

T

n+1

\X

�

n

:

Sott's Axiom may now be falsi�ed at 

0

, by setting

X

�

= [ fT

i

\X

�

i

j i = 1; 2; : : :g; V (p) = fy j 9x � y x 2 X

�

g:

to see this, notie, that suessively,

1. eah point d

X

i

has a suessor (in T

i

) outside of V (p),

2. (::p! p)! p _ :p holds at 

0

,
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3. :p _ ::p fails at 

0

.

We onlude that Sott's Axiom is not �rst-order de�nable | not being

preserved under elementary subframes. �

This omplex behaviour disappears on better-behaved strutures.

OBSERVATION 87. On trees, Sott's Axiom de�nes the �rst-order ondi-

tion

8x:9yzu (x � y ^ x � z ^ z � u ^ z 6= u ^ :9v(y � v ^ z � v)):

This, and other experienes of its kind, led to a revised guess in the �rst

version of this hapter: On trees, all intermediate axioms express �rst-order

onstraints on desendane. A proof sketh was added, involving semanti

tableaux as `patterns of falsi�ation', to be realised in trees.

This onjeture was `almost' refuted in

[

Rodenburg, 1982

℄

. The semanti

tableau method runs into problems with disjuntions, and indeed we have

the following ounter-example.

EXAMPLE 88. Consider the formula

� = ((:p ^ :q ^ :r) ! (p ^ q ^ r))! (:p ^ :q ^ :r)

with the simultaneous substitution of: p&q for p, p&:q for q, and :p&q for

r. This � is not �rst-order de�nable on partial orders. On suitably tree-like

strutures, it expresses the lak of `3-forks' of immediate suessors as well

as the absene of in�nite omb-like strutures.

On trees, this negative example probably still works | but there is an

instrutive diÆulty here. The lass of trees itself has a higher-order de�-

nition; �

1

1

, to be preise. Therefore, urrent model-theoreti arguments for

disproving �rst-order de�nability (ompatness, L�owenheim{Skolem) run

the risk of employing onstrutions leading outside of this lass. Higher-

order preonditions are a problem for our Correspondene Theory.

To illustrate this from a purely lassial angle, the reader may onsider

a related problem, showing how soon the familiar methods of model theory

fail us. Finiteness is �rst-order unde�nable on partial orders, even on trees.

It is thus de�nable on linear trees, however, viz. by `every non-initial node

has an immediate predeessor'. What about the (at most) binary trees?

This intermediate ase seems to be open.

The state of the subjet. The progress of siene is sometimes startling.

Where the �rst version of this hapter (1981) had some tentative examples,

enlightenment reigns in the report

[

Rodenburg, 1982

℄

. Of its many topis,

only a few will be mentioned here.

First, there are several semanti options | as indiated above, ranging

from partial orders via `downward linear orders' to trees. But moreover,
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there is a legitimate hoie of language. Despite appearanes, it is the

disjuntion lause whih is now strongly onstrutive in intuitionisti Kripke

semantis. (`Choose now!' Classial logi would have a more humane lause

in this setting: ��(' _  ), i.e. `' or  eventually'.) Thus, it is of interest

to onsider both the full language and its _-free fragment.

The semanti tableau method mentioned above, in ombination with the

above ounter-examples, has led to the results in the following sheme:

All formulas Partial Downward Trees

�rst-order de�nable orders linear orders

without _ YES YES YES

with _ NO NO ?

But there are also matters of `�ne struture'. For instane, Sott's Axiom

had only one proposition letter | and for suh intuitionisti formulas we

have the beautiful Rieger{Nishimura lattie. Now, Sott's Axiom merely

seemed a �t andidate for a ounter-example among the intermediate axioms

existing in the literature. Rodenburg has proved that it is also minimal

in the Rieger-Nishimura lattie with respet to non �rst-order de�nability.

(More preisely, an intuitionisti formula with one proposition letter is �rst-

order de�nable on the partial orders if and only if it is equivalent to one of

A

1

; : : : ; A

9

in the lattie.)

In the ounter-examples needed for the latter result, a uniform method

may be seen at work: ompatness, in the form that sets of formulas whih

are �nitely satis�able in �nite models are also simultaneously satis�able (in

some in�nite model). Now, indeed, intuitionisti truth has a lose onne-

tion with truth in �nite submodels (f.

[

Smory�nski, 1973

℄

). Our question is

whether this may lead to the following improvement in the mathematial

haraterisation of �rst-order de�nability as given in Setion 2.2.

Conjeture. An intuitionisti formula ' is �rst-order de�nable if and only

if ' is preserved under ultraproduts of �nite frames.

Intuitionisti de�nability. As with the diretion `from intensional to lassi-

al', the ase `from lassial to intuitionisti de�nability' shows many resem-

blanes with our earlier modal study. For instane, a Goldblatt{Thomason

type haraterisation was proved in

[

van Benthem, 1983

℄

(f. our earlier

Theorem 66):

A �rst-order onstraint on the growth pattern is intuitionisti-

ally de�nable if and only if it is preserved under the formation

of generated subframes, disjoint unions, zigzag-morphi images,

�lter extensions and `�lter inversions'.
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Merely in order to illustrate this topi, whih has a wider semanti sig-

ni�ane, here is a sketh of the representation theory in the bakground.

On the algebrai side, the intuitionisti language may be interpreted in

Heyting Algebras hA; 0; 1;+; �;)i satisfying suitable postulates. Now, eah

Kripke (general) frame in the above sense indues suh a Heyting Algebra,

through its �-hereditary sets, provided with suitable, obvious operations.

But also onversely, a �lter representation now takes Heyting Algebras to

Kripke general frames. Indeed, the earlier ategorial duality (f. Setion

2.3) is again forthoming.

The more general semanti interest of the onstrution is this. Despite

the super�ial similarity with strutures onsisting of the `omplete' possi-

ble worlds, intuitionisti Kripke models should be regarded as patterns of

stages of partial information. This omes out quite niely in the above rep-

resentation, where `worlds' are no longer omplete ultra�lters, but merely

�lters (in the _-free ase) or `splitting' �lters (for the full language). Filters

F merely satisfy the losure ondition that

a; b 2 F i� a � b 2 F;

a minimal requirement on partial information. Also quite suggestively, the

`modal' alternative relation ollapses into inlusion (`growth'):

8a) b 2 F 8a 2 F

0

: b 2 F

0

i� F � F

0

:

The present-day supporters of `partial models' and `information semantis'

would do well to study intuitionisti logi.

Prediate logi. Again, orrespondene phenomena do not stop at the fron-

tier of prediate logi. This will be illustrated by means of some intuition-

isti examples.

Kripke models M = hW;�; D; V i will now be of the usual variety; in

partiular satisfying

1. 8xy(x � y ! D

w

� D

v

) (monotoniity)

2. 8xy(x � y ! 8

~

d 2 D

x

(V

x

(P;

~

d) = 1! V

y

(P;

~

d) = 1) (heredity).

But other varieties, say with maps between the domains (f.

[

Goldblatt,

1979

℄

) would be suitable as well.

The `de re/de dito' interhange priniples of Setion 2.5 now have their

obvious ounterparts in the following quartetto:

1. :9xAx ! 8x:Ax,

2. 8x:Ax! :9xAx,

3. 9x:Ax ! :8xAx,
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4. :8xAx! 9x:Ax.

The �rst three of these are universally valid on the present semantis.

That they already hide quite some omplexity is shown by the G�odel trans-

lation of (3):

�(9x�:�Ax! �:�8x�Ax);

or

�(9x��:Ax! ��9x�:Ax):

No wonder that (3), e.g. does not de�ne preisely the above monotoniity

onstraint on domains | even though its modal ousin 9x�Ax ! �9xAx

did.

The �rst really omplex priniple in Setion 2.5 was the onverse impli-

ation �9xAx! 9x�Ax. We shall now investigate its intuitionisti ousin

(4) | a rejeted lassial law.

EXAMPLE 89.

1. :8xAx! 9x:Ax implies that all domains are equal:

8xy(x � y ! D

x

= D

y

)

2. On frames with onstant �nite domain, :8xAx ! 9x:Ax expresses

the �rst-order ondition that

8x (9!d d 2 D

x

_ 8y(x � y ! 8z(x � z ! 9u(y � u ^ z � u)))):

Proof. Ad 1. Suppose that x � y, but D

x

�

6=

D

y

. Make A true at y for all

d 2 D

x

, and similarly at all y

0

� y. This stipulation de�nes an admissible

assignment verifying :8xAx at x, while falsifying 9x:Ax.

Ad 2. First, if jD

x

j = 1, then trivially, :8xAx ! 9x:Ax holds at x.

(Reall that all domains are equal.)

Next, if jD

x

j > 1, then one may argue as follows. If � is direted above

x in the above sense, then the assumption that 9x:Ax fails at x an be

exploited to show that :8xAx must fail as well.

For, let D

x

= fd

1

; : : : ; d

k

g. By the assumption, Ad

i

will be true at some

x

i

� x (1 � i � k). Then, by suessive appliations of diretedness, there

will be found a ommon suessor y � x

1

; : : : ; y � x

k

, where 8xAx is true

(by heredity). This falsi�es :8xAx at x.

If on the other hand, for some x; jD

x

j > 1 while � is not direted above

x, then, say, there exist x

1

� x; x

2

� x without ommon suessors. Then

pik any objet d 2 D

x

, making A true at x

1

and all its �- suessors for

all objets exept d; while making A true at x

2

and all its �-suessors for

d only. This assignment veri�es :8xAx at x, while falsifying 9x:Ax. �
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Thus, a lassial quanti�er axiom may express an interesting purely rela-

tional onstraint on �.

Now, intuitionists are fond of saying that (4) is valid for �nite domains:

as we have seen, however, it does impose onstraints even then. They go on

to say that an extrapolation to the in�nite ase would be illegitimate. At

least, our priniple beomes muh more omplex then.

THEOREM 90. :8xAx! 9x:Ax is not �rst-order de�nable in general.

Proof. Consider the following struture, in whih all worlds have a ommon

domain N .

�

� � � : : :  � � � � : : : �! (� < !

1

)

0 1 2 �1 0 +1

i.e. hW;�i has the relational pattern of

hN � (!

1

�Z);�i:

Claim. :8xAx! 9x:Ax is true in this frame.

Proof. Starting from any world x, assume that 9x:Ax fails. Then, for

eah n 2 N , An must hold at some (�

n

; k

n

) > x. As the o�nality of !

1

exeeds !, there exists some � < !

1

suh that (�; 0) > (�

n

; k

n

)(n 2 N).

Now, by heredity, 8xAx must hold at (�; 0) | whene :8xAx is false at

x. �

Next, by the L�owenheim{Skolem theorem (as ever), this frame has ount-

able elementary subframes. (Indeed, hIN;�i itself is one.) But in these, our

priniple may be falsi�ed using some ountable o�nal sequene x

0

; x

1

; : : :

making A0 true from x

0

upward, A1 from x

1

upward, etetera. As in earlier

arguments, the onlusion of the theorem follows. �

To �nish this list of examples, it may be noted that a famous weaker

variant of the above axiom does indeed de�ne a �rst-order onstraint.

EXAMPLE 91. Markov's Priniple

8x(Ax _ :Ax) ^ ::9xAx ! 9xAx

de�nes the relational ondition

8x9y � x 8z � y 8d(Edz ! Edx):

Correspondene Theory remains surprising.



CORRESPONDENCE THEORY 395

Post-Sript: quantum logi.

Correspondenes have not proved uniformly suessful in intensional on-

texts. It seems only fair to �nish with a more problemati example.

A possible worlds semantis for quantum logi was proposed in

[

Gold-

blatt, 1974

℄

. Kripke frames are now regarded as sets of `states' of some

physial system, provided with a relation of `orthogonality' (?). From its

physial motivation, two pre-onditions follow for ?, viz. irreexivity and

symmetry. But in addition, there is also a restrition to `admissible ranges'

for propositions, in the sense that these sets X �W are to be orthogonally

losed:

8x 2 (W �X)9y 2 (W �X)(:x?y ^ 8z 2 X y?z):

The key truth lauses are those for onjuntion (interpreted as usual), and

negation, interpreted as follows:

:' is true at x if x is orthogonal to all '-worlds.

This semantis validates the usual priniples for quantum logi, when _ is

de�ned in terms of :;^ by the De Morgan law. But, one key priniple

remains invalid, viz. the ortho-modularity axiom

p$ (p ^ q) _ (p ^ :(p ^ q)):

This axiom has a natural motivation in the Hilbert Spae semantis for

quantum logi | being the key stone in the representation of ortho-modular

latties as subspae algebras of suitable vetor spaes. Thus, a minimal

expetation would be that an enlightening orrespondene is forthoming

with some onstraint on the orthogonality relation ?.

In reality, no suh thing has happened. Quantum logiians pass onto

general frames, into whose very de�nition validity of ortho-modularity has

been built in. Despite this over-up, the fat remains that the relational

possible worlds perspetive fails to do its orrespondene duties here. A

set-bak, or an indiation that faile over-appliability of Kripke semantis

need not be feared for?

4 CONCLUSION

At a purely tehnial level, Correspondene Theory is an applied subjet.

Classial tools have been borrowed from model theory and universal algebra.

In return to these mother disiplines, the subjet o�ers a good range of

(ounter-)examples, as well as prospets for generalisability to other suitably

hosen fragments of higher-order logi. (Cf.

[

van Benthem, 1983

℄

.)

From a more philosophial point of view, the whole enterprise may be

desribed as �nding out what possible worlds semantis really does for us.
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It is one thing to make oneptual proposals, and another to really probe

their depths. The systemati study of onnetions between intensional and

lassial perspetives upon possible world strutures is an exploration of the

bene�ts gained by the semantis. This hapter started with the observa-

tion that `omplex' modal axioms turned out to express `simple' lassial

requirements (i.e. �rst-order ones). We have investigated the range and

limits of this, and related phenomena. Espeially these limits have beome

quite lear | and, with them, the limits of fruitful appliation of Kripke

semantis. This philosophial onlusion holds for all semantis, of ourse.

But we have earned the moral right to say it, through honest toil.
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APPENDIX (1997)

This hapter �rst appeared in 1984. In the meantime, Modal Logi has

evolved, but the basi struture of our original presentation remains valid.

Therefore, we have left the old text unhanged, and merely added a short

hronile of further developments, inluding some answers to open ques-

tions. Generally speaking, orrespondene methods have beome a useful

tehnial tool in pure and applied Modal Logi, without forming a major re-

searh area in their own right. A more prinipled motivation is given in van

Benthem

[

1996a

℄

, where orrespondene analysis is viewed as a entral part

in the philosophial quest for logial `ore theories' of semanti phenomena

in language and omputation. In partiular, orrespondenes suggest the

introdution of new many-sorted models, induing deidable geometries of

`states' and `paths' in the study of time and omputation.
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Extensions to Other Branhes of Intensional Logi

The �rst signi�ant extension of orrespondene theory onerns Intuitionis-

ti Logi. This involves the new feature that all valuations must be restrited

to hereditary ones, leading only to formulas whose truth is preserved upward

in the relational ordering. Rodenburg

[

1986

℄

investigates this area in detail.

In partiular, he shows that the impliation-onjuntion fragment is totally

�rst-order, whereas disjuntions an lead to non-�rst-orderness. Moreover,

he introdues semanti tableau methods for expliit desription of �rst-

order orrespondents. A �nal interesting feature is Rodenburg's analysis of

intuitionisti Beth models whih employ a seond-order truth ondition: a

disjuntion is true when its disjunts `bar' all future paths. These also turn

out to be amenable to orrespondene analysis, over two-sorted frames with

both points and paths. Restrited valuations also our with the ternary

relational models of Relevant Logi. A full orrespondene analysis is given

in Kurtonina

[

1995

℄

, whih analyses the speial e�ets of working with fea-

tures like distinguished points (atual worlds), non-standard onnetives

(inluding a new produt onjuntion), as well as the muh poorer non-

Boolean fragments found in ategorial logis for grammatial analysis (f.

[

van Benthem, 1991; Moortgat, 1996

℄

). Further extensions have been made

to Epistemi Logi [van der Hoek, 1992℄ and Partial Logis

[

Thijsse, 1992;

Jaspars, 1994; Huertas, 1994

℄

. Correspondene with restrited valuations for

`onvex' propositions has also been proposed in standard Temporal Logi (f.

van Benthem

[

1983; 1986; 1995b

℄

). But also, most axioms for riher interval-

based versions have �rst-order `Sahlqvist forms'

[

Venema, 1991

℄

. Zanardo

[

1994

℄

gives orrespondenes for modal-temporal models of branhing spae-

time. Finally, orrespondene methods have turned out very useful in Alge-

brai Logi. Venema

[

1991

℄

, Marx and Venema

[

1996

℄

present a systemati

study of relational algebra and ylindri algebra along these lines, pointing

out the Sahlqvist form of most familiar algebrai axioms, and alulating

their frame onstraints on algebrai `atom strutures'. This establishes a

muh wider bridge between algebrai logi and modal logi than our earlier

duality.

Restrited Frame Classes

Correspondene behaviour may hange on speial frame lasses. In this

hapter, we have looked at some e�ets of a restrition to transitive frames.

But one an also investigate non-�rst-order frame lasses. Van Benthem

[

1989a

℄

onsiders �nite frames, where, amongst others, the MKinsey axiom

still de�nes a non-�rst-order ondition. In this area, standard ompatness-

based model-theoreti tehniques no longer work, and they must be replaed

by a more areful ombinatorial analysis with Ehrenfeuht-Fra��ss�e games of

model omparison. (More generally, the �nite model theory of modal logi
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is still undeveloped. Rosen

[

1995

℄

proves some interesting transfer results,

showing better �nite model-theoreti behaviour than for �rst-order logi in

general.) Doets

[

1987

℄

takes up modal Ehrenfeuht games in great depth,

investigating, amongst others, orrespondene over ountable and over well-

founded frames. (For instane, the so-alled Fine Axiom turns out to be

�rst-order over ountable frames.)

Complexity

This hapter ontains some results on the (high) omplexity of de�nabil-

ity problems for monadi �

1

1

�formulas. It turns out muh harder to deal

with the modal fragment of these. A lower bound for the omplexity of

�rst-orderness of modal formulas has been found in Chagrova

[

1991

℄

: M1 is

undeidable. It seems likely that her methods (involving redutions of Min-

sky mahine omputation to orrespondene statements) an also be made

to yield non-arithmetial omplexity. Conversely, undeidability of modal

de�nability for �rst-order statements has been proved by Wolter

[

1993

℄

: that

is, P1 is undeidable, too. A more general investigation of time and spae

omplexity for modal logis, and the `jumps' that may our with di�erent

operator voabularies, may be found in Spaan

[

1993

℄

. It has improved de-

idability results for the so-alled `subframe logis' de�ned in Fine

[

1985

℄

,

as well as `transfer' of omplexity bounds from omponents to ompounds

in poly-modal logis (f.

[

Kraht and Wolter, 1991

℄

).

Correspondene and Completeness

The main business of modal logi has been the searh for ompleteness the-

orems over various frame lasses. Correspondene theory bypasses this de-

dutive information, foussing on diret semanti de�nability. Nevertheless,

Kraht

[

1993

℄

shows how the two enterprises an be merged, by a suitably

generalized form of modal de�nability. Perhaps the most powerful result

of this kind is the generalized Sahlqvist Theorem in Venema

[

1991

℄

, whih

shows that over suitably rih modal languages (possessing mathed versions

for eah modality aessing all diretions of its alternative relation), and al-

lowing natural additional rules of inferene beyond the minimal modal logi,

the orrespondene and the ompleteness version of the Sahlqvist Theorem

onverge in their proofs. The essential observation in the argument is as

follows. In standard Henkin models for these riher systems, unlike in the

standard ase, all de�nable subsets employed in the orrespondene proof

(suh as singletons or suessor sets) are modally de�nable. Diret frame

orrespondenes for modal rules of inferene may be found in van Benthem

[

1985

℄

. Over frames, the latter orrespond to non-�

1

1

seond-order formulas,

but exept for a few sattered observations in the literature, orrespondene

theory for modal rules of inferene remains underexplored.
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Duality with Algebrai Logi

Algebrai methods have been invaluable in �nding key results on orre-

spondene, suh as the Goldblatt-Thomason haraterization of the modally

de�nable �rst- order formulas. Nevertheless, a purely model-theoreti re-

analysis has been given in van Benthem

[

1993b

℄

, revolving around saturated

models instead of desriptive frames. There is no de�nite preferene here,

as it is preisely the interplay between algebrai and model-theoreti view-

points that remains fruitful. For new uses of orrespondene methods in

algebrai logi, as well as new set-theoreti representations for Boolean al-

gebras with additional modal operators, see Marx

[

1995

℄

, Mikulas

[

1995

℄

.

For instane, Marx has an in-depth study of the duality between algebrai

amalgamation and logial interpolation. The latter methods no longer em-

ploy simple binary relations as in the J�onsson-Tarski Stone representation,

but more omplex set-theoreti onstruts. (Modal orrespondenes over

�nitary relations our in van Benthem

[

1992

℄

, with a �nite neighbourhood

semantis for logi programs.) Developing a systemati orrespondene the-

ory over suh generalized relational strutures then beomes the next hal-

lenge.

Extended Modal Logis

Perhaps the most striking development in modal logi over the past ten years

has been the systemati use of more powerful formalisms, with stronger

modal operators over relational frames. A straightforward step is `poly-

modal logi', whih gives the same expressive power over frames with more

alternative relations. Examples of the latter trend are the indexed modali-

ties < i > of propositional dynami logi (f.

[

Harel, 1984; Goldblatt, 1987;

Harel et al., 1998

℄

), or n-ary modalities aessing (n + 1)-ary alternative

relations, as happens in relevant or ategorial logis (f.

[

Dunn, 2001;

Kurtonina, 1995

℄

). The orrespondene theory of suh extensions is straight-

forward, whereas there are interesting issues of `transfer' for axiomati om-

pleteness, �nite model property, or omputational omplexity: f.

[

Spaan,

1993; Fine and Shurz, 1996

℄

. Transfer may depend very muh on the on-

netions between the various modalities. A ase in point is modal prediate

logi, whose theory has rapidly expanded over the past deade. Van Ben-

them

[

1993a

℄

surveys some striking ontributions by Ghilardi and Shehtman.

More interesting, from a orrespondene point of view, is an inrease in

expressive power over the original binary relational frames. For temporal

logi, the latter researh line was initiated by Kamp's Theorem on funtional

ompleteness of the fSine, Untilg language over ontinuous linear orders.

In modal logi, the �rst systemati work emanated from the `So�a Shool':

f., e.g.,

[

Gargov and Passy, 1990; Goranko, 1990

℄

, Vakarelov

[

1991; 1996

℄

.

These papers study addition of various new operators, suh as a universal
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modality ranging over all worlds (relationally aessible or not), or various

operations on poly-modalities, suh as `program intersetion'. New frame

onstrutions were invented to deal with these, suh as `dupliation'. De

Rijke

[

1992

℄

investigates the `di�erene modality' (\in at least one di�er-

ent world"), whih has turned out to be useful and yet tratable. A more

general program for extending modal logi (viewed as a general `theory

of information') ours in van Benthem

[

1990

℄

but the tehnial perspe-

tive is also lear in the pioneering paper Gabbay

[

1981

℄

. Finally, de Rijke

[

1993

℄

is an extensive model-theoreti investigation of de�nability and or-

respondene for extended modal languages, produing generalized versions

for many results in this hapter (suh as frame preservation theorems or ef-

fetive orrespondene algorithms). Still another angle on all this will follow

below.

Alternatives: Diret Frame Theory

One may also analyze the frame ontent of modal logis more diretly in

terms of mathematial properties of graphs. Fine

[

1985

℄

is a pioneer of

this trend, emphasizing the good behaviour of `subframe logis' whih are

omplete for frame lasses that are losed under taking subframes. (Suh

logis make no `existential ommitments'.) First-orderness is not a promi-

nent onsideration here: e.g., L�ob's Axiom de�nes a simple subframe logi.

Zakharyashev

[

1992; 1995

℄

is a sophistiated study of modal logi from this

viewpoint. Nevertheless, his diret lassi�ation of modal logis into three

stages of frame preservation behaviour may again be reeted in seond-

order syntax and hene result in a form of orrespondene theory at that

higher level. A forthoming monograph by Chagrov and Zakharyashev pro-

vides muh more bakground, inluding referenes to earlier Russian soures

(going bak to Jankov in the sixties). Another exellent soure, for many

of the topis listed here, is the survey hapter

[

Chagrov et al., 1996

℄

.

Models, Bisimulation and Invariane

Another notieable shift of emphasis in the urrent literature leads away

from frames to models as the primary objets of semanti interest. This

move makes all of basi modal logi �rst-order, via our standard transla-

tion. The main questions then address what makes modal logis speial

as subspeies of �rst-order logi. In partiular, what is the basi semanti

invariane for basi modal logi, whih should play a role like Ehrenfeuht

games or `partial isomorphism' in �rst-order model theory? A key result

here is the semanti haraterization of the modal fragment of �rst-order

logi (modulo logial equivalene) as preisely those formulas in one free

variable whih are invariant for generated submodels and our `zigzag re-

lations'

[

van Benthem, 1976

℄

. In modern jargon, this says that these for-
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mulas are preisely the ones invariant for bisimulation. The latter link

was also developed in Hennessy & Milner

[

1985

℄

, whih mathes modal for-

malisms in di�erent strengths with oarser or �ner proess equivalenes.

For up-to-date expositions of the resulting analogies between modal logis

and omputational proess theories, f.

[

van Benthem and Bergstra, 1995;

van Benthem et al., 1994

℄

, as well as various ontributions in the volume

[

Ponse et al., 1995

℄

. This development has led to a new look at onne-

tions between modal formalisms and �rst-order logi. For instane, there

are striking analogies between the meta-theories of both logis, whose pre-

ise extent and explanation is explored in de Rijke

[

1993

℄

, and Andr�eka,

van Benthem & N�emeti

[

1998

℄

. In partiular, the latter paper investigates

the hierarhy of �nite-variable fragments for �rst-order logi as a andi-

date for a general aount of modal logi (f.

[

Gabbay, 1981; van Benthem,

1991

℄

for this view). Typially, modal formulas need only two variables over

worlds in their standard translation, temporal formulas only three, and so

on. Finite-variable fragments are natural, and may be onsidered as fun-

tionally omplete modal formalisms (f. the insightful game-based analysis

of Kamp's Theorem in Immerman & Kozen

[

1987

℄

). Nevertheless, Andr�eka,

van Benthem & N�emeti

[

1998

℄

also turn up an array of negative proper-

ties, and eventually propose another lassi�ation for modal languages in

terms of restriting atoms for bounded quanti�ers. The resulting `guarded

fragments' an be analyzed muh like the basi modal language, inlud-

ing analogous bisimulation tehniques. In partiular, these bisimulations

now relate �nite sequenes of objets instead of single worlds, as in many-

dimensional modal logis (f.

[

Marx and Venema, 1996

℄

for the theory of suh

formalisms). Their orrespondene theory, taken with respet to natural

generalized frame onditions for arbitrary �rst-order relations, still remains

to be understood.

[

van Benthem, 1996b

℄

is a general study of dynami log-

is for omputation and ognition, pursued via these tehniques. One of its

entral onerns is expressive ompleteness of modal proess logis vis-�a-vis

proess equivalenes like bisimulation.

Connetions with Higher-Order Logi and Set Theory

From �rst-order orrespondene, forays an be made into higher-order de-

�nability. Sometimes, this move is suggested by the modal language itself.

E.g., in propositional dynami logi, program iteration naturally translates

into a ountable disjuntion of �nite repetitions. Thus, translation into

the in�nitary standard language L

!

1

!

seems the evident route. In�nitary

frame orrespondenes were briey onsidered in van Benthem

[

1983

℄

, and

their modal model theory is explored in

[

de Rijke, 1993; van Benthem and

Bergstra, 1995

℄

. Of ourse, one may restore a balane here, and onsider

an in�nitary modal ounterpart of L

!

, allowing arbitrary set onjuntions

and disjuntions, whih would be the most natural formalism invariant for
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bisimulation. Barwise and Moss

[

1995

℄

take this line, linking up truth on

models and orrespondene on frames. (Another perspetive on in�nitary

modal logi is given in

[

Barwise and van Benthem, 1996

℄

.) Among a number

of original results, they prove that a modal formula has all its in�nitary sub-

stitution instanes true in a model M i� it is true (in the usual seond-order

sense) on the frame ollapse of that model taken with respet to the maxi-

mal bisimulation over M . As a diret onsequene, frame orrespondenes

for modal formulas imply model orrespondenes in in�nitary modal logi.

(The issue of good onverses is still open). The original motivation for this

type of investigation was that it relates modal logis to (non-well-founded)

set theories. Linkages of this kind are further explored in d'Agostino

[

1995

℄

whih also raises the issue of more omplex orrespondenes for modal ax-

ioms. For instane, she shows that the seond-order L�ob Axiom holds in a

frame i� that frame is transitive while its ollapse with respet to the max-

imal bisimulation is irreexive. More generally, then, the interesting point

about many orrespondenes is not that they must always redue modal

axioms to �rst-order ones, but rather the fat that they reformulate modal

priniples to any more perspiuous lassial formalism. Another natural

andidate of the latter kind is seond-order monadi �

1

1

logi (f.

[

Doets

and van Benthem, 2001

℄

). In partiular, Doets

[

1989

℄

shows how modal om-

pleteness theorems an sometimes be extended to over this whole language.

Moreover, many e�etive translation methods (see below) turn out to work

for this broader language anyway. Finally, van Benthem

[

1989b

℄

points out

how �rst-order orrespondene theory, suitably restated for seond-order

�

1

1

formulas, is a natural generalization whih handles so-alled omputable

forms of Cirumsription in the AI literature (whih involves reasoning from

a seond-order `prediate-minimal' losure for �rst-order axioms; f.

[

Lif-

shitz, 1985

℄

).

Translations

Correspondene has beome a onspiuous theme in the omputational lit-

erature on theorem proving with intensional logis. A number of algorithms

have been proposed, some of them redisoveries of the Substitution Method

and its ilk (f.

[

Simmons, 1994

℄

) and even muh older results in seond-

order logi [Doherty,  Lukasiewiz and Szalas, 1994℄, others working with new

`funtional` translations better geared towards omplete standard Skolem-

ization and Resolution (f. Ohlbah

[

1991; 1993

℄

). One interesting feature

of some of these algorithms is that they also produe useful equivalents for

seond-order modal priniples. For instane, the typially non-�rst-order

MKinsey Axiom gets a natural equivalent quantifying over both individ-

ual worlds and Skolem funtions witnessing its (non-Sahlqvist) anteedent.

Finally, we mention the use of set-theoreti interpretations of the standard

translation in d'Agostino, van Benthem, Montanari & Poliriti

[

1995

℄

, whih
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read the universal modality as desribing a power set. This translation also

works with an expliit axiom system for general frames plus one axiom stat-

ing that the relational suessors of any point in a frame form a set. This

shift in perspetive redues theorem proving in modal logis to dedution in

weak omputational set theories. Many of these translations an also be for-

mulated so as to deal with extended modal formalisms or larger fragments

of seond-order logi.

Designing New Logis

Finally, orrespondene tehniques have been used in `deonstruting' stan-

dard logis and designing new ones. For instane, one an interpret �rst-

order prediate logi over possible worlds models (`labelled transition sys-

tems') with assignments replaed by abstrat states onneted by abstrat

relations R

x

modelling variable shifts. Then, standard prediate-logial

validities turn out to express interesting frame properties, onstraining pos-

sible omputations, e.g., by Churh-Rosser onuene properties (whih

math the �rst-order axiom 9y8x� ! 8x9y�). Moreover, one may want

to impose ertain restritions on admissible valuations, suh as `hered-

ity onstraints' for axioms Py ! 8xPy or Py ! [y=x℄Px (van Benthem

[

1997; 1996b

℄

have details). These abstrat models reet ertain dependen-

ies between admissible objet values that may exist for individual variables.

This theme is investigated more expliitly in [Alehina and van Benthem,

1993; Alehina, 1995℄, whih design new generalized quanti�er logis over

`dependene models', �rst proposed by Mihiel van Lambalgen | where

again the fore of possible axioms is measured at least initially in terms of

(Sahlqvist) frame orrespondenes. Related modal approahes to �rst-order

logi are found in

[

Venema, 1991; Marx, 1995

℄

.

ADDED IN PRINT (1999)

Handbooks appear aording to their own rhythms. Two years have elapsed

sine the updates were written for this Appendix. Here are a few further

items of interest. D'Agostino [1998℄ ontains new material on de�nability in

in�nitary modal logis, a topi also pursued further by Barwise and Moss.

Meyer Viol [1995℄ has examples of orrespondene for intuitionisti predi-

ate logi showing how intermediate axioms an be quite surprising in their

ontent. Hollenberg [1998℄ is an extensive study of de�nability, invariane

and safety in modal proess languages. Gerbrandy [1998℄ has interesting

theorems on modal de�nability and bisimulation invariane in a setting of

non-well-founded set theory, with appliations to dynami logi of epis-

temi updates. Gr�adel [1999℄ is an exellent survey of progress made on the

program of deidable guarded �rst-order languages extending modal logi,
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inluding also �xed-point operators. Van Benthem [1998℄ is an up-to-date

survey of the de�nability/orrespondene paradigm, and the orresponding

`tandem approah' to modal and lassial logis. Finally, two modern texts

on modal logi that take orrespondene seriously are Blakburn, de Rijke

and Venema [1999℄ and van Benthem [1999℄.
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