JOHAN VAN BENTHEM

CORRESPONDENCE THEORY

1 INTRODUCTION TO THE SUBJECT

Correspondences

When possible worlds semantics arrived around 1960, one of its most charm-
ing features was the discovery of simple connections between existing inten-
sional axioms and ordinary properties of the alternative relation among
worlds. Decades of syntactic labour had produced a jungle of intensional
axiomatic theories, for which a perspicuous semantic setting now became
available. For instance, typical completeness theorems appeared such as the
following:

A modal formula is a theorem of S4 if and only if it is true in
all reflexive, transitive Kripke frames.

Indeed, S4 may also be shown to be the modal logic of the partial orders;
which matches the most famous modal logic with perhaps the most basic
type of classical relational structure. Such matchings extend to logics higher
up in the S4-spectrum. For instance, S4.2 with its additional axiom

OOp — O0p

is complete with respect to those frames which are reflexive, transitive and
directed, or confluent:

Vayz((Rey A Rxz) — Ju(Ryu A Rzu))

Again, the latter condition is a ‘diamond property’ of classical fame.
Completeness results such as these have inspired a flourishing area of
intensional Completeness Theory, witness the classic [Segerberg, 1971]. It
took modal logicians some time, however, to realise that there are also direct
semantic equivalences involved here, having nothing to do with deduction in
modal logics. Indeed, the whole present Correspondence Theory arose out
of simple observations such as the following, made in the early seventies.

EXAMPLE 1. The T-axiom Op — p is true in a Kripke frame (W, R) if
and only if R is reflexive.

Here, ‘true in a frame’ means true in all worlds, under all assignments to
the proposition letters.
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Proof. ‘=’: Consider any w € W. If Op — p is true in (W, R), then, in
particular, it is true at w under the assignment V' with

V(p) = {veW | Rwv}.

Thus, Op will be at w true by definition — and, hence, also p: i.e. Rww.
‘<’ By reflexivity, truth at all R-alternatives implies actual truth. W

EXAMPLE 2. The S4-axiom Cp — OOp is equivalent to transitivity.
Proof. By an analogous argument. |
EXAMPLE 3. The S4.2-axiom QUp — OOp defines directedness.

Proof. ‘=’: Consider arbitrary w,v,u € W such that Rwv, Rwu. Let the
assignment V' have
V(p) = {s € W | Rus}.

Immediately, this gives truth of Op at v. Therefore, ¢Op is true at w,
whence OOp must hold as well. It follows that Op is true at u; i.e. u has
some R-successor in V (p) — whence v, u share a common R-successor.
‘<’ If OOp is true at W, say because of some v with Rwv verifying Op,
then ¢Op will be true at all R-successors of w. For, all of these share at least
one successor with v, by directedness. |

Not all correspondences are equally simple. For instance, S4.2 has a
companion logic S4.1 obtained by enriching S4 with the ‘McKinsey Axiom’
OOp — OOp. This converse of the S4.2 axiom turns out to be much more
complex. A well-known completeness theorem says that S4.1 axiomatises
the modal theory of those Kripke frames which are reflexive, transitive as
well as atomic:

Vaedy(Rey AVz(Ryz — z = y)).

(Notice that we need identity here, in addition to the predicate constant R.)
We shall see later in Section 2.2 that the S4.1 axioms together (just) manage
to define the above threefold relational condition, but that the McKinsey
Axiom does not define atomicity on its own (it is weaker). Indeed, this
simple modal principle does not possess a first-order relational equivalent
at all — a discovery made independently by several people around 1975.

Modal Formulas as Conditions on the Alternative Relation

The general picture emerging here is that of modal axioms expressing certain
‘classical’ constraints on the alternative relation in frames where they are
valid. With hindsight, this observation is hardly surprising. After all, given
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some valuation, the clauses of the basic Kripke truth definition amount to a
translation from modal formulas into classical ones involving R. Thus, e.g.,

Op—p becomes Vy(Rxy — Py) — Px
Op — 0O0p becomes Vy(Rzy — Py) —
— Yy(Rzy — Vz(Ryz — Pz)),

while the McKinsey Axiom O¢p — QUp becomes
Vy(Rzy — 3z(Ryz A Pz)) — Jy(Rzy AVz(Ryz — Pz)).

Here the parameter ‘z’ refers to the current world of evaluation, while unary
predicate constants P (Q,...) denote the sets of worlds where the corre-
sponding proposition letter p (g, ...) holds.

Let us pause, to realise how, by this simple observation alone, many estab-
lished results about classical predicate logic can be transferred straightaway
to modal logic. For instance, for Kripke frames plus a fixed assignment
(the modal ‘models’ of Section 2.1), Compactness and Léwenheim—Skolem
results are immediate. If, e.g. a set of modal formulas is finitely satisfiable in
Kripke models (given suitable assignments), then its classical transcription
will be finitely satisfied too. Hence, by ordinary compactness, the latter set
is simultaneously satisfied in some structure (W, R; P,Q, ...): which forms
a Kripke frame cum assignment verifying the original set.

But, this perspective is not quite the one we need.

In the evaluation of modal formulas according to the above truth def-
inition, two factors are intermingled: the relational pattern of the worlds
and the particular ‘facts’, i.e. the assignment. But the latter — the par-
ticular denotations of constants P,(,... — is not relevant to the role of
modal formulas as relational constraints. Indeed, these may even obscure
the issue. When, e.g. V(p) equals W, Op — p holds in all worlds — but
this observation is completely uninformative about the true content of this
axiom (viz. reflexivity).

In order to arrive at the proper perspective, one simply abstracts from
the effects of particular assignments, by means of a universal quantification
over the unary predicates in the preceding translation. Thus, for instance,

O(pVq) — (OpVOg)

now becomes

VPYQ (Vy(Rry — (Py VvV Qy)) — (Vy(Ray — Py)V
Wy (Rzy — Qy))).

Notice that modal formulas now get second-order transcriptions, as opposed
to the earlier first-order ones.
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The parameter ‘z’ has remained: the present relational conditions are still
‘local’ in some actual world. A ‘global’ condition is obtained by perform-
ing one more universal quantification, this time with respect to this world
parameter. The distinction is not without importance. The local version is
more suitable for the original Kripke structures (W, R, wp), in which some
‘actual world’ wy figured prominently, as well as for ‘non- normal’ modal se-
mantics, in which certain worlds are distinguished from others. The global
reading is the more common one, however, which will be predominant in
the sequel.

Again, the very point of view embodied in the above translation is sig-
nificant — even though some of the earlier transfer phenomena are lost.
What is lost, for instance, are most useful forms of compactness, as well as
the Lowenheim—Skolem property. There is no automatic guarantee through
second-order logic that, if a modal formula is true in some uncountable
Kripke frame (i.e. under all valuations) it will be true in its countable
elementary subframes (again, under all valuations). Still, this very phe-
nomenon will be used to drive a wedge between ‘essentially first-order’ and
‘essentially second-order’ modal axioms in Section 2.2. Moreover, not all
is lost. The above transcriptions are very simple second-order formulas,
viz. so-called I1}-sentences, with all second-order quantifiers occurring in
a universal prefix in front of a first-order matrix. From classical logic, we
still now a few things about II}-sentences, that will turn out useful. (Cf.
the chapters on Higher Order Logic and Algorithms in Volume 1 of this
Handbook for background.)

One such thing is involved in the following obvious question. In the light
of earlier examples of correspondence, the present second-order transcrip-
tions are exceedingly cumbersome. Compare, e.g. for the T-axiom Op — p,

VezRxz with YaVP(Vy(Rzy — Py) — Px).

Yet it was the discovery of the former simple first-order equivalents that
motivated the above investigation in the first place. Now for some modal
formulas, the second-order complexity may be unavoidable — witness the
example of McKinsey’s Axiom. But at least, there arises an obvious basic

QUERY: Which modal formulas define first- order relational conditions —
and how do they manage it?

By the above perspective, classical sources provide one immediate answer.
A TIi-sentence is first-order definable if and only if it is preserved under the
formation of wltraproducts, a fundamental construction in classical model
theory. Through the above transcription, the same criterion applies to
modal formulas. (The technical ins and outs of this point, as well as of
related ones in this introduction, are postponed until the relevant sections:
Sections 2.1 and 2.2 in this case.)
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Modal Correspondence Theory

The preceding query has been the starting point for a systematic study of
classical definability of modal formulas, when viewed as relational principles.
Now the mentioned ultraproduct characterisation is a very abstract, global
one, rather removed from the actual business of finding correspondences.
Also historically, it is a rather late development — and we shall therefore
turn to more concrete themes, as they evolved.

At first sight, proving first-order definability seems a simple matter: just
find an equivalent, and show that it works. Still, there is the question
how much system there is to this activity. For instance, Examples 1-3
exhibited regularities in their proofs. And indeed, closer inspection reveals
that reflexivity, transitivity and directedness may be obtained from the
second-order transcriptions of the S4.2-axioms through certain substitutions
of ‘minimal’ definable assignments.

The heuristics behind this method is simply this. If, e.g. Op — p is true
at x, then the most ‘parsimonious’ way of verifying the antecedent (i.e. by
having V(p) = {y | Rzy}) carries maximal information about the whole
implication. This essentially, is why the substitution of Rxu for Pu in

VaVP(Vy(Rzy — Py) — Pz)
yields the equivalent formula
Va(Vy(Rzy — Rxy) — Rxx).

By the universal validity of the antecedent, the latter may be simplified to
the usual statement of reflexivity. A completely analogous line of thought
produces transitivity from the transcription of Op — OOp. Some com-
plications arise with antecedents as in ¢Up — OOp; but the general idea
remains the same. In this way, one discovers a large recursive class of modal
formulas with effectively obtainable first-order equivalents.

Nevertheless, this method of substitutions also has definite limits. No-
tably, it does not work for all first-order definable modal formulas — as
will be proved in Section 2.2 for the case of S4.1. In connection with this
matter, the exact combinatorial complexity of the set of first-order definable
modal formulas is still unknown — but there are reasons for fearing that
it is not even arithmetically definable (let alone, recursive or recursively
enumerable).

Disproving first-order definability is a more difficult matter. Indeed, how
should one go about this at all? The common pattern in all examples in the
literature comes to this: find some semantic preservation property of first-
order sentences, which is lacked by the modal formula under consideration.
Thus, e.g. the earliest published contribution by the present author was an
example showing how the McKinsey Axiom sins against the Lowenheim—
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Skolem theorem. It holds in a certain uncountable Kripke frame (to be
presented in Section 2.2.) without holding in any of a certain group of its
countable elementary subframes. A classical example of this phenomenon
occurs when Dedekind Continuity (itself a II}-property) is added to the
first-order ordering theory of the rationals. The resulting I1}-sentence has
uncountable models (notably, the reals); but, it even lacks countable models
altogether.

The modal examples of ‘essentially second-order’ axioms to be found in
Section 2.2 will serve to delimit the range of the above method of substi-
tutions. As so often, the McKinsey Axiom again provides an illuminating
example. The above heuristics of ‘minimal verification’ typically fails for
antecedents such as O0p, expressing some dependency — and first-order
failure is immediate.

Besides the modal half of the story, so to speak, there also exists the
opposite direction, looking from classical formulas to modal ones. Again,
this inspires a basic

QUERY. Which first-order relational conditions are modally definable?

The ‘positive’ side of this matter again concerns the establishing of valid
equivalences. Thus, for instance, how does one find a modal definition for
such a classical favourite as connectedness

Vzyz((Rxy A Rzz) — (Ryz V Rzy)))?

This time, the heuristics consists in imagining a situation where the property
fails, together with a way of ‘maximally exploiting’ this failure through
modal formulas. In the above particular case, supposing that Rzy, Rzz,
—Ryz,—Rzy, one sets Op true at y (with p false at z) and Og true at z
(with ¢ false at y). This has the effect of verifying the following formula at
x:

O(@p A =) AO(Og A —p).

Now, the original property itself will correspond to the negation of this
modal ‘failure description’, i.e.

By some familiar equivalence transformations, this becomes
O0Op — ¢) vO(@q — p),

a principle known from the literature as Geach’s Axiom.

It remains to be shown, of course, that conversely, failure of this axiom
implies failure of connectedness; but this is immediate. In order to cross-
check, one might also apply the earlier method of substitutions to (some
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suitable transform of) the Geach Axiom: and indeed, connectedness will
ensue.

The ‘negative’ side again consists of disproofs. Here as well, these turn out
to possess a particular interest — as we are forced to contemplate ‘typical
behaviour’ of modal formulas. A standard example is the following. Al-
though reflexivity was modally definable, irreflezivity turns out intractable:
Vz-Rxz. But, failed attempts are no definite refutations. What we need
is some semantic property of modal formulas, as relational conditions on
Kripke frames, which is not shared by this particular first-order sentence.

At this point, the modal model theory of Section 2.1 comes in. There,
one finds that the following mappings play a fundamental role in the trans-
mission of modal truth between Kripke frames: a p-morphism is a function
f from a frame (W R;) to a frame (W3, Ry) which

1. preserves R, and

2. ‘almost’ preserves Ro, in the following sense:
‘If Ry f(w)v, then there exists some u € Wj such that (a) Rywu and

(b) f(u) ="

Under different names, this notion has had a career in standard logic already,
e.g. the ‘Mostowski collapse’ in set theory is of this kind.

For the purposes of the present example, it need only be recorded that
subjective p-morphisms preserve truth of modal formulas on Kripke frames.
But then, irreflexivity may be dismissed: it holds in the frame of the natural
numbers with the usual order, but it fails in its p-morphic image (!) arising
from the contraction to one single reflexive point.

This example will have given a taste of the actual field-work in this area
of Correspondence Theory. There also arises the more general question,
of course, whether some combination of modally valid preservation require-
ments manages to characterise all and only the modally definable first-order
sentences. This is indeed the case, and an elegant result to this effect —
involving p-morphisms as well as other basic constructions, will be proved
in Section 2.4.

The preceding survey by no means exhausts the range of questions that
can be investigated in Correspondence Theory — but it does convey the
spirit.

Correspondence and Completeness

Three pillars of wisdom support the edifice of Modal Logic. There is the
ubiquitous Completeness Theory, the present Correspondence, or, more gen-
erally, Definability Theory — and finally, the Duality Theory between Kripke
frames and ‘modal algebras’ (cf. Section 2.3 below) has become an area of its
own. Connections between the latter two will become apparent as Section
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2 unfolds — in particular, the above-mentioned characterisation of modally
definable first-order sentences will be obtained as a consequence of the clas-
sic Birkhoff Theorem of Universal Algebra, applied to modal algebra.

The relation between correspondence and completeness is less vital to
subsequent developments. Moreover, it turns out to be rather complex —
and indeed, only partially understood. Nevertheless, for those readers who
are familiar with the basic notions of Completeness Theory, the following
sketch of issues may serve to bring questions of correspondence closer to
traditional concerns.

The early completeness theorems in modal logic were brought under one
heading in [Segerberg, 1971]: ‘modal logic L is determined by a class R of
Kripke frames’, i.e. L axiomatises the modal theory of 28 (on the basis of
the minimal logic K).

As before, two perspectives emerge here. First, one may start with a
given class R, asking for a recursive axiomatisation L of its modal theory.
In general, there is no guarantee for success here; but there is one helpful
observation involving first-order definability.

FACT 4. If ¥R is elementary (i.e. defined by a single first-order sentence),
then its modal theory is recursively axiomatisable.

Proof. Let a = a(R,=) define R. A modal formula ¢ belongs to the
theory of R if and only if it holds in all frames in 9R. This may be restated

as follows:
a EYaVP .. .YP,7(p);

where 7(p) is the earlier first-order translation of ¢, while py,...,p, are
the proposition letters occurring in the latter formula. Now, the predicate
variables P, ..., P, do not occur in the first-order sentence «, and, there-
fore the above implication is equivalent to a F Vz7(p). But this is an
ordinary first-order implication. So, since the latter notion is recursively
axiomatisable, the same must be true for membership of the modal theory
of fR.

Axiomatisable, yes, but axiomatisable on the basis of the minimal modal
logic K? Even this is true, choosing a suitable recursive set of axioms as in
the proof of Craig’s Theorem in classical logic and noticing that K contains
modus ponens (which is all that is needed). [ ]

Thus, in retrospect, the earlier completeness theorems for reflexive, transi-
tive orders (and other elementary classes) were quite predictable.

The direction from classes of frames to logics is not the current one in
modal logic; being more appropriate to areas such as tense logic, where
temporal structures often precede temporal theories. Usually, one already
possesses a certain logic L, asking for a class R of Kripke frames with respect
to which it is complete. (Notice that, if any class 2R suffices, then the whole
class of Kripke frames validating L will.)
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Nowadays, we know that not all modal logics are in fact complete in
the above sense, contrary to earlier expectations. This is the content of
the celebrated ‘modal incompleteness theorems’ in [Fine, 1974; Thomason,
1974]. But it has been hoped that, at least, all first-order definable axiom
sets are complete. (Indeed, a defective proof to this effect has circulated.)
Even this more modest expectation was frustrated in [van Benthem, 1978]:

FACT 5. The modal logic L with characteristic axioms

Up—p
O0p — O0p
(OpAO(p—0Op)) = p

is first-order definable: its frames are just those satisfying the condition
Vzy(Rzy > = = y).

But the characteristic axiom of the modal theory of the latter class of frames,
viz. Op ¢ p, is not minimally derivable from L.

The relevant correspondence will be proved in Section 2.2. For the mo-
ment, it may be noticed that the third axiom defines a notion of ‘safe return’:
from any R-successor of a world x, one can always return to « by following
some finite R-chain of R-successors of z.

The relevant argument is highly nontrivial, far outside the range of our
earlier method of substitutions. Nevertheless, even the latter has its rele-
vance for completeness theory, as we shall see presently.

What the modal incompleteness theorems show is that the minimal modal
logic K is to weak to produce all modally valid inferences. But of course,
there may be stronger reasonable ‘base logics’. One particular example
arises from the method of substitutions. For instance, in proving the equiv-
alence of substitution instances with more current first-order conditions,
one uses an extremely natural second-order logic Ky with the following
deductive apparatus:

Some first-order base complete with respect to modus ponens,
similar axioms for the second-order quantifiers;

with the following form of ‘first-order instantiation’ allowed for first-order
formulas
Vao(X) = ¢(¢).

Through the earlier second-order transcription, Ks may be used as a modal
base logic.

Here is an example of some fame. In the metamathematics of arithmeti-
cal provability (cf. [Boolos, 1979] or Smorytiski’s in a later volume of this
Handbook), the following two modal axioms are basic:

Op —0O0p, O(Op —p) — Op (‘Lob’s Axiom’).
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The semantic import of the latter will be established in Section 2.2: it
holds in those Kripke frames whose alternative relation is transitive, while
possessing a well-founded converse. Moreover, transitivity is Ky-derivable
from Lob’s Axiom, by the substitution of

Rzu ANVy(Ruy — Rzy) for Pu.

(The antecedent becomes universally valid, while the consequent expresses
transitivity.) An advantage of Ko over K? No, around 1975, Dick de Jongh
and Giovanni Sambin found a K-deduction for the first axiom from the
second after all. The two deductions are related, but systematic connections
between K-deductions and Ks-deductions have not been explored up to
date.

Nevertheless, K is non-conservative over K in the modal realm. In [van
Benthem, 1979b] we find the following incompleteness theorem.

FACT 6. The modal axiom
o0L vO@@p — p) = p),

with L the falsum, defines the same class of Kripke frames as 0O L v OJL.
But, the latter formula is not K-derivable from the former — even though
it is Ks-derivable.

Again, there is a correspondence involved here. But the idea is illustrated
by a simple Ks-deduction at the back of this result:

[a—y

. VP(Vy(Rzy — (Vz(Ryz — Pz) = Py)) — Pz) ('O(0p —p) —p'),
2. Vy(Rzy — (Vz(Ryz > z #z) vy #x)) >z #x (z # ufor Pu),
3. “Vy(Rxy = (Vz2(Ryz = z £ x) = y # x)),

4. Jy(Rxy AVz(Ryz = z #x) Ny = x),

5. Rea ANVz(Rxz — 2z # 1)

6. = # x: a contradiction (L).

That Koy, in its turn, must be modally incomplete (as is any proposed
recursively axiomatised base logic) follows from the general incompleteness
results in [Thomason, 1975].

First-order definability does not imply completeness. But, when a modal
logic is both first-order definable and complete, it enjoys a very pleasant
form of the latter property — viz. with respect to the underlying frame of
its own Henkin model. (‘First-order definability plus completeness imply
canonicity’: cf. [Fine, 1975; van Benthem, 1980].) Such canonical modal
logics will be characterised semantically in Section 2.4: notice that many
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of the familiar text book examples are of this kind. In fact, a canonical
completeness proof, such as that for S4, often proceeds by means of first-
order conditions on the Henkin model, induced by the corresponding axioms.

The relation between these familiar ‘Henkin arguments’ and the above
method of substitutions is at present still rather mysterious. Sahlqvist [1975]
contains many examples of parallels; but Fine [1975] presents a problem.
The modal formula

od(p Vv q) = O(Cp Vv Oq)

axiomatises a canonical modal logic, without being first-order definable.
Thus, we are still far from complete clarity in the area between completeness
and correspondence.

Variations and Generalisations

Logical model theory may be viewed as a marriage between ontology and
language (or ‘mathematics’ and ‘linguistics’). Accordingly, the semantics of
propositional modal logic, our paradigm example up till now, exhibits the
familiar triangle

language structures
interpretation

Or, from the above translational point of view, the components are

prima facie language ————— representation language
translation

All these ‘degrees of freedom’ may be varied in intensional logic — and thus
there appears a whole family of ‘correspondence theories’. We shall explore
some examples of recognised importance in Section 3. Here, let us just think
about the various possibilities and their implications.

Even within the domain of propositional modal logic, alternatives have
been proposed for Kripke-type relational semantics. Jennings, Johnstone
and Schotch [1980] contains the proposal to work with ternary alternative
relations, employing the following notion of necessity:

Oy is true at z if Vyz(Rzyz — o(y) V ¢(z)).

Their motivation was, amongst others, to create room for ‘non-cumulation’
of necessities: the ‘Aggregation Axiom’

OpAOg— O(pAg)

will no longer be valid. What happens to earlier correspondences in this new
light? Old boundaries start shifting; e.g. Op — p remains first-order defin-
able, but Op — OOp becomes essentially second-order on this semantics.
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This is compensated for by the phenomenon of formerly unexciting prin-
ciples, such as the Aggregation Axiom (which was trivially valid before)
springing into unexpected bloom:

EXAMPLE 7. Op A Og — O(p A q) defines

Vayz(Rryz — (y = 2V Reyy V Rxzz)).

Proof. ‘=’: Suppose the condition fails at z,y, z. Setting

Vip) =W ={z},V(g) =W — {y},

will then verify Op,Og at @, while O(p A q) is falsified (by Rzyz).

‘<" Suppose that Op, g hold at x, and consider Rxyz. Either y = z,
whence y verifies both p and ¢ (by Rzyy and the truth definition), or Rzyy,
implying the same conclusion, or Rzzz, in which case z verifies both p and
g. So, O(p A q) holds at z. [ |

As for the general theorems, forming the backbone of the subject, nothing
essential changes in this ternary semantics.

This example changed both the structures and the form of the truth
definition. What may not be generally realised is the variety offered even
when fixing the two parameters of ‘language’ and ‘structures’. Therefore, a
short digression is undertaken here.

The Kripke truth definition is not sacrosanct — other clauses would have
been quite imaginable. Thus, for instance, we may make the following

OBSERVATION 8. The truth definition ‘Ol is true at z if Vy((Rxy V
Ryz) — ¢(y)) yields as a modal base logic KB; i.e. the minimal logic
K plus the Brouwer Axiom p — OOp.

Proof. The Brouwer Axiom defines symmetry of the alternative relation; as
may be seen by substituting v = z for Pu. And indeed KB is complete with
respect to the class of symmetric Kripke frames. Hence, any non-theorem
o of KB is falsified on some symmetric frame (W, R). But, on symmetric
frames R coincides with the relation Azy. (Rzy V Ryz) (i.e. R united with
its converse R), whence @ also fails by the new evaluation.

Conversely, if ¢ has a counter-example (W, R) under the new truth defi-
nition, then it has (W, RU R) for an ordinary symmetric counter-example;
whence it is outside of KB. |

Thus, there is a possible trade-off between truth definition and require-
ments on the alternative relation. The exact extent of this phenomenon
remains to be investigated. Notice for example how KB is equally well
generated by the following truth definition:

Oy is true at z if Yy((Rzy A Ryz) — o(y)).
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The general principle behind such examples is this.

FACT 9. If C'(R) is any condition on R, and y(x,y) some formula in R,=
such that

1. If C(R) is satisfied, then R and Azy.y(z,y) coincide,
2. Azy.y(z,y) satisties C|

then the modal logic determined by (the Kripke frames obeying) C' may
also be generated without conditions through the truth definition

O is true at z if Vy(y(z,y) = o(y)).

This rather subversive shift in perspective will not be investigated in this
contribution. At this point, it merely serves to remind us that not a single
aspect of the semantic enterprise is immune to revision.

Leaving the realm of modal logic, of the many intensional candidates for
a correspondence perspective, only a few have been explored up to date. In
Section 3, some important examples are reviewed briefly, viz. tense logic,
conditional logic and intuitionistic logic. These illustrate, in ascending or-
der, certain difficulties which tend to make Correspondence Theory rather
more difficult (often also: more exciting) in many cases. These difficul-
ties have to do with ‘pre-conditions’ on the alternative relation (not very
serious), and the phenomenon of ‘admissible assignments’ (rather more seri-
ous), to be explained in due course. Nevertheless, for instance, Intuitionistic
Correspondence Theory will turn out to possess also some elegant features
lacked by its modal predecessor.

A few examples, even without proof, will render the above remarks more
concrete. In tense logic, the correspondence runs between temporal axioms
and properties of the temporal order (‘before’, ‘earlier than’).

EXAMPLE 10 (‘Hamblin’s Axiom’). (p A Hp) — F Hp defines discreteness
of Time:
Vedy>aVz<y (z =z Vz < x).

In the logic of counterfactual conditionals, conditional inferences are re-
lated to the behaviour of the comparative similar ordering C' among alter-
native worlds.

EXAMPLE 11 (Stalnaker’s Axiom of ‘Conditional Excluded Middle’).
(p = q) V (p = —q) defines linearity of alternative worlds:

Vayz(y = 2z V Cayz V Crzy).

Finally, in intuitionistic logic, (‘intermediate’) axioms impose constraints
upon the possible growth patterns of stages of knowledge.
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EXAMPLE 12 (‘Weak Excluded Middle’). —p V ——p defines ‘local conver-
gence’ of growing stages, i.e. directedness:

Vaeyz((x CyAx Cz) — July CuizCu)).

Proofs, and further explorations are postponed until the relevant sections.
At this stage, the experienced reader may predict that two nuts will be
especially difficult to crack for any Correspondence Theory.

The first of these concerns the earlier tacit restriction to propositional
logic: what happens in the predicate case? In Section 2.5 we shall see that
no essential problems seem to arise — although the field remains largely
unexplored.

A more formidable problem arises when the truth definition for the in-
tensional operators itself becomes of higher-order complexity. In that case,
e.g. a search for possible first-order equivalents of intensional axioms seems
rather pointless. This eventuality arises when disjunction is evaluated bar-
wise in Beth semantics for intuitionistic logic (i.e. ¢ V ¢ is true at z if
the p-worlds and -worlds together form a barrier intersecting each branch
passing through z).

The last word has not been said here, however. Philosophically, it seems
a rather unsatisfactory division of semantic labour to let the truth definition
absorb structural complexity (in this case: the second-order behaviour of
branches). The latter should be located where it belongs, viz. in the struc-
tures themselves. And indeed, the Beth semantics admits of a two-sorted
first-order reformulation in terms of nodes and paths, which generates a
Correspondence Theory of the usual kind.

All this is not to say that there are no limits to the useful application of
a correspondence perspective. But, these are to be found in philosophical
relevance, rather than technical impossibility. One should study correspon-
dences only as long as they serve the purpose of semantic enlightenment —
which is the shedding of light upon one conceptual framework by relating
it systematically to another.

2 MODALITY

In this chapter, modal correspondence theory will be surveyed against the
background of modal model theory and modal algebra, whose basics are
explained. (Cf. the chapter by Bull and Segerberg in this volume for the
necessary background.)

2.1 Modal Model Theory

The basic structures of modal semantics are introduced: frames, models
and general frames. These may be studied either purely classically, or
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with a specifically modal purpose. In both cases, the emphasis is not upon
such structures in isolation, but upon their ‘categorial context’: what are
their relations with other structures, and which of these relations are truth-
preserving? Thus, we will introduce the modal preservation operations of
generated subframe, disjoint union, p-morphic image and ultrafilter exten-
ston. Moreover, the fundamental classical formation of ultraproducts will be
used as well. All these notions will appear again and again in later sections.

Semantic structures. The structures used in the Kripke truth definition are
models M, i.e. triples (W, R, V), where W is a nonempty set of worlds, R
is a binary alternative relation on W, and V' is a valuation assigning sets of
worlds V (p) to proposition letters p. The notion explicated then becomes

ME plw] :‘pis truein M at w’.

In our correspondence theory we also want to see the bare bones: a frame
F is a couple (W, R) as above, but without a valuation. There is nothing
intrinsically ‘modal’ about all this, of course. Frames are just the ‘directed
graphs’ of Graph Theory.

In Sections 2.3 and 2.4, a third notion of modal structure will be required
as well — intermediate, in a sense between models and frames. A general
frame F is a couple (F,20), or alternatively, a triple (W, R,20) such that
F = (W,R) is a frame, and 20 is a set of subsets of W, closed under the
formation of complements, unions and modal projections. Formally,

if X €20, then W - X €20
if X,V €20, then XUY €
it X € 27, then m(X) =qer {w € W | Jv € X : Rwv} € 20.

The following example illustrates the effect of restricted sets 20. Con-
sider the frame (IV, <), where N is the set of natural numbers. Its modal
theory contains such principles as Op — p, Op — OOp and Geach’s Axiom:
together forming the logic S4.3. Typically left out is the McKinsey Axiom
OOp — OUp; as it may be falsified in some infinite alternation of p, —p: say
by V(p) = {2n | n € N}. But now, consider the structure (N, <,20), where
2 consists of all finite and all cofinite subsets of N. It is easily checked
that all three closure conditions obtain for 20. Thus, we have a general
frame here. Its logic contains the earlier one (‘a fortiori’); but it also adds
principles. Notably, the McKinsey Axiom can no longer be falsified, as the
above ‘tell-tale’ valuation is no longer admissible. Thus, S4.1 holds in this
general frame, although it does not in the underlying ‘full frame’. And fur-
ther increases in the modal theory are possible, by restricting 20 even more;
e.g. there is even a most austere choice, viz. 20 = {}, N}, which yields a
general frame validating the ‘classical logic’ with axiom Op <> p — which
was still invalid in the previous general frame. Thus, one single underlying
frame may still generate a hierarchy of modal logics.
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The original algebraic motivation for this notion (due to Thomason [1972])
will be given in Section 2.3. But here already, a direct logical reason may
be given. Kripke frames are so-called ‘standard models’ for modal formulas,
considered as second-order II}-sentences: the universal predicate quantifiers
range over all sets of possible worlds. An intermediate possibility would have
been to allow also ‘general models’ in the sense of Henkin [1950]: in which
this second-order range may be restricted, say to some set 20. Usually, such
ranges are to be closed under certain mild conditions of definability — in
order to verify reasonable forms of the universal instantiation (or ‘compre-
hension’) axiom. This, of course, is precisely what happened in the above.
The uses of this notion lie partly in modal Completeness Theory, partly in
modal algebra. For the moment, it will not be a major concern.

Semantic questions. Given a formal language, interpreted in certain struc-
tures, a plethora of questions arises concerning the interplay between more
‘linguistic’ and more ‘structural’ (or ‘mathematical’) notions. We mention
only a few fundamental ones.

Arguably the ‘first question’ of any model theory is that concerning the
relation between linguistic indistinguishability (equality of modal theories)
and structural indistinguishability (isomorphism) of semantic structures.
How far do the webs of language and ontology diverge? In classical logic, we
know that (first-order) elementary equivalence coincides with isomorphism
on the finite structures, but no higher up: isomorphism then becomes by
far the finer sieve.

Now, the modal language on models behaves like the first-order language
of the first translation in the introduction: nothing spectacular results. But
the second-order notion seems more interesting in this respect. (Equality of
second-order theories is quit‘e strong: modulo the Axiom of Constructibility,
it even implies isomorphism in all countable frames; cf. [Ajtai, 1979]). From
Van Benthem [1985], which treats the analogous question for tense logic in
Chapter 2.2.1, we extract

THEOREM 13. Finite Kripke frames that are generated by a single point
(cf. below) are isomorphic if and only if they possess the same modal theory.
But, the countable Kripke frames ZOZ (the integers, with each point replaced
by a copy of the integers) and Q ® Z (the rationals, treated likewise) possess
the same modal theory, without being isomorphic.

In tense logic, the latter result means that the formal language can-
not distinguish between locally discrete/globally discrete and locally dis-
crete/globally dense Time. (The latter may well be that of our World.)
In the context of modal logic, no such appealing interpretation is possible,
whence we forego further discussion of the above result.

From now on, we will confine attention to a single theme, which again,
is characteristic for much of what goes on in Model Theory.
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Truth-preserving operations. In evaluating the truth of a modal formula ¢
at a world w we only have to consider w itself, (possibly) its R-successors,
(possibly) their R-successors, etcetera. Thus, only that part of the frame is
involved which is ‘R-generated’ by w, so to speak. In general, one never has
to look beyond R-closed environments of w: an observation summed up in
the following notion and result.

DEFINITION 14. M; (= (W1, R1,V1)) is a generated submodel of My (=
(Wa, Ry, Va)) (notation: My S My) if

1. Wy C W,
2. R; = Rj restricted to Wy,

3. Vi(p) = Va(p)NWh, for all proposition letters p; i.e. M is an ordinary
submodel of M, which has the additional feature that

4. W is closed under passing to Rs-successors.

The next result is the famous ‘Generation Theorem’ of Segerberg [1971].

THEOREM 15. If M, S My, then for all worlds w € Wy and all modal
formulas @, My E plw] iff Msy E p[w].

This is what happens inside a single model. When comparisons are de-
sired between evaluation in distinct models, a more external connection is
required.

DEFINITION 16. A relation C is a zigzag connection between two models
My, M, if

1. domain (C) = Wy, range (C) = Wa,

(a) if Cwv and w' € Wy with Ryww', then Cw'v’ for some v' € Ws

with Ravv' (“forth choice’)
(b) If Cwv and v' € Wy with Rpvv', then Cww' for some w' € Wy
with Ryww' (‘back choice’)

2. if Cwwv, then w,v verify the same proposition letters.

Starting from the basic case (3), the back-and-forth clauses ensure that
evaluation of successive modalities in modal formulas yield the same results
on either side:

THEOREM 17. If M; is zigzag-connected to Mo by C, then, for all worlds
w € Wi,v € Wy with Cwv, and all modal formulas ¢,

M, E plw] iff M E plw].

Notation. M; & M, for zigzag-connected models (by some C).
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By a result in Van Benthem [1976], the Generation Theorem and the
preceding ‘Zigzag Theorem’ combined are characteristic for modal formulas
as first-order formulas in the sense of the introduction:

THEOREM 18. A first-order formula ¢(x) in the language with R, P,Q, . ..
is logically equivalent to some modal transcription if and only if it is invari-
ant for generated submodels and zigzag connections (in the above sense).

For the case of pure frames, the above notions and results lead to the
following three preservation results.

DEFINITION 19. Fj is a generated subframe of Fs (F) 5 Fy) if
1. Wi € W,
2. R; = Rs restricted to Wy,
3. Wi is Rs-closed in Ws.

In general logic, this type of situation is often described by saying that the
‘converse frame’ (W2, Ry) is an end extension of (W1, Ry): the added worlds
all come ‘at the end’.

From Theorem 15 we derive preservation under generated subframes:

COROLLARY 20. If Fiy 5 Fy, then Fy F ¢ implies F1 E @, for all modal
formulas .

Here ‘F F ¢’ means ‘p is true in F”, in the global second-order sense of
the introduction: at all worlds, under all valuations.
But Theorem 15 also has an ‘upward’ directed moral.

DEFINITION 21. The disjoint union &{F;|i € I} of a family of frames
F; = (W;, R;) is the disjoint union of the domains W;, with the obvious
coordinate relations R;.

Another direct application is preservation under disjoint unions:

COROLLARY 22. IfF; F ¢ (alli € 1), then @{F;|i € I} E ¢, for all modal
formulas .

Next, turning to Theorem 17, one now needs a connection between frames
which can be turned into a suitable zigzag relation between models over
them.

DEFINITION 23. A zigzag morphism from Fj to F» is a function: W; —
W satisfying

1. Ryww' implies Ry f(w) f(w'),
i.e. f is an ordinary R-homomorphism; which has the additional back-
ward property that

2. if F, f(w)v, then there exists v € W; with Ryjwu and f(u) =v.
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This notion was mentioned under its current, but rather uninformative
name of ‘p-morphism’ in the introduction. Here is one more example:

the map from nodes to levels (counting from the top) is a zigzag
morphism from the infinite binary tree (with the descendant
relation) onto the natural numbers (with the usual ordering).

Notice also that injective (1-1) zigzag morphisms are even just isomor-
phisms.
Theorem 17 now implies the ‘p-morphism’ theorem of Segerberg [1971].

COROLLARY 24. If f is a zigzag morphism from Fy onto F», then, for all
modal formulas p, F1 F ¢ implies F1 F ¢.

For more ‘local’ versions of these results, the reader is referred to [van
Benthem, 1983].

More examples, and applications of Corollaries 20, 22, and 24 will be
found in Section 2.4. A quick impression may be gained from the following
sample observation (D. C. Makinson). The modal theory of any Kripke
frame is either contained in the classical modal logic (characteristic axiom
Op <> p) or the ‘absurd’ modal logic (characteristic axiom O(p A —p)). For,
any frame F' either contains end points without R-successors, or it is serial
(VzdyRzy). In the former case, such an end point by itself forms a generated
subframe, and by Corollary 20, the logic of the frame is contained in that
of the subframe — which is the absurd one. In the latter case, contraction
to one single reflexive point is a zigzag morphism, and by Corollary 24, the
logic of the frame is contained in that of the reflexive point — which is the
classical one.

We conclude by noting that these three notions are easily adapted to
general frames, taking due precautions concerning the various sets 207, 20,.
Here are the three necessary additions:

In 19: add ‘W, = {X NW; | X € W}

In 21: add ‘the new 20, remains essentially the old 20;’ (but for the
disjointness procedure used).

In 23: add the following ‘continuity requirement’, reminiscent of topology:

“for all X € W, f~1[X] € 2.

These will be needed in the duality theory of Section 2.3.

Propositions and possible worlds. Another characteristic feature of modal
semantics is the analogy between propositions and sets of possible worlds;
as well as (moving up one stage in set-theoretic abstraction) that between
possible worlds and mazximal sets of propositions. Indeed, many philosophers
would deny that there exist any differences here. Let us investigate.

The ideal setting here are general frames (W, R,20): the range is clearly
identifiable with a collection of ‘propositions’ over W.
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Now, if worlds are to be considered as sets of propositions, then some ob-
vious desiderata govern the connection between a world w and propositions
X,Y associated with w:

. XeworY ewifandonlyif XUY €w (‘analysis’)
2. X¢dwifandonly if W - X € w (‘decisiveness’).

Accordingly, one considers only subsets w of 2J satisfying these two condi-
tions. These are precisely the so-called ultrafilters on 2.

What about the alternative relation to be imposed?

Again, a common idea is that a world v is R-accessible to w if it ‘satisfies
all w’s modal prejudices’, i.e. whenever Oy is true at w, ¢ should be true at
v. The same idea may be expressed as follows: whenever ¢ is true at v, Oy
should be true at w. In the present context, this becomes the following
stipulation:

Rwv iffor all X € v,n(X) € w.

In this process, no new propositions have been created, whence the former
propositions X now reappear as sets X = {w | X € w}.
These considerations motivate

DEFINITION 25. The wultrafilter extension ue(G) of a general frame G =
(W, R,20) is the general frame (ue(W,20), ue(R,20), ue(20)), with

1. ue(W,20) is the set of all ultrafilters on 20,
2. ue(R,W)ww, if for each X € 2 such that X € v, 7(X) € w,

3. ue(2W) is {X | X € W)

What this construction has done is to re-create G one level higher up in
the set-theoretic air, so to speak, and some calculation will prove

THEOREM 26. G and ue(G) verify the same modal formulas.

Still, not everything need have remained the same: the world pattern
of (W, R) may differ from that of (ue(WW,20),ue(R,20)). First, each old
world w € W generates an ultrafilter {X € 20 | w € X} and, hence,
a corresponding new world in ue(W,20). But, unless 20 satisfies certain
separation principles for worlds, different old worlds may be identified to a
single new one. (In the earlier example of (N, <, {0, N}), only a single new
world remains, where there used to be infinitely many!) On the other hand,
the construction may also introduce worlds that were not there before. For
instance, on the earlier general frame (N, <, (co-)finite sets), the co-finite
sets form an ultrafilter which induces a ‘point at infinity’ in the resulting
ultrafilter extension. Indeed, it is easily seen that the latter consists of
(N, <) followed by just that infinite point.
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In Section 2.3, necessary and sufficient conditions will be formulated guar-
anteeing that a general frame is ‘stable’ under the construction of ultrafilter
extensions. In any case, it turns out that the process stabilises after one step
at the most. Now, these considerations also apply to ‘full’ Kripke frames.

DEFINITION 27. The wultrafilter extension ue(F) of a frame F = (W, R) is
the frame (ue(WV),ue(R)), with

1. ue(W) is the set of all ultrafilters on W,
2. ue(R)wv if for each X C W such that X € v,n(X) € w.

This time, Theorem 26 does not hold, however. For, it only says that the
modal theory of the general frame (W, R, power set of W) coincides with
that of the induced general frame according to Definition 25. Now, the
latter is, in general, a restriction of the full frame (ue(W),ue(R)). Hence,
we can only conclude to anti-preservation under ultrafilter extensions:

COROLLARY 28. Ifue(F) E ¢, then F E ¢, for all modal formulas ¢.

Still, this structural notion can be made a little more familiar by connect-
ing it with previous model-theoretic operations. First, the above-mentioned
connection between old worlds and new worlds is 1-1 this time, and indeed
isomorphic (consider suitable singleton sets):

THEOREM 29. F lies isomorphically embedded in ue(F').

In general, this cannot be strengthened to ‘embedded as a generated
subframe’. But, another connection with the earlier preservation notions
may be drawn from [van Benthem, 1979a).

THEOREM 30. ue(F) is a zigzag-morphic image of some frame F' which
is elementarily equivalent to F .

Proof. One expands F' to (F,X)xcw, and then passes on to a suitably
saturated elementary extension, by ordinary model theory. From the latter,
a canonical function from worlds to ultrafilters on F' exists, which turns out
to be a zigzag morphism. |

Ultraproducts and definability. New, modally inspired notions concerning
frames have been forged in the above. But old classical constructions may
be considered as well. Of the various possibilities, only one is selected
here, viz. the formation of ultraproducts. (For many other examples, cf.
[van Benthem, 1985, Chapter 1.2.1].) Its use has been indicated in the
introduction already.

The basic theory (and heuristics) of the notion of ‘ultraproduct’ has been
given in the Higher Order Logic chapter in volume 1 of this Handbook. (Cf.
also [Chang and Keisler, 1973, Chapters 4.1 and 6.1].) We recall some of
its outstanding features and uses.
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DEFINITION 31. For any family of Kripke frames {F; | i € I} with an
ultrafilter U on I, the ultraproduct Iy F; is the frame (W, R) with

1. W is the set of classes f.., for all functions f € II{W; | i € I}, where
f~ is the equivalence class of f in the relation f ~g < {i € I | f(i) =

g()} €U,
2. R is the set of couples (f~,g~) for which {i € I | R;f(i)g(i)} € U.

This definitional equivalence is lifted by induction to

THEOREM 32 (‘Lo$ Equivalence’). For all ultraproducts, and all first-order
formulas o(x1,...,x,),

Thus, in particular, all first-order sentences ¢ are preserved under ultra-
products in the following sense:

if F;Ep(allieI), then IL,F;FE ¢.

Conversely, ‘Keisler’s Theorem’ tells us that this is also enough.

THEOREM 33. A class of Kripke frames is elementary if and only if both
that class and its complement are closed under the formation of ultraproducts
and isomorphic images.

Proof. Cf. [Chang and Keisler, 1973, Chapter 6.2]. |

A somewhat more liberal notion of definability, viz. by means of arbitrary
sets of first-order formulas, yields so-called A-elementary classes. Here the
relevant characterisation employs a special case of ultraproducts.

DEFINITION 34. An wltrapower Il F' is an ultraproduct with in each co-
ordinate i the same frame F'.

Notice that by the Lo$§ Equivalence, Iy F is elementarily equivalent to
F', i.e. both frames possess the same first-order theory.

THEOREM 35. A class of Kripke frames is A-elementary if and only if it
is closed under the formation of ultraproducts and isomorphic images, while
its complement is closed under the formation of ultrapowers.

All these notions will be used in the modal correspondence theory of the
next section. In this connection, it should be observed that, as for the other
kinds of modal semantic structure, ultraproducts of models and of general
frames are easily defined using the above heuristics. These will not be used
in the sequel however. (Cf. [van Benthem, 1983].)
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The above definability question for classical model theory leads to a clear
modal task: ‘to characterise the modally definable classes of Kripke frames’.
In section 2.4 this matter will be investigated.

We have arrived at the interplay between classical and modal model the-
ory, which lies at the heart of modal correspondence theory.

2.2 Correspondence I: From Modal to Classical Logic

Through the translation given in the Introduction, modal formulas may be
viewed as defining constraints on the alternative relation in Kripke frames.
Some of these constraints are first-order definable, others are not. Examples
are presented of both, after which the former class is explored. A mathemat-
ical characterisation is given for it, in terms of ultrapowers, and methods
are developed for (dis-)proving membership of the class. The limits of these
methods are established as well.

First-order definability. The class of modal formulas to be studied here is
defined as follows.

DEFINITION 36. M1 consists of all modal formulas ¢ for which a first-
order sentence « (in R, =) exists such that

F E piff FF a, for all Kripke frames F.

Various examples of formulas in M1 have occurred in the Introduction.
For purposes of illustration, see Table 1 below.

As these are all rather easy to establish, some readers may desire a more
complex example. Here it is, straight from the incompleteness Example 5
in the Introduction.

THEOREM 37. The conjunction of the formulas Op — p, O0p — ¢Op and
(Op AO(p — Op)) — p is in ML.

Proof. We shall show that this conjunction defines the same class as the
classical axiom Op < p, i.e. Voy(Rry <> © = y).
The argument requires several stages.

1. Op — p imposes reflexivity,

2. Op Ad(p — Op) — p says the following;:
Vzy(Rzy — Indzy, ..., zn(Rxzy A ... A Rxz, A\
ARyz A ... A Rz,x)).

In other words, from any R-successor y of z, one may return to = by way
of some finite chain of R-successors of . In case the chain is empty, this
reduces to just: Rywx.

This (second-order!) equivalence is proved as follows (I. L. Humberstone):
‘=" Consider any y with Rxy. Let the good points be those R-successors z
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Table 1.
Modal formula Condition
Op—p VeRxx
Op — OOp Vzy(Rzxy — Vz(Ryz — Rzz))
o0p — OOp Vay(Rry — Vz(Rxz — Ju(Ryu A Rzu)))
O(pVq) — OpV Qg Vey(Rxy — Vz(Rzz = 2z = y))
O@p — ¢)vO0Og — p) Vay(Rzxy — Vz(Rxz — (Ryz V Rzy)))
p— Op Vaey(Rxy — y = )
oL Vez-dyRxy
p— OO0p Vzy(Rzy — Ryx)

of # which can be reached from y through some finite chain (possibly empty)
of R-successors of z. Then, set V(p) equal to the set of all R-successors of
good points. This assignment produces the following effects.

1. pistrue at y (y being a successor of y, by reflexivity), and, hence, Op
is true at =z.

2. Any R-successor of x verifying p is itself a good point, whence all its
R-successors belong to V(p).

It follows that O(p — Op) is true at x. Therefore, p itself must be true
at x: i.e. x is R-successor of some good point, which was precisely to be
proved.

‘<" Truth of p in x is discovered by merely following the relevant chain.

3. Now, having secured reflexivity and ‘safe return’, we can find out what
the McKinsey Axiom says in the present context.

First, notice that all R-successors of any point x may be divided
up into concentric shells S, (z), where S,(z) consists of those R-
successors y of z which return to = by n R- arrows (between R-
successors of z) but no less. For instance, So(z) only consists of x
itself, Sy (z) contains immediate R- predecessors. Notice also that, if
y € Sp+1(x), then it must have some R-successor in Sy ().

The McKinsey Axiom makes this whole hierarchy collapse. Set V' (p) =
U{Szn(z) | » = 0,1,2,...}. Then OOp will be true at z, as follows
from the above picture. For, if Rzy, and y € S, (), then either n is
even — whence p holds at y (by definition) and so ¢p (by reflexivity),
or n is odd — whence y has an R-successor in S,_;(x) verifying p:
which again verifies Qp at y.

It follows that ¢Op must be true at x. So, Op holds at some R-
successor of z. Which one? In the present situation, this can only be
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x itself. But then again, this means that there can be no shells S,,(z)
with n odd. Thus, there is only So(w) : Vy(Rzy — y = x).

4. Combining (1) and (3), the required conclusion follows: the three
axioms together imply Vaoy(Rxy <> y = x), and are obviously implied
by it. |

The very unexpectedness of this argument will have made it clear that
there is a creative side to establishing correspondences.

Global and local definability. Originally, Kripke introduced frames (W, R, wy),
with a designated ‘actual world’ wg. From that point of view, the study of
‘local’ equivalence becomes natural:

FE plw] iff E afw],

where the first-order formula o has one free variable now. The reader may
have noticed already that previous correspondence arguments often provide
local versions as well. For instance, we had

F EOp — plw] iff FF Rzxw]
FEOp— 0O0pw] iff FEVy(Rry — Vz(Ryz — Rxz))w].

The local notion is the more informative one, in that local correspondence
of ¢ with a(x) implies global correspondence of ¢ with Vza(z); but not
conversely. Indeed, [van Benthem, 1976] contains an example of a formula,
in M1 which has no local first-order equivalent at alll On the other hand,
there are also circumstances under which the distinction collapses — e.g.
on the transitive Kripke frames (W. Dziobiak; cf. [van Benthem, 1981a)).

Finally, a word of warning. Local validity of, e.g. Op — OOp means ‘local
transitivity’, no more. The frame (N, {{0,n) | n € N}U{(n,n+1) |n € N})
is locally transitive in 0, without being transitive.

First-order undefinability. There is a threshold of complexity below which
second-order phenomena do not occur.

THEOREM 38. All modal formulas without nestings of modal operators are
i M1.

Proof. Cf. [van Benthem, 1978]: a combinatorial classification suffices. W
EXAMPLE 39. L6b’s Axiom O(Op — p) — Op is outside of M1.

Proof. It suffices to establish the following Claim: Lob’s Axiom defines
transitivity plus well-foundedness of the converse of the alternative relation
(i.e. there are no ascending sequences xRz Rx2Rxs,...). For, by a well-
known classical compactness argument, the latter combination cannot be
first-order definable (e.g. notice that it holds in (IV, >), but not in its non-
isomorphic ultrapowers).

First, assume that Lob’s Axiom fails in F’; i.e. for some V and w,
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1. (F, V) EO(Op — p)[w], but
2. (F, V) # Op[w]

Also, assume transitivity of R: we will refute the well-foundedness of R, by
constructing an endless ascending sequence of worlds wRwi Rws . . ..

Step 1: Chose any w; with Rww; where p fails (by (2)). By (1), Op — p
is true at wy, whence Op fails again.

Step 2: chose any ws with Rwjws where p fails. By (1) and transitivity,
Op — p is true at wo, etcetera: an endless sequence is on its way.

Next, failure of either of the two relational conditions results in failure
of Lob’s Axiom. If tramsitivity fails, say Rwv, Rvu,"Rwu, then V(p) =
W — {v, u} verifies O(Op — p) at w, while falsifying Op.

If well-foundedness fails, say wRw; Rws,, ..., then V(p) = W — {w, wy,
w3, ...} produces the same effect. [ |

More complex undefinability arguments will be discussed later on.

First-order definability and ultraproducts. Modal formulas could be regarded
as IIj-sentences, witness the Introduction. Now, for the latter sentences,
ultraproducts provide the touchstone for first-order definability:

THEOREM 40. A IIi-sentence in R,= is first-order definable if and only
if it is preserved under ultraproducts.

Proof. ‘=’: This follows from the Lo§ Equivalence (cf. Section 2.1).
‘=" Consider a typical such sentence:

VP ... YP,p(P1,..., Py, R,=) (p first-order).

Clearly it is preserved under isomorphisms (and so is its negation). More-
over, its negation (a ‘¥i-sentence’) is preserved under ultraproducts (cf.
[Chang and Keisler, 1973, Chapter 4.1], for the easy argument). So, given
the assumption on the sentence itself, Keisler’s Theorem (33) applies. N

COROLLARY 41. A modal formula is in M1 if and only if it is preserved
under ultraproducts.

A second application says that no generalisation of our topic is obtained
by allowing arbitrary sets of defining first-order conditions.

COROLLARY 42. If a modal formula has a A-elementary definition, it has
an elementary definition.

Proof. A-elementary classes are closed under the formation of ultraprod-
ucts. ]
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This characterisation of M1 is rather aspecific, as it holds for all II}-
sentences. Later on, we will exploit the specifically modal character of our
formulas to do better. Moreover, the characterisation is rather abstract,
as ultraproducts are hard to visualise. Therefore, we now turn to more
concrete methods for separating formulas inside M1 from those outside.

Formulas beyond M1: Compactness and Lowenheim—Skolem arguments. In
practice, nonfirst-order definability often shows up in failure of the Com-
pactness and Lowenheim—Skolem theorems. The first was involved in the
example of Lob’s Axiom, the second will be presented now.

EXAMPLE 43 (McKinsey’s Axiom). O0p — OOp is outside of M1.

Proof. Consider the following uncountably infinite Kripke frame

F = (W, R):
Cf .//— \\ \\\\
\ \
\
0
“10
e ——> 0
/ bu B
[ ]
a
W = {a}U{b,, 2,0 |neN}U{cs| f: N —{0,1}}
R = {(a,bn), (bn,00), (bn, by,), (03, 0), (byy, by,) | m € N}U

{{a,cy | F: N = {0,13}U {{cs, bi™) | n e N, f: N = {0,1}}.
We observe two things.
1. FEOOp — ¢Op.

Thanks to the presence of the reflexive endpoints b2,b%, the validity of
the McKinsey Axiom is obvious everywhere, except for a.
So, suppose that, under some valuation V,0¢p is true at a. By assump-

tion, Op is true at each b, and hence p is true at b2 or b.. Now, pick any
function f : N — {0,1} such that bi™ is a p-world (each n € N). Then
Op holds at ¢f, and hence OOp at a.

By the downward Lowenheim—Skolem theorem, F' possesses a countable
elementary substructure F’ whose domain contains (at least) a, by, b%,bl
(all n € N). As F is uncountable, many worlds (cs) must be missing in
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W'. Fix any one of these, say cs,. Notice, for a start, that ¢;_y, cannot
be in W' either. (For, the existence of ‘complementary’ ¢-worlds is first-
order expressible; and F' verifies the same first-order formulas at each of its
worlds as F'.) Now, setting

V(p) = {2 | n e N}
will verify OOp at a, while falsifying ¢Clp. Thus, we have shown
2. F'EO0p — Op.

We may conclude that the McKinsey Axiom is not first-order definable
— not being preserved under elementary subframes. |

In practice, failure of Lowenheim—Skolem or compactness properties is an
infallible mark of being outside of M1. The reader may also think this to
be the case in theory, by the famous Lindstrém Theorem. (Cf. Volume 1,
chapters by Hodges or van Benthem and Doets.) But there is a little-realised
problem: the Lindstrom Theorem does not work for languages with a fixed
finite vocabulary (cf. [van Benthem, 1976]). In our case of R,=, there do
exist proper extensions of predicate logic satisfying both the Léwenheim and
compactness properties. These are not modal examples, however — and it
may well be the case, for all we know, that a modal formula ¢ belongs to M1
if and only if the logic obtained by adding ¢ to the first-order predicate logic
in R, = as a propositional constant has the Lowenheim and compactness
properties. Indeed, up till now, all undefinability arguments (including the
above) have always been found reducible to compacitness arguments alone.

The final characterisation of M1. Corollary 41 may be improved by noting
the following fact about Kripke frames, connecting the modal and classical
notions of Section 2.1.

LEMMA 44. Iy F; S 1y & {F; | i € I}.

Thus, ultraproducts are generated subframes of suitable ultrapowers.

A second idea comes from the preceding section: outside of M1, we
encountered non preservation under elementary equivalence, a notion tied
up with ultrapowers by the Keisler-Shelah Theorem (cf. [Chang and Keisler,
1973, Chapter 6.1]). We arrive at the main result of [van Benthem, 1976).

THEOREM 45. (i) A modal formula is in M1 if and only if (i) it is pre-
served under ultrapowers if and only if (i) it is preserved under elementary
equivalence.

Proof. (i) = (iii) = (ii) are immediate. (ii) = (i): If ¢ is preserved under
ultrapowers, then, by Lemma 44, it is also preserved under ultraproducts
— because disjoint unions preserve modal truth (Corollary 22). Now apply
Corollary 41. |
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Again, this insight saves us some spurious generalisations. Besides ‘A-
elementary’, there are two more levels in the definability hierarchy

elementary
A-elementary -elementary
A- elementar

higher-order

A Y-elementary class is defined by an infinite disjunction of first-order sen-
tences (A-elementary classes by infinite conjunctions). The prime example
of this phenomenon is finiteness. Y A-elementary classes arise from infinite
disjunctions of infinite conjunctions, or vice versa: both cases (and all pur-
ported ‘higher’ ones) collapse — and the hierarchy stops here, even in clas-
sical logic. The reason lies in the simple observation that a class of frames
is ¥ A-elementary if and only if it is closed under elementary equivalence.
But the preceding result has a

COROLLARY 46. Modal formulas are either elementary, or essentially
higher-order.

Unfortunately, even this better characterisation does not yield much effec-
tive information concerning the members of M 1. For, there are no syntactic
criteria for preservation under ultrapowers. From [van Benthem, 1983], we
will cite the catalogue of what little we know.

DIGRESSION 47.

1. IIj-sentences in R, = of the purely universal form
VP ...VYP,Vz; ...V, (¢ quantifier-free)
are preserved under ultraproducts. This tells us that p — Op, i.e.
VPVz(Px — Vy(Rxy — Py))
must be in M1: but that was clear without such heavy artillery.
2. I}-sentences in R, = of the universal-existential form
VP ...VP,3z; ... 3x,p (¢ quantifier-free)

are preserved under ultrapowers. This is of no help whatsoever, as
modal formulas have at least one universal first-order quantifier (Vz).

3. Further presents will not be forthcoming: any IIi-sentence in R, = is
logically equivalent to one of the form

VP, ... VPuVzy .. Ve, dyr ... Jynp (¢ quantifier-free)

So, all complexity occurs at this level already.
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Thus, other ways are to be developed for describing M1 effectively.

The method of substitutions. There is a common syntactic pattern to many
examples of first- order definable modal formulas: certain antecedents, in
combination with certain consequents enable one to ‘read off’ equivalents.
Starting from the earlier examples Cp — p, 00p — OOp, one may notice
successively that conjunctions and disjunctions are admissible as well; as
long as one avoids OO or O(...V ...) combinations to the left.

A typical instance is the following result from [Sahlqvist, 1975]:

THEOREM 48. Modal formulas @ — ¥ are in M1, provided that

1. ¢ is constructed from the forms p,Op, 000p, ..., L, T, using only A,V
and ¢, while

2. ¢ is constructed from proposition letters, L, T, using A,V,$ and 0.

This theorem accounts for cases such as
O(pAOgq) - OV OpVa)
which defines
Vzy(Rxy — Vz(Rzz — (2 =y V Rzy V Ryz))).

Proof. The heuristics of the Introduction works: for each ‘minimal verifi-
cation’ of the antecedent, the consequent must hold. For further technical
information (e.g. the monotonicity of the consequent is vital too), cf. [van
Benthem, 1976), which also contains generalisations of the theorem. |

That ¢ is fatal, is shown by the McKinsey Axiom. The Fine Axiom
O0(pV q) — ¢(Op Vv Oq) does the same for O(... Vv ...). Finally, the Lob
Axiom (in the equivalent form Op — Q(p A O-p)) demonstrates the danger
of ‘negative’ parts in the consequent. Thus, in a sense, we have a ‘best
result’ here.

Notice that the class described is rather typical for modal axioms, which
often assume this implicational form. Indeed, the most characteristic modal
axioms are even simply reduction principles of the form

(modal operators) p — (modal operators) p.

THEOREM 49. A modal reduction principle is in M1 if and only if it is
of one of the following four types:

1. Mp—0O...00...0p,
2. ¢...00...0p— Mp,

—

3. O... (i times) ...OMp — NMp  (where length (N) =),
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4. NMp — ... (i times) ...OMp  (where length (N) = i).

Proof. Cf. [van Benthem, 1976] for the rather laborious argument. |

Thus at least, important parts of M1 have been classified. This particular
theorem finishes a project begun in [Fitch, 1973].

A general method of proof for Theorem 48 consists of the method of
substitutions, introduced in the introduction. Here we shall merely illustrate
how it works: a justification may be found in [van Benthem, 1983].

EXAMPLE 50. Write OC00p — O0p as

VPVz(Jy(Rxy AVz(Ryz = Pz)) = Yu(Rzu — Jv(Ruv A Pv))).
Rewrite this to the equivalent

Vay(Rxy — VP(Vz(Ryz — Pz) = Yu(Rzu — Jv(Ruv A Pv)))).
Substitute for P : A\z.Ryz, to obtain

Vey(Rxy — (Vz(Ryz — Ryz) = Yu(Rzu — Jv(Ruv A Ryv)))).
This is equivalent to

Vzy(Rry — Yu(Rzu — Jv(Ruv A Ryv))),

i.e. directedness (confluence).

Write ¢(p AOg) — O(pV OpV q) as

Vzy(Rzy — YP((Py AVz(Ryz — Qz)) — Yu(Rzu — (PuV
VAv(Ruv A Pv) V Qu)))).

Substitute for P : A\z-y=z, and for @) : A\z.Ryz, to obtain (an equivalent of)
the earlier connectedness.

Write ¢(p AOp) — p as
Vay(Rxy — YP((Py AVz(Ryz — Pz)) — Px)).
Substitute for P : Az-y=2zV Ryz, to obtain (an equivalent of)
Vezy(Rry — (Ryz Vy = x)).
Write OOp — Op as

VaVP(Vy(Rxy — Yz(Ryz — Pz)) — Yu(Rzu — Pu)).
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Substitute for P : Az - R%2xz; i.e. Az - Jv(Rav A Rvz), to obtain (modulo
logical equivalence)

VaVu(Rzu — Jv(Rzv A Rvu)),

i.e., density of the alternative relation.

In general, substitutions will be disjunctions of forms R"yz(n =0,1,2,...);
the cases 0, 1 standing for =, R, respectively.

Despite these advances, the range of the method of substitutions has it
limits. To see this, here is an example of a formula in M1 with a quite
different spirit.

EXAMPLE 51. The conjunction of the K4.1 axioms, i.e. Op — OOp,
OOp — OOp is in M1.

Proof. Op — OOp defined transitivity and, therefore, it suffices to prove
the following

CrAM. On the transitive Kripke frames, McKinsey’s Axiom defines atom-
ety
Vedy(Rzy AVz(Ryz — z = y)).

From right to left, the implication is clear. From left to right, however, the
argument runs deeper.
Assume that F is a transitive frame, containing a world w € W such that

Yy(Rwy — 3z(Ryz Az £ y)).

Using some suitable form of the Axiom of Choice (it is as serious as this
...), find a subset X of w’s R-successors such that

1. Yy € W(Rwy — 3z € X Ryz)
2. Yy € W(Rwy — 3z € (W — X)Ryz).
Setting V' (p) = X then falsifies the McKinsey Axiom at w. [ ]

This complexity is unavoidable. We can, for example, prove

THEOREM 52. (Op — OOp) A (O0p — OOp) is not equivalent to any
conjunction of its first-order substitution instances.

Proof. Here is where the earlier general frame (N, <, finite and cofinite
sets) comes in. First, an ordinary model-theoretic

OBSERVATION. The finite and cofinite sets of natural numbers are precisely
those first-order definable in (N, <), possibly using parameters.

Now, it was noticed already in Section 2.1 that the above formula holds
in this general frame — and hence so do all its first-order substitution
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instances. But the latter also hold in the full frame (N,<). So, if our
formula were defined by them, it would also hold in the full frame: which
it does not. ]

So, although he method of substitutions carves out a large, and important
part of M1, it does not fully describe the latter class.

The complexity of M1. The method of substitutions describes a part of M1
which may even be shown to be recursively enumerable (cf. [van Benthem,
1983]). But M1 overflowed its boundaries. Indeed, there are reasons to
believe that M1 is not recursively enumerable — probably not even arith-
metically definable. For, in the general case of IIi-sentences, we know

THEOREM 53. First-order definability of I13 -sentences is not an arithmeti-
cal notion.

Proof. (Cf. [van Benthem, 1983] or the Higher Order Logic Chapter in
Volume 1 of this Handbook.) [ ]

Other topics. Various other questions had to be omitted here. At least,
one example should be mentioned, viz. that of relative correspondences. On
several occasions, a restriction to transitive Kripke frames produced inter-
esting shifts: global and local first-order definability collapse, the McKinsey
Axiom becomes elementary, etc. A sample result is in [van Benthem, 1976].

THEOREM 54. On the transitive Kripke frames, all modal reduction prin-
ciples are first-order definable.

Thus, ‘pre-conditions’ on the alternative relation are worth considering.
In areas such as tense logic, our temporal intuitions even require them.

2.3 Modal Algebra

An alternative to Kripke semantic structures is offered by so-called ‘modal
algebras’, in which the modal language may be interpreted as well. The
realm of modal algebras has its own mathematical structure, with subalge-
bras, direct products and homomorphic images as key notions. Now, back-
and-forth connections may be established between these two realms, through
the Stone Representation. A categorial parallel emerges between the above
triad of notions and the basic triad of Section 2.1: zigzag-morphic images,
disjoint unions and generated subframes, respectively. Moreover, the earlier
‘possible worlds construction’ for ultrafilter extensions will be seen to arise
naturally from the Stone Representation.

The algebraic perspective. As in other areas of logic, the modal propositional
language may also be interpreted in algebraic structures. These assume the
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form of a Boolean Algebra (needed to interpret the propositional base)
enriched with a unary operation, in order to capture the modal operator.

DEFINITION 55. A modal algebra is a tuple
2l = <A7 07 ]-7 +7I ) *>7

where (4,0,1,+,") is a Boolean Algebra and x is a unary operator satisfying
the equations

L @ty =2 +y"
2. 0*=0.

Notice that * corresponds to possiblity (0): the necessity choice would
have yielded equations

*

. (z-y)=z*y
21 =1.

This algebraic perspective at once yields a completeness result.

THEOREM 56. A modal formula is derivable in the minimal modal logic K
if and only if it receives value 1 in all modal algebras under all assignments.

The concept of evaluation at the back of this goes as follows. Let V'
assign A-values to proposition letters. Then, V' may be lifted to all formulas
through the recursive clauses

V(mp) =V(p)
VieVv) =V(e) +V(¥)
V(Op) = V(p)*, etc.

Thus, a modal formula is read as a ‘polynomial’ in ’, +, *.

The proof of the completeness Theorem 56 comes cheap. First, one shows
by induction on the length of proofs that all K-theorems are ‘polynomials
identical to 1’. Conversely, one considers the so-called Lindenbaum Alge-
bra of the modal language, whose elements are equivalence classes of K-
provably equivalent modal formulas, with operations defined in the obvious
way through the connectives. The value 1 in this algebra is awarded to all
and only the K-theorems: hence non- theorems are disqualified as polyno-
mials identical to 1.

Such uses of modal algebra are a joy to some (cf. [Rasiowa and Sikorski,
1970]); to others they show that the algebraic approach is merely ‘syntax in
disguise’. After all, the above result may be viewed as a re-axiomatisation
of K, no more. For instance, notice that the hard work in the usual (Henkin
type) model-theoretic completeness theorems consists in showing that non-
theorems can be refuted in set-theoretic (Kripke)-models. To put this into
a slogan, which will become fully comprehensible at the end of this chapter:
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HENKIN = LINDENBAUM + STONE.

Nevertheless, the algebraic perspective has further uses, which are be-
ing discovered only gradually. First, notice that it offers a more general
framework than Kripke semantics. For the above Lindenbaum construction
to work, one only needs the principle of Replacement of Equivalents; i.e.
modally, closure under the rule

if k@<, then F Qp « Q1.

(Algebraically, this just amounts to an identity axiom.)

The above additional equations represent optional further choices.

But even in the realm of the above modal algebra, there exists a whole
discipline of universal algebraic notions and results, which turn out to be
applicable to modal logic in surprising ways. Two instructive references
are [Goldblatt, 1979] and [Blok, 1976]. Here we shall only skim the surface,
taking what is needed for the modal definability results of Section 2.4. Thus,
we shall need the following three fundamental algebraic notions.

DEFINITION 57. 2, is a modal subalgebra of 2y if Ay C A,, and the
operations of Ay coincide with those of 2, on A;.

DEFINITION 58. The direct product II{2; | i € I} of a family of modal
algebras {%; | ¢ € I} consists of all functions in the Cartesian product
II{A; | i € I}, with operations defined component-wise:

fHg=(0)+ig(@)i [ =(f0);)i; ete.

DEFINITION 59. A function f is a homomorphism from 2A; to 2, if it
respects all operations:

fla+1b) = f(a) +2 f(b), f(a™) = f(a)™; etc.

These three operations are fundamental in algebra because they char-
acterise algebraic equational definability. This is the content of ‘Birkhoff’s
Theorem’:

A class of algebras is defined by the validity of a certain set of algebraic
equations (under all assignments) if and only if that class is closed under the
formation of subalgebras, direct products and homomorphic images. (For
a proof, cf. [Gritzer, 1968).) There is much more to Universal Algebra, of
course, but this is what we shall need in the sequel.

Kripke frames induce modal algebras. In order to tap the above resources,
a systematic connection is needed between the earlier semantic structures
and modal algebras.
To begin with, each Kripke frame F = (W, R) gives rise to the following
modal algebra
A(F)=(P(W),o,W,U, —,m)
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where 7 is the modal projection of 2.1:
m(X)={we W |3Jve XRwv} (X CW).

As for truth of modal formulas, it is immediate that a modal formula ¢
is true in F' if and only if its corresponding modal equation a(y) is identical
to 1 in the algebra A(F'). For instance, truth of

O0(p Vv q) — 0(Op Vv Og),

or equivalently
=0=0=(p V q) V O(=0=p V =0~q)
is equivalent to the validity of the identity

(w+y)/*/*r+(m/*r+yr*r)* :1-

Thus, A maps single Kripke frames to modal algebras. But what happens
to the characteristic modal connections between frames, as in Section 2.17
We shall take them one by one.

First, if Fy is a generated subframe of F5, then the obvious restriction
map sending X C W> to X N W, is a modal homomorphism from A(F»)
onto A(F1). (The key observation is that Rj-closure of W; guarantees
homomorphic respect for the projection operator w.) Next, the algebra
induced by a disjoint union ®{F; | i € I} is isomorphic, in a natural way,
to the direct product II{A(F;) | ¢ € I}. One simply associates a set X of
worlds in the former with the function (X N W;);e;-

Finally, and this happy ending will be predictable by now, if F3 is a
zigzag-morphic image of F through f, then the stipulation

A(F)(X) =aer f7HX]

defines an isomorphism between A(F») and a subalgebra of A(Fy). (This
time, the two relational clauses in the definition of ‘zigzag morphism’ ensure
that A(f) respects projections.) Notice the reversal in direction in the latter
case: this is a common phenomenon in these ‘categorial connections’.

Modal algebras induce Kripke structures. There is a road back. Conversely,
modal algebras may be ‘represented’ as if they had come from an underlying
base frame. The idea of this so-called Stone Representation is as follows.
(It is due to J6nsson and Tarski around 1950.)

Worlds w are to be created such that an element a in the algebra may
be thought of as the set of w ‘in a’. But then, the desired correspondence
between algebraic and set-theoretic operations becomes:

no set w is in 0, all sets w are in 1,
wisina+b iff wisina or wisin b,
wisina iff w isnotin a.
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Thus, as w searches through A ‘where it belongs’, it picks out a set X such
that

0€ X, 1e X,
a+beX iff aeX or belX,
aeX iff ad X.

Such sets X are called ultrafilters on . Thus, let
W (2l) = all ultrafilters on 2I.

A suitable alternative relation may be found through the same motivation
as in Section 2.1.

(w,v) € R(A) iff foreachae€ A, if a €v, then a* € w.
So, each modal algebra 2l induces a Kripke frame
F) = (W), R(3)).

This time, truth in 2 and truth in F'() need not correspond, however. For,
F(20) may harbour many more sets of worlds than just those corresponding
to the elements a of the algebra — and hence it contains additional potential
falsifiers. Thus, the implication goes only one way. The equation t; = t» is
valid in 2, where the polynomials ¢1,¢> correspond to the modal formulas
V1,92, when 1 <> o is true in F(2). A complete equivalence is only
restored by changing F'() to the general frame

where 20(2() consists of all sets of the form
{weW®)|acw} (acA).

So, what we now get is a two-way connection between modal algebras and
general frames — and here lies the genesis of the latter notion. Two ways;
for, it is easily seen that all previous insights about the mapping A apply
equally well to general frames, instead of merely ‘full’ frames.

Again, the interest of the present connection may be gauged by seeing
what happens to the three fundamental algebraic operations when trans-
lated through F' into Kripke-semantic terms.

First, if A; is a modal subalgebra of 25, then the obvious restriction map
sending ultrafilters w on Ay to ultrafilters wN Ay on 2A; is a zigzag morphism
from F'(As) onto F(2,).

Next, the direct product of a family {2; | i € I} has an F-image containing
the disjoint union ®{F(2;) | i € I}. No isomorphism need obtain, however:
a slight flaw in our correspondence.
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But finally, if 2 is a homomorphic image of %, through f, then the map
F(f), defined by setting

F(f)(w) =der f~ w],

sends As-ultrafilters to 2 -ultrafilters, in such a way that it embeds F'(2s)
isomorphically as a generated subframe of F(2,).

Back and forth. So far, so good. Modal algebras induce general frames,
and these, in their turn, induce modal algebras. But, what happens on a
return-trip?

One case is simple, by construction:

THEOREM 60. A(F(2)) is isomorphic to 2.

The converse direction is more difficult. (F(A(G)) need not be isomorphic
to F, for general frames GG. This is precisely what we noted in connection
with ‘possible world constructions’ in Section 2.1. But, as was announced
there, it can be ascertained which conditions on general frames G' do guar-
antee such an isomorphism.

DEFINITION 61. A general frame G = (W, R,20) is descriptive if it satis-
fies Leibniz’ Principle for identity:

lL.VewyeWa=ycVZeWrxeZyeZ))
as well as Leibniz’ Principle for alternatives:

2. Vey e W(Rzy & VZ € W(y € Z = xz € n(2))).
Moreover, it should satisfy Saturation:

3. each subset of 20 with the finite intersection property has a non-empty
total intersection.

The following basic result is in [Goldblatt, 1979].
THEOREM 62. F(A(G)) is isomorphic to G if and only if G is descriptive.

The standard examples of descriptive frames are the general frames de-
rived from Henkin models in modal completeness proofs, by taking for 20
the range of modally definable sets of worlds. It may also be noticed that
general frames G which are themselves of the form F(2l) are always de-
scriptive. Thus, for certain theoretical purposes, the ‘proper’ bijective cor-
respondence may be said to be that between modal algebras and descriptive
frames, which are ‘stable’ under the possible worlds construction described
in Section 2.1.

The categorial connection. The above connections between modal algebras
and Kripke structures run deeper than might appear at first sight. The
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general picture is that of two mathematical worlds, or ‘categories’, which
turn out to be quite similar in structure:

(Modal algebras, homomorphisms into)
(General frames, zigzag morphisms into).

The earlier considerations may be summed up in the following two schemata:

‘ A(f) ‘ ‘ F(f) ‘
A(Gh) A(G») F(Ay) F(2s)

So, A, F' are what a category theorist would call ‘contravariant’ functors.
Therefore, information concerning the one category may sometimes be trans-
ferred to the other. Thus, a ‘categorial transfer’ arises, of which we mention
a few phenomena. (The following passage can be skipped by readers unfa-
miliar with Category Theory or Universal Algebra).

The category of modal algebras has among its internal limit construc-
tions the formation of terminals (viz. the degenerate single point algebras)
and pull-backs. Hence, it is closed under finite limits in general. Through
A, F, we may derive that the category of general frames is closed under
finite co-limits, specifically under initials (allowing the empty frame) and
push-outs. (In this connection, the ‘adjointness’ behaviour of A, F' may be
investigated.) The preservation behaviour of modal formulas under such
limit constructions remains to be studied.

An algebraically well-motivated notion is that of a free algebra. What
corresponds to these in the realm of general frames? A surprising connec-
tion with modal completeness theory appears. The Stone representations
of free algebras are essentially Henkin general frames (proposition letters
correspond to free generators of the algebra). The latter structures were
characterised semantically in [Fine, 1975], in terms of certain ‘universal em-
bedding’ properties with respect to zigzag morphisms. This turns out to
follow directly, as the dual of the ‘homomorphic extension’ definition of free
algebras.

Our final example concerns another algebraic classic, the notion of a
subdirectly irreducible modal algebra (used with great versatility in [Blok,
1976]). These turn out to correspond almost (not quite) to rooted gen-
eral frames whose domain consists of one root world together with its R-
successors, their R-successors, etcetera. The famous Birkhoff Theorem stat-
ing that

Every (modal) algebra is a subdirect product of subdirectly ir-
reducibles,
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may then be compared with the simple Kripke-semantic observation that

Every general frame is a zigzag-morphic image of the disjoint
union of its rooted generated subframes.

These examples will have made it clear how the categorial connection be-
tween modal algebra and possible worlds semantics can be a very rewarding
perspective.

2.4 From Classical to Modal Logic

Reversing the direction of the earlier correspondence study (Section 2.2),
there arises

DEFINITION 63. P1 is the set of all first-order sentences in R, = for which
a modal formula exists defining the same class of Kripke frames.

All earlier examples of formulas in M1 also provide examples for P1, of
course. Therefore, here are some more general results straightaway.
Some methods exist for proving the existence of modal definitions.

THEOREM 64. FEach first-order sentence of the form YaxUp, where U is a
(possibly empty) sequence of restricted universal quantifiers, of the form

Yu(Rvu —  (with u,v distinct)

followed by a matriz ¢ of atomic formulas u = v, Ruv combined through
A, V, belongs to P1.

Proof. The relevant combinatorial argument is based on the heuristics
explained in the introduction. Cf. [van Benthem, 1976]. |

Some examples of formulas of this type are
reflexivity: VeRzx, transitivity: VaVy(Rzy — Vz(Ryz — Rxz))

and
connectedness: VaVy(Rzy — Vz(Rxz — (Rzy V Ryz))).

Disproving definability proceeds through counter-examples to preserva-
tion behaviour.

EXAMPLE 65.
1. dzRzz is outside of P1.
It holds in ({0, 1}, {(1,1)}); but not in its generated subframe ({0}, @).

2. VzVyRuzy is outside of P1.
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It is preserved under generated subframes, but not under disjoint unions.
On ({0}, {(0,0)}) and ({1},{(1,1})}), the relation is universal; but not on

(10,1}, {(0,0), (1, 1)}).
3. Vz—Rzzx is outside of P1.

It is preserved under generated subframes and disjoint unions; but not under
zigzag-morphic images, witness the Introduction.

4. Vz3y(Rxy A Ryy) is outside of P1.

It is preserved under all three operations mentioned up till now, but not
inversely under the formation of ultrafilter extensions. It can be shown to
hold in ue((N,<)), while failing in (N, <).

An important general result is casting its shadows here [Goldblatt and
Thomason, 1974]:

THEOREM 66. An elementary class of Kripke frames is modally definable
if and only if it is closed under the formation of generated subframes, disjoint
unions and zigzag-morphic images, while its complement is closed under the
formation of ultrafilter extensions.

Proof. This argument is given in heuristic outline here, as it is one of the
most elegant applications of algebraic results in modal semantics.

Evidently, modally definable classes of Kripke frames exhibit all the listed
closure phenomena: the surprising direction leads from ‘closure’ to ‘defin-
ability’.

First, notice that one closure condition can be added for free, by an
earlier result. Theorem 30 implies that our class R of frames is itself closed
under the formation of ultrafilter extensions: if F' € R, then the relevant
elementary equivalent F' € R (R being elementary), and hence so is its
zigzag-morphic image ue(F).

Now the obvious strategy is to show that 2 equals MOD(Thy,eq(R)),
i.e. the class of Kripke frames verifying each modal formula which is valid
throughout SR. The nontrivial inclusion here requires us to show that

if F* E Thy,0a(R), then F* € R, for every Kripke frame F*.

And here is where an excursion into the realm of modal algebra will help.
F* verifies Thyoa (), and hence A(F*) verifies the equational theory of the
class {A(G) | G € R}. (Recall the earlier correspondence between modal
formulas and polynomials.) By Birkhoff’s Theorem, in a suitable version,
this implies that A(F™*) must be constructible as a homomorphic image of
some subalgebra of some direct product II{ A(G;) | i € I}, with G; € R. In
a picture,
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surjective
A(F*) A CI{A(G:) | i eI}
homomorphism

Now the latter algebra is isomorphic to A(@{G; | i € I}), by the earlier
duality. Moreover, the latter disjoint union belongs to 98 — by the given
closure conditions. So, the picture becomes, for some G € fR:

surjective
A(F™) A C A(G).

homomorphism

Now, the transformation F' turns this into the corresponding row

embedding as surjective
FA(F*) F(2) FA(G).
generated subframe zigzag morphism

But then, finally, the following walk through the diagrams suffices. G €
R = FA(G) = ue(G) € R (by the above observation) = F(2l) € R (closure
under zigzag images) = FA(F*) € R (closure under generated subframes)
= F* € R (‘anti-closure’ under ultrafilter extensions). |

Actually, this result does not yet characterise P1, as it talks about modal
definability by any set, finite or infinite. The additional strengthenings
needed for zeroing in on P1 are hardly enlightening, however.

The result also says a little bit more. Adding closure under ultrafilter
extensions, while removing the condition of elementary definability, yields
a characterisation of those classes of Kripke frames definable by means of
a canonical modal logic in the sense of the Introduction (i.e. one which is
complete with respect to its Henkin frames). Moreover, the above proof
heuristics may also be used to formulate a general closure condition on
classes of Kripke frames necessary and sufficient for definability by means
of just any set of modal formulas (‘SA-constructions’; cf. [Goldblatt and
Thomason, 1974]).

As with the earlier ultrapower characterisation of M1, the above char-
acterisation gives no effective information concerning the formulas in P1.
What is needed are ‘preservation theorems’ giving the syntactic cash value
of the given four closure conditions. Several of these have been given in [van
Benthem, 1976], extending earlier results, e.g. of Feferman and Kreisel.

Here is an idea. Preservation under generated subframes allows only
formulas constructed from atomic formulas and their negations, using

Y, A,V as well as restricted existential quantifiers Jv(RuvA (u,v
distinct).



CORRESPONDENCE THEORY 367

Preservation under disjoint unions admits only one single universal quanti-
fier in front: all others are to be restricted to the form Yu(Ruv —). Finally,
preservation under zigzag images forbids the negations, and we are left with

THEOREM 67. A first-order sentence is preserved under the formation
of generated subframes, disjoint unions and zigzag-morphic images if and
only if it is equivalent to one of the form Vza(x), where a(x) has been
constructed from atomic formulas using only conjunction, disjunction and
restricted quantifiers.

Proof. By elementary chain constructions, as in [Chang and Keisler, 1973,
Chapter 3.1]. [

For preservation under ultrafilter extensions, only some partial results have
been found. (After all, the class of sentences preserved under such a complex
operation need not even be effectively enumerable.)

As for the total complexity of P1, this may well be considerable — as
was the case with M1. Are the two classes perhaps recursive in each other?

2.5 Modal Predicate Logic

As in much technical work in this area, modal propositional logic has been
studied up till now. Modal predicate logic, however important in philo-
sophical applications, is much less understood. (Cf. Chapter 2.5 in this
Handbook.) Nevertheless, in the case of Correspondence Theory, an excuse
for the neglect may be found in Theorem 69 below.

The unfinished state of the art shows already in the fact that no com-
monly accepted notion of semantic structure, or truth definition exists.
Hence, we fix one particular, reasonably motivated choice as a basis for
the following sketch of a predicate-logical variant of the earlier theory.

The language is the ordinary one of predicate logic, with added modal
operators. Structures are tuples

mt = <W7 R7 D7 V>7

where the skeleton (W, R, D) is a Kripke frame with a domain function D

assigning sets of individuals D,, to each world w € W. The valuation V

supplies the interpretation of the nonlogical vocabulary at each world.
The truth definition explicates the notion

¢

() is true in M at w for &,

where the sequence d assigned to the free individual variables = comes from
D,,. Its key options are embodied in the clauses for the individual quanti-
fiers: these are to range over D,,, plus that for the modal operator:
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Op(z) is true at w for d if, for each R-alternative v for w such
that d is in D,,@(x) is true at v for d.

Thus, necessity means ‘truth in all alternatives, where defined’.

As before, truth in a skeleton (at some world, for some sequence of in-
dividuals) means truth under all possible valuations. Again, in this way
modal axioms start expressing properties of R, D — and their interplay.

The relevant matching ‘working language’ on the classical side will now
be a two-sorted one: one sort for worlds, another for individuals. Its basic
predicates are the two sortal identities, R between worlds, as well as the
sort-crossing Ezw : ‘z is in the domain of w’, or ‘x exists at w’.

EXAMPLE 68. The Barcan Formula VzOAx — OVz Az defines

Vwv(Rwv — Vo (Ezv — Exw)).

Proof. ‘«=’: Assume Vz[JAz at w, and consider any R-alternative v. For
all d € D,,d € D,, (by the given condition), whence OAd holds at w —
and, hence, Ad holds at v.

‘=": The Barcan Formula will hold under the following particular assign-
ment: V,(A,d) =1 if Rwu and d € D,,.

This V verifies the antecedent, and hence the consequent. The relational
condition follows. [ |

Thus, the Barcan Formula expresses an interaction between R and D.
This is not accidental. For pure R-principles, we have the following conser-
vation result.

THEOREM 69. There exists an effective translation from sentences ¢ of
modal predicate logic to formulas p(v) of modal propositional logic such
that,

if v is equivalent to some pure R,=-sentence «, then p(y) al-
ready defines « in the sense of Section 2.2.

Proof. p merely crosses out quantifiers in some suitable way. For full details
(here and elsewhere) cf. [van Benthem, 1983]. ]

Besides the Barcan Formula, there are three further fundamental ‘de
re/de dicto interchanges’. One of these provides a new example of non-first-
order definability.

EXAMPLE 70.
1. OVz Az — VzOAz is universally valid,
2. 320Az — O3z Az defines Ywv(Rwv — Ve (Ezw — Ezv)),
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3. O3z Az — Jx0Ax defines an essentially higher-order condition on R, =
E.

)

Despite the superficial resemblance to the McKinsey Axiom of section
2.2., the proof for the latter result is quite different from that of Example
43. Interested readers may notice that the above principle holds in worlds
with a finite chain of overlapping two-element successors:

{1,2},{2,3},{3,4},....{n — 1,n},{n,n + 1}.

But, it may fail in the presence of infinite such chains, and then compactness
lurks.

Further systematic reflection on the above ‘positive’ result yields a method
of substitutions again, with an outcome like that of Theorem 48:

THEOREM 71. Formulas of the form o — ¢, with ¢ constructed from
atomic formulas prefived by a (possibly empty) sequence of V,0, using only
A, V,3 and O, and ¢ constructed from atomic formulas using A\,V,3,0 as
well as V,0, are all uniformly first-order definable.

The global mathematical characterisation of first-order definability re-
mains essentially the same in this area, whence it is omitted here.

Something which does not generalise easily, however, is the algebraic ap-
proach of Section 2.3. This is an endemic problem in classical (and intuition-
istic) logic already: elegant algebraization stops at the gates of predicate
logic. There could be an area of ‘modal cylindric algebra’ of course (cf.
[Henkin et al., 1971]), but none exists yet. (For an interesting related area,
cf. the extension of modal propositional algebra to the modal program al-
gebra of dynamic logicians (cf. [Kozen, 1979] or the Dynamic Logic chapter
in volume 5 of this Handbook).) As a consequence, we still lack an elegant
characterisation of the modally definable fragment of the present two-sorted
first-order language.

What we do have, however, is such a characterisation for that same lan-
guage with parametrised predicate constants A(w, —) for the predicate con-
stants A(—) of the modal predicate logic. Thus, this is the appropriate
language for the first-order transcription of the above truth definition. The
Barcan Formula, for example, becomes

Ve(Ezw — Yu((Ewv A Ezv) — Avx)) —
— Yo(Rwv — Ve (Ezv — Avz)).

As in Theorem 18, two characteristic modal relations suffice for char-
acterising the modal transcriptions among the class of all formulas of this
language. In order to end on an optimistic note, here is the relevant result.

First, modal predicate logic knows generated submodels, just as in Sec-
tion 2.1. Moreover, the earlier zigzag relations may be enriched so as to in-
corporate individual back-and-forth choices, as in the Ehrenfeucht—Fraissé
approach to first-order definability.
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DEFINITION 72. A zigzag connection C between two models M;, My re-
lates finite sequences (w,z) of equal length (w a world, x a sequence of
individuals in the domain of w) in such a way that

1. all such sequences occur: those from M; in the domain, those from
Ms> in the range of C

2. if C(w,z)(v,y) andw’ € Wi, with Ryww', x € Dy, then C(w', z) (v, y)
for some v’ € Wy with Rovv',y € D,
and analogously in the opposite direction (‘world zigzag’)

3. if C(w,x)(v,y) and d € D,,
then C(w,z ~d)(v,y “e) for some e € D,,
and vice versa. (‘individual zigzag’)

4. if C(w,z)(v,y), then the map (z); = (y); is a partial isomorphism
between (D, Vi) and (Dy, V).

Now, transcriptions of modal formulas are invariant for generated sub-
models and zigzag connections, in the obvious sense. E.g. the latter have
been made precisely in such a way that for modal ¢,

@ is true at w for z  iff ¢ is true at v for y, when C(w,x)(v,y).

THEOREM 73. A formula ¢ = o(w,x) of the two-sorted world/individual
language is (equivalent to the transcription of ) a modal formula if and only
if it is invariant for generated submodels and zigzag connections.

Proof. This follows from the main proof in [van Benthem, 1981b]. [ ]

On the whole, exciting technical results are yet scarce in modal predicate
logic — and Correspondence Theory is no exception.

2.6 Higher-Order Correspondence

Modal formulas define second-order (II}) conditions on the alternative re-
lation in all cases, and first-order conditions in some. In the perspective of
abstract model theory, two possible generalisations arise here.

Instead of the first-order target language, one may consider suitable ex-
tensions. For instance, in Theorem 37, the relevant relational condition
was definable in L, ,: first-order logic with countable conjunctions and
disjunctions. Not all modal formulas become definable here, however. E.g.
Lob’s Axiom defined a form of well-foundedness, which is known to be be-
yond L, or indeed any language of the L.,-family. On the other hand,
this time for instance, the defining condition is already in ‘weak second-
order logic’ L?, allowing quantification over finite sets of individuals. Thus,
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various wider classes of definability could be considered for modal formulas,
short of IT}. And, in fact, even the latter case itself is interesting. Which
II}-sentences, for example, admit of modal definitions?

Given the general lack of semantic characterisations for such higher logics,
such characterisations for their modal fragments are also difficult to obtain.
One observation might be that both L, and L? have the property of
invariance for partial isomorphism (cf. van Dalen’s chapter in Volume 1 of
this Handbook). It will be of interest to study this preservation condition
on modal formulas. In fact, no counter-examples have been discovered yet;
but these do exist in tense logic. (The rationals (@), <) and the reals (R, <)
are a classical example of partially isomorphic structures, but there exists a
tense-logical formula expressing Dedekind Completeness, which is valid on
the latter, though not on the former frame.)

On the other hand, the modal propositional language could itself be
strengthened, notably by the introduction of propositional quantifiers Vp, 3p,
which have occurred in various places in the literature (cf. Garson’s chapter
in Volume 3 of this Handbook). Thus, e.g. Vp(OOp — J¢OOq) would be-
come an admissible formula, but also O3pdp — OVqOUyq. Actually, there is
a choice here, whether to allow the propositional quantifiers in the scope of
modal operators or not. Henceforth, we consider the second, more restricted
option.

In the usual manner, a prenex hierarchy arises here, with all propositional
quantifiers in front, of which the original modal formulas form the ITi-part
(universal prefix). The next simplest cases are X} (existential prefix) and
AlL. In fact, the latter has a reasonable motivation through the modal ‘rules’
mentioned in Section 3.2 below.

It has been observed by Gabbay that the following rule defines irrefles-
ity of Kripke frames:

‘if FFE (Op A —p) — plw] (with ¢ p-free), then F E plw]’.

The general pattern here is that of ‘F' E ¢[w] only if F' F ¢[w]’, i.e. an
implication of two II3-formulas, which is Al. (It may be written either in
the form V3 or 3V.)

Actually, the above specific example is already X1, as it amounts to
Vpg((Op A —p) — q) — Vqg, i.e. Vp((Op A —p) — L) — Vqq, i.e. Vp((Op A
-p) = 1) — 1, ie. Ip(Op A —p). Another relevant observation is that
implications of the above form V — V, if first-order definable at all, already
have a first-order definable consequent. We do not go into these specific
matters here, but note a general issue.

As often in higher-order logic, we are interested in hierarchy results. For
instance, how much power of first-order definability is added at each stage?
It is evident that ¥}-definability adds essentially just all negations of the
(local) principles in P1 (cf. Section 2.4), while A} adds conjunctions and
disjunction across P1 and the latter ‘mirror image’.
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QUERY. Does the second-order prenex hierarchy induce an ascending cor-
responding hierarchy of modally definable first-order principles about the
alternative relation?

This possibly ascending hierarchy cannot exhaust all first-order princi-
ples, as higher-order modal formulas do retain one basic preservation prop-
erty: their local truth is invariant under passing to generated subframes.
(The Generation Theorem 15 yields this consequence all the way up, not
just for the original modal IT}-formulas.) But then, we know what this
semantic constraint means in syntactic terms for first-order formulas (cf.
[van Benthem, 1976, Chapter 6]). These will be the ‘almost-restricted’ ones
consisting of one universal quantifier followed by a compound of atomic
formulas with negation, conjunction and restricted quantifiers Jy(RzyA).

The other preservation properties of Section 2.1 are lost, however. As
was observed earlier, irreflexivity (Vz—Rxzx) becomes definable and, hence,
preservation under zigzag morphisms fails. Anti-preservation under ultrafil-
ter extensions fails, because the earlier example Vz3y(Rzy A Ryy) becomes
definable as well. (A straightforward definition uses a propositional quan-
tifier within a modal scope: OVp(Op — p). But there is a nonembedded
substitute in the form of Ip(Op AVeO(p — (Qg — q))).)

Thus, we arrive at the following

QUESTION. Can every almost-restricted first-order formula Vzyo(z) be de-
fined at some level in the modal propositional quantifier hierarchy?

Using ‘simulation’ of restricted first-order quantification by propositional
quantifiers, one may indeed handle most obvious cases. Here is one illustra-
tion of the procedure

EXAMPLE. Let ¢(z) be Jy(Rxy AVz(Ryz — (Rzz V (Rzy A Rzz)))). The
idea is to define {z},{y}, {2}, in a sense, as far as necessary (i.e. on the set
consisting of x, its R-, R*- and R3-successors) — and then to express all
desired relations between these by means of modal formulas:

Elpw(pw A VQw(((pw A qm) \4 <>(pav A Qac) \ <><>(pz A Qz) \ OQO(QDE A
qz)) = (Bpz = ¢.) AOOP: — ¢.:) AOOO(pz — ¢.))) [this
makes p, unique to the extent indicated] A Jp,(OpyA [same
uniqueness statement] A Vp.((O(py A Op.)A [same uniqueness
statement]) — (V¢.OO(p, — (O¢. — g¢2))[i-e. ‘Rzz’| V OO (p2 A
Opz A Opy)[ie. ‘Rzy A Rza'])))).

Accordingly, our conjecture is that the above question has a positive
answer.
We conclude with one further

QUESTION. Does the addition of propositional quantifiers within modal
scopes add any power of expression?
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3 OTHER INTENSIONAL NOTIONS

Modal logic is only one branch, be it a paradigmatic one, of intensional logic
in general. But also in other intensional areas, a Correspondence Theory is
possible. In some cases, the generalisation runs smoothly: existing notions
and results may be applied at once, or after only minor modification. A
case in point is tense logic, to be treated in Section 3.1. More challenging
generalisations arise when the relevant intensional semantics exhibit strong
peculiarities, diverging from the earlier modal case. Sometimes, these as-
sume the form of pre-conditions on the alternative relation; but maybe the
most important hurdle is when a restriction is proclaimed on ‘admissible as-
signments’. Both phenomena occur in conditional logic, the topic of Section
3.2. That, even under such circumstances, an interesting Correspondence
Theory may remain, is shown by the example of intuitionistic logic in Sec-
tion 3.3.

These two new features do not exhaust the possible semantic variation.
One may also move to the interplay of different kinds of intensional op-
erators, for instance, using correspondence to connect different alternative
relations.

EXAMPLE. In dynamic logic, two modal operators [J,[1* figure, which may
be provided with two alternative relations R, R*. (Recall that [@] means
‘after every successful computation of a’, while the intuitive meaning of [aJ*
is to be: ‘after any finite number of runs of a’.) Now, from a correspondence
point of view, the well-known Segerberg Azioms

O*p — Op
O*p — O0O*p
O0*(p — Op) — (Op — O"p)

define precisely the condition that
R* coincides with the transitive closure of R.

The very exoticness of this example to many readers may help to show that
Correspondence Theory is omnipresent.

No systematic developments will be given in the following sections. Their
purpose is to convey an impression of notions and themes, through mainly
illustrative examples. Indeed, here is where the reader may wish to carry
on the torch herself.

3.1 Tense Logic

Traditionally, tense-logical structures have been taken to be temporal orders
(T, <), where T' consists of the points in Time, ordered by precedence <
(‘earlier than’, ‘before’). The simplest formal language to be chosen has
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been that of Prior, adding operators G (‘it is always going to be’), H (‘it
has always been’) to some propositional base. We add F (‘future’), P
(‘past’) as derived notions. (Cf. the chapter on Basic Tense logic in volume
6 for the necessary background in tense logic.)

Of the amazing diversity of ‘ontological’ and ‘linguistic’ questions con-
cerning this temporal semantics, only a few themes will be mentioned here.
(Cf. [van Benthem, 1985] for a varied exploration.)

Ezplaining philosophical dicta. In his famous paper ‘The Unreality of Time’,
the philosopher McTaggart enunciated several temporal principles. One of
these reads [McTaggart, 1908]:

“If one of the determinations past, present and future can ever
be applied to (an event), then one of them has always been and
always will be applicable, though of course not always the same
one.”

When translated into Priorean axioms, this becomes a list:
1. Pq— H(FqV qV Pq)

2. Pq— GPq

3. q—~ HFq

4. ¢ - GPq

5. Fq— HFq

6. Fg - G(FqVqV Pq).

What do these principles mean? The answer may be obtained through the
method of substitutions (fitted to the temporal case — but such generali-
sations will be presupposed tacitly henceforth).

EXAMPLE 74.
1. defines left-connectedness: VaVy < aVz < x(y < z2Vz <yVy = z),
2. defines transitivity: VaVy < 2Vz > x y < z,
3. defines T,

4. defines T.

If G, H had been interpreted through different relations <q, <g, then (3)
and (4) would have expressed that <y is the converse relation of <g.

5. defines transitivity again: YaVy > aVz < z z < y,
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6. defines right-connectedness: VaVy > aVz > x(y < zVz <yVy = z2).

Thus, the McTaggart temporal picture is one of linear flow.

An incompleteness theorem. Simple transfer of earlier modal results es-
tablishes the seminal incompleteness result of [Thomason, 1972], in a very
simple version.

THEOREM 75. The tense logic aziomatised by

H(Hp —» p) — Hp (Léb’s Aziom)
GFp— FGp (McKinsey Aziom)

is incomplete.

Proof. Specifically, this logic holds in no frame — and yet it is not incon-
sistent.
First, as to the former statement, recall from Section 2.2 that

1. Loéb’s Axiom defines transitivity of > and well-foundedness of <.

By the former, < is transitive as well (transitivity is ‘independent of the
temporal direction’, or isotropic (cf. [van Benthem, 1985])). Thus, in this
special case, Example 51 applies, and we have

2. McKinsey’s Axiom defines atomicity: Vzdy > azVz >y z = y.

A consequence of the latter property is Vady >z y < y (cf. Example
65(4)). So, the temporal order must contain instantaneous loops ... < y <
y <y < ..., which contradicts well-foundedness. Therefore, our logic holds
in no frame.

Nevertheless, it does hold in a general frame, viz. an earlier example from
Section 2.1: (N, <,20), with

20 = {X C N | X is finite or N — X is finite}.

The reason was that refutations for the McKinsey Axiom are no longer
‘admissible’, as these involve infinite alterations. (Thomason gives a specu-
lation at this point concerning the Second Law of Thermodynamics: ‘event
patterns stabilise’.) But then, the logic cannot be inconsistent: its K-
theorems hold in all general frames where it is valid. |

Tense-logical axioms for the temporal order. In [van Benthem, 1985], the
following fundamental axioms are derived for any temporal order induced
by a comparative (in the linguistic sense) ‘earlier than’.

1. irreflexivity: Vo —z < x (‘no vortices in Time’)
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2. transitivity: YaVy > 2Vz >y z > @ (‘How”)

3. almost-connectedness: (‘arrows are comparative yard sticks’)
VaVy > aVz (z < zV z < y)

A version of the latter principle may also be found as the key axiom in
Leibniz’ relational theory of Space-Time (cf. [Winnie, 1977]).

Which tense-logical axioms correspond? From Section 2.4, we know that
(1) is undefinable, (2) yields Gp — GGp, while (3) just fails to fall under
Theorem 67. What the latter result does give is a correspondence between

VaVy > 2Vz > yVu > z(y <u Vu < 2)

and
(F(pANFq)ANFr)— (F(p\Fr)V F(r A Fg)).

Another example concerns particular temporal orders. One can never
hope to fully define such frames categorically by their tense-logical theories.
For, by the Generation Theorem, tense-logical formulas cannot distinguish
between one single, or several parallel flows of Time — which latter picture
is so familiar from contemporary science fiction. Still, if disjoint unions of
frames are disregarded, we have

THEOREM 76. (N, <) is defined categorically by the axioms

H(Hp — p) — Hp

Pp— H(FpVpV Pp)
Fp— G(FpVpV Pp)

FT

G(Gp — p) = (FGp — Gp)

The proof is omitted here.

But, e.g. the integers (Z, <) cannot be thus defined; as the contraction to
a single point remains a zigzag morphism preserving their theory. ((IV, <)
was unafflicted this time: in tense logic, zigzag morphism have two backward
relational clauses — whence, the earlier contraction fails to quality.)

Time and modality. Combined modal-tense logics with two alternative re-
lations R, < have been repeatedly proposed. For instance, in [White, 1981]
we find a logic with characteristic axioms

Gp = GGp,Fp — G(FpVpV Pp),PT (D4.3)
Pq— OPq (‘irrevocable past’).

This logic is claimed to be appropriate for an analysis of the famous Diodor-
ean ‘Master Argument’; identifying possibility with actual or future truth —
a version of what was later to become known as the principle of Plenitude:
all metaphysical possibilities are eventually realised in this World.



CORRESPONDENCE THEORY 377

Our analysis of this claim runs as follows. Gp — GGp defines transitivity
for <, the McTaggart Axiom defines right-connectedness; while PT" defines
left-succession: Yx3y y < . The additional ‘mixing postulate’ defines

Vezy(Rzy — Vz(z <z — z < y)).

CrLamM (1). Vzy(Rey — (y<zVy=zxzVz<y)).

Proof. Assume Rzy. Let z < x (by left-succession). Then z < y (‘mix’).
The conclusion follows by right-connectedness. |
CrLAM (2). Vzy(Rzy — (z <yVz=y)).

Proof. If Rxy and y < z, then y < y (‘mix’): contra irreflexivity. [ ]

The outcome is this: without ever using transitivity, but with irreflexiv-
ity (which is presupposed in White’s whole set-up), a relational condition
follows which is indeed defined by the Diodorean challenge:

Op — (FpV p).

This is only one of the many possible semantics for temporal modalities,
of course. The correspondence aspect of, e.g. the Occamist ‘branching time’
of [Burgess, 1979] remains to be explored.

Alternative temporal ontologies. Recently ‘interval structures’ have been
proposed as an alternative for the above traditional point ontology. From
the manifesto of [Humberstone, 1979], a picture emerges of triples

<[7 g) <>7

where C is inclusion among intervals, and < total precedence.

Here again, correspondences prove useful in exploring proposed princi-
ples. The language has the ordinary tense-logic operators, as well as a
modality O (‘in all subintervals’). In this notation, Humberstone’s base
logic has for its basic axioms

1. Fp —» OFp
2. FOp— Fp
3. OFOQp — (OpV Fp).

By the earlier method of substitutions, equivalents may be found illumi-
nating these:

1. defines VaVy>aVzCzxy > z,
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a property known as left monotonicity,
2. defines VaVy>aVzCy z > z,
its dual property of right monotonicity. Finally,
3. defines VaVy CaVz >y (JuCz:uCaxVIuCz:u>x),

a form of a principle known as convezity. (‘Stretches of time should be
uninterrupted’.)

Starting from the other side, one may impose basic postulates on C, <,
asking for definitions in this ‘interval tense logic’. For <, these might be
the earlier-mentioned ones, for C, a minimum seems to be the requirement
of partial order, while monotonicity (and convexity) take care of minimal
connections between <, C. This would add only two axioms to the preceding
ones, viz. S4 for inclusion. The further condition of anti-symmetry is not
definable — as may be seen by noting that the map n — n (modulo 2)
is a C-zigzag morphism sending the anti-symmetric frame (Z, <) to the
non-antisymmetric one ({0, 1}, {(0,0), (0, 1), (1,0), (1, 1)}).

Many more examples of further correspondences on top of this foundation
may be found in Chapter IL.3.2 of [van Benthem, 1985].

3.2 Conditionals

From among the teeming multitude of ‘conditional logics’, three specimens
have been included here. As no work of the present kind has been done in
this area at all, the following considerations are still very much first steps.
(Cf. the Conditional Logic chapter in volume 5 for a discussion of conditional
logics.)

Constructive implication

Perhaps the single most effective argument in favour of constructive, as op-
posed to classical implication is the natural deduction analysis. The natural
rules for —-introduction and —-elimination give us only a fragment of all
classical pure —-tautologies; axiomatised by

(A1) o= (¥ = )
(A2) (= (W = X)) = ((p = ¥) = (¢ = X))

plus the rule of modus ponens. A principle notably outside of this class is
Peirce’s Law

(=) = ) = ¢

But really, the same elegance shows up in the Henkin completeness proof.
In the usual proof, one starts from a given consistent set — and then has
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to extend this arbitrarily to just any maximally consistent one, in order to
‘break down’ implications according to the classical truth table. A canonical
model construction rather uses a unique natural model, viz. that consistent
set together with all its consistent extensions, exploiting the evident decom-
position rule

Y Fp—¢ifand only if VE' D X1 if X' F o, then X' F 1.

A perfect match arises with the following semantics. Structures are gen-
eral frames F' = (W, R,20), where R corresponds to the above inclusion
relation, and 20 consists of all R-hereditary sets of worlds. (Propositions
represent R-cumulative knowledge on this view.)

A direct study of the above logic on these frames would yield rather
clumsy conditions. One case will be exhibited, as it illustrates a variant
concept of correspondence, viz. correspondence for rules rather than azioms.

EXAMPLE 77. Modus Ponens defines the condition ‘every world belongs
to some finite R-loop’.

Proof. ‘<’: Suppose that zRx1 R ... Rz, Rz. Let V(p),V(q) be R-heredit-
ary subsets of W, such that p,p — ¢ hold at z. Then, successively, p, ¢ hold
at x1,...,Ty, and finally at z.

‘=": Suppose that z belongs to no finite R-loop. Set V (p) := the smallest
R-hereditary set containing x, V' (¢) = the R-hereditary closure of {y | Rxy}.
This verifies p,p — ¢ at x; without verifying q. |

What will be done instead is to postulate the partial order behaviour of
C: reflexivity, transitivity and antisymmetry. Finer peculiarities of (A1),
(A2) remain undetectable below this threshold.

Further restrictions on R may now be imposed by stronger axioms; e.g.
we can see why Peirce’s Law is characteristic for classical logic.

EXAMPLE 78. Peirce’s Law defines the restriction to single points:

Vzy(Rzy — y = ).

Proof. ‘«<=’: A simple calculation suffices.

‘=’: Suppose that Rxy,z #y. Set V(q) = &,V (p) = {z | Rez ANz # z}.
This makes (p — ¢) — p true at = (notice that p — ¢ is false at x itself),
while falsifying p. (By the way, that V' is admissible, i.e. that V(p) is R-
hereditary, follows from the above general assumption.) ]

But ‘intermediate’ implication axioms exist as well.
EXAMPLE 79. The following principle

(p—=>q) —p)—(((g—r)—=q) —p)
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defines a maximal length 3 for R-chains:

Vey(Rry = Vz(Ryz = (z =y Vy = 2V Yu(Rzu — z = u)))).

Proof. Here is the relevant counter-example for the argument in the ‘=’-
direction. Assume that zRyRzRu, while ¢ #y,y # 2,z #u. Set V(r) =
0,V(q) ={v| RuvAu#v}U{v|Ryv A—Rvz},V(p) ={v| Ryv Ay # v}.
The principle will be falsified at y. u

It has not been possible to find other types of intermediate example.
Hence, we conclude with a

CONJECTURE. All principles of pure constructive implication define first-
order constraints on R; viz. restrictions to some finite chain length.

Relevant implication

Of the various proposed semantics for relevance logic, here is a perspicu-
ous example from [Gabbay, 1976, Chapter 15]. Structures are now tuples
(W, R,V,0), where 0 is a special world providing a vantage point from which
to compare other worlds through the ternary relation R. Intuitively, R,bc
is to mean that b is ‘included’ in ¢, at least from the perspective of a. (One
might think of, for example, ‘a-local inclusion’: a Nb C aN¢.) No prior
conditions are imposed on this relation.

This is not to say that these are not to be found at all. For instance, it
may be shown that the mentioned local inclusion relation is characterised
by two betweenness axioms:

1. R,bc < Rpac (interchanging boundaries)
2. (Rgube A Rgae A Rgbe) — Rgce

(Le. if ¢ € [a,b],a € [d,e],b € [d, €], then ¢ € [d, e]: a form of convexity.)
The explication of implication reads as follows:

@ — 1 is true at a iff, for all b, ¢ such that R,be, if ¢ is true at
b, then ¢ is true at c.

As it stands, this definition makes no implication laws universally valid.
To obtain at least some indubitable principle, one therefore imposes a re-
striction on valuations. The most urgent case is that of p — p. On the above
bare semantics, it would correspond to Vzyz(R,yz — y = z), collapsing the
ternary relation. To avoid this, one again requires ‘cumulation’:

valuations V are only to assign subsets X of W subject to the
constraint that Vey € W(Rozy = (z € X — y € X)).
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If this constraint is to extend automatically to sets X defined by complex
implicational formulas, then a mild form of transitivity is to be imposed on
the ternary relation after all:

Veyzu((Roxy A Ryzu) = Ryzu).

Notice how this relates perspectives from different vantage points.

But then, if reasonable forms of transitivity have become respectable, we
also add (*¥)Vzyzu((Rozy A Royz) = Rozz).

Now, at last, some genuine correspondences arise — of a ‘local’ sort (cf.
Section 2.2).

EXAMPLE 80.
1. Modus Ponens defines Ry00,

2. Axiom A1 defines a curious form of ‘transitivity’:
Veyzu((Roxy A Ryzu) = Rozu).

Proof. (Case (1) only) ‘<" This direction is immediate.

‘=" Let V(p) = {0} U{x | Ro0z},V(¢q) = {x | RoOz}. By the above
principle (), both assignments are admissible. Clearly, both p and p — ¢
are true at 0, whence also ¢: i.e. Ry00. ]

Obviously, the second principle is not very plausible — but then, neither
is (A1) for a relevance logician.

A more interesting phenomenon in relevance logic, from the present point
of view, is the treatment of negation. This formerly inconspicuous notion is
now interpreted using a ‘reversal operation’ T on worlds:

- istrue at a iff ¢ is true at a™.

In this light, new combined correspondences appear, such as that between
Contraposition and the reversal law

Vay(Roxy — RoyTx™).

Correspondence Theory may be applied to any kind of semantic entity.

Counterfactual implication

Ramsey told us to evaluate conditionals as follows. Make the minimal ad-
justment of your stock of beliefs needed to accommodate the antecedent:
then see if the consequent follows. Various syntactic and semantic imple-
mentations of this view exist, of which that of [Lewis, 1973] has deservedly
won the greatest favour. A counterfactual ¢ o— ¢ is true in a world, on his
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account, if 1 is true in all worlds most similar to that world given that ¢
holds in them.

As the preceding account has some difficulties in the infinite case, let us
counsider finite models (W, C, V), where C is a ternary relation of compara-
tive similarity:

C,yz for: ‘y is closer to « than z is’.

Lewis gives three basic conditions on the relation ‘no closer’:
1. transitivity: Yeyzu((—Cryz A =Chrzu) = =Chryu),

2. connectedness: Vayz(—Cyryz V —=Cyzy),

3. egocentrism: Yoy(—Crry — © = y).

Rewriting these for ‘closer’, one finds to one’s surprise that (2) is rather
weak, being merely

2", asymmetry: Yayz(Cryz — —Cyrzy).
On the other hand, (1) becomes a strong principle
1. Vayu(Cryu — Vz(Cryz V Cpzu)),

which we knew as almost-connectedness back in Section 3.1.

From asymmetry and almost-connectedness, one may derive ordinary
transitivity and irreflexivity, whence the three ‘comparative’ axioms of Sec-
tion 3.1 emerge. These principles justify the appealing picture of ‘similarity
spheres’ around the reference world .

The tendency has been since 1973 to retain only transitivity and irreflez-
ivity as fundamental pre-conditions on C, leaving various forms of connect-
edness as optional extras. Thus, one finds an axiomatisation of this austere
minimal conditional logic in [Burgess, 1981].

The truth definition in this case may be taken to be the following:

@ o= 1 is true at w if w holds in all p-worlds C-closest to w.

Indeed, this clause verifies the following list of principles without further
ado:

po—p,

po—=q,po—=>TEpos AT,

PAqO= p,

po—=r,qu=TrEpVgor.

It is only the last one which requires transitivity:

po=qATFEDPpAgO—=T.
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Egocentrism is restored by adding the principle of Modus Ponens:

po—>q,pkq

But, the original Lewis logic contained even further principles, such as the
formidable
(pVa@o=rp)V-(lpVgosrr)Vaosr

What does it express? As it happens, it restores almost-connectedness.

Proof. First, the axiom is valid under this additional assumption — by the
above discussion.

Next, suppose almost-connectedness fails; i.e. for some xyzu we have:
Cryz,~Cyyu,-Cruz. By transitivity, it follows that =C,zu. Now, set
Vip) = {y},V(g) = {z,u},V(r) = {y,u}. Then z is g-closest among the
worlds falsifying . The two p V g-closest worlds y, u both verify r. Finally,
p fails in the pV g-closest world . Thus, Lewis’ axiom has been refuted. W

Finally, to mention an example outside of Lewis’ original logic, there is
the Stalnaker principle of ‘Conditional Excluded Middle’:

po—>qApo— g.

As was stated in the Introduction, this axiom even requires the similarity
order to be a linear one. In the present finite case, this means that the
above truth definition reduces to:

po— 1 is true at w if ¥ holds in the closest p-alternative to w.

And that was the original Stalnaker explication of conditionals.

The previous examples were all conditional axioms without nestings of
o—. This is typical for most current logics in this area. Relational conditions
matching these have invariably been found to be first-order ones. Hence, in
view of Theorem 38, here is our

CONJECTURE. All counterfactual axioms without nestings of conditionals
are first-order definable.

The reason for this restriction lies in the motivation for the present area.
Entailment conditionals such as constructive implication, or modal entail-
ment have often been proposed out of dissatisfaction with classical ‘nested
principles’, such as, say, p — (¢ — p) or Peirce’s Law. The non-nested clas-
sical fragment was not called into question. Counterfactual conditionals,
however, typically disobey classical implicational logic at the level of non-
nested inferences, such as the monotonicity rule from p — g to p A1 — gq.

Nevertheless, there are intrinsic reasons to be found inside the above
semantics for considering nested axioms after all. For, one obvious omission
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in the above list of semantic conditions was the lack of index principles
relating the perspectives of different worlds. For instance, when we read C
for a moment as relative proximity in Euclidean space, we find the following
Triangle Inequality

Veyz((Ceyz A Cray) = Cyzz).

And there are other elegant principles of this kind.

Now, it is easily seen that such index principles are just what is involved
when nested counterfactuals are evaluated: the perspective starts shifting.
Thus, it will be rewarding to have correspondences here as well. One, not
too exciting example is the following. The Absorption Law

po— (goar)F (pAgo—r
defines the index principle
Vayz(Cryz — Yu-Cyuz).

Better examples are still to be found. Indeed, e.g. the counterfactual logic of
Euclidean space, the most natural geometric representation of our similarity
pictures, is still a mystery.

3.8 Intuitionistic Logic

Constructive conditional logic is only a part of the full intuitionistic logic,
whose Kripke semantics extends the earlier constructive models. In this
section, a sketch will be given of an Intuitionistic Correspondence Theory.
(For details on intuitionistic logic, cf. van Dalen’s chapter in volume 7 of
this Handbook:.)

Kripke semantics, intermediate axioms and correspondence.

DEFINITION 81. An intuitionistic Kripke model M is a tuple (W, C, V),
where C is a partial order (‘possible growth’) on W (‘stages of knowledge’).
The valuation V' assigns C-closed subsets of W to proposition letters (‘cu-
mulation of knowledge’).

The truth definition has the following familiar pattern,
ME 1[w] for all w € W,
ME ¢ — ¢w] if M E¢[v] for all v D w such that M E ¢[v],

MEpAyYw] if ME plw] and M F ¢[w],
MEeVylw] if MEp[w]or M E ¢w].

Negation is defined as usual (= becoming ¢ — ).
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The pre-condition of partial order was motivated earlier on. But, other
choices may be defended as well. As is well-known, the above semantics was
derived from the modal one, through the Gddel translation g:

g(p) =0p

glp — ) =0(g(p) = g(¥))
gl AY) =g(e) A g(¥)

gl V) =g(e)Vg(y)
g(L)= L.

Now, there is a whole range of modal logics whose ‘intuitionistic fragment’
(through ¢ ) coincides with intuitionistic propositional logics. Amongst
others, we have the

THEOREM 82. Let X be any modal logic in the range from S4 to S4.Grz
= S4 plus the Grzegorczyk Axiom

O@(p — Op) = p) = p.

Then, for all intuitionistic formulas p,p is intuitionistically provable in
Heyting’s logic if and only if g(p) is a theorem of X.

The earlier modal correspondences yield a corresponding semantic range,
between ‘pre-orders’ (reflexive and transitive) and ‘trees’:

EXAMPLE 83. Grzegorczyk’s Axiom defines the combination of (i) reflex-
ivity, (ii) transitivity, and (iii) well-foundedness in the following sense: ‘from
no w is there an ascending chain w = wy C wy C ... with w; # w;+1(i =
1,2,...)".

Proof. This goes more or less like the closely related Axiom of Léb. By the
way, notice that (iii) implies anti-symmetry. Note also that, semantically,
Grzegorczyk’s axiom alone implies the S4-laws: syntactic derivations to
match were found around 1979 by W. J. Blok and E. Pledger. u

Thus, a case may also be made for the Tree of Knowledge as a basis for
intuitionistic semantics. Nevertheless, we shall stick to partial orders for a
start.

Above S4Grz, modal logics start producing greater g-fragments — the
so-called intermediate logics, ascending to full classical logic. Intermediate
axioms impose various restrictions on the pattern of growth for knowledge,
classical logic forcing the existence of single (‘complete’) nodes.

EXAMPLE 84. (i) Excluded Middle p V —p defines VaVy(x Cy — =z = y).

Proof.‘«<=’ is immediate.
‘=": Suppose z C y,x # y. (By anti-symmetry then y ¢ z.) Set
V(p) ={z | y C z}. This falsifies both p and —p at z. [ ]
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(ii) Weak Excluded Middle —p V —~—p defines directedness.

Proof. ‘«<’: Suppose that —p fails at x; say p holds at y O z. Then
consider any z D z. As it shares a common successor with y, and V (p) is
C-hereditary, it has a successor verifying p, whence —p fails at z. So =—p
holds at x.

‘=" Suppose that = C y, z, where y, z share no common successors. Set
V(p) = {u | z C u}. (Like above, this is a C-closed set.) Notice that
x,y € V(p). It follows that —p fails at = (consider z), but ——p fails as well
(consider y). [ |

(iii) Conditional Choice (p — q) V (¢ — p) defines connectedness.

Proof. ‘«<=’: Suppose that p — ¢ fails at x; i.e. some y O x has p true,

but ¢ false. Now consider any z D z such that ¢ holds. Either z C x, but

then, by C-heredity, ¢ is true at y (quod non), or y C z, and so, again by
C-heredity, p is true at z, i.e. ¢ — p is true at z.

‘=" Letx Cy,zwithy Zz,2Zy. Set V(p) ={u|y Cu},V(g) = {u|

z Cu}. Then p — ¢ fails at = (watch y), and ¢ — p fails as well (watch z).

|

Much more forbidding principles than these have been proposed as inter-
mediate axioms. But surprisingly, these usually turned out to be first-order
definable:

EXAMPLE 85. (i) The Stability Principle (-—p — p) — (p V —p) defines

Ve-Jyz (t CyAz CzA-Tuly CurzCu)A
AVu(Vs(u Cs = (s CtAzCt)) = -Fv(u CvAy Cw))).

(ii) The Kreisel-Putnam Axiom (-p — (¢Vr)) = ((-p = q) V (-p = 1))
defines

Ve—-yz (t CyAz CzA-yCzA-zCyA
AVu((z CuAuCyAuCz) = Ju(uCovA-y CouA-z Co))).

No matter how complex such axioms may seem at first sight, proofs of
the above assertions are quite simple exercises in ‘imagining what a counter-
example would look like’.

This recurrent experience led to the following conjecture in [van Benthem,
1976]:

All intermediate axioms express first-order constraints on growth
of knowledge.

Two conjectures refuted. The earlier hope was all but given up in the first
version of this chapter; as ‘Scott’s Rule’ turned out to be an essentially
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higher-order intermediate inference. The relevant argument was sharpened
somewhat by P. Rodenburg:

THEOREM 86. Scott’s Aziom ((m—p — p) = (pV —p)) = (-pV -—p)
defines no first-order condition on partial orders.

Proof. An elaborate Lowenheim—Skolem argument works, in the spirit of
Example 43. As an illustration of the non-triviality of our present subject
matter, it follows here.

Step I: Consider the following Kripke frame (W, C):

C
ds e e

W consists of the infinite binary tree T, together with, for each node ¢ in
T and each C-hereditary, cofinal set X in T, (i.e. the subtree with root ¢),
some point d% . C is the usual order on 7', together with

e cCd§ Cua,forallze X

o dy Cdy,if X' C X.

CLAIM. Scott’s Aziom is true in (W, C).

PRroor. First, let ¢ € T be a putative refutation. ILe., for some valuation
v,

L (—'—'p — p) — pV —pis true at c,

2. =pV ——p is false at c.
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Then consider the node d% , where X is the cofinal hereditary set
I.o(V{p) UV (=p)).

One verifies successively that ——p — pis true at d5, whereas both p, —p are
false. (E.g. if p were true at d%, then p is true throughout X, whence ——p is
true at ¢ — whereas (2) says the opposite.) Thus, we have a contradiction
with (1).

A similar argument works for the case where c is of the form d5 itself. ll

Step 2: A matter of cardinality:
CraiM. The above Kripke frame is uncountable.

PROOF. In particular, there are 2% nodes of the form d$. For, each subset
Y of N may be coded as follows, using (distinct) hereditary cofinal subsets
Y of the infinite binary tree. Let Y = {y1,y2,¥3,---}-

N
VoA
K<

y+ y+

etc. going down the extreme right branch using the extreme left branches

to code y1, Y2, Y3, - - --
For all nodes not arrived at in this way, one makes Y+ cofinal by means

of the following stipulation:
/ .\
® ys, etc.
/ \ S / \

YJr YJr ||

Step 3: Take any countable elementary substructure F' of (W, C) containing
the original binary tree.
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CrLAIM. Scott’s Aziom may be falsified in F'.

PRrROOF. Consider T as a double tree

s
X

and again 7,2 a countable sequence of ‘trees on a string’:

Let Dx,,Dx,,... be an enumeration of the points dg’;" remaining in F.
Notice that, for each 7 € N,

1. finite intersections 7; N X1 N ...N X, are still hereditary cofinal in 73,
2. the total intersection T; N {X; | j = 1,2,...} is empty.
As for the latter observation, it suffices to see that the assertion
Va3dS® with d°° ¢ =,

which holds in (W, C), can be expressed in first-order terms in (W, C); and,
hence, it has remained valid in the elementary substructure F'.
Now, define

X=X,

X1 =X1N...X; for the smallest k such that T, N XN
o NXg g TN X

Scott’s Axiom may now be falsified at %, by setting
X*=u{TinX|i=12,..},)V(p)={y|FTxr Cyx e X"}
to see this, notice, that successively,

1. each point dx, has a successor (in T;) outside of V (p),

2. (==p — p) = pV —p holds at °,
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3. pV —p fails at . [ |

We conclude that Scott’s Axiom is not first-order definable — not being
preserved under elementary subframes. ]

This complex behaviour disappears on better-behaved structures.

OBSERVATION 87. On trees, Scott’s Axiom defines the first-order condi-
tion

Ve-Jyzu (t CyAz CzAzCuAzZuA—-TJu(y CvAzCv)).

This, and other experiences of its kind, led to a revised guess in the first
version of this chapter: On trees, all intermediate axioms express first-order
constraints on descendance. A proof sketch was added, involving semantic
tableauz as ‘patterns of falsification’, to be realised in trees.

This conjecture was ‘almost’ refuted in [Rodenburg, 1982]. The semantic
tableau method runs into problems with disjunctions, and indeed we have
the following counter-example.

EXAMPLE 88. Consider the formula
¢=((=pA=gA=T) = (PAGAT)) = (=P A =g A -T)

with the simultaneous substitution of: p&q for p, p&—q for ¢, and —p&q for
r. This ¢ is not first-order definable on partial orders. On suitably tree-like
structures, it expresses the lack of ‘3-forks’ of immediate successors as well
as the absence of infinite comb-like structures.

On trees, this negative example probably still works — but there is an
instructive difficulty here. The class of trees itself has a higher-order defi-
nition; I}, to be precise. Therefore, current model-theoretic arguments for
disproving first-order definability (compactness, Lowenheim—Skolem) run
the risk of employing constructions leading outside of this class. Higher-
order preconditions are a problem for our Correspondence Theory.

To illustrate this from a purely classical angle, the reader may consider
a related problem, showing how soon the familiar methods of model theory
fail us. Finiteness is first-order undefinable on partial orders, even on trees.
It is thus definable on linear trees, however, viz. by ‘every non-initial node
has an immediate predecessor’. What about the (at most) binary trees?
This intermediate case seems to be open.

The state of the subject. The progress of science is sometimes startling.
Where the first version of this chapter (1981) had some tentative examples,
enlightenment reigns in the report [Rodenburg, 1982]. Of its many topics,
only a few will be mentioned here.

First, there are several semantic options — as indicated above, ranging
from partial orders via ‘downward linear orders’ to trees. But moreover,
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there is a legitimate choice of language. Despite appearances, it is the
disjunction clause which is now strongly constructive in intuitionistic Kripke
semantics. (‘Choose now!” Classical logic would have a more humane clause
in this setting: OO (¢ V ¥), i.e. ‘p or ¢ eventually’.) Thus, it is of interest
to consider both the full language and its V-free fragment.

The semantic tableau method mentioned above, in combination with the
above counter-examples, has led to the results in the following scheme:

All formulas Partial Downward Trees
first-order definable orders linear orders

without Vv YES YES YES
with Vv NO NO ?

But there are also matters of ‘fine structure’. For instance, Scott’s Axiom
had only one proposition letter — and for such intuitionistic formulas we
have the beautiful Rieger—Nishimura lattice. Now, Scott’s Axiom merely
seemed a fit candidate for a counter-example among the intermediate axioms
existing in the literature. Rodenburg has proved that it is also minimal
in the Rieger-Nishimura lattice with respect to non first-order definability.
(More precisely, an intuitionistic formula with one proposition letter is first-
order definable on the partial orders if and only if it is equivalent to one of
Aj,...,Ag in the lattice.)

In the counter-examples needed for the latter result, a uniform method
may be seen at work: compactness, in the form that sets of formulas which
are finitely satisfiable in finite models are also simultaneously satisfiable (in
some infinite model). Now, indeed, intuitionistic truth has a close connec-
tion with truth in finite submodels (cf. [Smorynski, 1973]). Our question is
whether this may lead to the following improvement in the mathematical
characterisation of first-order definability as given in Section 2.2.

CONJECTURE. An intuitionistic formula ¢ is first-order definable if and only
if ¢ is preserved under ultraproducts of finite frames.

Intuitionistic definability. As with the direction ‘from intensional to classi-
cal’, the case ‘from classical to intuitionistic definability’ shows many resem-
blances with our earlier modal study. For instance, a Goldblatt—Thomason
type characterisation was proved in [van Benthem, 1983] (cf. our earlier
Theorem 66):

A first-order constraint on the growth pattern is intuitionisti-
cally definable if and only if it is preserved under the formation
of generated subframes, disjoint unions, zigzag-morphic images,
filter extensions and ‘filter inversions’.
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Merely in order to illustrate this topic, which has a wider semantic sig-
nificance, here is a sketch of the representation theory in the background.

On the algebraic side, the intuitionistic language may be interpreted in
Heyting Algebras (A, 0,1, 4+, -, =) satisfying suitable postulates. Now, each
Kripke (general) frame in the above sense induces such a Heyting Algebra,
through its C-hereditary sets, provided with suitable, obvious operations.
But also conversely, a filter representation now takes Heyting Algebras to
Kripke general frames. Indeed, the earlier categorial duality (cf. Section
2.3) is again forthcoming.

The more general semantic interest of the construction is this. Despite
the superficial similarity with structures consisting of the ‘complete’ possi-
ble worlds, intuitionistic Kripke models should be regarded as patterns of
stages of partial information. This comes out quite nicely in the above rep-
resentation, where ‘worlds’ are no longer complete wltrafilters, but merely
filters (in the V-free case) or ‘splitting’ filters (for the full language). Filters
F merely satisfy the closure condition that

a,be Fiff a-b e F,

a minimal requirement on partial information. Also quite suggestively, the
‘modal’ alternative relation collapses into inclusion (‘growth’):

Vao=>b€EFVYa€ceF' :beF' if FCF'.

The present-day supporters of ‘partial models’ and ‘information semantics’
would do well to study intuitionistic logic.

Predicate logic. Again, correspondence phenomena do not stop at the fron-
tier of predicate logic. This will be illustrated by means of some intuition-
istic examples.

Kripke models M = (W,C,D,V) will now be of the usual variety; in
particular satisfying

1. Vay(x Cy — Dy C Dy) (monotonicity)

= =

2. Vay(z Cy = Vd € Dy(Vo(Pd) =1— Vy(P,d) =1) (heredity).

But other varieties, say with maps between the domains (cf. [Goldblatt,
1979]) would be suitable as well.

The ‘de re/de dicto’ interchange principles of Section 2.5 now have their
obvious counterparts in the following quartetto:

1. =3z Az — Vz-Az,
2. Va—Ar — —~JzAx,

3. dz—-Ax — —VzAz,
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4. -VxAzr — Jz—-Az.

The first three of these are universally valid on the present semantics.
That they already hide quite some complexity is shown by the Godel trans-
lation of (3):

|:|(5|$|:|—||:|A:U — |:|—||:|V.T|:|A.T),

or
O(F200-Azx — O0TxO—Ax).

No wonder that (3), e.g. does not define precisely the above monotonicity
constraint on domains — even though its modal cousin x0Ax — OFz Az
did.

The first really complex principle in Section 2.5 was the converse impli-
cation O3z Az — Jx0Ax. We shall now investigate its intuitionistic cousin
(4) — a rejected classical law.

EXAMPLE 89.

1. -VzAzx — Jz—Az implies that all domains are equal:

Vey(x Cy — Dy = D)

2. On frames with constant finite domain, -VxAxr — Jz—Az expresses
the first-order condition that

Ve (Aldde D, VVy(z Cy = Vz(x Cz — Ju(y Cuiz Cu)))).

Proof. Ad1. Suppose that z C y, but D, 3 D,. Make A true at y for all
d € D,, and similarly at all y' D y. This stipulation defines an admissible
assignment verifying -Vz Az at z, while falsifying dz—Ax.

Ad 2. First, if |D,| = 1, then trivially, -Vz Az — Jz—Az holds at z.
(Recall that all domains are equal.)

Next, if |D,| > 1, then one may argue as follows. If C is directed above
z in the above sense, then the assumption that Jz—Ax fails at = can be
exploited to show that -Vz Az must fail as well.

For, let D, = {d;,...,d;}. By the assumption, Ad; will be true at some
xz; D z (1 <i < k). Then, by successive applications of directedness, there
will be found a common successor y D x1,...,y D &), where Vx Az is true
(by heredity). This falsifies =“Vx Az at x.

If on the other hand, for some z,|D,| > 1 while C is not directed above
x, then, say, there exist 1 D z,z2 O x without common successors. Then
pick any object d € D,, making A true at x; and all its C- successors for
all objects except d; while making A true at x5 and all its C-successors for
d only. This assignment verifies =V Az at z, while falsifying dJx—-Az. N
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Thus, a classical quantifier axiom may express an interesting purely rela-
tional constraint on C.

Now, intuitionists are fond of saying that (4) is valid for finite domains:
as we have seen, however, it does impose constraints even then. They go on
to say that an extrapolation to the infinite case would be illegitimate. At
least, our principle becomes much more complex then.

THEOREM 90. —VzAx — Jz—Ax is not first-order definable in general.

Proof. Consider the following structure, in which all worlds have a common
domain N.

e o o ... — o o o ... — (a<w)
0 1 2 -1 0 +1

i.e. (W, C) has the relational pattern of

(N & (w1 ®Z),<).

CLAIM. —Vz Az — Jz—Azx is true in this frame.

PRrROOF. Starting from any world z, assume that Jz—Az fails. Then, for
each n € N, An must hold at some (ay,,k,) > z. As the cofinality of w;
exceeds w, there exists some 3 < wy such that (8,0) > (ap, kn)(n € N).
Now, by heredity, Vo Az must hold at (3,0) — whence —VzAx is false at
z. ]

Next, by the Léwenheim—Skolem theorem (as ever), this frame has count-
able elementary subframes. (Indeed, (I N, <) itself is one.) But in these, our
principle may be falsified using some countable cofinal sequence zg,xy, ...
making A0 true from xy upward, Al from z; upward, etcetera. As in earlier
arguments, the conclusion of the theorem follows. |

To finish this list of examples, it may be noted that a famous weaker
variant of the above axiom does indeed define a first-order constraint.

EXAMPLE 91. Markov’s Principle
Va(Az V —Az) A ~—JxAr — JrAx
defines the relational condition

Vz3dy Dz Vz D y Vd(Edz — Edx).

Correspondence Theory remains surprising.
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Post-Script: quantum logic.

Correspondences have not proved uniformly successful in intensional con-
texts. It seems only fair to finish with a more problematic example.

A possible worlds semantics for quantum logic was proposed in [Gold-
blatt, 1974]. Kripke frames are now regarded as sets of ‘states’ of some
physical system, provided with a relation of ‘orthogonality’ (L). From its
physical motivation, two pre-conditions follow for L, viz. irreflexivity and
symmetry. But in addition, there is also a restriction to ‘admissible ranges’
for propositions, in the sense that these sets X C W are to be orthogonally
closed:

Vee (W-X)Iye (W - X)(—zlyAVze X yLlz).

The key truth clauses are those for conjunction (interpreted as usual), and
negation, interpreted as follows:

- is true at  if x is orthogonal to all p-worlds.

This semantics validates the usual principles for quantum logic, when V is
defined in terms of —, A by the De Morgan law. But, one key principle
remains invalid, viz. the ortho-modularity aziom

pe (A V(pA-(pAQ).

This axiom has a natural motivation in the Hilbert Space semantics for
quantum logic — being the key stone in the representation of ortho-modular
lattices as subspace algebras of suitable vector spaces. Thus, a minimal
expectation would be that an enlightening correspondence is forthcoming
with some constraint on the orthogonality relation L.

In reality, no such thing has happened. Quantum logicians pass onto
general frames, into whose very definition validity of ortho-modularity has
been built in. Despite this cover-up, the fact remains that the relational
possible worlds perspective fails to do its correspondence duties here. A
set-back, or an indication that facile over-applicability of Kripke semantics
need not be feared for?

4 CONCLUSION

At a purely technical level, Correspondence Theory is an applied subject.
Classical tools have been borrowed from model theory and universal algebra.
In return to these mother disciplines, the subject offers a good range of
(counter-)examples, as well as prospects for generalisability to other suitably
chosen fragments of higher-order logic. (Cf. [van Benthem, 1983].)

From a more philosophical point of view, the whole enterprise may be
described as finding out what possible worlds semantics really does for us.
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It is one thing to make conceptual proposals, and another to really probe
their depths. The systematic study of connections between intensional and
classical perspectives upon possible world structures is an exploration of the
benefits gained by the semantics. This chapter started with the observa-
tion that ‘complex’ modal axioms turned out to express ‘simple’ classical
requirements (i.e. first-order ones). We have investigated the range and
limits of this, and related phenomena. Especially these limits have become
quite clear — and, with them, the limits of fruitful application of Kripke
semantics. This philosophical conclusion holds for all semantics, of course.
But we have earned the moral right to say it, through honest toil.
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APPENDIX (1997)

This chapter first appeared in 1984. In the meantime, Modal Logic has
evolved, but the basic structure of our original presentation remains valid.
Therefore, we have left the old text unchanged, and merely added a short
chronicle of further developments, including some answers to open ques-
tions. Generally speaking, correspondence methods have become a useful
technical tool in pure and applied Modal Logic, without forming a major re-
search area in their own right. A more principled motivation is given in van
Benthem [1996a], where correspondence analysis is viewed as a central part
in the philosophical quest for logical ‘core theories’ of semantic phenomena
in language and computation. In particular, correspondences suggest the
introduction of new many-sorted models, inducing decidable geometries of
‘states’ and ‘paths’ in the study of time and computation.
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Extensions to Other Branches of Intensional Logic

The first significant extension of correspondence theory concerns Intuitionis-
tic Logic. This involves the new feature that all valuations must be restricted
to hereditary ones, leading only to formulas whose truth is preserved upward
in the relational ordering. Rodenburg [1986] investigates this area in detail.
In particular, he shows that the implication-conjunction fragment is totally
first-order, whereas disjunctions can lead to non-first-orderness. Moreover,
he introduces semantic tableau methods for explicit description of first-
order correspondents. A final interesting feature is Rodenburg’s analysis of
intuitionistic Beth models which employ a second-order truth condition: a
disjunction is true when its disjuncts ‘bar’ all future paths. These also turn
out to be amenable to correspondence analysis, over two-sorted frames with
both points and paths. Restricted valuations also occur with the ternary
relational models of Relevant Logic. A full correspondence analysis is given
in Kurtonina [1995], which analyses the special effects of working with fea-
tures like distinguished points (actual worlds), non-standard connectives
(including a new product conjunction), as well as the much poorer non-
Boolean fragments found in categorial logics for grammatical analysis (cf.
[van Benthem, 1991; Moortgat, 1996]). Further extensions have been made
to Epistemic Logic [van der Hoek, 1992] and Partial Logics [Thijsse, 1992;
Jaspars, 1994; Huertas, 1994]. Correspondence with restricted valuations for
‘convex’ propositions has also been proposed in standard Temporal Logic (cf.
van Benthem [1983; 1986; 1995b]). But also, most axioms for richer interval-
based versions have first-order ‘Sahlqvist forms’ [Venema, 1991]. Zanardo
[1994] gives correspondences for modal-temporal models of branching space-
time. Finally, correspondence methods have turned out very useful in Alge-
braic Logic. Venema [1991], Marx and Venema [1996] present a systematic
study of relational algebra and cylindric algebra along these lines, pointing
out the Sahlqvist form of most familiar algebraic axioms, and calculating
their frame constraints on algebraic ‘atom structures’. This establishes a
much wider bridge between algebraic logic and modal logic than our earlier
duality.

Restricted Frame Classes

Correspondence behaviour may change on special frame classes. In this
chapter, we have looked at some effects of a restriction to transitive frames.
But one can also investigate non-first-order frame classes. Van Benthem
[1989a] considers finite frames, where, amongst others, the McKinsey axiom
still defines a non-first-order condition. In this area, standard compactness-
based model-theoretic techniques no longer work, and they must be replaced
by a more careful combinatorial analysis with Ehrenfeucht-Fraissé games of
model comparison. (More generally, the finite model theory of modal logic
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is still undeveloped. Rosen [1995] proves some interesting transfer results,
showing better finite model-theoretic behaviour than for first-order logic in
general.) Doets [1987] takes up modal Ehrenfeucht games in great depth,
investigating, amongst others, correspondence over countable and over well-
founded frames. (For instance, the so-called Fine Axiom turns out to be
first-order over countable frames.)

Complexity

This chapter contains some results on the (high) complexity of definabil-
ity problems for monadic ®}—formulas. It turns out much harder to deal
with the modal fragment of these. A lower bound for the complexity of
first-orderness of modal formulas has been found in Chagrova [1991]: M1 is
undecidable. It seems likely that her methods (involving reductions of Min-
sky machine computation to correspondence statements) can also be made
to yield non-arithmetical complexity. Conversely, undecidability of modal
definability for first-order statements has been proved by Wolter [1993]: that
is, P1 is undecidable, too. A more general investigation of time and space
complexity for modal logics, and the ‘jumps’ that may occur with different
operator vocabularies, may be found in Spaan [1993]. It has improved de-
cidability results for the so-called ‘subframe logics’ defined in Fine [1985],
as well as ‘transfer’ of complexity bounds from components to compounds
in poly-modal logics (cf. [Kracht and Wolter, 1991]).

Correspondence and Completeness

The main business of modal logic has been the search for completeness the-
orems over various frame classes. Correspondence theory bypasses this de-
ductive information, focussing on direct semantic definability. Nevertheless,
Kracht [1993] shows how the two enterprises can be merged, by a suitably
generalized form of modal definability. Perhaps the most powerful result
of this kind is the generalized Sahlqvist Theorem in Venema [1991], which
shows that over suitably rich modal languages (possessing matched versions
for each modality accessing all directions of its alternative relation), and al-
lowing natural additional rules of inference beyond the minimal modal logic,
the correspondence and the completeness version of the Sahlqvist Theorem
converge in their proofs. The essential observation in the argument is as
follows. In standard Henkin models for these richer systems, unlike in the
standard case, all definable subsets employed in the correspondence proof
(such as singletons or successor sets) are modally definable. Direct frame
correspondences for modal rules of inference may be found in van Benthem
[1985]. Over frames, the latter correspond to non-®1 second-order formulas,
but except for a few scattered observations in the literature, correspondence
theory for modal rules of inference remains underexplored.
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Duality with Algebraic Logic

Algebraic methods have been invaluable in finding key results on corre-
spondence, such as the Goldblatt-Thomason characterization of the modally
definable first- order formulas. Nevertheless, a purely model-theoretic re-
analysis has been given in van Benthem [1993b], revolving around saturated
models instead of descriptive frames. There is no definite preference here,
as it is precisely the interplay between algebraic and model-theoretic view-
points that remains fruitful. For new uses of correspondence methods in
algebraic logic, as well as new set-theoretic representations for Boolean al-
gebras with additional modal operators, see Marx [1995], Mikulas [1995].
For instance, Marx has an in-depth study of the duality between algebraic
amalgamation and logical interpolation. The latter methods no longer em-
ploy simple binary relations as in the Jénsson-Tarski Stone representation,
but more complex set-theoretic constructs. (Modal correspondences over
finitary relations occur in van Benthem [1992], with a finite neighbourhood
semantics for logic programs.) Developing a systematic correspondence the-
ory over such generalized relational structures then becomes the next chal-
lenge.

Eztended Modal Logics

Perhaps the most striking development in modal logic over the past ten years
has been the systematic use of more powerful formalisms, with stronger
modal operators over relational frames. A straightforward step is ‘poly-
modal logic’, which gives the same expressive power over frames with more
alternative relations. Examples of the latter trend are the indexed modali-
ties < i > of propositional dynamic logic (cf. [Harel, 1984; Goldblatt, 1987;
Harel et al., 1998]), or n-ary modalities accessing (n + 1)-ary alternative
relations, as happens in relevant or categorial logics (cf. [Dunn, 2001;
Kurtonina, 1995]). The correspondence theory of such extensions is straight-
forward, whereas there are interesting issues of ‘transfer’ for axiomatic com-
pleteness, finite model property, or computational complexity: cf. [Spaan,
1993; Fine and Schurz, 1996]. Transfer may depend very much on the con-
nections between the various modalities. A case in point is modal predicate
logic, whose theory has rapidly expanded over the past decade. Van Ben-
them [1993a] surveys some striking contributions by Ghilardi and Shehtman.

More interesting, from a correspondence point of view, is an increase in
expressive power over the original binary relational frames. For temporal
logic, the latter research line was initiated by Kamp’s Theorem on functional
completeness of the {Since, Until} language over continuous linear orders.
In modal logic, the first systematic work emanated from the ‘Sofia School’:
cf., e.g., [Gargov and Passy, 1990; Goranko, 1990], Vakarelov [1991; 1996].
These papers study addition of various new operators, such as a universal
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modality ranging over all worlds (relationally accessible or not), or various
operations on poly-modalities, such as ‘program intersection’. New frame
constructions were invented to deal with these, such as ‘duplication’. De
Rijke [1992] investigates the ‘difference modality’ (“in at least one differ-
ent world”), which has turned out to be useful and yet tractable. A more
general program for extending modal logic (viewed as a general ‘theory
of information’) occurs in van Benthem [1990] but the technical perspec-
tive is also clear in the pioneering paper Gabbay [1981]. Finally, de Rijke
[1993] is an extensive model-theoretic investigation of definability and cor-
respondence for extended modal languages, producing generalized versions
for many results in this chapter (such as frame preservation theorems or ef-
fective correspondence algorithms). Still another angle on all this will follow
below.

Alternatives: Direct Frame Theory

One may also analyze the frame content of modal logics more directly in
terms of mathematical properties of graphs. Fine [1985] is a pioneer of
this trend, emphasizing the good behaviour of ‘subframe logics’ which are
complete for frame classes that are closed under taking subframes. (Such
logics make no ‘existential commitments’.) First-orderness is not a promi-
nent consideration here: e.g., Lob’s Axiom defines a simple subframe logic.
Zakharyashev [1992; 1995] is a sophisticated study of modal logic from this
viewpoint. Nevertheless, his direct classification of modal logics into three
stages of frame preservation behaviour may again be reflected in second-
order syntax and hence result in a form of correspondence theory at that
higher level. A forthcoming monograph by Chagrov and Zakharyashev pro-
vides much more background, inluding references to earlier Russian sources
(going back to Jankov in the sixties). Another excellent source, for many
of the topics listed here, is the survey chapter [Chagrov et al., 1996].

Models, Bisimulation and Invariance

Another noticeable shift of emphasis in the current literature leads away
from frames to models as the primary objects of semantic interest. This
move makes all of basic modal logic first-order, via our standard transla-
tion. The main questions then address what makes modal logics special
as subspecies of first-order logic. In particular, what is the basic semantic
invariance for basic modal logic, which should play a role like Ehrenfeucht
games or ‘partial isomorphism’ in first-order model theory? A key result
here is the semantic characterization of the modal fragment of first-order
logic (modulo logical equivalence) as precisely those formulas in one free
variable which are invariant for generated submodels and our ‘zigzag re-
lations’ [van Benthem, 1976]. In modern jargon, this says that these for-
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mulas are precisely the ones invariant for bisimulation. The latter link
was also developed in Hennessy & Milner [1985], which matches modal for-
malisms in different strengths with coarser or finer process equivalences.
For up-to-date expositions of the resulting analogies between modal logics
and computational process theories, cf. [van Benthem and Bergstra, 1995;
van Benthem et al., 1994], as well as various contributions in the volume
[Ponse et al., 1995]. This development has led to a new look at connec-
tions between modal formalisms and first-order logic. For instance, there
are striking analogies between the meta-theories of both logics, whose pre-
cise extent and explanation is explored in de Rijke [1993], and Andréka,
van Benthem & Németi [1998]. In particular, the latter paper investigates
the hierarchy of finite-variable fragments for first-order logic as a candi-
date for a general account of modal logic (cf. [Gabbay, 1981; van Benthem,
1991] for this view). Typically, modal formulas need only two variables over
worlds in their standard translation, temporal formulas only three, and so
on. Finite-variable fragments are natural, and may be considered as func-
tionally complete modal formalisms (cf. the insightful game-based analysis
of Kamp’s Theorem in Immerman & Kozen [1987]). Nevertheless, Andréka,
van Benthem & Németi [1998] also turn up an array of negative proper-
ties, and eventually propose another classification for modal languages in
terms of restricting atoms for bounded quantifiers. The resulting ‘guarded
fragments’ can be analyzed much like the basic modal language, includ-
ing analogous bisimulation techniques. In particular, these bisimulations
now relate finite sequences of objects instead of single worlds, as in many-
dimensional modal logics (cf. [Marx and Venema, 1996] for the theory of such
formalisms). Their correspondence theory, taken with respect to natural
generalized frame conditions for arbitrary first-order relations, still remains
to be understood. [van Benthem, 1996b] is a general study of dynamic log-
ics for computation and cognition, pursued via these techniques. One of its
central concerns is expressive completeness of modal process logics vis-a-vis
process equivalences like bisimulation.

Connections with Higher-Order Logic and Set Theory

From first-order correspondence, forays can be made into higher-order de-
finability. Sometimes, this move is suggested by the modal language itself.
E.g., in propositional dynamic logic, program iteration naturally translates
into a countable disjunction of finite repetitions. Thus, translation into
the infinitary standard language L,,,, seems the evident route. Infinitary
frame correspondences were briefly considered in van Benthem [1983], and
their modal model theory is explored in [de Rijke, 1993; van Benthem and
Bergstra, 1995]. Of course, one may restore a balance here, and consider
an infinitary modal counterpart of L, allowing arbitrary set conjunctions
and disjunctions, which would be the most natural formalism invariant for
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bisimulation. Barwise and Moss [1995] take this line, linking up truth on
models and correspondence on frames. (Another perspective on infinitary
modal logic is given in [Barwise and van Benthem, 1996].) Among a number
of original results, they prove that a modal formula has all its infinitary sub-
stitution instances true in a model M iff it is true (in the usual second-order
sense) on the frame collapse of that model taken with respect to the maxi-
mal bisimulation over M. As a direct consequence, frame correspondences
for modal formulas imply model correspondences in infinitary modal logic.
(The issue of good converses is still open). The original motivation for this
type of investigation was that it relates modal logics to (non-well-founded)
set theories. Linkages of this kind are further explored in d’Agostino [1995]
which also raises the issue of more complex correspondences for modal ax-
ioms. For instance, she shows that the second-order Lob Axiom holds in a
frame iff that frame is transitive while its collapse with respect to the max-
imal bisimulation is irreflexive. More generally, then, the interesting point
about many correspondences is not that they must always reduce modal
axioms to first-order ones, but rather the fact that they reformulate modal
principles to any more perspicuous classical formalism. Another natural
candidate of the latter kind is second-order monadic ®} logic (cf. [Doets
and van Benthem, 2001]). In particular, Doets [1989] shows how modal com-
pleteness theorems can sometimes be extended to cover this whole language.
Moreover, many effective translation methods (see below) turn out to work
for this broader language anyway. Finally, van Benthem [1989b] points out
how first-order correspondence theory, suitably restated for second-order
®! formulas, is a natural generalization which handles so-called computable
forms of Circumscription in the Al literature (which involves reasoning from
a second-order ‘predicate-minimal’ closure for first-order axioms; cf. [Lif-
shitz, 1985]).

Translations

Correspondence has become a conspicuous theme in the computational lit-
erature on theorem proving with intensional logics. A number of algorithms
have been proposed, some of them rediscoveries of the Substitution Method
and its ilk (cf. [Simmons, 1994]) and even much older results in second-
order logic [Doherty, Lukasiewicz and Szalas, 1994], others working with new
‘functional® translations better geared towards complete standard Skolem-
ization and Resolution (cf. Ohlbach [1991; 1993]). One interesting feature
of some of these algorithms is that they also produce useful equivalents for
second-order modal principles. For instance, the typically non-first-order
McKinsey Axiom gets a natural equivalent quantifying over both individ-
ual worlds and Skolem functions witnessing its (non-Sahlqvist) antecedent.
Finally, we mention the use of set-theoretic interpretations of the standard
translation in d’Agostino, van Benthem, Montanari & Policriti [1995], which
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read the universal modality as describing a power set. This translation also
works with an explicit axiom system for general frames plus one axiom stat-
ing that the relational successors of any point in a frame form a set. This
shift in perspective reduces theorem proving in modal logics to deduction in
weak computational set theories. Many of these translations can also be for-
mulated so as to deal with extended modal formalisms or larger fragments
of second-order logic.

Designing New Logics

Finally, correspondence techniques have been used in ‘deconstructing’ stan-
dard logics and designing new ones. For instance, one can interpret first-
order predicate logic over possible worlds models (‘labelled transition sys-
tems’) with assignments replaced by abstract states connected by abstract
relations R, modelling variable shifts. Then, standard predicate-logical
validities turn out to express interesting frame properties, constraining pos-
sible computations, e.g., by Church-Rosser confluence properties (which
match the first-order axiom JyVe¢ — VaIy¢). Moreover, one may want
to impose certain restrictions on admissible valuations, such as ‘hered-
ity constraints’ for axioms Py — VxPy or Py — [y/z]Px (van Benthem
[1997; 1996b] have details). These abstract models reflect certain dependen-
cies between admissible object values that may exist for individual variables.
This theme is investigated more explicitly in [Alechina and van Benthem,
1993; Alechina, 1995], which design new generalized quantifier logics over
‘dependence models’, first proposed by Michiel van Lambalgen — where
again the force of possible axioms is measured at least initially in terms of
(Sahlqvist) frame correspondences. Related modal approaches to first-order
logic are found in [Venema, 1991; Marx, 1995].

ADDED IN PRINT (1999)

Handbooks appear according to their own rhythms. Two years have elapsed
since the updates were written for this Appendix. Here are a few further
items of interest. D’Agostino [1998] contains new material on definability in
infinitary modal logics, a topic also pursued further by Barwise and Moss.
Meyer Viol [1995] has examples of correspondence for intuitionistic predi-
cate logic showing how intermediate axioms can be quite surprising in their
content. Hollenberg [1998] is an extensive study of definability, invariance
and safety in modal process languages. Gerbrandy [1998] has interesting
theorems on modal definability and bisimulation invariance in a setting of
non-well-founded set theory, with applications to dynamic logic of epis-
temic updates. Gradel [1999] is an excellent survey of progress made on the
program of decidable guarded first-order languages extending modal logic,
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including also fixed-point operators. Van Benthem [1998] is an up-to-date
survey of the definability/correspondence paradigm, and the corresponding
‘tandem approach’ to modal and classical logics. Finally, two modern texts
on modal logic that take correspondence seriously are Blackburn, de Rijke
and Venema [1999] and van Benthem [1999].
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