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CORRESPONDENCE THEORY

1 INTRODUCTION TO THE SUBJECT

Corresponden
es

When possible worlds semanti
s arrived around 1960, one of its most 
harm-

ing features was the dis
overy of simple 
onne
tions between existing inten-

sional axioms and ordinary properties of the alternative relation among

worlds. De
ades of synta
ti
 labour had produ
ed a jungle of intensional

axiomati
 theories, for whi
h a perspi
uous semanti
 setting now be
ame

available. For instan
e, typi
al 
ompleteness theorems appeared su
h as the

following:

A modal formula is a theorem of S4 if and only if it is true in

all re
exive, transitive Kripke frames.

Indeed, S4 may also be shown to be the modal logi
 of the partial orders;

whi
h mat
hes the most famous modal logi
 with perhaps the most basi


type of 
lassi
al relational stru
ture. Su
h mat
hings extend to logi
s higher

up in the S4-spe
trum. For instan
e, S4.2 with its additional axiom

��p! ��p

is 
omplete with respe
t to those frames whi
h are re
exive, transitive and

dire
ted, or 
on
uent:

8xyz((Rxy ^Rxz)! 9u(Ryu ^Rzu))

Again, the latter 
ondition is a `diamond property' of 
lassi
al fame.

Completeness results su
h as these have inspired a 
ourishing area of

intensional Completeness Theory, witness the 
lassi


[

Segerberg, 1971

℄

. It

took modal logi
ians some time, however, to realise that there are also dire
t

semanti
 equivalen
es involved here, having nothing to do with dedu
tion in

modal logi
s. Indeed, the whole present Corresponden
e Theory arose out

of simple observations su
h as the following, made in the early seventies.

EXAMPLE 1. The T -axiom �p ! p is true in a Kripke frame hW;Ri if

and only if R is re
exive.

Here, `true in a frame' means true in all worlds, under all assignments to

the proposition letters.



326 JOHAN VAN BENTHEM

Proof. `)': Consider any w 2 W . If �p ! p is true in hW;Ri, then, in

parti
ular, it is true at w under the assignment V with

V (p) = fv 2W j Rwvg:

Thus, �p will be at w true by de�nition | and, hen
e, also p: i.e. Rww.

`(': By re
exivity, truth at all R-alternatives implies a
tual truth. �

EXAMPLE 2. The S4-axiom �p! ��p is equivalent to transitivity.

Proof. By an analogous argument. �

EXAMPLE 3. The S4.2-axiom ��p! ��p de�nes dire
tedness.

Proof. `)': Consider arbitrary w; v; u 2 W su
h that Rwv;Rwu. Let the

assignment V have

V (p) = fs 2W j Rvsg:

Immediately, this gives truth of �p at v. Therefore, ��p is true at w,

when
e ��p must hold as well. It follows that �p is true at u; i.e. u has

some R-su

essor in V (p) | when
e v; u share a 
ommon R-su

essor.

`(': If ��p is true at W , say be
ause of some v with Rwv verifying �p,

then �p will be true at all R-su

essors of w. For, all of these share at least

one su

essor with v, by dire
tedness. �

Not all 
orresponden
es are equally simple. For instan
e, S4.2 has a


ompanion logi
 S4.1 obtained by enri
hing S4 with the `M
Kinsey Axiom'

��p! ��p. This 
onverse of the S4.2 axiom turns out to be mu
h more


omplex. A well-known 
ompleteness theorem says that S4.1 axiomatises

the modal theory of those Kripke frames whi
h are re
exive, transitive as

well as atomi
:

8x9y(Rxy ^ 8z(Ryz! z = y)):

(Noti
e that we need identity here, in addition to the predi
ate 
onstant R.)

We shall see later in Se
tion 2.2 that the S4.1 axioms together (just) manage

to de�ne the above threefold relational 
ondition, but that the M
Kinsey

Axiom does not de�ne atomi
ity on its own (it is weaker). Indeed, this

simple modal prin
iple does not possess a �rst-order relational equivalent

at all | a dis
overy made independently by several people around 1975.

Modal Formulas as Conditions on the Alternative Relation

The general pi
ture emerging here is that of modal axioms expressing 
ertain

`
lassi
al' 
onstraints on the alternative relation in frames where they are

valid. With hindsight, this observation is hardly surprising. After all, given
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some valuation, the 
lauses of the basi
 Kripke truth de�nition amount to a

translation from modal formulas into 
lassi
al ones involving R. Thus, e.g.,

�p! p be
omes 8y(Rxy ! Py)! Px

�p! ��p be
omes 8y(Rxy ! Py)!

! 8y(Rxy ! 8z(Ryz! Pz));

while the M
Kinsey Axiom ��p! ��p be
omes

8y(Rxy ! 9z(Ryz ^ Pz))! 9y(Rxy ^ 8z(Ryz! Pz)):

Here the parameter `x' refers to the 
urrent world of evaluation, while unary

predi
ate 
onstants P (Q; : : :) denote the sets of worlds where the 
orre-

sponding proposition letter p (q; : : :) holds.

Let us pause, to realise how, by this simple observation alone, many estab-

lished results about 
lassi
al predi
ate logi
 
an be transferred straightaway

to modal logi
. For instan
e, for Kripke frames plus a �xed assignment

(the modal `models' of Se
tion 2.1), Compa
tness and L�owenheim{Skolem

results are immediate. If, e.g. a set of modal formulas is �nitely satis�able in

Kripke models (given suitable assignments), then its 
lassi
al trans
ription

will be �nitely satis�ed too. Hen
e, by ordinary 
ompa
tness, the latter set

is simultaneously satis�ed in some stru
ture hW;R;P;Q; : : :i: whi
h forms

a Kripke frame 
um assignment verifying the original set.

But, this perspe
tive is not quite the one we need.

In the evaluation of modal formulas a

ording to the above truth def-

inition, two fa
tors are intermingled: the relational pattern of the worlds

and the parti
ular `fa
ts', i.e. the assignment. But the latter | the par-

ti
ular denotations of 
onstants P;Q; : : : | is not relevant to the role of

modal formulas as relational 
onstraints. Indeed, these may even obs
ure

the issue. When, e.g. V (p) equals W; �p ! p holds in all worlds | but

this observation is 
ompletely uninformative about the true 
ontent of this

axiom (viz. re
exivity).

In order to arrive at the proper perspe
tive, one simply abstra
ts from

the e�e
ts of parti
ular assignments, by means of a universal quanti�
ation

over the unary predi
ates in the pre
eding translation. Thus, for instan
e,

�(p _ q)! (�p _�q)

now be
omes

8P8Q (8y(Rxy ! (Py _Qy))! (8y(Rxy ! Py)_

_8y(Rxy ! Qy))):

Noti
e that modal formulas now get se
ond-order trans
riptions, as opposed

to the earlier �rst-order ones.
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The parameter `x' has remained: the present relational 
onditions are still

`lo
al' in some a
tual world. A `global' 
ondition is obtained by perform-

ing one more universal quanti�
ation, this time with respe
t to this world

parameter. The distin
tion is not without importan
e. The lo
al version is

more suitable for the original Kripke stru
tures hW;R;w

0

i, in whi
h some

`a
tual world' w

0

�gured prominently, as well as for `non- normal' modal se-

manti
s, in whi
h 
ertain worlds are distinguished from others. The global

reading is the more 
ommon one, however, whi
h will be predominant in

the sequel.

Again, the very point of view embodied in the above translation is sig-

ni�
ant | even though some of the earlier transfer phenomena are lost.

What is lost, for instan
e, are most useful forms of 
ompa
tness, as well as

the L�owenheim{Skolem property. There is no automati
 guarantee through

se
ond-order logi
 that, if a modal formula is true in some un
ountable

Kripke frame (i.e. under all valuations) it will be true in its 
ountable

elementary subframes (again, under all valuations). Still, this very phe-

nomenon will be used to drive a wedge between `essentially �rst-order' and

`essentially se
ond-order' modal axioms in Se
tion 2.2. Moreover, not all

is lost. The above trans
riptions are very simple se
ond-order formulas,

viz. so-
alled �

1

1

-senten
es, with all se
ond-order quanti�ers o

urring in

a universal pre�x in front of a �rst-order matrix. From 
lassi
al logi
, we

still now a few things about �

1

1

-senten
es, that will turn out useful. (Cf.

the 
hapters on Higher Order Logi
 and Algorithms in Volume 1 of this

Handbook for ba
kground.)

One su
h thing is involved in the following obvious question. In the light

of earlier examples of 
orresponden
e, the present se
ond-order trans
rip-

tions are ex
eedingly 
umbersome. Compare, e.g. for the T -axiom �p! p,

8xRxx with 8x8P (8y(Rxy! Py)! Px):

Yet it was the dis
overy of the former simple �rst-order equivalents that

motivated the above investigation in the �rst pla
e. Now for some modal

formulas, the se
ond-order 
omplexity may be unavoidable | witness the

example of M
Kinsey's Axiom. But at least, there arises an obvious basi


Query: Whi
h modal formulas de�ne �rst- order relational 
onditions |

and how do they manage it?

By the above perspe
tive, 
lassi
al sour
es provide one immediate answer.

A �

1

1

-senten
e is �rst-order de�nable if and only if it is preserved under the

formation of ultraprodu
ts, a fundamental 
onstru
tion in 
lassi
al model

theory. Through the above trans
ription, the same 
riterion applies to

modal formulas. (The te
hni
al ins and outs of this point, as well as of

related ones in this introdu
tion, are postponed until the relevant se
tions:

Se
tions 2.1 and 2.2 in this 
ase.)
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Modal Corresponden
e Theory

The pre
eding query has been the starting point for a systemati
 study of


lassi
al de�nability of modal formulas, when viewed as relational prin
iples.

Now the mentioned ultraprodu
t 
hara
terisation is a very abstra
t, global

one, rather removed from the a
tual business of �nding 
orresponden
es.

Also histori
ally, it is a rather late development | and we shall therefore

turn to more 
on
rete themes, as they evolved.

At �rst sight, proving �rst-order de�nability seems a simple matter: just

�nd an equivalent, and show that it works. Still, there is the question

how mu
h system there is to this a
tivity. For instan
e, Examples 1{3

exhibited regularities in their proofs. And indeed, 
loser inspe
tion reveals

that re
exivity, transitivity and dire
tedness may be obtained from the

se
ond-order trans
riptions of the S4.2-axioms through 
ertain substitutions

of `minimal' de�nable assignments.

The heuristi
s behind this method is simply this. If, e.g. �p! p is true

at x, then the most `parsimonious' way of verifying the ante
edent (i.e. by

having V (p) = fy j Rxyg) 
arries maximal information about the whole

impli
ation. This essentially, is why the substitution of Rxu for Pu in

8x8P (8y(Rxy! Py)! Px)

yields the equivalent formula

8x(8y(Rxy ! Rxy)! Rxx):

By the universal validity of the ante
edent, the latter may be simpli�ed to

the usual statement of re
exivity. A 
ompletely analogous line of thought

produ
es transitivity from the trans
ription of �p ! ��p. Some 
om-

pli
ations arise with ante
edents as in ��p ! ��p; but the general idea

remains the same. In this way, one dis
overs a large re
ursive 
lass of modal

formulas with e�e
tively obtainable �rst-order equivalents.

Nevertheless, this method of substitutions also has de�nite limits. No-

tably, it does not work for all �rst-order de�nable modal formulas | as

will be proved in Se
tion 2.2 for the 
ase of S4.1. In 
onne
tion with this

matter, the exa
t 
ombinatorial 
omplexity of the set of �rst-order de�nable

modal formulas is still unknown | but there are reasons for fearing that

it is not even arithmeti
ally de�nable (let alone, re
ursive or re
ursively

enumerable).

Disproving �rst-order de�nability is a more diÆ
ult matter. Indeed, how

should one go about this at all? The 
ommon pattern in all examples in the

literature 
omes to this: �nd some semanti
 preservation property of �rst-

order senten
es, whi
h is la
ked by the modal formula under 
onsideration.

Thus, e.g. the earliest published 
ontribution by the present author was an

example showing how the M
Kinsey Axiom sins against the L�owenheim{
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Skolem theorem. It holds in a 
ertain un
ountable Kripke frame (to be

presented in Se
tion 2.2.) without holding in any of a 
ertain group of its


ountable elementary subframes. A 
lassi
al example of this phenomenon

o

urs when Dedekind Continuity (itself a �

1

1

-property) is added to the

�rst-order ordering theory of the rationals. The resulting �

1

1

-senten
e has

un
ountable models (notably, the reals); but, it even la
ks 
ountable models

altogether.

The modal examples of `essentially se
ond-order' axioms to be found in

Se
tion 2.2 will serve to delimit the range of the above method of substi-

tutions. As so often, the M
Kinsey Axiom again provides an illuminating

example. The above heuristi
s of `minimal veri�
ation' typi
ally fails for

ante
edents su
h as ��p, expressing some dependen
y | and �rst-order

failure is immediate.

Besides the modal half of the story, so to speak, there also exists the

opposite dire
tion, looking from 
lassi
al formulas to modal ones. Again,

this inspires a basi


Query. Whi
h �rst-order relational 
onditions are modally de�nable?

The `positive' side of this matter again 
on
erns the establishing of valid

equivalen
es. Thus, for instan
e, how does one �nd a modal de�nition for

su
h a 
lassi
al favourite as 
onne
tedness

8xyz((Rxy ^Rxz)! (Ryz _Rzy)))?

This time, the heuristi
s 
onsists in imagining a situation where the property

fails, together with a way of `maximally exploiting' this failure through

modal formulas. In the above parti
ular 
ase, supposing that Rxy;Rxz;

:Ryz;:Rzy, one sets �p true at y (with p false at z) and �q true at z

(with q false at y). This has the e�e
t of verifying the following formula at

x:

�(�p ^ :q) ^ �(�q ^ :p):

Now, the original property itself will 
orrespond to the negation of this

modal `failure des
ription', i.e.

:(�(�p ^ :q) ^ �(�q ^ :p)):

By some familiar equivalen
e transformations, this be
omes

�(�p! q) _�(�q ! p);

a prin
iple known from the literature as Gea
h's Axiom.

It remains to be shown, of 
ourse, that 
onversely, failure of this axiom

implies failure of 
onne
tedness; but this is immediate. In order to 
ross-


he
k, one might also apply the earlier method of substitutions to (some
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suitable transform of) the Gea
h Axiom: and indeed, 
onne
tedness will

ensue.

The `negative' side again 
onsists of disproofs. Here as well, these turn out

to possess a parti
ular interest | as we are for
ed to 
ontemplate `typi
al

behaviour' of modal formulas. A standard example is the following. Al-

though re
exivity was modally de�nable, irre
exivity turns out intra
table:

8x:Rxx. But, failed attempts are no de�nite refutations. What we need

is some semanti
 property of modal formulas, as relational 
onditions on

Kripke frames, whi
h is not shared by this parti
ular �rst-order senten
e.

At this point, the modal model theory of Se
tion 2.1 
omes in. There,

one �nds that the following mappings play a fundamental role in the trans-

mission of modal truth between Kripke frames: a p-morphism is a fun
tion

f from a frame hW

;

R

1

i to a frame hW

2

; R

2

i whi
h

1. preserves R

1

, and

2. `almost' preserves R

2

, in the following sense:

`If R

2

f(w)v, then there exists some u 2 W

1

su
h that (a) R

1

wu and

(b) f(u) = v'.

Under di�erent names, this notion has had a 
areer in standard logi
 already,

e.g. the `Mostowski 
ollapse' in set theory is of this kind.

For the purposes of the present example, it need only be re
orded that

subje
tive p-morphisms preserve truth of modal formulas on Kripke frames.

But then, irre
exivity may be dismissed: it holds in the frame of the natural

numbers with the usual order, but it fails in its p-morphi
 image (!) arising

from the 
ontra
tion to one single re
exive point.

This example will have given a taste of the a
tual �eld-work in this area

of Corresponden
e Theory. There also arises the more general question,

of 
ourse, whether some 
ombination of modally valid preservation require-

ments manages to 
hara
terise all and only the modally de�nable �rst-order

senten
es. This is indeed the 
ase, and an elegant result to this e�e
t |

involving p-morphisms as well as other basi
 
onstru
tions, will be proved

in Se
tion 2.4.

The pre
eding survey by no means exhausts the range of questions that


an be investigated in Corresponden
e Theory | but it does 
onvey the

spirit.

Corresponden
e and Completeness

Three pillars of wisdom support the edi�
e of Modal Logi
. There is the

ubiquitous Completeness Theory, the present Corresponden
e, or, more gen-

erally, De�nability Theory | and �nally, the Duality Theory between Kripke

frames and `modal algebras' (
f. Se
tion 2.3 below) has be
ome an area of its

own. Conne
tions between the latter two will be
ome apparent as Se
tion
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2 unfolds | in parti
ular, the above-mentioned 
hara
terisation of modally

de�nable �rst-order senten
es will be obtained as a 
onsequen
e of the 
las-

si
 Birkho� Theorem of Universal Algebra, applied to modal algebra.

The relation between 
orresponden
e and 
ompleteness is less vital to

subsequent developments. Moreover, it turns out to be rather 
omplex |

and indeed, only partially understood. Nevertheless, for those readers who

are familiar with the basi
 notions of Completeness Theory, the following

sket
h of issues may serve to bring questions of 
orresponden
e 
loser to

traditional 
on
erns.

The early 
ompleteness theorems in modal logi
 were brought under one

heading in

[

Segerberg, 1971

℄

: `modal logi
 L is determined by a 
lass R of

Kripke frames', i.e. L axiomatises the modal theory of R (on the basis of

the minimal logi
 K).

As before, two perspe
tives emerge here. First, one may start with a

given 
lass R, asking for a re
ursive axiomatisation L of its modal theory.

In general, there is no guarantee for su

ess here; but there is one helpful

observation involving �rst-order de�nability.

FACT 4. If R is elementary (i.e. de�ned by a single �rst-order senten
e),

then its modal theory is re
ursively axiomatisable.

Proof. Let � = �(R;=) de�ne R. A modal formula ' belongs to the

theory of R if and only if it holds in all frames in R. This may be restated

as follows:

� � 8x8P

1

: : :8P

n

�(');

where �(') is the earlier �rst-order translation of ', while p

1

; : : : ; p

n

are

the proposition letters o

urring in the latter formula. Now, the predi
ate

variables P

1

; : : : ; P

n

do not o

ur in the �rst-order senten
e �, and, there-

fore the above impli
ation is equivalent to � � 8x�('). But this is an

ordinary �rst-order impli
ation. So, sin
e the latter notion is re
ursively

axiomatisable, the same must be true for membership of the modal theory

of R.

Axiomatisable, yes, but axiomatisable on the basis of the minimal modal

logi
 K? Even this is true, 
hoosing a suitable re
ursive set of axioms as in

the proof of Craig's Theorem in 
lassi
al logi
 and noti
ing that K 
ontains

modus ponens (whi
h is all that is needed). �

Thus, in retrospe
t, the earlier 
ompleteness theorems for re
exive, transi-

tive orders (and other elementary 
lasses) were quite predi
table.

The dire
tion from 
lasses of frames to logi
s is not the 
urrent one in

modal logi
; being more appropriate to areas su
h as tense logi
, where

temporal stru
tures often pre
ede temporal theories. Usually, one already

possesses a 
ertain logi
 L, asking for a 
lassR of Kripke frames with respe
t

to whi
h it is 
omplete. (Noti
e that, if any 
lass R suÆ
es, then the whole


lass of Kripke frames validating L will.)
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Nowadays, we know that not all modal logi
s are in fa
t 
omplete in

the above sense, 
ontrary to earlier expe
tations. This is the 
ontent of

the 
elebrated `modal in
ompleteness theorems' in

[

Fine, 1974; Thomason,

1974

℄

. But it has been hoped that, at least, all �rst-order de�nable axiom

sets are 
omplete. (Indeed, a defe
tive proof to this e�e
t has 
ir
ulated.)

Even this more modest expe
tation was frustrated in

[

van Benthem, 1978

℄

:

FACT 5. The modal logi
 L with 
hara
teristi
 axioms

�p! p

��p! ��p

(�p ^�(p! �p))! p

is �rst-order de�nable: its frames are just those satisfying the 
ondition

8xy(Rxy $ x = y):

But the 
hara
teristi
 axiom of the modal theory of the latter 
lass of frames,

viz. �p$ p, is not minimally derivable from L.

The relevant 
orresponden
e will be proved in Se
tion 2.2. For the mo-

ment, it may be noti
ed that the third axiom de�nes a notion of `safe return':

from any R-su

essor of a world x, one 
an always return to x by following

some �nite R-
hain of R-su

essors of x.

The relevant argument is highly nontrivial, far outside the range of our

earlier method of substitutions. Nevertheless, even the latter has its rele-

van
e for 
ompleteness theory, as we shall see presently.

What the modal in
ompleteness theorems show is that the minimal modal

logi
 K is to weak to produ
e all modally valid inferen
es. But of 
ourse,

there may be stronger reasonable `base logi
s'. One parti
ular example

arises from the method of substitutions. For instan
e, in proving the equiv-

alen
e of substitution instan
es with more 
urrent �rst-order 
onditions,

one uses an extremely natural se
ond-order logi
 K

2

with the following

dedu
tive apparatus:

Some �rst-order base 
omplete with respe
t to modus ponens,

similar axioms for the se
ond-order quanti�ers;

with the following form of `�rst-order instantiation' allowed for �rst-order

formulas  

8x'(X)! '( ):

Through the earlier se
ond-order trans
ription, K

2

may be used as a modal

base logi
.

Here is an example of some fame. In the metamathemati
s of arithmeti-


al provability (
f.

[

Boolos, 1979

℄

or Smory�nski's in a later volume of this

Handbook), the following two modal axioms are basi
:

�p! ��p; �(�p! p)! �p (`L�ob's Axiom'):
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The semanti
 import of the latter will be established in Se
tion 2.2: it

holds in those Kripke frames whose alternative relation is transitive, while

possessing a well-founded 
onverse. Moreover, transitivity is K

2

-derivable

from L�ob's Axiom, by the substitution of

Rxu ^ 8y(Ruy! Rxy) for Pu:

(The ante
edent be
omes universally valid, while the 
onsequent expresses

transitivity.) An advantage of K

2

over K? No, around 1975, Di
k de Jongh

and Giovanni Sambin found a K-dedu
tion for the �rst axiom from the

se
ond after all. The two dedu
tions are related, but systemati
 
onne
tions

between K-dedu
tions and K

2

-dedu
tions have not been explored up to

date.

Nevertheless, K

2

is non-
onservative over K in the modal realm. In

[

van

Benthem, 1979b

℄

we �nd the following in
ompleteness theorem.

FACT 6. The modal axiom

��? _�(�(�p! p)! p);

with ? the falsum, de�nes the same 
lass of Kripke frames as ��? _ �?.

But, the latter formula is not K-derivable from the former | even though

it is K

2

-derivable.

Again, there is a 
orresponden
e involved here. But the idea is illustrated

by a simple K

2

-dedu
tion at the ba
k of this result:

1. 8P (8y(Rxy ! (8z(Ryz! Pz)! Py))! Px) (

0

�(�p! p)! p

0

),

2. 8y(Rxy ! (8z(Ryz ! z 6= x)! y 6= x)) ! x 6= x (x 6= u for Pu),

3. :8y(Rxy ! (8z(Ryz! z 6= x)! y 6= x)),

4. 9y(Rxy ^ 8z(Ryz! z 6= x) ^ y = x),

5. Rxx ^ 8z(Rxz ! z 6= x)

6. x 6= x: a 
ontradi
tion (?).

That K

2

, in its turn, must be modally in
omplete (as is any proposed

re
ursively axiomatised base logi
) follows from the general in
ompleteness

results in

[

Thomason, 1975

℄

.

First-order de�nability does not imply 
ompleteness. But, when a modal

logi
 is both �rst-order de�nable and 
omplete, it enjoys a very pleasant

form of the latter property | viz. with respe
t to the underlying frame of

its own Henkin model. (`First-order de�nability plus 
ompleteness imply


anoni
ity': 
f.

[

Fine, 1975; van Benthem, 1980

℄

.) Su
h 
anoni
al modal

logi
s will be 
hara
terised semanti
ally in Se
tion 2.4: noti
e that many
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of the familiar text book examples are of this kind. In fa
t, a 
anoni
al


ompleteness proof, su
h as that for S4, often pro
eeds by means of �rst-

order 
onditions on the Henkin model, indu
ed by the 
orresponding axioms.

The relation between these familiar `Henkin arguments' and the above

method of substitutions is at present still rather mysterious. Sahlqvist

[

1975

℄


ontains many examples of parallels; but Fine

[

1975

℄

presents a problem.

The modal formula

��(p _ q)! �(�p _�q)

axiomatises a 
anoni
al modal logi
, without being �rst-order de�nable.

Thus, we are still far from 
omplete 
larity in the area between 
ompleteness

and 
orresponden
e.

Variations and Generalisations

Logi
al model theory may be viewed as a marriage between ontology and

language (or `mathemati
s' and `linguisti
s'). A

ordingly, the semanti
s of

propositional modal logi
, our paradigm example up till now, exhibits the

familiar triangle

language stru
tures

interpretation

Or, from the above translational point of view, the 
omponents are

prima fa
ie language representation language

translation

All these `degrees of freedom' may be varied in intensional logi
 | and thus

there appears a whole family of `
orresponden
e theories'. We shall explore

some examples of re
ognised importan
e in Se
tion 3. Here, let us just think

about the various possibilities and their impli
ations.

Even within the domain of propositional modal logi
, alternatives have

been proposed for Kripke-type relational semanti
s. Jennings, Johnstone

and S
hot
h

[

1980

℄


ontains the proposal to work with ternary alternative

relations, employing the following notion of ne
essity:

�' is true at x if 8yz(Rxyz ! '(y) _ '(z)):

Their motivation was, amongst others, to 
reate room for `non-
umulation'

of ne
essities: the `Aggregation Axiom'

�p ^�q ! �(p ^ q)

will no longer be valid. What happens to earlier 
orresponden
es in this new

light? Old boundaries start shifting; e.g. �p! p remains �rst-order de�n-

able, but �p ! ��p be
omes essentially se
ond-order on this semanti
s.
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This is 
ompensated for by the phenomenon of formerly unex
iting prin-


iples, su
h as the Aggregation Axiom (whi
h was trivially valid before)

springing into unexpe
ted bloom:

EXAMPLE 7. �p ^�q ! �(p ^ q) de�nes

8xyz(Rxyz! (y = z _ Rxyy _Rxzz)):

Proof. `)': Suppose the 
ondition fails at x; y; z. Setting

V (p) = W = fzg; V (q) = W � fyg;

will then verify �p;�q at x, while �(p ^ q) is falsi�ed (by Rxyz).

`(': Suppose that �p;�q hold at x, and 
onsider Rxyz. Either y = z,

when
e y veri�es both p and q (by Rxyy and the truth de�nition), or Rxyy,

implying the same 
on
lusion, or Rxzz, in whi
h 
ase z veri�es both p and

q. So, �(p ^ q) holds at x. �

As for the general theorems, forming the ba
kbone of the subje
t, nothing

essential 
hanges in this ternary semanti
s.

This example 
hanged both the stru
tures and the form of the truth

de�nition. What may not be generally realised is the variety o�ered even

when �xing the two parameters of `language' and `stru
tures'. Therefore, a

short digression is undertaken here.

The Kripke truth de�nition is not sa
rosan
t | other 
lauses would have

been quite imaginable. Thus, for instan
e, we may make the following

OBSERVATION 8. The truth de�nition `�' is true at x if 8y((Rxy _

Ryx) ! '(y))' yields as a modal base logi
 KB; i.e. the minimal logi


K plus the Brouwer Axiom p! ��p.

Proof. The Brouwer Axiom de�nes symmetry of the alternative relation; as

may be seen by substituting u = x for Pu. And indeed KB is 
omplete with

respe
t to the 
lass of symmetri
 Kripke frames. Hen
e, any non-theorem

' of KB is falsi�ed on some symmetri
 frame hW;Ri. But, on symmetri


frames R 
oin
ides with the relation �xy. (Rxy _ Ryx) (i.e. R united with

its 
onverse

�

R); when
e ' also fails by the new evaluation.

Conversely, if ' has a 
ounter-example hW;Ri under the new truth de�-

nition, then it has hW;R [

�

Ri for an ordinary symmetri
 
ounter-example;

when
e it is outside of KB. �

Thus, there is a possible trade-o� between truth de�nition and require-

ments on the alternative relation. The exa
t extent of this phenomenon

remains to be investigated. Noti
e for example how KB is equally well

generated by the following truth de�nition:

�' is true at x if 8y((Rxy ^ Ryx)! '(y)):
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The general prin
iple behind su
h examples is this.

FACT 9. If C(R) is any 
ondition on R, and 
(x; y) some formula in R;=

su
h that

1. If C(R) is satis�ed, then R and �xy:
(x; y) 
oin
ide,

2. �xy:
(x; y) satis�es C,

then the modal logi
 determined by (the Kripke frames obeying) C may

also be generated without 
onditions through the truth de�nition

�' is true at x if 8y(
(x; y)! '(y)):

This rather subversive shift in perspe
tive will not be investigated in this


ontribution. At this point, it merely serves to remind us that not a single

aspe
t of the semanti
 enterprise is immune to revision.

Leaving the realm of modal logi
, of the many intensional 
andidates for

a 
orresponden
e perspe
tive, only a few have been explored up to date. In

Se
tion 3, some important examples are reviewed brie
y, viz. tense logi
,


onditional logi
 and intuitionisti
 logi
. These illustrate, in as
ending or-

der, 
ertain diÆ
ulties whi
h tend to make Corresponden
e Theory rather

more diÆ
ult (often also: more ex
iting) in many 
ases. These diÆ
ul-

ties have to do with `pre-
onditions' on the alternative relation (not very

serious), and the phenomenon of `admissible assignments' (rather more seri-

ous), to be explained in due 
ourse. Nevertheless, for instan
e, Intuitionisti


Corresponden
e Theory will turn out to possess also some elegant features

la
ked by its modal prede
essor.

A few examples, even without proof, will render the above remarks more


on
rete. In tense logi
, the 
orresponden
e runs between temporal axioms

and properties of the temporal order (`before', `earlier than').

EXAMPLE 10 (`Hamblin's Axiom'). (p^Hp)! FHp de�nes dis
reteness

of Time:

8x9y>x8z<y (z = x _ z < x):

In the logi
 of 
ounterfa
tual 
onditionals, 
onditional inferen
es are re-

lated to the behaviour of the 
omparative similar ordering C among alter-

native worlds.

EXAMPLE 11 (Stalnaker's Axiom of `Conditional Ex
luded Middle').

(p) q) _ (p) :q) de�nes linearity of alternative worlds:

8xyz(y = z _ Cxyz _ Cxzy):

Finally, in intuitionisti
 logi
, (`intermediate') axioms impose 
onstraints

upon the possible growth patterns of stages of knowledge.
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EXAMPLE 12 (`Weak Ex
luded Middle'). :p _ ::p de�nes `lo
al 
onver-

gen
e' of growing stages, i.e. dire
tedness:

8xyz((x � y ^ x � z)! 9u(y � u ^ z � u)):

Proofs, and further explorations are postponed until the relevant se
tions.

At this stage, the experien
ed reader may predi
t that two nuts will be

espe
ially diÆ
ult to 
ra
k for any Corresponden
e Theory.

The �rst of these 
on
erns the earlier ta
it restri
tion to propositional

logi
: what happens in the predi
ate 
ase? In Se
tion 2.5 we shall see that

no essential problems seem to arise | although the �eld remains largely

unexplored.

A more formidable problem arises when the truth de�nition for the in-

tensional operators itself be
omes of higher-order 
omplexity. In that 
ase,

e.g. a sear
h for possible �rst-order equivalents of intensional axioms seems

rather pointless. This eventuality arises when disjun
tion is evaluated bar-

wise in Beth semanti
s for intuitionisti
 logi
 (i.e. ' _  is true at x if

the '-worlds and  -worlds together form a barrier interse
ting ea
h bran
h

passing through x).

The last word has not been said here, however. Philosophi
ally, it seems

a rather unsatisfa
tory division of semanti
 labour to let the truth de�nition

absorb stru
tural 
omplexity (in this 
ase: the se
ond-order behaviour of

bran
hes). The latter should be lo
ated where it belongs, viz. in the stru
-

tures themselves. And indeed, the Beth semanti
s admits of a two-sorted

�rst-order reformulation in terms of nodes and paths, whi
h generates a

Corresponden
e Theory of the usual kind.

All this is not to say that there are no limits to the useful appli
ation of

a 
orresponden
e perspe
tive. But, these are to be found in philosophi
al

relevan
e, rather than te
hni
al impossibility. One should study 
orrespon-

den
es only as long as they serve the purpose of semanti
 enlightenment |

whi
h is the shedding of light upon one 
on
eptual framework by relating

it systemati
ally to another.

2 MODALITY

In this 
hapter, modal 
orresponden
e theory will be surveyed against the

ba
kground of modal model theory and modal algebra, whose basi
s are

explained. (Cf. the 
hapter by Bull and Segerberg in this volume for the

ne
essary ba
kground.)

2.1 Modal Model Theory

The basi
 stru
tures of modal semanti
s are introdu
ed: frames, models

and general frames. These may be studied either purely 
lassi
ally, or
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with a spe
i�
ally modal purpose. In both 
ases, the emphasis is not upon

su
h stru
tures in isolation, but upon their `
ategorial 
ontext': what are

their relations with other stru
tures, and whi
h of these relations are truth-

preserving? Thus, we will introdu
e the modal preservation operations of

generated subframe, disjoint union, p-morphi
 image and ultra�lter exten-

sion. Moreover, the fundamental 
lassi
al formation of ultraprodu
ts will be

used as well. All these notions will appear again and again in later se
tions.

Semanti
 stru
tures. The stru
tures used in the Kripke truth de�nition are

models M , i.e. triples hW;R; V i, where W is a nonempty set of worlds, R

is a binary alternative relation on W , and V is a valuation assigning sets of

worlds V (p) to proposition letters p. The notion expli
ated then be
omes

M � '[w℄ : `' is true in M at w':

In our 
orresponden
e theory we also want to see the bare bones: a frame

F is a 
ouple hW;Ri as above, but without a valuation. There is nothing

intrinsi
ally `modal' about all this, of 
ourse. Frames are just the `dire
ted

graphs' of Graph Theory.

In Se
tions 2.3 and 2.4, a third notion of modal stru
ture will be required

as well | intermediate, in a sense between models and frames. A general

frame F is a 
ouple hF;Wi, or alternatively, a triple hW;R;Wi su
h that

F = hW;Ri is a frame, and W is a set of subsets of W , 
losed under the

formation of 
omplements, unions and modal proje
tions. Formally,

if X 2W; then W �X 2W

if X;Y 2W; then X [ Y 2W

if X 2W; then �(X) =

def

fw 2W j 9v 2 X : Rwvg 2W:

The following example illustrates the e�e
t of restri
ted sets W. Con-

sider the frame hN;�i, where N is the set of natural numbers. Its modal

theory 
ontains su
h prin
iples as �p! p;�p! ��p and Gea
h's Axiom:

together forming the logi
 S4.3. Typi
ally left out is the M
Kinsey Axiom

��p! ��p; as it may be falsi�ed in some in�nite alternation of p;:p: say

by V (p) = f2n j n 2 Ng. But now, 
onsider the stru
ture hN;�;Wi, where

W 
onsists of all �nite and all 
o�nite subsets of N . It is easily 
he
ked

that all three 
losure 
onditions obtain for W. Thus, we have a general

frame here. Its logi
 
ontains the earlier one (`a fortiori'); but it also adds

prin
iples. Notably, the M
Kinsey Axiom 
an no longer be falsi�ed, as the

above `tell-tale' valuation is no longer admissible. Thus, S4.1 holds in this

general frame, although it does not in the underlying `full frame'. And fur-

ther in
reases in the modal theory are possible, by restri
ting W even more;

e.g. there is even a most austere 
hoi
e, viz. W = f;; Ng, whi
h yields a

general frame validating the `
lassi
al logi
' with axiom �p $ p | whi
h

was still invalid in the previous general frame. Thus, one single underlying

frame may still generate a hierar
hy of modal logi
s.
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The original algebrai
 motivation for this notion (due to Thomason

[

1972

℄

)

will be given in Se
tion 2.3. But here already, a dire
t logi
al reason may

be given. Kripke frames are so-
alled `standard models' for modal formulas,


onsidered as se
ond-order �

1

1

-senten
es: the universal predi
ate quanti�ers

range over all sets of possible worlds. An intermediate possibility would have

been to allow also `general models' in the sense of Henkin

[

1950

℄

: in whi
h

this se
ond-order range may be restri
ted, say to some set W. Usually, su
h

ranges are to be 
losed under 
ertain mild 
onditions of de�nability | in

order to verify reasonable forms of the universal instantiation (or `
ompre-

hension') axiom. This, of 
ourse, is pre
isely what happened in the above.

The uses of this notion lie partly in modal Completeness Theory, partly in

modal algebra. For the moment, it will not be a major 
on
ern.

Semanti
 questions. Given a formal language, interpreted in 
ertain stru
-

tures, a plethora of questions arises 
on
erning the interplay between more

`linguisti
' and more `stru
tural' (or `mathemati
al') notions. We mention

only a few fundamental ones.

Arguably the `�rst question' of any model theory is that 
on
erning the

relation between linguisti
 indistinguishability (equality of modal theories)

and stru
tural indistinguishability (isomorphism) of semanti
 stru
tures.

How far do the webs of language and ontology diverge? In 
lassi
al logi
, we

know that (�rst-order) elementary equivalen
e 
oin
ides with isomorphism

on the �nite stru
tures, but no higher up: isomorphism then be
omes by

far the �ner sieve.

Now, the modal language on models behaves like the �rst-order language

of the �rst translation in the introdu
tion: nothing spe
ta
ular results. But

the se
ond-order notion seems more interesting in this respe
t. (Equality of

se
ond-order theories is quit`e strong: modulo the Axiom of Constru
tibility,

it even implies isomorphism in all 
ountable frames; 
f.

[

Ajtai, 1979

℄

). From

Van Benthem

[

1985

℄

, whi
h treats the analogous question for tense logi
 in

Chapter 2.2.1, we extra
t

THEOREM 13. Finite Kripke frames that are generated by a single point

(
f. below) are isomorphi
 if and only if they possess the same modal theory.

But, the 
ountable Kripke frames Z�Z (the integers, with ea
h point repla
ed

by a 
opy of the integers) and Q �Z (the rationals, treated likewise) possess

the same modal theory, without being isomorphi
.

In tense logi
, the latter result means that the formal language 
an-

not distinguish between lo
ally dis
rete/globally dis
rete and lo
ally dis-


rete/globally dense Time. (The latter may well be that of our World.)

In the 
ontext of modal logi
, no su
h appealing interpretation is possible,

when
e we forego further dis
ussion of the above result.

From now on, we will 
on�ne attention to a single theme, whi
h again,

is 
hara
teristi
 for mu
h of what goes on in Model Theory.
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Truth-preserving operations. In evaluating the truth of a modal formula '

at a world w we only have to 
onsider w itself, (possibly) its R-su

essors,

(possibly) their R-su

essors, et
etera. Thus, only that part of the frame is

involved whi
h is `R-generated' by w, so to speak. In general, one never has

to look beyond R-
losed environments of w: an observation summed up in

the following notion and result.

DEFINITION 14. M

1

(= hW

1

; R

1

; V

1

i) is a generated submodel of M

2

(=

hW

2

; R

2

; V

2

i) (notation: M

1

�

!M

2

) if

1. W

1

�W

2

2. R

1

= R

2

restri
ted to W

1

,

3. V

1

(p) = V

2

(p)\W

1

, for all proposition letters p; i.e. M

1

is an ordinary

submodel of M

2

, whi
h has the additional feature that

4. W

1

is 
losed under passing to R

2

-su

essors.

The next result is the famous `Generation Theorem' of Segerberg

[

1971

℄

.

THEOREM 15. If M

1

�

! M

2

, then for all worlds w 2 W

1

and all modal

formulas ', M

1

� '[w℄ i� M

2

� '[w℄.

This is what happens inside a single model. When 
omparisons are de-

sired between evaluation in distin
t models, a more external 
onne
tion is

required.

DEFINITION 16. A relation C is a zigzag 
onne
tion between two models

M

1

;M

2

if

1. domain (C) = W

1

, range (C) = W

2

,

(a) if Cwv and w

0

2 W

1

with R

1

ww

0

, then Cw

0

v

0

for some v

0

2 W

2

with R

2

vv

0

(`forth 
hoi
e')

(b) If Cwv and v

0

2 W

2

with R

2

vv

0

, then Cww

0

for some w

0

2 W

1

with R

1

ww

0

(`ba
k 
hoi
e')

2. if Cwv, then w; v verify the same proposition letters.

Starting from the basi
 
ase (3), the ba
k-and-forth 
lauses ensure that

evaluation of su

essive modalities in modal formulas yield the same results

on either side:

THEOREM 17. If M

1

is zigzag-
onne
ted to M

2

by C, then, for all worlds

w 2 W

1

; v 2W

2

with Cwv, and all modal formulas ',

M

1

� '[w℄ i� M

2

� '[w℄:

Notation. M

1 

!

M

2

for zigzag-
onne
ted models (by some C).
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By a result in Van Benthem

[

1976

℄

, the Generation Theorem and the

pre
eding `Zigzag Theorem' 
ombined are 
hara
teristi
 for modal formulas

as �rst-order formulas in the sense of the introdu
tion:

THEOREM 18. A �rst-order formula '(x) in the language with R;P;Q; : : :

is logi
ally equivalent to some modal trans
ription if and only if it is invari-

ant for generated submodels and zigzag 
onne
tions (in the above sense).

For the 
ase of pure frames, the above notions and results lead to the

following three preservation results.

DEFINITION 19. F

1

is a generated subframe of F

2

(F

1

�

! F

2

) if

1. W

1

�W

2

,

2. R

1

= R

2

restri
ted to W

1

,

3. W

1

is R

2

-
losed in W

2

.

In general logi
, this type of situation is often des
ribed by saying that the

`
onverse frame' hW

2

;

�

R

2

i is an end extension of hW

1

;

�

R

1

i: the added worlds

all 
ome `at the end'.

From Theorem 15 we derive preservation under generated subframes:

COROLLARY 20. If F

1

�

! F

2

, then F

2

� ' implies F

1

� ', for all modal

formulas '.

Here `F � '' means `' is true in F ', in the global se
ond-order sense of

the introdu
tion: at all worlds, under all valuations.

But Theorem 15 also has an `upward' dire
ted moral.

DEFINITION 21. The disjoint union �fF

i

ji 2 Ig of a family of frames

F

i

= hW

i

; R

i

i is the disjoint union of the domains W

i

, with the obvious


oordinate relations R

i

.

Another dire
t appli
ation is preservation under disjoint unions:

COROLLARY 22. If F

i

� ' (all i 2 I), then �fF

i

ji 2 Ig � ', for all modal

formulas '.

Next, turning to Theorem 17, one now needs a 
onne
tion between frames

whi
h 
an be turned into a suitable zigzag relation between models over

them.

DEFINITION 23. A zigzag morphism from F

1

to F

2

is a fun
tion: W

1

!

W

2

satisfying

1. R

1

ww

0

implies R

2

f(w)f(w

0

),

i.e. f is an ordinary R-homomorphism; whi
h has the additional ba
k-

ward property that

2. if F

2

f(w)v, then there exists u 2 W

1

with R

1

wu and f(u) = v.
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This notion was mentioned under its 
urrent, but rather uninformative

name of `p-morphism' in the introdu
tion. Here is one more example:

the map from nodes to levels (
ounting from the top) is a zigzag

morphism from the in�nite binary tree (with the des
endant

relation) onto the natural numbers (with the usual ordering).

Noti
e also that inje
tive (1-1) zigzag morphisms are even just isomor-

phisms.

Theorem 17 now implies the `p-morphism' theorem of Segerberg

[

1971

℄

.

COROLLARY 24. If f is a zigzag morphism from F

1

onto F

2

, then, for all

modal formulas '; F

1

� ' implies F

1

� '.

For more `lo
al' versions of these results, the reader is referred to

[

van

Benthem, 1983

℄

.

More examples, and appli
ations of Corollaries 20, 22, and 24 will be

found in Se
tion 2.4. A qui
k impression may be gained from the following

sample observation (D. C. Makinson). The modal theory of any Kripke

frame is either 
ontained in the 
lassi
al modal logi
 (
hara
teristi
 axiom

�p$ p) or the `absurd' modal logi
 (
hara
teristi
 axiom �(p^ :p)). For,

any frame F either 
ontains end points without R-su

essors, or it is serial

(8x9yRxy). In the former 
ase, su
h an end point by itself forms a generated

subframe, and by Corollary 20, the logi
 of the frame is 
ontained in that

of the subframe | whi
h is the absurd one. In the latter 
ase, 
ontra
tion

to one single re
exive point is a zigzag morphism, and by Corollary 24, the

logi
 of the frame is 
ontained in that of the re
exive point | whi
h is the


lassi
al one.

We 
on
lude by noting that these three notions are easily adapted to

general frames, taking due pre
autions 
on
erning the various sets W

1

;W

2

.

Here are the three ne
essary additions:

In 19: add `W

1

= fX \W

1

j X 2W

2

g'.

In 21: add `the new W

2

remains essentially the old W

1

' (but for the

disjointness pro
edure used).

In 23: add the following `
ontinuity requirement', reminis
ent of topology:

`for all X 2W

2

; f

�1

[X ℄ 2W

1

'.

These will be needed in the duality theory of Se
tion 2.3.

Propositions and possible worlds. Another 
hara
teristi
 feature of modal

semanti
s is the analogy between propositions and sets of possible worlds;

as well as (moving up one stage in set-theoreti
 abstra
tion) that between

possible worlds and maximal sets of propositions. Indeed, many philosophers

would deny that there exist any di�eren
es here. Let us investigate.

The ideal setting here are general frames hW;R;Wi: the range is 
learly

identi�able with a 
olle
tion of `propositions' over W .
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Now, if worlds are to be 
onsidered as sets of propositions, then some ob-

vious desiderata govern the 
onne
tion between a world w and propositions

X;Y asso
iated with w:

1. X 2 w or Y 2 w if and only if X [ Y 2 w (`analysis')

2. X 62 w if and only if W �X 2 w (`de
isiveness').

A

ordingly, one 
onsiders only subsets w of W satisfying these two 
ondi-

tions. These are pre
isely the so-
alled ultra�lters on W.

What about the alternative relation to be imposed?

Again, a 
ommon idea is that a world v is R-a

essible to w if it `satis�es

all w's modal prejudi
es', i.e. whenever �' is true at w, ' should be true at

v. The same idea may be expressed as follows: whenever ' is true at v;�'

should be true at w. In the present 
ontext, this be
omes the following

stipulation:

Rwv if for all X 2 v; �(X) 2 w:

In this pro
ess, no new propositions have been 
reated, when
e the former

propositions X now reappear as sets

�

X = fw j X 2 wg.

These 
onsiderations motivate

DEFINITION 25. The ultra�lter extension ue(G) of a general frame G =

hW;R;Wi is the general frame hue(W;W); ue(R;W); ue(W)i, with

1. ue(W;W) is the set of all ultra�lters on W,

2. ue(R;W)wv, if for ea
h X 2W su
h that X 2 v; �(X) 2 w,

3. ue(W) is f

�

X j X 2Wg.

What this 
onstru
tion has done is to re-
reate G one level higher up in

the set-theoreti
 air, so to speak, and some 
al
ulation will prove

THEOREM 26. G and ue(G) verify the same modal formulas.

Still, not everything need have remained the same: the world pattern

of hW;Ri may di�er from that of hue(W;W); ue(R;W)i. First, ea
h old

world w 2 W generates an ultra�lter fX 2 W j w 2 Xg and, hen
e,

a 
orresponding new world in ue(W;W). But, unless W satis�es 
ertain

separation prin
iples for worlds, di�erent old worlds may be identi�ed to a

single new one. (In the earlier example of hN;�; f;; Ngi, only a single new

world remains, where there used to be in�nitely many!) On the other hand,

the 
onstru
tion may also introdu
e worlds that were not there before. For

instan
e, on the earlier general frame hN;�, (
o-)�nite setsi, the 
o-�nite

sets form an ultra�lter whi
h indu
es a `point at in�nity' in the resulting

ultra�lter extension. Indeed, it is easily seen that the latter 
onsists of

hN;�i followed by just that in�nite point.
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In Se
tion 2.3, ne
essary and suÆ
ient 
onditions will be formulated guar-

anteeing that a general frame is `stable' under the 
onstru
tion of ultra�lter

extensions. In any 
ase, it turns out that the pro
ess stabilises after one step

at the most. Now, these 
onsiderations also apply to `full' Kripke frames.

DEFINITION 27. The ultra�lter extension ue(F ) of a frame F = hW;Ri is

the frame hue(W ); ue(R)i, with

1. ue(W ) is the set of all ultra�lters on W ,

2. ue(R)wv if for ea
h X �W su
h that X 2 v; �(X) 2 w.

This time, Theorem 26 does not hold, however. For, it only says that the

modal theory of the general frame hW;R; power set of W i 
oin
ides with

that of the indu
ed general frame a

ording to De�nition 25. Now, the

latter is, in general, a restri
tion of the full frame hue(W ); ue(R)i. Hen
e,

we 
an only 
on
lude to anti-preservation under ultra�lter extensions:

COROLLARY 28. If ue(F ) � ', then F � ', for all modal formulas '.

Still, this stru
tural notion 
an be made a little more familiar by 
onne
t-

ing it with previous model-theoreti
 operations. First, the above-mentioned


onne
tion between old worlds and new worlds is 1-1 this time, and indeed

isomorphi
 (
onsider suitable singleton sets):

THEOREM 29. F lies isomorphi
ally embedded in ue(F ).

In general, this 
annot be strengthened to `embedded as a generated

subframe'. But, another 
onne
tion with the earlier preservation notions

may be drawn from

[

van Benthem, 1979a

℄

.

THEOREM 30. ue(F ) is a zigzag-morphi
 image of some frame F

0

whi
h

is elementarily equivalent to F .

Proof. One expands F to (F;X)

X�W

, and then passes on to a suitably

saturated elementary extension, by ordinary model theory. From the latter,

a 
anoni
al fun
tion from worlds to ultra�lters on F exists, whi
h turns out

to be a zigzag morphism. �

Ultraprodu
ts and de�nability. New, modally inspired notions 
on
erning

frames have been forged in the above. But old 
lassi
al 
onstru
tions may

be 
onsidered as well. Of the various possibilities, only one is sele
ted

here, viz. the formation of ultraprodu
ts. (For many other examples, 
f.

[

van Benthem, 1985, Chapter I.2.1

℄

.) Its use has been indi
ated in the

introdu
tion already.

The basi
 theory (and heuristi
s) of the notion of `ultraprodu
t' has been

given in the Higher Order Logi
 
hapter in volume 1 of this Handbook. (Cf.

also

[

Chang and Keisler, 1973, Chapters 4.1 and 6.1

℄

.) We re
all some of

its outstanding features and uses.
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DEFINITION 31. For any family of Kripke frames fF

i

j i 2 Ig with an

ultra�lter U on I , the ultraprodu
t �

U

F

i

is the frame hW;Ri with

1. W is the set of 
lasses f

�

, for all fun
tions f 2 �fW

i

j i 2 Ig, where

f

�

is the equivalen
e 
lass of f in the relation f � g , fi 2 I j f(i) =

g(i)g 2 U ,

2. R is the set of 
ouples hf

�

; g

�

i for whi
h fi 2 I j R

i

f(i)g(i)g 2 U .

This de�nitional equivalen
e is lifted by indu
tion to

THEOREM 32 (` Lo�s Equivalen
e'). For all ultraprodu
ts, and all �rst-order

formulas '(x

1

; : : : ; x

n

),

�

U

F

i

� '[f

1

�

; : : : ; f

n

�

℄ i� fi 2 I j F

i

� '[f

1

(i); : : : ; f

n

(i)℄g 2 U:

Thus, in parti
ular, all �rst-order senten
es ' are preserved under ultra-

produ
ts in the following sense:

if F

i

� '(all i 2 I); then �

u

F

i

� ':

Conversely, `Keisler's Theorem' tells us that this is also enough.

THEOREM 33. A 
lass of Kripke frames is elementary if and only if both

that 
lass and its 
omplement are 
losed under the formation of ultraprodu
ts

and isomorphi
 images.

Proof. Cf.

[

Chang and Keisler, 1973, Chapter 6.2

℄

. �

A somewhat more liberal notion of de�nability, viz. by means of arbitrary

sets of �rst-order formulas, yields so-
alled �-elementary 
lasses. Here the

relevant 
hara
terisation employs a spe
ial 
ase of ultraprodu
ts.

DEFINITION 34. An ultrapower �

U

F is an ultraprodu
t with in ea
h 
o-

ordinate i the same frame F .

Noti
e that by the  Lo�s Equivalen
e, �

U

F is elementarily equivalent to

F , i.e. both frames possess the same �rst-order theory.

THEOREM 35. A 
lass of Kripke frames is �-elementary if and only if it

is 
losed under the formation of ultraprodu
ts and isomorphi
 images, while

its 
omplement is 
losed under the formation of ultrapowers.

All these notions will be used in the modal 
orresponden
e theory of the

next se
tion. In this 
onne
tion, it should be observed that, as for the other

kinds of modal semanti
 stru
ture, ultraprodu
ts of models and of general

frames are easily de�ned using the above heuristi
s. These will not be used

in the sequel however. (Cf.

[

van Benthem, 1983

℄

.)
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The above de�nability question for 
lassi
al model theory leads to a 
lear

modal task: `to 
hara
terise the modally de�nable 
lasses of Kripke frames'.

In se
tion 2.4 this matter will be investigated.

We have arrived at the interplay between 
lassi
al and modal model the-

ory, whi
h lies at the heart of modal 
orresponden
e theory.

2.2 Corresponden
e I: From Modal to Classi
al Logi


Through the translation given in the Introdu
tion, modal formulas may be

viewed as de�ning 
onstraints on the alternative relation in Kripke frames.

Some of these 
onstraints are �rst-order de�nable, others are not. Examples

are presented of both, after whi
h the former 
lass is explored. A mathemat-

i
al 
hara
terisation is given for it, in terms of ultrapowers, and methods

are developed for (dis-)proving membership of the 
lass. The limits of these

methods are established as well.

First-order de�nability. The 
lass of modal formulas to be studied here is

de�ned as follows.

DEFINITION 36. M1 
onsists of all modal formulas ' for whi
h a �rst-

order senten
e � (in R;=) exists su
h that

F � ' i� F � �; for all Kripke frames F:

Various examples of formulas in M1 have o

urred in the Introdu
tion.

For purposes of illustration, see Table 1 below.

As these are all rather easy to establish, some readers may desire a more


omplex example. Here it is, straight from the in
ompleteness Example 5

in the Introdu
tion.

THEOREM 37. The 
onjun
tion of the formulas �p! p;��p! ��p and

(�p ^�(p! �p))! p is in M1.

Proof. We shall show that this 
onjun
tion de�nes the same 
lass as the


lassi
al axiom �p$ p, i.e. 8xy(Rxy $ x = y).

The argument requires several stages.

1. �p! p imposes re
exivity,

2. �p ^�(p! �p)! p says the following:

8xy(Rxy ! 9n9z

1

; : : : ; z

n

(Rxz

1

^ : : : ^Rxz

n

^

^Ryz

1

^ : : : ^ Rz

n

x)).

In other words, from any R-su

essor y of x, one may return to x by way

of some �nite 
hain of R-su

essors of x. In 
ase the 
hain is empty, this

redu
es to just: Ryx.

This (se
ond-order!) equivalen
e is proved as follows (I. L. Humberstone):

`)': Consider any y with Rxy. Let the good points be those R-su

essors z
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Table 1.

Modal formula Condition

�p! p 8xRxx

�p! ��p 8xy(Rxy ! 8z(Ryz ! Rxz))

��p! ��p 8xy(Rxy ! 8z(Rxz ! 9u(Ryu ^ Rzu)))

�(p _ q)! �p _�q 8xy(Rxy ! 8z(Rxz ! z = y))

�(�p! q) _�(�q ! p) 8xy(Rxy ! 8z(Rxz ! (Ryz _ Rzy)))

p! �p 8xy(Rxy ! y = x)

�? 8x:9yRxy

p! ��p 8xy(Rxy ! Ryx)

of x whi
h 
an be rea
hed from y through some �nite 
hain (possibly empty)

of R-su

essors of x. Then, set V (p) equal to the set of all R-su

essors of

good points. This assignment produ
es the following e�e
ts.

1. p is true at y (y being a su

essor of y, by re
exivity), and, hen
e, �p

is true at x.

2. Any R-su

essor of x verifying p is itself a good point, when
e all its

R-su

essors belong to V (p).

It follows that �(p ! �p) is true at x. Therefore, p itself must be true

at x: i.e. x is R-su

essor of some good point, whi
h was pre
isely to be

proved.

`(': Truth of p in x is dis
overed by merely following the relevant 
hain.

3. Now, having se
ured re
exivity and `safe return', we 
an �nd out what

the M
Kinsey Axiom says in the present 
ontext.

First, noti
e that all R-su

essors of any point x may be divided

up into 
on
entri
 shells S

n

(x), where S

n

(x) 
onsists of those R-

su

essors y of x whi
h return to x by n R- arrows (between R-

su

essors of x) but no less. For instan
e, S

0

(x) only 
onsists of x

itself, S

1

(x) 
ontains immediate R- prede
essors. Noti
e also that, if

y 2 S

n+1

(x), then it must have some R-su

essor in S

n

(x).

The M
Kinsey Axiom makes this whole hierar
hy 
ollapse. Set V (p) =

[fS

2n

(x) j n = 0; 1; 2; : : :g. Then ��p will be true at x, as follows

from the above pi
ture. For, if Rxy, and y 2 S

n

(x), then either n is

even | when
e p holds at y (by de�nition) and so �p (by re
exivity),

or n is odd | when
e y has an R-su

essor in S

n�1

(x) verifying p:

whi
h again veri�es �p at y.

It follows that ��p must be true at x. So, �p holds at some R-

su

essor of x. Whi
h one? In the present situation, this 
an only be
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x itself. But then again, this means that there 
an be no shells S

n

(x)

with n odd. Thus, there is only S

0

(w) : 8y(Rxy ! y = x).

4. Combining (1) and (3), the required 
on
lusion follows: the three

axioms together imply 8xy(Rxy $ y = x), and are obviously implied

by it. �

The very unexpe
tedness of this argument will have made it 
lear that

there is a 
reative side to establishing 
orresponden
es.

Global and lo
al de�nability. Originally, Kripke introdu
ed frames hW;R;w

0

i,

with a designated `a
tual world' w

0

. From that point of view, the study of

`lo
al' equivalen
e be
omes natural:

F � '[w℄ i� � �[w℄;

where the �rst-order formula � has one free variable now. The reader may

have noti
ed already that previous 
orresponden
e arguments often provide

lo
al versions as well. For instan
e, we had

F � �p! p[w℄ i� F � Rxx[w℄

F � �p! ��p[w℄ i� F � 8y(Rxy ! 8z(Ryz ! Rxz))[w℄:

The lo
al notion is the more informative one, in that lo
al 
orresponden
e

of ' with �(x) implies global 
orresponden
e of ' with 8x�(x); but not


onversely. Indeed,

[

van Benthem, 1976

℄


ontains an example of a formula

in M1 whi
h has no lo
al �rst-order equivalent at all! On the other hand,

there are also 
ir
umstan
es under whi
h the distin
tion 
ollapses | e.g.

on the transitive Kripke frames (W. Dziobiak; 
f.

[

van Benthem, 1981a

℄

).

Finally, a word of warning. Lo
al validity of, e.g. �p! ��p means `lo
al

transitivity', no more. The frame hN; fh0; ni j n 2 Ng[fhn; n+1i j n 2 Ngi

is lo
ally transitive in 0, without being transitive.

First-order unde�nability. There is a threshold of 
omplexity below whi
h

se
ond-order phenomena do not o

ur.

THEOREM 38. All modal formulas without nestings of modal operators are

in M1.

Proof. Cf.

[

van Benthem, 1978

℄

: a 
ombinatorial 
lassi�
ation suÆ
es. �

EXAMPLE 39. L�ob's Axiom �(�p! p)! �p is outside of M1.

Proof. It suÆ
es to establish the following Claim: L�ob's Axiom de�nes

transitivity plus well-foundedness of the 
onverse of the alternative relation

(i.e. there are no as
ending sequen
es xRx

1

Rx

2

Rx

3

; : : :). For, by a well-

known 
lassi
al 
ompa
tness argument, the latter 
ombination 
annot be

�rst-order de�nable (e.g. noti
e that it holds in hN;>i, but not in its non-

isomorphi
 ultrapowers).

First, assume that L�ob's Axiom fails in F ; i.e. for some V and w,
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1. hF; V i � �(�p! p)[w℄, but

2. hF; V i 6� �p[w℄

Also, assume transitivity of R: we will refute the well-foundedness of

�

R, by


onstru
ting an endless as
ending sequen
e of worlds wRw

1

Rw

2

: : :.

Step 1: Chose any w

1

with Rww

1

where p fails (by (2)). By (1), �p! p

is true at w

1

, when
e �p fails again.

Step 2: 
hose any w

2

with Rw

1

w

2

where p fails. By (1) and transitivity,

�p! p is true at w

2

, et
etera: an endless sequen
e is on its way.

Next, failure of either of the two relational 
onditions results in failure

of L�ob's Axiom. If transitivity fails, say Rwv;Rvu;:Rwu, then V (p) =

W � fv; ug veri�es �(�p! p) at w, while falsifying �p.

If well-foundedness fails, say wRw

1

Rw

2

; : : :, then V (p) = W � fw;w

1

;

w

2

; : : :g produ
es the same e�e
t. �

More 
omplex unde�nability arguments will be dis
ussed later on.

First-order de�nability and ultraprodu
ts. Modal formulas 
ould be regarded

as �

1

1

-senten
es, witness the Introdu
tion. Now, for the latter senten
es,

ultraprodu
ts provide the tou
hstone for �rst-order de�nability:

THEOREM 40. A �

1

1

-senten
e in R;= is �rst-order de�nable if and only

if it is preserved under ultraprodu
ts.

Proof. `)': This follows from the  Lo�s Equivalen
e (
f. Se
tion 2.1).

`(': Consider a typi
al su
h senten
e:

8P

1

: : :8P

n

'(P

1

; : : : ; P

n

; R;=) (' �rst-order):

Clearly it is preserved under isomorphisms (and so is its negation). More-

over, its negation (a `�

1

1

-senten
e') is preserved under ultraprodu
ts (
f.

[

Chang and Keisler, 1973, Chapter 4.1

℄

, for the easy argument). So, given

the assumption on the senten
e itself, Keisler's Theorem (33) applies. �

COROLLARY 41. A modal formula is in M1 if and only if it is preserved

under ultraprodu
ts.

A se
ond appli
ation says that no generalisation of our topi
 is obtained

by allowing arbitrary sets of de�ning �rst-order 
onditions.

COROLLARY 42. If a modal formula has a �-elementary de�nition, it has

an elementary de�nition.

Proof. �-elementary 
lasses are 
losed under the formation of ultraprod-

u
ts. �
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This 
hara
terisation of M1 is rather aspe
i�
, as it holds for all �

1

1

-

senten
es. Later on, we will exploit the spe
i�
ally modal 
hara
ter of our

formulas to do better. Moreover, the 
hara
terisation is rather abstra
t,

as ultraprodu
ts are hard to visualise. Therefore, we now turn to more


on
rete methods for separating formulas inside M1 from those outside.

Formulas beyond M1: Compa
tness and L�owenheim{Skolem arguments. In

pra
ti
e, non�rst-order de�nability often shows up in failure of the Com-

pa
tness and L�owenheim{Skolem theorems. The �rst was involved in the

example of L�ob's Axiom, the se
ond will be presented now.

EXAMPLE 43 (M
Kinsey's Axiom). ��p! ��p is outside of M1.

Proof. Consider the following un
ountably in�nite Kripke frame

F = hW;Ri:




f

�

�

a

�

b

n

�

b

0

n

�

b

1

n

W = fag [ fb

n

; b

0

n

; b

1

n

j n 2 Ng [ f


f

j f : N ! f0; 1gg

R = fha; b

n

i; hb

n

; b

0

n

i; hb

n

; b

1

n

i; hb

0

n

; b

0

n

i; hb

1

n

; b

1

n

i j n 2 Ng[

fha; 


f

i j f : N ! f0; 1gg [ fh


f

; b

f(n)

n

i j n 2 N; f : N ! f0; 1gg:

We observe two things.

1. F � ��p! ��p:

Thanks to the presen
e of the re
exive endpoints b

0

n

; b

1

n

, the validity of

the M
Kinsey Axiom is obvious everywhere, ex
ept for a.

So, suppose that, under some valuation V;��p is true at a. By assump-

tion, �p is true at ea
h b

n

, and hen
e p is true at b

0

n

or b

1

n

. Now, pi
k any

fun
tion f : N ! f0; 1g su
h that b

f(n)

n

is a p-world (ea
h n 2 N). Then

�p holds at 


f

, and hen
e ��p at a.

By the downward L�owenheim{Skolem theorem, F possesses a 
ountable

elementary substru
ture F

0

whose domain 
ontains (at least) a; b

n

; b

0

n

; b

1

n

(all n 2 N). As F is un
ountable, many worlds (


f

) must be missing in
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W

0

. Fix any one of these, say 


f

0

. Noti
e, for a start, that 


1�f

0


annot

be in W

0

either. (For, the existen
e of `
omplementary' 
-worlds is �rst-

order expressible; and F

0

veri�es the same �rst-order formulas at ea
h of its

worlds as F .) Now, setting

V (p) = fb

f

0

(n)

n

j n 2 Ng

will verify ��p at a, while falsifying ��p. Thus, we have shown

2. F

0

2 ��p! ��p.

We may 
on
lude that the M
Kinsey Axiom is not �rst-order de�nable

| not being preserved under elementary subframes. �

In pra
ti
e, failure of L�owenheim{Skolem or 
ompa
tness properties is an

infallible mark of being outside of M1. The reader may also think this to

be the 
ase in theory, by the famous Lindstr�om Theorem. (Cf. Volume 1,


hapters by Hodges or van Benthem and Doets.) But there is a little-realised

problem: the Lindstr�om Theorem does not work for languages with a �xed

�nite vo
abulary (
f.

[

van Benthem, 1976

℄

). In our 
ase of R;=, there do

exist proper extensions of predi
ate logi
 satisfying both the L�owenheim and


ompa
tness properties. These are not modal examples, however | and it

may well be the 
ase, for all we know, that a modal formula ' belongs to M1

if and only if the logi
 obtained by adding ' to the �rst-order predi
ate logi


in R;= as a propositional 
onstant has the L�owenheim and 
ompa
tness

properties. Indeed, up till now, all unde�nability arguments (in
luding the

above) have always been found redu
ible to 
ompa
tness arguments alone.

The �nal 
hara
terisation of M1. Corollary 41 may be improved by noting

the following fa
t about Kripke frames, 
onne
ting the modal and 
lassi
al

notions of Se
tion 2.1.

LEMMA 44. �

U

F

i

�

! �

U

� fF

i

j i 2 Ig.

Thus, ultraprodu
ts are generated subframes of suitable ultrapowers.

A se
ond idea 
omes from the pre
eding se
tion: outside of M1, we

en
ountered non preservation under elementary equivalen
e, a notion tied

up with ultrapowers by the Keisler{Shelah Theorem (
f.

[

Chang and Keisler,

1973, Chapter 6.1

℄

). We arrive at the main result of

[

van Benthem, 1976

℄

.

THEOREM 45. (i) A modal formula is in M1 if and only if (ii) it is pre-

served under ultrapowers if and only if (iii) it is preserved under elementary

equivalen
e.

Proof. (i) ) (iii) ) (ii) are immediate. (ii) ) (i): If ' is preserved under

ultrapowers, then, by Lemma 44, it is also preserved under ultraprodu
ts

| be
ause disjoint unions preserve modal truth (Corollary 22). Now apply

Corollary 41. �
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Again, this insight saves us some spurious generalisations. Besides `�-

elementary', there are two more levels in the de�nability hierar
hy

elementary

�-elementary �-elementary

��- elementary

higher-order

A �-elementary 
lass is de�ned by an in�nite disjun
tion of �rst-order sen-

ten
es (�-elementary 
lasses by in�nite 
onjun
tions). The prime example

of this phenomenon is �niteness. ��-elementary 
lasses arise from in�nite

disjun
tions of in�nite 
onjun
tions, or vi
e versa: both 
ases (and all pur-

ported `higher' ones) 
ollapse | and the hierar
hy stops here, even in 
las-

si
al logi
. The reason lies in the simple observation that a 
lass of frames

is ��-elementary if and only if it is 
losed under elementary equivalen
e.

But the pre
eding result has a

COROLLARY 46. Modal formulas are either elementary, or essentially

higher-order.

Unfortunately, even this better 
hara
terisation does not yield mu
h e�e
-

tive information 
on
erning the members of M1. For, there are no synta
ti



riteria for preservation under ultrapowers. From

[

van Benthem, 1983

℄

, we

will 
ite the 
atalogue of what little we know.

DIGRESSION 47.

1. �

1

1

-senten
es in R;= of the purely universal form

8P

1

: : :8P

m

8x

1

: : :8x

n

' (' quanti�er-free)

are preserved under ultraprodu
ts. This tells us that p! �p, i.e.

8P8x(Px! 8y(Rxy ! Py))

must be in M1: but that was 
lear without su
h heavy artillery.

2. �

1

1

-senten
es in R;= of the universal-existential form

8P

1

: : :8P

m

9x

1

: : : 9x

n

' (' quanti�er-free)

are preserved under ultrapowers. This is of no help whatsoever, as

modal formulas have at least one universal �rst-order quanti�er (8x).

3. Further presents will not be forth
oming: any �

1

1

-senten
e in R;= is

logi
ally equivalent to one of the form

8P

1

: : :8P

m

8x

1

: : :8x

n

9y

1

: : : 9y

n

' (' quanti�er-free)

So, all 
omplexity o

urs at this level already.
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Thus, other ways are to be developed for des
ribing M1 e�e
tively.

The method of substitutions. There is a 
ommon synta
ti
 pattern to many

examples of �rst- order de�nable modal formulas: 
ertain ante
edents, in


ombination with 
ertain 
onsequents enable one to `read o�' equivalents.

Starting from the earlier examples �p ! p;��p ! ��p, one may noti
e

su

essively that 
onjun
tions and disjun
tions are admissible as well; as

long as one avoids �� or �(: : : _ : : :) 
ombinations to the left.

A typi
al instan
e is the following result from

[

Sahlqvist, 1975

℄

:

THEOREM 48. Modal formulas '!  are in M1, provided that

1. ' is 
onstru
ted from the forms p;�p;��p; : : : ;?;>, using only ^;_

and �, while

2. ' is 
onstru
ted from proposition letters, ?;>, using ^;_;� and �.

This theorem a

ounts for 
ases su
h as

�(p ^�q)! �(p _ �p _ q)

whi
h de�nes

8xy(Rxy ! 8z(Rxz ! (z = y _Rzy _ Ryz))):

Proof. The heuristi
s of the Introdu
tion works: for ea
h `minimal veri�-


ation' of the ante
edent, the 
onsequent must hold. For further te
hni
al

information (e.g. the monotoni
ity of the 
onsequent is vital too), 
f.

[

van

Benthem, 1976

℄

, whi
h also 
ontains generalisations of the theorem. �

That �� is fatal, is shown by the M
Kinsey Axiom. The Fine Axiom

��(p _ q) ! �(�p _ �q) does the same for �(: : : _ : : :). Finally, the L�ob

Axiom (in the equivalent form �p! �(p^�:p)) demonstrates the danger

of `negative' parts in the 
onsequent. Thus, in a sense, we have a `best

result' here.

Noti
e that the 
lass des
ribed is rather typi
al for modal axioms, whi
h

often assume this impli
ational form. Indeed, the most 
hara
teristi
 modal

axioms are even simply redu
tion prin
iples of the form

(modal operators) p! (modal operators) p.

THEOREM 49. A modal redu
tion prin
iple is in M1 if and only if it is

of one of the following four types:

1.

~

Mp! � : : :�� : : :�p,

2. � : : :�� : : :�p!

~

Mp,

3. � : : : (i times) : : :�

~

Mp!

~

N

~

Mp (where length (

~

N) = i),
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4.

~

N

~

Mp! � : : : (i times) : : :�

~

Mp (where length (

~

N) = i).

Proof. Cf.

[

van Benthem, 1976

℄

for the rather laborious argument. �

Thus at least, important parts ofM1 have been 
lassi�ed. This parti
ular

theorem �nishes a proje
t begun in

[

Fit
h, 1973

℄

.

A general method of proof for Theorem 48 
onsists of the method of

substitutions, introdu
ed in the introdu
tion. Here we shall merely illustrate

how it works: a justi�
ation may be found in

[

van Benthem, 1983

℄

.

EXAMPLE 50. Write ��p! ��p as

8P8x(9y(Rxy ^ 8z(Ryz! Pz))! 8u(Rxu! 9v(Ruv ^ Pv))):

Rewrite this to the equivalent

8xy(Rxy ! 8P (8z(Ryz! Pz)! 8u(Rxu! 9v(Ruv ^ Pv)))):

Substitute for P : �z:Ryz, to obtain

8xy(Rxy ! (8z(Ryz! Ryz)! 8u(Rxu! 9v(Ruv ^ Ryv)))):

This is equivalent to

8xy(Rxy ! 8u(Rxu! 9v(Ruv ^Ryv)));

i.e. dire
tedness (
on
uen
e).

Write �(p ^�q)! �(p _ �p _ q) as

8xy(Rxy ! 8P ((Py ^ 8z(Ryz ! Qz))! 8u(Rxu! (Pu_

_9v(Ruv ^ Pv) _Qu)))):

Substitute for P : �z�y=z, and for Q : �z:Ryz, to obtain (an equivalent of)

the earlier 
onne
tedness.

Write �(p ^�p)! p as

8xy(Rxy ! 8P ((Py ^ 8z(Ryz! Pz))! Px)):

Substitute for P : �z �y=z _ Ryz, to obtain (an equivalent of)

8xy(Rxy ! (Ryx _ y = x)):

Write ��p! �p as

8x8P (8y(Rxy! 8z(Ryz ! Pz))! 8u(Rxu! Pu)):
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Substitute for P : �z � R

2

xz; i.e. �z � 9v(Rxv ^ Rvz), to obtain (modulo

logi
al equivalen
e)

8x8u(Rxu! 9v(Rxv ^ Rvu));

i.e., density of the alternative relation.

In general, substitutions will be disjun
tions of forms R

n

yz(n = 0; 1; 2; : : :);

the 
ases 0, 1 standing for =; R, respe
tively.

Despite these advan
es, the range of the method of substitutions has it

limits. To see this, here is an example of a formula in M1 with a quite

di�erent spirit.

EXAMPLE 51. The 
onjun
tion of the K4.1 axioms, i.e. �p ! ��p,

��p! ��p is in M1.

Proof. �p ! ��p de�ned transitivity and, therefore, it suÆ
es to prove

the following

Claim. On the transitive Kripke frames, M
Kinsey's Axiom de�nes atom-

i
ity:

8x9y(Rxy ^ 8z(Ryz! z = y)):

From right to left, the impli
ation is 
lear. From left to right, however, the

argument runs deeper.

Assume that F is a transitive frame, 
ontaining a world w 2W su
h that

8y(Rwy ! 9z(Ryz ^ z 6= y)):

Using some suitable form of the Axiom of Choi
e (it is as serious as this

. . . ), �nd a subset X of w's R-su

essors su
h that

1. 8y 2 W (Rwy ! 9z 2 XRyz)

2. 8y 2 W (Rwy ! 9z 2 (W �X)Ryz).

Setting V (p) = X then falsi�es the M
Kinsey Axiom at w. �

This 
omplexity is unavoidable. We 
an, for example, prove

THEOREM 52. (�p ! ��p) ^ (��p ! ��p) is not equivalent to any


onjun
tion of its �rst-order substitution instan
es.

Proof. Here is where the earlier general frame hN;�, �nite and 
o�nite

setsi 
omes in. First, an ordinary model-theoreti


Observation. The �nite and 
o�nite sets of natural numbers are pre
isely

those �rst-order de�nable in hN;�i, possibly using parameters.

Now, it was noti
ed already in Se
tion 2.1 that the above formula holds

in this general frame | and hen
e so do all its �rst-order substitution
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instan
es. But the latter also hold in the full frame hN;�i. So, if our

formula were de�ned by them, it would also hold in the full frame: whi
h

it does not. �

So, although he method of substitutions 
arves out a large, and important

part of M1, it does not fully des
ribe the latter 
lass.

The 
omplexity of M1. The method of substitutions des
ribes a part of M1

whi
h may even be shown to be re
ursively enumerable (
f.

[

van Benthem,

1983

℄

). But M1 over
owed its boundaries. Indeed, there are reasons to

believe that M1 is not re
ursively enumerable | probably not even arith-

meti
ally de�nable. For, in the general 
ase of �

1

1

-senten
es, we know

THEOREM 53. First-order de�nability of �

1

1

-senten
es is not an arithmeti-


al notion.

Proof. (Cf.

[

van Benthem, 1983

℄

or the Higher Order Logi
 Chapter in

Volume 1 of this Handbook.) �

Other topi
s. Various other questions had to be omitted here. At least,

one example should be mentioned, viz. that of relative 
orresponden
es. On

several o

asions, a restri
tion to transitive Kripke frames produ
ed inter-

esting shifts: global and lo
al �rst-order de�nability 
ollapse, the M
Kinsey

Axiom be
omes elementary, et
. A sample result is in

[

van Benthem, 1976

℄

.

THEOREM 54. On the transitive Kripke frames, all modal redu
tion prin-


iples are �rst-order de�nable.

Thus, `pre-
onditions' on the alternative relation are worth 
onsidering.

In areas su
h as tense logi
, our temporal intuitions even require them.

2.3 Modal Algebra

An alternative to Kripke semanti
 stru
tures is o�ered by so-
alled `modal

algebras', in whi
h the modal language may be interpreted as well. The

realm of modal algebras has its own mathemati
al stru
ture, with subalge-

bras, dire
t produ
ts and homomorphi
 images as key notions. Now, ba
k-

and-forth 
onne
tions may be established between these two realms, through

the Stone Representation. A 
ategorial parallel emerges between the above

triad of notions and the basi
 triad of Se
tion 2.1: zigzag-morphi
 images,

disjoint unions and generated subframes, respe
tively. Moreover, the earlier

`possible worlds 
onstru
tion' for ultra�lter extensions will be seen to arise

naturally from the Stone Representation.

The algebrai
 perspe
tive. As in other areas of logi
, the modal propositional

language may also be interpreted in algebrai
 stru
tures. These assume the
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form of a Boolean Algebra (needed to interpret the propositional base)

enri
hed with a unary operation, in order to 
apture the modal operator.

DEFINITION 55. A modal algebra is a tuple

A = hA; 0; 1;+;

0

; �i;

where hA; 0; 1;+;

0

i is a Boolean Algebra and � is a unary operator satisfying

the equations

1. (x+ y)

�

= x

�

+ y

�

2. 0

�

= 0.

Noti
e that � 
orresponds to possiblity (�): the ne
essity 
hoi
e would

have yielded equations

1

0

. (x � y)

�

= x

�

� y

�

2

0

. 1

�

= 1.

This algebrai
 perspe
tive at on
e yields a 
ompleteness result.

THEOREM 56. A modal formula is derivable in the minimal modal logi
 K

if and only if it re
eives value 1 in all modal algebras under all assignments.

The 
on
ept of evaluation at the ba
k of this goes as follows. Let V

assign A-values to proposition letters. Then, V may be lifted to all formulas

through the re
ursive 
lauses

V (:') = V (')

0

V (' _  ) = V (') + V ( )

V (�') = V (')

�

; et
.

Thus, a modal formula is read as a `polynomial' in

0

;+; �.

The proof of the 
ompleteness Theorem 56 
omes 
heap. First, one shows

by indu
tion on the length of proofs that all K-theorems are `polynomials

identi
al to 1'. Conversely, one 
onsiders the so-
alled Lindenbaum Alge-

bra of the modal language, whose elements are equivalen
e 
lasses of K-

provably equivalent modal formulas, with operations de�ned in the obvious

way through the 
onne
tives. The value 1 in this algebra is awarded to all

and only the K-theorems: hen
e non- theorems are disquali�ed as polyno-

mials identi
al to 1.

Su
h uses of modal algebra are a joy to some (
f.

[

Rasiowa and Sikorski,

1970

℄

); to others they show that the algebrai
 approa
h is merely `syntax in

disguise'. After all, the above result may be viewed as a re-axiomatisation

of K, no more. For instan
e, noti
e that the hard work in the usual (Henkin

type) model-theoreti
 
ompleteness theorems 
onsists in showing that non-

theorems 
an be refuted in set-theoreti
 (Kripke)-models. To put this into

a slogan, whi
h will be
ome fully 
omprehensible at the end of this 
hapter:
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HENKIN = LINDENBAUM + STONE.

Nevertheless, the algebrai
 perspe
tive has further uses, whi
h are be-

ing dis
overed only gradually. First, noti
e that it o�ers a more general

framework than Kripke semanti
s. For the above Lindenbaum 
onstru
tion

to work, one only needs the prin
iple of Repla
ement of Equivalents; i.e.

modally, 
losure under the rule

if ` '$  ; then ` �'$ � :

(Algebrai
ally, this just amounts to an identity axiom.)

The above additional equations represent optional further 
hoi
es.

But even in the realm of the above modal algebra, there exists a whole

dis
ipline of universal algebrai
 notions and results, whi
h turn out to be

appli
able to modal logi
 in surprising ways. Two instru
tive referen
es

are

[

Goldblatt, 1979

℄

and

[

Blok, 1976

℄

. Here we shall only skim the surfa
e,

taking what is needed for the modal de�nability results of Se
tion 2.4. Thus,

we shall need the following three fundamental algebrai
 notions.

DEFINITION 57. A

1

is a modal subalgebra of A

2

if A

1

� A

2

, and the

operations of A

2


oin
ide with those of A

1

on A

1

.

DEFINITION 58. The dire
t produ
t �fA

i

j i 2 Ig of a family of modal

algebras fA

i

j i 2 Ig 
onsists of all fun
tions in the Cartesian produ
t

�fA

i

j i 2 Ig, with operations de�ned 
omponent-wise:

f + g = (f(i) +

i

g(i))

i

; f

�

= (f(i)

�

i

)

i

; et
.

DEFINITION 59. A fun
tion f is a homomorphism from A

1

to A

2

if it

respe
ts all operations:

f(a+

1

b) = f(a) +

2

f(b); f(a

�

1

) = f(a)

�

2

; et
.

These three operations are fundamental in algebra be
ause they 
har-

a
terise algebrai
 equational de�nability. This is the 
ontent of `Birkho�'s

Theorem':

A 
lass of algebras is de�ned by the validity of a 
ertain set of algebrai


equations (under all assignments) if and only if that 
lass is 
losed under the

formation of subalgebras, dire
t produ
ts and homomorphi
 images. (For

a proof, 
f.

[

Gr�atzer, 1968

℄

.) There is mu
h more to Universal Algebra, of


ourse, but this is what we shall need in the sequel.

Kripke frames indu
e modal algebras. In order to tap the above resour
es,

a systemati
 
onne
tion is needed between the earlier semanti
 stru
tures

and modal algebras.

To begin with, ea
h Kripke frame F = hW;Ri gives rise to the following

modal algebra

A(F ) = hP (W );?;W;[;�; �i
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where � is the modal proje
tion of 2.1:

�(X) = fw 2W j 9v 2 XRwvg (X �W ):

As for truth of modal formulas, it is immediate that a modal formula '

is true in F if and only if its 
orresponding modal equation a(') is identi
al

to 1 in the algebra A(F ). For instan
e, truth of

��(p _ q)! �(�p _�q);

or equivalently

:�:�:(p _ q) _ �(:�:p _ :�:q)

is equivalent to the validity of the identity

(x+ y)

0

�

0

�

0

+ (x

0

�

0

+ y

0

�

0

)

�

= 1:

Thus, A maps single Kripke frames to modal algebras. But what happens

to the 
hara
teristi
 modal 
onne
tions between frames, as in Se
tion 2.1?

We shall take them one by one.

First, if F

1

is a generated subframe of F

2

, then the obvious restri
tion

map sending X � W

2

to X \W

1

is a modal homomorphism from A(F

2

)

onto A(F

1

). (The key observation is that R

2

-
losure of W

1

guarantees

homomorphi
 respe
t for the proje
tion operator �.) Next, the algebra

indu
ed by a disjoint union �fF

i

j i 2 Ig is isomorphi
, in a natural way,

to the dire
t produ
t �fA(F

i

) j i 2 Ig. One simply asso
iates a set X of

worlds in the former with the fun
tion (X \W

i

)

i2I

.

Finally, and this happy ending will be predi
table by now, if F

2

is a

zigzag-morphi
 image of F

1

through f , then the stipulation

A(f)(X) =

def

f

�1

[X ℄

de�nes an isomorphism between A(F

2

) and a subalgebra of A(F

1

). (This

time, the two relational 
lauses in the de�nition of `zigzag morphism' ensure

that A(f) respe
ts proje
tions.) Noti
e the reversal in dire
tion in the latter


ase: this is a 
ommon phenomenon in these `
ategorial 
onne
tions'.

Modal algebras indu
e Kripke stru
tures. There is a road ba
k. Conversely,

modal algebras may be `represented' as if they had 
ome from an underlying

base frame. The idea of this so-
alled Stone Representation is as follows.

(It is due to J�onsson and Tarski around 1950.)

Worlds w are to be 
reated su
h that an element a in the algebra may

be thought of as the set of w `in a'. But then, the desired 
orresponden
e

between algebrai
 and set-theoreti
 operations be
omes:

no set w is in 0, all sets w are in 1;

w is in a+ b i� w is in a or w is in b;

w is in a

0

i� w is not in a:
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Thus, as w sear
hes through A `where it belongs', it pi
ks out a set X su
h

that

0 62 X; 1 2 X;

a+ b 2 X i� a 2 X or b 2 X;

a

0

2 X i� a 62 X:

Su
h sets X are 
alled ultra�lters on A. Thus, let

W (A) = all ultra�lters on A:

A suitable alternative relation may be found through the same motivation

as in Se
tion 2.1.

hw; vi 2 R(A) i� for ea
h a 2 A; if a 2 v; then a

�

2 w:

So, ea
h modal algebra A indu
es a Kripke frame

F (A) = hW (A); R(A)i:

This time, truth in A and truth in F (A) need not 
orrespond, however. For,

F (A) may harbour many more sets of worlds than just those 
orresponding

to the elements a of the algebra | and hen
e it 
ontains additional potential

falsi�ers. Thus, the impli
ation goes only one way. The equation t

1

= t

2

is

valid in A, where the polynomials t

1

; t

2


orrespond to the modal formulas

'

1

; '

2

, when '

1

$ '

2

is true in F (A). A 
omplete equivalen
e is only

restored by 
hanging F (A) to the general frame

F (A) = hW (A); R(A);W(A)i;

where W(A) 
onsists of all sets of the form

fw 2W (A) j a 2 wg (a 2 A):

So, what we now get is a two-way 
onne
tion between modal algebras and

general frames | and here lies the genesis of the latter notion. Two ways;

for, it is easily seen that all previous insights about the mapping A apply

equally well to general frames, instead of merely `full' frames.

Again, the interest of the present 
onne
tion may be gauged by seeing

what happens to the three fundamental algebrai
 operations when trans-

lated through F into Kripke-semanti
 terms.

First, if A

1

is a modal subalgebra of A

2

, then the obvious restri
tion map

sending ultra�lters w on A

2

to ultra�lters w\A

1

on A

1

is a zigzag morphism

from F (A

2

) onto F (A

1

).

Next, the dire
t produ
t of a family fA

i

j i 2 Ig has an F -image 
ontaining

the disjoint union �fF (A

i

) j i 2 Ig. No isomorphism need obtain, however:

a slight 
aw in our 
orresponden
e.
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But �nally, if A

2

is a homomorphi
 image of A

1

through f , then the map

F (f), de�ned by setting

F (f)(w) =

def

f

�1

[w℄;

sends A

2

-ultra�lters to A

1

-ultra�lters, in su
h a way that it embeds F (A

2

)

isomorphi
ally as a generated subframe of F (A

1

).

Ba
k and forth. So far, so good. Modal algebras indu
e general frames,

and these, in their turn, indu
e modal algebras. But, what happens on a

return-trip?

One 
ase is simple, by 
onstru
tion:

THEOREM 60. A(F (A)) is isomorphi
 to A.

The 
onverse dire
tion is more diÆ
ult. (F (A(G)) need not be isomorphi


to F , for general frames G. This is pre
isely what we noted in 
onne
tion

with `possible world 
onstru
tions' in Se
tion 2.1. But, as was announ
ed

there, it 
an be as
ertained whi
h 
onditions on general frames G do guar-

antee su
h an isomorphism.

DEFINITION 61. A general frame G = hW;R;Wi is des
riptive if it satis-

�es Leibniz' Prin
iple for identity:

1. 8xy 2W (x = y $ 8Z 2W(x 2 Z $ y 2 Z))

as well as Leibniz' Prin
iple for alternatives:

2. 8xy 2W (Rxy $ 8Z 2W(y 2 Z ! x 2 �(Z))):

Moreover, it should satisfy Saturation:

3. ea
h subset ofW with the �nite interse
tion property has a non-empty

total interse
tion.

The following basi
 result is in

[

Goldblatt, 1979

℄

.

THEOREM 62. F (A(G)) is isomorphi
 to G if and only if G is des
riptive.

The standard examples of des
riptive frames are the general frames de-

rived from Henkin models in modal 
ompleteness proofs, by taking for W

the range of modally de�nable sets of worlds. It may also be noti
ed that

general frames G whi
h are themselves of the form F (A) are always de-

s
riptive. Thus, for 
ertain theoreti
al purposes, the `proper' bije
tive 
or-

responden
e may be said to be that between modal algebras and des
riptive

frames, whi
h are `stable' under the possible worlds 
onstru
tion des
ribed

in Se
tion 2.1.

The 
ategorial 
onne
tion. The above 
onne
tions between modal algebras

and Kripke stru
tures run deeper than might appear at �rst sight. The
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general pi
ture is that of two mathemati
al worlds, or `
ategories', whi
h

turn out to be quite similar in stru
ture:

hModal algebras, homomorphisms intoi

hGeneral frames, zigzag morphisms intoi:

The earlier 
onsiderations may be summed up in the following two s
hemata:

f

G

1

G

2

A(f)

A(G

1

) A(G

2

)

f

A

1

A

2

F (f)

F (A

1

) F (A

2

)

So, A;F are what a 
ategory theorist would 
all `
ontravariant' fun
tors.

Therefore, information 
on
erning the one 
ategory may sometimes be trans-

ferred to the other. Thus, a `
ategorial transfer' arises, of whi
h we mention

a few phenomena. (The following passage 
an be skipped by readers unfa-

miliar with Category Theory or Universal Algebra).

The 
ategory of modal algebras has among its internal limit 
onstru
-

tions the formation of terminals (viz. the degenerate single point algebras)

and pull-ba
ks. Hen
e, it is 
losed under �nite limits in general. Through

A;F , we may derive that the 
ategory of general frames is 
losed under

�nite 
o-limits, spe
i�
ally under initials (allowing the empty frame) and

push-outs. (In this 
onne
tion, the `adjointness' behaviour of A;F may be

investigated.) The preservation behaviour of modal formulas under su
h

limit 
onstru
tions remains to be studied.

An algebrai
ally well-motivated notion is that of a free algebra. What


orresponds to these in the realm of general frames? A surprising 
onne
-

tion with modal 
ompleteness theory appears. The Stone representations

of free algebras are essentially Henkin general frames (proposition letters


orrespond to free generators of the algebra). The latter stru
tures were


hara
terised semanti
ally in

[

Fine, 1975

℄

, in terms of 
ertain `universal em-

bedding' properties with respe
t to zigzag morphisms. This turns out to

follow dire
tly, as the dual of the `homomorphi
 extension' de�nition of free

algebras.

Our �nal example 
on
erns another algebrai
 
lassi
, the notion of a

subdire
tly irredu
ible modal algebra (used with great versatility in

[

Blok,

1976

℄

). These turn out to 
orrespond almost (not quite) to rooted gen-

eral frames whose domain 
onsists of one root world together with its R-

su

essors, their R-su

essors, et
etera. The famous Birkho� Theorem stat-

ing that

Every (modal) algebra is a subdire
t produ
t of subdire
tly ir-

redu
ibles,
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may then be 
ompared with the simple Kripke-semanti
 observation that

Every general frame is a zigzag-morphi
 image of the disjoint

union of its rooted generated subframes.

These examples will have made it 
lear how the 
ategorial 
onne
tion be-

tween modal algebra and possible worlds semanti
s 
an be a very rewarding

perspe
tive.

2.4 From Classi
al to Modal Logi


Reversing the dire
tion of the earlier 
orresponden
e study (Se
tion 2.2),

there arises

DEFINITION 63. P1 is the set of all �rst-order senten
es in R;= for whi
h

a modal formula exists de�ning the same 
lass of Kripke frames.

All earlier examples of formulas in M1 also provide examples for P1, of


ourse. Therefore, here are some more general results straightaway.

Some methods exist for proving the existen
e of modal de�nitions.

THEOREM 64. Ea
h �rst-order senten
e of the form 8xU', where U is a

(possibly empty) sequen
e of restri
ted universal quanti�ers, of the form

8u(Rvu! (with u; v distin
t)

followed by a matrix ' of atomi
 formulas u = v;Ruv 
ombined through

^;_, belongs to P1.

Proof. The relevant 
ombinatorial argument is based on the heuristi
s

explained in the introdu
tion. Cf.

[

van Benthem, 1976

℄

. �

Some examples of formulas of this type are

re
exivity: 8xRxx; transitivity: 8x8y(Rxy ! 8z(Ryz! Rxz))

and


onne
tedness: 8x8y(Rxy ! 8z(Rxz ! (Rzy _ Ryz))):

Disproving de�nability pro
eeds through 
ounter-examples to preserva-

tion behaviour.

EXAMPLE 65.

1. 9xRxx is outside of P1.

It holds in hf0; 1g; fh1; 1igi; but not in its generated subframe hf0g;?i.

2. 8x8yRxy is outside of P1.
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It is preserved under generated subframes, but not under disjoint unions.

On hf0g; fh0; 0igi and hf1g; fh1; 1igi, the relation is universal; but not on

hf0; 1g; fh0; 0i; h1; 1igi.

3. 8x:Rxx is outside of P1.

It is preserved under generated subframes and disjoint unions; but not under

zigzag-morphi
 images, witness the Introdu
tion.

4. 8x9y(Rxy ^ Ryy) is outside of P1.

It is preserved under all three operations mentioned up till now, but not

inversely under the formation of ultra�lter extensions. It 
an be shown to

hold in ue(hN;<i), while failing in hN;<i.

An important general result is 
asting its shadows here

[

Goldblatt and

Thomason, 1974

℄

:

THEOREM 66. An elementary 
lass of Kripke frames is modally de�nable

if and only if it is 
losed under the formation of generated subframes, disjoint

unions and zigzag-morphi
 images, while its 
omplement is 
losed under the

formation of ultra�lter extensions.

Proof. This argument is given in heuristi
 outline here, as it is one of the

most elegant appli
ations of algebrai
 results in modal semanti
s.

Evidently, modally de�nable 
lasses of Kripke frames exhibit all the listed


losure phenomena: the surprising dire
tion leads from `
losure' to `de�n-

ability'.

First, noti
e that one 
losure 
ondition 
an be added for free, by an

earlier result. Theorem 30 implies that our 
lass R of frames is itself 
losed

under the formation of ultra�lter extensions: if F 2 R, then the relevant

elementary equivalent F

0

2 R (R being elementary), and hen
e so is its

zigzag-morphi
 image ue(F ).

Now the obvious strategy is to show that R equals MOD(Th

mod

(R)),

i.e. the 
lass of Kripke frames verifying ea
h modal formula whi
h is valid

throughout R. The nontrivial in
lusion here requires us to show that

if F

�

� Th

mod

(R); then F

�

2 R; for every Kripke frame F

�

:

And here is where an ex
ursion into the realm of modal algebra will help.

F

�

veri�es Th

mod

(R), and hen
e A(F

�

) veri�es the equational theory of the


lass fA(G) j G 2 Rg. (Re
all the earlier 
orresponden
e between modal

formulas and polynomials.) By Birkho�'s Theorem, in a suitable version,

this implies that A(F

�

) must be 
onstru
tible as a homomorphi
 image of

some subalgebra of some dire
t produ
t �fA(G

i

) j i 2 Ig, with G

i

2 R. In

a pi
ture,
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surje
tive

A(F

�

) A � �fA(G

i

) j i 2 Ig:

homomorphism

Now the latter algebra is isomorphi
 to A(�fG

i

j i 2 Ig), by the earlier

duality. Moreover, the latter disjoint union belongs to R | by the given


losure 
onditions. So, the pi
ture be
omes, for some G 2 R:

surje
tive

A(F

�

) A � A(G):

homomorphism

Now, the transformation F turns this into the 
orresponding row

embedding as surje
tive

FA(F

�

) F (A) FA(G):

generated subframe zigzag morphism

But then, �nally, the following walk through the diagrams suÆ
es. G 2

R) FA(G) = ue(G) 2 R (by the above observation)) F (A) 2 R (
losure

under zigzag images) ) FA(F

�

) 2 R (
losure under generated subframes)

) F

�

2 R (`anti-
losure' under ultra�lter extensions). �

A
tually, this result does not yet 
hara
terise P1, as it talks about modal

de�nability by any set, �nite or in�nite. The additional strengthenings

needed for zeroing in on P1 are hardly enlightening, however.

The result also says a little bit more. Adding 
losure under ultra�lter

extensions, while removing the 
ondition of elementary de�nability, yields

a 
hara
terisation of those 
lasses of Kripke frames de�nable by means of

a 
anoni
al modal logi
 in the sense of the Introdu
tion (i.e. one whi
h is


omplete with respe
t to its Henkin frames). Moreover, the above proof

heuristi
s may also be used to formulate a general 
losure 
ondition on


lasses of Kripke frames ne
essary and suÆ
ient for de�nability by means

of just any set of modal formulas (`SA-
onstru
tions'; 
f.

[

Goldblatt and

Thomason, 1974

℄

).

As with the earlier ultrapower 
hara
terisation of M1, the above 
har-

a
terisation gives no e�e
tive information 
on
erning the formulas in P1.

What is needed are `preservation theorems' giving the synta
ti
 
ash value

of the given four 
losure 
onditions. Several of these have been given in

[

van

Benthem, 1976

℄

, extending earlier results, e.g. of Feferman and Kreisel.

Here is an idea. Preservation under generated subframes allows only

formulas 
onstru
ted from atomi
 formulas and their negations, using

8;^;_ as well as restri
ted existential quanti�ers 9v(Ruv^ (u; v

distin
t).
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Preservation under disjoint unions admits only one single universal quanti-

�er in front: all others are to be restri
ted to the form 8v(Ruv !). Finally,

preservation under zigzag images forbids the negations, and we are left with

THEOREM 67. A �rst-order senten
e is preserved under the formation

of generated subframes, disjoint unions and zigzag-morphi
 images if and

only if it is equivalent to one of the form 8x�(x), where �(x) has been


onstru
ted from atomi
 formulas using only 
onjun
tion, disjun
tion and

restri
ted quanti�ers.

Proof. By elementary 
hain 
onstru
tions, as in

[

Chang and Keisler, 1973,

Chapter 3.1

℄

. �

For preservation under ultra�lter extensions, only some partial results have

been found. (After all, the 
lass of senten
es preserved under su
h a 
omplex

operation need not even be e�e
tively enumerable.)

As for the total 
omplexity of P1, this may well be 
onsiderable | as

was the 
ase with M1. Are the two 
lasses perhaps re
ursive in ea
h other?

2.5 Modal Predi
ate Logi


As in mu
h te
hni
al work in this area, modal propositional logi
 has been

studied up till now. Modal predi
ate logi
, however important in philo-

sophi
al appli
ations, is mu
h less understood. (Cf. Chapter 2.5 in this

Handbook.) Nevertheless, in the 
ase of Corresponden
e Theory, an ex
use

for the negle
t may be found in Theorem 69 below.

The un�nished state of the art shows already in the fa
t that no 
om-

monly a

epted notion of semanti
 stru
ture, or truth de�nition exists.

Hen
e, we �x one parti
ular, reasonably motivated 
hoi
e as a basis for

the following sket
h of a predi
ate-logi
al variant of the earlier theory.

The language is the ordinary one of predi
ate logi
, with added modal

operators. Stru
tures are tuples

M = hW;R;D; V i;

where the skeleton hW;R;Di is a Kripke frame with a domain fun
tion D

assigning sets of individuals D

w

to ea
h world w 2 W . The valuation V

supplies the interpretation of the nonlogi
al vo
abulary at ea
h world.

The truth de�nition expli
ates the notion

`'(x) is true in M at w for d';

where the sequen
e d assigned to the free individual variables x 
omes from

D

w

. Its key options are embodied in the 
lauses for the individual quanti-

�ers: these are to range over D

w

, plus that for the modal operator:
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�'(x) is true at w for d if, for ea
h R-alternative v for w su
h

that d is in D

v

; '(x) is true at v for d.

Thus, ne
essity means `truth in all alternatives, where de�ned'.

As before, truth in a skeleton (at some world, for some sequen
e of in-

dividuals) means truth under all possible valuations. Again, in this way

modal axioms start expressing properties of R;D | and their interplay.

The relevant mat
hing `working language' on the 
lassi
al side will now

be a two-sorted one: one sort for worlds, another for individuals. Its basi


predi
ates are the two sortal identities, R between worlds, as well as the

sort-
rossing Exw : `x is in the domain of w', or `x exists at w'.

EXAMPLE 68. The Bar
an Formula 8x�Ax! �8xAx de�nes

8wv(Rwv ! 8x(Exv ! Exw)):

Proof. `(': Assume 8x�Ax at w, and 
onsider any R-alternative v. For

all d 2 D

v

; d 2 D

w

(by the given 
ondition), when
e �Ad holds at w |

and, hen
e, Ad holds at v.

`)': The Bar
an Formula will hold under the following parti
ular assign-

ment: V

u

(A; d) = 1 if Rwu and d 2 D

w

.

This V veri�es the ante
edent, and hen
e the 
onsequent. The relational


ondition follows. �

Thus, the Bar
an Formula expresses an intera
tion between R and D.

This is not a

idental. For pure R-prin
iples, we have the following 
onser-

vation result.

THEOREM 69. There exists an e�e
tive translation from senten
es ' of

modal predi
ate logi
 to formulas p(') of modal propositional logi
 su
h

that,

if ' is equivalent to some pure R;=-senten
e �, then p(') al-

ready de�nes � in the sense of Se
tion 2.2.

Proof. pmerely 
rosses out quanti�ers in some suitable way. For full details

(here and elsewhere) 
f.

[

van Benthem, 1983

℄

. �

Besides the Bar
an Formula, there are three further fundamental `de

re/de di
to inter
hanges'. One of these provides a new example of non-�rst-

order de�nability.

EXAMPLE 70.

1. �8xAx! 8x�Ax is universally valid,

2. 9x�Ax! �9xAx de�nes 8wv(Rwv ! 8x(Exw ! Exv)),
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3. �9xAx! 9x�Ax de�nes an essentially higher-order 
ondition onR;=

; E.

Despite the super�
ial resemblan
e to the M
Kinsey Axiom of se
tion

2.2., the proof for the latter result is quite di�erent from that of Example

43. Interested readers may noti
e that the above prin
iple holds in worlds

with a �nite 
hain of overlapping two-element su

essors:

f1; 2g; f2; 3g; f3; 4g; : : : ; fn� 1; ng; fn; n+ 1g:

But, it may fail in the presen
e of in�nite su
h 
hains, and then 
ompa
tness

lurks.

Further systemati
 re
e
tion on the above `positive' result yields a method

of substitutions again, with an out
ome like that of Theorem 48:

THEOREM 71. Formulas of the form ' !  , with ' 
onstru
ted from

atomi
 formulas pre�xed by a (possibly empty) sequen
e of 8;�, using only

^;_; 9 and �, and  
onstru
ted from atomi
 formulas using ^;_; 9;� as

well as 8;�, are all uniformly �rst-order de�nable.

The global mathemati
al 
hara
terisation of �rst-order de�nability re-

mains essentially the same in this area, when
e it is omitted here.

Something whi
h does not generalise easily, however, is the algebrai
 ap-

proa
h of Se
tion 2.3. This is an endemi
 problem in 
lassi
al (and intuition-

isti
) logi
 already: elegant algebraization stops at the gates of predi
ate

logi
. There 
ould be an area of `modal 
ylindri
 algebra' of 
ourse (
f.

[

Henkin et al., 1971

℄

), but none exists yet. (For an interesting related area,


f. the extension of modal propositional algebra to the modal program al-

gebra of dynami
 logi
ians (
f.

[

Kozen, 1979

℄

or the Dynami
 Logi
 
hapter

in volume 5 of this Handbook).) As a 
onsequen
e, we still la
k an elegant


hara
terisation of the modally de�nable fragment of the present two-sorted

�rst-order language.

What we do have, however, is su
h a 
hara
terisation for that same lan-

guage with parametrised predi
ate 
onstants A(w;�) for the predi
ate 
on-

stants A(�) of the modal predi
ate logi
. Thus, this is the appropriate

language for the �rst-order trans
ription of the above truth de�nition. The

Bar
an Formula, for example, be
omes

8x(Exw ! 8v((Ewv ^ Exv)! Avx))!

! 8v(Rwv ! 8x(Exv ! Avx)):

As in Theorem 18, two 
hara
teristi
 modal relations suÆ
e for 
har-

a
terising the modal trans
riptions among the 
lass of all formulas of this

language. In order to end on an optimisti
 note, here is the relevant result.

First, modal predi
ate logi
 knows generated submodels, just as in Se
-

tion 2.1. Moreover, the earlier zigzag relations may be enri
hed so as to in-


orporate individual ba
k-and-forth 
hoi
es, as in the Ehrenfeu
ht{Fra��ss�e

approa
h to �rst-order de�nability.
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DEFINITION 72. A zigzag 
onne
tion C between two models M

1

;M

2

re-

lates �nite sequen
es (w; x) of equal length (w a world, x a sequen
e of

individuals in the domain of w) in su
h a way that

1. all su
h sequen
es o

ur: those from M

1

in the domain, those from

M

2

in the range of C

2. if C(w; x)(v; y) and w

0

2 W

1

, with R

1

ww

0

; x 2 D

w

, then C(w

0

; x)(v

0

; y)

for some v

0

2 W

2

with R

2

vv

0

; y 2 D

v

0

,

and analogously in the opposite dire
tion (`world zigzag')

3. if C(w; x)(v; y) and d 2 D

w

,

then C(w; x� d)(v; y� e) for some e 2 D

v

,

and vi
e versa. (`individual zigzag')

4. if C(w; x)(v; y), then the map (x)

i

! (y)

i

is a partial isomorphism

between hD

w

; V

w

i and hD

v

; V

v

i.

Now, trans
riptions of modal formulas are invariant for generated sub-

models and zigzag 
onne
tions, in the obvious sense. E.g. the latter have

been made pre
isely in su
h a way that for modal ',

' is true at w for x i� ' is true at v for y, when C(w; x)(v; y):

THEOREM 73. A formula ' = '(w; x) of the two-sorted world/individual

language is (equivalent to the trans
ription of) a modal formula if and only

if it is invariant for generated submodels and zigzag 
onne
tions.

Proof. This follows from the main proof in

[

van Benthem, 1981b

℄

. �

On the whole, ex
iting te
hni
al results are yet s
ar
e in modal predi
ate

logi
 | and Corresponden
e Theory is no ex
eption.

2.6 Higher-Order Corresponden
e

Modal formulas de�ne se
ond-order (�

1

1

) 
onditions on the alternative re-

lation in all 
ases, and �rst-order 
onditions in some. In the perspe
tive of

abstra
t model theory, two possible generalisations arise here.

Instead of the �rst-order target language, one may 
onsider suitable ex-

tensions. For instan
e, in Theorem 37, the relevant relational 
ondition

was de�nable in L

!

1

;!

: �rst-order logi
 with 
ountable 
onjun
tions and

disjun
tions. Not all modal formulas be
ome de�nable here, however. E.g.

L�ob's Axiom de�ned a form of well-foundedness, whi
h is known to be be-

yond L

!

1

!

, or indeed any language of the L

1!

-family. On the other hand,

this time for instan
e, the de�ning 
ondition is already in `weak se
ond-

order logi
' L

2

, allowing quanti�
ation over �nite sets of individuals. Thus,
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various wider 
lasses of de�nability 
ould be 
onsidered for modal formulas,

short of �

1

1

. And, in fa
t, even the latter 
ase itself is interesting. Whi
h

�

1

1

-senten
es, for example, admit of modal de�nitions?

Given the general la
k of semanti
 
hara
terisations for su
h higher logi
s,

su
h 
hara
terisations for their modal fragments are also diÆ
ult to obtain.

One observation might be that both L

!

1

!

and L

2

have the property of

invarian
e for partial isomorphism (
f. van Dalen's 
hapter in Volume 1 of

this Handbook). It will be of interest to study this preservation 
ondition

on modal formulas. In fa
t, no 
ounter-examples have been dis
overed yet;

but these do exist in tense logi
. (The rationals hQ;<i and the reals hR;<i

are a 
lassi
al example of partially isomorphi
 stru
tures, but there exists a

tense-logi
al formula expressing Dedekind Completeness, whi
h is valid on

the latter, though not on the former frame.)

On the other hand, the modal propositional language 
ould itself be

strengthened, notably by the introdu
tion of propositional quanti�ers 8p; 9p,

whi
h have o

urred in various pla
es in the literature (
f. Garson's 
hapter

in Volume 3 of this Handbook). Thus, e.g. 8p(��p ! 9q��q) would be-


ome an admissible formula, but also �9p�p! �8q��q. A
tually, there is

a 
hoi
e here, whether to allow the propositional quanti�ers in the s
ope of

modal operators or not. Hen
eforth, we 
onsider the se
ond, more restri
ted

option.

In the usual manner, a prenex hierar
hy arises here, with all propositional

quanti�ers in front, of whi
h the original modal formulas form the �

1

1

-part

(universal pre�x). The next simplest 
ases are �

1

1

(existential pre�x) and

�

1

2

. In fa
t, the latter has a reasonable motivation through the modal `rules'

mentioned in Se
tion 3.2 below.

It has been observed by Gabbay that the following rule de�nes irre
ex-

ivity of Kripke frames:

`if F � (�p ^ :p)! '[w℄ (with ' p-free), then F � '[w℄':

The general pattern here is that of `F � '[w℄ only if F �  [w℄', i.e. an

impli
ation of two �

1

1

-formulas, whi
h is �

1

2

. (It may be written either in

the form 89 or 98.)

A
tually, the above spe
i�
 example is already �

1

1

, as it amounts to

8pq((�p ^ :p) ! q) ! 8qq, i.e. 8p((�p ^ :p) ! ?) ! 8qq, i.e. 8p((�p ^

:p) ! ?) ! ?, i.e. 9p(�p ^ :p). Another relevant observation is that

impli
ations of the above form 8 ! 8, if �rst-order de�nable at all, already

have a �rst-order de�nable 
onsequent. We do not go into these spe
i�


matters here, but note a general issue.

As often in higher-order logi
, we are interested in hierar
hy results. For

instan
e, how mu
h power of �rst-order de�nability is added at ea
h stage?

It is evident that �

1

1

-de�nability adds essentially just all negations of the

(lo
al) prin
iples in P1 (
f. Se
tion 2.4), while �

1

2

adds 
onjun
tions and

disjun
tion a
ross P1 and the latter `mirror image'.
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Query. Does the se
ond-order prenex hierar
hy indu
e an as
ending 
or-

responding hierar
hy of modally de�nable �rst-order prin
iples about the

alternative relation?

This possibly as
ending hierar
hy 
annot exhaust all �rst-order prin
i-

ples, as higher-order modal formulas do retain one basi
 preservation prop-

erty: their lo
al truth is invariant under passing to generated subframes.

(The Generation Theorem 15 yields this 
onsequen
e all the way up, not

just for the original modal �

1

1

-formulas.) But then, we know what this

semanti
 
onstraint means in synta
ti
 terms for �rst-order formulas (
f.

[

van Benthem, 1976, Chapter 6

℄

). These will be the `almost-restri
ted' ones


onsisting of one universal quanti�er followed by a 
ompound of atomi


formulas with negation, 
onjun
tion and restri
ted quanti�ers 9y(Rxy^).

The other preservation properties of Se
tion 2.1 are lost, however. As

was observed earlier, irre
exivity (8x:Rxx) be
omes de�nable and, hen
e,

preservation under zigzag morphisms fails. Anti-preservation under ultra�l-

ter extensions fails, be
ause the earlier example 8x9y(Rxy ^Ryy) be
omes

de�nable as well. (A straightforward de�nition uses a propositional quan-

ti�er within a modal s
ope: �8p(�p ! p). But there is a nonembedded

substitute in the form of 9p(�p ^ 8q�(p! (�q ! q))).)

Thus, we arrive at the following

Question. Can every almost-restri
ted �rst-order formula 8x'(x) be de-

�ned at some level in the modal propositional quanti�er hierar
hy?

Using `simulation' of restri
ted �rst-order quanti�
ation by propositional

quanti�ers, one may indeed handle most obvious 
ases. Here is one illustra-

tion of the pro
edure

Example. Let '(x) be 9y(Rxy ^ 8z(Ryz ! (Rzz _ (Rzy ^ Rzx)))). The

idea is to de�ne fxg; fyg; fzg, in a sense, as far as ne
essary (i.e. on the set


onsisting of x, its R-, R

2

- and R

3

-su

essors) | and then to express all

desired relations between these by means of modal formulas:

9p

x

(p

x

^ 8q

x

(((p

x

^ q

x

) _ �(p

x

^ q

x

) _ ��(p

x

^ q

x

) _ ���(p

x

^

q

x

)) ! (�(p

x

! q

x

) ^ ��(p

x

! q

x

) ^ ���(p

x

! q

x

))) [this

makes p

x

unique to the extent indi
ated℄ ^ 9p

y

(�p

y

^ [same

uniqueness statement℄ ^ 8p

z

((�(p

y

^ �p

z

)^ [same uniqueness

statement℄) ! (8q

z

��(p

z

! (�q

z

! q

z

))[i.e. `Rzz'℄ _ ��(p

z

^

�p

x

^ �p

y

)[i.e. `Rzy ^ Rzx'℄)))).

A

ordingly, our 
onje
ture is that the above question has a positive

answer.

We 
on
lude with one further

Question. Does the addition of propositional quanti�ers within modal

s
opes add any power of expression?
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3 OTHER INTENSIONAL NOTIONS

Modal logi
 is only one bran
h, be it a paradigmati
 one, of intensional logi


in general. But also in other intensional areas, a Corresponden
e Theory is

possible. In some 
ases, the generalisation runs smoothly: existing notions

and results may be applied at on
e, or after only minor modi�
ation. A


ase in point is tense logi
, to be treated in Se
tion 3.1. More 
hallenging

generalisations arise when the relevant intensional semanti
s exhibit strong

pe
uliarities, diverging from the earlier modal 
ase. Sometimes, these as-

sume the form of pre-
onditions on the alternative relation; but maybe the

most important hurdle is when a restri
tion is pro
laimed on `admissible as-

signments'. Both phenomena o

ur in 
onditional logi
, the topi
 of Se
tion

3.2. That, even under su
h 
ir
umstan
es, an interesting Corresponden
e

Theory may remain, is shown by the example of intuitionisti
 logi
 in Se
-

tion 3.3.

These two new features do not exhaust the possible semanti
 variation.

One may also move to the interplay of di�erent kinds of intensional op-

erators, for instan
e, using 
orresponden
e to 
onne
t di�erent alternative

relations.

Example. In dynami
 logi
, two modal operators �;�

�

�gure, whi
h may

be provided with two alternative relations R;R

�

. (Re
all that

a

means

`after every su

essful 
omputation of a', while the intuitive meaning of

a

�

is to be: `after any �nite number of runs of a'.) Now, from a 
orresponden
e

point of view, the well-known Segerberg Axioms

�

�

p! �p

�

�

p! ��

�

p

�

�

(p! �p)! (�p! �

�

p)

de�ne pre
isely the 
ondition that

R

�


oin
ides with the transitive 
losure of R.

The very exoti
ness of this example to many readers may help to show that

Corresponden
e Theory is omnipresent.

No systemati
 developments will be given in the following se
tions. Their

purpose is to 
onvey an impression of notions and themes, through mainly

illustrative examples. Indeed, here is where the reader may wish to 
arry

on the tor
h herself.

3.1 Tense Logi


Traditionally, tense-logi
al stru
tures have been taken to be temporal orders

hT;<i, where T 
onsists of the points in Time, ordered by pre
eden
e <

(`earlier than', `before'). The simplest formal language to be 
hosen has
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been that of Prior, adding operators G (`it is always going to be'), H (`it

has always been') to some propositional base. We add F (`future'), P

(`past') as derived notions. (Cf. the 
hapter on Basi
 Tense logi
 in volume

6 for the ne
essary ba
kground in tense logi
.)

Of the amazing diversity of `ontologi
al' and `linguisti
' questions 
on-


erning this temporal semanti
s, only a few themes will be mentioned here.

(Cf.

[

van Benthem, 1985

℄

for a varied exploration.)

Explaining philosophi
al di
ta. In his famous paper `The Unreality of Time',

the philosopher M
Taggart enun
iated several temporal prin
iples. One of

these reads

[

M
Taggart, 1908

℄

:

\If one of the determinations past, present and future 
an ever

be applied to (an event), then one of them has always been and

always will be appli
able, though of 
ourse not always the same

one."

When translated into Priorean axioms, this be
omes a list:

1. Pq ! H(Fq _ q _ Pq)

2. Pq ! GPq

3. q ! HFq

4. q ! GPq

5. Fq ! HFq

6. Fq ! G(Fq _ q _ Pq).

What do these prin
iples mean? The answer may be obtained through the

method of substitutions (�tted to the temporal 
ase | but su
h generali-

sations will be presupposed ta
itly hen
eforth).

EXAMPLE 74.

1. de�nes left-
onne
tedness: 8x8y < x8z < x(y < z _ z < y _ y = z);

2. de�nes transitivity: 8x8y < x8z > x y < z,

3. de�nes >,

4. de�nes >.

If G;H had been interpreted through di�erent relations <

G

; <

H

, then (3)

and (4) would have expressed that <

H

is the 
onverse relation of <

G

.

5. de�nes transitivity again: 8x8y > x8z < x z < y,
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6. de�nes right-
onne
tedness: 8x8y > x8z > x(y < z _ z < y _ y = z).

Thus, the M
Taggart temporal pi
ture is one of linear 
ow.

An in
ompleteness theorem. Simple transfer of earlier modal results es-

tablishes the seminal in
ompleteness result of

[

Thomason, 1972

℄

, in a very

simple version.

THEOREM 75. The tense logi
 axiomatised by

H(Hp! p)! Hp (L�ob's Axiom)

GFp! FGp (M
Kinsey Axiom)

is in
omplete.

Proof. Spe
i�
ally, this logi
 holds in no frame | and yet it is not in
on-

sistent.

First, as to the former statement, re
all from Se
tion 2.2 that

1. L�ob's Axiom de�nes transitivity of > and well-foundedness of <.

By the former, < is transitive as well (transitivity is `independent of the

temporal dire
tion', or isotropi
 (
f.

[

van Benthem, 1985

℄

)). Thus, in this

spe
ial 
ase, Example 51 applies, and we have

2. M
Kinsey's Axiom de�nes atomi
ity: 8x9y > x8z > y z = y.

A 
onsequen
e of the latter property is 8x9y > x y < y (
f. Example

65(4)). So, the temporal order must 
ontain instantaneous loops : : : < y <

y < y < : : :, whi
h 
ontradi
ts well-foundedness. Therefore, our logi
 holds

in no frame.

Nevertheless, it does hold in a general frame, viz. an earlier example from

Se
tion 2.1: hN;<;Wi, with

W = fX � N j X is �nite or N �X is �niteg:

The reason was that refutations for the M
Kinsey Axiom are no longer

`admissible', as these involve in�nite alterations. (Thomason gives a spe
u-

lation at this point 
on
erning the Se
ond Law of Thermodynami
s: `event

patterns stabilise'.) But then, the logi
 
annot be in
onsistent: its K-

theorems hold in all general frames where it is valid. �

Tense-logi
al axioms for the temporal order. In

[

van Benthem, 1985

℄

, the

following fundamental axioms are derived for any temporal order indu
ed

by a 
omparative (in the linguisti
 sense) `earlier than'.

1. irre
exivity: 8x :x < x (`no vorti
es in Time')
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2. transitivity: 8x8y > x8z > y z > x (`
ow')

3. almost-
onne
tedness: (`arrows are 
omparative yard sti
ks')

8x8y > x8z (x < z _ z < y)

A version of the latter prin
iple may also be found as the key axiom in

Leibniz' relational theory of Spa
e-Time (
f.

[

Winnie, 1977

℄

).

Whi
h tense-logi
al axioms 
orrespond? From Se
tion 2.4, we know that

(1) is unde�nable, (2) yields Gp ! GGp, while (3) just fails to fall under

Theorem 67. What the latter result does give is a 
orresponden
e between

8x8y > x8z > y8u > x(y < u _ u < z)

and

(F (p ^ Fq) ^ Fr)! (F (p ^ Fr) _ F (r ^ Fq)):

Another example 
on
erns parti
ular temporal orders. One 
an never

hope to fully de�ne su
h frames 
ategori
ally by their tense-logi
al theories.

For, by the Generation Theorem, tense-logi
al formulas 
annot distinguish

between one single, or several parallel 
ows of Time | whi
h latter pi
ture

is so familiar from 
ontemporary s
ien
e �
tion. Still, if disjoint unions of

frames are disregarded, we have

THEOREM 76. hN;<i is de�ned 
ategori
ally by the axioms

H(Hp! p)! Hp

Pp! H(Fp _ p _ Pp)

Fp! G(Fp _ p _ Pp)

FT

G(Gp! p)! (FGp! Gp)

The proof is omitted here.

But, e.g. the integers hZ;<i 
annot be thus de�ned; as the 
ontra
tion to

a single point remains a zigzag morphism preserving their theory. (hN;<i

was una�i
ted this time: in tense logi
, zigzag morphism have two ba
kward

relational 
lauses | when
e, the earlier 
ontra
tion fails to quality.)

Time and modality. Combined modal-tense logi
s with two alternative re-

lations R;< have been repeatedly proposed. For instan
e, in

[

White, 1981

℄

we �nd a logi
 with 
hara
teristi
 axioms

Gp! GGp; Fp! G(Fp _ p _ Pp); PT (D4.3)

Pq ! �Pq (`irrevo
able past'):

This logi
 is 
laimed to be appropriate for an analysis of the famous Diodor-

ean `Master Argument', identifying possibility with a
tual or future truth |

a version of what was later to be
ome known as the prin
iple of Plenitude:

all metaphysi
al possibilities are eventually realised in this World.
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Our analysis of this 
laim runs as follows. Gp! GGp de�nes transitivity

for <, the M
Taggart Axiom de�nes right-
onne
tedness; while PT de�nes

left-su

ession: 8x9y y < x. The additional `mixing postulate' de�nes

8xy(Rxy ! 8z(z < x! z < y)):

Claim (1). 8xy(Rxy ! (y < x _ y = x _ x < y)).

Proof. Assume Rxy. Let z < x (by left-su

ession). Then z < y (`mix').

The 
on
lusion follows by right-
onne
tedness. �

Claim (2). 8xy(Rxy ! (x < y _ x = y)).

Proof. If Rxy and y < x, then y < y (`mix'): 
ontra irre
exivity. �

The out
ome is this: without ever using transitivity, but with irre
exiv-

ity (whi
h is presupposed in White's whole set-up), a relational 
ondition

follows whi
h is indeed de�ned by the Diodorean 
hallenge:

�p! (Fp _ p):

This is only one of the many possible semanti
s for temporal modalities,

of 
ourse. The 
orresponden
e aspe
t of, e.g. the O

amist `bran
hing time'

of

[

Burgess, 1979

℄

remains to be explored.

Alternative temporal ontologies. Re
ently `interval stru
tures' have been

proposed as an alternative for the above traditional point ontology. From

the manifesto of

[

Humberstone, 1979

℄

, a pi
ture emerges of triples

hI;�; <i;

where � is in
lusion among intervals, and < total pre
eden
e.

Here again, 
orresponden
es prove useful in exploring proposed prin
i-

ples. The language has the ordinary tense-logi
 operators, as well as a

modality � (`in all subintervals'). In this notation, Humberstone's base

logi
 has for its basi
 axioms

1. Fp! �Fp

2. F�p! Fp

3. �F�p! (�p _ Fp).

By the earlier method of substitutions, equivalents may be found illumi-

nating these:

1. de�nes 8x8y>x8z�x y > z,
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a property known as left monotoni
ity,

2. de�nes 8x8y>x8z�y z > z,

its dual property of right monotoni
ity. Finally,

3. de�nes 8x8y � x8z > y (9u � z : u � x _ 9u � z : u > x),

a form of a prin
iple known as 
onvexity. (`Stret
hes of time should be

uninterrupted'.)

Starting from the other side, one may impose basi
 postulates on �; <,

asking for de�nitions in this `interval tense logi
'. For <, these might be

the earlier-mentioned ones, for �, a minimum seems to be the requirement

of partial order, while monotoni
ity (and 
onvexity) take 
are of minimal


onne
tions between <;�. This would add only two axioms to the pre
eding

ones, viz. S4 for in
lusion. The further 
ondition of anti-symmetry is not

de�nable | as may be seen by noting that the map n 7! n (modulo 2)

is a �-zigzag morphism sending the anti-symmetri
 frame hZ;�i to the

non-antisymmetri
 one hf0; 1g; fh0; 0i; h0; 1i; h1; 0i; h1; 1igi.

Many more examples of further 
orresponden
es on top of this foundation

may be found in Chapter II.3.2 of

[

van Benthem, 1985

℄

.

3.2 Conditionals

From among the teeming multitude of `
onditional logi
s', three spe
imens

have been in
luded here. As no work of the present kind has been done in

this area at all, the following 
onsiderations are still very mu
h �rst steps.

(Cf. the Conditional Logi
 
hapter in volume 5 for a dis
ussion of 
onditional

logi
s.)

Constru
tive impli
ation

Perhaps the single most e�e
tive argument in favour of 
onstru
tive, as op-

posed to 
lassi
al impli
ation is the natural dedu
tion analysis. The natural

rules for !-introdu
tion and !-elimination give us only a fragment of all


lassi
al pure !-tautologies; axiomatised by

(A1) '! ( ! ')

(A2) ('! ( ! �))! (('!  )! ('! �))

plus the rule of modus ponens. A prin
iple notably outside of this 
lass is

Peir
e's Law

(('!  )! ')! ':

But really, the same elegan
e shows up in the Henkin 
ompleteness proof.

In the usual proof, one starts from a given 
onsistent set | and then has
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to extend this arbitrarily to just any maximally 
onsistent one, in order to

`break down' impli
ations a

ording to the 
lassi
al truth table. A 
anoni
al

model 
onstru
tion rather uses a unique natural model, viz. that 
onsistent

set together with all its 
onsistent extensions, exploiting the evident de
om-

position rule

� ` '!  if and only if 8�

0

� � : if �

0

` ', then �

0

`  :

A perfe
t mat
h arises with the following semanti
s. Stru
tures are gen-

eral frames F = hW;R;Wi, where R 
orresponds to the above in
lusion

relation, and W 
onsists of all R-hereditary sets of worlds. (Propositions

represent R-
umulative knowledge on this view.)

A dire
t study of the above logi
 on these frames would yield rather


lumsy 
onditions. One 
ase will be exhibited, as it illustrates a variant


on
ept of 
orresponden
e, viz. 
orresponden
e for rules rather than axioms.

EXAMPLE 77. Modus Ponens de�nes the 
ondition `every world belongs

to some �nite R-loop'.

Proof. `(': Suppose that xRx

1

R : : :Rx

n

Rx. Let V (p); V (q) be R-heredit-

ary subsets of W , su
h that p; p! q hold at x. Then, su

essively, p; q hold

at x

1

; : : : ; x

n

, and �nally at x.

`)': Suppose that x belongs to no �nite R-loop. Set V (p) := the smallest

R-hereditary set 
ontaining x; V (q) = the R-hereditary 
losure of fy j Rxyg.

This veri�es p; p! q at x; without verifying q. �

What will be done instead is to postulate the partial order behaviour of

�: re
exivity, transitivity and antisymmetry. Finer pe
uliarities of (A1),

(A2) remain undete
table below this threshold.

Further restri
tions on R may now be imposed by stronger axioms; e.g.

we 
an see why Peir
e's Law is 
hara
teristi
 for 
lassi
al logi
.

EXAMPLE 78. Peir
e's Law de�nes the restri
tion to single points:

8xy(Rxy ! y = x):

Proof. `(': A simple 
al
ulation suÆ
es.

`)': Suppose that Rxy; x 6= y. Set V (q) = ?; V (p) = fz j Rxz ^ x 6= zg.

This makes (p ! q) ! p true at x (noti
e that p ! q is false at x itself),

while falsifying p. (By the way, that V is admissible, i.e. that V (p) is R-

hereditary, follows from the above general assumption.) �

But `intermediate' impli
ation axioms exist as well.

EXAMPLE 79. The following prin
iple

((p! q)! p)! (((q ! r)! q)! p)
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de�nes a maximal length 3 for R-
hains:

8xy(Rxy ! 8z(Ryz! (x = y _ y = z _ 8u(Rzu! z = u)))):

Proof. Here is the relevant 
ounter-example for the argument in the `)'-

dire
tion. Assume that xRyRzRu, while x 6= y; y 6= z; z 6= u. Set V (r) =

;; V (q) = fv j Ruv ^ u 6= vg [ fv j Ryv ^ :Rvzg; V (p) = fv j Ryv ^ y 6= vg.

The prin
iple will be falsi�ed at y. �

It has not been possible to �nd other types of intermediate example.

Hen
e, we 
on
lude with a

Conje
ture. All prin
iples of pure 
onstru
tive impli
ation de�ne �rst-

order 
onstraints on R; viz. restri
tions to some �nite 
hain length.

Relevant impli
ation

Of the various proposed semanti
s for relevan
e logi
, here is a perspi
u-

ous example from

[

Gabbay, 1976, Chapter 15

℄

. Stru
tures are now tuples

hW;R; V; 0i, where 0 is a spe
ial world providing a vantage point from whi
h

to 
ompare other worlds through the ternary relation R. Intuitively, R

a

b


is to mean that b is `in
luded' in 
, at least from the perspe
tive of a. (One

might think of, for example, `a-lo
al in
lusion': a \ b � a \ 
.) No prior


onditions are imposed on this relation.

This is not to say that these are not to be found at all. For instan
e, it

may be shown that the mentioned lo
al in
lusion relation is 
hara
terised

by two betweenness axioms:

1. R

a

b
$ R

b

a
 (inter
hanging boundaries)

2. (R

a

b
 ^ R

d

ae ^ R

d

be)! R

d


e

(I.e. if 
 2 [a; b℄; a 2 [d; e℄; b 2 [d; e℄, then 
 2 [d; e℄: a form of 
onvexity.)

The expli
ation of impli
ation reads as follows:

' !  is true at a i�, for all b; 
 su
h that R

a

b
, if ' is true at

b, then  is true at 
.

As it stands, this de�nition makes no impli
ation laws universally valid.

To obtain at least some indubitable prin
iple, one therefore imposes a re-

stri
tion on valuations. The most urgent 
ase is that of p! p. On the above

bare semanti
s, it would 
orrespond to 8xyz(R

x

yz ! y = z), 
ollapsing the

ternary relation. To avoid this, one again requires `
umulation':

valuations V are only to assign subsets X of W subje
t to the


onstraint that 8xy 2W (R

0

xy ! (x 2 X ! y 2 X)).
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If this 
onstraint is to extend automati
ally to sets X de�ned by 
omplex

impli
ational formulas, then a mild form of transitivity is to be imposed on

the ternary relation after all:

8xyzu((R

0

xy ^R

y

zu)! R

x

zu):

Noti
e how this relates perspe
tives from di�erent vantage points.

But then, if reasonable forms of transitivity have be
ome respe
table, we

also add (�)8xyzu((R

0

xy ^ R

0

yz)! R

0

xz).

Now, at last, some genuine 
orresponden
es arise | of a `lo
al' sort (
f.

Se
tion 2.2).

EXAMPLE 80.

1. Modus Ponens de�nes R

0

00,

2. Axiom A1 de�nes a 
urious form of `transitivity':

8xyzu((R

0

xy ^R

y

zu)! R

0

xu).

Proof. (Case (1) only) `(': This dire
tion is immediate.

`)': Let V (p) = f0g [ fx j R

0

0xg; V (q) = fx j R

0

0xg. By the above

prin
iple (�), both assignments are admissible. Clearly, both p and p ! q

are true at 0, when
e also q: i.e. R

0

00. �

Obviously, the se
ond prin
iple is not very plausible | but then, neither

is (A1) for a relevan
e logi
ian.

A more interesting phenomenon in relevan
e logi
, from the present point

of view, is the treatment of negation. This formerly in
onspi
uous notion is

now interpreted using a `reversal operation'

+

on worlds:

:' is true at a i� ' is true at a

+

.

In this light, new 
ombined 
orresponden
es appear, su
h as that between

Contraposition and the reversal law

8xy(R

0

xy ! R

0

y

+

x

+

):

Corresponden
e Theory may be applied to any kind of semanti
 entity.

Counterfa
tual impli
ation

Ramsey told us to evaluate 
onditionals as follows. Make the minimal ad-

justment of your sto
k of beliefs needed to a

ommodate the ante
edent:

then see if the 
onsequent follows. Various synta
ti
 and semanti
 imple-

mentations of this view exist, of whi
h that of

[

Lewis, 1973

℄

has deservedly

won the greatest favour. A 
ounterfa
tual ' !  is true in a world, on his
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a

ount, if  is true in all worlds most similar to that world given that '

holds in them.

As the pre
eding a

ount has some diÆ
ulties in the in�nite 
ase, let us


onsider �nite models hW;C; V i, where C is a ternary relation of 
ompara-

tive similarity:

C

x

yz for: `y is 
loser to x than z is'.

Lewis gives three basi
 
onditions on the relation `no 
loser':

1. transitivity: 8xyzu((:C

x

yz ^ :C

x

zu)! :C

x

yu),

2. 
onne
tedness: 8xyz(:C

x

yz _ :C

x

zy),

3. ego
entrism: 8xy(:C

x

xy ! x = y).

Rewriting these for `
loser', one �nds to one's surprise that (2) is rather

weak, being merely

2

0

. asymmetry: 8xyz(C

x

yz ! :C

x

zy).

On the other hand, (1) be
omes a strong prin
iple

1

0

. 8xyu(C

x

yu! 8z(C

x

yz _ C

x

zu)),

whi
h we knew as almost-
onne
tedness ba
k in Se
tion 3.1.

From asymmetry and almost-
onne
tedness, one may derive ordinary

transitivity and irre
exivity, when
e the three `
omparative' axioms of Se
-

tion 3.1 emerge. These prin
iples justify the appealing pi
ture of `similarity

spheres' around the referen
e world x.

The tenden
y has been sin
e 1973 to retain only transitivity and irre
ex-

ivity as fundamental pre-
onditions on C, leaving various forms of 
onne
t-

edness as optional extras. Thus, one �nds an axiomatisation of this austere

minimal 
onditional logi
 in

[

Burgess, 1981

℄

.

The truth de�nition in this 
ase may be taken to be the following:

' !  is true at w if w holds in all '-worlds C-
losest to w:

Indeed, this 
lause veri�es the following list of prin
iples without further

ado:

p ! p;

p ! q; p ! r ` p ! q ^ r;

p ^ q ! p;

p ! r; q ! r ` p _ q ! r:

It is only the last one whi
h requires transitivity:

p ! q ^ r ` p ^ q ! r:
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Ego
entrism is restored by adding the prin
iple of Modus Ponens:

p ! q; p ` q

But, the original Lewis logi
 
ontained even further prin
iples, su
h as the

formidable

((p _ q) ! p) _ :((p _ q) ! r) _ q ! r:

What does it express? As it happens, it restores almost-
onne
tedness.

Proof. First, the axiom is valid under this additional assumption | by the

above dis
ussion.

Next, suppose almost-
onne
tedness fails; i.e. for some xyzu we have:

C

x

yz;:C

x

yu;:C

x

uz. By transitivity, it follows that :C

x

zu. Now, set

V (p) = fyg; V (q) = fz; ug; V (r) = fy; ug. Then z is q-
losest among the

worlds falsifying r. The two p _ q-
losest worlds y; u both verify r. Finally,

p fails in the p_ q-
losest world u. Thus, Lewis' axiom has been refuted. �

Finally, to mention an example outside of Lewis' original logi
, there is

the Stalnaker prin
iple of `Conditional Ex
luded Middle':

p ! q ^ p !:q:

As was stated in the Introdu
tion, this axiom even requires the similarity

order to be a linear one. In the present �nite 
ase, this means that the

above truth de�nition redu
es to:

' !  is true at w if  holds in the 
losest '-alternative to w:

And that was the original Stalnaker expli
ation of 
onditionals.

The previous examples were all 
onditional axioms without nestings of

!. This is typi
al for most 
urrent logi
s in this area. Relational 
onditions

mat
hing these have invariably been found to be �rst-order ones. Hen
e, in

view of Theorem 38, here is our

Conje
ture. All 
ounterfa
tual axioms without nestings of 
onditionals

are �rst-order de�nable.

The reason for this restri
tion lies in the motivation for the present area.

Entailment 
onditionals su
h as 
onstru
tive impli
ation, or modal entail-

ment have often been proposed out of dissatisfa
tion with 
lassi
al `nested

prin
iples', su
h as, say, p! (q ! p) or Peir
e's Law. The non-nested 
las-

si
al fragment was not 
alled into question. Counterfa
tual 
onditionals,

however, typi
ally disobey 
lassi
al impli
ational logi
 at the level of non-

nested inferen
es, su
h as the monotoni
ity rule from p! q to p ^ r ! q.

Nevertheless, there are intrinsi
 reasons to be found inside the above

semanti
s for 
onsidering nested axioms after all. For, one obvious omission
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in the above list of semanti
 
onditions was the la
k of index prin
iples

relating the perspe
tives of di�erent worlds. For instan
e, when we read C

for a moment as relative proximity in Eu
lidean spa
e, we �nd the following

Triangle Inequality

8xyz((C

x

yz ^ C

z

xy)! C

y

xz):

And there are other elegant prin
iples of this kind.

Now, it is easily seen that su
h index prin
iples are just what is involved

when nested 
ounterfa
tuals are evaluated: the perspe
tive starts shifting.

Thus, it will be rewarding to have 
orresponden
es here as well. One, not

too ex
iting example is the following. The Absorption Law

p ! (q ! r) ` (p ^ q) ! r

de�nes the index prin
iple

8xyz(C

x

yz ! 8u:C

y

uz):

Better examples are still to be found. Indeed, e.g. the 
ounterfa
tual logi
 of

Eu
lidean spa
e, the most natural geometri
 representation of our similarity

pi
tures, is still a mystery.

3.3 Intuitionisti
 Logi


Constru
tive 
onditional logi
 is only a part of the full intuitionisti
 logi
,

whose Kripke semanti
s extends the earlier 
onstru
tive models. In this

se
tion, a sket
h will be given of an Intuitionisti
 Corresponden
e Theory.

(For details on intuitionisti
 logi
, 
f. van Dalen's 
hapter in volume 7 of

this Handbook.)

Kripke semanti
s, intermediate axioms and 
orresponden
e.

DEFINITION 81. An intuitionisti
 Kripke model M is a tuple hW;�; V i,

where � is a partial order (`possible growth') on W (`stages of knowledge').

The valuation V assigns �-
losed subsets of W to proposition letters (`
u-

mulation of knowledge').

The truth de�nition has the following familiar pattern,

M 2 ?[w℄ for all w 2W;

M � '!  [w℄ if M �  [v℄ for all v � w su
h that M � '[v℄;

M � ' ^  [w℄ if M � '[w℄ and M �  [w℄;

M � ' _  [w℄ if M � '[w℄ or M �  [w℄:

Negation is de�ned as usual (:' be
oming '! ?).
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The pre-
ondition of partial order was motivated earlier on. But, other


hoi
es may be defended as well. As is well-known, the above semanti
s was

derived from the modal one, through the G�odel translation g:

g(p) = �p

g('!  ) = �(g(')! g( ))

g(' ^  ) = g(') ^ g( )

g(' _  ) = g(') _ g( )

g(?) = ?:

Now, there is a whole range of modal logi
s whose `intuitionisti
 fragment'

(through g ) 
oin
ides with intuitionisti
 propositional logi
s. Amongst

others, we have the

THEOREM 82. Let X be any modal logi
 in the range from S4 to S4.Grz

= S4 plus the Grzegor
zyk Axiom

�(�(p! �p)! p)! p:

Then, for all intuitionisti
 formulas '; ' is intuitionisti
ally provable in

Heyting's logi
 if and only if g(') is a theorem of X.

The earlier modal 
orresponden
es yield a 
orresponding semanti
 range,

between `pre-orders' (re
exive and transitive) and `trees':

EXAMPLE 83. Grzegor
zyk's Axiom de�nes the 
ombination of (i) re
ex-

ivity, (ii) transitivity, and (iii) well-foundedness in the following sense: `from

no w is there an as
ending 
hain w = w

1

� w

2

� : : : with w

i

6= w

i+1

(i =

1; 2; : : :)'.

Proof. This goes more or less like the 
losely related Axiom of L�ob. By the

way, noti
e that (iii) implies anti-symmetry. Note also that, semanti
ally,

Grzegor
zyk's axiom alone implies the S4-laws: synta
ti
 derivations to

mat
h were found around 1979 by W. J. Blok and E. Pledger. �

Thus, a 
ase may also be made for the Tree of Knowledge as a basis for

intuitionisti
 semanti
s. Nevertheless, we shall sti
k to partial orders for a

start.

Above S4Grz, modal logi
s start produ
ing greater g-fragments | the

so-
alled intermediate logi
s, as
ending to full 
lassi
al logi
. Intermediate

axioms impose various restri
tions on the pattern of growth for knowledge,


lassi
al logi
 for
ing the existen
e of single (`
omplete') nodes.

EXAMPLE 84. (i) Ex
luded Middle p _ :p de�nes 8x8y(x � y ! x = y).

Proof.`(' is immediate.

`)': Suppose x � y; x 6= y. (By anti-symmetry then y 6� x.) Set

V (p) = fz j y � zg. This falsi�es both p and :p at x. �
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(ii) Weak Ex
luded Middle :p _ ::p de�nes dire
tedness.

Proof. `(': Suppose that :p fails at x; say p holds at y � x. Then


onsider any z � x. As it shares a 
ommon su

essor with y, and V (p) is

�-hereditary, it has a su

essor verifying p, when
e :p fails at z. So ::p

holds at x.

`)': Suppose that x � y; z, where y; z share no 
ommon su

essors. Set

V (p) = fu j z � ug. (Like above, this is a �-
losed set.) Noti
e that

x; y 62 V (p). It follows that :p fails at x (
onsider z), but ::p fails as well

(
onsider y). �

(iii) Conditional Choi
e (p! q) _ (q ! p) de�nes 
onne
tedness.

Proof. `(': Suppose that p ! q fails at x; i.e. some y � x has p true,

but q false. Now 
onsider any z � x su
h that q holds. Either z � x, but

then, by �-heredity, q is true at y (quod non), or y � z, and so, again by

�-heredity, p is true at z, i.e. q ! p is true at x.

`)': Let x � y; z with y 6� z; z 6� y. Set V (p) = fu j y � ug; V (q) = fu j

z � ug. Then p! q fails at x (wat
h y), and q ! p fails as well (wat
h z).

�

Mu
h more forbidding prin
iples than these have been proposed as inter-

mediate axioms. But surprisingly, these usually turned out to be �rst-order

de�nable:

EXAMPLE 85. (i) The Stability Prin
iple (::p! p)! (p _ :p) de�nes

8x:9yz (x � y ^ x � z ^ :9u(y � u ^ z � u) ^

^ 8u(8s(u � s! 9t(s � t ^ z � t))! :9v(u � v ^ y � v))):

(ii) The Kreisel-Putnam Axiom (:p ! (q _ r)) ! ((:p ! q) _ (:p ! r))

de�nes

8x:9yz (x � y ^ x � z ^ :y � z ^ :z � y ^

^ 8u((x � u ^ u � y ^ u � z)! 9v(u � v ^ :y � v ^ :z � v))):

No matter how 
omplex su
h axioms may seem at �rst sight, proofs of

the above assertions are quite simple exer
ises in `imagining what a 
ounter-

example would look like'.

This re
urrent experien
e led to the following 
onje
ture in

[

van Benthem,

1976

℄

:

All intermediate axioms express �rst-order 
onstraints on growth

of knowledge.

Two 
onje
tures refuted. The earlier hope was all but given up in the �rst

version of this 
hapter; as `S
ott's Rule' turned out to be an essentially
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higher-order intermediate inferen
e. The relevant argument was sharpened

somewhat by P. Rodenburg:

THEOREM 86. S
ott's Axiom ((::p ! p) ! (p _ :p)) ! (:p _ ::p)

de�nes no �rst-order 
ondition on partial orders.

Proof. An elaborate L�owenheim{Skolem argument works, in the spirit of

Example 43. As an illustration of the non-triviality of our present subje
t

matter, it follows here.

Step 1: Consider the following Kripke frame hW;�i:

�

� �

� � � �

d




X

� � 


�

�

�

�

�

�

�

A

A

A

A

A

A

A

X

W 
onsists of the in�nite binary tree T , together with, for ea
h node 
 in

T and ea
h �-hereditary, 
o�nal set X in T




(i.e. the subtree with root 
),

some point d




X

. � is the usual order on T , together with

� 
 � d




X

� x, for all x 2 X

� d




X

� d




X

0

, if X

0

� X .

Claim. S
ott's Axiom is true in hW;�i.

Proof. First, let 
 2 T be a putative refutation. I.e., for some valuation

V ,

1. (::p! p)! p _ :p is true at 
,

2. :p _ ::p is false at 
.
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Then 
onsider the node d




X

, where X is the 
o�nal hereditary set

T




\ (V (p) [ V (:p)):

One veri�es su

essively that ::p! p is true at d




X

, whereas both p;:p are

false. (E.g. if p were true at d




X

, then p is true throughout X , when
e ::p is

true at 
 | whereas (2) says the opposite.) Thus, we have a 
ontradi
tion

with (1).

A similar argument works for the 
ase where 
 is of the form d




X

itself.

Step 2: A matter of 
ardinality:

Claim. The above Kripke frame is un
ountable.

Proof. In parti
ular, there are 2

�

0

nodes of the form d




X

. For, ea
h subset

Y of N may be 
oded as follows, using (distin
t) hereditary 
o�nal subsets

Y

+

of the in�nite binary tree. Let Y = fy

1

; y

2

; y

3

; : : :g.

�

�

�

�

�

�

�

Y

+

Y

+

Y

1

Y

2

et
. going down the extreme right bran
h using the extreme left bran
hes

to 
ode y

1

; y

2

; y

3

; : : :.

For all nodes not arrived at in this way, one makes Y

+


o�nal by means

of the following stipulation:

�

� �

� �

Y

+

� �

y

3

, et
.

�

y

1

�

Y

+

�

y

2

�

Y

+

Step 3: Take any 
ountable elementary substru
ture F of hW;�i 
ontaining

the original binary tree.
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Claim. S
ott's Axiom may be falsi�ed in F .

Proof. Consider T as a double tree

�




0




1

� �




2

and again T




2

a 
ountable sequen
e of `trees on a string':

�




2

� �

T

1

� �

T

3

� �

T

3

Let D

X

1

; D

X

2

; : : : be an enumeration of the points d

C

0

X

remaining in F .

Noti
e that, for ea
h i 2 N ,

1. �nite interse
tions T

i

\X

1

\ : : :\X

n

are still hereditary 
o�nal in T

i

,

2. the total interse
tion T

i

\ fX

j

j j = 1; 2; : : :g is empty.

As for the latter observation, it suÆ
es to see that the assertion

8x9d

C

0

X

with d

C

0

6� x;

whi
h holds in hW;�i, 
an be expressed in �rst-order terms in hW;�i; and,

hen
e, it has remained valid in the elementary substru
ture F .

Now, de�ne

X

�

1

= X

1

X

�

n+1

= X

1

\ : : :X

k

for the smallest k su
h that T

n+1

\X

1

\

: : : \X

k

�

6=

T

n+1

\X

�

n

:

S
ott's Axiom may now be falsi�ed at 


0

, by setting

X

�

= [ fT

i

\X

�

i

j i = 1; 2; : : :g; V (p) = fy j 9x � y x 2 X

�

g:

to see this, noti
e, that su

essively,

1. ea
h point d

X

i

has a su

essor (in T

i

) outside of V (p),

2. (::p! p)! p _ :p holds at 


0

,
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3. :p _ ::p fails at 


0

.

We 
on
lude that S
ott's Axiom is not �rst-order de�nable | not being

preserved under elementary subframes. �

This 
omplex behaviour disappears on better-behaved stru
tures.

OBSERVATION 87. On trees, S
ott's Axiom de�nes the �rst-order 
ondi-

tion

8x:9yzu (x � y ^ x � z ^ z � u ^ z 6= u ^ :9v(y � v ^ z � v)):

This, and other experien
es of its kind, led to a revised guess in the �rst

version of this 
hapter: On trees, all intermediate axioms express �rst-order


onstraints on des
endan
e. A proof sket
h was added, involving semanti


tableaux as `patterns of falsi�
ation', to be realised in trees.

This 
onje
ture was `almost' refuted in

[

Rodenburg, 1982

℄

. The semanti


tableau method runs into problems with disjun
tions, and indeed we have

the following 
ounter-example.

EXAMPLE 88. Consider the formula

� = ((:p ^ :q ^ :r) ! (p ^ q ^ r))! (:p ^ :q ^ :r)

with the simultaneous substitution of: p&q for p, p&:q for q, and :p&q for

r. This � is not �rst-order de�nable on partial orders. On suitably tree-like

stru
tures, it expresses the la
k of `3-forks' of immediate su

essors as well

as the absen
e of in�nite 
omb-like stru
tures.

On trees, this negative example probably still works | but there is an

instru
tive diÆ
ulty here. The 
lass of trees itself has a higher-order de�-

nition; �

1

1

, to be pre
ise. Therefore, 
urrent model-theoreti
 arguments for

disproving �rst-order de�nability (
ompa
tness, L�owenheim{Skolem) run

the risk of employing 
onstru
tions leading outside of this 
lass. Higher-

order pre
onditions are a problem for our Corresponden
e Theory.

To illustrate this from a purely 
lassi
al angle, the reader may 
onsider

a related problem, showing how soon the familiar methods of model theory

fail us. Finiteness is �rst-order unde�nable on partial orders, even on trees.

It is thus de�nable on linear trees, however, viz. by `every non-initial node

has an immediate prede
essor'. What about the (at most) binary trees?

This intermediate 
ase seems to be open.

The state of the subje
t. The progress of s
ien
e is sometimes startling.

Where the �rst version of this 
hapter (1981) had some tentative examples,

enlightenment reigns in the report

[

Rodenburg, 1982

℄

. Of its many topi
s,

only a few will be mentioned here.

First, there are several semanti
 options | as indi
ated above, ranging

from partial orders via `downward linear orders' to trees. But moreover,
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there is a legitimate 
hoi
e of language. Despite appearan
es, it is the

disjun
tion 
lause whi
h is now strongly 
onstru
tive in intuitionisti
 Kripke

semanti
s. (`Choose now!' Classi
al logi
 would have a more humane 
lause

in this setting: ��(' _  ), i.e. `' or  eventually'.) Thus, it is of interest

to 
onsider both the full language and its _-free fragment.

The semanti
 tableau method mentioned above, in 
ombination with the

above 
ounter-examples, has led to the results in the following s
heme:

All formulas Partial Downward Trees

�rst-order de�nable orders linear orders

without _ YES YES YES

with _ NO NO ?

But there are also matters of `�ne stru
ture'. For instan
e, S
ott's Axiom

had only one proposition letter | and for su
h intuitionisti
 formulas we

have the beautiful Rieger{Nishimura latti
e. Now, S
ott's Axiom merely

seemed a �t 
andidate for a 
ounter-example among the intermediate axioms

existing in the literature. Rodenburg has proved that it is also minimal

in the Rieger-Nishimura latti
e with respe
t to non �rst-order de�nability.

(More pre
isely, an intuitionisti
 formula with one proposition letter is �rst-

order de�nable on the partial orders if and only if it is equivalent to one of

A

1

; : : : ; A

9

in the latti
e.)

In the 
ounter-examples needed for the latter result, a uniform method

may be seen at work: 
ompa
tness, in the form that sets of formulas whi
h

are �nitely satis�able in �nite models are also simultaneously satis�able (in

some in�nite model). Now, indeed, intuitionisti
 truth has a 
lose 
onne
-

tion with truth in �nite submodels (
f.

[

Smory�nski, 1973

℄

). Our question is

whether this may lead to the following improvement in the mathemati
al


hara
terisation of �rst-order de�nability as given in Se
tion 2.2.

Conje
ture. An intuitionisti
 formula ' is �rst-order de�nable if and only

if ' is preserved under ultraprodu
ts of �nite frames.

Intuitionisti
 de�nability. As with the dire
tion `from intensional to 
lassi-


al', the 
ase `from 
lassi
al to intuitionisti
 de�nability' shows many resem-

blan
es with our earlier modal study. For instan
e, a Goldblatt{Thomason

type 
hara
terisation was proved in

[

van Benthem, 1983

℄

(
f. our earlier

Theorem 66):

A �rst-order 
onstraint on the growth pattern is intuitionisti-


ally de�nable if and only if it is preserved under the formation

of generated subframes, disjoint unions, zigzag-morphi
 images,

�lter extensions and `�lter inversions'.
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Merely in order to illustrate this topi
, whi
h has a wider semanti
 sig-

ni�
an
e, here is a sket
h of the representation theory in the ba
kground.

On the algebrai
 side, the intuitionisti
 language may be interpreted in

Heyting Algebras hA; 0; 1;+; �;)i satisfying suitable postulates. Now, ea
h

Kripke (general) frame in the above sense indu
es su
h a Heyting Algebra,

through its �-hereditary sets, provided with suitable, obvious operations.

But also 
onversely, a �lter representation now takes Heyting Algebras to

Kripke general frames. Indeed, the earlier 
ategorial duality (
f. Se
tion

2.3) is again forth
oming.

The more general semanti
 interest of the 
onstru
tion is this. Despite

the super�
ial similarity with stru
tures 
onsisting of the `
omplete' possi-

ble worlds, intuitionisti
 Kripke models should be regarded as patterns of

stages of partial information. This 
omes out quite ni
ely in the above rep-

resentation, where `worlds' are no longer 
omplete ultra�lters, but merely

�lters (in the _-free 
ase) or `splitting' �lters (for the full language). Filters

F merely satisfy the 
losure 
ondition that

a; b 2 F i� a � b 2 F;

a minimal requirement on partial information. Also quite suggestively, the

`modal' alternative relation 
ollapses into in
lusion (`growth'):

8a) b 2 F 8a 2 F

0

: b 2 F

0

i� F � F

0

:

The present-day supporters of `partial models' and `information semanti
s'

would do well to study intuitionisti
 logi
.

Predi
ate logi
. Again, 
orresponden
e phenomena do not stop at the fron-

tier of predi
ate logi
. This will be illustrated by means of some intuition-

isti
 examples.

Kripke models M = hW;�; D; V i will now be of the usual variety; in

parti
ular satisfying

1. 8xy(x � y ! D

w

� D

v

) (monotoni
ity)

2. 8xy(x � y ! 8

~

d 2 D

x

(V

x

(P;

~

d) = 1! V

y

(P;

~

d) = 1) (heredity).

But other varieties, say with maps between the domains (
f.

[

Goldblatt,

1979

℄

) would be suitable as well.

The `de re/de di
to' inter
hange prin
iples of Se
tion 2.5 now have their

obvious 
ounterparts in the following quartetto:

1. :9xAx ! 8x:Ax,

2. 8x:Ax! :9xAx,

3. 9x:Ax ! :8xAx,
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4. :8xAx! 9x:Ax.

The �rst three of these are universally valid on the present semanti
s.

That they already hide quite some 
omplexity is shown by the G�odel trans-

lation of (3):

�(9x�:�Ax! �:�8x�Ax);

or

�(9x��:Ax! ��9x�:Ax):

No wonder that (3), e.g. does not de�ne pre
isely the above monotoni
ity


onstraint on domains | even though its modal 
ousin 9x�Ax ! �9xAx

did.

The �rst really 
omplex prin
iple in Se
tion 2.5 was the 
onverse impli-


ation �9xAx! 9x�Ax. We shall now investigate its intuitionisti
 
ousin

(4) | a reje
ted 
lassi
al law.

EXAMPLE 89.

1. :8xAx! 9x:Ax implies that all domains are equal:

8xy(x � y ! D

x

= D

y

)

2. On frames with 
onstant �nite domain, :8xAx ! 9x:Ax expresses

the �rst-order 
ondition that

8x (9!d d 2 D

x

_ 8y(x � y ! 8z(x � z ! 9u(y � u ^ z � u)))):

Proof. Ad 1. Suppose that x � y, but D

x

�

6=

D

y

. Make A true at y for all

d 2 D

x

, and similarly at all y

0

� y. This stipulation de�nes an admissible

assignment verifying :8xAx at x, while falsifying 9x:Ax.

Ad 2. First, if jD

x

j = 1, then trivially, :8xAx ! 9x:Ax holds at x.

(Re
all that all domains are equal.)

Next, if jD

x

j > 1, then one may argue as follows. If � is dire
ted above

x in the above sense, then the assumption that 9x:Ax fails at x 
an be

exploited to show that :8xAx must fail as well.

For, let D

x

= fd

1

; : : : ; d

k

g. By the assumption, Ad

i

will be true at some

x

i

� x (1 � i � k). Then, by su

essive appli
ations of dire
tedness, there

will be found a 
ommon su

essor y � x

1

; : : : ; y � x

k

, where 8xAx is true

(by heredity). This falsi�es :8xAx at x.

If on the other hand, for some x; jD

x

j > 1 while � is not dire
ted above

x, then, say, there exist x

1

� x; x

2

� x without 
ommon su

essors. Then

pi
k any obje
t d 2 D

x

, making A true at x

1

and all its �- su

essors for

all obje
ts ex
ept d; while making A true at x

2

and all its �-su

essors for

d only. This assignment veri�es :8xAx at x, while falsifying 9x:Ax. �
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Thus, a 
lassi
al quanti�er axiom may express an interesting purely rela-

tional 
onstraint on �.

Now, intuitionists are fond of saying that (4) is valid for �nite domains:

as we have seen, however, it does impose 
onstraints even then. They go on

to say that an extrapolation to the in�nite 
ase would be illegitimate. At

least, our prin
iple be
omes mu
h more 
omplex then.

THEOREM 90. :8xAx! 9x:Ax is not �rst-order de�nable in general.

Proof. Consider the following stru
ture, in whi
h all worlds have a 
ommon

domain N .

�

� � � : : :  � � � � : : : �! (� < !

1

)

0 1 2 �1 0 +1

i.e. hW;�i has the relational pattern of

hN � (!

1

�Z);�i:

Claim. :8xAx! 9x:Ax is true in this frame.

Proof. Starting from any world x, assume that 9x:Ax fails. Then, for

ea
h n 2 N , An must hold at some (�

n

; k

n

) > x. As the 
o�nality of !

1

ex
eeds !, there exists some � < !

1

su
h that (�; 0) > (�

n

; k

n

)(n 2 N).

Now, by heredity, 8xAx must hold at (�; 0) | when
e :8xAx is false at

x. �

Next, by the L�owenheim{Skolem theorem (as ever), this frame has 
ount-

able elementary subframes. (Indeed, hIN;�i itself is one.) But in these, our

prin
iple may be falsi�ed using some 
ountable 
o�nal sequen
e x

0

; x

1

; : : :

making A0 true from x

0

upward, A1 from x

1

upward, et
etera. As in earlier

arguments, the 
on
lusion of the theorem follows. �

To �nish this list of examples, it may be noted that a famous weaker

variant of the above axiom does indeed de�ne a �rst-order 
onstraint.

EXAMPLE 91. Markov's Prin
iple

8x(Ax _ :Ax) ^ ::9xAx ! 9xAx

de�nes the relational 
ondition

8x9y � x 8z � y 8d(Edz ! Edx):

Corresponden
e Theory remains surprising.
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Post-S
ript: quantum logi
.

Corresponden
es have not proved uniformly su

essful in intensional 
on-

texts. It seems only fair to �nish with a more problemati
 example.

A possible worlds semanti
s for quantum logi
 was proposed in

[

Gold-

blatt, 1974

℄

. Kripke frames are now regarded as sets of `states' of some

physi
al system, provided with a relation of `orthogonality' (?). From its

physi
al motivation, two pre-
onditions follow for ?, viz. irre
exivity and

symmetry. But in addition, there is also a restri
tion to `admissible ranges'

for propositions, in the sense that these sets X �W are to be orthogonally


losed:

8x 2 (W �X)9y 2 (W �X)(:x?y ^ 8z 2 X y?z):

The key truth 
lauses are those for 
onjun
tion (interpreted as usual), and

negation, interpreted as follows:

:' is true at x if x is orthogonal to all '-worlds.

This semanti
s validates the usual prin
iples for quantum logi
, when _ is

de�ned in terms of :;^ by the De Morgan law. But, one key prin
iple

remains invalid, viz. the ortho-modularity axiom

p$ (p ^ q) _ (p ^ :(p ^ q)):

This axiom has a natural motivation in the Hilbert Spa
e semanti
s for

quantum logi
 | being the key stone in the representation of ortho-modular

latti
es as subspa
e algebras of suitable ve
tor spa
es. Thus, a minimal

expe
tation would be that an enlightening 
orresponden
e is forth
oming

with some 
onstraint on the orthogonality relation ?.

In reality, no su
h thing has happened. Quantum logi
ians pass onto

general frames, into whose very de�nition validity of ortho-modularity has

been built in. Despite this 
over-up, the fa
t remains that the relational

possible worlds perspe
tive fails to do its 
orresponden
e duties here. A

set-ba
k, or an indi
ation that fa
ile over-appli
ability of Kripke semanti
s

need not be feared for?

4 CONCLUSION

At a purely te
hni
al level, Corresponden
e Theory is an applied subje
t.

Classi
al tools have been borrowed from model theory and universal algebra.

In return to these mother dis
iplines, the subje
t o�ers a good range of

(
ounter-)examples, as well as prospe
ts for generalisability to other suitably


hosen fragments of higher-order logi
. (Cf.

[

van Benthem, 1983

℄

.)

From a more philosophi
al point of view, the whole enterprise may be

des
ribed as �nding out what possible worlds semanti
s really does for us.
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It is one thing to make 
on
eptual proposals, and another to really probe

their depths. The systemati
 study of 
onne
tions between intensional and


lassi
al perspe
tives upon possible world stru
tures is an exploration of the

bene�ts gained by the semanti
s. This 
hapter started with the observa-

tion that `
omplex' modal axioms turned out to express `simple' 
lassi
al

requirements (i.e. �rst-order ones). We have investigated the range and

limits of this, and related phenomena. Espe
ially these limits have be
ome

quite 
lear | and, with them, the limits of fruitful appli
ation of Kripke

semanti
s. This philosophi
al 
on
lusion holds for all semanti
s, of 
ourse.

But we have earned the moral right to say it, through honest toil.
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APPENDIX (1997)

This 
hapter �rst appeared in 1984. In the meantime, Modal Logi
 has

evolved, but the basi
 stru
ture of our original presentation remains valid.

Therefore, we have left the old text un
hanged, and merely added a short


hroni
le of further developments, in
luding some answers to open ques-

tions. Generally speaking, 
orresponden
e methods have be
ome a useful

te
hni
al tool in pure and applied Modal Logi
, without forming a major re-

sear
h area in their own right. A more prin
ipled motivation is given in van

Benthem

[

1996a

℄

, where 
orresponden
e analysis is viewed as a 
entral part

in the philosophi
al quest for logi
al `
ore theories' of semanti
 phenomena

in language and 
omputation. In parti
ular, 
orresponden
es suggest the

introdu
tion of new many-sorted models, indu
ing de
idable geometries of

`states' and `paths' in the study of time and 
omputation.
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Extensions to Other Bran
hes of Intensional Logi


The �rst signi�
ant extension of 
orresponden
e theory 
on
erns Intuitionis-

ti
 Logi
. This involves the new feature that all valuations must be restri
ted

to hereditary ones, leading only to formulas whose truth is preserved upward

in the relational ordering. Rodenburg

[

1986

℄

investigates this area in detail.

In parti
ular, he shows that the impli
ation-
onjun
tion fragment is totally

�rst-order, whereas disjun
tions 
an lead to non-�rst-orderness. Moreover,

he introdu
es semanti
 tableau methods for expli
it des
ription of �rst-

order 
orrespondents. A �nal interesting feature is Rodenburg's analysis of

intuitionisti
 Beth models whi
h employ a se
ond-order truth 
ondition: a

disjun
tion is true when its disjun
ts `bar' all future paths. These also turn

out to be amenable to 
orresponden
e analysis, over two-sorted frames with

both points and paths. Restri
ted valuations also o

ur with the ternary

relational models of Relevant Logi
. A full 
orresponden
e analysis is given

in Kurtonina

[

1995

℄

, whi
h analyses the spe
ial e�e
ts of working with fea-

tures like distinguished points (a
tual worlds), non-standard 
onne
tives

(in
luding a new produ
t 
onjun
tion), as well as the mu
h poorer non-

Boolean fragments found in 
ategorial logi
s for grammati
al analysis (
f.

[

van Benthem, 1991; Moortgat, 1996

℄

). Further extensions have been made

to Epistemi
 Logi
 [van der Hoek, 1992℄ and Partial Logi
s

[

Thijsse, 1992;

Jaspars, 1994; Huertas, 1994

℄

. Corresponden
e with restri
ted valuations for

`
onvex' propositions has also been proposed in standard Temporal Logi
 (
f.

van Benthem

[

1983; 1986; 1995b

℄

). But also, most axioms for ri
her interval-

based versions have �rst-order `Sahlqvist forms'

[

Venema, 1991

℄

. Zanardo

[

1994

℄

gives 
orresponden
es for modal-temporal models of bran
hing spa
e-

time. Finally, 
orresponden
e methods have turned out very useful in Alge-

brai
 Logi
. Venema

[

1991

℄

, Marx and Venema

[

1996

℄

present a systemati


study of relational algebra and 
ylindri
 algebra along these lines, pointing

out the Sahlqvist form of most familiar algebrai
 axioms, and 
al
ulating

their frame 
onstraints on algebrai
 `atom stru
tures'. This establishes a

mu
h wider bridge between algebrai
 logi
 and modal logi
 than our earlier

duality.

Restri
ted Frame Classes

Corresponden
e behaviour may 
hange on spe
ial frame 
lasses. In this


hapter, we have looked at some e�e
ts of a restri
tion to transitive frames.

But one 
an also investigate non-�rst-order frame 
lasses. Van Benthem

[

1989a

℄


onsiders �nite frames, where, amongst others, the M
Kinsey axiom

still de�nes a non-�rst-order 
ondition. In this area, standard 
ompa
tness-

based model-theoreti
 te
hniques no longer work, and they must be repla
ed

by a more 
areful 
ombinatorial analysis with Ehrenfeu
ht-Fra��ss�e games of

model 
omparison. (More generally, the �nite model theory of modal logi
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is still undeveloped. Rosen

[

1995

℄

proves some interesting transfer results,

showing better �nite model-theoreti
 behaviour than for �rst-order logi
 in

general.) Doets

[

1987

℄

takes up modal Ehrenfeu
ht games in great depth,

investigating, amongst others, 
orresponden
e over 
ountable and over well-

founded frames. (For instan
e, the so-
alled Fine Axiom turns out to be

�rst-order over 
ountable frames.)

Complexity

This 
hapter 
ontains some results on the (high) 
omplexity of de�nabil-

ity problems for monadi
 �

1

1

�formulas. It turns out mu
h harder to deal

with the modal fragment of these. A lower bound for the 
omplexity of

�rst-orderness of modal formulas has been found in Chagrova

[

1991

℄

: M1 is

unde
idable. It seems likely that her methods (involving redu
tions of Min-

sky ma
hine 
omputation to 
orresponden
e statements) 
an also be made

to yield non-arithmeti
al 
omplexity. Conversely, unde
idability of modal

de�nability for �rst-order statements has been proved by Wolter

[

1993

℄

: that

is, P1 is unde
idable, too. A more general investigation of time and spa
e


omplexity for modal logi
s, and the `jumps' that may o

ur with di�erent

operator vo
abularies, may be found in Spaan

[

1993

℄

. It has improved de-


idability results for the so-
alled `subframe logi
s' de�ned in Fine

[

1985

℄

,

as well as `transfer' of 
omplexity bounds from 
omponents to 
ompounds

in poly-modal logi
s (
f.

[

Kra
ht and Wolter, 1991

℄

).

Corresponden
e and Completeness

The main business of modal logi
 has been the sear
h for 
ompleteness the-

orems over various frame 
lasses. Corresponden
e theory bypasses this de-

du
tive information, fo
ussing on dire
t semanti
 de�nability. Nevertheless,

Kra
ht

[

1993

℄

shows how the two enterprises 
an be merged, by a suitably

generalized form of modal de�nability. Perhaps the most powerful result

of this kind is the generalized Sahlqvist Theorem in Venema

[

1991

℄

, whi
h

shows that over suitably ri
h modal languages (possessing mat
hed versions

for ea
h modality a

essing all dire
tions of its alternative relation), and al-

lowing natural additional rules of inferen
e beyond the minimal modal logi
,

the 
orresponden
e and the 
ompleteness version of the Sahlqvist Theorem


onverge in their proofs. The essential observation in the argument is as

follows. In standard Henkin models for these ri
her systems, unlike in the

standard 
ase, all de�nable subsets employed in the 
orresponden
e proof

(su
h as singletons or su

essor sets) are modally de�nable. Dire
t frame


orresponden
es for modal rules of inferen
e may be found in van Benthem

[

1985

℄

. Over frames, the latter 
orrespond to non-�

1

1

se
ond-order formulas,

but ex
ept for a few s
attered observations in the literature, 
orresponden
e

theory for modal rules of inferen
e remains underexplored.
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Duality with Algebrai
 Logi


Algebrai
 methods have been invaluable in �nding key results on 
orre-

sponden
e, su
h as the Goldblatt-Thomason 
hara
terization of the modally

de�nable �rst- order formulas. Nevertheless, a purely model-theoreti
 re-

analysis has been given in van Benthem

[

1993b

℄

, revolving around saturated

models instead of des
riptive frames. There is no de�nite preferen
e here,

as it is pre
isely the interplay between algebrai
 and model-theoreti
 view-

points that remains fruitful. For new uses of 
orresponden
e methods in

algebrai
 logi
, as well as new set-theoreti
 representations for Boolean al-

gebras with additional modal operators, see Marx

[

1995

℄

, Mikulas

[

1995

℄

.

For instan
e, Marx has an in-depth study of the duality between algebrai


amalgamation and logi
al interpolation. The latter methods no longer em-

ploy simple binary relations as in the J�onsson-Tarski Stone representation,

but more 
omplex set-theoreti
 
onstru
ts. (Modal 
orresponden
es over

�nitary relations o

ur in van Benthem

[

1992

℄

, with a �nite neighbourhood

semanti
s for logi
 programs.) Developing a systemati
 
orresponden
e the-

ory over su
h generalized relational stru
tures then be
omes the next 
hal-

lenge.

Extended Modal Logi
s

Perhaps the most striking development in modal logi
 over the past ten years

has been the systemati
 use of more powerful formalisms, with stronger

modal operators over relational frames. A straightforward step is `poly-

modal logi
', whi
h gives the same expressive power over frames with more

alternative relations. Examples of the latter trend are the indexed modali-

ties < i > of propositional dynami
 logi
 (
f.

[

Harel, 1984; Goldblatt, 1987;

Harel et al., 1998

℄

), or n-ary modalities a

essing (n + 1)-ary alternative

relations, as happens in relevant or 
ategorial logi
s (
f.

[

Dunn, 2001;

Kurtonina, 1995

℄

). The 
orresponden
e theory of su
h extensions is straight-

forward, whereas there are interesting issues of `transfer' for axiomati
 
om-

pleteness, �nite model property, or 
omputational 
omplexity: 
f.

[

Spaan,

1993; Fine and S
hurz, 1996

℄

. Transfer may depend very mu
h on the 
on-

ne
tions between the various modalities. A 
ase in point is modal predi
ate

logi
, whose theory has rapidly expanded over the past de
ade. Van Ben-

them

[

1993a

℄

surveys some striking 
ontributions by Ghilardi and Shehtman.

More interesting, from a 
orresponden
e point of view, is an in
rease in

expressive power over the original binary relational frames. For temporal

logi
, the latter resear
h line was initiated by Kamp's Theorem on fun
tional


ompleteness of the fSin
e, Untilg language over 
ontinuous linear orders.

In modal logi
, the �rst systemati
 work emanated from the `So�a S
hool':


f., e.g.,

[

Gargov and Passy, 1990; Goranko, 1990

℄

, Vakarelov

[

1991; 1996

℄

.

These papers study addition of various new operators, su
h as a universal
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modality ranging over all worlds (relationally a

essible or not), or various

operations on poly-modalities, su
h as `program interse
tion'. New frame


onstru
tions were invented to deal with these, su
h as `dupli
ation'. De

Rijke

[

1992

℄

investigates the `di�eren
e modality' (\in at least one di�er-

ent world"), whi
h has turned out to be useful and yet tra
table. A more

general program for extending modal logi
 (viewed as a general `theory

of information') o

urs in van Benthem

[

1990

℄

but the te
hni
al perspe
-

tive is also 
lear in the pioneering paper Gabbay

[

1981

℄

. Finally, de Rijke

[

1993

℄

is an extensive model-theoreti
 investigation of de�nability and 
or-

responden
e for extended modal languages, produ
ing generalized versions

for many results in this 
hapter (su
h as frame preservation theorems or ef-

fe
tive 
orresponden
e algorithms). Still another angle on all this will follow

below.

Alternatives: Dire
t Frame Theory

One may also analyze the frame 
ontent of modal logi
s more dire
tly in

terms of mathemati
al properties of graphs. Fine

[

1985

℄

is a pioneer of

this trend, emphasizing the good behaviour of `subframe logi
s' whi
h are


omplete for frame 
lasses that are 
losed under taking subframes. (Su
h

logi
s make no `existential 
ommitments'.) First-orderness is not a promi-

nent 
onsideration here: e.g., L�ob's Axiom de�nes a simple subframe logi
.

Zakharyashev

[

1992; 1995

℄

is a sophisti
ated study of modal logi
 from this

viewpoint. Nevertheless, his dire
t 
lassi�
ation of modal logi
s into three

stages of frame preservation behaviour may again be re
e
ted in se
ond-

order syntax and hen
e result in a form of 
orresponden
e theory at that

higher level. A forth
oming monograph by Chagrov and Zakharyashev pro-

vides mu
h more ba
kground, inluding referen
es to earlier Russian sour
es

(going ba
k to Jankov in the sixties). Another ex
ellent sour
e, for many

of the topi
s listed here, is the survey 
hapter

[

Chagrov et al., 1996

℄

.

Models, Bisimulation and Invarian
e

Another noti
eable shift of emphasis in the 
urrent literature leads away

from frames to models as the primary obje
ts of semanti
 interest. This

move makes all of basi
 modal logi
 �rst-order, via our standard transla-

tion. The main questions then address what makes modal logi
s spe
ial

as subspe
ies of �rst-order logi
. In parti
ular, what is the basi
 semanti


invarian
e for basi
 modal logi
, whi
h should play a role like Ehrenfeu
ht

games or `partial isomorphism' in �rst-order model theory? A key result

here is the semanti
 
hara
terization of the modal fragment of �rst-order

logi
 (modulo logi
al equivalen
e) as pre
isely those formulas in one free

variable whi
h are invariant for generated submodels and our `zigzag re-

lations'

[

van Benthem, 1976

℄

. In modern jargon, this says that these for-
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mulas are pre
isely the ones invariant for bisimulation. The latter link

was also developed in Hennessy & Milner

[

1985

℄

, whi
h mat
hes modal for-

malisms in di�erent strengths with 
oarser or �ner pro
ess equivalen
es.

For up-to-date expositions of the resulting analogies between modal logi
s

and 
omputational pro
ess theories, 
f.

[

van Benthem and Bergstra, 1995;

van Benthem et al., 1994

℄

, as well as various 
ontributions in the volume

[

Ponse et al., 1995

℄

. This development has led to a new look at 
onne
-

tions between modal formalisms and �rst-order logi
. For instan
e, there

are striking analogies between the meta-theories of both logi
s, whose pre-


ise extent and explanation is explored in de Rijke

[

1993

℄

, and Andr�eka,

van Benthem & N�emeti

[

1998

℄

. In parti
ular, the latter paper investigates

the hierar
hy of �nite-variable fragments for �rst-order logi
 as a 
andi-

date for a general a

ount of modal logi
 (
f.

[

Gabbay, 1981; van Benthem,

1991

℄

for this view). Typi
ally, modal formulas need only two variables over

worlds in their standard translation, temporal formulas only three, and so

on. Finite-variable fragments are natural, and may be 
onsidered as fun
-

tionally 
omplete modal formalisms (
f. the insightful game-based analysis

of Kamp's Theorem in Immerman & Kozen

[

1987

℄

). Nevertheless, Andr�eka,

van Benthem & N�emeti

[

1998

℄

also turn up an array of negative proper-

ties, and eventually propose another 
lassi�
ation for modal languages in

terms of restri
ting atoms for bounded quanti�ers. The resulting `guarded

fragments' 
an be analyzed mu
h like the basi
 modal language, in
lud-

ing analogous bisimulation te
hniques. In parti
ular, these bisimulations

now relate �nite sequen
es of obje
ts instead of single worlds, as in many-

dimensional modal logi
s (
f.

[

Marx and Venema, 1996

℄

for the theory of su
h

formalisms). Their 
orresponden
e theory, taken with respe
t to natural

generalized frame 
onditions for arbitrary �rst-order relations, still remains

to be understood.

[

van Benthem, 1996b

℄

is a general study of dynami
 log-

i
s for 
omputation and 
ognition, pursued via these te
hniques. One of its


entral 
on
erns is expressive 
ompleteness of modal pro
ess logi
s vis-�a-vis

pro
ess equivalen
es like bisimulation.

Conne
tions with Higher-Order Logi
 and Set Theory

From �rst-order 
orresponden
e, forays 
an be made into higher-order de-

�nability. Sometimes, this move is suggested by the modal language itself.

E.g., in propositional dynami
 logi
, program iteration naturally translates

into a 
ountable disjun
tion of �nite repetitions. Thus, translation into

the in�nitary standard language L

!

1

!

seems the evident route. In�nitary

frame 
orresponden
es were brie
y 
onsidered in van Benthem

[

1983

℄

, and

their modal model theory is explored in

[

de Rijke, 1993; van Benthem and

Bergstra, 1995

℄

. Of 
ourse, one may restore a balan
e here, and 
onsider

an in�nitary modal 
ounterpart of L

!

, allowing arbitrary set 
onjun
tions

and disjun
tions, whi
h would be the most natural formalism invariant for
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bisimulation. Barwise and Moss

[

1995

℄

take this line, linking up truth on

models and 
orresponden
e on frames. (Another perspe
tive on in�nitary

modal logi
 is given in

[

Barwise and van Benthem, 1996

℄

.) Among a number

of original results, they prove that a modal formula has all its in�nitary sub-

stitution instan
es true in a model M i� it is true (in the usual se
ond-order

sense) on the frame 
ollapse of that model taken with respe
t to the maxi-

mal bisimulation over M . As a dire
t 
onsequen
e, frame 
orresponden
es

for modal formulas imply model 
orresponden
es in in�nitary modal logi
.

(The issue of good 
onverses is still open). The original motivation for this

type of investigation was that it relates modal logi
s to (non-well-founded)

set theories. Linkages of this kind are further explored in d'Agostino

[

1995

℄

whi
h also raises the issue of more 
omplex 
orresponden
es for modal ax-

ioms. For instan
e, she shows that the se
ond-order L�ob Axiom holds in a

frame i� that frame is transitive while its 
ollapse with respe
t to the max-

imal bisimulation is irre
exive. More generally, then, the interesting point

about many 
orresponden
es is not that they must always redu
e modal

axioms to �rst-order ones, but rather the fa
t that they reformulate modal

prin
iples to any more perspi
uous 
lassi
al formalism. Another natural


andidate of the latter kind is se
ond-order monadi
 �

1

1

logi
 (
f.

[

Doets

and van Benthem, 2001

℄

). In parti
ular, Doets

[

1989

℄

shows how modal 
om-

pleteness theorems 
an sometimes be extended to 
over this whole language.

Moreover, many e�e
tive translation methods (see below) turn out to work

for this broader language anyway. Finally, van Benthem

[

1989b

℄

points out

how �rst-order 
orresponden
e theory, suitably restated for se
ond-order

�

1

1

formulas, is a natural generalization whi
h handles so-
alled 
omputable

forms of Cir
ums
ription in the AI literature (whi
h involves reasoning from

a se
ond-order `predi
ate-minimal' 
losure for �rst-order axioms; 
f.

[

Lif-

shitz, 1985

℄

).

Translations

Corresponden
e has be
ome a 
onspi
uous theme in the 
omputational lit-

erature on theorem proving with intensional logi
s. A number of algorithms

have been proposed, some of them redis
overies of the Substitution Method

and its ilk (
f.

[

Simmons, 1994

℄

) and even mu
h older results in se
ond-

order logi
 [Doherty,  Lukasiewi
z and Szalas, 1994℄, others working with new

`fun
tional` translations better geared towards 
omplete standard Skolem-

ization and Resolution (
f. Ohlba
h

[

1991; 1993

℄

). One interesting feature

of some of these algorithms is that they also produ
e useful equivalents for

se
ond-order modal prin
iples. For instan
e, the typi
ally non-�rst-order

M
Kinsey Axiom gets a natural equivalent quantifying over both individ-

ual worlds and Skolem fun
tions witnessing its (non-Sahlqvist) ante
edent.

Finally, we mention the use of set-theoreti
 interpretations of the standard

translation in d'Agostino, van Benthem, Montanari & Poli
riti

[

1995

℄

, whi
h
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read the universal modality as des
ribing a power set. This translation also

works with an expli
it axiom system for general frames plus one axiom stat-

ing that the relational su

essors of any point in a frame form a set. This

shift in perspe
tive redu
es theorem proving in modal logi
s to dedu
tion in

weak 
omputational set theories. Many of these translations 
an also be for-

mulated so as to deal with extended modal formalisms or larger fragments

of se
ond-order logi
.

Designing New Logi
s

Finally, 
orresponden
e te
hniques have been used in `de
onstru
ting' stan-

dard logi
s and designing new ones. For instan
e, one 
an interpret �rst-

order predi
ate logi
 over possible worlds models (`labelled transition sys-

tems') with assignments repla
ed by abstra
t states 
onne
ted by abstra
t

relations R

x

modelling variable shifts. Then, standard predi
ate-logi
al

validities turn out to express interesting frame properties, 
onstraining pos-

sible 
omputations, e.g., by Chur
h-Rosser 
on
uen
e properties (whi
h

mat
h the �rst-order axiom 9y8x� ! 8x9y�). Moreover, one may want

to impose 
ertain restri
tions on admissible valuations, su
h as `hered-

ity 
onstraints' for axioms Py ! 8xPy or Py ! [y=x℄Px (van Benthem

[

1997; 1996b

℄

have details). These abstra
t models re
e
t 
ertain dependen-


ies between admissible obje
t values that may exist for individual variables.

This theme is investigated more expli
itly in [Ale
hina and van Benthem,

1993; Ale
hina, 1995℄, whi
h design new generalized quanti�er logi
s over

`dependen
e models', �rst proposed by Mi
hiel van Lambalgen | where

again the for
e of possible axioms is measured at least initially in terms of

(Sahlqvist) frame 
orresponden
es. Related modal approa
hes to �rst-order

logi
 are found in

[

Venema, 1991; Marx, 1995

℄

.

ADDED IN PRINT (1999)

Handbooks appear a

ording to their own rhythms. Two years have elapsed

sin
e the updates were written for this Appendix. Here are a few further

items of interest. D'Agostino [1998℄ 
ontains new material on de�nability in

in�nitary modal logi
s, a topi
 also pursued further by Barwise and Moss.

Meyer Viol [1995℄ has examples of 
orresponden
e for intuitionisti
 predi-


ate logi
 showing how intermediate axioms 
an be quite surprising in their


ontent. Hollenberg [1998℄ is an extensive study of de�nability, invarian
e

and safety in modal pro
ess languages. Gerbrandy [1998℄ has interesting

theorems on modal de�nability and bisimulation invarian
e in a setting of

non-well-founded set theory, with appli
ations to dynami
 logi
 of epis-

temi
 updates. Gr�adel [1999℄ is an ex
ellent survey of progress made on the

program of de
idable guarded �rst-order languages extending modal logi
,
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in
luding also �xed-point operators. Van Benthem [1998℄ is an up-to-date

survey of the de�nability/
orresponden
e paradigm, and the 
orresponding

`tandem approa
h' to modal and 
lassi
al logi
s. Finally, two modern texts

on modal logi
 that take 
orresponden
e seriously are Bla
kburn, de Rijke

and Venema [1999℄ and van Benthem [1999℄.
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