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Abstrat

In software engineering, formal methods are meant to apture the requirements

of software yet to be built using notations based on logi and mathematis. The

formal language Z is suh a notation. It has been found that in large projets

inonsistenies are inevitable. It is also said, however, that onsisteny is required

for Z spei�ations to have any useful meaning. Thus, it seems, Z is not suitable

for large projets.

Inonsistenies are a fat of life. We are onstantly hallenged by inonsistenies

and we are able to manage them in a useful manner. Logiians reognised this

fat and developed so alled paraonsistent logis to ontinue useful, non-trivial,

reasoning in the presene of inonsistenies. Quasi-lassial logi is one repre-

sentative of these logis. It has been designed suh that the logial onnetives

behave in a lassial manner and that standard inferene rules are valid. As suh,

users of logi, like software engineers, should �nd it easy to work with QCL.

The aim of this work is to investigate the support that an be given to rea-

son about inonsistent Z spei�ations using quasi-lassial logi. Some of the

paraonsistent logis provide an extra truth value whih we use to handle under-

de�nedness in Z. It has been observed that it is sometimes useful to ombine the

guarded and preondition approah to allow the representation of both refusals

and underspei�ation.

This work ontributes to the development of quasi-lassial logi by providing a

notion of strong logial equivalene, a method to reason about equality in QCL

and a tableau-based theorem prover. The use of QCL to analyse Z spei�ations

resulted in a re�ned notion of operation appliability. This also led to a revised

re�nement ondition for appliability. Furthermore, we showed that QCL allows

fewer but more useful inferenes in the presene of inonsisteny.

Our work on handling underde�nedness in Z led to an improved shema repre-

sentation ombining the preondition and the guarded interpretation in Z. Our

inspiration omes from a non-standard three-valued interpretation of operation

appliability. Based on this semantis, we developed a shema alulus. Further-

more, we provide re�nement rules based on the onept that re�nement means

redution of underde�nedness. We also show that the re�nement onditions ex-

tend the standard rules for both the guarded and preondition approah in Z.
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Chapter 1

Introdution

Ja, ih sage shon jetzt voraus: es werden mathematishe Unter-

suhungen �uber Kalk�ule kommen, die einen Widerspruh enthalten,

und man wird sih noh etwas darauf zugute tun, da� man sih auh

von der Widerspruhsfreiheit emanzipiert.

1

Ludwig Wittgenstein

30

th

Deember 1930

Software engineering is the branh of omputer siene that is onerned with

the development of software. Its aim is to provide engineering methods and teh-

niques to build and maintain software. An analogy ommonly drawn is between

arhitets and software engineers. In early stages houses were just built without

a systemati knowledge of how to onstrut them. However, to build sky srap-

ers that will not ollapse a deep mathematial understanding of the statis of

suh buildings was required. As suh, only the formalisation of the methods in

arhiteture allowed new developments.

Software engineering is undergoing a similar metamorphosis. Rather than build-

ing software in an ad ho fashion, a deeper understanding of its requirements

and its onstrution is needed to make software more reliable. Formal methods is

the �eld of software engineering that is aimed at developing tehniques to make

the meaning of software artifats mathematially and logially preise in order

to improve software reliability.

Formal spei�ations are the main mathematial objets onsidered in formal

methods. Unfortunately, it has been found that espeially large spei�ations

are often inonsistent. Consisteny, however, is required for spei�ations to be

meaningful. Taken together, this implies that large spei�ations are usually not

meaningful. The aim of our researh is to overome this problem by handling

inonsistenies in a more pratial way.

1

\Indeed, even at this stage, I predit a time when there will be mathematial investigations

of aluli ontaining ontraditions, and people will atually be proud of having emanipated

themselves from onsisteny."(Wittgenstein, 1964, p. 332), English translation in (Priest, 2000).

1



1.1. Managing Inonsisteny in Z Spei�ations 2

1.1 Managing Inonsisteny in Z Spei�ations

Formal methods are seen as the way forward to more reliable software. Their

appliation in the development proess leads to a deeper understanding of the

requirements of the software under onstrution. One of the main objets on-

sidered by formal methods are formal spei�ations. They express the software

requirements in terms of logi and mathematis. This foundation enables the

formal analysis of the requirements and it provides a possibility to verify whether

the requirements are met by the software produt.

The development of a spei�ation depends primarily on the soures of informa-

tion, like designers, engineers and others. Often, several developers' views need

to be inorporated into the desription of the software produt. It has been found

that, in partiular in large projets, the partiipants disagree on a range of issues.

Furthermore, due to the omplexity of large desriptions errors an easily appear.

In general, it has been found that

\Inonsistenies are inevitable in large projets."

(Ghezzi and Nuseibeh, 1998)

The Z notation is one of several languages used to develop formal spei�ations.

It is based on logi and mathematis, in partiular set theory, and provides a

rather elegant way of struturing the mathematis that desribe the system at

hand. However, onsidering the argument from above we fae a pratial problem,

beause

\Consisteny is essential for a Z spei�ation to have any useful meaning."

(Valentine, 1998)

The onjuntion of both laims means that the Z notation is not suitable for

large projets beause they an be inonsistent but a Z spei�ation inluding

an inonsisteny would be meaningless or useless. This onlusion is, however,

not pratial. As a matter of fat, even inonsistent spei�ations have a desired

meaning and an intended use.

Inonsistenies are generally regarded as undesirable in software development

and, in partiular, in formal spei�ation. A formal spei�ation written in the

Z notation is basially a logial desription of a system and its behaviour, i.e.

it is a logial theory. Logiians, however, often regard inonsistent theories as

uninteresting beause they allow to derive any onlusion within their language

and therefore none an be trusted. This is also the reason for Valentine's laim

above.
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Beause inonsistenies are seen as undesirable, researhers developed tools and

tehniques to remove inonsistenies as soon as, or soon after they are deteted.

Another approah is to follow guidelines to prevent the introdution of inonsis-

tenies into spei�ations in the �rst plae. This researh is ertainly valuable to

minimise the ourrene of inonsistenies. At times, however, suh an approah

an be impratial.

Reently it has been aknowledged that in pratie it is not always possible

nor desirable to eradiate inonsistenies immediately, if at all. For example,

the engineer who ould deide on how to resolve the inonsisteny may not be

available. This would in turn bring the projet to almost a standstill beause

the spei�ation is onsidered useless. It ould be that no-one knows how to

resolve the inonsisteny at all. Also, inonsistenies an be useful to guide the

future development, pointing out areas that need more attention. Moreover, in

partiular in large projets, the removal of one inonsisteny might bring up

another and sometimes a ompletely onsistent stage is unreahable in pratie.

Thus, we are required to manage inonsistenies in a more general fashion.

The Z notation is founded on standard prediate logi but we identi�ed that

inonsistenies annot be handled appropriately by suh a logi. Therefore, it

seems natural to investigate other logial foundations for the Z notation. The

group of logis that an be used to manage inonsistenies are alled paraonsis-

tent logis. The aim of our researh is to investigate the formal support we an

give to managing inonsistenies in Z spei�ations using a paraonsistent logi

to failitate useful formal reasoning in the presene of inonsisteny.

1.2 Underde�nedness in Z Spei�ations

We found that there is a wide range of paraonsistent logis. Some of them ap-

ture inonsisteny rather intuitively by providing an extra logial truth value,

often alled \both" in the semantis. Furthermore, many of these logis inlude

another truth value, alled \neither", to denote inomplete knowledge. For ex-

ample, if asked \Who is the urrent hanellor of Germany?" we an answer \I

was told it is Mr. Shr�oder", \I was told it is not Mr. Stoiber", \I was told it is

Mr. Sh�oder and I was told it is Mr. Stoiber" or \I do not know at all". These

four senarios apture the idea of the four truth values.

An appliation area for this \don't know" value in formal spei�ation is un-

derde�nedness. This notion refers to those situations where the operation is

applied outside its domain. In the ommon Z spei�ation style operations are,

in general, partial relations. The domains of these partial operations are tradi-

tionally alled preonditions. Depending on the appliation area there are two

possible interpretations of the result of applying an operation outside its domain.
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In the traditional interpretation anything may result whereas in the alternative,

guarded, interpretation the operation is bloked outside its preondition. It has

been observed that it is often onvenient to use a ombination of the guarded and

preondition interpretation to allow both modelling of refusals and underspei�-

ation.

1.3 Aims and Objetive

We identi�ed two interesting areas of researh onerning the Z notation. On the

one hand, we found that inonsistenies in Z spei�ations need to be managed

in a more pratial fashion, rather than being eradiated. On the other hand,

modelling underde�nedness expliitly in the Z notation an be further explored.

Managing Inonsisteny in Z using Quasi-Classial Logi

The problem is, that the Z notation annot deal appropriately with inonsistent

situations beause it is founded on lassial prediate logi. Classial prediate

logi allows trivial inferenes in the presene of inonsisteny. Paraonsistent

logis, on the other hand, allow only non-trivial inferenes despite the presene

of inonsisteny. Therefore, it is our aim to investigate whether the Z notation

an be founded on a paraonsistent logi to manage inonsistenies more appro-

priately.

Paraonsistent logis are, in general, weaker than lassial logi in the sense

that not all lassially valid inferenes are possible. This is ahieved by non-

standard behaviour of the logial onnetives, by the introdution of new logial

onnetives, by disallowing established proof rules, like resolution, or by other

means. Furthermore, properties of lassial logi, like monotoniity or transitivity

an fail. We need to �nd a suitable logi for our task, one that will be aeptable

to both spei�ation developers and spei�ation analysts.

One we have found an appropriate paraonsistent logi we are interested in its

appliation to the analysis of Z spei�ations. Our aim is to avoid triviality

in the presene of inonsisteny whih means that we opt for deriving less but

more useful information. Re�nement is onerned with the formal development

of onrete spei�ations from abstrat ones. We are interested in providing a

meaning for re�nement of inonsistent spei�ations. This should, on the one

hand, failitate the ontrolled removal of inonsistenies and, on the other hand,

the proess of living with inonsistenies in Z spei�ations.
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Handling Underde�nedness in Z

The aim of this thesis with respet to underde�nedness is to develop a notation

that ombines both the guarded and the standard preondition interpretation to

model underde�nedness expliitly. We deide to onsider a three-valued semantis

to apture the intuition that (1) an operation an be bloked by a guard, (2) that

the operation an be allowed by the guard but no result has been de�ned and

(3) the operation is appliable and its result is de�ned. Then we an use existing

three-valued logis to investigate spei�ations based on suh an interpretation.

The redution of underde�nedness and non-determinism is a ommon goal of

re�nement. Given suh a three-valued interpretation of the appliability of oper-

ations it is our aim to �nd suitable and intuitive re�nement onditions to support

further spei�ation development. We identi�ed that there are systems whih re-

quire non-deterministi behaviour. Therefore, we are also interested in re�nement

that takes suh behaviour into aount.

The extensive use of shemas to struture spei�ations has made Z suessful.

The shema alulus provides a means to ombine shemas and to reason about

them. It is a further aim of our work to see whether we an onstrut a shema

alulus suitable for the three-valued interpretation of the operations. Suh a

alulus should be as funtional as the standard alulus, i.e. it should failitate

reasoning about the ombination of shemas. Note, re�nement alulations are

also an appliation area of the shema alulus.

1.4 Contributions

There are several ontributions to be found in this work. Essentially they an

be grouped aording to the notions of inonsisteny and underde�nedness. The

former onsists of work on quasi-lassial logi and its appliation to the analysis

of Z spei�ations, while the latter refers to the work on a shema representation

for underde�nedness based on a three-valued logi.

On Quasi-Classial Logi. In order to use quasi-lassial logi to analyse

Z spei�ations we were required to develop QCL further. On the one hand,

the literature on QCL does not provide a general notion of logial equivalene

for QCL. Suh a notion is, however, neessary to failitate the simpli�ation of

logial formulae. Therefore we investigate a number of di�erent notions based on

the QC onsequene relation and QC model lasses. Our work results in a strong

notion of logial equivalene allowing general replaement of equal formulae.

On the other hand, QCL did not inlude the notion of equality. However, the use

of equality is a ommon feature in Z spei�ations. Therefore, we inorporated
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reasoning about equality into QCL. This led also to the investigation of the one-

point rule in QCL and we established it to be a valid reasoning rule. Finally, we

developed an automated theorem prover based on the tableau method for QCL.

Quasi-Classial Logi and Z. Quasi-lassial logi proved useful in the formal

analysis of inonsistent Z spei�ations. We demonstrated that fewer but more

useful inferenes from inonsistent spei�ations are possible. Given the standard

de�nition of a preondition but using QCL, we found a notion of appliability

that is able to apture the intended appliation area of an inonsistently de�ned

operation. This quasi-lassial preondition is then used to investigate the proess

of re�nement of inonsistent operations. The result is an appliability rule that

prevents some \useless" re�nements from inonsistent operations.

Guarded Preondition Shema. Based on a three-valued intuition of the

appliability of an operation we developed a Z-like shema representation for

both guards and preonditions in an operation thus enabling the spei�ation of

underde�nedness. Our shema representation is more expressive than previous

developments by allowing after-state variables in the guard. This required the

development of rules for alulating the impliit guard and preondition of an

operation. Given those, we were able to provide a set of re�nement rules for

operations and showed that they extend the standard rules with respet to the

guarded and preondition interpretation.

A Shema Calulus. To improve the usefulness of guarded preondition

shemas we developed a shema alulus onsidering the standard Z shema op-

erators. We were guided by our three-valued interpretation of the appliability of

operations. The de�nition of most shema operators was straightforward. How-

ever, due to the non-lassial interpretation, shema impliation and entailment

turned out to be di�erent. We were, however, able to re-gain a suitable entailment

operator to failitate, for example, re�nement alulations.

1.5 Outline

This thesis starts with a short introdution to Z followed by a disussion on

inonsisteny and underde�nedness in Z spei�ations. Then we present some

insight into paraonsistent reasoning and, in partiular, into quasi-lassial logi.

In the following hapters we apply these logis to reasoning about inonsistenies

in Z and to develop a new semantis for handling underde�nedness in Z. Below,

we give a more detailed desription of the struture of this thesis.
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Chapter 2. In Chapter 2 we introdue the Z notation. We provide some bak-

ground from logi and set theory, inluding types, relations and funtions, and we

introdue Z shemas, the basi building bloks of a Z spei�ation. We present

the shema alulus as a means to struture Z spei�ations and to ombine

shemas. Furthermore, we onsider the notion of re�nement of Z spei�ations

to develop abstrat spei�ations into onrete ones. Throughout this thesis we

use the support of tools whih are presented in this hapter. Finally, we disuss

briey the relation of Z to some other formal spei�ation notations.

Chapter 3. In Chapter 3 we desribe the aim of our researh in more detail.

We are interested in the sorts of inonsistenies that an arise in Z spei�ations.

We laim that inonsistenies an be a tool guiding the development of spei�a-

tions and we look at desired inferenes despite the presene of inonsistenies in

Z spei�ation. Underde�nedness an be onsidered to be losely related to in-

onsisteny thus we introdue the onept of underde�nedness in Z spei�ations

and we propose a new way to handle it.

Chapter 4. In Chapter 4 we introdue some bakground on the notion of para-

onsisteny, inluding the di�erent motivations for paraonsisteny, two de�ni-

tions of paraonsisteny and some of the approahes to onstrut a paraonsis-

tent logi. Then we present two losely related four-valued paraonsistent logis,

namely the logi FOUR by (Belnap, 1977b) and the logi FOUR by (Dam�asio

and Pereira, 1998). A three-valued subset of the logi FOUR is used in Chapters

7 and 8 to provide the semantis for our work on underde�nedness. The main part

of Chapter 4, however, is devoted to the introdution of quasi-lassial logi by

(Hunter, 2000) whih plays a major role in the following hapter. We ontribute

to the development of QCL by investigating the notion of logial equivalene in

QCL.

Chapter 5. In Chapter 5 we inorporate reasoning about equality into QCL.

We introdue the syntax and semantis for equality, inluding the equality ax-

ioms and some investigation of using these axioms as extra assumptions in the

reasoning proess using QCL. Then we develop the mahinery to reet that

we are dealing in fat with equality. We extend the proof system of QCL by

extra tableau rules for handling equality and we prove their soundness and om-

pleteness. Finally, we present a version of the one-point rule for QCL to further

failitate QCL's appliability to our researh.

Chapter 6. In Chapter 6 we bring together QCL and Z. We present a small

example of a library system spei�ed using the Z notation. We introdue an in-

onsisteny into the example to use it as an illustration throughout this hapter.
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In the lassial setting suh a spei�ation would be meaningless but not so when

using quasi-lassial logi. We demonstrate that QCL allows fewer but more use-

ful inferenes than standard prediate logi. Then we apply QCL to the proess

of alulating the preondition of inonsistent operation shemas failitating a

disussion on the re�nement proess of inonsistent operations. Following the

notions of standard re�nement, we establish the priniples of quasi-lassial ap-

pliability and QC orretness and thus show that QCL an be used to ontrol

the ontinuous development of inonsistent spei�ations. Note, some parts of

this hapter were previously published by (Miarka et al., 2002).

Chapter 7. In Chapter 7 we link up the Z notation, the problem of underde-

�nedness and the two interpretations of the meaning of a preondition in Z. We

demonstrate by means of two examples, normalisation and a simple money trans-

ation system, that a ombination of the traditional and bloking interpretation

is sometimes required. Then we de�ne a shema notation inluding both guards

and e�et shemas. Based on that we de�ne regions of operation behaviour,

i.e. whether an operation is inside or outside the guard, or inside or outside the

preondition. These regions an naturally be de�ned in a three-valued inter-

pretation leading to a simple and intuitive notion of re�nement that generalises

standard operation re�nement. We introdue these re�nement rules and show

their ompatibility to the standard ones. Note, some parts of this hapter were

previously published by (Miarka et al., 2000).

Chapter 8. In Chapter 8 we develop a shema alulus for suh guarded pre-

ondition shemas. We start the hapter with a brief reapitulation of the notion

of a guarded preondition shema and we ontinue with an illustration of its use

by presenting a small example of a heat ontrol system. It follows the main part

onsisting of the development of the shema alulus itself whih is based on the

standard shema operators. We validate the alulus by proving several laws for

our shema operators. Furthermore, we show that some laws of the lassial Z

shema alulus do not hold within our alulus. We revise the standard notions

of shema appliability and we return to investigating operation re�nement, using

the newly developed shema alulus.

Appendix A. In Appendix A we present work in progress on a tableau-based

theorem prover for QCL. The theorem prover, alled QC-LeanTaP, is based on

leanT

A

P whih we briey introdue �rst. Part of leanT

A

P is a small program to

alulate the onjuntive negation normal form of a �rst order prediate formula.

We adapt this program for our needs by removing skolemization of existential

prediates. Finally we present our tableau-based theorem prover for QCL.



Chapter 2

A Short Introdution to Z

Z is a formal spei�ation notation. It is used to model a system by naming

the omponents and to state the onstraints upon them and their relations, thus

desribing the behaviour of the system. Z is formal in the sense that it uses

mathematis, whih onsists basially of set theory and �rst-order prediate logi,

to speify systems. This foundation enables mathematial reasoning to establish

that desired properties are indeed onsequenes of spei�ations written in Z.

The main feature of Z, distinguishing it from many other formal notations, is the

shema notation. It provides a very elegant way of struturing the mathematis

speifying a system as well as to struture the system itself. The Z notation

de�nes a shema alulus to ombine shemas. It is also used to reason about

the spei�ation. This inludes the ability to reason about the development of

more onrete spei�ations from abstrat ones, i.e. about re�nement.

Z is a notation, not a method, although it is often said to be one. The Z standard

(ISO/IEC 13568, 2002) does not say how to use Z in a systemati way and to

what Z an be best applied. Neither does the Z standard give any guidane on

how to develop a system from a Z spei�ation. Note also that Z spei�ations

are not exeutable nor, in general, an they be ompiled into a running program.

Hene, Z is not some kind of a programming language.

The Z notation has been used to speify di�erent kinds of systems. Examples of

applying Z suessfully inlude safety ritial systems, suh as railway signalling

and medial devies, seurity systems, like transation proessing systems, and

general hard- and software developments. A omprehensive list of appliation

examples as well as information on tools and other resoures an be found on the

Z notation home page: http://www.omlab.ox.a.uk/arhive/z.html.

The aim of this hapter is to give an overview of the Z notation and to introdue

the neessary bakground to be able to desribe those problems we will takle

in the next hapters. We present the shema notation, inluding the shema

alulus, the most ommon onventions and the notion of re�nement in Z. Finally,

we disuss briey tool support for Z and other methods related to Z.

9
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2.1 Introdution

Z is a formal spei�ation language based on Zermelo-Fraenkel set theory and

�rst-order prediate logi. It provides a notation for desribing the behaviour of

a system using mathematis. The key feature of Z is its shema notation, a way

to struture the mathematis elegantly. A Z spei�ation not only onsists of

mathematial text but also of informal explanatory text, desribing the mean-

ing of the mathematial onstruts. The purpose of the formality is to avoid

ambiguities inherent in informal desriptions and to provide a basis for rigorous

reasoning.

The Z notation inludes an extensible toolkit of mathematial notation, a shema

notation for speifying strutures in the system and for struturing the spei�a-

tion itself and a deidable type system whih allows extra heks to be performed

to redue the risk of spei�ation errors. Furthermore, Z has a shema alulus for

modifying and ombining shemas. The shema operators enable the de�nition

of new shemas using existing ones in a ompat and readable way.

2.1.1 History of Z

The Z notation grew out of work by (Abrial, 1974) at Oxford University's Pro-

gramming Researh Group. Its development and reognition bene�ted greatly

from being used at IBM UK Laboratories at Hursley Park for the re-spei�ation,

re-design and further development of their Customer Information Control Sys-

tem (CICS). (Nix and Collins, 1988) published one of the many studies on this

projet. (Barrett, 1989) reports on another important projet at the time, the

use of Z in the formalization of the IEEE standard for binary oating-point arith-

meti whih formed the basis for the oating-point unit of the Inmos IMS T800

Transputer. Both projets reeived the UK Queen's Award for Tehnologial

Ahievement jointly with the Oxford University Computing Laboratory.

Two books helped primarily to establish Z and to stabilise the notation. (Hayes,

1987) edited a olletion of ase studies whih where later substantially revised

in (Hayes, 1993). This olletion was used as a kind of a referene on how to use

Z. Later, (Spivey, 1992) produed a referene manual whih beame the de fato

language de�nition for many years. For some time now, the Z notation has been

undergoing a standardization proess. This e�ort resulted in the reent publia-

tion of the International Standard (ISO/IEC 13568, 2002) whih \establishes the

preise syntax and semantis for some mathematis, providing a basis on whih

further mathematis an be formalized."

Many books, like (Potter et al., 1991), are aimed at the introdution to formal

spei�ation and Z. (Barden et al., 1994), for example, provide some useful advie

on how to use Z in pratie. (Jaky, 1997) demonstrates the way of Z through a



2.1. Introdution 11

series of short studies, introduing the essential features of the notation quikly.

(Woodok and Davies, 1996) look more deeply at the development proess based

on Z spei�ations. This aim has been taken further by (Derrik and Boiten,

2001) who present a thorough aount on re�nement in Z and Objet-Z (Smith,

2000), a notation losely related to Z. Common to all these books is their emphasis

on understanding Z and making it available to a wider audiene.

There is also a regular series of onferenes, ZUM: The Z Formal Spei�ation

Notation, also known as the Z User's Meetings. These onferenes are devoted

to Z and similar spei�ation notation. Reently onferenes where held jointly

with the B ommunity. The last onferene proeedings were edited by (Bowen

et al., 1998), (Bowen et al., 2000) and (Bert et al., 2002).

2.1.2 Motivation

We hoose Z for our work beause it is a mature notation. It has a rih litera-

ture of introdutory texts and ase studies and it has been an objet of researh

for many years. Z is among the �rst formal notations to make the rossover

from aademia to industry. It has been applied suessfully in numerous indus-

trial projets, and aording to the ompanies saved them millions. With these

industrial appliations in mind Z underwent the ISO standardization proess.

Furthermore, Z is being widely taught, not only at universities.

One of the advantages of Z is that it an be used in a number of di�erent ways

aording to the appliation area. This, however, leads to the problem of hoos-

ing the right way for the desired appliation. For example, we will see later in

this work that there are at least two ways of interpreting the preondition in Z.

The so alled disadvantage of Z that it is not a method turns possibly into our

favour. Z not ditating a method provides us with more exibility to investigate

Z, abstrating from methodologial onerns.

The aim of this hapter is to introdue the Z notation. We fous in our presen-

tation on the bakground neessary for the remainder of this thesis. The reader

familiar with Z an safely skip this hapter as it provides no new insights into the

Z notation. The short disussion on Z tools and on related spei�ation methods

might, however, be of additional value.

2.1.3 Outline

This hapter is strutured as follows. In Setion 2.2 we provide some bakground

on logi and set theory, inluding types, relations and funtions. In Setion 2.3

we introdue Z shemas, the basi building bloks of a Z spei�ation. Shemas

an be ombined appropriately using the shema alulus whih we present in
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Setion 2.4. The notion of re�nement of Z spei�ations is disussed in Setion

2.5. The Z notation is also supported by tools. We present a seletion of them

in Setion 2.6. Finally, in Setion 2.7, we disuss briey the relation of Z to

some other formal spei�ation notations. This hapter onludes with a short

summary.

2.2 Logi, Sets, Types, Relations, Funtions

The Z notation is based on set theory and �rst-order prediate logi. Although

we assume general familiarity with these topis, we introdue some bakground

notions frequently used in this work. We over briey the logi of Z and then we

present some notation from set theory and its appliation to type theory, relations

and funtions. Note, that we provide only the terminology used in this work. For

a detailed introdution we reommend one of the aforementioned textbooks.

2.2.1 Logi

The Z notation uses propositional and prediate logi to state the relationship

between the omponents of a system and to onstrain the behaviour aordingly.

The propositional logi used ontains the ommon onnetives with their usual

meaning and order of preedene: : { negation, ^ { onjuntion, _ { disjuntion,

) { impliation, and , { equivalene.

Prediate logi is provided by the usual introdution of quanti�ers into the lan-

guage, together with the notions of free and bound variables. The Z notation is a

typed language meaning that every variable belongs to a �xed set of values, thus

quanti�ations need to be typed, too. For example, universal quanti�ation has

the form 8 x : T j p � q and means that for all x in T satisfying the prediate p,

q holds. Existential quanti�ation has the form 9 x : T j p � q and means that

there exists at least one value of x in T satisfying p suh that q holds.

The prediate p restriting q is optional. If p is omitted it is onsidered to be

true. The following equivalenes hold for the restrited quanti�ers: for univer-

sal quanti�ation 8 x : T j p � q , 8 x : T � p ) q and for existential

quanti�ation 9 x : T j p � q , 9 x : T � p ^ q .

A variable introdued by a quanti�er is said to be bound, and the usual soping

laws apply. Variables that are not bound in a prediate are said to be free. As

usual, it is possible to replae all bound ourrenes of a variable in a prediate.

This ensures the orretness of the following frequently used proof rule of 9-

elimination, also alled the one-point rule (for existential quanti�ation): 9 x :

T � x = t ^ p(x ) � t 2 T ^ p(t), provided that x is not free in t . This law

states that if we are required to demonstrate the existene of a variable and a
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suitable instantiation is given, then we an eliminate the existential quanti�er.

This law is often used in the simpli�ation of preonditions of operations.

2.2.2 Sets

Set theory is the other ornerstone of the Z notation, in fat, the name Z is

derived from Zermelo-Fraenkel set theory. Membership { 2 and its onverse { 62,

empty set { ?, subset { �, and equality { = are de�ned as usual.

Sets an be given by listing their elements, like in fred ; green; yellowg, or by set

omprehension. For instane, fn : T j pg is the set of all n in T satisfying

the prediate p, e.g. fn : Z j n � 0g desribes the set of all natural numbers.

Furthermore, fx : S j P(x ) � Q(x )g is the set of all x of type S satisfying the

prediate P suh that Q is satis�ed, too. Note, P(x ) is omitted when P(x ) = true

and Q(x ) is omitted when Q(x ) = true. The size of a �nite set is determined

by its ardinality (#), e.g. #fred ; green; yellowg = 3, onsidering all elements of

this set are distint.

Furthermore, we an use the ommon set operators, like power set onstru-

tion { P, Cartesian produt { �, set union { [, set intersetion { \ and set

di�erene { n. These operators are all de�ned as usual. For example, P S is

the set of all subsets of S , e.g. Pfred ; greeng = f?; fredg; fgreeng; fred ; greengg,

and the Cartesian produt S � T is the set of ordered pairs whose �rst ele-

ment is in S and whose seond element is in T , e.g. f1; 2g � fred ; greeng =

f(1; red); (1; green); (2; red); (2; green)g.

2.2.3 Types

Z is a typed language or, in logial terms, it is based on many-sorted �rst-order

prediate alulus. Every expression in Z has a unique type assigned. Basially,

types onstrain the use of any kind of value. For example, when x is delared

as x : S then the type of x is the largest set ontaining S . Thus, types are sets

and every set is ontained in exatly one type. Note, however, that the symbol

? denotes the empty set of all possible types.

Types are important beause they allow to detet a wide range of spei�ation

mistakes. For example, (1; 2) 2 N is a type error in Z, beause (1; 2) is a tuple

whereas N is a set of numbers, not of tuples. The type system of Z is deidable,

thus it is possible to alulate automatially the types of expressions and to hek

whether they make sense. There are several tools (see Setion 2.6) to support

type heking.
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Built-in Type. Z provides a single built-in type A , alled arithmos, supplying

values for use in speifying number systems. For example, the integer numbers

are de�ned as Z : P A , thus the set of integers, Z, is a subset of A . The set of

natural numbers is de�ned as N : PZ, thus the number 7 is not of type N but

of type Z and subsequently of type A . The type A has been introdued by the

urrent Z standard. Before, the set of integers, Z, was onsidered to be the only

given type and it is still ommon to onsider Z as the \super-type" as done here.

Note, Z has no built-in Boolean type, though a type B onsisting of true and false

is, for illustrative purpose, frequently used. This, however, is stritly speaking a

type error, beause, in Z, true and false are de�ned as prediates, not expressions.

Given sets. Although Z provides only a single built-in type, a spei�er has a

number of ways to de�ne new types relevant to the partiular spei�ation. One

way is to simply delare them. A given set is a delaration of the form

[TYPE ℄

introduing a new type TYPE . For example,

[NAME ;BOOK ℄

de�nes two new sets NAME and BOOK . At this stage, no further information

about values or relationships between these sets are given.

Type onstrution. Starting with existing types there are various ways to

onstrut new types. The power set operator P is an elementary type onstrutor

often used. For example, the set falie; bob; harlieg is of type PNAME , given

that eah of the names is in the set NAME , i.e. of type NAME . The Cartesian

produt is another frequently used type onstrutor. For example, NAME � N

is a type onsisting of ordered pairs, e.g. (alie; 2) is of type NAME � N .

Free types. Another important type onstrutor is the free type. Basially,

free types an be transformed into other Z onstruts. However, it makes it

easier to desribe ertain strutures, in partiular reursive strutures like lists

and trees. Here, we only onsider free types over onstants. For example,

Report ::= Ok j Failure

denotes a type Report ontaining exatly two di�erent onstants Ok and Failure.

Alternatively, this ould have been de�ned by a given type [Report ℄ and the

onstraint Ok ;Failure : Report j Ok 6= Failure ^ 8 x : Report � x = Ok _ x =

Failure. For more details on free type onstrution see (Spivey, 1992, pp. 82).

Another kind of type in the Z notation is the so alled shema type, whih we

will introdue in Setion 2.3.7 after presenting the notion of a shema.
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2.2.4 Relations

Relations are among the most important and most extensively used mathematial

onstruts in Z. A relation is a set of ordered pairs. X $ Y denotes the set of all

relations between the sets X and Y , that is, the set of all sets of ordered pairs

whose �rst elements are members of X and whose seond elements are members

of Y . X $ Y is de�ned as P(X � Y ). When de�ning relations, the maplet

notation x 7! y is often used for (x ; y).

Assume that our sets of names ontains falie; bob; harlieg � NAME . Then we

an de�ne a relation letters desribing the number of letters in the name, e.g.

letters == falie 7! 5; bob 7! 3; harlie 7! 7g.

For any ordered pair �rst and seond omponent projetion, denoted �rst and

seond are provided. For example, �rst (alie; 5) = alie and seond (bob; 3) = 3.

The domain of a relation R : X $ Y is the set of �rst omponents of the ordered

pairs in R, i.e. domR = fp : R � �rst pg. The range of the relation R is the set

of seond omponents of the ordered pairs in R, i.e. ranR = fp : R � seond pg.

For example, given the relation letters we have dom letters = falie; bob; harlieg

and ran letters = f3; 5; 7g.

Often, it is useful not to onsider the whole of the domain or range of a set

but restrited subsets. The domain restrition of a relation R : X $ Y by a set

S : PX , denoted SCR, is the set of pairs in R whose �rst omponents are in S , i.e.

S CR = fr : R � �rst r 2 Sg. For example, falie; harliegC letters = falie 7!

5; harlie 7! 7g. The domain anti-restrition, or domain subtration, of a relation

R : X $ Y by a set S : PX is the set of pairs whose �rst omponents are not in

R, i.e. S

�

CR = fr : R � �rst r 62 Sg. Similarly de�ned are range restrition and

range subtration of a relation R : X $ Y by a set T : PY , denoted RBT and

R

�

B T respetively, but with respet to the seond omponent of R.

It is often useful to speify that a relation only hanged marginally. Appliations

of suh operation inlude, for example, database updates. For a relation this

means to replae some of the pairs by new ones. The operation to do this is

alled overriding. If R and S are both relations between X and Y , the relational

overriding of R by S is the whole of S together with those members of R that have

no �rst omponents that are in the domain of S , i.e. R�S = ((domS )

�

CR)[ S .

For example, letters � falie 7! 6g = falie 7! 6; bob 7! 3; harlie 7! 7g. Note, if

the domains of the relations R and S are disjoint then overriding oinides with

set union, e.g. letters � fdan 7! 3g = letters [ fdan 7! 3g = falie 7! 5; bob 7!

3; harlie 7! 7; dan 7! 3g.

There are many more operators on relations de�ned in the Z standard. Arguably,

there are even more important operators than the presented ones. However, we

have only introdued those that will be valuable to us subsequently. We refer to

the aforementioned textbooks for more information.
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2.2.5 Funtions

Funtions are relations with partiular properties, namely that eah element in

the domain is mapped to at most one element of the range. Therefore, the

operators above and all the other relational operators are all de�ned for funtions,

too. There are di�erent kinds of funtions distinguished by further properties.

Eah kind of funtion has a name and a symbol assigned.

The set of all partial funtions X 7! Y from X to Y is the set of all relations

between X and Y suh that eah x in X is related to at most one y in Y .

Basially, the terms \funtion" and \partial funtion" are used synonymously. A

funtion f from X to Y is said to be total, denoted f : X ! Y , if dom f = X , i.e.

if it relates eah member of X to exatly one member of Y . For example, we an

write ount : NAME ! N for a funtion ount suh that ount(n) returns the

numbers of letters in a given name n, or names : N 7! PNAME for a funtion

that returns all the names of a given length. Every name has a number of letters

it onsists of, hene ount is total but there is at least one natural number suh

that there annot be a name of that length, hene names is partial.

Funtions have additional properties. They an be injetive, surjetive or bije-

tive. A funtion from X to Y is injetive, if eah y in Y is related to no more

than one x in X . A funtion from X to Y is surjetive, if its range is equal to

Y . A funtion is bijetive, if it is both injetive and surjetive. Thus, ount is a

total injetive funtion and names is a partial surjetive funtion.

This onludes our introdution to some basi bakground. We introdued the

syntax of the logi of Z and some notation from set theory. We overed Z's type

onstrutors as well as the use of relations and funtions in Z. Next we turn to

the main feature of Z to struture spei�ations.

2.3 Shemas in Z

The Z spei�ations we onsider will be written in the (usual) \states-and-

operations" style. In this style a system is given by operations desribing the

hange of the state of the system. The state of the system and the operations

upon it are written using Z shemas struturing the spei�ation into manageable

omponents.

Shema boxes are the most reognizable feature of Z. They provide a struturing

mehanism for the powerful mathematial language introdued above. Basially,

the spei�ation of a partiular operation an be written as one prediate. How-

ever, it would be rather diÆult to understand the meaning of suh a prediate

at one. Therefore, it is useful to break it into smaller, manageable, omponents.

That is what shemas are for.



2.3. Shemas in Z 17

2.3.1 Shema Syntax

A shema onsists of a set of delarations and onstraints upon them. For exam-

ple, the shema

Library

users : PNAME

borrowed : NAME 7! PBOOK

users � dom borrowed

introdues users whih are a olletion of something alled NAME and borrowed ,

a funtion that assigns to something from the set NAME a subset of whatever

the set BOOK ontains. Furthermore, the prediate onstrains the set users to

be a subset of the domain of the funtion borrowed .

In general, a shema box onsists of a shema name, a set of delarations above

a short line, and a prediate below.

ShemaName

delaration

prediate

The delarations an be split aross lines, like above, or they may be put on

the same line, separated by semiolon. A prediate split aross lines denotes a

onjuntion, unless another operator is used. For example,

Example

1

n : Z; x : Z

n < 5

x > 10

Example

2

n : Z

x : Z

(n < 5) _

(x > 10)

the prediate in Example

1

means (n < 5) ^ (x > 10) whereas the prediate in

Example

2

stands for (n < 5) _ (x > 10). We also use indentation to struture

prediates appropriately.

Note, that the prediate an be true. Then it is omitted from the shema and

the shema only provides the delarations. For example, the shema

System

message : Report
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introdues something named message of type Report , i.e. something that an be

Ok or Failure, without any further onstraints attahed.

Shemas an also be written in horizontal form, e.g.

OkReport == [message : Report j message = Ok ℄

desribes that the thing message of type Report should be assigned Ok . The

horizontal notation is used for two reasons. On the one hand, the naming of the

shema is made more expliit and, on the other hand, they are more ompat in

notation.

In general, Z shemas are aompanied by a desription in natural language to

larify the meaning of the shema. For example, the shema Library desribes

a simple library systems onsisting of users who an borrow books. Unless the

natural desription is given all the omponents of a shema an be interpreted

quite freely, they are only symbols.

2.3.2 Axiomati Shemas

Axiomati shemas are used to introdue new objets into a spei�ation whih

are subjet to onstraints. These objets will be known throughout the spei�-

ation, i.e. they are global. For example, the shema

heat max ; heat min : Z

heat max = 65

heat min = 45

introdues two global onstants heat max and heat min of integer type with

unique values assigned. In general an axiomati shema looks like

delaration

prediate

Again, the prediate is optional. If it is not given, it is onsidered to be set

to true. An axiomati shema without a prediate just introdues new global

names.

Free types, as introdued above, are formally de�ned using axiomati shemas.

The earlier de�nition of

Report ::= Ok j Failure

is an abbreviation for
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[Report ℄

Ok ;Failure : Report

Ok 6= Failure

8 x : Report � x = Ok _ x = Failure

2.3.3 Generi Shemas

We said already that the symbol ? denotes the empty set for all possible types,

thus the symbol ? is de�ned generially, that is, it has a de�nition using type

parameters. For example,

[X ℄

makesum : (X $ Z)! Z

8 x : X ; y : Z; z : (X $ Z) �

makesum ? = 0 ^

makesum f(x ; y)g = y ^

makesum (f(x ; y)g [ z ) = y +makesum (z n f(x ; y)g)

de�nes a funtion makesum that an take any set of pairs, where the �rst ompo-

nent is generi but the seond omponent is an integer. The funtion makesum

then alulates the sum of all the seond omponents, regardless of what the �rst

omponents are.

The advantage of generi shemas is their re-usability. One de�ned, they apply

to many di�erent situations. For example, most operators on sets are de�ned

generially, so that the type of the elements does not matter. However, when

using suh generi de�nition at a later stage in the spei�ation, atual sets must

be provided to replae the type parameter. Replaing the generi parameter by

atual sets is alled instantiation. Sometimes the atual sets an be inferred from

the ontext, in some irumstanes they must be provided expliitly. In any ase,

the value for the generi parameter must be lear.

2.3.4 Shema Inlusion

A shema an be inluded in another shema to form a omposed shema. This

approah supports struturing of spei�ations. For example, we de�ne a shema

with extra restritions, like
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RestritedLibrary

Library

8 u : users � #(borrowed(u)) � 7

by inluding the shema Library and imposing the ondition that no user an

have more than 7 books on loan. Suh a shema is equivalent to one obtained by

expanding all delarations and onjoining all prediates, e.g.

RestritedLibrary

users : PNAME

borrowed : NAME 7! PBOOK

users � dom borrowed

8 u : users � #(borrowed(u)) � 7

Similarly, we an reate a new shema by shema inlusion and additionally pro-

viding new omponents and onstraints on them. The entire shema then onsists

of the expansion of the inluded shema together with the new omponents and

the onjuntion of all the prediates.

2.3.5 Deorations and Conventions

In this subsetion we reord some of the onventions of notation that are often

used when writing Z spei�ations. These onventions inlude the identi�ation of

before and after states, operations on those states and input and output variables.

The onventions are permitted but not enfored by the Z standard, though they

are doumented in it, too.

Primed Variables. Eah operation in Z is desribed as a relation between

states, namely the before and after state of the operation. It is therefore neessary

to distinguish between the values of state variables before the operation and their

values afterwards. The onvention in Z is to use unprimed variables, like x , to

denote values before the operation and to deorate variables with a dash, like x

0

,

to denote values after the operation. Note, however, that the shema prediate

an also refer to any global onstants.

Primed Shemas. Variables have to be in sope of the operation. If the state

has been desribed in a shema S , then inluding S in the delaration part of the

operation shema brings the state variables into sope. The after-state variables

are similarly introdued by inluding S

0

. This is a shema obtained from S by
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deorating every variable in the signature of S with a dash, and replaing every

ourrene of suh a variable in the prediate part of S by its dashed ounterpart.

Thus, operations an be desribed in Z by a shema of the form

Op

S

S

0

: : :

Note, the variables from the signature of S are the only ones whih are primed.

Global onstants, types et. remain unprimed. If S ontains a variable whih has

already been deorated in some way, then an extra dash is added to the existing

deoration.

Delta. The inlusion of primed and unprimed opies of the state shema is so

ommon that abbreviation for its use are introdued. The abbreviation �S ==

[S ; S

0

℄ is used to denote the general inlusion of primed and unprimed state

shema, thus the operation shema beomes

Op

�S

: : :

For example,

AddUser

�Library

name? : NAME

name? 62 users

users

0

= users [ fname?g

borrowed

0

= borrowed

This use of � is only a onvention. Oasionally some authors like to inlude

additional restritions in their �-shemas, for example that a partiular state

omponent never hanges. For instane, if S ontained a omponent z , but

none of the operations ever hanged z , then �S ould be de�ned by �S ==

[S ; S

0

j z

0

= z ℄, thus making it unneessary to inlude z

0

= z in eah operation

desription. Note, however, that we will not use this feature here.
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Xi. When enquiry operations, like reading variables, are being desribed, it is

often neessary to speify that no hange of state should our. With the urrent

notation this has to be done expliitly by stating for eah omponent that its

after-state value is the same as its before-state value. This is inonvenient and

an be avoided using the �-onvention. Unless it has been expliitly de�ned

to mean something else, referenes to �S are treated as being equivalent to

[S ; S

0

j �S = �S

0

℄, where the meaning of � is explained below.

Inputs and outputs. Often, it is onvenient to desribe relations between

inputs and outputs as well. The input values of an operation are provided by

`the environment', and the outputs are returned to the environment. Commonly

an additional suÆx is used to distinguish a variable intended as an input (?) or

an output (!), thus for example, name? denotes an input, and result ! denotes an

output.

2.3.6 Normalisation

Earlier, we introdued the Z type system. We mentioned that a type an be

onstruted from a given type by onstraining it. Normalisation is the proess of

making suh onstraints expliit. Shema normalisation will produe an equiva-

lent shema where all omponents are delared to be members of their \maximal"

type, rather than of a set ontained in those. Consider a shema S with om-

ponents x

1

: X

1

; : : : ; x

n

: X

n

, suh that the type of x

i

is T

i

. The normalisation

of S is obtained by replaing all delarations of x

i

: X

i

by x

i

: T

i

and onjoining

x

i

2 X

i

with the prediate of S .

For example, the normalisation of the shema S1 is given by the shema S2.

S1

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

S2

a; a

0

: Z

a 2 N ^ a

0

2 N

(a

0

)

2

� a < (a

0

+ 1)

2

Shema normalisation plays an important role when ombining shemas using

the shema alulus.

2.3.7 Shemas as Types

So far we have not made expliit the meaning of a shema. Basially, a shema

denotes a set whih is ontained in some type. The elements of suh a set are

alled bindings. The type of these bindings is the signature of the shema, whih,

viewed as a set, is the largest set of bindings ontaining all elements of the shema.
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There is a speial operator to onstrut bindings in a ontext where all the om-

ponent names are delared. This is the �-operator. For example,

�Library = hj users == users; borrowed == borrowed ji

The two ourrenes of the names have rather di�erent meanings. The �rst is

loal to the binding, just the name of a shema omponent. The seond must

refer to a value, namely the value of the variable of that name whih must be in

ontext. For example, when applying � to a deorated shema, like

�Library

0

= hj users == users

0

; borrowed == borrowed

0

ji

it beomes evident that the �rst name is loal and thus not subjet to the deo-

ration.

A ommon use of the �-operator is to turn an operation into a relation between

states. If we have an operation Op on �State, then its relational interpretation

is given by the set omprehension

fOp � (�State 7! �State

0

)g

This means that for eah possible binding of Op a pair onsisting of the inluded

bindings of the before state State and those for the after state State

0

is inluded.

Thus, eah operation an be easily interpreted as a relation of before and after

states. For example, given the operation su == [n; n

0

: N j n

0

= n + 1℄ then its

relational interpretation is the set of pairs f(hj n == 0 ji; hj n == 1 ji); (hj n ==

1 ji; hj n == 2 ji); (hj n == 2 ji; hj n == 3 ji); :::g.

2.4 The Z Shema Calulus

The main building bloks of a Z spei�ation are shemas. They are used to

struture the spei�ation and the systems under onsideration. Muh of the

power of the Z notation derives from the ability to ombine shemas. We already

witnessed shema inlusion as suh a onstrut. The Z notation, however, pro-

vides more operators to ombine shema, some of whih we present below. The

olletion and the use of these operators is alled the shema alulus.

Combining shemas is subjet to one restrition, namely that their delarations

are ompatible. This inludes that the same names are used for the same meaning

and, mostly, that the shemas are normalised. Remember, a type de�nition

impliitly ontributes not only to the delaration but also to the prediate of the

shema.

In this setion we onsider the appliation of the shema operators to at most two

shemas. This is not a restrition as the operators an be applied suessively.

For illustrative purpose we use the shemas U == [Del

U

j pred

U

℄ and V ==

[Del

V

j pred

V

℄ with their delaration and prediate part.
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2.4.1 Renaming

Renaming shema omponents is another way to ahieve the ompatibility of

the shema delarations. Shema omponents an be renamed, provided that

the new name is not part of the delaration of the shema. The renaming of a

omponent p by a q in a shema U is denoted U [q=p℄, thus every ourrene of

p will be replaed by q , exept if p is bound inside the prediate of the shema.

For example, we have

RestritedLibrary [members=users℄

members : PNAME

borrowed : NAME 7! PBOOK

members � dom borrowed

8 u : members � #(borrowed(u)) � 7

2.4.2 Shema Negation

For any shema U , the shema negation : U , is obtained by keeping the dela-

ration of U and negating the prediate, i.e.

: U == [Del

U

j : pred

U

℄

Note, shema negation requires normalisation. For example, the negation of

U 1 == [x : N j pred(x )℄ is [x : Z j x 62 N ^ : pred(x )℄ for some prediate pred

ontaining x .

Shema negation on its own is not often used in pratie. However, it an play

its part in simplifying shema expression when applying shema onjuntion and

shema disjuntion. The shema alulus, like prediate logi, obeys the de Mor-

gan laws and thus some shema simpli�ations an be expressed using shema

negation.

2.4.3 Shema Conjuntion

Shema onjuntion is losely related to shema inlusion. The shema resulting

from the onjuntion of the shemas U and V ontains both U and V and

nothing else, thus

U ^ V == [U ; V ℄ == [Del

U

; Del

V

j pred

U

^ pred

V

℄

i.e. the prediates of U and V are onjoined and the delarations are merged

appropriately. Shema onjuntion does not need normalisation due to the prop-

erties of onjuntion and normalisation.
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However, it is only well-de�ned when omponents have ompatible types. If the

same variable is delared in both shemas but belongs to di�erent sets, then

the intersetion of those sets needs to be taken. For example, [x : N ℄ ^ [x :

f�1; 1g℄ == [x : N \ f�1; 1g℄ == [x : f1g℄. If the sets are not ompatible,

like in [x : N ℄ and [x : NAME ℄, then the intersetion is empty and thus shema

onjuntion is unde�ned.

Shema onjuntion allows one to speify di�erent aspets of a system separately.

It an be usefully applied both on operation and on state shemas to ombine

those aspets to form a omplete desription, thus it is used to ombine require-

ments.

For example, the shema OkOp desribes that an operation has been suessful

and it is de�ned by OkOp == [message! : Report j message! = Ok ℄. Then

expanding OkAddUser == AddUser ^ OkOp is the shema

OkAddUser

�Library

name? : NAME

message! : Report

name? 62 users

users

0

= users [ fname?g

borrowed

0

= borrowed

message! = Ok

2.4.4 Shema Disjuntion

Shema disjuntion is rarely used on state shemas. It is often applied on op-

eration shemas to handle separate ases, in partiular error handling and other

exeptions, thus to develop total operations, i.e. operations that have no on-

straints upon their appliability. For example, given the operation OkAddUser

and the following shema

FailAddUser

�Library

name? : NAME

message! : Report

name? 2 users

message! = Failure

reporting a Failure if the given name? is already ontained in the set users, then

ombining both via disjuntion results in a total operation, i.e. TotalAddUser ==

OkAddUser _ FailAddUser .
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Shema disjuntion is onstruted similarly to onjuntion, i.e. ombine the de-

larations and apply disjuntion to the prediates, thus shema disjuntion for two

shemas U and V is de�ned as

U _ V == [Del

U

; Del

V

j pred

U

_ pred

V

℄

provided both shemas U and V are normalised. This is neessary to ensure that

ommon omponent names have not only ompatible but idential types. This

requirement also follows meta-theoretially beause we required normalisation

for shema negation and shema disjuntion an be expressed in terms of shema

onjuntion and shema negation.

2.4.5 Shema Impliation and Equivalene

Shema impliation and equivalene have the usual meaning. They are de�ned

as

U ) V == : U _ V

provided the shemas U and V are normalised and

U , V == U ) V ^ V ) U

Both operators are rarely used to ombine shemas. However, they prove useful

to validate re�nement onditions or other relations between operations. For ex-

ample, for two operations Op

1

and Op

2

on the same state whose only omponent

is x : X , the prediate 8 x ; x

0

: X � Op

1

) Op

2

states that the e�et of Op

1

is

onsistent with Op

2

and 8 x ; x

0

: X � Op

1

, Op

2

states that the e�ets of both

operations are idential. Note, that we quantify over the shema omponent,

whih is explained next.

2.4.6 Shema Quanti�ation

The shema quanti�ation of a shema U results in a new shema V ontaining a

subset of the omponents of U in its delaration, with a prediate that is obtained

from U by quantifying over the removed omponents. Quanti�ation is used to

express universal or existential properties of the given shema, like in re�nement

or in preondition alulation.
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Existential Quanti�ation. Given a shema U == [x : X ; Del

U

j pred

U

℄

where Del

U

onsists of delarations but for x : X , then the existential quanti�-

ation over x in U is

9 x : X � U == [Del

U

j 9 x : X � pred

U

℄

Thus, 9 x : X � U is a shema on all omponents of U exept x . Examples of

the value and usage of existential quanti�ation in Z are given below.

Universal Quanti�ation. It is also possible to universally quantify over

shemas. This happens less frequently than existential quanti�ation but proves

valuable when onsidering re�nement. Given a shema U == [x : X ; Del

U

j

pred

U

℄ where Del

U

onsists of delarations but for x : X , then the universal

quanti�ation over x in U is

8 x : X � U == [Del

U

j 8 x : X � pred

U

℄

Thus, 8 x : X � U is a shema on all omponents of U but x .

2.4.7 Shema Hiding, Projetion and Composition

The following three shema operators are de�ned using shema quanti�ation and

possibly other shema operators. They are abbreviations to ease the onstrution

of spei�ations.

Shema Hiding. Hiding of variables (x

1

: X

1

; : : : ; x

n

: X

n

) from a shema U ,

denoted U n(x

1

; : : : ; x

n

), is basially idential to existential quanti�ation as suh

that U n(x

1

; : : : ; x

n

) stands for the existential quanti�ation of the shema U over

the omponents x

1

to x

n

, i.e.

U n (x

1

; : : : ; x

n

) = 9 x

1

: X

1

; : : : ; x

n

: X

n

� U

Shema Projetion. Shema projetion of a shema U on a shema V , de-

noted U � V , ombines the shemas using onjuntion but hides all omponents

from U exept those that are part of V . Formally,

U � V = (U ^ V ) n (x

1

; : : : ; x

n

)

where (x

1

; : : : ; x

n

) are omponents of U not shared by V .
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Shema Composition. This operation desribes the e�et of one operation

followed by another, i.e. it is an operation that begins in the before state of

an operation Op

1

and ends in the after state of an operation Op

2

. It is only

meaningful when applied to operation shemas on the same state. The shema

omposition of two operations Op

1

and Op

2

is denoted Op

1

o

9

Op

2

.

For example, onsider the spei�ation of the ursor movement in an editor bu�er

given by (Jakson, 1995). The operations srRight and srLeft both operate over

the state File whih represents the bu�er. Consider the operation srRight is

appliable, then applying srLeft after srRight should result in the same position

of the ursor as before, i.e. srRight

o

9

srLeft = �File. Thus, omposition an

also be used to validate the usefulness of some de�nitions in the spei�ation.

Consider State

0

to be the state after the operation Op

1

was performed. This is

also the state immediately before operation Op

2

. Lets all this intermediate state

State

00

. Then omposition is de�ned as

Op

1

o

9

Op

2

= 9 State

00

�

(9 State

0

� [Op

1

; State

00

j �State

0

= �State

00

℄) ^

(9 State � [Op

2

; State

00

j �State = �State

00

℄)

whih is the onjuntion of both operations where the intermediate state is hid-

den. Shema omposition an be alulated using renaming and hiding, e.g.

Op

1

o

9

Op

2

= (Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄) n (x

00

)

for all state omponents. Note, shema omposition does not onnet inputs and

outputs of an operation, whih is alled piping but not disussed here.

2.4.8 Preondition Calulation

The preondition of an operation haraterises all the states and inputs to whih

the operation an be applied suh that there is an after state and output whih

are related to the states and inputs by the operation. In some spei�ation

languages, like VDM (Jones, 1990), preonditions and postonditions are given

expliitly. However, this does not apply to Z. In order to make a preondition of

a given operation expliit one needs to alulate it.

The preondition, preOp, of an operation Op == [�State; ins?; outs! j pred ℄ on

a state State with inputs ins? and outputs outs! is de�ned by

preOp = 9 State

0

; outs! � Op

Thus, preOp is another shema on State and ins?, indiating on whih before

states and inputs the operation is appliable. The preondition is, based on
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this de�nition, a rather abstrat prediate. This prediate is usually simpli�ed

applying, for example, the one-point rule and other equivalenes. An algorithm

for alulating a preondition is given by (Woodok and Davies, 1996, pp. 206).

For example, the preondition for the operation AddUser is preAddUser =

9Library

0

� AddUser , whih an be simpli�ed to the shema [Library ; name? :

NAME j name? 62 users℄.

Disussing the issue of the preondition leads also to onsider the notion of a

postondition. Note, Z does not use a single haraterisation of the postondition

of an operation. However, in order to apply the re�nement alulus (King, 1990),

a notion of postondition was adapted. Given an operation shema Op ==

[�State j pred ℄ satisfying the ondition pred ) preOp, and a ondition P , then

P is onsidered to be a postondition of Op if preOp ^ P , pred . In partiular

this holds if P is equivalent to pred itself, however, other valid postonditions

may exist. The notion postOp is used to refer to some possible postondition of

Op.

2.5 Re�nement in Z

So far we are able to write a formal spei�ation in the Z notation. While

this is a valuable task in its own right we also want to be able to develop a

spei�ation towards an implementation. The proess of development from an

abstrat spei�ation towards a more onrete representation is alled re�nement.

To (Woodok and Davies, 1996), re�nement is all about improving spei�ations.

It involves the removal of non-determinism, or unertainty. A re�nement is said to

be aeptable provided it is impossible for an observer to notie the replaement.

2.5.1 Operation Re�nement

(Derrik and Boiten, 2001) use the term simple re�nement to desribe the re-

�nement of operations where the state shema does not hange. This notation is

ommonly onsidered as operation re�nement. However, simple re�nement is a

more general onept than operation re�nement.

Operations in Z are, basially, binary relations over a state spae relating a be-

fore state and an after state. Operations an be, if neessary, interpreted as

total relations. Figure 2.1 shows two graphial representations of the operation

Op = f(0; 0); (0; 1); (2; 2)g over the state f0; 1; 2g. The dotted lines represent the

appliation of the operation for before states that are outside the domain.

Basially, there are two interpretations possible for applying an operation out-

side the domain. The �rst graph represents the ontratual interpretation in Z,

whereas the seond one onsiders the bloking interpretation. Depending on the
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Figure 2.1: Relational Interpretations of the OperationOp = f(0; 0); (0; 1); (2; 2)g

over the state f0; 1; 2g

hosen interpretation, totalisation binds all states not in the domain to all others

and ?, a distinguished state representing non-termination, or it binds all states

not in the domain only to ?.

In the ontratual interpretation the domain of the operation desribes the area

in whih the operation should be guaranteed to deliver a well-de�ned result as

desribed by the relation. This area is ommonly referred to as the preondition

of the operation. Outside the domain, however, the operation may be applied but

an return any value, inluding an unde�ned one. In the bloking interpretation

operations may not be applied outside their domain. Applying the operation

anyway leads to an unde�ned result. In this ontext, the preondition is often

alled the guard of the operation.

Consider a partiular before state s. A substitution of the operation AOp by

an operation COp would be unnotied if either (1) s is in the domain of AOp,

then the after state for COp should be one of the possibilities in the range of

AOp. Furthermore, this means that s should also be in the domain of COp

otherwise ? would be allowed by COp but not by AOp; or (2) in the ontratual

interpretation, if s is not in the domain of AOp, then any possible after state

for COp is aeptable. This, in turn, means that s may, or may not, be in the

domain of COp.

This intuition is formalised in the following way. An operation COp is an oper-

ation re�nement of an operation AOp over the same state spae State and with

the same inputs x? : X and the same outputs y ! : Y , if and only if

Appliability

8 State; x? : X � preAOp ` preCOp

Corretness

8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ` AOp
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Note, we use the turnstile notation as it is more general than impliation. We

will �nd in subsequent hapters that onsequene and impliation are not always

interhangeable as in standard prediate logi. The orretness rule above ap-

plies within the standard, ontratual, interpretation of a Z operation. In the

alternative, bloking interpretation, the orretness rule beomes

8 State; State

0

; x? : X ; y ! : Y � COp ` AOp

There are a few speial ases worth onsidering. First, an operation does not

neessarily have to have inputs and outputs. The appliability and orretness

onditions simplify aordingly. Furthermore, if the preondition of the onrete

and abstrat operation are the same, i.e. preAOp = preCOp then COp is an

operation re�nement of AOp if and only if

8 State; State

0

� COp ` AOp

i.e. the orretness ondition was simpli�ed using Op = preOp ^ Op. Note, this

holds in both the bloking and the ontratual interpretation.

Shema onjuntion is one way of obtaining operation re�nements. This au-

tomatially guarantees orretness and only appliability needs to be heked.

Thus, the operation AOp ^ X , for operations X and AOp both over �State, is

an operation re�nement of AOp if and only if

8 State � preAOp ` pre(AOp ^ X )

For example, in Subsetion 2.4.3 we formed the shema OkAddUser by a on-

juntion of the shemas AddUser and OkOp and, indeed, we an verify that

OkAddUser is an operation re�nement of AddUser using the Z/EVES proof tool.

=> try \forall Library � \pre AddUser \implies \pre OkAddUser;

=> prove by redue;

Proving gives ...

true

In the ontratual interpretation, operation re�nement allows preonditions to

be weakened and non-determinism to be redued. The appliability ondition

requires that the onrete operation is de�ned everywhere the abstrat operation

was de�ned. It allows, however, that the onrete operation is de�ned where

the abstrat operation was not. The orretness ondition requires the onrete

operation to map into the range of the abstrat operation everywhere the abstrat

operation is de�ned. It does not require, however, to over the whole range of
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the abstrat operation, i.e. it is not neessary for the onrete operation to be

idential to the abstrat operation.

For example, the operation TotalAddUser is an operation re�nement of the oper-

ation AddUser . The operation TotalAddUser is appliable everywhere AddUser

was de�ned. Additionally, it is also de�ned in ase the user name? is already a

member of the library.

=> try \pre AddUser \shows \pre TotalAddUser;

=> prove by redue;

Proving gives ...

true

Furthermore, the operationTotalAddUser performs every task that AddUser does

but more. We already showed that OkAddUser is an operation re�nement of

AddUser . Beause the preonditions of FailAddUser and OkAddUser are disjoint

orretness follows immediately.

=> try \pre AddUser \land TotalAddUser \implies AddUser;

=> prove by redue;

Proving gives ...

true

Besides operation re�nement (Derrik and Boiten, 2001) onsider two more ases

of simple re�nements. These are onerned with establishing and imposing in-

variants. Sine we are not using suh re�nements in our work we will not disuss

them here.

2.5.2 Data Re�nement

In data re�nement we are onerned about a more onrete representation of the

state. Data re�nement, however, is not muh onsidered in this work. Neverthe-

less, we refer to it and thus we present briey what data re�nement is about. For

a thorough introdution to data re�nement we reommend (Derrik and Boiten,

2001). Note, for illustrative purpose we onsider here only operations with no

inputs or outputs.

Simple, operation, re�nement was restrited to operations over the same state.

However, to move loser to an implementation the de�nition of the state needs to

be re�ned too. For example, in an abstrat spei�ation we use sets frequently,



2.5. Re�nement in Z 33

however, a more onrete representation ontains lists or arrays instead. Note,

hanging the data representation will also a�et the operations over them.

The standard de�nition of data re�nement for Z shemas whose operations are

total relations is now ommonly given by using simulations. A simulation is also

known as a retrieve relation or abstration relation. Basially, there are two forms

of simulation, alled upward and downward simulation.

AState

R

��

AOp //
AState

0

R

0

��
CState

COp

//
CState

0

AState

AOp //
AState

0

CState

R

OO

COp

//
CState

0

R

0

OO

Figure 2.2: Re�nement Using Downward and Upward Simulation

Figure 2.2 shows two ommutative diagrams representing downward and upward

simulation. The abstration R is a relation, the arrows labelling R and R

0

just

indiate the diretion to follow around the diagram.

The �rst diagram desribes that the appliation of the relation R followed by the

operation COp an be mathed by the operation AOp followed by a mapping R

0

.

In the seond graph the simulation is reversed, i.e. the e�et of COp followed by

R

0

an be mathed by R followed by AOp. In either ase, valid appliations of the

onrete operation an be simulated by appliations of the abstrat operation.

For Z shemas AOp and COp without input or output, the relationR on AState ^

CState is a downward simulation from AOp to COp if

Initialisation

8CState

0

� CInit ` 9AState

0

� AInit ^ R

Appliability

8AState; CState; � preAOp ^ R ` preCOp

Corretness

8AState; CState; CState

0

�

preAOp ^ R ^ COp ` 9AState

0

� R

0

^ AOp
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Note, these rules assume the standard, ontratual, interpretation of Z operations.

In the bloking interpretation, the orretness rule beomes

8AState; CState; CState

0

� R ^ COp ` 9AState

0

� R

0

^ AOp

This formalisation of downward simulation extends the notion of operation re-

�nement by onsidering initialisation and also hanges in the state spae. The

intuition behind appliability and orretness remain the same apart from on-

sidering the hange of state spae, whih is desribed by the retrieve relation

R.

Downward simulation is the most ommon way of heking data re�nement. How-

ever, it has been found that there are valid re�nements that annot be veri�ed

using downward simulation but using upward simulation. Upward as well as

downward simulation are sound, i.e. if an upward or downward simulation exists

between onformal operations AOp and COp then COp is a data re�nement of

AOp. However, upward and downward simulation are only jointly omplete, i.e.

re�nements are possible whih require both kinds of simulations for their proof.

Note, we do not onsider data re�nement any further in this work. However, we

are interested in applying our work to data re�nement in the future.

2.6 Tool Support for Z

There are a number of tools available to support the Z notation. These tools o�er

various degrees of assistane in type setting Z spei�ations and pretty printing,

syntax and type heking, theorem proving and spei�ation animation. The

following list of tools is a small sample and ertainly not omplete. We refer to

the Z home page for more details.

oz.sty is a L

A

T

E

X maro for Objet-Z from the SVRC (Software Veri�ation

Researh Centre) at the University of Queensland. We used this style to type-set

the Z notation in this thesis.

FuZZ is a printing and type-heking system for Z spei�ations. Using FuZZ

together with L

A

T

E

X you an input Z spei�ations as ASCII �le, proess them for

laser printing, hek spei�ations for their onformane to the Z language rules

and produe a listing of shemas with omponents and their types. The FuZZ

distribution ontains a speial L

A

T

E

X font of Z symbols and a library ontaining

the standard mathematial tool-kit. FuZZ is fully ompatible with the referene

manual by (Spivey, 1992). Using FuZZ requires a liene.

ZTC { the Z Type Cheker { an determine if there are syntatial and typing

errors in Z spei�ations. It is intended to be ompliant to (Spivey, 1992). ZTC

aepts as input spei�ations written in L

A

T

E

X using the oz or zed pakages, or
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its own ZSL notation whih is an ASCII version of the Z syntax by the author of

ZTC. It is available free of harge for eduational and non-pro�t uses.

Formaliser is a syntax-direted Z editor and interative type heker. It provides

the failities to interatively query attributes and to view all identi�ers with

their types. Formaliser is a what-you-see-is-what-you-get type of editor showing

all Z symbols as they appear printed. Douments an be exported to L

A

T

E

X or

its true-type Z font an be used to reate MS-Word douments. Formaliser is

a ommerial tool, developed at Logia (UK), whih runs under the Windows

operating system.

ProofPower is a spei�ation and proof tool based on an implementation of

Higher Order Logi (HOL). It provides support for spei�ation and proof in Z

using a semanti embedding of Z in HOL. The distribution provides an interfae

of ProofPower to T

E

X and L

A

T

E

X, an X Windows front-end, the HOL as well as Z

spei�ation and proof development system and, �nally, the DAZ tool supporting

re�nement from Z to the SPARK subset of Ada. ProofPower is available free

for aademi and personal, non-ommerial use from Lemma One (http://www.

lemma-one.om/ProofPower/).

CADiZ is a set of integrated tools for preparing, type heking and analysing Z

spei�ations, whih is available free of harge from the University of York (UK).

It gives diret support for the (ISO/IEC 13568, 2002) Standard Z notation and

evolves aordingly. A Z spei�ation is prepared using L

A

T

E

X or tro� mark-up

and imported into CADiZ. The CADiZ toolset then provides syntax, sope and

type heking, type-setting and spei�ation browsing. It allows to prove onje-

tures interatively. It provides di�erent deision proedures, like model heking

and resolution. Furthermore, the expansion of shemas and an elementary re-

�nement editor are supported. CADiZ reeived a BCS Award for outstanding

tehnologial ahievement in the omputing �eld.

Z/EVES supports the analysis of Z spei�ations by providing syntax and type

heking, shema expansion, preondition alulation, domain heking and gen-

eral theorem proving. It supports almost the entire Z notation and inludes the

mathematial toolkit as given by (Spivey, 1992). The Z/EVES theorem prover

provides powerful automated reasoning as well as interative proof development.

Users with little experiene in theorem proving an use the tool, too. Syntax

and type heking, shema expansion and preondition alulation require little

interation.

In the urrent version (2.1) Z/EVES also inludes a graphial user interfae that

allows Z spei�ations to be entered, edited, and analysed in their typeset form.

It supports the inremental analysis of spei�ations and it manages the syn-

hronisation of the analysis with modi�ations to the spei�ation. Z/EVES an

be obtain from ORA Canada (http://www.ora.on.a/z-eves/) free of harge
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for eduational use. It runs under the Linux, Windows and Solaris operating

systems.

Z/EVES, as deribed by (Saaltink, 1997), is the tool we used to analyse the spe-

i�ations given in this thesis. We used the tool to type-hek all spei�ations as

well as to alulate preonditions, to hek properties and to validate re�nement

onditions.

Reently a new Community Z Tools Initiative (CZT) has been proposed to join

the e�ort of developing a oherent and extensive set of Z tools and as suh to

support further appliation of Z in industry.

2.7 Formal Methods and Notations related to Z

Z has some relatives in the world of formal methods and formal notations. As

suh, we assume that some of the work presented in this thesis may also apply

to the notations presented below. The hosen relatives are losely related to Z.

The development of Z has bene�ted from and ontributed to the development of

these notations. For example, Jean-Raymond Abrial developed Z while being in

Oxford together with Cli� Jones, who was largely involved in the development of

the Vienna Development Method (VDM). Later, Abrial developed the B-Method,

most ertainly building upon his experienes gained earlier.

2.7.1 The B-Method

The B-Method has been developed by Jean-Raymond Abrial, also the originator

of the Z notation, and others. The B-Method is desribed in The B-Book by

(Abrial, 1996). It is a method beause it is aimed at the development of program

ode from a spei�ation whih is given in B's own Abstrat Mahine Notation.

The B-Method inludes extensive tool support, notably the B-Toolkit by B-Core

Ltd and Atelier B. The B-Method has been applied in many signi�ant industrial

projets.

The basi building blok of a B spei�ation is an abstrat mahine. The B-

Method supports the development of large spei�ations from small ones by pro-

viding a number of struturing mehanisms. B and Z are both based on the same

underlying logi and set theory. The B alulus, however, is based on Dijkstra's

guarded ommand language. In B, preonditions are stated expliitly and so is

non-determinism. The postondition in B looks like an assignment in program-

ming languages but its semantis is based on substitution on the state, like in

VDM and Z. B provides also a guard onstrut, thus failitating both guarded

and preondition interpretation. Note, too, that the B-Method inorporates a

partiular notion of re�nement within its language de�nition.
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(Shneider, 2001) provides a textbook introdution to the B-Method. He overs

the B approah to software development from spei�ation through re�nement,

to implementation and ode generation, onsidering veri�ation at eah step.

In omparison to (Abrial, 1996), he also overs tool support, in partiular the

B-Toolkit.

2.7.2 The Vienna Development Method

The Vienna Development Method is a set of tehniques for modelling omputing

systems, analysing those models and progressing to detailed design and oding.

It originated at the IBM Vienna Laboratory in the mid-1970s. The notation

and tools have been ontinuously developed sine and are applied on a wide

range of systems. VDM is a method beause it emphasises the development of

program ode and provides the neessary mehanisms. (Jones, 1990) provided

one of the standard referenes, introduing the reader to the systemati software

development using VDM and (Jones and Shaw, 1990) present a olletion of ase

studies in VDM.

VDM is based on a three-valued logi, whih allows treatment of unde�nedness

of partial funtions not expliitly ared for in Z or B. Furthermore, in VDM,

preonditions and postonditions are given expliitly, whih does not apply to Z.

The advantage is an additional onsisteny hek whether the real preondition

of the operation orresponds to the stated one. Invariants in VDM, however, are

assumed to be an impliit part of every pre- and postondition.

B, VDM and Z were ompared in the literature by (Biarregui and Rithie,

1995), providing a omparison of the VDM and B notations, (Hayes et al.,

1993), emphasising on understanding the di�erenes between VDM and Z, and

http://www.b-ore.om/ZVdmB.html omparing all three notations. There

are also a VDM+B projet at Imperial College and a Z+VDM projet at

SVRC aimed at ombining these notations. More information on VDM, like

tools, bibliography and appliation database an be found on its home page:

http://www.sr.nl.a.uk/vdm/.

2.7.3 Objet-Z

Objet-Z is an extension of the formal spei�ation language Z, retaining existing

syntax and semantis, to aommodate objet orientation. The main reason for

this extension is to improve the larity of large spei�ations through enhaned

struturing. It also failitates modular veri�ation and re�nement.

A Z spei�ation, as presented above, de�nes a number of state and operation

shemas. A state shema introdues the variables and de�nes the relationship
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between their values. An operation shema de�nes the relationship between the

before and after states orresponding to one or more state shemas. One of

the disadvantages of Z is that one is required to examine the signature of all

operations to inferring those operation shemas that may a�et a partiular state

shema. In large spei�ations this is rather impratiable.

Objet-Z overomes this problem by introduing a new lass struture whih

enapsulates a single state shema with all the operations whih may a�et that

state. Eah lass an be examined and understood in isolation. An Objet-Z

spei�ation of a system omprises a number of lass de�nitions possibly related

by inheritane, a mehanism for lass adaptation by modi�ation or extension,

and instantiation.

Di�erenes of Z and Objet-Z inlude that the sope of global type and onstant

de�nitions in Objet-Z is limited to the lass in whih they are de�ned. Fur-

thermore, an operation shema extends the notion of a shema in Z by adding

to it a �-list. The �-list holds the primary variables whih the operation may

hange when it is applied to an objet of the lass. All other primary variables

remain unhanged. This results also in a di�erent treatment of the preondition

of operations. In Z, being outside the preondition leads to divergene, i.e. the

operation an perform anything. In Objet-Z, however, operations are bloked

outside the preondition and thus annot hange the environment, unless they

have been expliitly delared in a so alled Delta-list. Note, too, that Objet-Z

has an operational semantis, unlike Z.

For an introdution to Objet-Z the work by (Duke et al., 1994) is reommended.

(Stepney et al., 1992) provide a olletion of papers desribing various approahes

of objet orientation in Z, inluding Objet-Z. (Smith, 2000) published a referene

manual in the style of (Spivey, 1992).

2.8 Summary

Z is a formal spei�ation notation useful for desribing omputing systems. Z

is a model-based notation. A system is modeled by representing its state, i.e.

its omponents and onstraints upon them, and operations that an hange the

state, thus modelling the behaviour of a system. Note, Z is not intended to speify

non-funtional requirements, like usability, performane, program ode size and

reliability. It is also not intended for the desription of timed or onurrent

behaviour.

In this hapter we introdued some basis of the Z spei�ation notation. We

overed the logi of Z and the underlying set theory. We went on to introdue

the onept of types and their usage in Z. Furthermore, we presented the main

features of Z, its shemas notation and the shema alulus, used to modify
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and ombine shemas. Next, we gave some insight into re�nement in Z, the

development of a more onrete spei�ation from an abstrat one. Finally, we

introdued some Z tools and other spei�ation notations related to Z.

Details related to the Z notation inluding information on publiations, the Z

standardisation proess, Z ourses, tool support, and other material an be found

on the Z home page: http://www.omlab.ox.a.uk/arhive/z.html.



Chapter 3

Inonsisteny and

Underde�nedness in Z

We are faed on an almost daily basis with inonsistent and inomplete knowl-

edge. We have learnt to live with it and to manage it. This does not imply that

we aept the status quo and stagnate. Both kinds of de�ienies provide a tool

for development and guide researh. Most importantly, however, we are able to

tolerate both problems until they an be solved. Meanwhile we make use of them

to derive as muh possible and useful information as we an.

The Z notation is a spei�ation language based on lassial logi. Classial logi,

however, is not well-designed to handle inonsistent and inomplete knowledge.

Inonsisteny, for example, leads to the problem of triviality, i.e. that everything

an be inferred from a single inonsisteny. Z spei�ations an also be trivialised

by inonsistenies. So far, researh on handling inonsisteny in Z foused mainly

on deteting and eradiating them.

Software development, however, requires a more lightweight approah to inon-

sistenies. On the one hand, they frequently appear in large projets and on-

stant fous on deteting and eradiating inonsistenies is expensive. On the

other hand, removing one inonsisteny might introdue another one and thus,

it is laimed, omplete onsistent spei�ations might not be reahed in pratie.

Consequently, inonsistenies need to be managed as we do it on a regular basis

too. Thus, Z needs to be extended to failitate suh inonsisteny management.

In Z operations are, in general, partial relations. In the traditional interpretation,

an operation applied outside its domain an result in any behaviour, thus for any

omponent in the sope of the operation a de�nite value annot be known. Al-

ternatively, in the guarded interpretation, no hange of the omponents our. It

has been observed that a ombination of both interpretations is sometimes on-

venient to allow both modelling of refusals and under-spei�ation. We propose

an extension to Z to inorporate both interpretations.

40
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3.1 Introdution

Inonsistenies are a matter of every day life. We are onstantly hallenged by

ontraditing information. Sometimes we are able to resolve the inonsisteny

right away; sometimes, however, we have to live with inonsistenies. In suh

a ase we tend not to derive any useless results from it. Often it is quite the

ontrary and inonsistenies lead to new disoveries. This proess suggests that

the logi we use to reason in everyday life is able to deal with inonsistenies in

a useful manner.

(Valentine, 1998), however, states:

Consisteny is essential for a Z spei�ation to have any useful mean-

ing.

Thus, inonsistent Z spei�ations are meaningless or useless. This is, however,

ontrary to pratial situations beause, as (Ghezzi and Nuseibeh, 1998) found,

Inonsistenies are inevitable in large projets. [...℄ A ompletely

onsistent state may never be reahed in pratie

This leads to the onlusion that Z should not be used to speify large projets in

pratie beause they would potentially be inonsistent and thus the spei�ation

is meaningless. The problem is, that the Z notation annot deal appropriately

with inonsistent situations.

This impratiality is ertainly not desired by the Z ommunity. Researh on

inonsistent spei�ations has been an issue for some time. However, ommon

to all approahes is to prevent or eradiate inonsistenies. For example, the Z

type system is well designed to prevent many inonsistenies and type hekers

omplement this task. Furthermore, the work by (Valentine, 1998) is aimed at

providing guidelines to the development of onsistent spei�ations.

Another researh diretion is to divide inonsistent spei�ations into viewpoints

where eah viewpoint should be internally onsistent. We think, however, that the

problem of onsisteny does not disappear with this approah. On the one hand,

a viewpoint ould inlude an unresolvable inonsisteny and thus approahes

to �nd and manage this inonsisteny are required. One an argue that the

viewpoint is further divided thus forming a hierarhy of viewpoints. However, at

the end of the development proess viewpoints need to be ombined and thus the

problem of inonsisteny reappears.
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3.1.1 Motivation

The aim of our work is to supplement urrent researh on inonsistenies in Z

spei�ations. We are interested in a mehanism that an tolerate inonsistenies

but still derive useful information. Certainly, an inonsistent spei�ation is never

fully orret but sometimes it is the best we an get.

In this hapter we provide some bakground on the notion of inonsisteny in Z

spei�ations and the impat inonsistenies an have on the proess of reason-

ing about Z spei�ations. We argue that the e�et of inonsistenies in Z is not

ompliant with the pereived e�et of inonsistenies in siene or in software de-

velopment pratie. We illustrate with some examples what kind of reasoning we

intent to failitate. The aim of our envisioned reasoning system are more useful

and reliable inferenes in the presene of inonsisteny. Additionally, we onsider

the re�nement proess of inonsistent operation whih is urrently rather arbi-

trary beause information present in the spei�ation are not used appropriately.

Consequently, we propose to investigate the use of paraonsistent logis for Z.

Contraditing information often needs to be tolerated due to some lak of knowl-

edge. Thus, inonsisteny and underde�nedness are losely related topis. Un-

derde�nedness ours in Z spei�ations in form of partial operations. There are

two opposing interpretations of applying an operation outside its domain. We

introdue the two interpretations and we demonstrate that one interpretation

alone is not always suÆient to model, in partiular, reative behaviour. Thus,

we propose a ombination of both.

3.1.2 Outline

This hapter is strutured as follows. In Setion 3.2 we present some sorts of

inonsistenies in Z and how they an arise. Next, in Setion 3.3, we disuss

that inonsistenies an be a tool to guide development and we look at desired

inferenes despite inonsistenies in Z spei�ation. Underde�nedness an be

onsidered to be losely related to inonsisteny. In Setion 3.4 we introdue

the onept of underde�nedness in Z spei�ations and propose a way to handle

them. Finally, we provide a short summary in Setion 3.5.

3.2 Inonsisteny in Z Spei�ations

A spei�ation is supposed to be a model of some possible system. A spei�ation

is inonsistent if it has no models. The notion of inonsisteny is entral to this

thesis. Therefore, we disuss in this setion the meaning of inonsisteny in Z

spei�ations. (Boiten et al., 1999) refer to the onsisteny of a single spei�ation
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as unary onsisteny. We also onsider briey the problem between spei�ations,

as it ours in the area of viewpoint spei�ations.

3.2.1 Global Inonsisteny

(Saaltink, 1997) distinguishes basially two di�erent types of inonsisteny in Z

spei�ations, alled global and loal inonsisteny. Global inonsisteny is more

serious beause it makes an entire spei�ation unsatis�able. This ours if some

axiomati shema, generi shema, or prediate is too strong.

Inonsistent Axiomati De�nitions

Axiomati de�nitions are ommonly used in Z. They provide de�nitions that

range over the entire spei�ation. Thus, if they are inonsistent they e�et

the whole spei�ation. For example, any spei�ation ontaining the axiomati

shema

n : Z

n 6= n

annot be satis�ed beause there is no possible value for n. Inonsistenies are

not always as obvious as above. For example, there is no funtion f satisfying

the following desription:

f : N ! N

8 x ; x

0

: N � (x < x

0

) f (x ) > f (x

0

))

Although the strong type system of Z prevents quite a few errors, it is still possible

to write some kind of ontradition, like postulating that an empty set has an

element

x : ?[N ℄

or using the fat that a funtion is a set of pairs, for example

f : N ! N

f = f(1; 2); (1; 3)g

In all these ases, it is possible to hek whether suh an axiomati de�nition is

meaningful. As (Saaltink, 1997) shows, to hek an axiomati de�nition
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Del

pred

for onsisteny it an be preeded with the onjeture 9Del � pred . For example,

proving 9 f : N ! N � f = f(1; 2); (1; 3)g results in false and thus this axiomati

de�nition is not meaningful.

All the given examples of axiomati de�nitions are inonsistent in themselves,

thus it is possible to apply the aforementioned onjeture. However, it is not

always as simple. It is possible to onstrut a number of axioms, eah onsis-

tent but together they are inonsistent. (Valentine, 1998) provides the following

example of two axiomati de�nitions and an enumerated type.

x : N

x = 2 + 2

y : N

y = x

y = 5

Person ::= SamValentine j thePope

Then it is possible to show, using lassial logi, that ` SamValentine = thePope

holds beause of the inonsisteny between the two axiomati de�nitions. Basi-

ally, the proof proeeds over the ardinality of the set fSamValentine; thePopeg,

whih is 2. However, due to the inonsisteny it is possible to show that 2 = 1,

thus the ardinality of the set is one, whih means the elements must be the

same.

Inonsistent Free Types

(Spivey, 1992, p. 84) points out that free types an be inonsistent, too, beause

of ardinality problems. For example, the data type de�nition

T ::= atomhhNii j funhhT ! T ii

is inonsistent. Basially, no suh set T an exist beause there are many more

funtions from T to T than there are members of T . An even simpler example

is given by the de�nition

BigSet ::= makeSethhPBigSetii

whih has no model beause it spei�es that BigSet is isomorphi to its power

set. This is impossible, as the power set of a set always has more elements than

the set itself. Although we introdued the problem of inonsistenies through free
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types in Z, we will not onsider it any further. (Arthan, 1992), (Smith, 1992), and

(Spivey, 1992, p. 84) desribe restritions on free type de�nitions that guarantee

onsisteny.

In the standard theory of Z, no theorem that has been proved in a globally

inonsistent spei�ation an be trusted beause its proof is potentially based on

impossible assumptions. Our general aim, however, is to investigate possibilities

to redue the impat of inonsistenies suh that there will be proofs of theorems

that an be trusted.

3.2.2 Loal Inonsisteny

Set delarations, abbreviations and shema de�nitions do not introdue global

inonsisteny. However, shema de�nitions an be loally inonsistent, i.e. they

ontain an unsatis�able prediate. This kind of error is loal in the sense that

the spei�ation of other omponents of the system may still be meaningful.

Inonsistent Operation Shema

A shema an have an inonsistent, i.e. unsatis�able, prediate. If suh a shema

is an operation shema, then the operation may not guarantee any outome

or only parts of the operation an be determined. For example, onsider the

following inonsistent operation

Op

i

x?; y ! : N

x? = 1) y ! = 2

x? = 1) y ! = 3

The above shema inludes the ontradition that y ! annot be 2 and 3 at the

same time. The preondition for this operation is [x? 2 N j x? 6= 1℄, i.e. it

should not be applied when x? = 1. Thus, the operation is not \ompletely"

inonsistent.

Inonsistent State Shema

If a shema desribing the state of a system is inonsistent then it is impossible

to build that partiular system. For example, in the state shema

S1

i

x : N

3 � x � 2
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the state onstraints annot be satis�ed. This error an be shown easily beause

9 x : N � S1

i

fails as there is no x that an satisfy the state shema. However,

state inonsistenies are not always as simple. For example, the state shema

S2

i

x ; y : Z

x mod 2 = 0) y < x

x mod 2 6= 0) y = x + 1 ^ y mod 2 6= 0

is meant to ensure that two numbers are always in a partiular relation to eah

other. However, S2

i

is partially over-onstrained. It is possible to �nd even

numbers x suh that S2

i

is satis�ed but no odd numbers. Thus, it is possible to

build a system based on S2

i

but, possibly, not the intended one.

The Initialisation Theorem

The initialisation theorem plays an important role in heking spei�ations for

onsisteny. (Saaltink, 1997), for example, states: \many spei�ations give an

initialization shema of the form Init S b= [S j P ℄, where the prediate P further

onstrains the state. In suh a ase, showing 9 S

0

� Init S not only shows that S

is satis�able, it also shows that initial states are possible."

Unfortunately, the initialisation theorem does not prevent spei�ation of par-

tially inonsistent state desriptions, like in S2

i

. For example,

Init S2

i

b= [S2

i

0

j x

0

= 2 ^ y

0

= 1℄

is a valid initialisation whih an be proved using the above onjeture.

3.2.3 Inonsisteny between Viewpoint Spei�ations

It is generally agreed that a system of realisti size annot be modelled in a

single spei�ation. It rather has to be deomposed into several spei�ations

of reasonable size where eah suh spei�ation will have to be developed sep-

arately. (Jakson and Jakson, 1996) argue that unlike in programming, where

hierarhial or funtional deomposition is often used, systems should be deom-

posed into di�erent aspets, alled viewpoints. Eah viewpoint forms a partial

desriptions of the system, the ombination of all viewpoints form the model of

the whole system. The viewpoints an, however, overlap and thus onsisteny

between viewpoints beomes an issue.

Uni�ation is a method to ombine viewpoint spei�ations in Z proposed by

(Derrik et al., 1995). It has been subsequently developed by (Boiten et al.,
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1995), (Bowman et al., 1996) and (Boiten et al., 1999). Two spei�ations are

said to be onsistent if it is possible for at least one implementation to exist

that onforms to both spei�ations. Re�nement is used to hek whether an

implementation meets the requirements of a spei�ation. The least ommon

re�nement of two spei�ations is their uni�ation. Thus, two spei�ations are

onsistent if their uni�ation exists. If they are inonsistent then it is not possible

to onstrut the uni�ation and, therefore, their implementation.

A Digital Clok Example

We give a small, simpli�ed example of an engineering task. Given is a timer

devie, i.e. a lok. Two engineers are eah asked to give a model of a devie that

an initiate events within intervals of maximal 12 hours.

State. Both engineers rely on the same given lok, named Digi12 with �elds

for minutes and hours, denoted m and h respetively. We model both as restrited

integers. Thus, the state shema is already normalized.

Digi12

m; h : Z

0 � m � 59

0 � h � 23

Initialisation. Initially, the lok starts at noon, thus

InitDigi12 b= [Digi12

0

j m

0

= 0 ^ h

0

= 12℄

The initialisation ondition holds for the given lok, i.e. the initial state exists,

whih an easily be veri�ed.

Operations. The two engineers, however, deide to model the Tik operation

di�erently. The operation spei�es the state hange of the given lok and thus it

is onerned with the behaviour of the lok when one minute has passed. This

inludes to update the values of the minutes m and hours h aordingly.

Tik1

�Digi12

m < 59)

m

0

= m + 1 ^ h

0

= h

m = 59)

m

0

= 0 ^

(h < 23) h

0

= h + 1) ^

(h = 23) h

0

= 0)

Tik2

�Digi12

m < 59)

m

0

= m + 1 ^ h

0

= h

m = 59)

m

0

= 0 ^

(h < 12) h

0

= h + 1) ^

(h = 12) h

0

= 1)
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Minutes range from 0 to 59 and are inremented with eah Tik . One 59 is

reahed they go bak to 0 and the hour is inremented, too. In viewpoint one,

the lok ounts the hours from 0 to 23. When it has reahed 23:59, another Tik

sets it to 0:00. In viewpoint two, hours range from 1 to 12. At 12:59 a Tik sets

it to 1:00.

We developed two di�erent viewpoints of a partiular problem. Consider that

these viewpoints desribe only one part of a larger system in whih they need to

be integrated. Thus, we are required to hek whether both viewpoints an be

satis�ed. Uni�ation is the method to apply.

The uni�ation of both viewpoints, however, fails. To hold, state onsisteny,

initialisation onsisteny and operation onsisteny for both viewpoints must be

satis�ed. We omit the state and initialisation onditions beause they are trivially

satis�ed for this example. However, operation onsisteny fails.

Two operations Op

1

and Op

2

both operating over the same state S with input

x? : X and output y ! : Y are operation onsistent if and only if the following

holds

8 S ; x? : X � preOp

1

^ preOp

2

) 9 S

0

; y ! : Y � Op

1

^ Op

2

Applying this to both operations Tik1 and Tik2 it is easy to see that they are

inonsistent in the ase of m = 59 and h = 12 and another Tik . Thus uni�ation

fails for these two viewpoints.

3.3 Inonsisteny and Information

(Valentine, 1998) states the ommon assumption that \Consisteny is essential

for a Z spei�ation to have any useful meaning." In this setion we hallenge

this ommonly aepted view. We start by providing some analogy to other

sienes dealing with omplex desriptions. Then, we present some inonsistent

spei�ations in Z whih, as we argue, do have a meaning.

3.3.1 Inonsistenies in Siene

A Z spei�ation is a formal desription of a possibly omplex system. In pratie,

large spei�ations are likely to ontain inonsistenies. This problem is not

limited spei�ally to formal spei�ation. There are other areas dealing with

desribing omplex phenomena formally. For example, the natural sienes are

mostly onerned with desribing, i.e. speifying, phenomena ourring in the

real world. They, too, have to fae inonsistenies on a regular basis. These

sienes, however, have somehow learnt to live with inonsistenies, to manage

and to utilise them.
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Bohr's Theory of the Atom

The sienes of Physis and Chemistry are onerned with the formal desription

of mostly omplex systems. It is here, in the history of siene, that we �nd many

inonsistent but non-trivial theories. (Priest and Tanaka, 1996) present as one

example the well-known theory of the atom by Niels Bohr. Aording to this the-

ory, an eletron orbits the nuleus of the atom without radiating energy. However,

aording to Maxwell's equations, whih were an integral part of Bohr's theory,

an eletron whih is aelerating in orbit must radiate energy. Hene, Bohr's

desription of the behaviour of the atom was inonsistent. However, it was still

possible to infer useful results from this theory, while other non-useful onlusions

were rejeted. In siene, inonsistenies are often aepted to simplify a model

as long as these inonsistenies do not lead to wrong onlusion.

Clausius's Proof of Carnot's Theorem

(Meheus, 2002) presents an example of reasoning in the presene of inonsisteny.

The problem onsidered is Clausius's proof of Carnot's theorem: \no engine is

more eÆient than a reversible engine." At the time, two inompatible approahes

to thermodynami phenomena existed. On the one hand, the theory by Carnot

stated that the prodution of work in a heat engine results from the mere transfer

of heat from a hot to a old reservoir. On the other hand, Joule advoated that the

prodution of work in a heat engine results from the onversion of heat into work.

Both approahes ombined lead to several ontraditions, e.g. the prodution of

work results from the mere transfer of heat and from the onversion of heat.

Carnot's proof of his theorem is based on Redutio ad Absurdum, i.e. he sup-

posed that the negation of his theorem holds and shows that this would lead

to a ontradition. Thus, the hypothesis must be rejeted on the basis of this

ontradition and the opposite must hold. This pattern of proof is well aepted

and often applied in mathematial reasoning. Clausius developed two proofs of

Carnot's theorem both based on this onept and both are very similar. How-

ever, he rejeted the �rst of his proofs. Both proofs are based on Carnot's and

Joule's premises, however, the �rst proof does need the hypothesis to derive the

ontradition, while his seond proof does. Thus, he found a useful and valid way

of reasoning in the presene of inonsisteny.

A Little Experiment

The following is a little experiment to demonstrate how easily inonsistenies

an appear in life. Consider three water tanks, �lled with hot, medium and old

water respetively. Put one of your hands in the hot water tank, the other in

the old one. Leave your hands in there for a while, until you do not feel any
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di�erene in temperature anymore. Now, put both hands at the same time in

the third water tank with the water of medium temperature. You will pereive

on the one hand that the water is hot and on the other hand that the water is

old. This is ertainly inonsistent with your knowledge of the water being of the

same temperature.

Psyhology, in partiular, uses suh phenomena regularly to investigate the mind.

Often inonsistent phenomena are presented to a person and it is investigated how

humans solve these problems. The example above is one suh phenomena, Esher

pitures are another. It has, however, not been reported that the subjets derived

unrelated or useless information despite the inonsistenies.

Inonsisteny implies Ation

We presented some examples of inonsistent but useful theories as well as the

human ability to derive useful onlusions from inonsistent premises. We do

not laim that inonsistenies are desirable but they are not as useless as often

thought. Inonsistenies are an important tool in siene. They guide researhers

to develop better theories and they instigate the natural proess of learning.

Inonsistenies annot always be resolved, however, they an be managed. This

is, what (Gabbay and Hunter, 1991) mean when they state:

Inonsisteny implies Ation

3.3.2 Inonsistenies in Software Development

Inonsistenies are a fat of life. They our frequently in the software devel-

opment proess. The need for managing inonsisteny in software development

has been aknowledge by many researhers. (Ghezzi and Nuseibeh, 1998) and

(Ghezzi and Nuseibeh, 1999), for example, present two speial issues in IEEE

Transations on Software Engineering overing this topi and there have been two

international workshops on \Living with Inonsisteny" as presented in (IWLWI,

1997) and (Easterbrook and Chehik, 2001a).

Making Inonsisteny Respetable

(Nuseibeh et al., 2001) argue that maintaining onsisteny at all times is oun-

terprodutive. It is usually omputationally expensive, desriptions evolve and

thus inonsistenies re-appear, individual desriptions an be ill-formed and var-

ious degrees of formality make inonsisteny heking diÆult. \In many ases,

it may be desirable to tolerate or even enourage inonsisteny to failitate dis-

tributed teamwork and to prevent premature ommitment to design deisions,
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and to ensure all stakeholder views are taken into aount." Inonsistenies an

also be used as a tool for learning and guiding the development proess.

(Nuseibeh et al., 1994) onsider inonsisteny as any situation in whih two de-

sriptions do not obey some relationship that is presribed to hold between them.

(van Lamsweerde et al., 1998), for example, onsider divergent goals in require-

ment engineering. Note, this notion of inonsisteny embraes the logial de�ni-

tion of inonsisteny. The relation that should hold is the impossibility to derive

a ontradition from a set of formulae.

The proposed framework for inonsisteny management onsists of onsisteny

heking, monitoring and diagnosing inonsisteny, handling inonsisteny, and

measuring inonsisteny. Consisteny heking is based on a set of onsisteny

rules whih need to be obeyed. Monitoring is the proess of deteting the violation

of the onsisteny rules. One an inonsisteny is disovered, it is diagnosed.

This inludes to loalise the inonsisteny, to identify the ause for it and its

lassi�ation. The hoie of handling strategies inludes to ignore, to defer, to

irumvent or to ameliorate an inonsisteny. The latter means that it may

be more ost-e�etive to improve an inonsistent desription without atually

resolving all of the inonsistenies. Finally, measuring inonsisteny is important

to determine the impat of an inonsisteny.

In a number of ase studies they found that some inonsistenies never get �xed.

However, \the deision to repair an inonsisteny is risk-based. If the ost of �xing

it outweighs the risk of ignoring it, then it makes no sense to �x it." Tolerating

inonsistenies in suh irumstanes means to re-evaluate the risk ontinuously.

They found too that some inonsistenies are deniable. For example, in their

experiene developers often debated whether a reported inonsisteny really was

an issue or that it was already �xed.

Viewpoints for Managing Inonsistenies

Some researhers deided to split ontraditing information into viewpoints to

manage the inonsisteny. For example, (Easterbrook, 1993) suggests to use

hierarhies of viewpoints to represent alternative, oniting views of information.

A viewpoint is a self-ontained onsistent desription of an area of knowledge

with an identi�able originator. Viewpoints do not orrespond to people but to

a desription of the world from a partiular angle. Viewpoints in this ase are

merely seen as an organisational tool.

Later, (Easterbrook and Nuseibeh, 1996) are more onerned with inonsisteny

management using viewpoints. The paper demonstrates how inonsisteny man-

agement is used as a tool for requirements eliitation and how viewpoints provide

help. First, there is no requirement for hanges to one viewpoint to be onsistent
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with other viewpoints. Therefore inonsisteny an be tolerated throughout the

development proess.

However, onsisteny heking and resolution is still required but onsisteny

heking an be separated from resolution. To manage inonsisteny, relation-

ships between viewpoints have to be de�ned. Basially, rules are used to de�ne

partial onsisteny relationships between the di�erent representations and onsis-

teny heking is performed by applying these rules. This allows onsisteny to

be heked inrementally between viewpoints at partiular stages of development.

(Easterbrook and Chehik, 2001b) extend their researh to multi-valued reasoning

over inonsistent viewpoints. Eah viewpoint is desribed using an underlying

multi-valued logi. Many-valued logis use additional truth values to represent

intermediate values between true and false. These di�erent logial values an then

be used to represent di�erent levels of agreement. Their framework is intended

as a means of exploring inonsistenies. The analyst is not restrited in any

way when onerned with the problem of merging information from di�erent

viewpoints.

Analysing Inonsistent Spei�ations

(Hunter and Nuseibeh, 1997) and (Hunter and Nuseibeh, 1998) present another

logi-based approah to managing inonsistent spei�ations. Classial logi is

ommonly used to onstrut formal spei�ations. Classial logi, however, is

trivialised in the presene of inonsisteny, i.e. any inferene follows from an

inonsistent information. Therefore, the authors propose to use quasi-lassial

logi, developed by (Besnard and Hunter, 1995) to avoid suh trivialisation.

The aim of their work is to demonstrate the usefulness of using alternative logial

approahes to the problem of reasoning in the presene of inonsisteny in the

software development proess. It provides a formal foundation for supporting

a software spei�ation proess in whih inonsistenies are analysed to deter-

mine appropriate ations for further development. Suh ations also inlude the

possibility of tolerating inonsistenies.

3.3.3 The Meaning of Inonsistent Z Spei�ations

We laim that inonsistent spei�ations do have an intended meaning. Otherwise

it is rather pointless to make the e�ort of writing an inonsistent spei�ation.

Classial prediate logi, on whih Z is based on, is unfortunately not very suitable

to investigate the meaning of inonsistent spei�ations.

Classial prediate logi, for example, does not distinguish between falsehood and

inonsisteny. This problem is also arried over to the Z notation. An inonsistent
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operation, for example, behaves like an operation whih has not been spei�ed,

i.e. it is set to false. This in turn makes it muh harder to analyse the soure of

failure of an operation. Furthermore, re�nements of inonsistent operations an

be rather arbitrary.

Operation shemas, the standard preondition interpretation and inonsisteny

form an interesting ombination in Z. An operation applied outside its preondi-

tion an result in any behaviour. This is, however, triviality and thus results in

the same behaviour as applying an operation in the inonsistent situation. For ex-

ample, the preondition of the operationOp

i

is [x? 2 N j x? 6= 1℄. Thus, applying

this operation outside its preondition means to apply it when x? < 0 _ x? = 1.

Note, the way the preondition omputation in Z works seems to indiate an

ordering of belief, assuming, for example, state shemas to be orret while an

operation an be faulty. This leads to operations not being permitted if they are

violating the state ondition. However, this is not neessarily orret. It ould

be that the operation is orretly spei�ed but the state spei�ation is awed.

Suh a ase is, for example, presented in the next subsetion.

3.3.4 Examples

Next, we present some examples of inonsistent spei�ations. As we laimed,

we do not think that they are meaningless. Thus, we provide some indiation of

the kind of inferenes we are interested in. Essentially, we want to infer less but

more useful information in the presene of inonsisteny. Thus, we tend to show

what we do not want to infer in omparison with lassial logi, rather than what

should be inferred.

Tweety the Penguin

The following example appears frequently in the literature on paraonsistent and

non-monotoni reasoning. It is about Tweety, the bird who is a penguin that

an but annot y. We deided not to provide a Z enoding of the problem be-

ause this would add some syntatial overhead not neessary for our illustration.

Thus onsider this example as an introdution to the topi of reasoning about

inonsistent spei�ations.

Classially, the Tweety example is given as a universal theory in �rst-order pred-

iate logi by the �rst four rules:

(1) bird(X )! ies(X )

(2) penguin(X )! :ies(X )
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(3) penguin(X )! bird(X )

(4) penguin(Tweety)

(5) hungry(Tweety)

Clause (1) states that all birds an y. Penguins, however, aording to Clause(2)

annot y although, as Clause (3) states, they are birds. These three lauses are

not inonsistent, as long as no penguins would exist. Therefore, in Clause (4)

we give a partiular penguin, named Tweety. These four lauses together ause

an inonsisteny to arise. Tweety is a penguin and therefore annot y but

beause Tweety is a penguin he is also a bird and therefore an y. This results

in the ontradition, that Tweety an and annot y. However, we think this

ontradition should not inuene any knowledge about Tweety being hungry, as

stated in Clause (5).

We denote the above set of rules, i.e. the theory about Tweety, with T . In

lassial logi it would be possible to show

T ` : hungry(Tweety)

or even

T ` : penguin(Tweety)

This seems, however, rather ounter-intuitive. On the one hand whether Tweety

is hungry is atually not dependent on the issue whether he an y or not. On the

other hand, rejeting that Tweety is a penguin would not lead to the problem of

inonsisteny. This little spei�ation provides some useful information, namely

Tweety is hungry and he is a penguin. However the inonsisteny is resolved it

should respet this information.

A Flat Tyre

In (Miarka et al., 2002), we present a simpli�ed example from the life of a mo-

torist. The motorist is the owner of a ar. To be allowed to drive the ar on publi

roads, the ar needs to pass a safety test, part of whih is a tyre inspetion. The

law (in Germany) says that the ar must have the same kind of tyre �tted to

both the front and rear wheels. We use the set

[CAR℄

as our basi type. The Boolean type is not part of standard Z, hene we de�ne

the enumerated type
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B ::= True j False

In the state shema, Car , the Boolean at denotes whether any of the tyres are

at. If not the motorist is permitted to drive the ar. The Law states that the

same tyres should be used on front and bak. A single operation is spei�ed,

that of hanging a tyre. Unfortunately, the spare tyre is of a di�erent type, thus

we will break the law as a result of a Change.

Car

at : B

drive : B

wheels : N

at = False ) drive = True

wheels = 4

Law

same : B

same = True

Change

�Car

�Law

x ! : N

at = True ^ at

0

= False

same

0

= False

x ! = wheels

The Change operation is learly inonsistent in an intuitive sense. One the tyre

has been hanged, the ar is not allowed on the road by the law beause the type

of tyre on at least one wheel is now di�erent. We might, however, wish to reason

about aspets of this spei�ation, for example, that the ar is still driveable,

sine this only depends on the fat that no tyre is at. Also, the number of tyres

on the ar, as reported by x ! should be exatly four.

Although this example is small and rather arti�ial, it illustrates the type of

reasoning one might wish to perform. It provides some evidene that reasoning in

the presene of inonsisteny ould be useful. Note, pratially the inonsisteny

is not resolved by dropping the law but by providing a range of exeptions to the

law. Nevertheless, any development of the above spei�ation should take into

aount those aspets that are not diretly related to the inonsisteny.

Refuel A Car

Another operation often performed by a motorist is to refuel their ar. We

distinguish three kinds of ars: eletri ars, ars with diesel engines and ars
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running on petrol. The eletri ar needs a power supply to re-harge, whereas

the other ars need fuel whih an be divided into unleaded, four star and diesel.

Thus we give the following two type de�nitions.

CAR TYPE ::= eletri j diesel j petrol

FUEL TYPE ::= unleaded j four star j diesel type

We are interested in the state of a ar. It an be harged, or it needs a partiular

amount of some sort of fuel. Given a petrol ar we assume by default that

unleaded petrol is to be used. This is ompliant with urrent environmental

issues.

State

harged : B

fuel : FUEL TYPE

amount : FUEL TYPE ! N

Choose

�State

ar? : CAR TYPE

ar? = petrol )

fuel

0

= unleaded

Refueling a ar results in a full energy status. This means, an eletri ar is to

be re-harged and a petrol ar has sixty liters of fuel in the tank.

Refuel

Choose

(ar? = eletri ^ harged

0

= True) _

(ar? = petrol ^ amount

0

(fuel

0

) = 60 ^ fuel

0

= four star)

This refuel operation is partly inonsistent beause we assign two di�erent types

of fuel to be taken when the ar requires petrol. It is onsistent when applied to

eletri ars; no refuel operation has been spei�ed for diesel ars. Clearly, this

looks like a simple spei�ation error, but in a large spei�ation suh errors an

be hidden.

Despite the inonsisteny we are interested in useful inferenes. Suh inferenes

inlude that the amount of fuel should be exatly sixty liters, no matter what

fuel type was used. We also need to show that diesel is not an option to be taken

as fuel for petrol ars.

3.3.5 Uni�ation of Viewpoint Spei�ations

Consider the small lok example from before. We noted that the uni�ation of

the two viewpoints failed beause both engineers ould not agree what to do next

when the lok reahed 12 : 59. We are, however, interested in the information
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this spei�ation provides. For example, we �nd that no matter whih viewpoint

we onsider the minutes m will be set to zero and nothing else. Thus, reasoning

from this inonsistent set of viewpoints should validate this information.

In general, reasoning about viewpoints should failitate the disovery of the om-

monalities between the spei�ations even in the presene of inonsisteny. It

should provide a mehanism to improve the system. We think, it would even be

advantageous to �rst ombine the inonsistent viewpoints and then to develop

the resulting spei�ation. Otherwise, separate developments might lead to the

introdution of new problems while trying to resolve the old ones.

The uni�ation of viewpoints is supposed to be their ommon re�nement. Thus,

investigating uni�ation in the presene of inonsisteny leads to the problem of

re�nement of inonsistent operations. However, this problem an of ourse be

onsidered independently from uni�ation.

3.3.6 Re�nement of Inonsistent Spei�ations

Aording to (Woodok and Davies, 1996), re�nement is all about improving

spei�ations. However, we indiated that re�nements of inonsistent spei�a-

tions and in partiular of inonsistent operations an be rather arbitrary. Thus,

we laim, not all re�nements from inonsistent operations atually do improve

the spei�ation. This is mainly due to the lak of formal support to onsider

the information given in an inonsistent operation.

Consider the following two operation shemas

Op2

i

x?; y? : Z

X ;X

0

: Z$ Z

X

0

= X � fx? 7! y?g

#X

0

= #X

x? 62 domX

ROp2

i

x?; y? : Z

X ;X

0

: Z$ Z

x? 2 domX

X

0

= fx?g

�

C X

Op2

i

is meant to replae a new pair of numbers (x?; y?) within a set of pairs X

resulting in the new set X

0

. Unfortunately, in this large operation an inonsis-

teny ourred. On the one hand, it is desired that the �rst omponent x? of the

new pair is not in the set X already whih leads to the atual addition of one

extra pair to X . One the other hand, it is required that the number of elements

in the set remain onstant. Both requirements, however, annot be supported at

the same time.

The problem we �nd is, that this operation an be re�ned by one whih attempts

the omplete opposite e�et. ROp2

i

removes those pairs from X where x? is the
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�rst omponent. Even in the presene of inonsisteny there should be a way to

prevent suh unreasonable re�nements and thus to support an improvement of

the spei�ation that is in line with the intended meaning.

In general, resolving inonsistenies an be an expensive and sometimes impossi-

ble task. Many partiipants an be involved eah having a di�erent view on the

problem. Therefore, it might be diÆult to reah an agreement on how to resolve

the inonsisteny. For the spei�er it might thus be helpful to ontinue analysis

and development of the spei�ation despite the presene of inonsisteny. An

approah to living with inonsisteny is required.

3.3.7 Proposal

(Valentine, 1998) states: \Consisteny is essential for a Z spei�ation to have

any meaning." However, we believe this laim is too strong and undesirable.

Even if a Z spei�ation is inonsistent, it still has an intended meaning. The

problem we need to solve is to disover the meaning and to make it expliit.

Note, our work is not related to that by (Henson, 1998) where he shows that

the standard logi of Z is inonsistent. However, his work supports our laim

that inonsistenies do not neessarily lead to trivial results in pratie. The

standard logi of Z, although inonsistent, has been used suessfully to analyse

many spei�ations.

We propose to investigate what formal support an be given to the proess of

analysing inonsistent spei�ations written in the Z notation. Suh work forms a

part in the wider area of researh on managing inonsistenies without neessarily

eradiating them. Formal support is based on logial reasoning. Thus, we are

interested in logis that support reasoning in the presene of inonsisteny.

Logiians have developed a range of logis to ontinue to reason in the presene of

inonsistenies. These so alled paraonsistent logis allow us to derive less but

more useful information despite inonsistenies. It is our intention to investigate

the onsequenes of using a paraonsistent logi to analyse Z spei�ations. We

envision that inonsistent Z spei�ations an be analysed in more depth than at

present and that re�nement of inonsistent spei�ations an be more ontrolled.

Some of the more interesting andidates of paraonsistent logis have four truth

values. The logial truth values represent the four epistemologial situations:

`told True', `told False', `told True and False', and `told neither True nor False'.

Thus, four-valued logis not only apture the notion of inonsisteny but also

some form of underde�nedness. It is also our aim to make use of this extra

truth-value as disussed below.
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3.4 Underde�nedness in Z Spei�ations

In the ommon Z spei�ation style operations are, in general, partial relations.

The domains of these partial operations are traditionally alled preonditions.

There are, however, two di�erent interpretations of the preondition aording

to the behaviour of the operation if applied outside its domain.

The \design by ontrat" meaning is the standard interpretation of a preondition

of an operation in Z. This asserts that if the preondition holds and an attempt

is made to exeute the operation, then the exeution will be aepted and it will

terminate in a state as spei�ed by the postondition. If the preondition does

not hold, however, and the operation is attempted to be exeuted then it will

be exeuted but it may not terminate or it an terminate in an arbitrary state.

This behaviour is also alled \divergene". We usually refer to this standard

interpretation by the term preondition.

The alternative meaning is the so alled guarded or �ring ondition interpreta-

tion. If the operation is exeuted within its preondition it will terminate in a

state aording to the postondition. However, if it is alled outside the given

preondition, then the operation will not be exeuted at all, i.e. it is bloked, and

no state hange ours. This is the standard interpretation in Objet-Z.

It has been observed that it is onvenient to use a ombination of both the

guarded and preondition interpretation to allow both modelling of refusals and

under-spei�ation. (Josephs, 1991), for example, reports on speifying reative

systems in Z and (Lano et al., 1997) onsider non-determinism di�erent from

under-spei�ation.

3.4.1 Underde�nedness

Formal spei�ations are abstrat desriptions of the behaviour of a system.

They are supposed to leave as muh implementation freedom as possible. Non-

determinism is a partiular tool to ahieve this objetive. During the re�nement

proess of a spei�ation, however, non-determinism is usually eliminated. Thus,

non-determinism relates to the view of under-spei�ation or, as we all it, un-

derde�nedness.

Unde�nedness versus Underde�nedness

There might our a little onfusion between the terms unde�ned and underde-

�ned. Thus we provide some lari�ation of what unde�ned stands for. Unde-

�nedness as, for example, onsidered by (Valentine, 1998) is related to the appli-

ation of partial funtions outside their domain. Valentine presents the following

example of an axiomati de�nition
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total ; ount ; average : N

: ount = 0) average = total div ount

whih looks rather reasonable. The problem of division by zero seems to be

overed due to the ondition. Unfortunately, this is not the ase beause Z is not

operational. The above axiomati shema is equivalent to the following

total ; ount ; average : N

average = total div ount _ ount = 0

Thus, the problem with dividing by zero an still our. There are many more ex-

amples of unde�ned expressions in (Valentine, 1998), as well as (Stoddart et al.,

1999). In the wider sope unde�nedness and underde�nedness are related be-

ause underde�nedness is onerned with the problem of applying an operation

outside its domain, whih is rather similar to the issue of unde�nedness. However,

unde�nedness is not the problem we are interested in here.

3.4.2 Normalisation and Underde�nedness

We introdued normalisation as the proess of rewriting a shema suh that all the

onstraint information appear in the prediate part. We presented the following

two shema S1 and S2, where S2 is the normalisation shema of S1.

S1

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

S2

a; a

0

: Z

a 2 N ^ a

0

2 N

(a

0

)

2

� a < (a

0

+ 1)

2

Natural numbers are not a basi type of Z but onstrained integers. Therefore,

a shema delaration referring to naturals an be normalised to use integers and

a onstraint on the prediate.

However, somehow the interpretation of the shemas may hange through that

proess. As the operation S1 is de�ned on natural numbers, it appears unrea-

sonable to even onsider applying it on negative integers, so the bloking inter-

pretation appears quite sensible for this area. However, the normalised shema

is formally equivalent to S1 but is interpreted in the preondition approah as

being fully unde�ned on negative integers. This means, that the spei�er needs to

know about normalisation, i.e. whih sets are proper types and whih are proper

subsets of a type, whih might not always be the ase and somehow should not

be neessary in the �rst plae. This example shows that normalisation is more

guard, rather than preondition, related and that we might want to deal with it

aordingly.



3.4. Underde�nedness in Z Spei�ations 61

3.4.3 Guards and Preonditions in a Bu�er Example

The following example is designed to demonstrate the di�erent meanings of a

preondition. We model a little bu�er of messages. We use a new type MSG to

represent a message beause we are not interested in their partiular form.

[MSG ℄

The state shema Bu�er holds the type de�nitions for the bu�er whih we model

as a sequene of messages. Furthermore, we use a ag r to indiate whether the

bu�er has been read. The bu�er is initially empty and the ag r is set to True

to enable the Write operation.

Bu�er

bu�er : seqMSG

r : B

InitBu�er

Bu�er

0

bu�er

0

= hi

r

0

= True

There are two operations possible. On the one hand, messages an be stored

in the bu�er. This is, however, restrited to the fat that a previous message

has been read before. On the other hand, messages an be read. The result

of the Read operation is a hange in the ag. The ontent of the bu�er after

the operation is not relevant. The Read operation an only be invoked on a

non-empty bu�er and if there is a new message waiting.

Write

�Bu�er

x? : MSG

r = True

bu�er

0

= bu�er � f1 7! x?g

r

0

= False

Read

�Bu�er

x ! : MSG

bu�er 6= hi ^ r = False

x ! = head bu�er

r

0

= True

In partiular in the Read operation the two preonditions have di�erent meanings.

The ondition bu�er 6= hi is like a guard. No state hange is permitted if the

bu�er is empty. The ondition r = False, however, is not as strit. If the

operation is applied outside this ondition but within the guard then it ould be

possible to read the ontent of the bu�er again. No harm would our. Note, the

ondition r = True in the Write operation determines a synhronous behaviour

of the bu�er beause a message is not overridden before the old one was read.

Again, whether this is a guard or a preondition is important for the behaviour

outside the ondition as well as for future re�nements.
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3.4.4 Re�nement of Underde�ned Spei�ations

The two interpretations of the preondition of an operation lead to two di�erent

notions of re�nement, too. In the standard interpretation, the preondition an be

weakened and thus the domain of the operation an be enlarged. In the guarded

interpretation, however, the preondition annot be weakened but possibly be

strengthened. Thus, the domain of the operation is redued.

Both instantiation of the appliability rule of re�nement have, however, one inten-

tion, namely to redue non-determinism. Obviously, both interpretations annot

be used at the same time for one operation shema. (Strulo, 1995), for example,

suggests to label the operation shema aording to the preondition interpreta-

tion that should be used with them.

Example ont.

The preondition interpretation of r = True in theWrite operation an determine

the future behaviour of the Bu�er . In the standard interpretation it is possible

to weaken this ondition, thus

RWrite

�Bu�er

x? : MSG

bu�er

0

= bu�er � f1 7! x?g

r

0

= False

is a valid re�nement. However, this makes the Bu�er asynhronous. The guarded

interpretation would have forbidden suh re�nement. On the other hand, the

guarded interpretation does not permit the less problemati and possibly de-

sired re�nement RRead1. The standard interpretation, unfortunately allows the

dangerous re�nement RRead2 whih suddenly permits to read an empty bu�er.

RRead1

�Bu�er

x ! : MSG

bu�er 6= hi

x ! = head bu�er

r

0

= True

RRead2

�Bu�er

x ! : MSG

x ! = head bu�er

r

0

= True

Using just the guarded or the preondition interpretation is not always suitable

for pratial tasks. Like in the Read operation where two onditions have di�erent

statuses it is diÆult to determine whih interpretation to hoose. After hoosing
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one interpretation, however, re�nement an behave in an unwanted fashion not

treating the meaning of all given onditions orretly. Spei�ations should be

foremost intuitive, thus we propose to ombine guards and preonditions in a

single notation.

3.4.5 Proposal

Guards blok an operation thus rendering it impossible outside its guard and

impliitly do not allow a state hange to our. Preonditions permit operations

and guarantee its outome. Having both, enables the spei�ation of under-

de�nedness as those situations where the guard permits the operation but the

preondition fails, thus no expliit outome is de�ned. These three situations

give rise to an intuitive semantis based on three logial truth values. Thus, we

propose a non-standard semantis of operations, based on a three-valued logi.

However, suh an interpretation of operations requires a more expressive notation

than normal operations with expliit guards. Thus, we propose to develop a

syntax whih is suÆiently expressive for this semantis. Using a three-valued

logi will also lead to a simple and intuitive notion of operation re�nement, where

re�nement is redution of underde�nedness. We will de�ne operation re�nement

rules for this whih generalise the traditional ones. Furthermore, we propose an

adaption of the shema alulus, based on three-valued logi, to aount for the

extended syntax.

3.5 Summary

Our aim is to investigate the formal support that an be given to analyse inon-

sistent spei�ations written in the Z notation. This inludes also the proess

of re�nement in the presene of inonsistenies. We propose to adopt one of

the logis that failitate the proess of reasoning in the presene of inonsisteny

without leading to triviality, the so alled paraonsistent logis.

Some of the investigated logis also provide a truth value for handling underde-

�nedness. Operations in Z are, in general, partial desriptions. If the preondition

of an operation holds, the spei�ed results are guaranteed. However, if the pre-

ondition is not satis�ed there are two interpretations possible. On the one hand,

in the standard interpretation everything an happen. Note, this notion also re-

lates to triviality. On the other hand, the operation an be bloked and thus no

state hange ours.

We propose to use the extra truth value to represent underde�nedness. This

enables us to onstrut an intuitive semantis for operations ontaining both

guards and preonditions. Underde�nedness is then haraterised as the region

between the guard and the preondition of an operation.



Chapter 4

Paraonsisteny and First-Order

Quasi-Classial Logi

The Z notation is based on lassial �rst-order prediate logi. The problems

arising from inonsistenies in Z spei�ations an be attributed to the way las-

sial logi handles ontraditions. In partiular, given a single ontradition in a

lassial theory, it is possible to derive any formula from that theory. Thus, to

formally manage inonsistenies in Z spei�ations we an look at some general

approahes of managing inonsisteny in logial formulae.

The group of logis whih support the proess of useful reasoning despite the

presene of inonsistenies are alled paraonsistent logis. This group an be

further subdivided aording to the kind of weakening of the logi used. For

example, some logis use a di�erent negation operator, some hange the meaning

of impliation, sometimes new truth values are introdued, and sometimes the

proof theory of the logi is altered. However, the ommon aim is to develop a

paraonsistent logi as lose as possible to lassial logi.

One suh paraonsistent logi is alled quasi-lassial logi (QCL). QCL has been

introdued by (Besnard and Hunter, 1995) and fully developed in (Hunter, 2000)

and (Hunter, 2001). In QCL the meaning of all the logial operators remains

unhanged. Furthermore, the dedution rules within the proof theory of QCL are

lassial, too. These properties suggest that QCL is a prime andidate for a logi

to support reasoning in the presene of inonsistenies in formal spei�ation.

In this hapter we review some of the approahes of reasoning with inonsistent

and inomplete knowledge. We fous on the presentation of paraonsistent logis,

in partiular quasi-lassial logi, as they o�er a novel approah to reasoning

about inonsistenies in Z. Some of these logis are also meant to deal with

inomplete knowledge. This is relevant for our work on underde�nedness in Z.

64
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4.1 Introdution

In the last hapter we found that software development requires a new approah

to handling inonsistenies whih is not only based on deteting and eradiating

them but on managing the information provided. This is required beause inon-

sistenies frequently appear in large projets and sometimes it might not even be

possible in pratie to reah a ompletely onsistent spei�ation.

In fat, inonsistenies are a matter of every day life. We are onstantly hal-

lenged by ontraditing information. Sometimes we are able to resolve the inon-

sisteny right away; sometimes, however, we have to live with inonsistenies. In

suh a ase we tend not to derive any useless results from it. Often it is quite

the ontrary and inonsistenies lead to new disoveries. This proess suggests

that the logi we use to reason in everyday life is able to deal with inonsistenies

in a useful manner. Suh pratial reasoning from inonsistent information is,

however, not well supported by lassial logi.

The Z notation is a spei�ation language whih is based on lassial logi. Thus,

Z is limited by its logi to deal with inonsistenies usefully and not to derive

arbitrary onlusions. This problem has been reognised by researhers on formal

logis and they developed so alled paraonsistent logis. These logis rejet the

lassial priniple of explosion, often referred to as Ex ontraditione quodlibet,

i.e. from a ontradition follows everything.

Paraonsistent logis provide an interesting alternative to lassial logi for rea-

soning about inonsistent theories. However, all paraonsistent logis are weaker

than lassial logi in either their logial onnetives or in the derivation rules.

Thus, it is not possible to simply replae the standard logi of Z with a paraon-

sistent one but it is required to investigate the impat of suh a hange arefully.

4.1.1 Motivation

The aim of this hapter is to introdue the notion of paraonsistent reasoning and

some paraonsistent logis. Thus we provide the formal bakground for the follow-

ing hapters. Paraonsisteny emphasizes a shift of onern from ontraditory

to trivial theories. It is triviality that we most dislike in formal reasoning beause

it has no restritions and does not distinguish between di�erent ontraditions.

Paraonsisteny, however, allows to di�erentiate between ontraditions. As a

result, one inonsisteny does not orrupt all information. Hene, it failitates

more useful onlusions in the presene of inonsisteny than lassial logi.

There are many di�erent ways to onstrut a paraonsistent logi. We present

some of the approahes to give some insight into the development of paraonsis-

tent logis and into the limitations they an possess. Thus, we build a foundation
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for an informed deision on whih paraonsistent logi to selet for our applia-

tion towards analysing inonsistent spei�ations. It is out of the sope of this

work to present a full overview of all the di�erent paraonsistent logis. We re-

ommend, for example, the olletions by (Priest et al., 1989) and (Batens et al.,

2000) for further information on this subjet.

It is our aim to support both reasoning about overde�ned and underde�ned spei-

�ations. Many-valued logis, in partiular four-valued ones, provide an intuitive

semantis to apture the notions of over- and underde�nedness. Thus, we in-

vestigate two representatives of these group of logis further. We �nd them,

unfortunately, unsuitable for our needs to reason about inonsisteny but they

do prove useful for our work on underde�nedness.

We present Hunter's quasi-lassial logi in detail beause we deided to apply

it to reasoning about inonsistent spei�ations. One of the main advantages of

QCL over other paraonsistent logis is that all onnetives are interpreted las-

sially as Boolean onnetives and that the QC dedution rules hold in lassial

logi, too. The logi is, however, weaker than lassial logi in the way it is used.

We believe that QCL's advantage is vital for its aeptane as a new logi in suh

an established �eld as formal methods, beause the spei�ers need not hange

their way of writing spei�ations. Therefore, QCL is our prime andidate for a

logi to support reasoning in the presene of inonsistenies.

4.1.2 Outline

This hapter is strutured as follows. In Setion 4.2 we over some bakground

on the notion of paraonsisteny, inluding the di�erent motivations for para-

onsisteny, two de�nitions of paraonsisteny and the approahes to onstrut

a paraonsistent logi. In Setion 4.3 we present two four-valued paraonsis-

tent logis, namely the logi FOUR by (Belnap, 1977b) and the logi FOUR

by (Dam�asio and Pereira, 1998). The main part of this hapter onsists of Se-

tion 4.4 introduing quasi-lassial logi by (Hunter, 2000). We ontribute to the

development of QCL by providing an extended disussion on logial equivalene

presented in Setion 4.4.5. We briey summarize this hapter and disuss our

hoie for QCL in Setion 4.5.

Note, we extend the work on QCL in Chapter 5 by introduing equality and we

apply QCL to reason about inonsistent Z spei�ation in Chapter 6. Further-

more, a three-valued subset of the logi FOUR is used in Chapters 7 and 8 to

provide the semantis for our work on underde�nedness.
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4.2 Inonsisteny, Triviality and

Paraonsisteny

Before venturing into the presentation of some paraonsistent logis we need to

establish some bakground on the notion of paraonsisteny. There is �rst the is-

sue of the motivation for paraonsisteny. Aording to the di�erent motivations

there are several de�nitions of the term paraonsisteny. Fortunately, there is at

least one basi objetive all paraonsistent logiians agree on, namely to avoid

triviality. A brief investigation into the soure of triviality leads to a ategorisa-

tion of the di�erent paraonsistent logis and provides also a motivation for the

logis we present.

4.2.1 Motivations for Paraonsistent Logis

Paraonsistent logis are suitable for reasoning from inonsistent theories without

ollapsing into triviality. There are several motivations why suh a logi is ne-

essary. We provide a brief lassi�ation following (Urbas, 1990) of the di�erent

positions.

Dialetheism. Aording to (Priest, 1998): \A dialethia is a true ontradition,

a statement, A, suh that both it and its negation, : A, are true." Dialethe-

ism is thus the position that some ontraditions are true. This view rejets

also the lassially validated inferene from inonsistent premises to an arbitrary

onlusion.

The most ommon example of a dialethia is the \liar's paradox". Consider the

sentene: \This sentene is not true." Aording to standard logi there are

two possibilities, either the sentene is true or it is not. If the sentene is true,

however, then what it says is orret, i.e. it is not true. Suppose the sentene is

not true. But this is what the sentene says, i.e. it is true. Thus, in either ase,

the sentene is both true and not true.

Relevantism. The main interest for relevantist logiians is with the inferene

relation. They insist on a onnetion of relevane or ommonality of ontent

between the premises and onlusions. Though this is not diretly related to the

question of inonsisteny it too restrits inferenes from ontraditory premises.

The most notable representatives of relevantism are (Anderson and Belnap, 1975).

Pragmatism. This position reognises that there are many interesting systems

that are inonsistent but non-trivial. This inludes our beliefs and judgements,

a range of sienti� theories and legal odes. In fat, the likelihood of inonsis-

tenies seems to inrease with the expressiveness of the theories. Nevertheless,

some mehanism prevents the dedution from arbitrary onlusions from suh

inonsistent theories. The pragmati approah is not to abandon theories one
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they are disovered to be inonsistent but to aommodate them until a better

alternative is found by means of a logi that funtions plausibly in the presene

of inonsisteny. An important advoate of this motivation for paraonsisteny

is (da Costa, 1974). From the disussion in the last hapter it follows that we

too subsribe to this pragmati position.

4.2.2 De�nition of Paraonsisteny

The di�erent motivations for paraonsisteny lead almost naturally to di�erent

de�nitions of the terms paraonsisteny and paraonsistent logi. (B�eziau, 2000),

for example, analyses some of the ourring de�nitions.

A theory T is a set of formulae expressed in some, normally formal, language

whih is losed under the onsequene relation ` of the underlying logi, i.e. if

the formulae A

1

; : : : ;A

n

are in T and B is a onsequene of A

1

; : : : ;A

n

, denoted

fA

1

; : : : ;A

n

g ` B , then B is also in T .

The following is an intuitive de�nition of paraonsisteny often presented in the

literature. A theory is inonsistent if it ontains some formula A together with

its negation : A, i.e. there is an A suh that T ` A and T ` : A, where : is

a negation onnetive whih is intended as a \ontradition-forming operator".

A theory is trivial if it ontains every formula of its language, i.e. for every A it

holds T ` A, otherwise T is said to be non-trivial. A theory T is paraonsistent

if it is inonsistent and non-trivial. A logi is paraonsistent if it supports the

study of paraonsistent theories.

This de�nition, however, has been generalised beause it requires the onsequene

relation to be transitive to ensure non-triviality. Thus, the minimal and most

widely aepted de�nition amongst the paraonsistent logiians is now based on

the rejetion of the priniple know as

ex ontraditione quodlibet (ECQ)

i.e. from a ontradition follows everything. Based on the equivalene of falsehood

and ontradition in lassial logi this priniple is also ommonly referred to as:

\ex falso quodlibet".

The formalisation of the priniple of ECQ is that for any theory T and formulae

A and B it follows T [fA;: Ag ` B . The same priniple without mentioning the

theory T is just a speial ase of it. A logi is paraonsistent if it rejets ECQ, i.e.

if not every formula B follows from an inonsistent premise (T [ fA;: Ag 0 B).

Otherwise the logi is said to be explosive or trivialising.
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4.2.3 Approahes to Paraonsisteny

One an imagine that there are many di�erent ways to avoid ECQ. All proposed

solutions are based on some kind of weakening of lassial logi.

Lewis's Proof of Ex Contraditione Quodlibet

The priniple of ECQ is entral to the notion of paraonsisteny, thus a de-

tailed analysis on how it arises is appropriate. The proof of ECQ by (Lewis and

Langford, 1932) provides some insight. It proeeds by deploying various lassial

reasoning rules:

(1) p ^ :p Assumption

(2) p by 1, ^-Elimination

(3) :p by 1, ^-Elimination

(4) p _ q by 2, _-Introdution

(5) q by 3,4, _-Elimination

This derivation an be prevented, by bloking any of the rules in line (2), (3), (4)

or (5). Thus various strategies are open to weaken lassial logi.

The most ommon proposal is to rejet (5), i.e. _-Elimination whih is also

alled disjuntive syllogism. Consequently, if impliation A ) B is de�ned in

the usual way as : A _ B then modus ponens fails, too. For example, the

logis by (da Costa, 1974) and (Belnap, 1977a) both rejet disjuntive syllogism.

However, modus ponens is valid in (da Costa, 1974) beause impliation annot

be expressed in terms of disjuntion and negation.

The other two options are to blok _-Introdution, favoured by logiians inter-

ested in analyti impliation, and to blok ^-Elimination, as investigated by so

alled onnexive logiians. Note, for example, that the logi by (Belnap, 1977a)

does not support ^-Elimination either. Thus, a ombination of these options an

also our.

Another approah is not to generally blok any of the rules but to restrit the

ordering in whih these rules an be applied. The derivation above requires _-

Introdution to be applied before _-Elimination. The logi by (Besnard and

Hunter, 1995), for example, is based upon the restrition that deompositional

rules like _-Elimination must not be applied after _-Introdution. The advantage

is to keep all lassially valid reasoning rules inluding disjuntive syllogism and

the lassial de�nitions of the logial operators.
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Weakly Negative Systems

In lassial logi, the onit A ^ : A is equivalent to falsity, often denoted ?.

More generally, if A and B are two formulae, then A) (B ) ?) expresses that

A and B are in onit, i.e. they are inonsistent. Conit an be represented in

lassial logi by using a negation symbol. Then fAg ` : B represents the same

inonsisteny as above. Thus, negation and inonsisteny are losely related in

lassial logi.

This type of reasoning lead to muh researh into the nature of negation. (Gabbay

and Hunter, 1999), for example, explore the relationship between negation and

ontradition to develop better tehniques for handling inonsistent information.

(B�eziau, 2000) is also mainly onerned with the negation operator with respet

to paraonsisteny. Thus, it is not surprising that a number of paraonsistent

logis are based on a weaker notion of negation than lassial logi.

One important representative is the logi C

!

proposed by (da Costa, 1974). The

main idea is to use the positive part of some logi, say lassial or intuitionisti,

but to allow negation in an interpretation to behave non-truth-funtionally, i.e.

the truth value of : A is independent of that of A. This, in partiular, allows both

to take the value 1, i.e. both an be \true". Negation is rather weak under suh an

interpretation. Many lassial equivalenes, like the de�nition law for impliation,

double negation and the ontraposition law do not hold in C

!

. Furthermore, rules

like modus tollens and disjuntive syllogism fail. However, modus pones is valid

and therefore weakly-negative logis are onsidered useful for rule-based reasoning

with information.

Many-Valued Systems

Problably one of the simplest and intuitive ways to produe paraonsistent sys-

tems is to use a many-valued logi, i.e. a logi with more than two truth values.

The formulae that hold in a many-valued interpretation are those whih have a

truth value that is said to be \designated". A paraonsistent many-valued logi

is thus one whih allows both a formula and its negation to be designated. The

simplest form is to use three truth values, namely \true" and \false", whih fun-

tion in a lassial way, and \both". One an also add a fourth value, \neither",

to apture the problem of inomplete knowledge. We present two representatives

of suh four-valued logis next.

4.3 Four-Valued Paraonsistent Logis

Many-valued systems are rather intuitive. They provide a natural way of dealing

with over-determined and under-determined knowledge. It is mainly the estab-
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lished Western philosophy that rejets extra truth values. Eastern philosophy, on

the ontrary, is founded on four truth values.

(deCharms, 1997, p. 26), for example, disusses the Tibetan view of mind. \For

many Westerners [and lassial logiians℄ these [following℄ two statements would

seem to over all of the relevant possibilities, with one or the other (but not both)

being neessarily orret."

(1) A phenomenon exists (has individual existene).

(2) The phenomenon does not exist.

\From the Tibetan viewpoint, there are two additional possible (and philosophi-

ally important) viewpoints"

(3) The phenomenon both exists and does not exist.

(4) The phenomenon neither exists nor does not exist.

Thus, the Tibetan view orresponds to a four-valued approah as presented below.

4.3.1 Belnap's Logi FOUR

(Belnap, 1977b; Belnap, 1977a) introdues \A Useful Four-Valued Logi" to ap-

ture the idea of \How A Computer Should Think". Belnap onsiders the following

situation. First, the reasoner is a omputer and, therefore, need not to rely on

familiarity with lassial logi. Seond, the omputer answers questions based on

given fats and dedutions. Third, the fats the omputer has, were given to it,

whih means, the omputer an only reason about what it was told, i.e. about

epistemi information.

The latter is surely the ase in requirements engineering beause the spei�er

usually has to aept what was told to him. This omputer, however, is not a

omplete reasoner in the sense that it will not do anything else but report an

inonsisteny. This means, no automated belief revision will take plae. Consid-

ering its appliation in requirements engineering, this is not a problem beause

it fores the spei�er to go bak and to disuss ertain issues further with the

appliant.

Truth Values

First, we �x the truth values of the logial system. Based on the epistemi

information a omputer is given, we have four situations: `told True', `told False',

`told True and False', and `told neither True nor False'. Note, this orresponds to
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the subsets obtained by forming the powerset of the lassial truth values. The

truth values are given by the set ft ; f ;>;?g respetively.

These truth values an be ordered aording to the amount of knowledge or

information that eah truth value exhibits. This ordering is denoted �

k

and it

holds: ? �

k

f �

k

>, and ? �

k

t �

k

>. It an be observed that the four truth

values form a omplete lattie under the knowledge (or information) ordering.

A omplete lattie is a set, for example A, on whih a partial ordering � exists

and for arbitrary subsets X of A there always exists least upper bounds tX 2 A

and greatest lower bounds uX 2 A. A funtion f from one omplete lattie

into another is monotoni if it preserves the lattie ordering, i.e. a � b implies

f (a) � f (b). We need this property to explain how the truth tables for this logi

arise.

Truth Tables

Table 4.1 presents the truth tables for Belnap's logi. In ase there is no on-

tradition or inompleteness present, everything should be as in lassial logi.

Furthermore, all these truth funtions shall be monotoni on the lattie over the

knowledge ordering. This, however, does not determine all resulting truth values.

It turns out that a minimal relationship between onjuntion and disjuntion is

needed to uniquely determine every value in the truth tables. The natural relation

is the following, lassial, equivalene:

a ^ b = a , a _ b = b

a ^ b = b , a _ b = a

i.e. having ^ as greatest lower bound and _ as least upper bound of the lattie.

The truth values for the negation of > and ? are fored by monotoniity of nega-

tion over the knowledge ordering and > and ? in the truth tables for onjuntion

and disjuntion are also fored by monotoniity. Furthermore, t is an identity

element with respet to onjuntion, i.e. a ^ t = a. Thus a _ t = t must hold by

the above obligation. Similar onsiderations �ll in the rest of the tables exept

the orners. They are, again, fored by monotoniity. Sine f �

k

> it follows

by monotoniity that (f ^ ? �

k

> ^ ?) and hene f �

k

(> ^ ?). Similarly,

? �

k

f leads to (> ^ ?) �

k

(> ^ f ), i.e. (> ^ ?) �

k

f , and by antisymmetry

(> ^ ?) = f .

Therefore, we derive the following truth tables for negation, onjuntion and

disjuntion:
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A :A

> >

t f

f t

? ?

^ > t f ?

> > > f f

t > t f ?

f f f f f

? f ? f ?

_ > t f ?

> > t > t

t t t t t

f > t f ?

? t t ? ?

Table 4.1: Negation, Conjuntion, and Disjuntion of the Logi FOUR

These tables onstitute the so alled logial lattie, denoted L4, with the follow-

ing, related truth ordering: f �

t

> �

t

t , and f �

t

? �

t

t . The truth ordering

reets the di�erene in the \measure of truth" that every value represents. A

double Hasse diagram of both knowledge and truth ordering of the logi FOUR

is given in Figure 4.1.

T

T

f t

truth-ordering

k
n
o
w

le
d
g
e-

o
rd

er
in

g

Figure 4.1: The Truth and Knowledge Ordering of FOUR

The propositional language of Belnap's logi is omposed of a ountable set of

propositional letters and the logial onnetives : , ^ and _. Formulae in this

logi are onstruted in the standard way. A Belnap theory is a set of formulae in

this logi. For the �nite ase, a Belnap theory an be seen as a single formula given

by the onjuntion of all the formulae in that partiular theory. For example, the

formula p ^ (: p _ q) ^ (r ^ : q) is a �nite theory in this logi.
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Semantis

We de�ne the semantis of this logi in the normal way by using the notion of

an interpretation mapping from the propositional symbols into the set of truth

values as well as truth-valuation for a generalisation to arbitrary formulae. Inter-

pretations are ordered by the usual extension to sets of literals of the knowledge

ordering among literals. Furthermore, we use the notion of designated truth

values from many-valued logi.

Let I be an interpretation in the logi FOUR and val

I

the orresponding truth-

valuation (Belnap uses the term set-up for I ). Let F be an arbitrary propositional

formula ontaining : , _, ^. We say that I satis�es F , denoted by I �

4

F , i�

val

I

(F ) 2 ft ;>g, where ft ;>g forms the set of designated truth-values. An

interpretation I is a model of a theory i� it satis�es all the formulae in the

theory. I 2

4

F denotes that I does not satisfy F .

I �

4

A ^ B i� I �

4

A and I �

4

B

I �

4

A _ B i� I �

4

A or I �

4

B

I �

4

: A i� I 2

4

A

The notion of entailment is based on the partial ordering assoiated with the

logial lattie. In L4 entailment goes up hill. That means, a sentene A entails

or implies a sentene B i� for eah assignment of one of the truth-values to

variables, the value of A does not exeed the value of B , in symbols:

A entails B i� val

I

(A) �

t

val

I

(B) for every interpretation I

Proof Theory

Proof theoretially, Belnap's logi is haraterised by a �nite axiomatization.

Given are the formulae A, B and C onsisting of ^, _, and : . The expression

A ! B denotes that A entails B , i.e. that the inferene from A to B is valid.

The expression A $ B denotes that A and B are semantially equivalent. The

following axiomatization is known to be sound and omplete with respet to the

semantis of the logi presented earlier.

A

1

^ : : : ^ A

m

! B

1

_ : : :B

n

provided some A

i

is some B

j

(sharing)

A! B and B ! C implies A! C

A$ B and B $ C implies A$ C

A! B i� : B ! : A
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: : A$ A

: (A ^ B)$ : A _ : B : (A _ B)$ : A ^ : B

A _ B $ B _ A A ^ B $ B ^ A

A _ (B _ C )$ (A _ B) _ C A ^ (B ^ C )$ (A ^ B) ^ C

A ^ (B _ C )$ (A ^ B) _ (A ^ C ) A _ (B ^ C )$ (A _ B) ^ (A _ C )

(A _ B)! C i� A! C and B ! C

A! (B ^ C ) i� A! B and A! C

A! B i� A$ (A ^ B) i� B $ (A _ B)

The �rst blok of expressions aptures the reexivity, transitivity and ontrapos-

itive properties of the onsequene relation. The seond blok of expressions or-

responds to standard lassial properties of negation, disjuntion and onjuntion

(e.g., ommutativity, assoiativity, de Morgan laws). Finally, the last expressions

orrespond to standard lassial rules for introdution and elimination of _ and

^ respetively.

The similarity between the above rules and lassial rules shows that this four-

valued logi is very lose to standard lassial logi. However, the following

`paradoxes of impliation' are not derivable, nor semantially valid, from the set

of entailment rules: A ^ : A ! B and A ! B _ : B . This means that the

problem of triviality was resolved and, thus, Belnap's logi is paraonsistent.

Belnap's logi is stritly weaker than lassial logi as it does not inorporate

modus ponens nor ^-Elimination. Furthermore, impliation annot be de�ned

in terms of the other logial operators, nor does the dedution theorem hold.

This logi is, however, \normal" beause the Tarskian properties of reexivity,

monotoniity and transitivity hold.

Beyond Belnap

Belnap's four-valued logi had a great impat on the researh of paraonsistent

logis and it had been a onstant soure for further investigations. (Rodrigues

and Russo, 1998), for example, present a translation method for Belnap's logi

into �rst-order prediate logi based on two priniple prediates holds(A; tt) and

holds(A;� ) for any formula A. (Arieli and Avron, 1998) use Belnap's logi as

a basis for a disussion on the general usefulness of four truth values. They

�nd that four values are just right. They are stritly more expressive than three

truth values but inorporate the investigated three-valued logis. There are also

a number of related approahes to Belnap's logi, one of whih is presented next.
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4.3.2 Damasio's Logi FOUR

Belnap's logi does not validate the use of modus ponens. However, this is an

often applied reasoning rule. Thus, Belnap's logi is not suited for some applia-

tions, for example, in logi programming. To overome this de�ieny (Dam�asio

and Pereira, 1998) present in their survey of paraonsistent semantis for logi

programs a variation of Belnap's logi.

Truth Table for Impliation

The interpretation of the logial onnetives ^, _ and : is the same as in

Belnap's logi as given in Table 4.1. The logi FOUR by (Dam�asio and Pereira,

1998) then di�ers primarily in the de�nition of the onsequene relation and the

inlusion of the impliation onnetive whih is presented in Table 4.2.

! > t f ?

> t t f f

t t t f f

f t t t t

? t t t t

Table 4.2: Truth Table for Impliation in the Logi FOUR

Let I be a FOUR interpretation, val

I

the orresponding truth-valuation and

F an arbitrary formula. Then I satis�es F , denoted I �

4

F , if and only if

val

I

(F ) 2 ft ;>g, where ft ;>g forms the set of designated truth values. As

usual, an interpretation I is a model of a theory T if and only if it satis�es all

the formulae in T . Furthermore, I 2

4

F denotes that I does not satisfy F .

Note that the impliation operator above always evaluates to either t or f . It

is de�ned in suh a way that the following equivalenes plus modus ponens are

valid:

I �

4

A ^ B i� I �

4

A and I �

4

B

I �

4

A _ B i� I �

4

A or I �

4

B

I �

4

A! B i� I 2

4

A or I �

4

B

Note the similarities to (Herre and Peare, 1992) and (Herre, 1998). Eah of the

two papers onsider one half of this work. The �rst is onerned with partial

logial programs and the latter with inonsistent logi programs. Both papers

together an be used to extend the work by (Dam�asio and Pereira, 1998) to the

�rst-order ase.
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Logial Equivalene

To haraterise this logi further, we introdue the notion of equivalene. Atu-

ally, in multi-valued logis one an de�ne at least two notions of equivalene, one

based on the truth-valuation funtion (alled strong equivalene and denoted �

4

)

and another based on the onsequene relation (referred to as weak equivalene,

j=j

4

). Given two formulae A and B of the language FOUR, we say A �

4

B i�

val

I

(A) = val

I

(B) for every interpretation I . Furthermore, we say A j=j

4

B i� for

every interpretation I it holds I �

4

A i� I �

4

B . Otherwise A j=j

4

B is false.

Note, for an arbitrary many-valued logi it holds that if A � B then A j=j B ,

whenever � is de�ned as truth-value equality and j= is expressed by means of a

set of designated truth values. In the remainder of this subsetion we mean weak

equivalene when we just say equivalene.

The equivalenes holding in FOUR are similar to the ones holding in lassial

logi. (Dam�asio and Pereira, 1998) present a list of valid equivalenes. However,

a number of laws do not hold, like the law of the exluded middle (A _ : A j=j t),

the law of ontradition (A ^ : A j=j f ), the de�nition law (A! B j=j : A _ B),

i.e. the possibility to de�ne impliation in terms of the other onnetives, and

the ontraposition law (A ! B j=j : B ! : A). Furthermore, modus tollens

((: B ^ A! B) ! : A) and disjuntive syllogism (A ^ (: A _ B) ! B) fail.

Interestingly, all axioms of propositional logi hold but

(A! B)! ((A! (: B))! (: A))

whih orresponds to the introdution rule for negation of the natural dedution

alulus. Finally, we note that the logi presented is neither daCosta's C

!

system,

beause the law of the exluded middle is not satis�ed, nor Belnap's logi, beause

modus ponens is a sound rule now.

Logial Consequene

Given the above, we present the orrespondene between the onsequene relation

(also alled satisfation relation) and the truth-valuation funtion of propositional

symbols, as well as between the truth-valuation funtion and models in FOUR.

Let A be a propositional symbol and I an interpretation in a language ontaining

A, then:

I �

4

A and I �

4

: A i� val

I

(A) = >

I �

4

A and I 2

4

: A i� val

I

(A) = t

I 2

4

A and I �

4

: A i� val

I

(A) = f

I 2

4

A and I 2

4

: A i� val

I

(A) = ?
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This means, a literal L is entailed by an interpretation I i� val

I

(L) maps to t or

>. The omplement of L, i.e. : L, holds i� val

I

(L) maps to f or >.

To �nd the value of the truth-valuation funtion applied to the propositional

symbol A, we onstrut the set of all possible FOUR models of a given theory

T , i.e. Mod

�

4

(T ). Then, we take the least FOUR model M of Mod

�

4

(T ) with

respet to the knowledge ordering, i.e.M 2 Mod

�

4

(T ) ^ 8N � N 2 Mod

�

4

(T ))

M �

k

N . The value of the truth-valuation of a propositional symbol A is then:

val

I

(A) = > i� A 2 M and : A 2 M

val

I

(A) = t i� A 2 M and : A 62 M

val

I

(A) = f i� A 62 M and : A 2 M

val

I

(A) = ? i� A 62 M and : A 62 M

The Tweety Example

Consider the rules (1)-(4) of the Tweety example whih we presented in Chapter

3. By applying the equivalene rules of FOUR and modus ponens we an infer

only one and thus least model:

M = fpenguin(Tweety); bird(Tweety);ies(Tweety);: ies(Tweety)g

This, in turn, leads to the following assignments of truth values:

val

I

(ies(Tweety)) = >

val

I

(penguin(Tweety)) = t

val

I

(bird(Tweety)) = t

whih orresponds to our introdution of Tweety as a penguin and bird that an

and annot y.

4.4 Quasi-Classial Logi

The development of quasi-lassial logi (QCL) was inuened by the need to

handle beliefs rather than the truth. As suh, it seems partiularly suitable for

reasoning about spei�ations beause spei�ations are artifats of belief. In

general, a spei�ation is a olletion of information, often provided by multiple

soures, on how a system whih has yet to be developed should work. Therefore,

belief in the information is ruial as there does not exist anything providing

the ultimate truth about the future system. In suh a ontext, the soures of

information may possibly ontradit on some issues and it may well be that suh
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ontraditions annot be resolved immediately. Hene, there is a need for a logi

dealing with inonsistent information.

The logis FOUR and FOUR were also designed to handle beliefs. Two extra

truth values were introdued to apture inonsisteny and inompleteness. We

found, however, that pratial reasoning rules, like modus pones and disjuntive

syllogism, do not hold in these logis. Furthermore, the de�nition law, relat-

ing impliation with negation and disjuntion is not valid either. We think that

spei�ation developers would like to rely on lassial orrespondenes and spei-

�ation analysts prefer to rely on standard inferene rules. Therefore, we require

a paraonsistent logi that is more pratial in suh respets.

(Hunter, 2000) states that QCL has been developed for appliations, in partiular

for reasoning about requirements spei�ations that might be inonsistent. For

example, (Hunter and Nuseibeh, 1997) advoate and illustrate the use of QCL to

handle and manage inonsistent spei�ations. The spei�ations presented as

examples in the work on QCL are written in �rst-order prediate logi. Our aim

in this thesis is to utilise QCL to reason about inonsistent spei�ations written

in a riher language, spei�ally the Z notation.

4.4.1 Syntax of Quasi-Classial Logi

To the reader familiar with �rst-order prediate logi (FOPL) only little will be

new in this setion. For those who like to reapitulate FOPL we reommend (Fit-

ting, 1996) or (Ben-Ari, 2001) for a short introdution. Both text books present

an introdution to prediate logi and, in partiular, to the tableau method whih

we use later, too.

The language of quasi-lassial logi is that of �rst-order prediate logi. It is

de�ned in the usual way. We start by presenting the alphabet of the language.

Based on the alphabet, we de�ne the notions of a term, an atomi formula and,

�nally, formulae belonging to the language of QCL.

Alphabet. The alphabet of the language of quasi-lassial logi onsists of: the

ommon logial onnetives, like ^;_;);, and : , inluding the two quanti�ers

8 and 9; a set of variables; a set of prediate symbols; a set of funtion symbols;

and, �nally, some puntuation symbols, like `(' and `)', used to form formulae.

Eah relation and funtion symbol is assoiate with a positive integer, its arity.

Funtion symbols with arity zero are also alled onstant symbols. We assume

that there is at least one onstant symbol in the set of funtion symbols. Note,

the Boolean onstants true and false are not given in the QC language.

Term. The basi building blok for a formula is a term. First, any variable is

a term and, seond, if f is an n-ary funtion symbol with n � 0 and t

1

; : : : ; t

n

are terms then f (t

1

; : : : ; t

n

) is a term, too. Note, that it follows from the seond
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ase that onstant symbols are terms as well. For example, if + is a two-plae

funtion symbol,

2

is a one-plae funtion symbol, x and y are variables, and 0

and 1 are onstants, then x + y ; x

2

+ 1; (1 + 0)

2

; ((x + y)

2

+ (1 + y)

2

)

2

; : : : are

terms. Sometimes we may use the in�x notation for writing terms, like in the

example above. For instane, we write x + y rather than +(x ; y).

Atom. Having de�ned terms we move on to de�ne formulae. The simplest of its

kind is an atomi formula, also alled an atom. If P is an n-ary prediate symbol

with n � 0 and t

1

; : : : ; t

n

are terms, then P(t

1

; : : : ; t

n

) is an atomi formula.

Formulae. Given atomi formulae we use the logial operators available to

onstrut more ompliated formulae. Formulae are well-formed if they meet the

following onditions. First, any atom is a formula and, seond, if � and  are

formulae and x is a variable then the following are also formulae: (:�), (� ^  ),

(� _  ), (�)  ), (�,  ), (8 x :�(x )), (9 x :�(x )).

We let L denote a set of formulae formed in suh an indutive way. For later ref-

erene we introdue some more voabulary. Any atomi formula or any negation

of an atomi formula is alled a literal. A disjuntion of literals is alled a lause.

A term or an atomi formula is ground if and only if it ontains no variables and

a sentene is a formula with no free-variable ourenes. Furthermore, we omit

brakets aording to the general onventions.

The notion of a fous is possibly new to those aquainted with FOPL. The fous

is a syntatial rule to remove a partiular disjunt from a lause. We use the

fous later as a means to introdue a partiular form of disjuntion with a built-in

resolution rule.

Fous. Let �

1

_ : : : _ �

n

be a lause that inludes a literal �

i

. The fous of

�

1

_ : : : _ �

n

by �

i

, denoted 
(�

1

_ : : : _ �

n

; �

i

), is de�ned as the lause

obtained by removing the disjunt �

i

from the lause �

1

_ : : : _ �

n

. In the ase

of a lause with just one disjunt we onsider the fous to be unde�ned.

Basially, the fous of a lause is just the original formula without a partiular

disjunt. For example, onsider the lause � _ � _ , then the fous of this lause

by �, denoted 
(� _ � _ ; �), is � _ . The fous 
(� _ �; �) is unde�ned,

beause � _ � ontrats to �.

4.4.2 Semantis of Quasi-Classial Logi

One of the main ideas behind some paraonsistent logis is to separate the truth

and falsehood of a formula from eah other, i.e. knowing the formula ' is true

does not neessarily imply that ' is not false. Quasi-lassial logi follows the

same approah. Basially, we onstrut a set of all possible atomi formulae

that an be built using the symbols in the set of assumptions. Any suh set

is a possible model. Then, we de�ne two semanti relations, alled strong and
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weak satisfation to interpret QC formulae. Finally, we de�ne the quasi-lassial

satisfation relation based on strong and weak satisfation.

Quasi-Classial Model

The notion of a model in �rst-order quasi-lassial logi is based on a form of

Herbrand models. Herbrand models are speial in the sense that they assoiate

eah ground term with its name. Every model has a domain, whih in this ase

is alled the Herbrand universe.

De�nition 4.4.1 (Herbrand Universe)

The Herbrand universe U (L) for a set of formulae L is the set of ground terms

that an be formed using the funtion and onstant symbols in L. As mentioned

before, we an always assume that there exists a onstant symbol. If there is

none we add one, say .

For example, onsider the set of formulae L = fQ(a);P(a; f (x ); g(y ; b))g with

prediate symbols P ;Q , funtion symbols f ; g , onstants a; b, and variables x ; y .

Then U (L) = fa; b; f (a); f (b); f (f (: : : (f (a)) : : :)); g(a; a); g(a; b); : : :g is the Her-

brand universe of L. Note, if L ontains a funtion symbol with arity greater

than zero then the Herbrand universe is in�nite. The Herbrand universe of the set

of ground formulae � = f: P(a);P(a) _ P(b);P(a) _ : P(b)g with prediate

symbol P and onstants a and b is U (�) = fa; bg.

De�nition 4.4.2 (Herbrand Base)

Given is the Herbrand universe U (L) for a set of formulae L. The Herbrand base

B(L) is the set of ground atoms that an be formed using the prediate symbols

in L and the terms in U (L).

For example, the Herbrand base for the set of formulae L from above B(L) =

fQ(a);Q(f (a));P(a; f (a); g(b; b));P(f (a); b; a); :::g. The Herbrand base B(�)

of the set of formulae � is B(�) = fP(a);P(b)g.

In standard prediate logi, every Herbrand model over L an be desribed as

a subset of the Herbrand base B(L). Beause we deal with a paraonsistent

logi, we need to go a step further. The idea in many paraonsistent logis is

to separate formulae and their negation. To do so, we use a set of positive and

negative objets onstruted from the Herbrand base.

De�nition 4.4.3 (Objet)

Given is the Herbrand base B(L) for a set of formulae L. O(L) is a set of objets

de�ned as follows, where +� is a positive objet, and �� is a negative objet.

O(L) = f+� j � 2 B(L)g [ f�� j � 2 B(L)g
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Consider the set of formulae � from above. The set of objets is given by O(�) =

f+P(a);�P(a);+P(b);�P(b)g. Any set of suh positive and negative objets

an be a quasi-lassial model.

De�nition 4.4.4 (Model)

Given a set of objets O(L), then any E � O(L) is alled a model.

This means that a model E an ontain both positive and negative objets. We

onsider the following meaning for positive objets +� and negative objets ��

being in some model E or not:

+� 2 E means � is \satis�able" in the model

�� 2 E means : � is \satis�able" in the model

+� 62 E means � is not \satis�able" in the model

�� 62 E means : � is not \satis�able" in the model

This semantis an also be regarded as giving one of the four truth values Both,

True, False and Neither to the elements of the Herbrand base, i.e. to the ground

atoms, as in the four-valued logi by (Belnap, 1977b). For an atom �

� is Both if both � and : � are \satis�ed"

� is True if � is \satis�ed" and : � is not \satis�ed"

� is False if � is not \satis�ed" and : � is \satis�ed"

� is Neither if neither � nor : � is \satis�ed"

Hunter, however, introdues a di�erent semantis based on a two-valued inter-

pretation. To ontinue, we formalise the notion of satis�ability and extend it to

formulae of the language using the following de�nitions.

Quasi-Classial Herbrand Interpretation

As usual, an assignment A is a funtion from the set of variables in L to the

universe U (L). Given an assignment A, an x -variant assignment B is the same

assignment as A exept perhaps in the assignment for x .

De�nition 4.4.5

For an assignment A, terms in L are interpreted as follows, where [:℄

A

is a funtion

from the terms in L to U (L).
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[℄

A

= , where  is a onstant symbol.

[x ℄

A

= x

A

, where x is a variable symbol.

[f (t

1

; : : : ; t

n

)℄

A

= f ([t

1

℄

A

; : : : ; [t

n

℄

A

), where f is a funtion symbol and

t

1

; : : : ; t

n

are terms.

Thus, eah ground term in L is interpreted as the equivalent term in U (L), hene

a model with suh an interpretation is a Herbrand model. A subset of the set of

objets is a model of a partiular literal, if the orresponding positive or negative

objet is a member of the model itself.

De�nition 4.4.6 (Herbrand satisfation)

Let �

h

be a satis�ability relation alled Herbrand satisfation. For a model E and

an assignment A, an atom �(t

1

; : : : ; t

n

) in L over terms t

1

; : : : ; t

n

is interpreted

as follows:

(E ;A) �

h

�(t

1

; : : : ; t

n

) i� +�([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E

(E ;A) �

h

: �(t

1

; : : : ; t

n

) i� ��([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E

This de�nition of Herbrand satisfation is the base ase for the two satisfation

relations QCL is built upon. We ontinue by de�ning strong satisfation �rst.

Strong Satisfation Relation

The main idea behind QCL is that proofs in QCL are a two-stage a�air. A

proof is separated into deompositional steps, inluding resolution, followed by

ompositional steps. To apture this idea we need to establish the semantis for

both stages. Here we present the notion of strong satisfation whih orresponds

to the deompositional phase.

De�nition 4.4.7 (Strong satisfation)

Let �

s

be a satis�ability relation alled strong satisfation. For a model E , and

an assignment A, we de�ne �

s

as follows, where �

1

; : : : ; �

n

are literals in L, and

� is a literal in L.

(E ;A) �

s

� i� (E ;A) �

h

�

(E ;A) �

s

�

1

_ : : : _ �

n

i�

[(E ;A) �

s

�

1

or : : : or (E ;A) �

s

�

n

℄ and

8 i s.t. 1 � i � n [(E ;A) �

s

: �

i

implies

(E ;A) �

s


(�

1

_ : : : _ �

n

; �

i

)℄
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We larify the meaning of this disjuntion rule with an example. If � _ � is the

given lause, then the above de�nition redues to

(E ;A) �

s

� _ � i� [(E ;A) �

s

� or (E ;A) �

s

�℄

and [(E ;A) �

s

: � implies (E ;A) �

s

�℄

and [(E ;A) �

s

: � implies (E ;A) �

s

�℄

Strong satisfation is more restrited than lassial satisfation beause the link

between a formula and its negation has been deoupled. To provide a meaning

for resolution, this link is put into the semantis of strong satisfation via the

treatment of disjuntion.

(Hunter, 2000) provides a slightly di�erent view on disjuntion, too. Given a

model E and literals �

1

; : : : ; �

n

, then

E �

s

�

1

_ : : : _ �

n

i�

(1) for some �

i

2 f�

1

; : : : ; �

n

g;+�

i

2 E and ��

i

62 E

or (2) for all �

i

2 f�

1

; : : : ; �

n

g;+�

i

2 E and ��

i

2 E

Hunter proves that both de�nitions are equivalent by expanding the above de�-

nition. In essene, the disjuntion rule of strong satisfation provides a semanti

aount for paraonsistent reasoning using resolution. We now ontinue de�ning

strong satisfation, onsidering arbitrary formulae.

De�nition 4.4.7 (ontinued)

For formulae �; �;  2 L, we extend the de�nition of strong satisfation as follows:

(E ;A) �

s

� ^ � i� (E ;A) �

s

� and (E ;A) �

s

�

(E ;A) �

s

: : � _  i� (E ;A) �

s

� _ 

(E ;A) �

s

: (� ^ �) _  i� (E ;A) �

s

: � _ : � _ 

(E ;A) �

s

: (� _ �) _  i� (E ;A) �

s

(: � ^ : �) _ 

(E ;A) �

s

� _ (� ^ ) i� (E ;A) �

s

(� _ �) ^ (� _ )

(E ;A) �

s

� ^ (� _ ) i� (E ;A) �

s

(� ^ �) _ (� ^ )

(E ;A) �

s

(�) �) _  i� (E ;A) �

s

(: � _ �) _ 

Let B be an x -variant assignment of A, then

(E ;A) �

s

(9 x :�(x )) _ � i� for some B ; (E ;B) �

s

� _ �

(E ;A) �

s

(8 x :�(x )) _ � i� for all B ; (E ;B) �

s

� _ �

(E ;A) �

s

(: 9 x :�(x )) _ � i� for all B ; (E ;B) �

s

: � _ �

(E ;A) �

s

(: 8 x :�(x )) _ � i� for some B ; (E ;B) �

s

: � _ �

For a model E we polymorphially extend strong satisfation as follows

E �

s

' i� for all assignments A, (E ;A) �

s

'
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Suh an E is said to be a strong model of '.

For example, f�a;+a;�b;+bg is the only strong model of the set of ground

formulae � = f: a; a _ b; a _ : bg. Note, every formula ' has a strong model

even if it is lassially inonsistent.

In the de�nition of strong satisfation, the disjuntion rule applies only to lauses.

We show that this restrition is neessary. We demonstrate on an example that

a weakening of this rule to arbitrary formulae leads to a ontradition. Consider,

for example, the propositional model E = f+�;��;+g for the objets +�, ��

and +. Using a weakened disjuntion rule we establish that E �

s

� _ (� ^ ),

beause E �

s

� ^  and E 2

s

: (� ^ ). Aording to the disjuntion rule we

do not need E �

s

� whih would not hold. However, E 2

s

(� _ �) ^ (� _ ),

beause E 2

s

� _ �, whih is due to E �

s

: � but E 2

s

�. Together, this

ontradits distributivity of disjuntion, if we would allow a weakening of the

disjuntion rule.

Note, the equivalenes in strong satisfation allow for any formula in L to be

rewritten into onjuntive normal form and then into lauses whih an be eval-

uated with respet to the objets in the model.

Weak Satisfation Relation

Strong satisfation orresponds to the deompositional rules. Now we need to

apture the ompositional rules. The de�nition of weak satisfation is similar

to strong satisfation. The main di�erene is that disjuntion is less restrited,

beause it does not inorporate fousing. Indeed, weak satisfation seems loser

to a lassial notion of satisfation.

De�nition 4.4.8 (Weak satisfation)

Let �

w

be a satis�ability relation alled weak satisfation. For a model E , an

assignment A, and a literal � in L, we de�ne �

w

as follows.

(E ;A) �

w

� i� (E ;A) �

h

�

For formulae �; � 2 L, we extend the de�nition as follows:

(E ;A) �

w

� _ � i� (E ;A) �

w

� or (E ;A) �

w

�

(E ;A) �

w

� ^ � i� (E ;A) �

w

� and (E ;A) �

w

�

(E ;A) �

w

: : � i� (E ;A) �

w

�

(E ;A) �

w

: (� ^ �) i� (E ;A) �

w

: � _ : �

(E ;A) �

w

: (� _ �) i� (E ;A) �

w

: � ^ : �

(E ;A) �

w

�) � i� (E ;A) �

w

: � _ �

Let B be an x -variant assignment of A, then



4.4. Quasi-Classial Logi 86

(E ;A) �

w

9 x :�(x ) i� for some B ; (E ;B) �

w

�

(E ;A) �

w

8 x :�(x ) i� for all B ; (E ;B) �

w

�

(E ;A) �

w

: 9 x :�(x ) i� for all B ; (E ;B) �

w

: �

(E ;A) �

w

: 8 x :�(x ) i� for some B ; (E ;B) �

w

: �

For a model E we polymorphially extend weak satisfation as follows

E �

w

' i� for all assignments A, (E ;A) �

w

'

Suh an E is said to be a weak model of '.

For example, the set of ground formulae � = f: a; a _ b; a _ : bg has the fol-

lowing weak models: f�a;+ag, f�a;+b;�bg, f�a;+a;+bg, f�a;+a;�bg and

f�a;+a;+b;�bg. Note, every strong model of a formula ' is a weak model of

' but the onverse does not hold in the general ase.

Observe that the de�nition of weak satisfation di�ers slightly from the one given

by (Hunter, 2000; Hunter, 2001). Disjuntion is here appliable for formulae and

not only for literals. This hange is neessary for the following property proved

in (Hunter, 2000). This property justi�es Hunter's use of the rules above rather

than his more restrited de�nition.

Lemma 4.4.1

Distributivity is implied by the de�nition of weak satisfation, i.e. for any formu-

lae �; �;  2 L, and any model E , the following distribution properties hold:

(E ;A) �

w

� _ (� ^ ) i� (E ;A) �

w

(� _ �) ^ (� _ )

(E ;A) �

w

� ^ (� _ ) i� (E ;A) �

w

(� ^ �) _ (� ^ )

Proof

Assume (E ;A) �

w

� _ (� ^ ). So (E ;A) �

w

� or ((E ;A) �

w

� and (E ;A) �

w

). By distributivity of the lassial onnetives \or" and \and", we have

((E ;A) �

w

� or (E ;A) �

w

�) and ((E ;A) �

w

� or (E ;A) �

w

). Hene,

(E ;A) �

w

(� _ �) ^ (� _ ). The other ase follows similarly. 2

Quasi-Classial Entailment

Now we have established all the building bloks for the de�nition of quasi-lassial

entailment. Basially, QC entailment is of the same form as lassial entailment

exept that strong satisfation is used for the assumptions and weak satisfation

is used for the onlusion.



4.4. Quasi-Classial Logi 87

De�nition 4.4.9 (QC entailment)

Given a set of formulae '

1

; : : : ; '

n

and a formula �. Let �

Q

be an entailment

relation, alled quasi-lassial entailment, suh that �

Q

� P(L)� L, and de�ned

as follows:

f'

1

; : : : ; '

n

g �

Q

�

i� for all models E ; if E �

s

'

1

and : : : and E �

s

'

n

then E �

w

�

Consider the set of ground formulae � = f: a; a _ b; a _ : bg and reall that

its only strong model is E = f+a;�a;+b;�bg. The model E is also a weak

model of a, hene � quasi-lassially entails a, i.e. f: a; a _ b; a _ : bg �

Q

a.

Similarly, we an show f: a; a _ b; a _ : bg �

Q

: a _  as well as f: a; a _

b; a _ : bg �

Q

a ^ b. However, we annot establish f: a; a _ b; a _ : bg �

Q

d ,

beause the model E from above is still a strong model of � but it is not a weak

model of d .

An alternative way of de�ning entailment orresponds to model set inlusion. The

advantage is that we an make use of the standard properties of set inlusion when

reasoning about QC entailment.

For a set of formulae '

1

; : : : ; '

n

, its lass of strong models Mod

s

is de�ned as the

set of all its strong models E , i.e.

Mod

s

('

1

; : : : ; '

n

) = fE j E �

s

'

1

and : : : and E �

s

'

n

g

and the lass of weak models Mod

w

for a formula � is the set of its weak models

E , i.e.

Mod

w

(�) = fE j E �

w

�g

Then QC entailment �

Q

is de�ned as inlusion of the lass of strong models in

the lass of weak models, i.e.

f'

1

; : : : ; '

n

g �

Q

� i� Mod

s

('

1

; : : : ; '

n

) � Mod

w

(�)

4.4.3 The Semanti Tableau Method for First-Order QCL

A proof in QCL is a two stage a�air. First, a set of assumptions is transformed

into lauses and deomposed into literals. Then, the ompositional stage fol-

lows, forming lauses from the assumptions and derived literals using disjuntion

or onjuntion introdution, possibly followed by some rewrite steps to form

equivalent formulae. Any suh obtained formula is a non-trivial inferene from

the assumptions. We onsider the strong satisfation relation to apture the

deomposition of the set of assumptions and weak satisfation to apture the

omposition of the onlusion.
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The Semanti Tableau Method

The proof theory of �rst-order quasi-lassial logi is based on the notion of

semanti tableau. A semanti tableau is a tree-like struture where nodes are

labeled with formulae. The idea is that eah branh represents the onjuntion

of the formulae appearing in it and that the tree itself represents the disjuntion

of its branhes. We refer to (Smullyan, 1968) and (Fitting, 1996) who present a

thorough overview of the tehniques of the semanti tableau method.

The semanti tableau proof proedure is based on refutation, i.e. to prove a

formula ' is satis�able, we begin with : ' and produe a ontradition. This

is done by expanding : ' suh that inessential details of its logial struture

are removed until a ontradition appears or no expansion rule an be applied.

Suh expansion results in a tableau tree. For example, to prove the tautology

q ) (p ) q) we onstrut the following tree:

: (q ) (p ) q))

q ;: (p ) q)

q ; p;: q

and observe the ontradition between the literals q and : q . The tableau is

losed and thus the tautology is proven.

However, this approah does not work diretly for QCL sine the truth and false-

hood of a prediate are deoupled. Therefore, the atom q being satis�able does

not mean that : q is not satis�able, i.e. it is not possible to onstrut a ontra-

dition in the same way as above. To overome this obstale Hunter introdues

signed formulae denoted by

�

, representing that a formula is unsatis�able. Then

showing q and q

�

yields a refutation, as well as : q and (: q)

�

, beause a formula

annot be satis�able and unsatis�able at the same time.

The idea to use signed formulae is not new. They have often been used in the

onstrution of semanti tableau, for example by (H�ahnle et al., 1994). New is

that the link between a signed formula and its onjugate has been removed. If

this link were put bak into the proof theory, QCL would ollapse to lassial

prediate logi.

We formalise the introdued notions. The onjugate of a formula ' is denoted

'

�

. Furthermore, the set of signed formulae of L is denoted L

�

and is de�ned as

L[f'

�

j ' 2 Lg. Given these notions we an de�ne what it means to satisfy the

onjugate of a formula.

De�nition 4.4.10

For any formula ' 2 L we further extend the weak satisfation and strong satis-

fation relations as follows:

E �

s

'

�

i� E 2

s

'

E �

w

'

�

i� E 2

w

'
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This means, the formula '

�

is weakly or strongly satis�able whenever ' is not.

The Tableau S-Rules

In the de�nition of the quasi-lassial (QC) semanti tableau, there are two types

of tableau expansion rules, the S-rules and the U-rules. These expansion rules

orrespond roughly to the two satisfation relations presented in the last setion.

First, we introdue the tableau S-rules.

De�nition 4.4.11 (S-Rules)

The following are the S-rules for a QC semanti tableau. The j symbol denotes

the introdution of a branh point in the QC semanti tableau.

The onjuntion S-rule:

� ^ �

�; �

The disjuntion S-rules:

�

1

_ : : : _ �

n

(: �

i

)

�

j 
(�

1

_ : : : _ �

n

; �

i

)

[where �

1

; : : : ; �

n

are literals℄

�

1

_ : : : _ �

n

�

1

j : : : j �

n

[where �

1

; : : : ; �

n

are literals℄

The rewrite S-rules:

: : � _ 

� _ 

: (� ^ �) _ 

: � _ : � _ 

: (� _ �) _ 

(: � ^ : �) _ 

� _ (� ^ )

(� _ �) ^ (� _ )

� ^ (� _ )

(� ^ �) _ (� ^ )

(�) �) _ 

(: � _ �) _ 

The quanti�ation S-rules:

(8 x :�(x )) _ 

�(t) _ 

(: 9 x :�(x )) _ 

: �(t) _ 

(9 x :�(x )) _ 

�(t

0

) _ 

(: 8 x :�(x )) _ 

: �(t

0

) _ 

where t is a term in U (L) and t

0

is a term in U (L) but not ourring in

the tableau onstruted so far.

All the tableau S-rules assume the formula above the line to be satis�able. Basi-

ally, the S-rules orrespond to the deompositional rules of a QC proof.



4.4. Quasi-Classial Logi 90

The Tableau U-Rules

The tableau U-rules are a variant of the ompositional rules of a QC proof.

They orrespond roughly to the negation of the weak satisfation relation. In

essene, rather than omposing literals to form the onlusion we deompose the

onlusion to its literals. As suh, all the U-rules assume a formula above the

line to be unsatis�able.

De�nition 4.4.12 (U-Rules)

The following are the U-rules for a QC semanti tableau. The j symbol denotes

the introdution of a branh point in the QC semanti tableau.

The onjuntion U-rule:

(� ^ �)

�

�

�

j �

�

The disjuntion U-rule:

(� _ �)

�

�

�

; �

�

The rewrite U-rules:

(: : �)

�

�

�

(: (� ^ �))

�

(: � _ : �)

�

(: (� _ �))

�

(: � ^ : �)

�

(�) �)

�

(: � _ �)

�

The quanti�ation U-rules:

(8 x :�(x ))

�

(�(t

0

))

�

(: 9 x :�(x ))

�

(: �(t

0

))

�

(9 x :�(x ))

�

(�(t))

�

(: 8 x :�(x ))

�

(: �(t))

�

where t is a term in U (L) and t

0

is a term in U (L) but not ourring in

the tableau onstruted so far.

The QC Semanti Tableau

The S- and U-rules are both deomposition rules for signed formulae. They

are applied to onstrut the semanti tableau for a set of assumptions and a

onlusion aording to the following de�nition.

De�nition 4.4.13 (Semanti Tableau)

A QC semanti tableau for a set of assumptions � and a onlusion ' is a tree

suh that:

1. the formulae in � [ f'

�

g are at the root of the tree;

2. eah node of the tree has a set of signed formulae; and
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3. the formulae at eah node are generated by an appliation of one of the

deomposition rules on a signed formula at anestors of that node.

This de�nition is similar to the one for the lassial semanti tableau. The major

di�erene is that the root of the lassial tableau ontains � [ f: 'g. The QC

tableau does not use this beause the link between a formula and its omplement

has been deoupled.

De�nition 4.4.14 (Closed Tableau)

A QC tableau is losed i� every branh is losed. A branh is losed i� there is

a formula ' for whih ' and '

�

belong to that branh, i.e. both ' and '

�

are

on the same path from the root of the tree to the leaf of that branh. A branh

is open if there are no more rules that an be applied, and it is not losed. A

tableau is open if there is at least one open branh.

For example, to establish f: a; a _ b; a _ : bg `

Q

a we take as root the set of

formulae : a; a _ b; a _ : b; a

�

and onstrut the following tableau.

: a; a _ b; a _ : b; a

�

a

losed

b

a

losed

b

�

losed

We applied the disjuntion S-rule and the disjuntion S-rule with fous to on-

strut this tree. Eah branh of the tree is losed, hene the tableau is losed

and, therefore, f: a; a _ b; a _ : bg `

Q

a is valid.

We say � `

Q

', i.e. a set of assumptions � implies a onlusion ' by QCL, if

and only if a QC tableau for � and ' is losed. (Hunter, 2001) shows that this

QC proof method is sound and omplete with respet to the earlier introdued

semantis of QCL. We do not prove this statement here, but a generalized version

of it after introduing equality into QCL.

Note, all the de�nitions above are rather similar to the lassial form for se-

manti tableau. In fat, as (Hunter, 2000) points out, the QC semanti tableau

ollapses to a lassial semanti tableau if the following rules are added to the

deomposition rules,

�

(: �)

�

: �

�

�

�

�

: �

(: �)

�

�

Then we an use the lassial de�nition for losure of a branh, i.e. a branh is

losed if it ontains both � and : � for some ground atom.
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4.4.4 Properties of Quasi-Classial Logi

We now onsider some properties of quasi-lassial logi. These properties have

been presented and proved by (Hunter, 2000) before. However, we reapitulate

the arguments to give further insights into QCL. We present the arguments using

either QC entailment or QC inferene. The deision for one or the other depends

on whih of the two is more onvenient for our purpose.

Paraonsisteny

Quasi-lassial logi is paraonsistent beause it does not allow trivial inferenes.

That is, given a lassial inonsistent set of assumptions �, it is not the ase that

every formula in the language L is entailed by �. For example, let �;: � and �

be ground literals in L. Then it is not the ase that f�;: �g �

Q

� holds beause

E = f+�;��g is a possible model suh that E �

Q

� ^ : � but E 2

Q

�.

The only inferene rule that allows a new literal, like �, to be introdued is

_-Introdution. QCL is designed suh that no deomposition rules an follow

_-Introdution. Therefore, it is not possible to derive the new literal without any

ontext. Hene, QCL does not allow trivial inferenes.

Inferenes from the Empty Set of Assumptions

In QCL it is not possible to derive any onlusion from the empty set of assump-

tions, in partiular no lassial tautologies hold without a given assumption. For

example, the tautology q ) (p ) q) as given in Setion 4.4.3 annot be veri�ed

using QCL, i.e. the following tableau is not losed:

(q ) (p ) q))

�

(: q _ (p ) q))

�

(: q)

�

; (p ) q)

�

(: q)

�

; (: p _ q)

�

(: q)

�

; (: p)

�

; q

�

It is not possible to onstrut a refutation, beause an unsatis�able formula an

only be deomposed into unsatis�able formulae, hene, no ontradition with a

satis�able formula an be derived. Model theoretially this is also easy to see. The

empty set is the only strong model satisfying an empty assumption. However, the

empty set is not a weak model of any onlusion but the empty one. Therefore,

no formula and, in partiular, no tautology an be shown from the empty set of

assumptions.
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It is not lear whether this issue is a drawbak for the appliation of QCL in the

ontext of formal spei�ation, beause any pratial derivation is likely to be

based on a non-empty set of assumptions. Furthermore, when trying to prove

a tautology the attempt of performing the proof will indiate a set of neessary

assumptions. For example, to lose the above tableau, we would need either q ,

: q or : p in the set of assumptions, in partiular the lassial tautology q _ : q

is a realisti andidate.

Reexivity, Monotoniity and Transitivity

Reexivity, monotoniity and transitivity are often regarded as desired properties

of a logi. However, it is well known that there exists a wide range of non-

monotoni logis to reason about unertainty. This indiates that it is possible

to give up one or more of these properties if it is pratial. Here, we investigate

QCL with respet to those three properties.

Quasi-lassial logi is reexive, i.e. for a set of formulae � and a formula ',

� [ f'g `

Q

' holds. This is easy to see from the root of the orresponding

tableau, whih is �; '; '

�

. The tableau is losed immediately, hene the inferene

holds.

QCL is monotoni, too, i.e. for a set of assumptions � and formulae ' and �

it holds that � `

Q

' implies � [ f�g `

Q

'. This follows simply from set

theory, beause the set of strong models of � [ f�g is inluded in the set of

strong models of � whih, in turn, are inluded in the set of weak models of ',

i.e. Mod

s

(� [ f�g) � Mod

s

(�) � Mod

w

('). Monotoniity is desired beause it

allows to add assumptions without retrating onlusions.

The property of transitivity, also alled ut, fails in QCL, i.e. for sets of assump-

tions � and � and formulae ' and � it holds that � [ f'g `

Q

� and � `

Q

'

does not imply � [ � `

Q

�. For example, onsider f: �g [ f� _ �g `

Q

� and

f�g `

Q

� _ �, but f�;: �g 0

Q

�.

The failure of transitivity an be regarded as disadvantageous, in partiular, with

our appliation in mind. However, (Tennant, 1984) introdued a paraonsistent

logi, where transitivity fails, too. In his logi, \transitivity of Proofs fails upon

aumulation of Proofs only when the newly ombined premises are inonsistent

anyway, or the onlusion is a logial truth. In either ase, Proofs that show

this an be e�etively determined from the Proofs given. Thus, transitivity fails

where it least matters { arguably, where they ought to fail!" Consequently, we

need to investigate the failure of transitivity in QCL with respet to the property

of Tennant's logi. If this holds for QCL, too, then the failure of transitivity may

not be a disadvantage anymore.
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Consisteny Preservation

We disuss the relation of quasi-lassial logi to lassial logi. First, everything

that is derivable in QCL is also derivable in lassial logi, i.e. � `

Q

� implies

� ` �. For example, � `

Q

� ^ : � implies � ` � ^ : �. However, the other

diretion does not hold, i.e. � ` � does not imply � `

Q

�. For example, onsider

� to be empty, then it is possible to show in lassial logi ` � _ : � but this

does not hold in QCL.

Even if we restrit onsiderations to a non-tautologial inferene of a formula '

that follows lassially from a onsistent set of formulae, we are not guaranteed

that ' also follows in QCL. For example, let � = f�g, then � ` � ) (� ^ �) is

a lassial inferene but it is not a QC inferene. We onsider the strong models

of � and the weak models of � ) (� ^ �). One suh strong model is f+�g but

this is not a weak model of the onlusion, hene QC entailment fails.

Further Properties

(Hunter, 2000) presents some more properties, whih have been disussed in the

ontext of non-monotoni logis and relevane logis before. It seems interesting

to look at these properties to enhane our understanding of QCL. Below, we

onsider � to be a set of formulae and ', � and  are formulae in our language.

And-introdution. The property of and-introdution, i.e. � `

Q

' and � `

Q

�

implies � `

Q

' ^ �, holds in QCL.

Or-elimination. The property of or-elimination, i.e. � [ f'g `

Q

 and � [

f�g `

Q

 implies � [ f' _ �g `

Q

 , holds in quasi-lassial logi.

Furthermore, due to QCL being a weakening of lassial logi, some of the laws of

lassial logi do not hold in QCL. (Hunter, 2000) presents the following lassial

properties whih are not feasible in QCL. Below, we inlude some ounterexam-

ples to give the reader a better understanding of QCL. We onsider �, �, and 

to be atomi formulae in our language.

Right modus ponens. The property of right modus ponens, de�ned as follows,

fails in QCL: � `

Q

' and � `

Q

' ) � does not imply � `

Q

�. Consider

� = f�;: �g, then � `

Q

�, and � `

Q

�) �, but � 0

Q

�.

Dedution Theorem. The property of dedution, de�ned as follows, fails in

QCL: � `

Q

' ) � does not imply � [ f'g `

Q

�. Consider � = f: �g, then

� `

Q

�) � but � [ f�g 0

Q

�.

The failure of the dedution theorem has a partiular onsequene: in formulating

properties and theorems the deision whether to use impliation or dedution may

be ruial. Like other features of QCL, this requires the user of QCL to make
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its intensions expliit. In general, however, we an onsider the main impliative

onnetive of a lassial formula as the intended dedution operator.

Conditionalization. The property of onditionalization, de�ned as follows, fails

in QCL: � [ f'g `

Q

� does not imply � `

Q

' ) �. Consider � = fg. Then

� [ f�g `

Q

�, but � 0

Q

�) �.

We introdue two further properties. To desribe these properties we need to

make use of lassial prediate logi, beause, as mentioned before, QCL does

not allow any inferenes from the empty set of assumptions.

Right weakening. The property of right weakening, de�ned as follows, fails

in QCL: � `

Q

' and ` ' ) � does not imply � `

Q

�. Let � = f�g, then

f�g `

Q

�. Furthermore, onsider ` �) � _ : �. However, f�g 0

Q

� _ : �.

Left logial equivalene. The property of left logial equivalene, de�ned as

follows, fails in QCL: �[f'g `

Q

 and ` ', � does not imply �[f�g `

Q

 .

Let � = fg. f� _ : �g `

Q

� _ : � and ` (� _ : �) , (� _ : �), but

f� _ : �g 0

Q

� _ : �.

4.4.5 Logial Equivalene in Quasi-Classial Logi

Logial equivalenes play an important role in simplifying logial formulae. In

Chapter 6, for example, we use equivalenes to simplify the preondition of an

operation given in the Z notation. Despite its importane logial equivalene has

not been thoroughly investigated in QCL. For example, the term \equivalent"

is used but not de�ned within QCL. It is referred to lassial logi to give it a

meaning.

Equivalenes and Normal Form

(Hunter, 2000) de�nes, a formula is in onjuntive normal form (CNF) if and

only if it is a onjuntion of lauses, i.e. a onjuntion of disjunts of literals.

For example, given the literals �; � and  then (� _ �) ^  is in CNF, whereas

� _ (� ^ ) is not.

It is known that any propositional formula in QCL an be transformed into CNF

by appliation of the following equivalenes, in partiular distributivity, arrow

elimination, double negation elimination and de Morgan laws. We denote this

equivalene relation by �

Q

.
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' ^ ' �

Q

' ' _ ' �

Q

'

' ^ � �

Q

� ^ ' ' _ � �

Q

� _ '

' ^ (� ^  ) �

Q

(' ^ �) ^  ' _ (� _  ) �

Q

(' _ �) _  

: (' ^ �) �

Q

: ' _ : � : (' _ �) �

Q

: ' ^ : �

' _ (� ^  ) �

Q

(' _ �) ^ (' _  ) ' ^ (� _  ) �

Q

(' ^ �) ^ (' ^  )

: : ' �

Q

'

') � �

Q

: ' _ �

', � �

Q

(') �) ^ (�) ')

(Hunter, 2000) points out that a formula ' is a CNF of a formula � if and only if

' is lassially equivalent to � and ' is in CNF. Note, this form of a CNF is often

alled onjuntive negation normal form (CNNF) beause the negation symbol

does not apply to formulae but to literals only.

(Hunter, 2001) extends his work to �rst-order QCL. We follow from his de�nitions

of the strong and weak satisfation relation that the following two equivalenes

hold as well.

: 8 x :'(x ) �

Q

9 x :: '(x )

: 9 x :'(x ) �

Q

8 x :: '(x )

Thus, the negation symbol an be pushed inside quanti�ed formulae.

Weak Logial Equivalene

In (Miarka et al., 2002) we de�ned, two formulae ' and � are equivalent, denoted

' à

Q

�, if and only if f'g `

Q

� and f�g `

Q

'. We all this weak equivalene,

although this notion is atually not desribing an equivalene relation. Consider

the following three formulae:

1. A = : � ^ � ^ : �

2. B = : � ^ : � ^ (� _ �)

3. C = : � ^ : � ^ �

Then it holds that A à

Q

B and B à

Q

C but A 6 à

Q

C . This is obvious if

we onsider the strong and weak model lasses of these formulae. Reall, that

f'g `

Q

� i� Mod

s

(') � Mod

w

(�).

1. Mod

s

(A) = Mod

w

(A) = ff��;+�;��g; f��;+�;��;+�gg

2. Mod

s

(B) = ff��;+�;��;+�gg

Mod

w

(B) = ff��;+�;��g; f��;��;+�g; f��;+�;��;+�gg

3. Mod

s

(C ) = Mod

w

(C ) = ff��;��;+�g; f��;+�;��;+�gg
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Now we see that Mod

s

(A) � Mod

w

(B) and Mod

s

(B) � Mod

w

(A), Mod

s

(B) �

Mod

w

(C ) and Mod

s

(C ) � Mod

w

(B), but neither Mod

s

(A) � Mod

w

(C ) nor

Mod

s

(C ) � Mod

w

(A). Hene, the relation à

Q

is not transitive and, therefore,

it is not an equivalene relation. Consequently, logial equivalene in QCL an-

not be de�ned in the most straightforward way in terms of the QC onsequene

relation.

The Absorption Laws

Beause the logial equivalene relation in QCL annot be de�ned diretly in

terms of the QC onsequene relation, we look at the strong and weak models

separately. To gain more understanding we investigate the often applied absorp-

tion laws. For the formulae ' and �, the two absorption laws in lassial logi

are de�ned as

E � ' _ (' ^ �) i� E � ' and E � ' ^ (' _ �) i� E � '

The absorption laws do not hold for the strong satisfation relation �

s

. Consider

the formulae � _ (� ^ �) and �, then Mod

s

(�) 6= Mod

s

(� _ (� ^ �)) beause

f+�;��g 2 Mod

s

(�) but f+�;��g 62 Mod

s

(� _ (� ^ �)). The same applies to

the other ase.

However, the absorption laws do hold for the weak satisfation relation. This

follows basially from the de�nition of �

w

, in partiular from onjuntion and

disjuntion. The proof proeeds by showing the equivalene of the weak model

lasses, e.g. Mod

w

(�) = Mod

w

(� _ (� ^ �)), whih uses standard set theory.

Equivalene, Weak and Strong Model Classes

To de�ne an appropriate equivalene relation we investigate two equivalene rela-

tions based on strong and weak satisfation. We are interested in �nding whether

the equivalene relation an be de�ned in terms of the lassial equivalene of the

model lasses.

For example, we �nd that if either the strong or the weak models of two formulae

are equivalent then they are weakly equivalent. Given two formulae ' and �. If

Mod

s

(') = Mod

s

(�) then ' à

Q

� and if Mod

w

(') = Mod

w

(�) then ' à

Q

�.

Proof

(!): Mod

s

(') = Mod

s

(�) � Mod

w

(�), hene ' `

Q

�.

( ): Mod

s

(�) = Mod

s

(') � Mod

w

('), hene � `

Q

'.

(!): Mod

s

(') � Mod

w

(') = Mod

w

(�), hene ' `

Q

�.

( ): Mod

s

(�) � Mod

w

(�) = Mod

w

('), hene � `

Q

'.

In either ase it follows ' à

Q

�. 2
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The standard equality relation = is reexive, symmetri, and transitive. Thus,

a notion of equivalene built upon Mod

s

(') = Mod

s

(�) or Mod

w

(') = Mod

w

(�)

would be an equivalene relation. We �nd, however, that Mod

s

(') = Mod

s

(�)

does not imply Mod

w

(') = Mod

w

(�). That Mod

w

(') = Mod

w

(�) does not im-

ply Mod

s

(') = Mod

s

(�) has already been established when we investigated the

absorption laws.

Proof

Consider the formulae ' = : � ^ : � ^ (� _ �) and � = : � ^ : � ^ � ^ �.

Then Mod

s

(') = ff��;+�;��;+�gg = Mod

s

(�) = Mod

w

(�) but Mod

w

(') =

ff��;+�;��g; f��;��;+�g; f��;+�;��;+�gg 6= Mod

w

(�) 2

Thus, we annot de�ne a generally appliable equivalene relation for QCL based

only on the strong satisfation relation.

Strong Logial Equivalene

We have to opt for a stronger de�nition onsidering both equivalenes over the

weak and strong model lasses. Thus, if the model lasses of two formulae are

the same, then these formulae are equivalent, i.e. given two formulae ' and �,

then ' �

Q

� i� Mod

s

(') = Mod

s

(�) and Mod

w

(') = Mod

w

(�).

Lemma 4.4.2

Strong equivalene in QCL, i.e. �

Q

, is an equivalene relation.

Proof

To be an equivalene relation, �

Q

needs to be reexive, symmetri and transitive.

� Reexivity: ' �

Q

' i� Mod

s

(') = Mod

s

(') and Mod

w

(') = Mod

w

(') by

de�nition of �

Q

. This holds by reexivity of equality.

� Symmetry: ' �

Q

� implies � �

Q

' i� (by de�nition of �

Q

) Mod

s

(') =

Mod

s

(�) and Mod

w

(') = Mod

w

(�) implies Mod

s

(�) = Mod

s

(') and

Mod

w

(�) = Mod

w

(') This holds by symmetry of equality.

� Transitivity: ' �

Q

� and � �

Q

 implies ' �

Q

 i� Mod

s

(') = Mod

s

(�)

andMod

w

(') = Mod

w

(�) andMod

s

(�) = Mod

s

( ) andMod

w

(�) = Mod

w

( )

implies Mod

s

(') = Mod

s

( ) and Mod

w

(') = Mod

w

( ). This holds by tran-

sitivity of equality.

Hene, the relation �

Q

is an equivalene relation. 2
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Note, this result is ompliant with Lemma 5.12 by (Hunter, 2000): For models X

and formulae ' and �, if ' is a CNF of �, then the following equivalenes hold:

X �

s

' i� X �

s

�;

X �

w

' i� X �

w

�

Furthermore, it follows from the above investigations that if two formulae ' and

� are equivalent, i.e. ' �

Q

� then they are QC onsequenes of eah other, i.e.

' à

Q

�. Thus, the relation à

Q

is neessary but not suÆient for QC equivalene.

Further Quasi-Classial Equivalenes

There are many useful equivalenes in lassial logi to simplify quanti�ed formu-

lae. For example, the existential quanti�er distributes over disjuntion in lassial

logi. We are interested in investigating whether suh laws hold in QCL, too.

First, we establish that the universal quanti�er distributes over onjuntion, i.e.

8 x :('(x ) ^ �(x )) �

Q

8 x :'(x ) ^ 8 x :�(x )

Proof

To show this, we need to establish that

E �

s

8 x :('(x ) ^ �(x )) i� E �

s

8 x :'(x ) ^ 8 x :�(x ) and

E �

w

8 x :('(x ) ^ �(x )) i� E �

w

8 x :'(x ) ^ 8 x :�(x )

E �

s

8 x :('(x ) ^ �(x ))

i� ffor all assignments Ag

(E ;A) �

s

8 x :('(x ) ^ �(x ))

i� ffor all x -variant assignments Bg

(E ;B) �

s

' ^ �

i�

(E ;B) �

s

' and (E ;B) �

s

�

i�

(E ;A) �

s

8 x :'(x ) and (E ;A) �

s

8 x :�(x )

i�

(E ;A) �

s

8 x :'(x ) ^ 8 x :�(x )

i�

E �

s

8 x :'(x ) ^ 8 x :�(x )

The same holds for �

w

. 2
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The next rule is partiularly useful when simplifying preonditions in Z. We

establish, the existential quanti�er distributes over disjuntion, i.e.

9 x :('(x ) _ �(x )) �

Q

9 x :'(x ) _ 9 x :�(x )

Proof

We need to show that

E �

s

9 x :('(x ) _ �(x )) i� E �

s

9 x :'(x ) _ 9 x :�(x ) and

E �

w

9 x :('(x ) _ �(x )) i� E �

w

9 x :'(x ) _ 9 x :�(x )

E �

s

9 x :('(x ) _ �(x ))

i� ffor all assignments Ag

(E ;A) �

s

9 x :('(x ) _ �(x ))

i� ffor some x -variant assignment Cg

(E ;C ) �

s

' _ �

E �

s

9 x :'(x ) _ 9 x :�(x )

i� ffor all assignments Ag

(E ;A) �

s

9 x :'(x ) _ 9 x :�(x )

i� ffor some x -variant assignment Bg

(E ;B) �

s

' _ 9 x :�(x )

i�

(E ;B) �

s

9 x :�(x ) _ '

i� ffor some x -variant assignment C g

(E ;C ) �

s

� _ '

i�

(E ;C ) �

s

' _ �

The proof of the weak satisfation relation is slightly simpler beause disjuntion

is appliable for formulae. 2

Other logial equivalenes that hold are

9 x :('(x ) ^ �) �

Q

9 x :'(x ) ^ �, provided x not in �

8 x :('(x ) _ �) �

Q

8 x :'(x ) _ �, provided x not in �

9 x :('(x )) �) �

Q

8 x :'(x )) �, provided x not in �

8 x :(') �(x )) �

Q

') 8 x :�(x ), provided x not in '

9 x :(') �(x )) �

Q

') 9 x :�(x ), provided x not in '
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4.5 Summary

In this hapter we introdued the notion of paraonsisteny as a means to derive

non-trivial onlusions from inonsistent information. We presented briey dif-

ferent ways of weakening lassial logi to develop a paraonsistent logi. Then

we introdued the paraonsistent logis FOUR, FOUR and QCL, eah allowing

a slightly di�erent set of onlusions to be derived from inonsistent information.

All paraonsistent logis weaken lassial logi in some way. Basially, the ap-

pliation area determines the usefulness of any of the paraonsistent logis, i.e.

whih weakening least e�ets the usefulness of the hosen logi. For example,

QCL allows too many onlusions for the partiular appliation onsidered by

(da Costa et al., 1995):

John Smith is sik. Dr. Bouvard tells him he has aner (). Dr. Peuhet,

however tells him he has not aner (: ). Both olleagues agree that If John

has got aner he will die in the next three months ( ) d). (da Costa et al.,

1995) show that using the logi C

+

1

it is not possible to infer If John has not got

aner he will not die in the next three months (:  ) : d). This would be an

invalid inferene beause he ould have a ar aident. Using QCL, however, it

is possible to establish this result:

;: ;  ) d ; (:  ) : d)

�

( _ : d)

�



�

; (: d)

�

losed

QCL is a relevane logi whih is also demonstrated by this example. Beause no

further information is given about other irumstanes that might ause death it

is safe to onlude that If John has not got aner he will not die in the next three

months from aner. This example demonstrates the importane of hoosing the

\right" paraonsistent logi for the envisioned appliation area.

The four-valued logis provide an intuitive semantis to ope with under- and

over-determined information. Thus, we strongly onsider their appliation to

handling inonsisteny or underde�nedness. Unfortunately, many useful equiv-

alenes and derivation rules do not hold in these logis. The former is rather

serious for our appliation in mind beause spei�ers would need to hange their

style of writing spei�ations. The latter inuenes how spei�ations are anal-

ysed. This might be a smaller problem in omparison to the former. The main

appliation areas of these logis are information systems and logi programming.

We favour Hunter's quasi-lassial logi to reason about inonsistent spei�a-

tions. QCL allows inferenes from inonsistent information without resulting in
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triviality. It has been designed suh that all logial onnetives behave lassially,

whih enables an easy grasp of the meaning of a formula. It also preserves the

derivation rules known from lassial logi, however, in QCL the order of appli-

ation is restrited. The role of resolution in QCL is to deompose lauses into

literals to identify those that are involved in an inonsisteny. QCL enables the

reasoner to distinguish between inonsistent theories, unlike in lassial logi.

We not only presented quasi-lassial logi but also ontributed to its develop-

ment by disussing the notion of logial equivalene. It turned out that the logial

equivalene relation in QCL annot be de�ned diretly in terms of the QC onse-

quene relation. Thus, we de�ned a notion of strong logial equivalene for QCL

based on strong and weak model lasses. We showed that several standard equiv-

alenes hold in QCL under strong logial equivalene. We found, however, that

the absorption laws known from standard logi do not hold in QCL. In the next

hapter we further develop QCL by inorporating a theory of equality between

expressions.



Chapter 5

Quasi-Classial Logi with

Equality

In the previous hapter we introdued �rst-order quasi-lassial logi to enable

useful, non-trivial, reasoning in the presene of inonsisteny. Many pratial

reasoning proesses involve the notion of equality. QCL, however, has no expliit

way of reasoning about equality. Therefore, we extend the language of QCL by

inorporating a theory of equality between expressions in this hapter.

Many relations only make sense when applied to objets of partiular types.

For example, \taller than" does not apply to olours and \brighter than" not

to numbers. The equality relation, however, is universal in the sense that it

is meaningful in any domain, like the logial onnetives. Thus, the study of

equality is generally onsidered to be part of logi. Therefore, this hapter is of

general interest to the studies of QCL.

We have, however, also a more spei� reason to study equality in QCL. Our aim

is to use QCL to reason about formal spei�ations written in the Z notation

whih we briey introdued in Chapter 2. In Z, equality plays an important

role in developing spei�ations. It is ommonly used to relate before- and after-

state variables and expressions denoting their values in a spei�ation. Thus,

to formally investigate Z spei�ations using QCL we need to be able to reason

about equality.

Based on the notion of equality we an state a useful and often applied rule for

reasoning with quanti�ations. In its most ommon use it says that if we have

an existentially quanti�ed statement, part of whih gives a value for the bound

variable, then the quanti�ation an be removed and the variable is replaed by

its known value wherever it appears. This rule is alled the one-point rule and

it is often used in the simpli�ation of preonditions in Z. Due to its importane

we disuss this rule in the ontext of QCL towards the end of this hapter.

103
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5.1 Introdution

Equality has often been reognised to be a fundamental logial prediate beause

it is meaningful no matter what domain of disourse is onsidered. This distin-

guishes equality from most other relations that are only appliable in restrited

irumstanes. For example, the prediate \is red" makes no sense on numbers or

the prediate \to the right of" is not meaningful when applied to olours. Equal-

ity shares a universality with the logial onnetives that makes it generally part

of the study of logi.

Equality represents identity, i.e. two things are equal if they denote the same

objet. For example, \3+3" equals \6" and \the letter ourring in the English

alphabet after B" equals \C". Some term t is idential to some other term s,

often denoted t = s, if we annot distinguish between them (with respet to all

properties). This is known as the Priniple of the Indisernibility of Identials,

or Leibniz's Law. If two things annot be distinguished then it follows the re-

plaement priniple whih states that we an replae any ourrene of a term t

in a statement by its equal s.

Equality is a two-plae relation and it has some basi properties. First, everything

is equal to itself, i.e. the equality relation is reexive. Seond, the order of the

terms in the equality relation does not matter, i.e. it is symmetri. Third, the

property of transitivity: given two things a and b are equal and two things b and

 are equal then a and  are equal, too. Finally, if we apply a funtion to two

equal objets then the result will also be equal. All the latter properties an be

derived using reexivity and the replaement priniple.

5.1.1 Motivation

Our motivation for studying equality arises from the aim to reason about formal

spei�ations written in the Z notation using QCL. In Z, equalities are ommonly

used to express the relation between before- and after-states variables and expres-

sions denoting their values. Formal reasoning about Z spei�ations involves, in

partiular, reasoning about suh equalities. An important onsequene of having

a notion of equality is the ability to eliminate universal and existential quanti�-

ation. The latter is know as the one-point rule and it is a frequently used to

analyse Z spei�ations, in partiular when simplifying preonditions.

In the ontext of an inonsisteny tolerant logi handling equality ould beome

umbersome. For example, what does it mean to say that two numbers \1" and

\2" are equal, even though we know from mathematis that they are not? How

muh does suh inonsisteny inuene the reasoning about the given theory?

We address these questions at the end of this hapter leading to future work on

equality and QCL.
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5.1.2 Outline

This hapter is strutured as follows. In Setion 5.2 we introdue the syntax and

semantis for equality, inluding the equality axioms and some investigation of

using these axioms as extra assumptions in the reasoning proess using QCL.

Setion 5.3 provides the basi notations to show that we are dealing in fat with

equality. We present extra tableau rules for handling equality in QCL in Setion

5.4 and prove their soundness and ompleteness in Setion 5.5. The one-point

rule for QCL is disussed in Setion 5.6. This hapter onludes with a short

disussion and summary in Setion 5.7.

5.2 Equality

In this setion we present some initial thoughts on equality. This inludes the

extension of the syntax with a speial prediate symbol to denote equality and

some initial onsiderations of the semantis. These are made more onrete by

presenting a set of axioms lassially required for reasoning about equality. We

investigate the e�et of these axioms in the ontext of QCL by onsidering them as

extra assumptions in the set of formulae given as the premise of a QC derivation.

5.2.1 Syntax and Semantis

The syntax of quasi-lassial logi with equality is the same as that of QCL but

with the addition of the designated two-plae relation symbol � for denoting the

equality relation. Note, we do not use the symbol = to avoid onfusion between

objet language and meta-language. Generally, we use the � symbol in in�x

notation, following the standard onvention. For example, given two terms t and

u we write t � u instead of � (t ; u).

Giving the extra symbol � does not yet enable us to reason about equality. For

example, given two onstant symbols a and b and a prediate symbol P , then

the following onsequene fa � b;P(a)g �

Q

P(b) annot be diretly established

in QCL. First, we need to ensure that the symbol � really denotes equality. We

introdued the notion of a quasi-lassial model. Now we are interested in those

models only in whih the � symbol is treated as the equality relation.

De�nition 5.2.1 (Normal model)

A model E is alled normal provided the relation symbol � is interpreted as the

equality relation over the domain of E .

The aim is to �nd a onsequene relation �

Q

�

where � �

Q

�

' is like � �

Q

',

exept it takes equality into aount, i.e. normal models. This implies, that if
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� �

Q

' then � �

Q

�

'. The onverse, however, is not true. For example, let

� = fa � b;P(a)g, then we want � �

Q

�

P(b), but not � �

Q

P(b).

5.2.2 Equality Axioms

One of the features of QCL is that assumptions ontributing to the reasoning

proess need to be made expliit. For example, fa � b;P(a)g �

Q

P(b) fails

beause an important assumption is missing. If we add the prediate 8 x ; y :(x �

y ) (P(x ) ) P(y))) to the set of assumptions then we an infer P(b) using

QCL. The set of assumptions we need to reason about equality are alled the

equality axioms.

The basi equality axioms are reexivity and replaement. Given those, we are

able to show that equality is an equivalene relation, i.e. it is reexive, symmetri

and transitive. Basially, we follow in our presentation (Fitting, 1996, p. 276 �).

De�nition 5.2.2 (Reexivity)

ref is the sentene 8 x :x � x .

The sentene ref aptures the reexivity property of equality. Next, we de�ne

the replaement property. Note, we de�ne two sets of replaement axioms, one

for funtion symbols and one for prediate symbols.

De�nition 5.2.3 (Funtion replaement axiom)

Let f be an n-plae funtion symbol. The following sentene is a replaement

axiom for f : 8 v

1

: : : v

n

8w

1

: : :w

n

:(v

1

� w

1

^ : : : ^ v

n

� w

n

) ) f (v

1

; : : : ; v

n

) �

f (w

1

; : : : ;w

n

).

For example, if � is a two-plae funtion symbol of the language then

8w ; x ; y ; z :(x � z ^ y � w)) (x � y � z � w) is a partiular funtion replae-

ment axiom, say A. Assuming  is a onstant symbol, we show fA; ref g �

Q

8 x ; z :(x � z )) (x �  � z � ):
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8w ; x ; y ; z :((x � z ^ y � w)) x � y � z � w),

8 x :x � x ,

(8 x ; z :(x � z ) x �  � z � ))

�

(a � b ) a �  � b � )

�

(: (a � b))

�

,(a �  � b � )

�

(a � b ^  � )) a �  � b � ,  � 

: (a � b) _ : ( � ) _ a �  � b � 

: (a � b) _ : ( � )

: (a � b)

losed

( � )

�

losed

a �  � b � 

losed

In a �rst-order language we are not able to quantify over funtion symbols nor

prediate symbols. Thus, we do it indiretly by de�ning the set of all funtion

replaement axioms.

De�nition 5.2.4

For a language L, fun(L) is the set of replaement axioms for all funtion symbols

of L. Members of fun(L) are alled funtion replaement axioms.

Note, there is one funtion replaement axiom for eah funtion symbol of the

language. Therefore, if the language has in�nitely many funtion symbols, the set

of funtion replaement axioms is also in�nite. We de�ned replaement only for

the simplest kind of terms but replaement for more ompliated terms follows.

For example,

8 x ; y :(x � y ) f (x ) � f (y)),

8 x ; y :(x � y ) g(x ) � g(y)),

(8 x ; y :(x � y ) f (g(x )) � f (g(y))))

�

(a � b ) f (g(a)) � f (g(b)))

�

(: (a � b))

�

,(f (g(a)) � f (g(b)))

�

g(a) � g(b)) f (g(a)) � f (g(b))

: (g(a) � g(b)) _ f (g(a)) � f (g(b))

(g(a) � g(b))

�

8 x ; y :(x � y ) g(x ) � g(y))

a � b ) g(a) � g(b)

: (a � b)

losed

g(a) � g(b)

losed

f (g(a)) � f (g(b))

losed
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After we have onsidered funtion symbols, we turn to the replaement property

of relation symbols.

De�nition 5.2.5 (Relation replaement axiom)

Let R be an n-plae relation symbol. The following sentene is a replaement ax-

iom for R: 8 v

1

: : : v

n

8w

1

: : :w

n

:((v

1

� w

1

^ : : : ^ v

n

� w

n

) ) (R(v

1

; : : : ; v

n

) )

R(w

1

; : : : ;w

n

))).

We de�ned � to be a two-plae relation symbol. Its replaement axiom is

8 v

1

; v

2

;w

1

;w

2

:((v

1

� w

1

^ v

2

� w

2

)) (v

1

� v

2

) w

1

� w

2

)) whih we denote by

B for now. It follows the symmetry property for �, i.e. fB ; ref g �

Q

8 x ; y :(x �

y ) y � x ) We an also show that transitivity is a onsequene of B and ref ,

i.e. fB ; ref g �

Q

8 x ; y ; z :((x � y ^ y � z )) x � z ).

Again, beause we annot quantify over the relation symbols in a �rst-order

language we ollet all relation replaement axioms in an appropriate set.

De�nition 5.2.6

For a language L, rel(L) is the set of replaement axioms for all relation symbols

of L. Members of rel(L) are alled relation replaement axioms.

Reexivity and the replaement axioms form together the set of all the equality

axioms.

De�nition 5.2.7 (Equality axioms)

For a language L, by eq(L) we mean the set fref g [ fun(L) [ rel(L). Members

of this set are alled equality axioms for L.

In standard �rst-order prediate logi the equality axioms are exatly what is re-

quired to redue the problems about logi with equality to more general questions

about �rst-order logi. This relation is expressed by the following theorem:

Let L be a �rst-order language and � a set of sentenes over L. Then

� �

�

' if and only if � [ eq(L) � '

where �

�

is the lassial onsequene relation that takes equality into aount,

i.e. X �

�

S provided X holds in every normal model in whih S holds. The

question that arises is whether this also arries over to quasi-lassial logi, i.e.

whether we an establish:

� �

Q

�

' if and only if � [ eq(L) �

Q

'
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5.2.3 Equality and Strong Satis�ability

We developed a set of equality axioms to support reasoning about equality. To

gain some more insight into reasoning with equality we investigate the e�et of

adding these axioms to the set of assumptions. QCL is monotoni, thus adding

these axioms to the set of assumptions would not a�et previous inferenes.

Reall the de�nition of QC onsequene: given a set of assumptions � and a

formula ', then ' is a onsequene of �, denoted � �

Q

', if and only if for all

models E , if E strongly satis�es every formula in � then E must weakly satisfy

'. Now we add the equality axioms, i.e. we are interested in � [ eq(L) �

Q

'.

Aording to the de�nition of QC onsequene the model E must now strongly

satisfy the equality axioms. Thus, for any funtion symbol f and relation symbol

� we have

E �

s

eq(L)

� fDe�nition of the Equality Axioms, Consider any assignment Ag

(E ;A) �

s

8 x :(x � x ) and

(E ;A) �

s

8 x ; y :(x � y ) f (x ) � f (y)) and

(E ;A) �

s

8 x ; y :(x � y ) (�(x )) �(y)))

� fQuanti�ation and Impliation, B is x - and y-variant of Ag

(E ;B) �

s

s � s and

(E ;B) �

s

: (s � t) _ f (s) � f (t) and

(E ;B) �

s

: (s � t) _ : �(s) _ �(t)

Using the de�nition of strong satis�ability for disjuntion and onjuntion we

break these three onditions further down. Then, beause � is an atomi relation,

we an move on to set membership of relations in the model. Using several laws

of formal logi we derive

+s � s 2 E

and

�s � t 2 E or +f (s) � f (t) 2 E and

if +s � t 2 E then +f (s) � f (t) 2 E and

if �f (s) � f (t) 2 E then �s � t 2 E

and

�s � t 2 E or ��(s) 2 E or +�(t) 2 E and

if +s � t 2 E then

��(s) 2 E or +�(t) 2 E and

if��(t) 2 E then ��(s) 2 E and
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if +�(s) 2 E then

�s � t or +�(t) 2 E and

if +s � t 2 E then +�(t) 2 E and

if ��(t) 2 E then

�s � t 2 E or ��(s) 2 E and

if +�(s) 2 E then �s � t 2 E

The equality axioms restrit the set of possible models to those that ful�ll the

above onditions. For example, eah model E must ontain the reexivity axiom

for every term s. Consider the atomi formula �(), where  is some onstant,

then the lass of all strong models satisfying �() and the equality axioms is

Mod

s

(eq(L) [ f�()g) = ff+ � ;+�()g; f+ � ;+�();� � g; f+ �

;+�();��()g; f+ � ;+�();� � ;��()gg

Furthermore, onditions like if +s � t 2 E then +f (s) � f (t) 2 E are similar

to those used by (Fitting, 1996, p. 280f) to onstrut the �rst-order Hintikka sets

with equality. Note, the onditions for handling inequality are made expliit.

This was expeted beause a formula is deoupled from its negation in QCL

and thus equality should be deoupled from inequality. These derived onditions

guide the further development of our theory of equality for QCL.

5.3 Equality and Normal Models

Quasi-lassial logi has two satis�ability relations, alled strong and weak sat-

isfation. To add equality to QCL we restrit both satis�ability relations. We

show that these restritions are suÆient suh that any model satisfying a formula

strongly or weakly is a normal model.

De�nition 5.3.1 (Strong satisfation with equality)

Given de�nition 4.4.7 of the strong satisfation relation. For any literal �, terms

s and t and funtion symbol f we require the following properties to hold for

every pair (E ;A):

(E ;A) �

s

t � t

(E ;A) �

s

s � t and (E ;A) �

s

�(s) implies (E ;A) �

s

�(t)

(E ;A) �

s

: (f (s) � f (t)) implies (E ;A) �

s

: (s � t)

(E ;A) �

s

�(s) and (E ;A) �

s

: �(t) implies (E ;A) �

s

: (s � t)

Similar, we extend the notion of weak satisfation to handle equality.
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De�nition 5.3.2 (Weak satisfation with equality)

Given de�nition 4.4.8 of the weak satisfation relation. For any literal �, terms s

and t and funtion symbol f we require the following properties to hold for every

pair (E ;A):

(E ;A) �

w

t � t

(E ;A) �

w

s � t and (E ;A) �

w

�(s) implies (E ;A) �

s

�(t)

(E ;A) �

w

: (f (s) � f (t)) implies (E ;A) �

w

: (s � t)

(E ;A) �

w

�(s) and (E ;A) �

w

: �(t) implies (E ;A) �

w

: (s � t)

We have to onvine ourselves that these onditions are suÆient, i.e. we need to

show that they selet only models that are normal. Sine the de�nitions above

use only literals we an unfold them to onsider the models diretly. Then we

have

De�nition 5.3.3 (�-losed)

Any model E whih satis�es the following onditions is said to be �-losed.

1. for any term t in L;+t � t 2 E

2. if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E and +�(s

1

; : : : ; s

n

) 2 E

then +�(t

1

; : : : ; t

n

) 2 E

3. if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E and ��(s

1

; : : : ; s

n

) 2 E

then ��(t

1

; : : : ; t

n

) 2 E

4. if �f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

then �s

1

� t

1

2 E or : : : or �s

n

� t

n

2 E

5. if +�(s

1

; : : : ; s

n

) 2 E and ��(t

1

; : : : ; t

n

) 2 E

then �s

1

� t

1

2 E or : : : or �s

n

� t

n

2 E

for any literal �, funtion symbols f and terms s

1

; : : : ; s

n

and t

1

; : : : ; t

n

in L :

The literal � an be the two-plae �-relation as well. In that ase the seond

ondition, for example, instantiates to:

if +s

1

� t

1

2 E and +s

2

� t

2

2 E and +� (s

1

; s

2

) 2 E then + � (t

1

; t

2

) 2 E .

Note the ways of writing the �-relation symbol in in�x and pre�x notation to

indiate the di�erent intention in usage.

Lemma 5.3.1

The relation � is an equivalene relation in an �-losed model.

Proof

We show that � is reexive, transitive, and symmetri, i.e. for every �-losed

model E it holds

+t � t 2 E

+s � t 2 E i� +t � s 2 E

+s � t 2 E and +t � u 2 E implies +s � u 2 E
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Reexivity: Holds by de�nition.

Symmetry: We have +s � s 2 E , i.e. +� (s; s) 2 E , and by assumption of

symmetry +s � t 2 E . Thus we have +s � t 2 E and +� (s; s) 2 E and

therefore by de�nition it follows +� (t ; s) 2 E , i.e. +t � s 2 E . The other

diretion is similar.

Transitivity: By assumption of transitivity we have +s � t 2 E and +t � u 2 E ,

i.e. we have +s � t 2 E and +� (t ; u) 2 E . Then by symmetry and de�nition

it follows +� (s; u) 2 E , i.e. +s � u 2 E . 2

The given replaement ondition in the de�nition is suÆient to reason about

equality and funtion symbols as well, i.e. it holds the following ongruene for

any model E , terms s

1

; : : : ; s

n

and t

1

; : : : ; t

n

and funtion symbol f in L:

if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E

then +f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

We have +f (s

1

; : : : ; s

n

) � f (s

1

; : : : ; s

n

) 2 E by reexivity, i.e. in pre�x nota-

tion that is +� (f (s

1

; : : : ; s

n

); f (s

1

; : : : ; s

n

)) 2 E and by assumption we have

+s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E . Thus it follows by de�nition

+� (f (s

1

; : : : ; s

n

); f (t

1

; : : : ; t

n

)) 2 E , whih is +f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

in in�x notation.

Beause � is an equivalene relation on the domain U (L) of the model E that

is �-losed, it partitions its domain into disjoint equivalene lasses. We denote

the equivalene lass ontaining the losed term t with hhtii. Formally,

hhtii = fu 2 U (L) j +t � u 2 Eg

Lemma 5.3.2

For terms t and u and a model E , hhtii = hhuii if and only if +t � u 2 E .

Proof

(!) +t � t 2 E by reexivity, thus t 2 hhtii; by assumption hhtii = hhuii it

follows that t 2 hhuii; thus +u � t 2 E and by symmetry +t � u 2 E .

( ) Let v 2 hhtii then +t � v 2 E and by symmetry +v � t 2 E ; it follows

by assumption +t � u 2 E and transitivity that +v � u 2 E and by

symmetry +u � v 2 E , i.e. v 2 hhuii; thus hhtii � hhuii. It follows

similarly that hhuii � hhtii; hene hhtii = hhuii.

2

Let U

0

(L) be the set of all equivalene lasses over �, i.e.

U

0

(L) = fhhuii j u 2 U (L)g
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We take U

0

(L) to be the domain of a new model E

0

. Next, we de�ne a new

interpretation for the model E

0

by relating the new interpretation [[:℄℄ to the

already established interpretation [:℄. First, we onsider onstant and funtion

symbols.

De�nition 5.3.4

Ground terms in L are interpreted as follows, where [[:℄℄ is the new interpretation

relation.

[[℄℄ = hhii, for any onstant symbol .

[[f ℄℄(hht

1

ii; :::; hht

n

ii) = hhf (t

1

; : : : ; t

n

)ii for some funtion symbol f and

terms t

1

; : : : ; t

n

.

Reall that for any interpretation I it holds (f (t

1

; : : : ; t

n

))

I

= f

I

((t

1

)

I

; :::; (t

n

)

I

)

and, in partiular, [[f (t

1

; : : : ; t

n

)℄℄ = [[f ℄℄([[t

1

℄℄; :::; [[t

n

℄℄).

We need to hek whether these de�nitions are well-hosen beause the behaviour

of [[f ℄℄ on the lass hht

i

ii of ground terms depends on t

i

, a member of the lass.

We show: For ground terms t

1

; : : : ; t

n

and u

1

; : : : ; u

n

, if hht

1

ii = hhu

1

ii and

... and hht

n

ii = hhu

n

ii then hhf (t

1

; : : : ; t

n

)ii = hhf (u

1

; : : : ; u

n

)ii. This follows

beause hhf (t

1

; : : : ; t

n

)ii = [[f ℄℄(hht

1

ii; :::; hht

n

ii); using the assumptions we get

[[f ℄℄(hhu

1

ii; :::; hhu

n

ii) whih is equal to hhf (u

1

; : : : ; u

n

)ii.

Lemma 5.3.3

For a losed term t of L it holds that [[t ℄℄ = hh[t ℄ii.

Proof

We use indution over the struture of t to show this.

Base ase.

Consider the term t is a onstant, i.e. t = : [[t ℄℄ = [[℄℄ = hhii = hh[℄ii = hh[t ℄ii

Indution step. Assume it holds for ground terms t

1

; : : : ; t

n

. We show it also

holds for terms t = f (t

1

; : : : ; t

n

): [[t ℄℄ = [[f (t

1

; : : : ; t

n

)℄℄ = [[f ℄℄([[t

1

℄℄; : : : ; [[t

n

℄℄) =

[[f ℄℄(hht

1

ii; : : : ; hht

n

ii) = hhf (t

1

; : : : ; t

n

)ii = hhtii 2

This implies that the model we onstrut is anonial, i.e. that the member hhtii

of the domain U

0

(L) will have the losed term t as a name.

Next, we onsider relation symbols. We de�ne

De�nition 5.3.5

For a relation symbol � and terms t

1

; : : : ; t

n

it holds

+�(hht

1

ii; :::; hht

n

ii) 2 E

0

i� +�(t

1

; : : : ; t

n

) 2 E

��(hht

1

ii; :::; hht

n

ii) 2 E

0

i� ��(t

1

; : : : ; t

n

) 2 E
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In partiular, it holds +hht

1

ii � hht

2

ii 2 E

0

i� +t

1

� t

2

2 E . Thus, the model E

0

we onstrut is normal beause +t

1

� t

2

2 E i� hht

1

ii = hht

2

ii, i.e. the symbol �

is interpreted as equality.

Again, we need to demonstrate that the de�nition is well-hosen beause the

satisfation of a relation � over equivalene lasses depends on its satisfation over

partiular members. Thus, for ground terms t

1

; : : : ; t

n

and u

1

; : : : ; u

n

, if hht

1

ii =

hhu

1

ii and ... and hht

n

ii = hhu

n

ii then +�(t

1

; : : : ; t

n

) 2 E i� +�(u

1

; : : : ; u

n

) 2 E .

This holds beause +�(t

1

; : : : ; t

n

) 2 E i� +�(hht

1

ii; :::; hht

n

ii) 2 E

0

by de�nition;

using the assumptions it follows +�(hhu

1

ii; :::; hhu

n

ii) 2 E

0

and by de�nition

+�(u

1

; : : : ; u

n

) 2 E . A similar property an be established for negative objets,

too.

Given is A : Var ! U (L), the assignment in a model E . We introdue A

0

: Var !

U

0

(L) the assignment in E

0

suh that for a variable x it holds x

A

0

= hhx

A

ii. Then

it follows

Lemma 5.3.4

For a term t of L, not neessarily losed, it holds that [[t ℄℄

A

0

= hh[t ℄

A

ii.

Proof

We use indution over the struture of t to show this.

Base ases. Consider the term t is a onstant, i.e. t = : [[t ℄℄

A

0

= [[℄℄

A

0

= [[℄℄ =

hhii = hh[℄

A

ii = hh[t ℄

A

ii, or a variable, i.e. t = x : [[t ℄℄

A

0

= [[x ℄℄

A

0

= x

A

0

=

hhx

A

ii = hh[t ℄

A

ii

Indution step. Assume it holds for terms t

1

; : : : ; t

n

. We show it also holds

for terms t = f (t

1

; : : : ; t

n

): [[t ℄℄

A

0

= [[f (t

1

; : : : ; t

n

)℄℄

A

0

= [[f ℄℄([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) =

[[f ℄℄(hh[t

1

℄

A

ii; : : : ; hh[t

n

℄

A

ii) = hhf ([t

1

℄

A

; : : : ; [t

n

℄

A

)ii = hh[f (t

1

; : : : ; t

n

)℄

A

ii = hh[t ℄

A

ii

2

Finally, we need to de�ne the variants of the weak and strong satisfation rela-

tions. Basially, they are similar to the standard de�nitions. The major di�erene

ours in the atomi ase:

(E

0

;A

0

) �

s

�(t

1

; : : : ; t

n

) i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

s

: �(t

1

; : : : ; t

n

) i� ��([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

w

�(t

1

; : : : ; t

n

) i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

w

: �(t

1

; : : : ; t

n

) i� ��([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

Lemma 5.3.5

For any formula ' and any assignment A in an �-losed model E it holds

(E ;A) �

s

' i� (E

0

;A

0

) �

s

'

(E ;A) �

w

' i� (E

0

;A

0

) �

w

'

i.e. it holds for every formula that it is satis�able in a model E if and only if it

is also satis�able in a normal model E

0

.
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Proof

We use indution over the struture of ' to show this.

� Base ases.

(a) Let ' = �(t

1

; : : : ; t

n

), t

1

; : : : ; t

n

terms. Then (E

0

;A

0

) �

s

�(t

1

; : : : ; t

n

)

i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

i� +�(hh[t

1

℄

A

ii; : : : ; hh[t

n

℄

A

ii) 2 E

0

i�

+�([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E i� (E ;A) �

s

�(t

1

; : : : ; t

n

). The ase for the

weak satisfation relation follows similarly.

(b) Let ' = : �(t

1

; : : : ; t

n

). Then it follows similarly as for ' = �(t

1

; : : : ; t

n

)

but using negative objets �� instead of positive objets +�.

� Indution step.

Suppose it holds for formulae �,  and �. We show that it also holds for

more ompliated formulae.

The propositional ases are straightforward.

(^ ) For example: (E

0

;A

0

) �

s

� ^  i� (E

0

;A

0

) �

s

� and (E

0

;A

0

) �

s

 , it

follows by the indution hypothesis (E ;A) �

s

� and (E ;A) �

s

 i�

(E ;A) �

s

� ^  . The ase for weak satisfation follows similarly.

(_

w

) The disjuntive ase needs to be treated separately, beause strong

and weak satisfation are de�ned di�erently for disjuntive formulae.

First, the weak satisfation relation: (E

0

;A

0

) �

w

� _  i� (E

0

;A

0

) �

w

� or (E

0

;A

0

) �

w

 , by hypothesis (E ;A) �

w

� or (E ;A) �

w

 i�

(E ;A) �

w

� _  .

(_

s

) Strong satisfation for disjuntion is de�ned for literals only. Hene,

for literals �

1

; : : : ; �

n

, (E

0

;A

0

) �

s

�

1

_ : : : _ �

n

i� [[(E

0

;A

0

) �

s

�

1

or : : : or (E

0

;A

0

) �

s

�

n

℄ and 8 i s.t. 1 � i � n [(E

0

;A

0

) �

s

: �

i

implies (E

0

;A

0

) �

s


(�

1

_ : : : _ �

n

; �

i

)℄℄.

By base ase [[(E ;A) �

s

�

1

or : : : or (E ;A) �

s

�

n

℄ and 8 i s.t. 1 �

i � n [(E ;A) �

s

: �

i

implies (E ;A) �

s


(�

1

_ : : : _ �

n

; �

i

)℄℄ and by

de�nition of strong satisfation (E ;A) �

s

�

1

_ : : : _ �

n

.

The other propositional ases follow similarly.

We onsider one of the quanti�er ases (the others follow similarly).

(9

!

) Suppose (E ;A) �

s

(9 x :�) _  . Then for some x -variant B of A,

(E ;B) �

s

� _  . By the indution hypothesis, (E

0

;B

0

) �

s

� _  .

But B

0

is an x -variant of A

0

, and so (E

0

;A

0

) �

s

(9 x :�) _  . Similar for

weak satisfation.

(9

 

) Suppose (E

0

;A

0

) �

s

(9 x :�) _  . Then for some x -variant V of A

0

,

(E

0

;V ) �

s

� _  . De�ne an assignment B in E as follows: On variables

other than x , B agrees with A, and on x , x

A

is some arbitrary member

of x

V

(x

V

is a member of U

0

(L), hene it is an equivalene lass and

thus we an hoose any member). Then B is an x -variant of A, and it
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also easy to see that B

0

= V . Then (E

0

;B

0

) �

s

� _  . so by indution

hypothesis (E ;B) �

s

� _  , and therefore (E ;A) �

s

(9 x :�) _  .

Similarly for weak satisfation.

2

5.4 Equality Tableau Rules

The aim of this hapter is to develop a proof proedure inorporating reasoning

about equalities. Basially, it is suÆient to add the equality rules to the set

of assumptions. However, we an also inorporate equality rules expliitly into

the tableau method. Adding equality to the semanti tableau for lassial logi

has been disussed, for example, by (Reeves, 1987), (Fitting, 1996) and (Bekert,

1997).

De�nition 5.4.1 (Tableau Equality Rules)

The following are the EQ-rules for QC semanti tableau, where s and t are terms,

f is a funtion symbol and � is a literal.

Reexivity:

t � t

Replaement:

�(s)

s � t

�(t)

Inequality rules:

: (f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

))

: (s

1

� t

1

) j : : : j : (s

n

� t

n

)

�(s

1

; : : : ; s

n

)

: �(t

1

; : : : ; t

n

)

: (s

1

� t

1

) j : : : j : (s

n

� t

n

)

Note, the tableau rule

s � t

f (s) � f (t)

is impliitly given due to the reexivity and

replaement rules, i.e. by reexivity we have f (s) � f (s) and by assumption s � t

thus it follows by replaement f (s) � f (t).

In a simpli�ed notation, the tableau U-Rules are given by

(t � t)

�

losed

(�(t))

�

(�(s))

�

j (s � t)

�

(f (s) � f (t))

�

(s � t)

�

(: (s � t))

�

(�(s))

�

j (: �(t))

�

but they are dismissable beause eah an be simulated by the EQ-rules for the

QC semanti tableau as introdued above. First, if we derived (t � t)

�

in some

branh then we an lose that branh by using the reexivity rule to add t � t to
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the end of it. After applying the seond rule we need to establish �(s) and s � t

to lose eah branh. However, given both we an apply the replaement rule

to derive �(t) whih loses the branh with (�(t))

�

in it. Applying the funtion

U-rule results in showing s � t to lose it. However, given this and reexivity we

obtain f (s) � f (t) whih would lose the branh, too. Finally, the last rule an

be simulated using the inequality rule for relation symbols. Consequently we do

not require the use of the equality U-rules.

We illustrate the use of the tableau rules with a ouple of examples. The following

reasoning tree shows an example of how to use equality and funtion symbols.

We show f8 x ; y :(x � y ^ f (y) � g(y))g `

Q

�

8 x ; y :(h(f (x )) � h(g(y))).

8 x ; y :(x � y ^ f (y) � g(y)); (8 x ; y :(h(f (x )) � h(g(y))))

�

a � b; f (b) � g(b)

f (a) � g(b)

h(f (a)) � h(f (a))

h(f (a)) � h(g(b))

(h(f (a) � h(g(b)))

�

losed

Next, we use equality, funtion symbols and prediates. To onstrut the tree

below we apply symmetry and transitivity. We already established the validity

of these rules on the semanti level but will not repeat this argument here. How-

ever, using both properties of equality shortens the proof onsiderably. We show

f8 x ; y :(f (x ) � g(y)) p(x ; y)); f (a) � ; g(b) � g `

Q

�

p(a; b).

8 x ; y :(f (x ) � g(y)) p(x ; y)); f (a) � ; g(b) � ; (p(a; b))

�

f (a) � g(b)) p(a; b)

: (f (a) � g(b)) _ p(a; b)

(f (a) � g(b))

�

f (a) � ; g(b) � 

f (a) � g(b)

losed

p(a; b)

losed
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5.5 Soundness and Completeness

We need to establish the link between the QC tableau method and the QCL

semantis. We need to show that we an only prove with the QC semanti

tableau method what is satis�able by QCL, i.e. soundness, and that we an

prove everything that is satis�able, i.e. ompleteness. Hunter showed that a set

of assumptions � implies a onlusion ' by QCL (� �

Q

'), if and only if a QC

tableau for � and onlusion ' is losed (� `

Q

'). We extend this proof to QCL

with equality.

Theorem 5.5.1

For any set of formulae � � L and any formula ' 2 L, a quasi-lassial tableau

with equality for � and ' is losed if and only if � �

Q

�

'.

The basi idea of the proof relies on the fat that a tableau method is sound and

omplete if eah tableau rule is sound and omplete. Hunter already uses this

priniple thus we have little to hange from the ase without equality to the ase

with equality.

Soundness of the Tableau Rules

Basially, we need to show that the appliation of a tableau rule or equality rule

to a tableau that is satis�able in a normal model will produe another tableau

that is satis�able in the same normal model.

Lemma 5.5.1 (Soundness S-rules)

Eah tableau rule given in de�nition 4.4.11 and de�nition 5.4.1 is sound in the

following sense: If � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula

below the line, and E

0

is a normal model suh that E

0

�

s

�, then E

0

�

s

'.

Proof

Aording to (Hunter, 2001), the tableau rules in de�nition 4.4.11 are sound in

the sense that if � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula

below the line, and E is a model suh that E �

s

�, then E �

s

'. Beause E

0

�

s

�

i� E �

s

� and E �

s

' i� E

0

�

s

' it follows that the tableau rules in de�nition

4.4.11 are sound in the above sense.

The EQ reexivity rule is sound beause t � t is the formula below the line and

aording to de�nition 5.3.1 we onsider only those models suh that for all E ;A,

(E ;A) �

s

t � t , i.e. (E

0

;A

0

) �

s

t � t . The EQ replaement rule is sound beause

aording to de�nition 5.3.1 for all E ;A, if (E ;A) �

s

�(s) and (E ;A) �

s

s � t

then (E ;A) �

s

�(t) and using lemma 5.3.5 it follows if (E

0

;A

0

) �

s

�(s) and

(E

0

;A

0

) �

s

s � t then (E

0

;A

0

) �

s

�(t) for all E

0

;A

0

. Similarly for the inequality

rules. 2
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Lemma 5.5.2 (Soundness U-rules)

Eah tableau rule given in de�nition 4.4.12 is sound in the following sense: If

� 2 L

�

is a formula above the line, and ' 2 L

�

is a formula below the line, and

E

0

is a normal model suh that E

0

�

w

�, then E

0

�

w

'.

Proof

This follows from (Hunter, 2001), i.e. eah tableau rule given in de�nition 4.4.12

is sound in the following sense: If � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula below the line, and E is a model suh that E �

w

�, then E �

w

';

and from E

0

�

w

� i� E �

w

� and E �

w

' i� E

0

�

w

'. There are no equality

U-rules thus we are done. 2

Completeness of the Tableau Rules

Lemma 5.5.3 (Completeness S-rules)

The set of tableau rules given in de�nitions 4.4.11 and 5.4.1 is omplete in the

following sense: If � 2 L

�

is a formula in a branh of a QC semanti tableau, and

there is a pair (E

0

;A

0

) suh that (E

0

;A

0

) �

s

�, and aording to de�nitions 4.4.7

and 5.3.1 there is a derivation of the form (E

0

;A

0

) �

s

� implies (E

0

;A

0

) �

s

', then

' an be obtained as a formula in the branh by using the S-rules in de�nition

4.4.11 or the equality rules in de�nition 5.4.1.

Proof

The ompleteness of the S-rules follows from (Hunter, 2001) and lemma 5.3.5.

It remains to be shown the ompleteness of the EQ-rules. The EQ rules for the

stong satisfation relation are aptured in de�nition 5.3.1. Aording to de�nition

5.3.1 always (E ;A) �

s

t � t , i.e. (E

0

;A

0

) �

s

t � t whih an be obtained by the

reexivity rule. Given �(s) and s � t in a branh, aording to de�nition 5.3.1

there is a derivation (E ;A) �

s

�(s) and (E ;A) �

s

s � t implies (E

0

;A

0

) �

s

�(t)

whih an be obtained using the replaement rule. Similarly for the inequality

rules. 2

Lemma 5.5.4 (Completeness U-rules)

The set of tableau rules given in de�nition 4.4.12 and 5.4.1 is omplete in the

following sense: If � 2 L

�

is a formula in a branh of a QC semanti tableau, and

there is a pair (E

0

;A

0

) suh that (E

0

;A

0

) �

w

�, and aording to de�nitions 4.4.8

and 5.3.2 there is a derivation of the form (E

0

;A

0

) �

w

� implies (E

0

;A

0

) �

w

', then

' an be obtained as a formula in the branh by using the U-rules in de�nition

4.4.12 or the equality rules in de�nition 5.4.1.

Proof

The ompleteness of the U-rules follows from (Hunter, 2001) and lemma 5.3.5. It

remains to be shown the ompleteness of the EQ-rules. This follows basially from

the earlier disussion that eah EQ U-rule an be modelled using the EQ-rules.

2
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Given the soundness and ompleteness of eah of the tableau rules it is easy to

show that the tableau method is sound and omplete, i.e. for any set of formulae

� and any formula ' there is a QC semanti tableau with equality for � and '

that is losed if and only if there is no model E suh that E �

s

� and E �

w

'

�

.

This, however, has essentially been proved by (Hunter, 2001). Aording to the

above lemmata eah appliation of the S-rules, U-rules and EQ-rules is sound and

omplete. Consider a partiular � and '. There is a QC tableau with equality

for � and ' that is losed i� every branh of the tableau with root � [ f'

�

g is

losed i� every branh of the tableau with root � [ f'

�

g ontains � and �

�

for

some ground literal � i� there is no model for eah branh of the tableau with

root � [ f'

�

g i� there is no model E suh that E �

s

� and E �

w

'

�

.

5.6 The One-Point Rule

The notion of equality allows us to introdue or eliminate the existential quan-

ti�er. If a variable is found to be bound by an existential quanti�er and it

is idential to some given term, then we an replae all instanes of the vari-

able by that term and remove the existential quanti�er. Consider the prediate

9 x :(p(x ) ^ x � t). This states that there is a value for x for whih the prediate

p(x ) ^ x � t holds. Obviously, t itself is a reasonable andidate for replaing x .

The one-point rule in standard prediate logi expresses the following equivalene:

9 x :(p(x ) ^ x � t) � p(t) [provided x is not free in t ℄

We are interested in preserving this rule in QCL, i.e. we want

9 x :(p(x ) ^ x � t) �

Q

p(t)

under the same provision. This means, that the lass of the strong models and the

lass of the weak models of the left and right hand side of this equivalene must

be equal. We found that bi-diretional QC derivability is a neessary ondition to

hold. It is, however, easy to see that for any formula p it is the ase: 9 x :(p(x ) ^

x � t) à

Q

p(t)

9 x :(p(x ) ^ x � t); (p(t))

�

p(t) ^ t � t ; (p(t))

�

p(t); t � t ; (p(t))

�

losed

p(t); (9 x :(p(x ) ^ x � t))

�

p(t); (p(t) ^ t � t)

�

(p(t))

�

losed

(t � t)

�

t � t

losed
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The strong model lasses of both sides are equal if for every strong model of

9 x :(p(x ) ^ x � t) there is an equivalent strong model for p(t), i.e. if for every

model E it holds E �

s

9 x :(p(x ) ^ x � t) i� E �

s

p(t). The ase for the weak

satisfation relation follows similarly.

E �

s

p(t)

i� ffor all assignments Ag

(E ;A) �

s

p(t)

i� fConsider normal modelsg

(E

0

;A

0

) �

s

p(t)

i� fBy Reexivityg

(E

0

;A

0

) �

s

p(t) and (E

0

;A

0

) �

s

t � t

i� fDe�nitiong

(E

0

;A

0

) �

s

p(t) ^ t � t

i� fB

0

is x-variant assignment of A

0

g

(E

0

;B

0

) �

s

9 x :(p(x ) ^ x � t)

i�

(E ;B) �

s

9 x :(p(x ) ^ x � t)

i� ffor all assignments Bg

E �

s

9 x :(p(x ) ^ x � t)

5.7 Disussion and Summary

Adding equality to a paraonsistent logi has previously been onsidered by

(Batens and De Clerq, 1999) and (da Costa, 2000). Basially, both approahes

are similar to ours by being based on adding reexivity and the replaement

priniple.

We �nd, however, that equivalene lasses an be trivialised in the presene of

inonsisteny. For example, under the assumption 1 � 2 all numbers ollapse

into one equivalene lass, i.e. all numbers are provably equal. This problem

an be ontributed to the rihness of reasoning with equality, in partiular to

funtionality. (Mortensen, 1995, p. 12f) notes:

Fortunately or unfortunately, the methods and results in this book

[(Mortensen, 1995)℄ indiate that the `essene' of mathematis is

deeper than paraonsistentists have thought [...℄.

[...℄ lassial mathematis, interested in funtionality, onentrated

on the onsistent subtheory [...℄
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[...℄ it is not true that there are no interations between funtionality

and inonsisteny or inompleteness. [...℄ this an lead to interesting

insights about funtionality;

(Mortensen, 1995) suggests a ontrolled relaxation of funtionality to avoid suh

trivialities and (Vermeir, 2001) investigates a new axiomatisation of inonsis-

tent arithmeti by means of inonsisteny-adaptive logis (see (Batens, 1999)

and (Batens, 2000), for example). The latter approah, however, abandons the

property of monotoniity whih we identi�ed as desirable.

Surely, this issue of inonsisteny and arithmeti needs to be further investigated.

Note, however, given suh inonsisteny between numbers does not neessarily

mean that the given theory is trivialised too. For example, 1 � 2 ^ �, for some

formula �, does not imply that we an infer : � using QCL with equality.

In this hapter we introdued the notion of equality to the semantis of QCL. We

showed that extra tableau rules to reason about equality are sound and omplete

with respet to the given semantis. Given equality we established the validity

of the one-point rule, a ommonly used rule to introdue and remove existential

quanti�ation. We will use QCL with equality in the next hapter to reason

about formal spei�ations written in the Z notation.



Chapter 6

Formal Reasoning about

Inonsistent Z Spei�ations

using Quasi-Classial Logi

The aim of this hapter is to disuss what formal support an be given to the

proess of analysing and re�ning Z spei�ations in a ontext that expliitly allows

and reognises inonsistenies. This work is part of the wider area of researh

on living with inonsistenies, rather than eradiating them. We disussed in

Chapter 4 that logiians have developed a range of logis to ontinue to reason in

the presene of inonsistenies and we introdued in partiular one representative

of suh paraonsistent logis, namely Hunter's quasi-lassial logi (QCL). Here

we apply QCL to analyse inonsistent Z shemas. Quasi-lassial logi allows us

to derive less, but more \useful", information, in the presene of inonsisteny.

Consequently, inonsistent Z spei�ations an be analysed in more depth than

at present.

Part of the analysis of a Z operation is the alulation of the preondition. In

the presene of an inonsisteny, however, information about the intended ap-

pliation of the operation may be lost. It is our aim to regain this information.

We introdue a new lassi�ation of preondition areas, based on the notions of

de�nedness, overde�nedness and unde�nedness. We disuss an option for deter-

mining these areas whih is based on quasi-lassial reasoning.

Re�nement is the proess of developing abstrat spei�ations into more on-

rete ones. This is a major development tool for formal spei�ations. Here, we

onsider the re�nement of inonsistent operation shemas. Given an inonsistent

prediate in an operation, any other prediate replaing it is a valid re�nement.

This, however, allows a wide range of non-intuitive re�nements. We laim that

inonsistent operations arry information that should be preserved during re�ne-

ment, like onsistent operations do. We develop a re�nement method based on

quasi-lassial reasoning to aount for this.

123
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6.1 Introdution

The purpose of this hapter is to disuss how to reason in the presene of in-

onsistenies in a formal setting. Although this might sound strange, spei�a-

tions, espeially large ones, are often inonsistent at some level. Inonsistenies

range from ontraditory desriptions of the system at hand to ontraditions

spei�ed in the operations. A signi�ant proportion of the spei�ation analysis

proess is then devoted to deteting and eliminating suh inonsistenies, be-

ause, lassially (and intuitively), inonsistenies in spei�ations are regarded

as undesirable.

6.1.1 Motivation

Those involved in large sale software engineering in pratie treat inonsistenies

as a fat of life. They our frequently in large projets and need to be tolerated

(possibly for some time) and managed, rather than eradiated immediately. This

has led to a onsiderable amount of researh on the development of tools and

tehniques for living with inonsistenies (Ghezzi and Nuseibeh, 1998; Ghezzi

and Nuseibeh, 1999), (Balzer, 1991), (Shwanke and Kaiser, 1988), and handling

inonsistenies (Finkelstein et al., 1994), (Hunter and Nuseibeh, 1998). The

general aim of suh work is to provide pratial support for deiding if, when,

and how to remove inonsistenies, and to possibly reason in the presene of

inonsistenies.

Although the tehniques and tools developed for this approah have had a ertain

amount of suess they have, however, mainly foused on informal and semi-

formal spei�ation tehniques. There has been reent work on more formal

approahes (Hunter and Nuseibeh, 1997) but these have largely onentrated on

purely logial issues, not onneting them to urrent spei�ation languages. We

are interested in seeing what support we an give for the proess of living with

inonsistenies in a spei�ation notation, namely Z.

Our purpose here is to explore the issue of handling inonsistenies in Z, espeially

those present in operations. The general aim is, in the presene of inonsisteny,

not to immediately derive falsehood, but to rather allow further, intermediate,

reasoning on other aspets of the state, operation, or spei�ation. This should

enable us to infer more useful onlusions from inonsistent Z shemas or spei-

�ations. One partiular aspet is how tolerating inonsistenies an bene�t the

development proess from abstrat to onrete spei�ations.

6.1.2 The Use of Quasi-Classial Logi

In lassial prediate logi, on whih Z is based, inonsistent information results

in triviality, beause everything an be inferred from it. This, in turn, renders the
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information useless, when, in fat, there may be further valid inferenes we wish to

make. However, there are several ways of handling inonsistent information. One

is to divide the piees of information into (possibly maximal) onsistent subsets

(Resher andManor, 1970), another is paraonsistent reasoning. The latter allows

the derivation of only non-trivial inferenes from inonsistent information, i.e. not

everything an be inferred.

One representative of paraonsistent logis is quasi-lassial logi, developed by

(Besnard and Hunter, 1995). We introdued the semantis and proof theory of

QCL with Equality in the previous hapter. The key to QCL is that it allows only

the derivation of information already present in a given theory, even though that

theory might be inonsistent. This feature is what we need to analyse inonsistent

Z operations. QCL is not so muh aimed at reasoning about the truth in the real

world but about handling beliefs. This seems to be ompliant with the idea of

formal spei�ation where we gather requirements of a system yet to be built.

The main advantage of QCL, in omparison with many other paraonsistent

logis, is that the logial onnetives behave lassially. Therefore, we believe

that QCL is more suitable for our appliation to Z, beause spei�ers and analysts

will already be familiar with the notation and meaning of the onnetives.

6.1.3 Hypothesis

In this hapter we show that quasi-lassial logi enables us to analyse inonsistent

operations spei�ed in the formal notation Z. QCL allows us to infer less but

more useful information in the presene of inonsistenies. We understand the

term \useful" with respet to the problem of triviality arising from inonsisteny,

i.e. everything is derivable. In omparison to standard prediate logi, QCL

restrits the amount of information inferable from inonsistent premises.

Furthermore, quasi-lassial logi is a tool to diret the proess of re�nement

of inonsistent operation shemas suh that fewer but more useful re�nements

remain. In standard Z, an inonsistent prediate in an operation an be re�ned

by any other prediate. For example, we present an inonsistent operation to add

a user to a library but re�ne it by an operation removing a user. QCL allows us to

distinguish between some forms of unwanted re�nements and desired re�nements.

Quasi-lassial logi proves helpful for both tasks. However, we found that QCL

itself needs to be further developed to suit this partiular appliation within the

notation Z. We already reported some of the neessary extensions, like equality

and logial equivalene, in the previous hapter. Here, we identify further areas

to guide the development of QCL. In partiular, QCL and its appliation to set

theory ome to mind.
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6.1.4 Sope

In this work, we only onsider the issue of loal inonsisteny. A shema an

have an inonsistent, i.e. unsatis�able, prediate. If suh a shema is an opera-

tion shema, then the operation may not be appliable at all, or only parts of the

operation are appliable. This is due to the fat that ontraditions in an opera-

tion only restrit the preondition of that operation whih haraterises where the

operation is feasible. In the ase of the shema desribing the state of the system,

the entire part of the system governed by that state is not implementable. These

kinds of errors are loal in the sense that the spei�ation of other omponents

of the system may still be meaningful (although it is usually assumed impliitly,

in a state and operation spei�ation that at least one possible (initial) value of

the state should exist).

In ontrast, global inonsistenies are more serious, beause they make an entire

spei�ation unsatis�able. They our if some axiom shema, generi shema,

or onstraint is unsatis�able. Furthermore, they an arise due to a ombina-

tion of di�erent paragraphs of a spei�ation, eah being onsistent. However,

set delarations, abbreviations, and shema de�nitions annot introdue global

inonsisteny. In this work we do not onsider global inonsistenies though

we believe that our work ould ontribute to the researh on analysing globally

inonsistent spei�ations, too.

There is another issue related to inonsisteny. (Henson and Reeves, 2000) inves-

tigate the logi of Z. Their intent is to de�ne Z based on proof theory. As part of

their researh, (Henson, 1998) reported that a previous development of the logi

of Z, as published by (Niholls, 1995), was inonsistent. We do not investigate

the onsisteny of Z but the onsisteny of spei�ations written in Z, and in

partiular of their operations.

6.1.5 Outline

This hapter is strutured as follows. First, we present a small example of a

library system spei�ed using the Z notation. We introdue an inonsisteny to

use it as an illustration throughout this hapter. Next, we use quasi-lassial

logi to infer some properties of a part of this spei�ation. We also show, that

QCL allows fewer inferenes than standard prediate logi. In Setion 6.4, we

apply QCL to the proess of alulating the preondition of inonsistent operation

shemas. It was here, that we found that we need QCL to possess a notion of

logial equivalene as introdued in Chapter 4. Given the notion of a quasi-

lassial preondition, we turn to the re�nement proess of inonsistent operations

in Setion 6.5. Following the notions of standard re�nement, we establish the

priniples of quasi-lassial appliability and QC orretness. We summarize this

hapter in Setion 6.6.
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6.2 An Inonsistent Library Spei�ation in Z

The following example presents a spei�ation of a simple library system. We

have been inspired by some of our students who developed a similar system

(inluding the inonsisteny) in their 2002 exam on Software Engineering.

Our library onsists of users who are allowed to borrow books. The sets NAME

of user's names, and BOOK , of books, are taken as given; their struture is of

no onern for this detail of spei�ation.

[NAME ;BOOK ℄

The state of the library is modelled by the shema Library . The Library shema

uses a partial funtion borrowed to reord the books borrowed by a user. The set

users ontains the names of the people who joined the library.

Library

users : PNAME

borrowed : NAME 7! PBOOK

users = dom borrowed

Initially, there are no members of the library and, therefore, no books are bor-

rowed.

InitLibrary

Library

0

borrowed

0

= ?

users

0

= ?

A sensible ondition to impose on the state shema Library is that it allows at

least one initial state. We spei�ed suh an initial state by the shema InitLibrary .

We use Z/EVES to show that InitLibrary is indeed an initial state of Library .

=> try \exists Library' � InitLibrary;

=> prove by redue;

Proving gives ...

true
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Next, we speify the operation AddUser to register a new user, given a name.

To register, the user must not be a member of the library. The reord of books

borrowed remains unhanged.

AddUser

�Library

name? : NAME

name? 62 users

users

0

= users [ fname?g

borrowed

0

= borrowed

Operation shemas an be analysed in di�erent ways. It is ommon to determine

the preondition of the operation to �nd those states where the operation is

appliable. We use Z/EVES as a starting point for this alulation.

=> try \pre AddUser;

=> prove by redue;

Proving gives ...

borrowed 2 P(NAME � PBOOK )

^ borrowed 2 NAME 7! PBOOK

^ users = dom borrowed

^ name? 2 NAME

^ : name? 2 dom borrowed

^ dom borrowed = fname?g [ dom borrowed

whih, in turn, simpli�es to

preAddUser = [Library ; name? : NAME j false℄

We �nd, the operation AddUser is never appliable. This suggests an inonsis-

teny in the spei�ation. Therefore, we an use AddUser as one example for the

work we present in the next setions.

Furthermore, we speify the operation of removing a user from the library system.

The user to be removed must be registered but is not allowed to have any books

on loan. We report the outome of the operation in ase the operation does not

sueed. Therefore, we introdue the type

Report ::= suess j failure

before turning to the atual operation
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RemoveUser

�Library

name? : NAME

out ! : Report

(name? 62 users ^ borrowed

0

= borrowed ^ out ! = failure) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ borrowed

0

= borrowed ^

out ! = suess)

Using Z/EVES, we also determine the preondition of the operation RemoveUser ,

to identify those states where the operation is appliable.

=> try \pre RemoveUser;

=> prove by redue;

Proving gives ...

borrowed 2 P(NAME � PBOOK )

^ borrowed 2 NAME 7! PBOOK

^ users = dom borrowed

^ name? 2 NAME

^ : name? 2 dom borrowed

i.e.

preRemoveUser = [Library ; name? : NAME j name? 62 dom borrowed ℄

We know, the operation RemoveUser is not orretly spei�ed beause we ex-

peted to over all ases. However, the alulated preondition of RemoveUser

may atually distrat from �nding the real problem, beause the given preondi-

tion is designed to restrit the remove operation to those users who returned all

books. Atually, the ondition arose from the prediate inluding out ! = failure

and not from the prediate out ! = suess whih one might have assumed.

This spei�ation is small enough to look for the mistakes by inspeting all the

shemas involved. However, onsider a larger system with several shemas in-

luded. Inspetion beomes a laborious task. Below we introdue mehanisms

to support the analysis of suh inonsistent spei�ations. Also, we introdue an

approah to re�ning suh inonsistent shema preserving the intended applia-

tion. The given spei�ation is used as an example to guide our development and

to demonstrate and validate our results.
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6.3 Investigating Inonsistent Z Spei�ations

One of the distinguishing features of formal methods is the ability to formally

investigate spei�ations. Formal reasoning enables us to infer new properties

or to hek whether a set of properties holds for a given spei�ation. Suh

properties may be demanded in the informal requirements for the spei�ation,

or they may be identi�ed as key points about the spei�ation.

Investigating an inonsistent spei�ation is a hallenge, beause, in lassial

prediate logi, a ontradition enables the reasoner to infer any property. We

laim, that this is not very helpful in the proess of analysing inonsistent spei�-

ations. We introdued quasi-lassial logi as a logi that deals with this problem

of triviality di�erently. In QCL not every property an be inferred from an in-

onsisteny. Therefore, QCL is more suitable to derive more useful information

about an inonsistent spei�ation.

For example, we introdued the operation AddUser to desribe the task of adding

a new member to the library. This operation should result in an inrease of the

number of members, i.e.

AddUser `

Q

�

name? 62 users ) #users

0

> #users

and indeed we an show this

name? 62 users ) #(users \ fname?g) = 0;#fname?g = 1;

users = dom borrowed ; user

0

= dom borrowed

0

;

name? 62 users; users

0

= users [ fname?g; borrowed

0

= borrowed ;

(name? 62 users ) #users

0

> #users)

�

(: (name? 62 users))

�

; (#users

0

> #users)

�

#users

0

= #(users [ fname?g)

#users

0

= #users +#fname?g �#(users \ fname?g)

: (name? 62 users)

losed

#(users \ fname?g) = 0

#users

0

= #users +#fname?g � 0

#users

0

= #users + 1

#users

0

> #users

losed

We introdued the prediates name? 62 users ) #(users \ fname?g = 0) and

#fname?g = 1 as extra assumptions. Both prediates are derived from the

mathematial toolkit of Z. Often, suh assumptions are not made expliit and
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proofs in Z are, therefore, semi-formal. Atually, our proof is only semi-formal,

too. For example, we did not introdue the laws about the length of sets nor

that the value of a number inreases through addition. As suh, we follow the Z

\tradition" and apply obvious replaements without introduing them expliitly.

Due to the information provided in AddUser we are also able to show that the

amount of users of this library system remains unhanged, i.e.

AddUser `

Q

�

#users

0

= #users

whih is validated by the following proof tree

users = dom borrowed ; user

0

= dom borrowed

0

;

name? 62 users; users

0

= users [ fname?g; borrowed

0

= borrowed ;

(#users

0

= #users)

�

dom borrowed

0

= dom borrowed

users

0

= users

#users

0

= #users

The advantage of quasi-lassial logi over lassial prediate logi beomes ap-

parent when we try to prove that adding a new member ould atually redue

the number of users of the library. Using standard logi we would be able to infer

this statement but not when we use quasi-lassial logi, i.e.

AddUser 0

Q

�

#users

0

< #users

Apart from the operation AddUser we introdued the operation RemoveUser .

Using QCL and its proof theory we also establish the following properties.

1. RemoveUser `

Q

�

name? 62 users ) users

0

= users

2. RemoveUser `

Q

�

name? 62 users ) borrowed

0

= borrowed

3. RemoveUser `

Q

�

name? 62 users ) out ! = failure

4. RemoveUser `

Q

�

name? 62 users ) #users

0

< #users

5. RemoveUser `

Q

�

name? 2 users ) #users

0

< #users

6. RemoveUser 0

Q

�

name? 2 users ) #users

0

> #users

7. RemoveUser 0

Q

�

name? 2 users ) out ! = failure
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Examples (1)-(3) establish some fats about the lassially appliable ase. Ex-

ample (4) shows, the inonsisteny in the operation also allows to infer that

the number of users an be redued even if the user is not a member of the li-

brary. The same holds if the user is a member of the library, whih we intended.

The examples (6) and (7), however, demonstrate that not everything is inferable

from an inonsisteny. Using QCL we annot establish those \undesired" fats.

Standard prediate logi, however, veri�es those inferenes. We use Z/EVES to

demonstrate this.

=> try RemoveUser \implies

(name? \in users \implies \# users' > \# users);

=> prove by redue;

Proving gives ...

true

=> try RemoveUser \implies

(name?\in users\implies out!=failure);

=> prove by redue;

Proving gives ...

true

We promised that QCL will help us to infer less but more useful information. The

above examples demonstrates the value of this approah. Using QCL enables the

reasoner to validate only information whih is present in a spei�ation, even

if it is inonsistent, but no more. Next, we look at further issues of reasoning

about formal spei�ations. First, we investigate quasi-lassial preonditions of

inonsistent spei�ations. Afterwards, we turn to the problem of re�nement.

6.4 Quasi-Classial Preonditions of Inonsis-

tent Z Spei�ations

(Woodok and Davies, 1996) write: \The preondition of an operation shema

desribes the set of states for whih the outome of the operation is properly

de�ned." In standard Z, this means that the outome of the operation needs to

be de�ned and must not be overde�ned, i.e. inonsistent. Overde�nedness and

unde�nedness are, in standard Z, inseparable. However, when using alternative

forms of reasoning, unde�nedness and overde�nedness an be distinguished.
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We believe that from the developer's point of view unde�nedness and overde-

�nedness should be treated di�erently. In the one ase, the developer had no

intention to speify the e�et of an operation, therefore it was left unde�ned.

In the other ase, a spei�ation mistake or an unforeseen interation of parts

of the spei�ation rendered the operation inappliable. Being able to formally

separate these situations will help to analyse the spei�ation more deeply and

to develop it further in a more direted way.

The aim of this setion is to investigate the e�et of alulating the preonditions

of possible inonsistent operation shemas using quasi-lassial logi. We demon-

strate that QCL is able to separate the unde�ned part of an operation from the

overde�ned. We also investigate QCL itself by applying it to suh tasks. We �nd

that QCL needs to be further developed to be fully suitable for our needs.

6.4.1 The Quasi-Classial Preondition

The preondition of an operation desribes all the initial states in whih the

operation is de�ned. To us, an operation is de�ned if it is onsistently de�ned or

possibly overde�ned. Given an operation shema Op we write

pre

Q

Op

to denote the quasi-lassial preondition of Op. This is another shema obtained

by hiding all the omponents from Op that orrespond to the after state of the

operation inluding any outputs. If the state of the system is modelled by a

shema S , and outs! is the list of outputs assoiated with the operation, then the

QC preondition of Op on a state shema S is de�ned by

pre

Q

Op = 9 S

0

; outs! � Op

At �rst, this de�nition seems idential to the standard de�nition of the preon-

dition. However, we now onsider QCL as the bakground logi. Therefore,

inonsistenies do not evaluate to false and the notion of logial equivalene is

hanged, too. Thus, the lassial and quasi-lassial preondition of an operation

are di�erent in their e�et.

The QC preondition of the operation shema AddUser , whih desribes the e�et

of adding a new member to the library, is given by

pre

Q

AddUser = 9Library

0

� AddUser

Using the standard rules of quanti�ation and shema expansion this results in
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PreAddUser

Library

name? : NAME

9Library

0

�

name? 62 users ^

users

0

= users [ fname?g ^

borrowed

0

= borrowed

This shema desribes the QC preondition of AddUser . However, this shema

is over-ompliated to simply identify the onditions under whih AddUser is

appliable. Next, we investigate how QCL an be used to simplify this shema

to give a neater but logially equivalent statement.

6.4.2 Simplifying Quasi-Classial Preonditions

To simplify a preondition shema we need to perform a series of equivalene

preserving steps to redue the omplexity of the given prediate. However, not

only do we need eah step to preserve equivalene but we need transitivity of this

proess, too. Otherwise, the resulting formula might not be logially equivalent

to the starting one.

The problem of simplifying quasi-lassial preonditions made us aware of the

fat, that the issue of logial equivalene has not been overed by the published

researh on quasi-lassial logi. One reason ould be that logial equivalene

is a simple property in QCL. We do not think so. Logial equivalene in QCL

is more ompliated due to the two satisfation relations involved. Therefore,

for example, bi-diretional inferene is not a valid notion of equivalene, beause

transitivity fails. In Chapter 4, we summarised our work on logial equivalene

in QCL. Given �

Q

to denote equivalene preserving steps in a proof, we simplify

the preondition of AddUser .

pre

Q

AddUser

�

Q

fDe�nition of pre

Q

g

9Library

0

� AddUser

�

Q

fShema Expansion and Quanti�ationg

[Library ; name? : NAME j

9 users

0

: PNAME ; borrowed

0

: NAME 7! PBOOK j

users

0

= dom borrowed

0

� name? 62 users ^

users

0

= users [ fname?g ^ borrowed

0

= borrowed ℄
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The One-Point Rule

Aording to the semantis of QCL we an eliminate an existential quanti�er

if there is an assignment of a �xed value to the bound variable. This step an

formally be expressed by a derivation law, the so alled one-point rule:

9 x � p(x ) ^ x = t �

Q

p(t) [provided x is not free in t ℄

In the ontext of Z spei�ations we need to onsider the typing information as

well. Therefore, the preise one-point rule is slightly more ompliated:

9 x : T � p(x ) ^ x = t �

Q

t 2 T ^ p(t)

Given the one-point rule, we further simplify the QC preondition of AddUser .

[Library ; name? : NAME j

9 users

0

: PNAME ; borrowed

0

: NAME 7! PBOOK j

users

0

= dom borrowed

0

� name? 62 users ^

users

0

= users [ fname?g ^ borrowed

0

= borrowed ℄

�

Q

fOne-point rule on borrowed

0

g

[Library ; name? : NAME j

9 users

0

: PNAME � borrowed 2 NAME 7! PBOOK ^

users

0

= dom borrowed ^ name? 62 users ^

users

0

= users [ fname?g℄

�

Q

fOne-point rule on users

0

g

[Library ; name? : NAME j

users 2 PNAME ^ borrowed 2 NAME 7! PBOOK ^

users [ fname?g = dom borrowed ^ name? 62 users℄

�

Q

fType information provided in Libraryg

[Library ; name? : NAME j

users [ fname?g = dom borrowed ^ name? 62 users℄

�

Q

fReplaement of Equals, Symmetryg

[Library ; name? : NAME j

users = users [ fname?g ^ name? 62 users℄

�

Q

fReplaement of Equalsg

[Library ; name? : NAME j

users = users [ fname?g ^ name? 62 users [ fname?g℄

�

Q

fSet theoryg

[Library ; name? : NAME j

users = users [ fname?g ^ name? 62 users ^ name? 62 fname?g℄
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We ould ontinue substituting the de�nition of users aordingly but we do

not derive anything new. Therefore, the quasi-lassial preondition shema of

AddUser is

Pre

Q

AddUser

Library

name? : NAME

name? 62 users

name? 62 fname?g

users = users [ fname?g

We interpret this QC preondition in the following way. The operation AddUser

was designed to perform a task when a user name? is not a member of the set of

users. However, there is an inonsisteny present, whih fores the onstraint that

the set of users must not hange after adding a new user name?. This, however,

is only possible, if name? is not a member of the set ontaining name?, whih is

learly violating a basi set theoreti axiom. We believe that this quasi-lassial

preondition is more insightful than the lassial preondition

preAddUser = [Library ; name? : NAME j false℄

The operation AddUser is de�ned for the ase that name? 62 users. Unfortu-

nately, it is also overde�ned. We disuss below some advantages of alulating

both the lassial and quasi-lassial preondition. Later, when onsidering re-

�nement, we extend this work even further.

6.4.3 Using Classial and Quasi-Classial Preonditions

With the introdution of the quasi-lassial preondition of an operation we have

established a seond notion of a preondition besides the standard notion as

introdued in Chapter 2. We now investigate whether using both notions together

gives some advantages to the proess of analysing formal spei�ations.

Overde�nedness

Earlier we introdued the shema RemoveUser to speify the operation of re-

moving a user from the library. We intended that an error message ours if

we try to remove a user who is not a member of the library. Furthermore, the

operation of removing a user is only guaranteed if the user has no books on loan.

We established the standard preondition as

preRemoveUser = [Library ; name? : NAME j name? 62 dom borrowed ℄
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We also established the notion of a quasi-lassial preondition whih we now

apply to the shema RemoveUser . We present the simpli�ation steps in detail

to demonstrate the approah on a seond example.

pre

Q

RemoveUser

�

Q

fDe�nition of pre

Q

g

9 users

0

; borrowed

0

; out ! � Library ; name? : NAME ; out ! : Report j

users

0

= dom borrowed

0

^

((name? 62 users ^ out ! = failure ^ borrowed

0

= borrowed) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ borrowed

0

= borrowed ^

out ! = suess))

�

Q

fOPR on borrowed

0

g

9 users

0

; out ! � Library ; name? : NAME ; out ! : Report j

users

0

= dom borrowed ^

((name? 62 users ^ out ! = failure) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ out ! = suess))

�

Q

fDistribution of Conjuntiong

9 users

0

; out ! � Library ; name? : NAME ; out ! : Report j

(users

0

= dom borrowed ^ name? 62 users ^ out ! = failure) _

(users

0

= dom borrowed ^ name? 2 users ^

name? 62 dom borrowed ^ users

0

= users n fname?g ^

out ! = suess)

�

Q

fDistribution of Existential Quanti�ationg

Library ; name? : NAME j

9 users

0

; out ! � out ! : Report ^

(users

0

= dom borrowed ^ name? 62 users ^ out ! = failure) _

9 users

0

; out ! � out ! : Report ^

(users

0

= dom borrowed ^ name? 2 users ^

name? 62 dom borrowed ^ users

0

= users n fname?g ^

out ! = suess)

�

Q

fOPR on out ! (2x)g

Library ; name? : NAME j

9 users

0

� (users

0

= dom borrowed ^ name? 62 users) _

9 users

0

� (users

0

= dom borrowed ^ name? 2 users ^



6.4. Quasi-Classial Preonditions of Inonsistent Z Spei�ations 138

name? 62 dom borrowed ^ users

0

= users n fname?g)

�

Q

fOPR on users

0

(2x)g

Library ; name? : NAME j (name? 62 users) _

(name? 2 users ^ name? 62 dom borrowed ^

dom borrowed = users n fname?g)

�

Q

fReplaement of Equalsg

Library ; name? : NAME j (name? 62 users) _

(name? 2 users ^ name? 62 users ^ users = users n fname?g)

The absorption laws do not hold in QCL. Therefore, we annot simplify the

prediate to name 62 users. We ould apply replaement to yield name? 2

users n fname?g ^ name? 62 users ^ users = users n fname?g. This, however,

does not deliver any new insight, nor is it an intuitive simpli�ation of the above

prediate. Therefore, we deided to stop the simpli�ation proess.

The quasi-lassial preondition identi�es both the de�ned and the overde�ned

area of appliability of an operation. The lassial preondition shows only the

de�ned area. Both together ould help us to separate the overde�ned area. For

example, the operation RemoveUser is de�ned for the ase that name? 62 users

and overde�ned for name? 2 users ^ name? 62 users ^ users = users n fname?g.

The overde�ned area is of partiular interest, beause it ontains the inonsis-

teny. However, we have not formally determined the overde�ned area yet.

Given both the standard and QC preondition we should be able to derive the on-

dition where the operation is overde�ned. Unfortunately, the following problems

arise. On the one hand we annot use lassial logi, otherwise the inonsisteny

in the overde�ned prediate would allow us to derive the prediate false. On the

other hand, QCL does not have a notion of true or false, both of whih ould

be the lassial preondition. Therefore, separating the overde�ned prediate

formally remains an open problem for now.

Operation Consisteny

In standard Z, we annot formally distinguish between the operation RemoveUser

and the following shema

RemoveUser

x

�Library

name? : NAME

out ! : Report

name? 62 users ^ borrowed

0

= borrowed ^ out ! = failure

i.e.
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=> try RemoveUser \iff RemoveUser\_x;

=> prove by redue;

Proving gives ...

true

The preonditions of both shemas RemoveUser and RemoveUser

x

are equivalent

and so are their postonditions. How do we know that RemoveUser is atually

inonsistent, apart from the fat that it does not perform the task it was designed

for? How does an analyst know what the operation was meant for, apart from the

informal text that should desribe the meaning of the formal shemas? Standard

prediate logi does not help to solve this problem satisfatorily but ombining

it with quasi-lassial logi we hope to provide an answer.

Calulating both types of preondition of an operation ould enables us to de-

ide formally whether an operation is onsistent. Given the lassial and QC

preondition of an operation Op we de�ne operation onsisteny ons(Op) as

Operation onsisteny: ons(Op) i� preOp �

?

pre

Q

Op

i.e. an operation is onsistent if both its lassial and QC preondition are equiva-

lent. Informally, we �nd that the operations AddUser and RemoveUser are both

inonsistent but the operation RemoveUser

x

, for example, is onsistent.

There is, however, a major problem. We have not spei�ed the equivalene

relation and, therefore, we annot ompare the lassial and the QC preondition.

For example, the lassial preondition might ontain the prediates true or false

whih are not omparable to any prediate from QCL. Furthermore, QCL uses

two di�erent satisfation relations. However, whih of the two ould be used

to de�ne an appropriate equivalene relation? This issue remains for further

researh.

6.5 Re�nement of Inonsistent Z Spei�ations

So far we investigated how quasi-lassial logi an support the proess of rea-

soning about formal spei�ations, in partiular about inonsistent spei�ations.

The aim of a spei�ation is to apture the essentials of a system as abstratly

as possible in order to fous on the essential properties of the system. Suh

an abstrat spei�ation is not diretly implementable, beause it is not lose

enough to a omputer program. However, we an develop a suession of more

onrete spei�ations leading us towards an implementation. This proess of

development is alled re�nement.

(Derrik and Boiten, 2001) desribe the intuition behind re�nement as the
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Priniple of Substitutivity: it is aeptable to replae one program

by another, provided it is impossible for a user of the programs to

observe that the substitution has taken plae. If a program an be

aeptably substituted by another, then the seond program is said

to be a re�nement of the �rst.

To (Woodok and Davies, 1996), re�nement is all about improving spei�ations.

It involves the removal of non-determinism, or unertainty. Inonsisteny is a

form of unertainty. Hene, re�nement is also about removing inonsisteny. In

standard Z, the proess of removing inonsistenies as a re�nement step is rather

unrestrited leading to some possible re�nements whih we intuitively rejet. In

this setion we investigate how quasi-lassial logi an be applied to the proess

of re�ning formal spei�ations written in the Z notation.

6.5.1 Two Re�nement Examples

Earlier in this hapter we introdued a simple library spei�ation. One of the

spei�ed operations is AddUser aimed at admitting a new member to the library.

Unfortunately, the operation AddUser is inonsistent. This leaves us with a wide

hoie of possible re�nements. For example, the following two shemas are both

standard re�nements of AddUser . We believe, however, that at least one of these

two should intuitively be rejeted.

AddUser R1

�Library

name? : NAME

name? 2 users

users

0

= users n fname?g

borrowed

0

=

fname?g

�

C borrowed

AddUser R2

�Library

name? : NAME

name? 62 users

users

0

= users [ fname?g

borrowed

0

=

borrowed [ fname? 7! ?g

The shema AddUser R1 desribes the operation of removing a member from

the library. This ertainly was not the intention when speifying the operation

AddUser . Therefore, we laim, that AddUser R1 should not be a valid re�ne-

ment of AddUser . The operation shema AddUser R2 desribes the operation of

adding a new member to the library. It removes the inonsisteny by assigning

an empty set of books to the user. To us, this operation looks more like a valid

re�nement of AddUser . Below, we �nd out whether AddUser R2 an be shown

to be a quasi-lassial re�nement of AddUser .
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6.5.2 Classial Re�nement Conditions

Before we go into detail of quasi-lassial re�nement, i.e. re�nement using quasi-

lassial logi, we briey re-ap the formal notion of standard re�nement. To keep

our illustration simple we hoose to onentrate on the re�nement of operations

on the same state.

A re�nement has to ensure that a more onrete operation is still appliable

when the abstrat operation was. Appliability relates to the preonditions of

the operation. In re�nement, we an weaken the preondition but not strengthen

it. Furthermore, re�nement needs to ensure that all the properties of the abstrat

spei�ation are preserved. This means, that whenever the abstrat operation

was appliable in state S but the onrete operation was applied, relating the

state S to an after state S

0

, then the abstrat operation also relates S to S

0

.

Formally, we say that an operation COp re�nes an operation AOp, denoted

AOp v COp, when it ful�lls the following two onditions:

1. Appliability: preAOp ` preCOp

2. Corretness: preAOp ^ COp ` AOp

The shemas AddUser R1 as well as AddUser R2 are both standard re�ne-

ments of the shema AddUser , i.e. AddUser v AddUser R1 and AddUser v

AddUser R2. It is easy to see that the left-hand side of the onsequene

evaluates to false beause, as we reall from the last setion, preAddUser =

[Library ; name? : NAME j false℄. Next, we investigate a notion of quasi-lassial

re�nement.

6.5.3 Quasi-Classial Appliability

We saw earlier that the quasi-lassial preondition of an operation determines

those states for whih an operation is de�ned or overde�ned. Consider the idea

that overde�ned is a speial ase of being de�ned. Then we an use the standard

notion of appliability, i.e. that the onrete operation must be de�ned or overde-

�ned on those states where the abstrat operation was de�ned or overde�ned on.

We express this notion formally by

Quasi-Classial Appliability: pre

Q

AOp `

Q

pre

Q

COp

This notion of quasi-lassial appliability allows weakening of QC preonditions

but not strengthening.
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Example

Given quasi-lassial appliability, we are now able to show that the operation

shema AddUser R1 is not a valid re�nement of the shema AddUser . First, we

need the quasi-lassial preondition of AddUser R1. This is the same as the

lassial preondition, i.e.

pre

Q

AddUser R1 = [Library ; name? : NAME j name? 2 users℄

Then, we show that the proof tree for pre

Q

AddUser `

Q

pre

Q

AddUser R1 does

not lose:

users = dom borrowed ; name? 62 users;

name? 62 fname?g; users = users [ fname?g;

(users = dom borrowed ^ name? 2 users)

�

(users = dom borrowed)

�

losed

(name? 2 users)

�

not possible to lose

Hene, pre

Q

AddUser 0

Q

pre

Q

AddUser R1 and, therefore, AddUser R1 is not

a valid re�nement. The operation shema AddUser R2, however, is quasi-

lassially appliable. The quasi-lassial preondition of AddUser R2 is

pre

Q

AddUser R2 = [Library ; name? : NAME j name? 62 users℄

and the proof for pre

Q

AddUser `

Q

pre

Q

AddUser R2 sueeds:

users = dom borrowed ; name? 62 users;

name? 62 fname?g; users = users [ fname?g;

(users = dom borrowed ^ name? 62 users)

�

(users = dom borrowed)

�

losed

(name? 62 users)

�

losed

Properties of QC Appliability

QC appliability extends the standard notion of appliability. It is sound with

respet to standard appliability beause whenever QC appliability holds, stan-

dard appliability must hold, too. This follows diretly from the properties of

QCL. Consequently, QC appliability fails if a onsistent operation was made

inonsistent, as this is not permitted by standard appliability either.

The onverse, however, is not true. For example, onsider the operations

AddUser R1 and AddUser R2 both standard re�nements of AddUser . There-

fore, standard appliability holds for both operations but we showed that QC
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appliability failed for AddUser R1. The question is when does QC appliability

rejet a re�nement that is valid aording to the standard notion, i.e. ould QC

appliability be too restritive?

We do not think that QC appliability is too restritive, i.e. it does not rejet

any re�nement of onsistent operations that standard appliability would a-

ept. Unfortunately, we lak meta-theoretial results about QCL to verify this

formally. QC appliability does not validate all re�nements of inonsistent op-

erations, beause inonsisteny arises from overde�nedness, i.e. an inonsistent

prediate provides too muh information. As in standard re�nement this infor-

mation needs to be inorporated into the onrete operation.

6.5.4 Quasi-Classial Corretness

One we established appliability we need to verify the orretness of an oper-

ation. A onrete operation behaves orretly with respet to an abstrat op-

eration if an observer annot distinguish the outome of the onrete operation

and abstrat operation, provided they are both applied on the same domain. We

introdued the formal de�nition of standard orretness earlier.

Establishing QC Corretness using the Classial Law and QC Inferene

QC appliability is very similar to standard appliability. Basially, we hanged

the inferene relation to use QC entailment rather than standard entailment.

This e�ets also the notion of a preondition whih we disussed separately. It

seems natural to investigate the impat of using a similar method for deriving

QC orretness, i.e. to hange the inferene system. We de�ne

Quasi-Classial Corretness: pre

Q

AOp ^ COp `

Q

AOp

Unfortunately, it is not as simple as that. We introdue the following two oper-

ation shemas AbsExample and ConExample for illustrative purpose.

AbsExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 0

ConExample

n? : Z

x ! : Z

(n? = 1 ^ x ! = 0) _

(n? = 2 ^ x ! = 1)

The shema ConExample is intuitively, and aording to the standard re�nement

rules, a valid re�nement of AbsExample, beause the operation has not been

hanged if the given number is one. Only the preondition has been weakened to
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onsider also the ase of the number two. We are interested in QC orretness to

hold for onsistent operations if standard orretness holds. Therefore, we should

be able to establish the QC orretness ondition, i.e. we need to show

pre

Q

AbsExample ^ ConExample `

Q

AbsExample

with pre

Q

AbsExample = [n? : Z j n? = 1℄. Using the tableau method we

onstrut the following proof tree

n? = 1;

(n? = 1 ^ x ! = 0) _ (n? = 2 ^ x ! = 1);

(n? = 1 ^ x ! = 0)

�

n? = 1 _ n? = 2; n? = 1 _ x ! = 1; x ! = 0 _ n? = 2; x ! = 0 _ x ! = 1

(n? = 1)

�

losed

(x ! = 0)

�

x ! = 0

losed

n? = 2

.

.

.

This tree remains open and the proof fails, beause the branh ontaining n? = 2

annot be losed. Alternatively, we ould have hosen x ! = 0 _ x ! = 1 but,

equally, the tree ould not be losed.

The Problem of the Classial Approah with respet to QCL

In lassial logi, preAOp restrits the appliability of COp to those ases where

AOp was appliable, too. This restrition is ahieved by ontrolled use of inon-

sistenies, i.e. the part of the preondition of COp that is not the preondition of

AOp is redued to false. For example,

preAbsExample ^ ConExample

� fg

n? = 1 ^ ((n? = 1 ^ x ! = 1) _ (n? = 2 ^ x ! = 2))

� fg

(n? = 1 ^ n? = 1 ^ x ! = 1) _ (n? = 1 ^ n? = 2 ^ x ! = 2)

� fg

(n? = 1 ^ x ! = 1) _ false

� fg

(n? = 1 ^ x ! = 1)

The result is the part of ConExample that is appliable if the preondition of

AbsExample holds. This derivation used the information that n? = 1 ^ n? =

2 is inonsistent. In QCL, however, we annot use suh restritions beause

inonsistenies are tolerated.
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Three Possible Solutions

One solution is to inorporate expliitly the information about suh inonsisten-

ies. For example, inluding the assumption n? = 2) : (n? = 1) would enable

us to omplete the orretness proof.

n? = 2) : (n? = 1);

n? = 1;

(n? = 1 ^ x ! = 0) _ (n? = 2 ^ x ! = 1);

(n? = 1 ^ x ! = 0)

�

: (n? = 2) _ : (n? = 1);

n? = 1 _ n? = 2; n? = 1 _ x ! = 1; x ! = 0 _ n? = 2; x ! = 0 _ x ! = 1

(n? = 1)

�

losed

(x ! = 0)

�

x ! = 0

losed

: (n? = 2)

�

: (n? = 2)

losed

(n? = 1)

�

losed

Somehow it seems not satisfatory to expliitly add side onditions to the orret-

ness proof eah time. For example, the use of automated theorem provers would

be restrited. Therefore, we would prefer a more general approah to overome

the problem. We ould imagine to ombine the preonditions of the abstrat and

onrete operation suh that they always provide the neessary proof onditions.

We observe, for example, that the prediate n? = 2 is the part of the preondition

of the onrete operation that has been introdued by weakening the preondi-

tion of the abstrat operation. Basially, weakening of the preondition an be

expressed as a disjuntion of the abstrat preondition and some prediate p, i.e.

pre

Q

COp � pre

Q

AOp _ p . Then, we would need to isolate the prediate p

and we ould add (p)

�

to the tree by a disjuntion of p with the onlusion AOp,

i.e. we derive the following orretness ondition

pre

Q

AOp ^ COp `

Q

AOp _ p

This ondition expresses that we an either show AOp or the weakening of the

preondition. Suh an approah seems not to violate the lassial orretness on-

dition but to extend it. The problem, however, remains to extrat the weakening

preondition prediate p.

We ould also try to generalise the idea of adding the inonsisteny assumption

expliitly. For example, the prediate n? = 2 ) : (n? = 1) is an impliit

onjunt in the more general statement
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pre

Q

ConExample ) : pre

Q

AbsExample

� fg

(n? = 1 _ n? = 2)) : (n? = 1)

� fg

(: (n? = 1) ^ : (n? = 2)) _ : (n? = 1)

� fg

: (n? = 1) ^ (: (n? = 1) _ : (n? = 2))

� fg

: (n? = 1) ^ ((n? = 2)) : (n? = 1))

Using that pre

Q

COp � pre

Q

AOp _ p, this generalises to : pre

Q

AOp ^ (p )

: pre

Q

AOp). The question now is whether : pre

Q

AOp an interfere with the

ompleteness or soundness of the proof. Assuming our reasoning above is valid,

the orretness proof ondition for re�nement would beome

(pre

Q

COp ) : pre

Q

AOp) ^ pre

Q

AOp ^ COp `

Q

AOp

It is umbersome and, furthermore, in terms of lassial logi not possible to val-

idate. The anteedent evaluates, using lassial logi, to false. In QCL, however,

preAOp and : preAOp are two di�erent entities. We admit that this solution

seems not entirely satisfatory either. Therefore, researh on the orretness

ondition needs to be ontinued.

Properties of QC Corretness

Despite the problems above we try to investigate QC orretness further. We

established that it is not possible to introdue inonsistenies during re�nement,

beause appliability would fail. Removing inonsistenies by hoosing one of

the possible ases is, however, allowed by appliability. Now we want to �nd out

whether this is also valid with respet to orretness.

We introdue the following simple example of two operations. The abstrat op-

eration is learly inonsistent and the onrete one is not. Furthermore, the

onrete operation is meant to return one of the possible two results from the

abstrat operation. We would assume that suh re�nement fails, beause we

weakened the postondition.

PrimAbsExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 1 ^ x ! = 2

PrimConExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 1
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The preondition of PrimAbsExample is n? = 1 ^ 1 = 2 and it is easy to show

that QC appliability of PrimConExample holds. We also �nd that we sueed

in losing the proof tree for the orretness ondition of this example.

(n? = 1 ^ 1 = 2); (n? = 1 ^ x ! = 1);

(n? = 1 ^ x ! = 1 ^ x ! = 2)

�

(n? = 1)

�

losed

(x ! = 1)

�

losed

(x ! = 2)

�

x ! = 1,1 = 2

x ! = 2

losed

The example demonstrates that QC orretness is not enough to prevent removing

inonsistenies from an operation shema. Some might onsider this result as

positive, although it is against the idea of re�nement. Removing inonsistenies

an be regarded as desired but a little alteration of the above example would show

that this also allows \trivial" re�nements, e.g. the operation PrimConExample

ould return x ! = 3, whih is not what we intended.

The next question is whether the removal of inonsistenies an always be veri-

�ed. Unfortunately, this is not the ase. In the last setion, we established the

appliability of the operation shema AddUser R2 with respet to the abstrat

operation AddUser . We are left to verify the orretness of this shema. We use

the orretness ondition

pre

Q

AddUser ^ AddUser R2 `

Q

AddUser

whih results in the following proof tree

name? 62 users ^ name? 62 fname?g ^ users = users [ fname?g;

name? 62 users ^ users

0

= users [ fname?g ^

borrowed

0

= borrowed [ fname? 7! ?g ^

users = dom borrowed ^ users

0

= dom borrowed

0

;

(name? 62 users ^ users

0

= users [ fname?g ^ borrowed

0

= borrowed ^

users = dom borrowed ^ users

0

= dom borrowed

0

)

�

(name? 62 users)

�

losed

(users = dom borrowed)

�

losed

(users

0

= dom borrowed)

�

losed

(users

0

= users [ fname?g)

�

losed (borrowed

0

= borrowed)

�

.

.

.
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This tree annot be losed and, therefore, the proof fails. Here, the result is as

expeted, beause we weakened the postondition of AddUser by removing the

inonsisteny. Aording to the standard rules of re�nement, a postondition an

only be strengthened. In this ase, QC re�nement followed the idea of \living

with inonsistenies" rather than eradiating them.

Both examples share the ommon property that an inonsisteny was removed

from the postondition of the operation. However, for one example, suh a re-

�nement step is orret, for the other not. Both examples did not relate to the

earlier problem of restriting the appliability of the onrete operation to those

states where the abstrat operation is appliable. Therefore, we have disovered

another problem of QC orretness that needs to be added to the list of future

work.

Corretness with respet to Invariant Properties

(Jaky, 1997, p. 247) writes: \An abstrat model has some properties of the thing

it models, but not all of them. A design is more onrete than a spei�ation.

A design is orret if it has all the properties of the spei�ation; it usually has

some additional properties as well."

We need to relax this laim slightly in the presene of inonsisteny. An operation

is inonsistent if it ontains properties that ontradit eah other. Insisting on

the fat that a onrete spei�ation possesses all the properties of the abstrat

spei�ation would prevent us from removing inonsistenies. Therefore we re-

phrase the above statement: A design is orret if it has all the desired properties

of the spei�ation.

This approah involves identifying all the required properties of the operation

and then to verify that the onrete operation possesses all those properties.

This assumes that these seleted properties have been validated with respet to

the abstrat operation. As suh, we do not prove the orretness of re�nement

but the orretness of the new spei�ation.

6.5.5 Quasi-Classial Operation Re�nement

The aim of quasi-lassial operation re�nement is to extend the standard re�ne-

ment notation by restriting the possible re�nements of inonsistent operations.

We introdued two examples to larify this idea. We also introdued QC appli-

ability and QC orretness. Now we ombine all re�nement rules to propose an

extended notion of re�nement.

We showed that QC appliability implies standard appliability. Therefore, the

�rst re�nement ondition is
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1. QC Appliability: pre

Q

AOp `

Q

pre

Q

COp

QC appliability, in partiular, restrits the re�nements to those that respet the

intended appliation domain. Next, we need to verify that the onrete operation

does at least what the abstrat operation was designed for. We were not able

to develop a suitable QC orretness ondition. Therefore we use the standard

ondition whih is

2. Corretness: preAOp ^ COp ` AOp

The standard orretness ondition still allows re�nements whih we would intu-

itively rejet. As we showed earlier, it allows one to replae inonsistent outomes

of an operation by one whih is not related to the ontradition. Therefore, we

suggest to hek those properties that the re�ned system should obey again, using

QCL to deal with inonsistenies appropriately.

These re�nement onditions extend the standard approah beause QC applia-

bility extends standard appliability. However, in QCL the transitivity of infer-

enes fails, in partiular, in the presene of inonsistenies. This implies that the

above onditions do not failitate stepwise re�nement, at least with respet to

appliability.

6.6 Summary

In this hapter we applied quasi-lassial logi to analyse, espeially inonsistent,

operations spei�ed using the Z notation. QCL proved valuable to infer properties

of inonsistent operations, in partiular not to infer \useless" properties.

Then we alulated the quasi-lassial preondition of an operation, de�ned as

existential quanti�ation over the after state's variables and outputs. To simplify

the preondition we had to adapt QCL and to develop a notion of logial equiv-

alene whih we presented in Chapter 4. Like in standard Z, the one-point rule

plays a entral role in the simpli�ation proess. It also provided a benhmark

for the development of QCL with equality.

Next, we turned to QC re�nement. We presented the notions of QC appliability

and QC orretness. However, only QC appliability proved valuable for now,

beause we ould not fully establish a notion of QC orretness. Therefore,

QC re�nement has been de�ned using the QC appliability and the standard

orretness ondition.

We have not only investigated inonsisteny handling in Z using quasi-lassial

logi but QCL itself. QCL has only been reently developed and, therefore, only a

limited amount of appliations of QCL exist. Furthermore, as far as we are aware,
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QCL has only been used to reason about spei�ations written in prediate logi.

The appliation of QCL to the proess of reasoning about formal spei�ations

written in a language riher than �rst-order prediate logi is new. As suh,

we disovered several problems that need to be addressed while developing QCL

further.



Chapter 7

Un(der)de�nedness in Z: Guards,

Preonditions and Re�nement

In the ommon Z spei�ation style operations are, in general, partial relations.

The domains of these partial operations are traditionally alled preonditions,

and there are two interpretations of the result of applying an operation outside

its domain. In the traditional interpretation anything may result whereas in the

alternative, guarded, interpretation the operation is bloked outside its preon-

dition.

In fat these two interpretations an be ombined, and this allows representation

of both refusals and underspei�ation in the same model. In this hapter, we

explore this issue and we extend existing work in this area. To do so we adopt a

non-standard three-valued interpretation of an operation by introduing a third

truth value. This value orresponds to a situation where we don't are what e�et

the operation has, i.e. the guard holds but we may be outside the preondition.

In this hapter, we develop a shema representation based on suh a three-valued

interpretation. We extend in partiular the work by (Fisher, 1998) by allowing

arbitrary prediates in the guard. We demonstrate the advantage of this approah

by means of a small example. Furthermore, we lassify regions of before states

based on the familiar onepts of preondition and guard. We extend these

notions to the \impossible" and the \unde�ned" region.

Using the three-valued interpretation leads to a simple and intuitive semantis

for operation re�nement, where re�nement means redution of unde�nedness or

redution of non-determinism. In this approah, both weakening of the preon-

dition as well as strengthening of the guard is possible. We also show that this

notion of re�nement extends the standard Z re�nement for both the preondition

and the guarded interpretation.

151
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7.1 Introdution

In the states-and-operations (abstrat data type) spei�ation style in Z, oper-

ations are, in general, partial relations. The domains of these partial relations

are traditionally alled preonditions. Depending on whih ontext the abstrat

data types are used in, there are two interpretations of the result of applying an

operation outside its domain.

In the traditional interpretation, presented, for example, by (Spivey, 1992), any-

thing may happen outside the preondition, inluding divergene; in the bloking,

also alled guarded, interpretation the operation is not possible. The latter in-

terpretation is the ommon one when modelling reative systems or ombining

Z with proess algebra, and also in Objet-Z. (Strulo, 1995) alls it the '�ring

ondition' and (Josephs, 1991) alls it the 'enabling ondition' interpretation.

It has been observed that it is often onvenient to use a ombination of the

guarded and preondition interpretation to allow both modelling of refusals and

underspei�ation. One way of doing this is by having expliit guards as intro-

dued by (Abrial, 1996) in the B-Method or by (Fisher, 1998) for CSP-OZ.

7.1.1 Hypothesis

In this hapter, we generalise existing work on ombining the guarded and the

preondition interpretation by allowing arbitrary prediates in the guards. Fur-

thermore, we give a model of re�nement, re�ning both guard and preondition.

We previously presented the main onepts of this work in (Miarka et al., 2000).

Our inspiration omes from a non-standard semantis of operations, viz. an inter-

pretation in three-valued logi. The third logial truth value, denoted ?, stands

for the idea that we \don't are" about the outome of an operation. We do

oasionally refer to \unde�nedness", although this should be distinguished from

the kind of unde�nedness disussed by (Valentine, 1998) and solved by VDM's

third logi value. Using a three-valued logi leads to a simple and intuitive no-

tion of (operation) re�nement, where re�nement is redution of unde�nedness

or redution of non-determinism (or both). It would even allow an alternative

de�nition of re�nement whih preserves \required non-determinism"as disussed

by (Lano et al., 1997) and (Steen et al., 1997).

However, suh an interpretation of operations requires a more expressive nota-

tion than normal operations with expliit guards. In suh notation, we take the

operation to be false (impossible) outside its guard, and unde�ned where the

guard holds but not the preondition. This allows us to state that, for ertain

before states, any after state \is unde�ned", but not that some after states are

unde�ned, and others possible or impossible. We will de�ne a syntax whih is

suÆiently expressive for this semantis, and de�ne operation re�nement rules

for this whih generalise the traditional ones.
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7.1.2 Outline

The remainder of this hapter is strutured as follows. In Setion 7.2, we demon-

strate by means of two examples, normalisation and a simple money transation

system, that a ombination of the traditional and bloking interpretations is

sometimes required. Then, in Setion 7.3, we de�ne a shema notation inluding

both guards and e�et shemas. Based on that we de�ne regions of operation

behaviour, i.e. whether an operation is inside or outside the guard, or inside or

outside the preondition. These regions an also be related to a three-valued

interpretation, whih we present in Setion 7.4. Using suh a three-valued in-

terpretation leads to a simple and intuitive notion of re�nement that generalises

standard operation re�nement. We introdue the rules in Setion 7.5 and show

their ompatibility to the standard ones. We disuss some related work in Setion

7.6 and onlude with a short summary in Setion 7.7. In Chapter 8 we develop

a shema alulus for the guarded preondition shema notation we present here.

7.2 Guards and Preonditions in Z

The preondition of an operation haraterises all the states and inputs to whih

the operation an be applied suh that there is an after state and output whih

are related to the states and inputs by the operation, i.e. it haraterises \before"

states. However, there are two di�erent points of view on how to interpret suh a

preondition. On the one hand, it an be read to be a guard, i.e. the operation will

not be exeuted if the preondition is false. On the other hand, the interpretation

may be that the operation an be exeuted at any time but the result of it is only

guaranteed if the preondition is true. In our opinion both interpretations an

oexist and sometimes should. We illustrate our point of view with the following

two examples.

7.2.1 Normalisation in Z

Normalisation is the proess of rewriting a shema suh that all the onstraint

information appears in the prediate part. For example, the natural numbers are

not a basi type of Z but onstrained integers

1

. Therefore, a shema delaration

referring to naturals an be normalised to use integers and a onstraint on the

prediate, e.g.

1

This is the ase in Spivey's de fato standard (Spivey, 1992); in the urrent draft standard

(ISO/IEC 13568, 2002) even Z is a true subset of another type A (\arithmos").
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Shema

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

Normalised Shema

a; a

0

: Z

a 2 N ^ a

0

2 N ^

(a

0

)

2

� a < (a

0

+ 1)

2

However, somehow the interpretation may hange through that proess. As the

operation Shema is de�ned on natural numbers, it appears unreasonable to even

onsider applying it on negative integers, so the bloking interpretation appears

quite reasonable for this area. However, the normalised shema is formally equiv-

alent to Shema but is interpreted in the preondition approah as being fully

unde�ned on integers. This means, that the spei�er needs to know about nor-

malisation, i.e. whih sets are proper types and whih are proper subsets of a type,

whih might not always be the ase and somehow should not be neessary in the

�rst plae. This example also shows that normalisation is more guard, rather

than preondition, related and that we might want to deal with it aordingly.

7.2.2 A Money Transfer System

Consider the following example of a simple money transation system. It allows

to transfer a positive amount of money to a person's bank aount. Therefore,

we need a set of bank aount holders

[PID ℄

Eah bank aount is haraterised by its holder and the amount of money in

it. Of ourse, we allow negative amounts in the aount as well. On the other

hand, not every person in the above set has to have a bank aount, therefore, a

olletion of aounts is a partial funtion. Furthermore, total is a derived state

omponent whih alulates the amount of money in our bank by taking the sum

of the money in all aounts.

Bank

aount : PID 7! Z

total : Z

total = makesum aount

with the funtion
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[X ℄

makesum : (X $ Z)! Z

8 x : X ; y : Z; z : (X $ Z) �

makesum ? = 0 ^

makesum f(x ; y)g = y ^

makesum (f(x ; y)g [ z ) = y +makesum (z n f(x ; y)g)

to alulate the total sum of all the aounts.

We desribe a transation that will transfer a given amount of money to someone's

bank aount. Clearly the amount transfered has to be positive, beause we do

not want to be able to derease someone else's aount.

Transfer

�Bank

a? : Z

p? : PID

a? � 0

p? 2 dom(aount)

aount

0

= aount � fp? 7! aount(p?) + a?g

Below we analyse this small example and point out weaknesses in both the

guarded and preondition interpretation.

7.2.3 Classial Preondition and Guarded Interpretation

We determine the lassial preondition of the operation shema Transfer using

Z/EVES. We �nd that in the above example two onditions have to be ful�lled

for a transfer to be suessful. On the one hand, the amount must be positive

and on the other hand the reeiving person must have an aount.

=> try \pre Transfer;

=> prove by redue;

Proving gives ...

aount 2 PID 7! Z

^ total = makesum aount

^ a? 2 Z

^ p? 2 PID

^ p? 2 dom aount

^ a? � 0
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whih is equal to the following shema:

PreTransfer

Bank

a? : Z

p? : PID

p? 2 domaount ^ a? � 0

But what happens if we try to apply the operation outside of these onditions?

There are two possible interpretations: the preondition interpretation, allowing

the operation, and the guarded interpretation, preventing it. A related issue is

re�nement, the development from a spei�ation towards a more onrete repre-

sentation. How do both interpretations deal with it?

In the standard Z interpretation a preondition represents the set of states where

the operation is de�ned, i.e. guaranteed to produe the spei�ed result. Outside

the preondition the operation is onsidered to be unde�ned whih means that the

operation an do anything inluding non-termination (\divergene"). Therefore,

re�nement an, apart from redution of non-determinism, weaken a preondition,

allowing one to widen the sope of the operation and thereby redue the area of

unde�nedness.

Other spei�ation languages, like Objet-Z (Smith, 2000) treat the preondition

di�erently. There the preondition is onsidered as a guard, bloking the oper-

ation if the preondition is not ful�lled. Suh an interpretation is oasionally

used in Z as well, for example, when modelling reative systems, as reported by

(Josephs, 1991) and (Strulo, 1995). Re�nement of guards is treated di�erently.

In Objet-Z, for example, one is not allowed to hange the guard. Other ap-

proahes, notably the one presented by (Lano et al., 1997), where preonditions

and guards are ombined, allow strengthening of guards, i.e. the redution of

the appliability of the operation. They also allow to weaken any preondition.

However, the preondition is the upper bound for strengthening the guard and

the guard is the lower bound for weakening the preonditions.

7.2.4 Re�nement

In the preondition interpretation, the following two re�nements of the operation

shema Transfer would be possible, eah of them weakening one of the onstraints

of the preondition of Transfer . First, we ould allow the reation of an aount

if the reipient of the transfer does not have one:
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Transfer R1

�Bank

a? : Z

p? : PID

a? � 0

p? 62 dom(aount)) aount

0

= aount � fp? 7! a?g

p? 2 dom(aount)) aount

0

= aount � fp? 7! aount(p?) + a?g

The given amount will be put into the newly reated aount. This appears a

sensible re�nement, however, in the guarded interpretation it would be forbidden.

The guarded interpretation rightly forbids the more dangerous re�nement

Transfer R2

�Bank

a? : Z

p? : PID

p? 2 dom(aount)

aount

0

= aount � fp? 7! aount(p?) + a?g

whih, by removing the requirement that a? � 0, suddenly allows withdrawal

of someone else's money. In the preondition interpretation this is still a valid

re�nement, though. We verify the appliability and orretness onditions by

using Z/EVES

=> try \pre Transfer \implies \pre Transfer\_R2;

=> prove by redue;

Proving gives ...

true

=> try \pre Transfer \land Transfer\_R2 \implies Transfer;

=> prove by redue;

Proving gives ...

true

Apparently, the two prediates in PreTransfer have a di�erent status: a? � 0 is

more like a guard, whereas p? 2 dom(aount) is more like a preondition. This

example shows that eah interpretation alone is not always suÆient. Therefore,

we propose to have both guards and preonditions in the same spei�ation.
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7.2.5 Combining Guards and Preonditions

The idea to ombine guards and preonditions is not new. For example, (Fisher,

1997; Fisher, 1998) provides a solution to this problem by using an \enabled"

shema to denote the guard and an \e�et" shema for the standard operation

shema with its preondition interpretation. Using this approah the Transfer

operation in our example evolves to

F Transfer

enable Transfer

a? : Z

a? � 0

effet Transfer

�Bank

a? : Z

p? : PID

p? 2 dom(aount)

aount

0

= aount �

fp? 7! aount(p?) + a?g

where enable refers to the guard of the operation and effet to the e�et of the

operation. Now the operation F Transfer is bloked whenever a? is negative.

However, the update of someone's aount is only guaranteed if the aount

already exists. In ase it does not, divergene may our.

With this notation we are able to develop re�nement rules whih deal with the

guards and preonditions in an appropriate fashion. Suh re�nement rules would

allow one to weaken the preondition of F Transfer (i.e. effet Transfer), re-

due any non-determinism in the spei�ation, and potentially strengthen the

guard (i.e. enable Transfer). With these rules in plae we are able to weaken

the preondition p? 2 dom(aount) provided we do preserve the guard a? � 0.

However, aording to (Fisher, 1998) the guard \must ontain unprimed state

variables only". Unfortunately, this would still allow undesired re�nements, as

the after state is ompletely unonstrained for before states satisfying the guard

but not the preondition. Sensible restritions like

fp?g

�

C aount

0

= fp?g

�

C aount

and total

0

= total + a?

whih express that no one else's aount hanges and that the total amount of

money annot exeed the previous amount plus the newly added, annot be im-

posed. Adding this restrition to effet Transfer would have no e�et, beause

it an be derived from effet Transfer already. However, for states urrently

outside the preondition but within the guard, we have no way of imposing this

as a postondition.
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7.3 The Enoding of Un(der)de�nedness in Z

Inorporating both guards and preonditions for operations enables a partiular

way of speifying un(der)de�nedness in Z. Basially, an operation an be bloked

by the guard. However, if not bloked it leaves two possibilities, either its result

is guaranteed, i.e. applied within its preondition, or its result is un(der)de�ned.

In this setion we introdue the syntax to desribe an operation in terms of guards

and preonditions. We then use this haraterisation to de�ne the di�erent re-

gions of de�nition that an operation an have. The operation syntax we introdue

splits an operation into two parts onsisting of its guard and its e�et in a way

similar to that desribed in Setion 7.2.5.

7.3.1 A Shema Representation of Un(der)de�nedness

An operation is de�ned as a triple (Del Op; gd Op; do Op), where Del denotes

the delaration part of the operation, gd the guard of the operation and do the

e�et of the operation itself. It is depited by the following shema:

Op

Del Op

Del

gd Op

pred

gd

do Op

pred

do

where Del Op is impliitly inluded in gd Op and do Op. Note, that this is

di�erent to (Miarka et al., 2000) where we put the delaration in the gd - and

do-part separately. However, this way should ease the writing of shemas by

not dupliating information. Often, we use the abbreviation (gd Op; do Op)

assuming the delaration to be inluded where neessary.

The following axiom ensures that the only relevant part of the do-part of the

operation is that whih lies within the guard, i.e. that it an only be applied if

the guard is ful�lled.

Axiom 1 8P ;Q � (P ;Q) � (P ;P ^ Q)

In any formal interpretation we should ensure that this Axiom holds. Hene,

we an, where neessary, restrit our onsiderations to spei�ations where the

guard is inluded in the de�nition of the e�et.
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Theorem 7.3.1

For every shema, there is an equivalent one, suh that the e�et implies the

guard, i.e. that the guard is embedded within the e�et.

8P ;Q 9P

0

;Q

0

� (P ;Q) � (P

0

;Q

0

) ^ Q

0

) P

0

Proof

The required P

0

and Q

0

are given by P and P ^ Q , respetively:

8P ;Q 9P

0

;Q

0

� (P ;Q) � (P

0

;Q

0

) ^ Q

0

) P

0

^

P

0

= P ^ Q

0

= P ^ Q

� fOne-point rule (twie)g

8P ;Q � (P ;Q) � (P ;P ^ Q) ^ (P ^ Q)) P

� fPrediate Calulusg

8P ;Q � (P ;Q) � (P ;P ^ Q)

whih is valid by Axiom 1. 2

Theorem 7.3.2

A formally weaker version of (P ;Q) is obtained by replaing Q with P ) Q , i.e.

8P ;Q � (P ;Q) � (P ;P ) Q)

Proof

(P ;Q)

� fAxiom 1g

(P ;P ^ Q)

� fPrediate Calulusg

(P ;P ^ (P ) Q))

� fAxiom 1g

(P ;P ) Q)

2

7.3.2 Normalisation revisited

Given the above shema notation for expressing guards and preonditions we an

express normalisation di�erently.

Normalised Shema

Del Normalised Shema

a; a

0

: Z

gd Normalised Shema

a 2 N ^ a

0

2 N

do Normalised Shema

(a

0

)

2

� a < (a

0

+ 1)

2
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Now the operation is bloked, if a is not a natural number, whih is probably

more like the intended interpretation of a : N . Following this intuition, we de�ne

normalisation of guarded preondition shemas suh that any type onstraints

whih are impliit have to be made expliit and will beome part of the guard.

7.3.3 The Money Transfer System revisited

The previously disussed operation Transfer with the desired extension of the

guard an now be expressed as

Transfer2

Del Transfer2

�Bank

a? : Z

p? : PID

gd Transfer2

a? � 0

total

0

= total + a?

fp?g

�

C aount

0

=

fp?g

�

C aount

do Transfer2

p? 2 dom(aount)

aount

0

= aount�

fp? 7! aount(p?) + a?g

Having primed state variables in the guard auses the guard not to be exeutable,

beause we annot test the after state beforehand. However, we may onsider

spei�ations that ontain unde�ned areas as not implementable anyway, beause

some re�nement is still missing. For re�nement rules whih remove unde�nedness

see Setion 7.5. Primed state variables in the guard do not limit implementations

in general, they just give us more expressiveness.

7.3.4 Regions of Before States

Using suh a notation of guarded preondition shema, we an desribe (at least)

three di�erent possibilities for a partiular pair of before/after states:

1. gd Op holds and do Op holds: the states belong to the operation.

2. gd Op holds but do Op does not hold: the states may or may not belong

to the operation, we don't are.

3. gd Op does not hold: we do not wish the states to belong to the operation.

(Note, that this makes do Op for this pair of states redundant information.)
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Based on this desription, we an de�ne a number of regions of before states that

are of interest.

Impossible. The impossible region is the set of states where the operation is

bloked, i.e. it is always going to fail.

impo(Op) b= [S ; ins? j : 9 S

0

; outs! � gd Op℄

Analysing our example, we identify that the operation Transfer2 is always re-

jeted when the amount a? is negative, i.e.

impo(Transfer2) = [Bank ; a? : Z; p? : PID j a? < 0℄:

Preondition. The preondition region is the area where the operation is pos-

sible and well de�ned. It is de�ned by

pre(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op ^ do Op℄

Observe that this is onsistent with our onvention of Op denoting gd Op ^

do Op. Then this results in the following preondition for our example:

pre(Transfer2) = [Bank ; a? : Z; p? : PID j p? 2 dom(aount) ^ a? � 0℄:

Guard. The guarded region is simply the omplement to the impossible region,

i.e. it is the area where the bloking prediate holds.

guard(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op℄

This, however, is the same as alulating the preondition of the guarded part of

the operation, i.e. guard(Op) = pre(gd Op). Then it holds for our example

guard(Transfer2) = pre(gd Transfer2) = [Bank ; a? : Z; p? : PID j a? � 0℄:

Here it is lear that our approah is stritly more expressive than Fisher's:

guard(Op) ontains an abstration of the information in our approah, whereas

in his pre(enable) = enable. In Transfer2 the guard is a? � 0, loosing the infor-

mation that any widening of the preondition should respet fp?g

�

C aount

0

=

fp?g

�

C aount and total

0

= total + a?.

Unde�ned. Given the regions de�ned by guard and preondition we ould

de�ne the \ompletely unde�ned" region as the di�erene between guard and

preondition. This would be

undef(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op ^ (: 9 S

0

� gd Op ^ do Op)℄

In the initial Transfer operation it is

undef(Transfer) = [Bank ; a? : Z; p? : PID j a? � 0 ^ p? 62 dom(aount)℄

whereas in Transfer2 this region is empty.

In the next hapter, we develop formally a shema alulus for guarded preon-

dition shemas. We introdue existential quanti�ation and review our work on

alulating the preondition, the guard, and the other regions.
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7.4 Three Valued Interpretation

In the last setion we de�ned several regions aording to pairs of before/after

states. We distinguished three di�erent possibilities: First, the region where

gd Op does not hold, i.e. where the operation should be impossible. Seond, the

region where both gd Op and do Op hold, i.e. where after states belong to the

operation. Third, the remaining region where gd Op holds but do Op does not

hold. In that ase the outome of the operation is unde�ned. These three regions

are depited in Figure 7.1 and an be naturally desribed using a set of three

truth values ff ; t;?g respetively.

UndefinedImpossible

(gd_Op and do_Op)

Defined

(gd_Op and not do_Op)
(not gd_Op)

Figure 7.1: Combining Guard and Preondition

7.4.1 Semantial Desription of the Regions

Formally, we de�ne the transition from pairs of shemas to a three-valued logi

via a mapping funtion val that returns the appropriate truth value related to

the shema. Given a boolean-like type

bool3 ::= t j f j ?

we de�ne the three-valued interpretation of an operation Op = (P ;Q) on state

S as follows:

val(Op)= fx ; y j (x ; y) 2 rel(P ^ Q) � (x ; y) 7! tg

[ fx ; y j (x ; y) 62 rel(P) � (x ; y) 7! fg

[ fx ; y j (x ; y) 2 rel(P ^ :Q) � (x ; y) 7! ?g

where rel(Op) is a binary relation between bindings of type S and bindings of

type S

0

, i.e. rel(Op) = fOp � �S 7! �S

0

g.

We show that the given Axiom 1 also holds in this three-valued interpretation.

This is the ase, if and only if it maps to the same truth values in either ase of

using pairs (P ;Q) or (P ;P ^ Q).
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Proof sketh:

val(P ;Q) =

8

>

<

>

:

t i� P ^ Q = P ^ (P ^ Q) i� t

f i� : P = : P i� f

? i� P ^ : Q = P ^ : (P ^ Q) i�?

9

>

=

>

;

= val(P ;P ^ Q)

7.4.2 Depiting Before and After States

We use a table style notation to depit the relation of before states and after

states of an operation by means of the possible outome, i.e. by val(Op). For

example, given an operation

Filter

Del Filter

a? : Z

b! : Z

gd Filter

a? > 0

do Filter

isEven(a?) ^ b! � a?

whih takes only a positive number as input and returns any number less or equal

to it if the given number is even. Then the table representation is

a?

b!

: : : -1 0 1 2 3 4 5 : : :

.

.

.

-1 f f f f f f f

0 f f f f f f f

1 ? ? ? ? ? ? ?

2 t t t t f f f

3 ? ? ? ? ? ? ?

4 t t t t t t f

5 ? ? ? ? ? ? ?

.

.

.

Table 7.1: Before and After States Relations

7.4.3 Meaning of Re�nement

Operation re�nement is de�ned as removal of unde�nedness as well as non-

determinism. Taking our three-valued interpretation and the above represen-

tation, we an explain re�nement intuitively as replaing multiple ? in a row by
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t provided it enlarges the preondition region or by replaing any ? by f whih

in turn may redue the guarded region. Furthermore, we an replae multiple t

in a line by f (as long as one t remains) to redue non-determinism. Note, the

latter step does not hange either the preondition nor the guarded region.

We onsider the Filter operation from above to larify the presented notion of

re�nement. Therefore, we introdue a possible re�nement C Filter .

C Filter

Del C Filter

a? : Z

b! : Z

gd C Filter

a? > 0

b! < a?

do C Filter

isEven(a?)

b! = a?=2

The following re�nement took plae. First, we ensure that b! is always less than

a?. This is done by strengthening the guard and orresponds to hanging ? to f

for all ases where b! � a?. Note, that this re�nement step also strengthens the

postondition of Filter in some ases. Seond, we remove non-determinism by

providing a more onrete representation of the output in ase that a? is even.

This is done by replaing multiple t by f . Weakening of the preondition did not

take plae but we may de�ne an output for the ase that a? is an odd number

in another re�nement step. However, the result will always be bound by the

newly introdued prediate in the guard. The outome of this re�nement step is

illustrated in the following table.

a?

b!

: : : -1 0 1 2 3 4 5 : : :

.

.

.

-1 f f f f f f f

0 f f f f f f f

1 ? ? f f f f f

2 f f t f f f f

3 ? ? ? ? f f f

4 f f f t f f f

5 ? ? ? ? ? ? f

.

.

.

Table 7.2: Before and After States Relations after Re�nement
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7.5 Operation Re�nement

In this work, we restrit ourselves to operation re�nement. Our work is intended

to generalise the standard approah of re�nement. In this setion, we �rst present

our generalised rules of re�nement whih we then apply to the Transfer example.

Finally, we show that our new re�nement onditions indeed generalise both the

guarded and the preonditioned approah.

7.5.1 Rules for Operation Re�nement

Given an abstrat operation AOp = (gd AOp; do AOp) and a onrete operation

COp = (gd COp; do COp) both over the same state State with input x? : X and

output y ! : Y , then COp re�nes AOp, denoted AOp v COp, if and only if

appliability (1) and orretness (2) hold:

(1) 8 State; x? : X � preAOp ` preCOp

(2) 8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ` AOp

The �rst ondition allows to weaken the preondition and the seond ondition

ensures that the re�ned operation does at least what the abstrat operation did.

Additionally, we allow strengthening of guards but not weakening:

(3) 8 State; State

0

; x? : X ; y ! : Y � gd COp ` gd AOp

Conditions (1) and (3) together ensure that the preondition is the upper bound

for strengthening the guard and that the guard is the lower bound for weakening

the preondition.

We observe that the orretness rule an be formally weakened using (3):

preAOp ^ COp ) AOp

� fDe�nition of Opg

pre(gd AOp ^ do AOp) ^ gd COp ^ do COp ) gd AOp ^ do AOp

� fUsing gd COp ) gd AOpg

pre(gd AOp ^ do AOp) ^ gd COp ^ do COp ) do AOp

� fDe�nition of Opg

preAOp ^ COp ) do AOp

However, it turns out niely that the shape of the standard re�nement rules is

preserved when we use the introdued abbreviation.
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7.5.2 Re�nement of the Money Transfer System

We introdued in Setion 7.2.2 a simple money transation system that allows to

put money into the aount of an existing ustomer. We showed via an example

that using only the guarded or preondition interpretation limits the expressive-

ness, and also perhaps allows unintended re�nement. In our ombined approah

we solved these problems. Therefore, we are now able to express the following

re�nement of the Transfer2 operation:

C Transfer2

Del C Transfer2

�Bank

a? : Z

p? : Z

gd C Transfer2

a? � 0

total

0

= total + a?

fp?g

�

C aount

0

=

fp?g

�

C aount

do C Transfer2

p? 62 dom(aount))

aount

0

=

aount � fp? 7! a?g

p? 2 dom(aount))

aount

0

= aount �

fp? 7! aount(p?) + a?g

First, we strengthened the guard gd Transfer2. Now, the money to be transfered

has to be positive and we are not permitted to hange another person's bank

aount, no matter what future re�nement will do to the preondition. Seond,

we also re�ned the do Transfer2 operation. We weakened the preondition of

Transfer2 to handle the ase that the reeiving user does not have an aount.

In this ase we allow the reation of a new bank aount whih will have the

amount a? as initial input.

7.5.3 Generalisation of Traditional Re�nement Rules

Our onept of re�nement is a valid generalisation of the traditional operation

re�nement rules in both the guarded and the preonditioned approah. Taking

gd Op = preOp and do Op = Op or gd Op = true and do Op = Op, respe-

tively, we show that our re�nement rules redue to the traditional ones.

Guarded Approah

In the guarded interpretation the guard is the preondition of the operation.

Therefore, we use gd Op = preOp and do Op = Op.
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Let Op

1

= (gd Op

1

; do Op

1

) = (preAOp;AOp) and Op

2

= (gd Op

2

; do Op

2

) =

(preCOp;COp). We show that for this hoie of Op

1

, Op

2

it holds Op

1

v Op

2

�

AOp v COp in the guarded approah.

(1) Appliability.

preOp

1

` preOp

2

� fOp = (gd Op ^ do Op)g

pre(gd AOp ^ do AOp) ` pre(gd COp ^ do COp)

� fgd Op = preOp and do Op = Opg

pre(preAOp ^ AOp) ` pre(preCOp ^ COp)

� fSimpli�ation: preOp ^ Op � Opg

preAOp ` preCOp

(2) Corretness.

preOp

1

^ Op

2

` Op

1

� fOp = (gd Op ^ do Op)g

pre(gd AOp ^ do AOp) ^ (gd COp ^ do COp)

` (gd AOp ^ do AOp)

� fgd Op = preOp and do Op = Opg

pre(preAOp ^ AOp) ^ (preCOp ^ COp) ` (preAOp ^ AOp)

� fSimpli�ation: preOp ^ Op � Opg

preAOp ^ COp ` AOp

(3) Strengthening.

gd Op

2

` gd Op

1

� fgd Op

1

= preAOp, gd Op

2

= preCOpg

preCOp ` preAOp

Appliability and strengthening together result in the fat that preCOp =

preAOp, i.e. the standard ondition in Objet-Z that a guard annot be strength-

ened nor weakened. The orretness rule is as in standard re�nement as well.

Preondition Approah

To show that our approah is a generalisation of the preondition approah, we

onsider that the guard of the operation is the weakest possible, i.e. gd Op = true.
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Then our notation oinides with the standard Z notation, where do Op = Op.

Using the fat that we onsider Op = gd Op ^ do Op it is easy to show that

appliability (1) and orretness (2) hold. The rule for strengthening (3) evaluates

to 8 State; State

0

; x? : X ; y ! : Y � true whih means there is no strengthening

at all. Therefore, in the ase of no guards our re�nement rules are equivalent to

the standard ones.

7.5.4 Re�nement Rules for Required Non-Determinism

A di�erent interpretation is possible for the operations in three-valued logi that

we have desribed. Various authors, like (Lano et al., 1997) and (Steen et al.,

1997) have argued that for behavioural spei�ations, the traditional identi�a-

tion of non-determinism with implementation freedom is unsatisfatory. They

would like the opportunity to speify required non-determinism, whih implies

a need for additional spei�ation operators to express implementation free-

dom. Re�nement rules should then remove implementation freedom but not non-

determinism. (Steen et al., 1997) desribe suh a alulus, obtained by adding a

disjuntion operator to LOTOS.

We ould introdue a similar alulus for Z by reinterpreting the three-valued

operations desribed above. As before, when the operation evaluates to f for

a partiular before and after state, it denotes an impossibility. However, the

olletion of after states that are related by t to a partiular before state represents

required non-determinism. As a onsequene, none of these t values may be

removed in re�nement. Finally, the olletion of after states that are related by

? to a partiular before state represent an implementation hoie, i.e. at least

one of those after states will need to be related by t in a �nal re�nement.

As a onsequene, expressed in terms of the tabular representation used before,

re�nement rules for required non-determinism and disjuntive spei�ation are:

� if a line ontains a single ?, it is equivalent to t (required hoie from a

singleton set);

� if a line ontains multiple ourrenes of ?, some but not all of them may

be hanged to f (reduing possibility of hoie);

� any ? may be hanged to t (in partiular, an implementation hoie be-

tween several after states may be re�ned to a non-deterministi hoie be-

tween some of them).

This approah generalises only the guarded approah { the preondition just

haraterises those before states for whih possible after states have been deter-

mined already. It also prevents some undesired interation between removing

unde�nedness and inreasing determinism.
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7.6 Related Work

Dealing with un(der)de�nedness in Z expliitly has been an issue for a while.

It ame up when researhers, like (Josephs, 1991), tried to use Z for speifying

onurrent systems and it beame apparent that one might need guards and

preonditions together.

7.6.1 Strulo's Work on Firing Conditions

(Strulo, 1995) attempts to unify both the preondition and the guarded interpre-

tation to model passive and ative behaviour in Z aordingly. He developed the

idea of lassifying a shema aording to its funtion and to use at one time the

guarded interpretation and another time the preondition interpretation. Note,

that Strulo uses the term �ring ondition rather than guard.

An operation is desribed by a single state shema, plus a label indiating whether

the operation is either ative or passive. A distintion is made between ative

operations being impossible or divergent, by interpreting before states whih allow

all possible after states as divergent. This enoding extends the guarded approah

to preonditions in Z. Re�nement in Strulo's work is subtle as \the onditions

for re�nement depend on the identi�ation of ative and passive behaviours".

The haraterisation of an \unonstrained" operation, whose prediate interpre-

tation is universally true, as divergent is somewhat arti�ial. For example, given

an operation over a singleton state, the lassi�ation into unonstrained and in-

teresting region ontradit. An operation over a singleton state is either true or

false, but not one or the other at some time, i.e. there is no interesting region

but only an empty or an unonstrained. However, suh an operation is learly

not divergent, so it should not be in the unonstrained area but in the interesting

region. This is a ontradition, showing that Strulo's lassi�ation is not always

suÆient.

7.6.2 The (R;A)-Calulus by Doornbos

The (R;A)-alulus by (Doornbos, 1994) separates well-de�nedness of an oper-

ation from its e�et, in an abstrat setting of binary relations and sets. An

operation (R;A) onsists of a set A essentially representing its preondition, and

a relation R speifying its e�et. This is substantially di�erent from having a

relation with an expliit guard, in partiular it allows the spei�ation of \mira-

les". The fragment of the alulus satisfying A � domR (i.e., the \law"of the ex-

luded mirale), is generalised by our alulus, viz. (gd Op; do Op) b= (R;ACR).

Doornbos also draws a parallel between the (R;A) alulus and weakest (liberal)

preonditions whih suggests a similar exerise would be possible for our alulus.
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7.6.3 Hehner and Hoare's Prediative Approah to Pro-

gramming

In (Hehner, 1993; Hehner, 1999; Hoare and He Jifeng, 1998) the authors onsider

a spei�ation to be a prediate of the form P ) Q meaning that if P is satis�ed,

then the omputation terminates and satis�es Q . A spei�ation S is re�ned by

a spei�ation T if all omputations satisfying T also satisfy S , i.e. the reverse

impliation S ( T (T v S ). This allows weakening of the preondition P as

well as strenghtening of the postondition Q .

Within this approah, the prediate guard ^ (pre ) post) in a shema body

would express nearly the desired e�et under the guarding interpretation of Z

shemas. In this interpretation, a false guard auses the spei�ation to be false,

i.e. impossible, and a false preondition pre leads to the spei�ation being true,

whih in turn allows any output.

However, the advantage of our approah with two shemas gd and do is a ertain

independene of the guard and preondition. Even when the preondition is false,

not every output is permitted: it is still restrited by the guard.

7.7 Summary

In this hapter we presented the idea of using a three-valued interpretation of op-

erations to ombine and extend the guarded and preondition approahes. Using

this non-standard interpretation we were able to present a simple and intuitive

notion of operation re�nement, whih generalizes the traditional re�nement rela-

tions.

A full theory of re�nement would also inlude a notion of data re�nement. How-

ever, when the retrieve relation is a two-valued prediate the extension beomes

obvious. It remains, however, unlear what might be represented by a three-

valued retrieve relation.

In our interpretation of pairs of shemas (gd Op; do Op) we identi�ed only three

regions. Clearly, we ould further distinguish the areas : gd Op ^ : do Op and

: gd Op ^ do Op. The latter area might be regarded as representing \mirales"

or inonsisteny. Deteting and managing inonsisteny between the guarded and

the preonditioned region is another of our topis for future researh, possibly

based on the work presented in Chapter 6.



Chapter 8

A Shema Calulus for

Un(der)de�nedness in Z

In the states-and-operations style in the spei�ation language Z, un(der)de-

�nedness is not normally made expliit. However, in the last hapter we showed

that it is possible to adapt Z shemas suh that both guards and preondi-

tions are represented at the same time, and thus enabling the spei�ation of

un(der)de�nedness. We all suh shemas guarded preondition shemas.

Shemas are entral building bloks in standard Z and it is possible to perform

a variety of operations with and on them. In the last hapter, we presented the

semantis for guarded preondition shemas based on a non-standard three-valued

interpretation of an operation. We introdued a third truth value to orrespond

to a situation where we don't are what e�et the operation has. In this hapter,

we use this three-valued interpretation to develop a shema alulus for guarded

preondition shemas.

Our approah is based on three-valued truth tables for the ommon logial op-

erators, i.e. negation, onjuntion, disjuntion, and entailment. These truth ta-

bles guide the development proess of the orresponding shema operators. We

demonstrate the validity of the de�nitions by proving several laws from standard

prediate logi. However, we also �nd that some laws do not hold. This is not

surprising as we do not deal with two- but three-valued logi. Furthermore, we

�nd that entailment and impliation are deoupled but shema entailment an

be de�ned using standard impliation.

Shema quanti�ation is also an important part of standard Z. We, too, present

a notion of shema quanti�ation for guarded preondition shema and apply it

to shema hiding, projetion, omposition and preondition alulation. Given

this alulus we revise the regions of operation appliability, as introdued in the

last hapter. We also revise operation re�nement using the new shema alulus.

172
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8.1 Introdution

Shemas are entral building bloks in standard Z and it is possible to perform

a variety of operations with and on them. In the last hapter, we presented the

semantis for guarded preondition shemas based on a non-standard three-valued

interpretation of an operation. We introdued a third truth value to orrespond

to a situation where we don't are what e�et the operation has. In this hapter,

we use this three-valued interpretation to develop a shema alulus for guarded

preondition shemas.

8.1.1 Motivation

In Chapter 7 we introdued a new shema representation to ombine both guarded

and preondition interpretation of Z shemas. We demonstrated the use of our

notation by means of an example. We introdued the onepts of the regions

of appliability of an operation and operation re�nement rules for suh guarded

preondition shemas. However, we did not present mehanisms to ombine suh

shemas.

The shema alulus is used to struture and ompose desriptions. This allows

to divide up the information ontent of a spei�ation into manageable piees.

In partiular, this enables re-usability of ommon omponents. Of ourse, while

developing a new shema representation we do not want to loose the advantages of

the standard Z notation, i.e. we need a shema alulus for guarded preondition

shemas as well.

In standard Z, the existential quanti�ation over the after states and output

variables of an operation shema enables the alulation of the preondition of

that operation. The result is a shema ontaining the prediate that needs to

hold to guarantee the outome of an operation. Furthermore, quanti�ation,

shema impliation and shema onjuntion are used in standard Z to formalise

the notion of re�nement. Surely, we want to be able to perform preondition

alulation and re�nement, too.

(Fisher, 1998) introdued a shema notation based on enable and effet

shemas to apture guards and preonditions. His researh was aimed at om-

bining Objet-Z and CSP spei�ations. While it inspired our work in guarded

preondition shemas it did not provide a shema alulus.

(Strulo, 1995), too, works on unifying both the preondition and the guarded

interpretation. His aim is to model passive and ative behaviour in Z aordingly.

Strulo deided to lassify a shema aording to its funtion and to use at one time

the guarded interpretation and another time the preondition interpretation. To

ombine and to reason about shemas he uses the shema alulus from standard

Z. Obviously this is not possible in our approah as we develop a new shema

representation whih is more expressive than Strulo's.
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8.1.2 Hypothesis

In the last this hapter, we developed our new shema representation based on a

three-valued interpretation. We propose to extend this work by using the same

interpretation to develop a shema alulus for guarded preondition shemas.

We show that it is possible to de�ne the shema operators based on the given

valuation funtion, mapping the shema representation to three distint truth

values, and three-valued truth tables. We then extend the alulus to enable

quanti�ation of shemas variables.

By developing this alulus we demonstrate that our guarded preondition

shemas an be used to onstrut omplex spei�ations. We already introdued

the regions of appliability of an operation. The shema operators an be used

to formally determine these regions. Also, the shema alulus is suÆient to en-

able the spei�er to verify the re�nement of an abstrat operation by a onrete

operation.

8.1.3 Outline

Here, we develop a shema alulus for guarded preondition shemas. We briey

re-ap the notion of a guarded preondition shema in Setion 8.2 and we illustrate

its use by presenting an example of a heat ontrol system. We present the main

part of this hapter in Setion 8.3 whih onsists of the development of the shema

alulus itself. Based on the standard shema operators, we introdue the shema

operators for the guarded preondition shemas. We also prove several laws for

the shema operators, to validate the orretness of our de�nitions. Furthermore,

we show that some laws of two-valued prediate logi do not hold within our

alulus. Next, in Setion 8.5, we revise the notions of shema appliability and,

�nally, in Setion 8.6 we look at operation re�nement again, using the newly

developed shema alulus.

8.2 Un(der)de�nedness in Z: Guarded Preon-

dition Shemas

Inorporating both guards and preonditions for operations enables a partiular

way of speifying un(der)de�nedness in Z. Basially, an operation an be bloked

by the guard. However, if not bloked it leaves two possibilities, either its result

is guaranteed, i.e. applied within its preondition, or its result is un(der)de�ned.
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8.2.1 A Shema Representation of Un(der)de�nedness

An operation is de�ned as a triple (Del Op; gd Op; do Op), where Del denotes

the delaration part of the operation, gd the guard of the operation and do the

e�et of the operation itself. It is depited by the following shema:

Op

Del Op

Del

gd Op

pred

gd

do Op

pred

do

where Del Op is impliitly inluded in gd Op and do Op. Often, we will use

the abbreviation (gd Op; do Op) assuming the delaration to be inluded where

neessary.

8.2.2 Example: A Heat Control System

Here we give an example spei�ation using guarded preondition shemas to

illustrate the onept and use of guarded preondition shemas. We develop a

heat ontrol system whih turns a fan on or o� aording to a given temperature.

The fan has to run when the temperature is above a maximum and it is o�

when the temperature is below a given minimum. However, between these two

boundaries it an be on or o�. We de�ne a boolean like type FanType to apture

the two possible operation modes of a fan.

FanType ::= On j O�

The state of our system is only onerned about the status of the fan.

System

fan : FanType

We use an axiomati de�nition for the temperature range suh that both values

onstrain the entire spei�ation.

heat max ; heat min : Z

heat max = 65

heat min = 45
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The maximum temperature is set to be 65 degrees Celsius and the minimum

temperature to be 45 degrees. These are average values for the operation of some

omputer proessor fans. Initially, the fan will be on, for safety reasons.

InitFan

System

0

fan

0

= On

The fan an be turned on if the urrent temperature, given by the input heat?, is

above the minimum temperature and if the fan is not running. However, it must

be turned on if the temperature is above the maximum allowed temperature.

On

Del

�System

heat? : Z

gd On

heat? > heat min

fan = O�

do On

heat? � heat max

fan

0

= On

The O� operation is spei�ed similar to the On operation, being allowed if

the temperature is below maximum but being ertainly applied if it is below

minimum.

O�

Del

�System

heat? : Z

gd O�

heat? < heat max

fan = On

do O�

heat? � heat min

fan

0

= O�

8.2.3 Shemas using true and false.

In this hapter, we use two speial shemas, denoted TRUE and FALSE. The

shema TRUE an always be applied and the outome of its appliation is unon-

strained. Therefore, its representation is given by the pair (true; true). Contrary

to TRUE, the shema FALSE is never appliable, i.e. it is always bloked, hene
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its guard is false. Aording to Axiom 1, the do-part is irrelevant in suh ases.

However, for pratial use we de�ne it to be false, too, i.e. FALSE = (false; false).

Shemas using false in the guard are not appliable, they do not allow any oper-

ation and annot be weakened in re�nement. However, they may ome in handy

to add onstraints to the do-part using shema disjuntion. If the do-part is false

but not the guard then it is possible to perform an operation though no outome

is de�ned. However, during re�nement this operation may beome de�ned.

The shema (gd Op; true) is mostly used to add onstraints to the guard via

shema onjuntion. Otherwise, any outome is possible as long as the guard

permits the operation. Finally, we turn to the shema (true; do Op). Due to the

guard being true, suh an operation is always appliable, i.e. it is never bloked,

though its result an be both unde�ned or well-de�ned. However, this is the

same situation that ours in standard Z with the preondition interpretation.

Therefore, it is possible to embed standard Z shemas into guarded preondition

shemas using the following three steps: �rst, move its delarations into the

delaration part, seond, let the guard be true and, third, let the do-part be

equivalent to the prediate of the standard shema, i.e.

S b= [Del j pred ℄ � S = (Del ; true; pred)

8.3 A Shema Calulus for Guarded Preondi-

tion Shemas

In this setion, we develop a shema alulus for the guarded preondition

shemas. We onsider the main Z shema operators: negation, onjuntion,

disjuntion, quanti�ation, hiding, projetion, and sequential omposition. An

overview of the standard de�nitions of these operators an be found in Chapter

2 as well as in (Woodok and Davies, 1996) and (Potter et al., 1991).

We also show that this alulus obeys several laws of prediate logi. This is

neessary sine we are not dealing with standard prediate logi anymore but

with an enoding of three-valued logi with two two-valued prediates. This is

illustrated by the fat that some lassial laws, like the law of exluded middle,

do not hold. However, we are able to use two-valued prediate logi and its laws

whenever we are dealing with lassial prediates, whih are ontained in both

the gd - and do-part of an operation.

8.3.1 Three-Valued Truth Tables

In the previous setion we introdued a shema representation that allows the

spei�ation of un(der)de�nedness in Z. We used two prediates, one, the guard,
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to desribe that the operation is permitted and another one, the do-part to de-

sribe that the operation is also de�ned. Both together apture that the operation

is well-de�ned. We are also able to express that the operation is possible but not

de�ned, i.e. it is unde�ned. Finally, the negated guard is used to express that

the operation is forbidden, i.e. impossible. These three ases an be desribed

using a set of three truth values ft;?; fg respetively, where ? is often alled

\bottom".

We de�ned the transition from pairs of shemas to a three-valued logi via a

mapping funtion val that returns the appropriate truth value relating to the

shema. Given a boolean-like type

bool3 ::= t j f j ?

we also de�ned the three-valued interpretation of an operation Op = (P ;Q) as

follows:

val(Op)= fx ; y j (x ; y) 2 rel(P ^ Q) � (x ; y) 7! tg

[ fx ; y j (x ; y) 62 rel(P) � (x ; y) 7! fg

[ fx ; y j (x ; y) 2 rel(P ^ :Q) � (x ; y) 7! ?g

where rel(Op) = fOp � �State 7! �State

0

g.

Given the three truth values we introdue the following truth tables whih are the

three-valued fragment with ? of (Dam�asio and Pereira, 1998), as well as those

derived from (Herre and Peare, 1992). These tables de�ne the propositional

fragment of a logi we need for this work:

p : p

t f

f t

? ?

p^q t f ?

t t f ?

f f f f

? ? f ?

p_q t f ?

t t t t

f t f ?

? t ? ?

p!q t f ?

t t f f

f t t t

? t t t

Table 8.1: Three-Valued Truth Tables

These truth tables will guide us in the development of the shema alulus, i.e. the

shema operators will be de�ned with respet to these three-valued onnetives.

8.3.2 Shema Inlusion and Shema Deoration

Both shema inlusion and shema deoration follow the standard Z onventions.

They allow us to hide some details of a shema and to fous on the relationship

of the relevant variables, leaving impliit the invariant properties of a system. Of

ourse, those properties an be made expliit again by expanding the shemas.
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Shema Inlusion. Shema inlusion is one of the simplest shema operations.

It allows to use the name of a shema amongst the delarations of another shema.

Like in standard Z, the e�et of inlusion of a shema U amongst the delarations

of a shema V is that the delarations of U are inluded in those of V , the

prediates of the guard of U are inluded in the guard of V and the prediates of

the do-part of U are appended to the do-part of V . Note, that no type lashed

must our if the shemas are fully expanded. For example, the shemas On

and O� of the heat ontrol system that we spei�ed earlier inlude the shemas

System and System

0

.

Shema Deoration. The rules of shema deoration are similar to those in

standard Z. In partiular, the use of primed shema names follows the standard

onvention, i.e. the e�et is that the deoration is applied to all the variables

in the delaration of the deorated shema both within the delaration and the

prediate parts of the shema. For example, within the shema InitFan, the

shema System is deorated with a prime and, therefore, the same applies to the

variable fan.

A further notational onvention is the use of � and � in front of a shema name.

For any shema U , �U is de�ned as

�U b= [U ; U

0

℄

i.e. it ontains all the variables and prediates delared in the shema U to-

gether with another set of primed delarations and prediates orresponding to

the de�nitions in the shema U .

Sometimes, an operation does not ause any hange of a partiular state U but

the operation requires some information provided by that state. Then we use

�U , as de�ned by

�U b= [�U j �U = �U

0

℄

to express that no hanges to the variables delared in U our.

8.3.3 Shema Negation

Negation is a funtion that hanges truth but not knowledge. Sine we are deal-

ing with unde�nedness the latter is important. An operation an be forbidden,

unde�ned, or well-de�ned. Aording to the truth table for negation, the nega-

tion of forbidden is well-de�ned, and vie versa, leaving the unde�ned region to

remain unde�ned. Sine the guard being false de�nes the forbidden, or impos-

sible, region, it has to de�ne the well-de�ned region after negation. It is just
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the opposite for the de�ned area, i.e. it should beome impossible. Therefore,

whenever there was an e�et, it will be forbidden after negation. This intuition

leads to the following de�nition of shema negation.

We de�ne shema negation to preserve the delaration of the operation but to

swap and to negate its prediates, i.e. given the shema U

U

Del U

a : A

b : B

gd U

P

do U

Q

The negation W = : U is:

W

Del W

a : A

b : B

gd W

: (P ^ Q)

do W

: P

The appearane of P in the new guard an be explained from Axiom 1. However,

if originally Q ) P , then the prediate in the guard is equivalent to : Q , in

whih ase negation an be written as : (P ;Q) = (: Q ;: P).

To derive the above de�nition of negation we used the following reasoning proess:

if : P stands for \the operation is not appliable", i.e. false then it should be

true after negation, i.e. it should be appliable and de�ned, hene : P in the

do-part. Furthermore, an operation is de�ned if P ^ Q holds, whih should in

turn beome false after negation, i.e. operations inside it should be bloked, or

in other words, operations outside it should be allowed, hene : (P ^ Q) in the

guard.

However, we need to assume that the given shema U is normalised. As in

standard Z, a syntati form of a shema negation an only be given on the

assumption that the negated shema was normalised �rst. Thus, we assume that

shemas are normalised whenever shema negation is applied in any inferene in

the following setions and subsetions.
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The Double Negation Law. The �rst law we show to hold is the double

negation law, i.e. that : : U = U holds:

: : U

� fDe�nition of U g

: : (P ;Q)

� fShema Negationg

: (: (P ^ Q);: P)

� fShema Negationg

(: (: (P ^ Q) ^ : P);: : (P ^ Q))

� fClassial de Morgan Lawg

(: : ((P ^ Q) _ P);: : (P ^ Q))

� fClassial Double Negation (twie)g

((P ^ Q) _ P ;P ^ Q)

� fClassial Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

We an simplify shema negation and subsequently the proof of the double nega-

tion law when Q ) P holds:

: : U

� fDe�nition of U g

: : (P ;Q)

� fShema Negationg

: (: Q ;: P)

� fShema Negationg

(: : P ;: : Q)

� fClassial Double Negation Lawg

(P ;Q)

� fDe�nition of U g

U

It may seem trivial but nevertheless, the following law is rather useful in many

proofs: : TRUE = FALSE

: TRUE
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� fDe�nition of TRUEg

: (true; true)

� fShema Negationg

(false; false)

� fDe�nition of FALSEg

FALSE

8.3.4 Shema Conjuntion

Aording to the truth table of three-valued logi, onjuntion is true if both

its arguments are true, i.e. the onjuntion of two shemas should be in the

de�ned region in ase both shemas are in their de�ned region, too. Furthermore,

onjuntion results in false, i.e. the operation is outside the guard, if either of

the shemas involved in the onjuntion is outside their guards, i.e. it is true if

both are inside the guard.

For example, given:

U

Del U

a : A

b : B

gd U

P

do U

Q

V

Del V

a : A

d : D

gd V

S

do V

T

then their onjuntion is given by the shema W = U ^ V :

W

Del W

a : A

b : B

d : D

gd W

P ^ S

do W

P ^ Q ^ S ^ T

Following from the Axiom 1 the following simpli�ation is always orret:
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W

Del W

a : A

b : B

d : D

gd W

P ^ S

do W

Q ^ T

Note, for every variable delared in both shemas we de�ne its ommon type to

be the intersetion of both given types. Thus, just like for standard Z shema

onjuntion, names delared in both shemas from inompatible sets will lead to

a type error.

Here, and throughout this hapter, we prove several laws for working with shema

operators. We already showed that the double negation law holds. Now we turn

to some prinipal laws for shema onjuntion.

Idempotent Law for Conjuntion: U ^ U = U

Applying onjuntion to two idential shemas results in nothing but the shema

itself.

U ^ U

� fDe�nition of U g

(P ;Q) ^ (P ;Q)

� fShema Conjuntion, Axiom 1g

(P ^ P ;Q ^ Q)

� fClassial Idempoteny of Conjuntiong

(P ;Q)

� fDe�nition of U g

U

Zero Law for Conjuntion: U ^ FALSE = FALSE

Using the shema FALSE as an argument for shema onjuntion results in the

shema FALSE.

U ^ FALSE

� fDe�nition of U and FALSEg

(P ;Q) ^ (false; false)
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� fShema Conjuntiong

(P ^ false;P ^ Q ^ false ^ false)

� fClassial Zero Law for Conjuntiong

(false; false)

� fDe�nition of FALSEg

FALSE

One Law for Conjuntion: U ^ TRUE = U

Complementing the Zero Law is the One Law. A onjuntion between a shema

U and the shema TRUE is the same as the shema U itself.

U ^ TRUE

� fDe�nition of U and TRUEg

(P ;Q) ^ (true; true)

� fShema Conjuntion, Axiom 1g

(P ^ true;Q ^ true)

� fClassial One Law for Conjuntiong

(P ;Q)

� fDe�nition of U g

U

All three laws are ompression laws, in the sense, that given two shemas their

appliation results in one shema. On the other hand, there are also laws that

allow the arguments of shema onjuntion to be swapped as well as to hange

braketing of onjunts, i.e. the ommutativity and assoiativity laws. However,

they also follow from the ommutativity and assoiativity of the lassial on-

juntion operator. Therefore, we do not prove them in detail.

8.3.5 Shema Disjuntion

Basially, there are two possible ways to de�ne shema disjuntion. Firstly, it an

be done by applying a similar reasoning proess as in de�ning shema onjuntion,

i.e. inferring it from the three-valued truth table. Seondly, shema disjuntion

ould be alulated using shema onjuntion and negation. We will follow the

�rst path and show that the same result would be obtained by using the seond

method, i.e. we show that the de Morgan laws hold.

For disjuntion to be true, i.e. de�ned, either of its arguments must be de�ned,

i.e. gd ^ do must hold. Disjuntion is false, i.e. outside its guard, if both shemas
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are outside their guards, hene it is inside the guard, if either one shema is inside

its guard. Therefore, given the shemas U and V from above, their disjuntion

W = U _ V is given as:

W

Del W

a : A

b : B

d : D

gd W

P _ S

do W

(P ^ Q) _ (S ^ T )

The type of variables delared in both shemas is the union of the types given to

that variable in eah of the shemas.

Like for shema onjuntion we show idempoteny, the Zero Law, as well as the

One Law for shema disjuntion to hold. Again, we do not prove ommutativ-

ity and assoiativity but their proofs are based on both properties holding for

lassial disjuntion.

Idempotent Law for Disjuntion: U _ U = U

U _ U

� fDe�nition of U g

(P ;Q) _ (P ;Q)

� fShema Disjuntiong

(P _ P ; (P ^ Q) _ (P ^ Q))

� fIdempoteny of Classial Disjuntiong

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

Zero Law for Disjuntion: U _ FALSE = U

U _ FALSE

� fDe�nition of U and FALSEg

(P ;Q) _ (false; false)

� fShema Disjuntiong

(P _ false; (P ^ Q) _ (false ^ false))
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� fClassial Zero Law for Conjuntiong

(P _ false; (P ^ Q) _ false)

� fClassial Zero Law for Disjuntiong

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

One Law for Disjuntion: U _ TRUE = TRUE

U _ TRUE

� fDe�nition of U and TRUEg

(P ;Q) _ (true; true)

� fShema Disjuntiong

(P _ true; (P ^ Q) _ (true ^ true))

� fClassial One Law for Conjuntion as well as Disjuntiong

(true; true)

� fDe�nition of TRUEg

TRUE

De Morgan Laws. Classially, disjuntion an be de�ned in terms of negation

and onjuntion as (U _ V ) = : (: U ^ : V ). For our de�nition of disjuntion

to be useful we require it to obey the de Morgan laws, too.

Given the two normalised shemas U and V , then

: (: U ^ : V )

� fDe�nition of U and V g

: (: (P ;Q) ^ : (S ;T ))

� fShema Negationg

: ((: (P ^ Q);: P) ^ (: (S ^ T );: S ))

� fShema Conjuntiong

: (: (P ^ Q) ^ : (S ^ T );: P ^ : (P ^ Q) ^ : S ^ : (S ^ T ))

� fClassial de Morgan Law, Absorption Lawg

: (: ((P ^ Q) _ (S ^ T ));: (P _ S ))

� fShema Negationg

(: (: ((P ^ Q) _ (S ^ T )) ^ : (P _ S ));: : ((P ^ Q) _ (S ^ T )))

� fClassial de Morgan Law, Classial Double Negation (twie)g

((P ^ Q) _ (S ^ T ) _ P _ S ; (P ^ Q) _ (S ^ T ))
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� fClassial Commutativity, Classial Absorption Lawg

(P _ S ; (P ^ Q) _ (S ^ T ))

� fDe�nition of Shema Disjuntiong

(P ;Q) _ (S ;T )

� fDe�nition of U and V g

U _ V

Similarly, it an be shown that onjuntion an be de�ned in terms of disjuntion

and negation. If the given shemas are not normalised then normalisation needs

to be added to the above derivation before applying negation, sine, as mentioned

earlier, it is a neessary ondition for shema negation.

Distribution Laws: U _ (V ^W ) = (U _ V ) ^ (U _W )

The �rst of the two distribution laws states that disjuntion distributes over

onjuntion:

U _ (V ^W )

� fDe�nition of U , V , and W g

(P ;Q) _ ((S ;T ) ^ (X ;Y ))

� fShema Conjuntiong

(P ;Q) _ (S ^ X ; (S ^ T ) ^ (X ^ Y ))

� fShema Disjuntiong

(P _ (S ^ X ); (P ^ Q) _ ((S ^ T ) ^ (X ^ Y ))

� fClassial Distribution Law for Disjuntiong

((P _ S ) ^ (P _ X ); ((P ^ Q) _ (S ^ T )) ^ ((P ^ Q) _ (X ^ Y )))

� fShema Conjuntiong

(P _ S ; (P ^ Q) _ (S ^ T )) ^ (P _ X ; (P ^ Q) _ (X ^ Y ))

� fShema Disjuntiong

((P ;Q) _ (S ;T )) ^ ((P ;Q) _ (X ;Y ))

� fDe�nition of U , V , and W g

(U _ V ) ^ (U _W )

Similarly, onjuntion distributes over disjuntion:

U ^ (V _W ) = (U ^ V ) _ (U ^W )

U ^ (V _W )

� fDe�nition of U , V , and W g
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(P ;Q) ^ ((S ;T ) _ (X ;Y ))

� fShema Disjuntiong

(P ;Q) ^ (S _ X ; (S ^ T ) _ (X ^ Y ))

� fShema Conjuntiong

(P ^ (S _ X ); (P ^ Q) ^ ((S ^ T ) _ (X ^ Y )))

� fClassial Distribution Law for Conjuntiong

((P ^ S ) _ (P ^ X ); ((P ^ Q) ^ (S ^ T )) _ ((P ^ Q) ^ (X ^ Y )))

� fShema Disjuntiong

(P ^ S ; (P ^ Q) ^ (S ^ T )) _ (P ^ X ; (P ^ Q) ^ (X ^ Y ))

� fShema Conjuntiong

((P ;Q) ^ (S ;T )) _ ((P ;Q) ^ (X ;Y ))

� fDe�nition of U , V , and W g

(U ^ V ) _ (U ^W )

Absorption Laws: U _ (U ^ V ) = U

Another set of useful laws often used to simplify proofs are the two absorption

laws provided here:

U _ (U ^ V )

� fDe�nition of U and V g

(P ;Q) _ ((P ;Q) ^ (S ;T ))

� fShema Conjuntiong

(P ;Q) _ (P ^ S ; (P ^ Q) ^ (S ^ T ))

� fShema Disjuntiong

(P _ (P ^ S ); (P ^ Q) _ ((P ^ Q) ^ (S ^ T ))

� fClassial Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

Dual to the above is the following law: U ^ (U _ V ) = U

U ^ (U _ V )

� fDe�nition of U and V g

(P ;Q) ^ ((P ;Q) _ (S ;T ))

� fShema Disjuntiong

(P ;Q) ^ (P _ S ; (P ^ Q) _ (S ^ T ))
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� fShema Conjuntiong

(P ^ (P _ S ); (P ^ Q) ^ ((P ^ Q) _ (S ^ T ))

� fClassial Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

So far, we proved that many laws related to negation, onjuntion and disjuntion

known from lassial logi also hold for the newly developed shema representa-

tion and, therefore, that they an be used in the shema alulus. We now turn

to de�ne quanti�ation and to investigate its laws.

8.3.6 Shema Quanti�ation

Both de�nitions of universal and existential quanti�ation are analogous to stan-

dard Z, i.e. the quanti�ed variable is going to be removed from the shema de-

laration and will be quanti�ed in the prediate.

Universal Quanti�ation. Sine the delaration of the shema is impliitly

inluded in both the gd - and the do-part of the shema, quanti�ation has to be

applied in both sub-shemas as well. Therefore, we de�ne:

8 a : A � U =

W

Del W

b : B

gd W

8 a : A � P

do W

8 a : A � (P ^ Q)

Existential Quanti�ation. In a similar fashion we de�ne existential quan-

ti�ation, by:

9 a : A � U =
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W

Del W

b : B

gd W

9 a : A � P

do W

9 a : A � (P ^ Q)

Following these de�nitions, we show that idempoteny of quanti�ation, as well

as the de Morgan laws hold, too. Later, we apply shema quanti�ation to the

notions of hiding and preondition alulation.

Idempoteny of Quanti�ation: Qa : A � Qa : A � U = Qa : A � U

Quantifying over a bound variable with the same quanti�er results in the same

shema already provided.

Qa : A � Qa : A � U

� fDe�nition of U g

Qa : A � Qa : A � (P ;Q)

� fShema Quanti�ationg

Qa : A � (Qa : A � P ;Qa : A � (P ^ Q))

� fShema Quanti�ationg

(Qa : A � Qa : A � P ;Qa : A � Qa : A � (P ^ Q))

� fIdempoteny of Classial Quanti�ationg

(Qa : A � P ;Qa : A � (P ^ Q))

� fDe�nition of Shema Quanti�ationg

Qa : A � (P ;Q)

� fDe�nition of U g

Qa : A � U

where Q is either one of the quanti�ers 8 or 9.

De Morgan Laws for Quanti�ation. Of ourse, the quanti�ation opera-

tors should respet the de Morgan rules for quanti�ation known from lassial

logi, and they do, as we show for two ases:

Given the normalised shema U then we show

9 a : A � U = : 8 a : A � : U

by the following derivation:
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: 8 a : A � : U

� fDe�nition of U g

: 8 a : A � : (P ;Q)

� fShema Negationg

: 8 a : A � (: (P ^ Q);: P)

� fShema Generalisationg

: (8 a : A � : (P ^ Q); 8 a : A � : P)

� fShema Negationg

(: (8 a : A � : (P ^ Q) ^ 8 a : A � : P);: 8 a : A � : (P ^ Q))

� fSimpli�ation and Classial de Morgan Law for Quanti�ationg

(: 8 a : A � (: (P ^ Q) ^ : P); 9 a : A � (P ^ Q))

� fClassial de Morgan Lawg

(: 8 a : A � : ((P ^ Q) _ P); 9 a : A � (P ^ Q))

� fClassial de Morgan Law for Quanti�ationg

(9 a : A � (P ^ Q) _ P ; 9 a : A � (P ^ Q))

� fClassial Absorption Lawg

(9 a : A � P ; 9 a : A � (P ^ Q))

� fShema Partiularisationg

9 a : A � (P ;Q)

� fDe�nition of U g

9 a : A � U

Given the normalised shema U , we also show that

9 a : A � : U = : 8 a : A � U

by this short inferene:

9 a : A � : U

� fPrevious Proofg

: 8 a : A � : : U

� fDouble Negation Lawg

: 8 a : A � U

The above laws show how existential quanti�ation and universal quanti�ation

as well as negation are related. Similarly, it an be shown that : 9 a : A � U =

8 a : A � : U and : 9 a : A � : U = 8 a : A � U hold, too. In the above

proof, we assumed U to be normalised. If U is not normalised, we will have to

add normalisation to the proofs, sine shema negation is only well-de�ned for

normalised shemas.
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8.3.7 Shema Hiding and Projetion

Shema hiding and projetion are another set of operators. In both ases, the

purpose is to loalise, i.e. to hide, omponents, either given as a set or through

another shema.

Shema Hiding. Normally, hiding of the variables (x

1

; : : : ; x

n

) from a shema

S , S n (x

1

; : : : ; x

n

), is de�ned using existential quanti�ation, i.e. (9 x

1

:

t

1

; : : : ; x

n

: t

n

� S ). Therefore, we use the existential quanti�ation intro-

dued above. For example, hiding a from the shema U results in the following:

U n (a) = 9 a : A � U , whih is represented by the shema W :

W

Del W

b : B

gd W

9 a : A � P

do W

9 a : A � P ^ Q

Shema Projetion. The shema projetion operator U � V ombines two

shemas using onjuntion but hiding all omponents of U exept those that are

part of V . Both shemas must be type ompatible, but V might have extra

omponents not shared by U . Therefore, the resulting shema has the signature

of V . Formally, U � V = (U ^ V ) n (x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are the

omponents of U not shared by V . Therefore, the shema W = U � V is

W

Del W

a : A

d : D

gd W

9  : C � P ^ S

do W

9  : C � (P ^ S ) ^ (Q ^ T )

8.3.8 Shema Composition

One way of ombining shemas is to use logial shema operators as introdued

before, another is to use omposition, i.e. to state that one operation is to be

applied after another operation. To use sequential omposition it is neessary to

ensure that the shema delarations are ompatible.
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Renaming. In standard Z, shema omponents an be renamed. Renaming

is also alled substitution and allows to introdue a di�erent olletion of vari-

ables with the same pattern of delarations and onstraints. We, too, provide

a de�nition of renaming for our alulus. Substituting variables is denoted by

[newvar=oldvar ℄ where the old variables will be renamed to new variables. How-

ever, renaming will only be applied if the new name is not already present in

the shema and only for any free ourrene of the old name. For example,

U [x=a; y=b℄ results in the shema W

W

Del W

x : A

y : B

gd W

P [x=a; y=b℄

do W

Q [x=a; y=b℄

Sequential Composition. Sequential omposition is an operation that begins

in an initial state of the operation Op

1

and ends in a �nal state of Op

2

. This

makes only sense when the �nal state of Op

1

mathes the initial state of Op

2

.

Given two operation shemas Op

1

and Op

2

both inluding primed and unprimed

opies of a state shema S , then operation omposition is the result of applying

operation Op

2

to the result of applying Op

1

. It is de�ned by

Op

1

o

9

Op

2

= 9 S

00

�

(9 S

0

� [Op

1

; S

00

j �S

0

= �S

00

℄) ^ (9 S � [Op

2

; S

00

j �S = �S

00

℄)

where � is the operator to onstrut the set of orresponding bindings. Note, that

�S = �S

0

, x

0

1

= x

1

^ : : : ^ x

0

n

= x

n

.

Sequential omposition an be alulated using renaming and hiding, i.e.

Op

1

o

9

Op

2

= (Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄) n (x

00

)

when x is the only state variable, whih is equivalent to

Op

1

o

9

Op

2

Del (Op

1

o

9

Op

2

)

x ; x

0

: X

gd (Op

1

o

9

Op

2

)

9 x

00

� P [x

00

=x

0

℄ ^ S [x

00

=x

0

℄

do (Op

1

o

9

Op

2

)

9 x

00

� (P [x

00

=x

0

℄ ^ S [x

00

=x

0

℄)

^ (Q [x

00

=x ℄ ^ T [x

00

=x ℄)
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Using Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄ = (Op

1

^ Op

2

)[x

00

=x

0

; x

00

=x ℄ the above shema an

be simpli�ed to

Op

1

o

9

Op

2

Del (Op

1

o

9

Op

2

)

x ; x

0

: X

gd (Op

1

o

9

Op

2

)

9 x

00

� (P ^ S )[x

00

=x

0

℄

do (Op

1

o

9

Op

2

)

9 x

00

� (P ^ S )[x

00

=x

0

℄

^ (Q ^ T )[x

00

=x ℄

8.3.9 Further Classial Laws

In this subsetion we deal with three laws that do not hold over guarded preon-

dition shemas even though they hold in standard Z. First, the law of exluded

middle fails, beause we now have a third truth value. Seond, the ontradition

law fails due to similar reasons. Finally, we show that the de�nition law, relating

impliation to negation and disjuntion, does not hold either.

The Law of the Exluded Middle: U _ : U = TRUE

The law of the exluded middle, adapted to the guarded preondition shema

alulus does not hold:

U _ : U

� fDe�nition of U g

(P ;Q) _ : (P ;Q)

� fShema Negationg

(P ;Q) _ (: (P ^ Q);: P)

� fShema Disjuntiong

(P _ : (P ^ Q); (P ^ Q) _ : P)

� fClassial de Morgan and Commutativityg

(P _ : P _ : Q ; (: P _ P) ^ (: P _ Q)

� fClassial Exluded Middleg

(true; true ^ (: P _ Q)

� fCommutativity and One Lawg

(true;: P _ Q)

This operation an always be applied but its result is only de�ned if : P holds,

i.e. the outome is false, or where Q holds, i.e. the outome was spei�ed. In
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ase of the unde�ned area nothing an be said. This onforms to the standard

point of view in three-valued logi.

The Contradition Law: U ^ : U = FALSE

The ontradition law, adapted to the guarded preondition shema alulus does

not hold:

U ^ : U

� fde Morgan Law, Double Negation Law, Commutativityg

: (U _ : U )

� fLaw of Exluded Middleg

: (true;: P _ Q)

� fShema Negationg

(: (: P _ Q);: true)

� fClassial Prediate Logig

(P ^ : Q ; false)

This resulting operation an be applied exatly in the unde�ned area of the given

operation but no postondition is spei�ed. This result is somehow surprising

beause most three-valued logis obey the ontradition law. Paraonsistent log-

is are a set of logis where the ontradition law does not hold. This raises

the question whether our shema alulus is paraonsistent. After introduing

entailment in Setion 8.3.10 we show, however, that this is not the ase.

De�nition Law: U ) V = : U _ V

There are two ways of looking at the de�nition law. On the one hand, it is a

law reeting the relation between negation, disjuntion and impliation. On the

other hand, it is a de�nition, de�ning impliation in terms of negation and on-

juntion. We show that : U _ V does not reet the truth table of impliation

as given in Setion 8.3.1. Using the shema alulus we derive:

: U _ V

� fDe�nition of U and V g

: (P ;Q) _ (S ;T )

� fShema Negationg

(: (P ^ Q);: P) _ (S ; S ^ T )

� fShema Disjuntiong

(: (P ^ Q) _ S ;: P _ (S ^ T ))
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Therefore, shema impliation results in non-appliability if U is true, i.e. within

its de�ned area and V is false, i.e. outside its guard. It is de�ned, if U is forbidden

or V is de�ned. The orresponding truth table is:

p)q t f ?

t t f ?

f t t t

? t ? ?

Table 8.2: Truth Table for Shema Impliation

However, this is not equivalent to the truth table given in Setion 8.3.1. Implia-

tion de�ned via the de�nition law is not neessarily an entailment operation. In

the next subsetion we will de�ne entailment aording to the earlier given truth

table.

8.3.10 Shema Entailment

In Table 8.1 a truth table for three-valued impliation is given. This impliation

operator is a three-valued entailment operator, denoted!, but does not preserve

the de�nition law as shown in Setion 8.3.9. While de�ning shema negation and

shema onjuntion we introdued an approah to infer shema representations

of the operators aording to their truth table. We use the same approah to

de�ne the entailment operator for guarded preondition shema.

Given are two shemas (P ;Q) and (S ;T ) and the truth table for entailment in

Table 8.1. We enode t = P ^ Q , f = : P , and ? = P ^ : Q , as well as

t = S ^ T , f = : S , and ? = S ^ : T . We observe that the result of entailment

is either true or false, i.e. there is no unde�ned area, whih in turn means, that

both the gd - and the do-part have to be the same prediate. Following the earlier

approah, we derive the guard as being the part, where entailment holds, i.e. if

(P ;Q) is true and (S ;T ) is false or unde�ned, then (P ;Q) ! (S ;T ) should be

false as well. (P ;Q) ! (S ;T ) is de�ned if (P ;Q) is false or unde�ned. This

leads to the following shema for entailment:
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W

Del W

a : A

b : B

d : D

gd W

: ((P ^ Q) ^

(: S _ (S ^ : T )))

do W

(P ^ Q ^ S ^ T ) _

(: P _ (P ^ : Q))

Using the standard prediate alulus to simplify both prediates results in:

W

Del W

a : A

b : B

d : D

gd W

(P ^ Q)) (S ^ T )

do W

(P ^ Q)) (S ^ T )

i.e. there is no unde�ned area. Of ourse, this means that the question whether

one shema entails another an always be answered. It is also worth noting the

relation between entailment and impliation, though it does not have the same

properties, as shown in the previous subsetion.

Self-appliation of Entailment: U ! U = TRUE

A guarded preondition shema always entails itself:

U ! U

� fDe�nition of U g

(P ;Q)! (P ;Q)

� fDe�nition of !g

((P ^ Q)) (P ^ Q); (P ^ Q)) (P ^ Q))

� fClassial Prediate Calulusg

(true; true)

� fDe�nition of TRUEg

TRUE

One example of applying the entailment operator is found in re�nement proofs.

We refer to Setion 8.6 for more details.
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Double Entailment. Like double impliation in lassial logi, we de�ne the

double entailment U $ V as the onjuntion of the entailment U ! V and

V ! U . This results in substituting lassial impliation with double impliation

in the gd - and do-part of the above given de�nition of entailment.

Paraonsisteny. We an also determine whether or not our alulus is para-

onsistent by showing whether or not U ! (: U ! V ) is a theorem of our

alulus.

U ! (: U ! V )

� fDe�nition of U and V g

(P ;Q)! (: (P ;Q)! (R; S ))

� fShema Negationg

(P ;Q)! ((: (P ^ Q);: Q)! (R; S ))

� fShema Entailmentg

(P ;Q)!

((: (P ^ Q) ^ : Q)) (R ^ S ); (: (P ^ Q) ^ : Q ) (R ^ S )))

� fCl. de Morgan Law, Cl. Absorption Law, Shema Entailmentg

((P ^ Q)) (: Q ) (R ^ S )); (P ^ Q)) (: Q ) (R ^ S )))

� fClassial De�nition Law, Cl. de Morgan Lawg

(: P _ : Q _ Q _ (R ^ S );: P _ : Q _ Q _ (R ^ S ))

� fSimpli�ationg

(true; true)

� fDe�nition of TRUEg

TRUE

This theorem is a partiular form of ECQ (ex ontraditione quodlibet) whih

has to be rejeted in a paraonsistent logi, beause it allows an arbitrary shema

to be inferred from a set of ontraditing shemas. Hene, this alulus is not

paraonsistent.

8.4 The Appliation of the Shema Operators:

An Example

In this setion, we present a small example to illustrate and validate the in-

trodued shema representation as well as the use of the shema alulus. We

introdue a simple spei�ation involving even and odd numbers. We illustrate
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how the shema alulus an be used to ombine shemas to form a larger spei-

�ation.

We de�ne two shemas Even and Odd whih desribe two operations for even

and odd numbers. The operation Even works as follows: Given an even natural

number, the result shall be a number whih is less or equal to the given number.

In ontrast, given an odd natural number, the result shall be a number greater or

equal to the given number. Being a natural number is a neessary requirement

for the operation to be performed, therefore it is part of the guard. We assume

the existene of the prediates isEven and isOdd .

Even

Del Even

a? : N

b! : Z

gd Even

true

do Even

isEven(a?) ^ b! � a?

Above, we used undersores around the shema name to denote that it has not

been normalised yet. Normalising the shema Even results in:

Even

Del Even

a? : Z

b! : Z

gd Even

a? � 0

do Even

isEven(a?) ^ b! � a?

The already normalised operation Odd is spei�ed as follows:

Odd

Del Odd

a? : Z

b! : Z

gd Odd

a? � 0

do Odd

isOdd(a?) ^ b! � a?

Note, eah operation an be invoked upon both even and odd natural numbers

but in only one ase the outome is guaranteed. Using the shema alulus we
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ombine both shemas to reate a single operation where the outome is de�ned

for both even and odd numbers.

Numbers == Even _ Odd

i.e.

Numbers

Del Numbers

a? : Z

b! : Z

gd Numbers

a? � 0

do Numbers

a? � 0

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?))

Further we would like to report whether the operation was performed, i.e. that a

natural number was given. Therefore we introdue the REPORT type

REPORT ::= error j no error

We de�ne an operation shema that an always be exeuted and the only thing

it does is to report its suessful exeution.

Ok

Del Ok

report ! : REPORT

gd Ok

true

do Ok

report ! = no error

We an join this shema with Numbers to report its suessful operation:

NumbersOk == Numbers ^ Ok

i.e.
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NumbersOk

Del NumbersOk

a? : Z

b! : Z

report ! : REPORT

gd NumbersOk

a? � 0

do NumbersOk

a? � 0 ^ report ! = no error

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?))

This shema will only report no error if the number a? given was a natural. In

ase a? was not a natural number we want to report an error , therefore, we de�ne

Error

Del Error

a? : Z

report ! : REPORT

gd Error

a? < 0

do Error

report ! = error

Putting everything together we derive the omplete operation

Complete == NumbersOk _ Error

i.e.

Complete

Del Complete

a? : Z

b! : Z

report ! : REPORT

gd Complete

true

do Complete

(a? � 0 ^

report ! = no error ^

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?)))

_

(a? < 0 ^ report ! = error)
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whih is now total, i.e. it an always be invoked and the outome is guaranteed.

Given any number it will now report either its failure to be able to perform a

valid operation if the number is less or equal to zero or, if it is a natural number,

it will be applied aording to the ondition set in the do-part.

Furthermore, this shema an now be translated into standard Z, where it is

represented as:

do Complete

a? : Z

b! : Z

report ! : REPORT

(a? � 0 ^ report ! = no error ^

((isEven(a?) ^ b! � a?) _ (isOdd(a?) ^ b! � a?)))

_

(a? < 0 ^ report ! = error)

Note that it does not matter whih interpretation is used, either the guarded

or preondition interpretation work orretly, beause the operation is total and

normalised.

8.5 Operation Appliability

In this setion we re-ap the notions of operation appliability as introdued in

Setion 7.3.4. We distinguished a number of regions of before states that are of

interest. In partiular, we presented the preondition, i.e. the well-de�ned region;

the guard, i.e. the enabled region; the unde�ned region, i.e. the guard permits

the operation but no outome is spei�ed; �nally, the impossible region where the

operation is bloked. Here, we use the newly developed shema alulus to revise

and validate our earlier de�nitions. For example, the de�nitions in Setion 7.3.4

return shemas based on the standard Z notation but here we return guarded

preondition shemas. We also present some meta-theoretial investigations of

the relation between the di�erent regions.

8.5.1 Shema Preondition

In standard Z, the preondition of an operation is de�ned as the existential quan-

ti�ation over the after state and output variables, i.e.

preOp = 9 S

0

; outs! � Op
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We introdued existential quanti�ation so it seems natural to investigate the

result of alulating the preondition of a guarded preondition shema, i.e. the

result of applying existential quanti�ation to the after states and outputs of a

guarded preondition shema. For example, for the shema NormalisedShema

in Setion 7.2.1, the preondition is alulated as follows:

preNormalised Shema = 9 a

0

: Z � Normalised Shema

i.e.

PreNormalised Shema

Del

a : Z

gd

9 a

0

: Z � a 2 N ^ a

0

2 N

do

9 a

0

: Z � a 2 N ^ a

0

2 N

^ (a

0

)

2

� a < (a

0

+ 1)

2

� fSimpli�ation and Instantiationg

PreNormalised Shema

Del

a : Z

gd

a 2 N

do

a 2 N

The preondition of a guarded preondition shema is another shema, where the

guard ontains a prediate that permits the operation and the do-part ontains

the preondition prediate, i.e. the preondition is the ondition suh that the

outome of the operation is well-de�ned.

We briey present the preonditions of some operations de�ned in this hapter

for illustrative purpose. First, the preonditions of the operations On and O� of

the heat ontrol system are

preOn = (heat? > heat min ^ fan = O� ;

heat? > heat min ^ fan = O� ^ heat? � heat max )

preO� = (heat? < heat max ^ fan = On;

heat? < heat max ^ fan = On ^ heat? � heat min)

Using Axiom 1 we an simplify those shemas by removing the gd -prediate from

the do-part, i.e.
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preOn = (heat? > heat min ^ fan = O� ; heat? � heat max )

preO� = (heat? < heat max ^ fan = On; heat? � heat min)

Finally, the preonditions for the number example from the last setion are

preEven = (a? � 0; isEven(a?))

preOdd = (a? � 0; isOdd(a?))

preNumbers = (a? � 0; true)

preComplete = (true; true)

8.5.2 Shema Guard

The guard of an operation is the area that allows the operation to take plae.

We de�ne the shema guardOp of an operation shema (P ;Q) to be the shema

9 S

0

; outs! � (P ; true), where (P ; true) is the shema obtained from applying

an operator gd, whih returns the guard of the operation. Then guard Op =

pre gd Op

GuardNormalised Shema

Del

a : Z

gd

a 2 N

do

true

Please note the di�erene between gd, gd , and guard. The �rst one is the operator

returning the guarded part of an operation, the seond is the guarded part of a

shema, and the third is the shema that onsists of the guarded part of a shema

where the do-part is set to true.

The operations On and O� are only supposed to be applied if the fan is not

in the mode it will be swithed to and if the urrent temperature is within the

orret range. These onstraints are expressed by the guard of the operation.

guardOn = (heat? > heat min ^ fan = O� ; true)

guardO� = (heat? < heat max ^ fan = On; true)

If the guard is not ful�lled, the operation an not be applied. Furthermore, if the

operation is not appliable, the guard must have bloked it, i.e.

: Op $ : gd Op

whih we an show to hold by
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: Op $ : gd Op

� fDe�nition of Op and gd Opg

: (P ;P ^ Q)$ : (P ; true)

� fShema Negationg

(: (P ^ Q);: P)$ (: P ;: P)

� fShema Double Entailmentg

((: (P ^ Q) ^ : P), : P ; (: (P ^ Q) ^ : P), : P)

� f*g

(true; true)

� fDe�nition of TRUEg

TRUE

We perform the step marked * separately by taking only one of the two prediates

into aount:

: (P ^ Q) ^ : P , : P

� fde Morgan Lawg

: ((P ^ Q) _ P), : P

� fAbsorption Lawg

: P , : P

� fEquivaleneg

true

We also show that the preondition of an operation entails the guard of an oper-

ation, i.e.

preOp ! guardOp

preOp ! guardOp

� fDe�nitions of Op, pre and guardg

(9 S

0

� P ; 9 S

0

� (P ^ Q))! (9S

0

� P ; true)

� fShema Entailmentg

(9 S

0

� P ^ 9 S

0

� (P ^ Q)) 9 S

0

� P ;

9 S

0

� P ^ 9 S

0

� (P ^ Q)) 9 S

0

� P)

� fa ^ b ) a � trueg

(true; true)

� fDe�nition of TRUEg

TRUE
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This is not really surprising sine the purpose of the Axiom 1 from Setion 7.3.1

was to ensure this. However, it gives additional on�dene to see that it works

orretly on the shema level, too.

The idea of the guard is to blok the operation under ertain onstraints, i.e. to

make the operation impossible, hene

impoOp = : (guard Op)

Simplifying this de�nition yields

: (guard Op)

� fDe�nition of Opg

: (guard (P ;Q))

� fDe�nition of guardg

: (9 S

0

; outs! � (P ; true))

i.e. the operation is impossible if there is no state suh that the operation an be

applied.

8.5.3 Unde�ned Shema Appliation

The area where the guard holds but the preondition does not is the unde�ned

one, i.e.

undef Op = guardOp ^ : pre Op

Applying the shema alulus this simpli�es to

guardOp ^ : pre Op

� fDe�nition of guard Op and pre Opg

9 S

0

; outs! � (P ; true) ^ : 9 S

0

; outs! � (P ;Q)

� fExistential Quanti�ation, de Morgan Law for Quanti�ationg

(9 S

0

; outs! � P ; true) ^ 8 S

0

; outs! � : (P ;Q)

� fShema Negationg

(9 S

0

; outs! � P ; true) ^ 8 S

0

; outs! � (: (P ^ Q);: P)

� fUniversal Quanti�ationg

(9 S

0

; outs! � P ; true) ^ (8 S

0

; outs! � : (P ^ Q); 8S

0

; outs! � : P)

� fPrediate Calulusg

(9 S

0

; outs! � P ; true) ^ (: 9 S

0

; outs! � (P ^ Q);: 9 S

0

; outs! � P)
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� fShema Conjuntiong

(9 S

0

; outs! � P ^ : 9 S

0

; outs! � (P ^ Q);

9 S

0

; outs! � P ^ true ^ : 9 S

0

; outs! � (P ^ Q) ^ : 9 S

0

; outs! � P)

� fPrediate Calulusg

(9 S

0

; outs! � P ^ : 9 S

0

; outs! � (P ^ Q); false)

whih orresponds losely to the de�nition provided in Setion 7.3.4.

Identifying these regions an help the development proess of an operation. For

example, totalisation means to remove the impossible area and re�nement is

meant to redue the unde�ned region. The �nal produt is a spei�ation with

no unde�ned nor impossible areas. Suh a spei�ation an then be translated

into standard Z under both the guarded and the preondition interpretation.

8.6 Re�nement Calulations

In the last hapter we developed an intuitive understanding for the re�nement

onditions for guarded preondition shemas. We presented three onditions,

appliability, orretness and strengthening of the guard. Here we develop the

notion of re�nement further by using the shema entailment operator ! instead

of `, as well as the presented shema alulus. We demonstrate the re�nement

onditions by means of an example.

8.6.1 Re�nement Conditions

Given an abstrat operation AOp = (gd AOp; do AOp) and a onrete operation

COp = (gd COp; do COp) both over the same state State with input x? : X and

output y ! : Y , then COp re�nes AOp, denoted AOp v COp, if and only if the

following three onditions hold:

(1) 8 State; x? : X � preAOp ! preCOp

(2) 8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ! AOp

(3) 8 State; State

0

; x? : X ; y ! : Y � gdCOp ! gdAOp

Conditions (1) and (3) together ensure the preondition is the upper bound for

strengthening the guard and the guard is the lower bound for weakening the

preondition.
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8.6.2 Example

Given are the two operation shemas Filter and C Filter as introdued in the

last hapter

Filter

Del Filter

a? : Z

b! : Z

gd Filter

a? > 0

do Filter

isEven(a?)

b! � a?

C Filter

Del C Filter

a? : Z

b! : Z

gd C Filter

a? > 0

b! < a?

do C Filter

isEven(a?)

b! = a?=2

Using the shema alulus we show now formally, that C Filter re�nes Filter .

First, we alulate the preonditions of both operations:

preFilter = (a? > 0; a? > 0 ^ isEven(a?))

preC Filter = (a? > 0; a? > 0 ^ isEven(a?))

8.6.3 Appliability

The operation Filter is appliable if an even natural number is given. The re�ned

operationC Filter must be appliable under the same onditions. This properties

follows simply from the preonditions.

(1) 8 a? : Z � preFilter ! preC Filter

preFilter ! preC Filter

� fDe�nitions of preFilter , and preC Filterg

(a? > 0; a? > 0 ^ isEven(a?))! (a? > 0; a? > 0 ^ isEven(a?))

� fShema Self-Entailmentg

TRUE

8.6.4 Corretness

The operation C Filter an always be applied when Filter ould. Next, we prove

orretness, i.e. whether the result of C Filter is a possible result of Filter if

applied in the same situation.

(2) 8 a? : Z; b! : Z � preFilter ^ C Filter ! Filter
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preFilter ^ C Filter ! Filter

� fDe�nitions of preFilter , C Filter , and Filterg

((a? > 0; a? > 0 ^ isEven(a?))

^ (a? > 0 ^ b! < a?; isEven(a?) ^ b! = a?=2))

! (a? > 0; isEven(a?) ^ b! � a?)

� fShema Conjuntiong

(a? > 0 ^ b! < a?; a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

! (a? > 0; isEven(a?) ^ b! � a?)

� fShema Entailmentg

((a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?);

(a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?))

� f*g

(true; true)

� fDe�nition of TRUEg

TRUE

We look at the above reasoning step marked � separately. Shema entailment

is the impliation of the onjuntion of the gd - and do-part in both guard and

e�et. We onsider now only one of the two shema prediates:

(a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?)

� fSplitting of b! � a?g

(a? > 0 ^ b! < a? ^ isEven(a?)) ^ b! = a?=2

) (a? > 0 ^ isEven(a?) ^ b! < a?) _ (a? > 0 ^ isEven(a?) ^ b! = a?)

� fx ^ y ) x _ z = trueg

true

Hene, orretness holds.

8.6.5 Strengthening of the Guard

Finally, the guard of C Filter must not be less restritive than the guard of

Filter :

(3) 8 a? : Z; b! : Z � gdC Filter ! gdFilter
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gdC Filter ! gdFilter

� fDe�nition of gdC Filter and gdFilterg

(a? > 0 ^ b! < a?; true)! (a? > 0; true)

� fShema Entailmentg

(a? > 0 ^ b! < a?) a? > 0; a? > 0 ^ b! < a?) a? > 0)

� fClassial De�nition Law for Impliation and de Morgan Lawg

(: (a? > 0) _ : (b! < a?) _ (a? > 0);

: (a? > 0) _ : (b! < a?) _ (a? > 0))

� fClassial Law of Exluded Middleg

(true; true)

� fDe�nition of TRUEg

TRUE

All three properties hold and, therefore, the shema C Filter re�nes the shema

Filter , i.e. it ould replae it without a user notiing it.

8.7 Summary

The aim of this hapter was to develop a shema alulus for shemas that an

represent un(der)de�nedness in Z more expliitly than those in standard Z. We

provided a set of rules to enable a spei�er to join shemas, to alulate ertain

properties of shemas, inluding its preondition and guard. We also showed,

that this shema alulus an be used in the re�nement proess.

Note, however, that it was neessary to distinguish between shema impliation,

as de�ned via negation and disjuntion, and entailment. Nevertheless, it turned

out that the de�nition of the entailment operator is based upon lassial impli-

ation itself. Furthermore, we demonstrated that not all reasoning rules from

lassial logi hold within this work. This even led to the question, whether the

alulus possesses the property of being paraonsistent. This had to be rejeted

due to the fat that a variant of EC does hold.

The development of the shema alulus has been based on a three-valued se-

mantis. We have not formally shown that the alulus is sound and omplete

with respet to this semantis. This remains future work. However, the proof

theoretial properties that we validated in this hapter give us enough on�dene

to believe that the alulus is orret.



Chapter 9

Conlusion

The aim of this thesis was to investigate the support we an give to reasoning

about inonsistent spei�ations written in the Z notation. We deided to explore

the usefulness of applying a paraonsistent logi to ahieve our goal. It turned out

that paraonsistent logis had not been applied extensively to reasoning about

theories in rih languages, like Z. On the other side, some of the logis we studied

also provided information on how to handle inomplete information. This raised

our interest in studying the problem of underde�nedness in Z.

Inonsisteny is a re-ourring problem in spei�ation development. Our work

provides some insights on how inonsistent spei�ations an be better managed.

We used quasi-lassial logi to reason about Z spei�ations. This, however,

required several improvements of QCL. Our work is therefore not only relevant

to the Z ommunity. We provide the logiians interested in paraonsisteny with

a omplex appliation area leading to new hallenges for their researh. In the

ontext of this work it inluded to add a theory of equality to QCL.

Speifying and handling underde�nedness in Z has been a topi of researh for

some time. Our work ontributes to the development in this area by provid-

ing a modi�ed shema representation, by presenting re�nement rules and by

introduing a shema alulus. We deided to base our work on a three-valued

interpretation beause it provides an intuitive aount for operation appliabil-

ity. Furthermore, we were able to use previous researh on three-valued logis to

guide our work.

The main results of this thesis relate to our work on quasi-lassial logi, on

applying QCL to reasoning about Z spei�ations and re�nement of inonsistent

Z spei�ations, as well as to our researh on handling underde�nedness in Z.

We present a summary of our �ndings, followed by a disussion on the value of

our work, inluding suggestions for improvements, followed by a more general

aount of possible future work.

211
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9.1 Results

Our work ontributes both to the development of quasi-lassial logi and to the

researh on the Z notation. This work onsists mainly of three parts: the in-

trodution and development of QCL, the appliation of QCL to reasoning about

inonsistent Z spei�ations and the presentation of a shema notation for un-

derde�nedness, inluding re�nement rules and a shema alulus.

9.1.1 Quasi-Classial Logi

In Chapter 4 we introdued quasi-lassial logi and we investigated some no-

tions of logial equivalene for QCL. First, it turned out that a notion of logial

equivalene based only on the QC onsequene relation is not suÆient beause

it is not transitive. However, it is a neessary ondition for equivalene to hold.

Then we investigated other possibilities to de�ne an appropriate notion of equiv-

alene. As a part of this investigation we found that the absorption laws do not

generally hold in QCL. We �nally de�ned a strong notion of equivalene based

on the equivalene of weak and strong model lasses.

In Chapter 5 we developed quasi-lassial logi with equality. We presented the

semantis and proof theory for reasoning about equality. Furthermore, we showed

the validity of the one-point rule in QCL, a rule ommonly used to eliminate

existential quanti�ation.

In Appendix A we present an implementation of the QCL tableau method based

on leanT

A

P by (Bekert and Posegga, 1994). We onsider this work in progress

beause we have not yet veri�ed our implementation. It has been tested though

on available examples. Our implementation ontributes to the usability of QCL as

a tool to reason about inonsistent theories. It also raised a small issue regarding

some weakening of fousing in the disjuntion S-rule of QCL.

9.1.2 The Appliation of Quasi-Classial Logi in Z

In Chapter 6 we applied QCL to reasoning about inonsistent Z spei�ations.

The outome was that QCL allows fewer but more useful, inferenes in the pres-

ene of inonsisteny.

In Setion 6.4 we developed a notion of quasi-lassial preondition. This en-

ables the analyst to determine the intended appliability of the operation. By

omparison with the standard preondition it is possible to hek operations for

onsisteny.

In Setion 6.5 we investigated the proess of re�nement of inonsistent Z spei-

�ations. We established the notion of QC appliability extending the standard
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notion. QC appliability is stronger than the standard form with respet to in-

onsistenies in the sense that it validates fewer re�nements. We also investigated

a notion of QC orretness.

9.1.3 Guarded Preondition Shemas

In Chapter 7 we developed a shema representation that enables the represen-

tation of both guards and preonditions in a single notation. We generalised

previous work by allowing arbitrary prediates in the guards. This required,

however, a notion of guard alulation, similar to preondition alulation. Op-

erations were given a three-valued semantis to apture the intuition behind their

appliability. This led to a rather simple notion of operation re�nement.

In Setion 7.5 we developed rules to verify the orretness of the re�nement of

guarded preondition shemas. Operation re�nement is seen as removal of un-

derde�nedness and non-determinism. It is a feature of our re�nement onditions

that they provided boundaries for weakening of the preondition and strength-

ening of the guard. Furthermore, we showed that the given onditions generalise

the standard operation re�nement rules in both guarded and preondition inter-

pretation.

Finally, in Chapter 8, we developed a shema alulus for guarded preondition

shemas. We established the validity of our shema operators by proving several

onditions that seem useful to hold. It turned out, however, that the law of the

exluded middle, the ontradition law and the de�nition law for impliation do

not hold. We de�ned a new shema entailment operator to failitate reasoning

about guarded preondition shemas. We showed its validity by re-onsidering

operation re�nement.

9.2 Disussion

9.2.1 Z and QCL

The goal of our researh is to manage inonsistenies in formal spei�ations writ-

ten in the Z notation. The urrent view is that an inonsistent Z spei�ation

is meaningless. Previous work on handling inonsisteny in Z foused, therefore,

on reating onsistent spei�ations. This inludes to either avoid or eradiate

inonsistenies or on separating ontraditing onerns into hierarhies of onsis-

tent viewpoints. Our work, however, provides a novel view on the problem by

proposing to manage inonsisteny by means of using a paraonsistent logi to

reason about inonsistent Z spei�ations.
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In standard logi, a single inonsisteny in a set of assumptions leads to the

problem of triviality, i.e. any well-formed formula in the given language is a

valid onlusion from the assumptions. The formal spei�ation language Z is

based on standard prediate logi. Therefore, it is said that an inonsisteny

in a Z spei�ation renders the spei�ation meaningless. Paraonsistent logis,

however, avoid triviality in the presene of inonsisteny. Therefore, they are

suitable to our task of managing inonsisteny and we deided to investigate the

Z notation being supported by a paraonsistent logi.

We hose quasi-lassial logi to reason about Z spei�ations beause we think

that its properties make it rather suitable for this task. Furthermore, QCL has

been previously applied to reasoning about spei�ations. These spei�ations,

however, were written in standard prediate logi. One hallenge we faed was

to investigate QCL's usefulness for reasoning about formulae onstruted using a

language muh riher than prediate logi. This opened some interesting dire-

tions for researh on QCL itself, as disussed below.

We see our work on managing inonsisteny in Z only as a starting point. We

provide, however, some interesting insights into the nature of inonsisteny in

Z spei�ation and its onsequenes, in partiular, to re�nement of operations.

We showed that QCL allows fewer but more useful onlusions to be drawn

from inonsistent spei�ations. This should help to analyse even inonsistent Z

spei�ations in more detail and thus failitate validation and veri�ation without

onstant removal of inonsisteny.

The proess of developing an abstrat spei�ation towards an implementation,

i.e. re�nement, is an important task in software engineering. In order for re�ne-

ment to be useful, however, requires the abstrat spei�ation to be onsistent.

Managing inonsisteny and being able to derive and verify only useful re�ne-

ments seems to redue the problem of inonsisteny. The theory of re�nement

developed in this work is not yet omplete. We are missing a QC orretness

ondition to further eliminate non-orresponding re�nements. However, the idea

of using both standard and QC re�nement rules together an prove valuable.

Note, the aim is not to build inonsistent spei�ations, a task not very diÆult,

nor to distrat from the danger of inonsisteny, in partiular in later stages of the

development. Our work serves the purpose to understand the intention behind

an inonsistent spei�ation and, thus, to give it a meaning. Given a meaning,

suh spei�ations an be useful to guide further development.

9.2.2 QCL and Z

On the other side, a real-world spei�ation notation like Z provides an inter-

esting �eld of researh for logiians interested in paraonsistent logi. Being
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well-established in the formal methods ommunity and undergoing standardis-

ation, the Z notation annot be altered muh. For example, the Z standard

determines the meanings of the logial operators. Therefore, it is not really pos-

sible to hange the meaning of negation or impliation. This eliminates a wide

range of paraonsistent logis from being appliable with respet to Z.

Furthermore, the Z notation is a very expressive language. It is based on �rst-

order prediate logi with equality and inorporates an extensive mathematial

toolkit. Equality, however, is a property not often onsidered in paraonsistent

logis. In partiular, quasi-lassial logi did not provide means to reason about

equality. Therefore, we ontributed to the development of QCL by inorporating

reasoning about equality.

We note, however, that equality introdues a problem of \partial" triviality. Rea-

soning about equality is ahieved by grouping all equal terms into equivalene

lasses. However, in the presene of inonsisteny two lassially distint equiva-

lene lasses ollapse to form just one lass. In the ase of numbers, in partiular,

this leads to all numbers belonging to the same equivalene lass if there is one

single inonsisteny.

(Mortensen, 1995) links this problem to the property of funtionality of equality.

He proposes to weaken funtionality to ontrol the ollapse of equivalene lasses.

This ould, for example, inlude to apply funtionality only in the onsistent ase.

The onsequenes of suh an approah are, however, not lear yet. Another ap-

proah ould be to follow QCL's idea of using ompositional and deompositional

rules. The equality rules, however, seem not to �t suh a distintion. Both prob-

lems suggest, though, that equality and paraonsisteny have an interesting link

that needs further investigation.

Reasoning about Z spei�ations inludes a variety of tasks. For example, it is

ommon to determine the preondition of an operation to hek the appliability

of an operation. Investigating suh a task raised new questions on what the pre-

ondition is of an inonsistent operation and how to simplify a preondition. In

partiular, we needed to look at the notion of logial equivalene in QCL and of

the validity of the one-point rule. It follows from these examples that the Z nota-

tion provides an interesting benhmark for the appliability of a paraonsistent

logi, like QCL.

9.2.3 Underde�nedness in Z

It has been observed that it is sometimes onvenient to use a ombination of

the guarded and preondition interpretation to allow both modelling of refusals

and underde�nedness. Our work ontributes to investigations into this issue by

extending previous work on the representation of both guards and preondition.

It is novel in the sense that we used a non-standard semantis of operations viz. an
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interpretation in three-valued logi. Furthermore, our notion is more expressive

by allowing after-state variables in the guard.

Re�nement is an important onept in developing spei�ations further. Our

operation re�nement onditions enable the ontinuous development of guarded

preondition shemas onsidering guards and preonditions at the same time.

This approah ensures that preonditions annot be weakened beyond the guard

and that the guard annot be strengthened further than the preondition. This

is an essential di�erene to the work by (Strulo, 1995).

The Z shema alulus is used to struture and develop spei�ations. By pro-

viding a shema alulus for guarded preondition shemas we failitate stru-

tural development of spei�ations modelling underde�nedness expliitly. Fur-

thermore, the entailment operator enables us to analyse spei�ations in muh

the same way as in standard Z.

9.3 Future Work

This thesis draws to an end but our researh is just at its beginning. During

our investigation many questions were raised and only a few ould be answered

here. The future work onsist of further investigations of QCL, of analysing

its appliability to Z further, in partiular the notion of re�nement, and the

handling of underde�nedness and inonsisteny in ombination. Furthermore,

we are interested in applying our researh to more elaborate examples.

9.3.1 Properties of Quasi-Classial Logi

For quasi-lassial logi the property of transitivity fails in general. (Tennant,

1984) notes that for his logi transitivity fails as well, but only where it ought

to, i.e. transitivity fails only in the presene of inonsisteny. Suh a property

for QCL would ertainly be interesting when analysing onsistent theories. This

would, in general, make QCL more useful when applying it not only to investigate

inonsistent but also onsistent theories.

We identi�ed a problem of \partial" triviality when adding equality to QCL.

Analysing the relationship between equality, funtionality and inonsisteny in

the ontext of QCL an provide more insight into reasoning about inonsistenies

in general and about inonsistenies in Z in partiular. Further researh into

equality also inludes extending the theorem prover with equality rules.

The Z standard does not �x a logi for Z and it is said that any logi ompliant

with the standard is suÆient. The question that follows is whether QCL is a

suÆient logi with respet to the Z standard?



9.3. Future Work 217

9.3.2 Re�nement of Inonsistent Spei�ations

One major motivation for this work is the belief in a theory that allows ontinued

development of spei�ations despite the presene of inonsistenies. Re�nement

is one of the proesses of spei�ation development from an abstrat form to

a more onrete representation. Re�nement is also the proess of adding in-

formation. This an, however, lead to the introdution of inonsistenies. The

idea behind the alternative preondition regions is to support re�nement in the

presene of overde�nedness. Current investigations suggest that a ombination of

lassial and quasi-lassial re�nement rules an support detetion and ontrolled

removal of inonsistenies. However, this relation requires further investigation.

Our work foused on operation re�nement. However, data re�nement is fre-

quently used to develop a more onrete representation of the system's ompo-

nents. For example, sets are a mathematial notion whih are usually not used

in programs. During data re�nement they are turned into sequenes or arrays

thus providing a more onrete representation. Inonsistenies an, for instane,

our due to di�erent opinions on the onrete representation. Thus, managing

inonsisteny in data re�nement and subsequently in operation re�nement is an

important issue to look at.

9.3.3 Inonsisteny and Underde�nedness

So far, we only onsidered loal inonsistenies. Surely, to develop a pratially

useful way of managing inonsisteny we need to onsider global inonsistenies

too. On suh a sale, however, it beomes even more important to identify an

order of \harmfulness" of inonsistenies.

In our interpretation of pairs of guarded preondition shemas (gd Op; do Op)

we identi�ed only three regions. Clearly, we ould further distinguish the areas

: gd Op ^ : do Op and : gd Op ^ do Op. The latter area might be regarded as

representing \mirales" or inonsisteny. This leads to the problem of deteting

and managing inonsisteny between the guarded and the preonditioned region.

9.3.4 Appliations

A theory of re�nement in the presene of inonsisteny an ontribute to work

on viewpoint spei�ations (Boiten et al., 1999), where the uni�ation of two or

more viewpoints is de�ned as the least ommon re�nement of the viewpoints. So

far, the veri�ation of this property also ontains a onsisteny hek between

the viewpoint spei�ations. However, this fores removal of the inonsisteny

to unify the viewpoints. Our work an possibly support viewpoint uni�ation
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and the analysis of the resulting spei�ation without neessarily removing the

inonsisteny.

The usefulness of after-state variables in guards is sometimes doubted. This is

due to the evaluation of the guard before exeuting the operation. However, there

are at least two appliation domains that ould bene�t from after-state guards.

In geneti programming, for example, a range of solutions is alulated provided

some initiation but only a small set of the solutions are seleted aording to

some given riteria. These riteria an possibly be expressed in terms of after-

state guards.

(Turski, 2001) presents an unorthodox way of speifying behaviour. He uses so

alled doubly guarded ations where two guards are assoiated with eah ation:

the preguard is speifying the ondition in whih the ation is to be started and the

postguard is speifying under whih ondition the result is to be aepted. Again,

we think that this is expressed within our approah of guarded preondition

shemas. Thus, it would be interesting to investigate the appliability of our

notation with respet to these appliations.

Finally, some ase studies on handling inonsisteny in large projets using QCL

and the Z notation would be interesting to further validate our approah and the

usefulness of inonsisteny tolerant methods. Also, a ase study using guarded

preondition shemas to model reative behaviour would further support our

work.
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Appendix A

QC-LeanTaP: A Tableau-Based

Theorem Prover for QCL

We present some work in progress on a tableau-based theorem prover for QCL.

Our theorem prover, alled QC-LeanTaP, is based on the work by (Bekert and

Posegga, 1994) on leanT

A

P whih we introdue �rst. Then we turn to a small

program to alulate the onjuntive negation normal form of a �rst order predi-

ate formula. We do not skolemize existential prediates, unlike the version used

for leanT

A

P . Finally, we present the tableau-based theorem prover for QCL.

A.1 leanT

A

P

LeanT

A

P is a omplete and sound theorem prover for lassial �rst-order logi

based on free-variable semanti tableau. The unique thing about leanT

A

P is that

it is probably the smallest theorem prover around: The original leanT

A

P program

is only about 12 lines of Prolog.

prove((E,F),A,B,C,D) :- !,prove(E,[F|A℄,B,C,D).

prove((E;F),A,B,C,D) :- !,prove(E,A,B,C,D),prove(F,A,B,C,D).

prove(all(I,J),A,B,C,D) :- !,

\+length(C,D),opy_term((I,J,C),(G,F,C)),

append(A,[all(I,J)℄,E),prove(F,E,B,[G|C℄,D).

prove(A,_,[C|D℄,_,_) :-

((A= -(B);-(A)=B) -> (unify(B,C);prove(A,[℄,D,_,_))).

prove(A,[E|F℄,B,C,D) :- prove(E,F,[A|B℄,C,D).

(Bekert and Posegga, 1994) desribe the basi version of leanT

A

P , whih is an

implementation of standard free-variable semanti tableau. An extended report

on leanT

A

P and the soure ode an be anonymously ftp-ed from
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i12ftp.ira.uka.de:pub/posegga/LeanTaP.ps.Z and

i12ftp.ira.uka.de:pub/posegga/LeanTaPsr.shar.Z

LeanT

A

P is written in Sistus Prolog but to port it to GProlog was easily done.

The prover lives in leantap.pl and is de�ned as the prediates prove/2 and

prove uv/2. See the omments there for details.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% $Id: leantap.pl,v 2.3 1994/12/14 18:09:13 posegga Exp $

% Sistus Prolog

% Copyright (C) 1993: Bernhard Bekert & Joahim Posegga

% Universitaet Karlsruhe

% Email: {bekert|posegga}�ira.uka.de

%

% Purpose: \LeanTaP: tableau-based theorem prover for NNF.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:- module(leantap,[prove/2,prove_uv/2℄).

:- use_module(library(lists),[append/3℄).

:- use_module(unify,[unify/2℄).

%%%%%%%%%% BEGIN OF TOPLEVEL PREDICATES

% ----------------------------------------------------------------

% prove(+Fml,?VarLim)

% prove_uv(+Fml,?VarLim)

%

% sueeds if there is a losed tableau for Fml with not more

% than VarLim free variables on eah branh.

% prove_uv uses universal variables, prove does not.

%

% Iterative deepening is used when VarLim is unbound.

% Examples:

%

% | ?- prove((p(a) , -p(f(f(a))) , all(X,(-p(X) ; p(f(X))))), 1).

% no

% | ?- prove((p(a) , -p(f(f(a))) , all(X,(-p(X) ; p(f(X))))), 2).

% yes

%
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prove(Fml,VarLim) :-

nonvar(VarLim),!,prove(Fml,[℄,[℄,[℄,VarLim).

prove(Fml,Result) :-

iterate(VarLim,1,prove(Fml,[℄,[℄,[℄,VarLim),Result).

prove_uv(Fml,VarLim) :-

nonvar(VarLim),!,prove(Fml,[℄,[℄,[℄,[℄,[℄,VarLim).

prove_uv(Fml,Result) :-

iterate(VarLim,1,prove(Fml,[℄,[℄,[℄,[℄,[℄,VarLim),Result).

iterate(Current,Current,Goal,Current) :- nl,

write('Limit = '),

write(Current),nl,

Goal.

iterate(VarLim,Current,Goal,Result) :-

Current1 is Current + 1,

iterate(VarLim,Current1,Goal,Result).

%%%%%%%%%% END OF TOPLEVEL PREDICATES

% ----------------------------------------------------------------

% prove(+Fml,+UnExp,+Lits,+FreeV,+VarLim)

%

% sueeds if there is a losed tableau for Fml with not more

% than VarLim free variables on eah branh.

% Fml: inonsistent formula in skolemized negation normal form.

% syntax: negation: '-', disj: ';', onj: ','

% quantifiers: 'all(X,<Formula>)',

% where 'X' is a prolog variable.

%

% UnExp: list of formula not yet expanded

% Lits: list of literals on the urrent branh

% FreeV: list of free variables on the urrent branh

% VarLim: max. number of free variables on eah branh

% (ontrols when baktraking starts and alternate

% substitutions for losing branhes are onsidered)

%

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,[B|UnExp℄,Lits,FreeV,VarLim).
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prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)℄,UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV℄,VarLim).

prove(Lit,_,[L|Lits℄,_,_) :-

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[℄,Lits,_,_)).

prove(Lit,[Next|UnExp℄,Lits,FreeV,VarLim) :-

prove(Next,UnExp,[Lit|Lits℄,FreeV,VarLim).

% ----------------------------------------------------------------

% prove(+Fml,+UnExp,+Lits,+DisV,+FreeV,+UnivV,+VarLim)

%

% same as prove/5 above, but uses universal variables.

% additional parameters:

% DisV: list of non-universal variables on branh

% UnivV: list of universal variables on branh

prove((A,B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

prove(A,[(UnivV:B)|UnExp℄,Lits,DisV,FreeV,UnivV,VarLim).

prove((A;B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

opy_term((Lits,DisV),(Lits1,DisV)),

prove(A,UnExp,Lits,(DisV+UnivV),FreeV,[℄,VarLim),

prove(B,UnExp,Lits1,(DisV+UnivV),FreeV,[℄,VarLim).

prove(all(X,Fml),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

\+ length(FreeV,VarLim),

opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[(UnivV:all(X,Fml))℄,UnExp1),

prove(Fml1,UnExp1,Lits,DisV,[X1|FreeV℄,[X1|UnivV℄,VarLim).

prove(Lit,_,[L|Lits℄,_,_,_,_) :-

(Lit = -Neg; -Lit = Neg ) ->

(unify(Neg,L); prove(Lit,[℄,Lits,_,_,_,_)).
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prove(Lit,[(UnivV:Next)|UnExp℄,Lits,DisV,FreeV,_,VarLim) :-

prove(Next,UnExp,[Lit|Lits℄,DisV,FreeV,UnivV,VarLim).

A.2 Normal Form Calulation for QC-LeanTaP

It follows a small program to alulate the negation onjuntive normal form of a

formula in �rst-order prediate logi. The main di�erene to the original version

by (Bekert and Posegga, 1994) is the inlusion of two rewrite rules (distribution

laws) and the removal of the skolemization. The former prevents the disjuntion

rule to be applied to non-literals and the latter to skolemize existentially quan-

ti�ed formulae. Both onditions are required beause of the distintion between

S- and U-rules.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% nnf

%

% GProlog

%

% August 2001: Ralph Miarka

% University of Kent, Canterbury, UK

% Email: rm17�uk.a.uk

%

% Purpose:

% - omputes onjuntive negation normal form for a

% formula given in first-order prediate logi

% - used in onjuntion with q_leantap

%

% based on nnf.pl by

%

% Copyright (C) 1993: Bernhard Bekert & Joahim Posegga

% Universitaet Karlsruhe

% Email: {bekert|posegga}�ira.uka.de

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% hek - xfy means right assoiative; yfx means left assoiative

:- op(400,fy,-). % negation

:- op(500,xfy,&). % onjuntion

:- op(600,xfy,v). % disjuntion

:- op(650,xfy,=>). % impliation
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:- op(700,xfy,<=>). % equivalene

% ----------------------------------------------------------------

% nnf(+Fml,?CNNF)

% Fml is a first-order formula and

% CNNF is its onjuntive negation normal form.

%

% Syntax of Fml:

% negation: '-', disj: 'v', onj: '&', impl: '=>', equiv: '<=>',

%

% Syntax of CNNF: negation: '-', disj: ';', onj: ','

%

nnf(Fml,CNNF) :- nnf(Fml,CNNF,_).

% ----------------------------------------------------------------

% nnf(+Fml,-CNNF,-Paths)

%

% Fml,CNNF See above.

% Paths: Number of disjuntive paths in Fml.

nnf(Fml,CNNF,Paths) :-

(Fml = -(-A) -> Fml1 = A;

Fml = -all(X,F) -> Fml1 = ex(X,-F);

Fml = -ex(X,F) -> Fml1 = all(X,-F);

Fml = -(A v B) -> Fml1 = -A & -B;

Fml = -(A & B) -> Fml1 = -A v -B;

Fml = A v (B & C) -> Fml1 = (A v B) & (A v C);

Fml = (A & B) v (A & C) -> Fml1 = A & (B v C);

Fml = (A => B) -> Fml1 = -A v B;

Fml = -(A => B) -> Fml1 = A & -B;

Fml = (A <=> B) -> Fml1 = (A & B) v (-A & -B);

Fml = -(A <=> B) -> Fml1 = (A & -B) v (-A & B)),!,

nnf(Fml1,CNNF,Paths).

nnf(all(X,F),all(X,CNNF),Paths) :- !,

nnf(F,CNNF,Paths).

nnf(ex(X,Fml),ex(X,CNNF),Paths) :- !,

nnf(Fml,CNNF,Paths).

nnf(A & B,CNNF,Paths) :- !,
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nnf(A,CNNF1,Paths1),

nnf(B,CNNF2,Paths2),

Paths is Paths1 * Paths2,

(Paths1 > Paths2 -> CNNF = (CNNF2,CNNF1);

CNNF = (CNNF1,CNNF2)).

nnf(A v B,CNNF,Paths) :- !,

nnf(A,CNNF1,Paths1),

nnf(B,CNNF2,Paths2),

Paths is Paths1 + Paths2,

(Paths1 > Paths2 -> CNNF = (CNNF2;CNNF1);

CNNF = (CNNF1;CNNF2)).

nnf(Lit,Lit,1).

A.3 QC-LeanTaP

QC-LeanTaP is the tableau-based theorem prover for QCL. We almost doubled

the rules in omparison with leanT

A

P to handle the tableau S- and U-Rules

separately. Skolemization is re-introdued at appropriate stages. The ruial

rule is, however, the disjuntion S-Rule beause it is only appliable to literals

and it allows fousing. The appliation of the disjuntion S-Rule to literals is

ensured by its positioning within the rule system. Fousing is aptured by a

small rule to selet a disjuntion of literals to fous over. This is slightly di�erent

to the original proof theory of QCL. The disjuntion rule used is

�
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_ : : : _ �
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_ : : : _ �
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(: (�
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; : : : ; �

n

are literals℄

It an be shown that this is a short-hand for the multiple appliation of the

disjuntion S-rule. Furthermore, the original disjuntion S-rule is a speial ase

of this rule. We have, however, not established the formal proof of soundness

and orretness for this variant of the disjuntion S-rule yet. Note also that we

inluded the double negation rule beause fousing does introdue negation, thus

double negations an appear.

We have not established the orretness of this implementation nor any improve-

ments. Thus, we onsider it as work in progress. The prover has been tested

using range of examples from the publiations on QCL.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% q_leantap

%
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% GProlog

%

% August 2001: Ralph Miarka

% University of Kent, Canterbury, UK

% Email: rm17�uk.a.uk

%

% Purpose: Lean tableau based prover for Quasi-lassial logi

% by A.Hunter; used in onjuntion with nnf.pl to get

% the negation normal form

%

% based on \LeanTaP by

%

% Copyright (C) 1993: Bernhard Bekert & Joahim Posegga

% Universitaet Karlsruhe

% Email: {bekert|posegga}�ira.uka.de

% Purpose: \LeanTaP: tableau-based theorem prover for NNF.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:- inlude(nnf).

:- inlude(unify).

%%%%%%%%%% BEGIN OF TOPLEVEL PREDICATES

% onvert a list of formulae into nnf

% return a list of nnfs Fml

nnffmls([℄,[℄).

nnffmls([F|Res℄,[(CNNF,s)|Rem℄) :-

nnf(F,CNNF),

write('CNNF = '), write(CNNF),nl,

nnffmls(Res,Rem).

prove(Fml,F,VarLim) :-

nnffmls(Fml,Res), nnf(F,CNNF),

write('CNNFVarLim = '), write(CNNF),nl,

nonvar(VarLim),!,prove((CNNF,u),Res,[℄,[℄,VarLim).

prove(Fml,F,Result) :-

nnffmls(Fml,Res), nnf(F,CNNF),

write('CNNFResult = '), write(CNNF),nl,

iterate(VarLim,1,prove((CNNF,u),Res,[℄,[℄,VarLim),Result).
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iterate(Current,Current,Goal,Current) :- nl,

write('Limit = '),

write(Current),nl,

Goal.

iterate(VarLim,Current,Goal,Result) :-

Current1 is Current + 1,

iterate(VarLim,Current1,Goal,Result).

% ----------------------------------------------------------------

% prove(+(Fml,Sign),+UnExp,+Lits,+FreeV,+VarLim)

%

% sueeds if there is a losed tableau for Fml with not more

% than VarLim free variables on eah branh.

% Fml: list of formulae in negation normal form.

% syntax: negation: '-', disj: ';', onj: ','

%

% UnExp: list of formula not yet expanded

% Lits: list of literals on the urrent branh

% FreeV: list of free variables on the urrent branh

% VarLim: max. number of free variables on eah branh

% (ontrols when baktraking starts and alternate

% substitutions for losing branhes are onsidered)

% Sign: whether S- or U-rules should be used.

% Conjuntion S-Rule

prove(((A,B),s),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,s),[(B,s)|UnExp℄,Lits,FreeV,VarLim).

% U-Double Negation Rule (atually it also works for the S-Rules)

% needed, beause the fous rule an introdue double negation

prove((-(-A),Sign),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,Sign),UnExp,Lits,FreeV,VarLim).

% Disjuntion U-Rule:

prove(((A;B),u),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,u),[(B,u)|UnExp℄,Lits,FreeV,VarLim).

% Conjuntion U-Rule

prove(((A,B),u),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,u),UnExp,Lits,FreeV,VarLim),

prove((B,u),UnExp,Lits,FreeV,VarLim).
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% Disjuntion S-Rules:

prove(((A;B),s),UnExp,Lits,FreeV,VarLim) :-

prove((A,s),UnExp,Lits,FreeV,VarLim),

prove((B,s),UnExp,Lits,FreeV,VarLim).

% fous

prove(((A;B),s),UnExp,Lits,FreeV,VarLim) :-

fous((A;B),C,D),

prove((-(C),u),UnExp,Lits,FreeV,VarLim),

prove((D,s),UnExp,Lits,FreeV,VarLim).

% Quantifiation S-rules

% Existential Quantifiation:

% Skolemize first, then prove skolem. fml

prove((ex(X,Fml),s),UnExp,Lits,FreeV,VarLim) :- !,

opy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),

opy_term((X,Fml1,FreeV),(ex,Fml2,FreeV)),

prove((Fml2,s),UnExp,Lits,FreeV,VarLim).

prove((all(X,Fml),s),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,(Fml,s))℄,UnExp1),

prove((Fml1,s),UnExp1,Lits,[X1|FreeV℄,VarLim).

% Quantifiation U-rules

% Universal Quantifiation:

% Skolemize first, then prove skolem. fml

prove((all(X,Fml),u),UnExp,Lits,FreeV,VarLim) :- !,

opy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),

opy_term((X,Fml1,FreeV),(ex,Fml2,FreeV)),

prove((Fml2,u),UnExp,Lits,FreeV,VarLim).

prove((ex(X,Fml),u),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[ex(X,(Fml,u))℄,UnExp1),

prove((Fml1,u),UnExp1,Lits,[X1|FreeV℄,VarLim).

%

prove((Lit,Sign),_,[(L,Si)|Lits℄,_,_) :-
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rev(Si,S) ->

(unify((Lit,Sign),(L,S)); prove((Lit,Sign),[℄,Lits,_,_)).

prove((Lit,Sign),[Next|UnExp℄,Lits,FreeV,VarLim) :-

prove(Next,UnExp,[(Lit,Sign)|Lits℄,FreeV,VarLim).

% this fous rule is not only for literals

fous((A;B),A,B).

fous((A;B),B,A).

% needed for unifiation

rev(s,u).

rev(u,s).


