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Abstract

In software engineering, formal methods are meant to capture the requirements
of software yet to be built using notations based on logic and mathematics. The
formal language 7 is such a notation. It has been found that in large projects
inconsistencies are inevitable. It is also said, however, that consistency is required
for Z specifications to have any useful meaning. Thus, it seems, Z is not suitable
for large projects.

Inconsistencies are a fact of life. We are constantly challenged by inconsistencies
and we are able to manage them in a useful manner. Logicians recognised this
fact and developed so called paraconsistent logics to continue useful, non-trivial,
reasoning in the presence of inconsistencies. Quasi-classical logic is one repre-
sentative of these logics. It has been designed such that the logical connectives
behave in a classical manner and that standard inference rules are valid. As such,
users of logic, like software engineers, should find it easy to work with QCL.

The aim of this work is to investigate the support that can be given to rea-
son about inconsistent Z specifications using quasi-classical logic. Some of the
paraconsistent logics provide an extra truth value which we use to handle under-
definedness in Z. It has been observed that it is sometimes useful to combine the
guarded and precondition approach to allow the representation of both refusals
and underspecification.

This work contributes to the development of quasi-classical logic by providing a
notion of strong logical equivalence, a method to reason about equality in QCL
and a tableau-based theorem prover. The use of QCL to analyse Z specifications
resulted in a refined notion of operation applicability. This also led to a revised
refinement condition for applicability. Furthermore, we showed that QCL allows
fewer but more useful inferences in the presence of inconsistency.

Our work on handling underdefinedness in Z led to an improved schema repre-
sentation combining the precondition and the guarded interpretation in Z. Our
inspiration comes from a non-standard three-valued interpretation of operation
applicability. Based on this semantics, we developed a schema calculus. Further-
more, we provide refinement rules based on the concept that refinement means
reduction of underdefinedness. We also show that the refinement conditions ex-
tend the standard rules for both the guarded and precondition approach in Z.
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Chapter 1

Introduction

Ja, ich sage schon jetzt voraus: es werden mathematische Unter-
suchungen iiber Kalkiile kommen, die einen Widerspruch enthalten,
und man wird sich noch etwas darauf zugute tun, dafl man sich auch

von der Widerspruchsfreiheit emanzipiert.! o '
Ludwig Wittgenstein

30" December 1930

Software engineering is the branch of computer science that is concerned with
the development of software. Its aim is to provide engineering methods and tech-
niques to build and maintain software. An analogy commonly drawn is between
architects and software engineers. In early stages houses were just built without
a systematic knowledge of how to construct them. However, to build sky scrap-
ers that will not collapse a deep mathematical understanding of the statics of
such buildings was required. As such, only the formalisation of the methods in
architecture allowed new developments.

Software engineering is undergoing a similar metamorphosis. Rather than build-
ing software in an ad hoc fashion, a deeper understanding of its requirements
and its construction is needed to make software more reliable. Formal methods is
the field of software engineering that is aimed at developing techniques to make
the meaning of software artifacts mathematically and logically precise in order
to improve software reliability.

Formal specifications are the main mathematical objects considered in formal
methods. Unfortunately, it has been found that especially large specifications
are often inconsistent. Consistency, however, is required for specifications to be
meaningful. Taken together, this implies that large specifications are usually not
meaningful. The aim of our research is to overcome this problem by handling
inconsistencies in a more practical way.

! “Indeed, even at this stage, I predict a time when there will be mathematical investigations
of calculi containing contradictions, and people will actually be proud of having emancipated
themselves from consistency.” (Wittgenstein, 1964, p. 332), English translation in (Priest, 2000).
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1.1 Managing Inconsistency in Z Specifications

Formal methods are seen as the way forward to more reliable software. Their
application in the development process leads to a deeper understanding of the
requirements of the software under construction. One of the main objects con-
sidered by formal methods are formal specifications. They express the software
requirements in terms of logic and mathematics. This foundation enables the
formal analysis of the requirements and it provides a possibility to verify whether
the requirements are met by the software product.

The development of a specification depends primarily on the sources of informa-
tion, like designers, engineers and others. Often, several developers’ views need
to be incorporated into the description of the software product. It has been found
that, in particular in large projects, the participants disagree on a range of issues.
Furthermore, due to the complexity of large descriptions errors can easily appear.
In general, it has been found that

“Inconsistencies are inevitable in large projects.”
(Ghezzi and Nuseibeh, 1998)

The Z notation is one of several languages used to develop formal specifications.
It is based on logic and mathematics, in particular set theory, and provides a
rather elegant way of structuring the mathematics that describe the system at
hand. However, considering the argument from above we face a practical problem,
because

“Consistency is essential for a Z specification to have any useful meaning.”
(Valentine, 1998)

The conjunction of both claims means that the Z notation is not suitable for
large projects because they can be inconsistent but a Z specification including
an inconsistency would be meaningless or useless. This conclusion is, however,
not practical. As a matter of fact, even inconsistent specifications have a desired
meaning and an intended use.

Inconsistencies are generally regarded as undesirable in software development
and, in particular, in formal specification. A formal specification written in the
Z notation is basically a logical description of a system and its behaviour, i.e.
it is a logical theory. Logicians, however, often regard inconsistent theories as
uninteresting because they allow to derive any conclusion within their language
and therefore none can be trusted. This is also the reason for Valentine’s claim
above.
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Because inconsistencies are seen as undesirable, researchers developed tools and
techniques to remove inconsistencies as soon as, or soon after they are detected.
Another approach is to follow guidelines to prevent the introduction of inconsis-
tencies into specifications in the first place. This research is certainly valuable to
minimise the occurrence of inconsistencies. At times, however, such an approach
can be impractical.

Recently it has been acknowledged that in practice it is not always possible
nor desirable to eradicate inconsistencies immediately, if at all. For example,
the engineer who could decide on how to resolve the inconsistency may not be
available. This would in turn bring the project to almost a standstill because
the specification is considered useless. It could be that no-one knows how to
resolve the inconsistency at all. Also, inconsistencies can be useful to guide the
future development, pointing out areas that need more attention. Moreover, in
particular in large projects, the removal of one inconsistency might bring up
another and sometimes a completely consistent stage is unreachable in practice.
Thus, we are required to manage inconsistencies in a more general fashion.

The Z notation is founded on standard predicate logic but we identified that
inconsistencies cannot be handled appropriately by such a logic. Therefore, it
seems natural to investigate other logical foundations for the Z notation. The
group of logics that can be used to manage inconsistencies are called paraconsis-
tent logics. The aim of our research is to investigate the formal support we can
give to managing inconsistencies in Z specifications using a paraconsistent logic
to facilitate useful formal reasoning in the presence of inconsistency.

1.2 Underdefinedness in Z Specifications

We found that there is a wide range of paraconsistent logics. Some of them cap-
ture inconsistency rather intuitively by providing an extra logical truth value,
often called “both” in the semantics. Furthermore, many of these logics include
another truth value, called “neither”, to denote incomplete knowledge. For ex-
ample, if asked “Who is the current chancellor of Germany?” we can answer “I
was told it is Mr. Schroder”, “I was told it is not Mr. Stoiber”, “I was told it is
Mr. Schoder and I was told it is Mr. Stoiber” or “I do not know at all”. These
four scenarios capture the idea of the four truth values.

An application area for this “don’t know” value in formal specification is un-
derdefinedness. This notion refers to those situations where the operation is
applied outside its domain. In the common Z specification style operations are,
in general, partial relations. The domains of these partial operations are tradi-
tionally called preconditions. Depending on the application area there are two
possible interpretations of the result of applying an operation outside its domain.
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In the traditional interpretation anything may result whereas in the alternative,
guarded, interpretation the operation is blocked outside its precondition. It has
been observed that it is often convenient to use a combination of the guarded and
precondition interpretation to allow both modelling of refusals and underspecifi-
cation.

1.3 Aims and Objective

We identified two interesting areas of research concerning the Z notation. On the
one hand, we found that inconsistencies in Z specifications need to be managed
in a more practical fashion, rather than being eradicated. On the other hand,
modelling underdefinedness explicitly in the Z notation can be further explored.

Managing Inconsistency in Z using Quasi-Classical Logic

The problem is, that the Z notation cannot deal appropriately with inconsistent
situations because it is founded on classical predicate logic. Classical predicate
logic allows trivial inferences in the presence of inconsistency. Paraconsistent
logics, on the other hand, allow only non-trivial inferences despite the presence
of inconsistency. Therefore, it is our aim to investigate whether the Z notation
can be founded on a paraconsistent logic to manage inconsistencies more appro-
priately.

Paraconsistent logics are, in general, weaker than classical logic in the sense
that not all classically valid inferences are possible. This is achieved by non-
standard behaviour of the logical connectives, by the introduction of new logical
connectives, by disallowing established proof rules, like resolution, or by other
means. Furthermore, properties of classical logic, like monotonicity or transitivity
can fail. We need to find a suitable logic for our task, one that will be acceptable
to both specification developers and specification analysts.

Once we have found an appropriate paraconsistent logic we are interested in its
application to the analysis of Z specifications. Our aim is to avoid triviality
in the presence of inconsistency which means that we opt for deriving less but
more useful information. Refinement is concerned with the formal development
of concrete specifications from abstract ones. We are interested in providing a
meaning for refinement of inconsistent specifications. This should, on the one
hand, facilitate the controlled removal of inconsistencies and, on the other hand,
the process of living with inconsistencies in Z specifications.
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Handling Underdefinedness in Z

The aim of this thesis with respect to underdefinedness is to develop a notation
that combines both the guarded and the standard precondition interpretation to
model underdefinedness explicitly. We decide to consider a three-valued semantics
to capture the intuition that (1) an operation can be blocked by a guard, (2) that
the operation can be allowed by the guard but no result has been defined and
(3) the operation is applicable and its result is defined. Then we can use existing
three-valued logics to investigate specifications based on such an interpretation.

The reduction of underdefinedness and non-determinism is a common goal of
refinement. Given such a three-valued interpretation of the applicability of oper-
ations it is our aim to find suitable and intuitive refinement conditions to support
further specification development. We identified that there are systems which re-
quire non-deterministic behaviour. Therefore, we are also interested in refinement
that takes such behaviour into account.

The extensive use of schemas to structure specifications has made Z successful.
The schema calculus provides a means to combine schemas and to reason about
them. It is a further aim of our work to see whether we can construct a schema
calculus suitable for the three-valued interpretation of the operations. Such a
calculus should be as functional as the standard calculus, i.e. it should facilitate
reasoning about the combination of schemas. Note, refinement calculations are
also an application area of the schema calculus.

1.4 Contributions

There are several contributions to be found in this work. Essentially they can
be grouped according to the notions of inconsistency and underdefinedness. The
former consists of work on quasi-classical logic and its application to the analysis
of Z specifications, while the latter refers to the work on a schema representation
for underdefinedness based on a three-valued logic.

On Quasi-Classical Logic. In order to use quasi-classical logic to analyse
Z specifications we were required to develop QCL further. On the one hand,
the literature on QCL does not provide a general notion of logical equivalence
for QCL. Such a notion is, however, necessary to facilitate the simplification of
logical formulae. Therefore we investigate a number of different notions based on
the QC consequence relation and QC model classes. Our work results in a strong
notion of logical equivalence allowing general replacement of equal formulae.

On the other hand, QCL did not include the notion of equality. However, the use
of equality is a common feature in Z specifications. Therefore, we incorporated
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reasoning about equality into QCL. This led also to the investigation of the one-
point rule in QCL and we established it to be a valid reasoning rule. Finally, we
developed an automated theorem prover based on the tableau method for QCL.

Quasi-Classical Logic and Z. Quasi-classical logic proved useful in the formal
analysis of inconsistent Z specifications. We demonstrated that fewer but more
useful inferences from inconsistent specifications are possible. Given the standard
definition of a precondition but using QCL, we found a notion of applicability
that is able to capture the intended application area of an inconsistently defined
operation. This quasi-classical precondition is then used to investigate the process
of refinement of inconsistent operations. The result is an applicability rule that
prevents some “useless” refinements from inconsistent operations.

Guarded Precondition Schema. Based on a three-valued intuition of the
applicability of an operation we developed a Z-like schema representation for
both guards and preconditions in an operation thus enabling the specification of
underdefinedness. Our schema representation is more expressive than previous
developments by allowing after-state variables in the guard. This required the
development of rules for calculating the implicit guard and precondition of an
operation. Given those, we were able to provide a set of refinement rules for
operations and showed that they extend the standard rules with respect to the
guarded and precondition interpretation.

A Schema Calculus. To improve the usefulness of guarded precondition
schemas we developed a schema calculus considering the standard Z schema op-
erators. We were guided by our three-valued interpretation of the applicability of
operations. The definition of most schema operators was straightforward. How-
ever, due to the non-classical interpretation, schema implication and entailment
turned out to be different. We were, however, able to re-gain a suitable entailment
operator to facilitate, for example, refinement calculations.

1.5 Outline

This thesis starts with a short introduction to Z followed by a discussion on
inconsistency and underdefinedness in 7Z specifications. Then we present some
insight into paraconsistent reasoning and, in particular, into quasi-classical logic.
In the following chapters we apply these logics to reasoning about inconsistencies
in Z and to develop a new semantics for handling underdefinedness in Z. Below,
we give a more detailed description of the structure of this thesis.
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Chapter 2. In Chapter 2 we introduce the Z notation. We provide some back-
ground from logic and set theory, including types, relations and functions, and we
introduce Z schemas, the basic building blocks of a Z specification. We present
the schema calculus as a means to structure Z specifications and to combine
schemas. Furthermore, we consider the notion of refinement of Z specifications
to develop abstract specifications into concrete ones. Throughout this thesis we
use the support of tools which are presented in this chapter. Finally, we discuss
briefly the relation of Z to some other formal specification notations.

Chapter 3. In Chapter 3 we describe the aim of our research in more detail.
We are interested in the sorts of inconsistencies that can arise in Z specifications.
We claim that inconsistencies can be a tool guiding the development of specifica-
tions and we look at desired inferences despite the presence of inconsistencies in
Z specification. Underdefinedness can be considered to be closely related to in-
consistency thus we introduce the concept of underdefinedness in Z specifications
and we propose a new way to handle it.

Chapter 4. In Chapter 4 we introduce some background on the notion of para-
consistency, including the different motivations for paraconsistency, two defini-
tions of paraconsistency and some of the approaches to construct a paraconsis-
tent logic. Then we present two closely related four-valued paraconsistent logics,
namely the logic FOUR by (Belnap, 1977b) and the logic FOUR by (Damaésio
and Pereira, 1998). A three-valued subset of the logic FOUR is used in Chapters
7 and 8 to provide the semantics for our work on underdefinedness. The main part
of Chapter 4, however, is devoted to the introduction of quasi-classical logic by
(Hunter, 2000) which plays a major role in the following chapter. We contribute
to the development of QCL by investigating the notion of logical equivalence in

QCL.

Chapter 5. In Chapter 5 we incorporate reasoning about equality into QCL.
We introduce the syntax and semantics for equality, including the equality ax-
ioms and some investigation of using these axioms as extra assumptions in the
reasoning process using (QCL. Then we develop the machinery to reflect that
we are dealing in fact with equality. We extend the proof system of QCL by
extra tableau rules for handling equality and we prove their soundness and com-
pleteness. Finally, we present a version of the one-point rule for QCL to further
facilitate QCL’s applicability to our research.

Chapter 6. In Chapter 6 we bring together QCL and Z. We present a small
example of a library system specified using the Z notation. We introduce an in-
consistency into the example to use it as an illustration throughout this chapter.



1.5. Outline 8

In the classical setting such a specification would be meaningless but not so when
using quasi-classical logic. We demonstrate that QCL allows fewer but more use-
ful inferences than standard predicate logic. Then we apply QCL to the process
of calculating the precondition of inconsistent operation schemas facilitating a
discussion on the refinement process of inconsistent operations. Following the
notions of standard refinement, we establish the principles of quasi-classical ap-
plicability and QC correctness and thus show that QCL can be used to control
the continuous development of inconsistent specifications. Note, some parts of
this chapter were previously published by (Miarka et al., 2002).

Chapter 7. In Chapter 7 we link up the Z notation, the problem of underde-
finedness and the two interpretations of the meaning of a precondition in Z. We
demonstrate by means of two examples, normalisation and a simple money trans-
action system, that a combination of the traditional and blocking interpretation
is sometimes required. Then we define a schema notation including both guards
and effect schemas. Based on that we define regions of operation behaviour,
i.e. whether an operation is inside or outside the guard, or inside or outside the
precondition. These regions can naturally be defined in a three-valued inter-
pretation leading to a simple and intuitive notion of refinement that generalises
standard operation refinement. We introduce these refinement rules and show
their compatibility to the standard ones. Note, some parts of this chapter were
previously published by (Miarka et al., 2000).

Chapter 8. In Chapter 8 we develop a schema calculus for such guarded pre-
condition schemas. We start the chapter with a brief recapitulation of the notion
of a guarded precondition schema and we continue with an illustration of its use
by presenting a small example of a heat control system. It follows the main part
consisting of the development of the schema calculus itself which is based on the
standard schema operators. We validate the calculus by proving several laws for
our schema operators. Furthermore, we show that some laws of the classical Z
schema calculus do not hold within our calculus. We revise the standard notions
of schema applicability and we return to investigating operation refinement, using
the newly developed schema calculus.

Appendix A. In Appendix A we present work in progress on a tableau-based
theorem prover for QCL. The theorem prover, called QC-LeanTaP, is based on
lean TP which we briefly introduce first. Part of lean TP is a small program to
calculate the conjunctive negation normal form of a first order predicate formula.
We adapt this program for our needs by removing skolemization of existential
predicates. Finally we present our tableau-based theorem prover for QCL.



Chapter 2

A Short Introduction to Z

Z is a formal specification notation. It is used to model a system by naming
the components and to state the constraints upon them and their relations, thus
describing the behaviour of the system. Z is formal in the sense that it uses
mathematics, which consists basically of set theory and first-order predicate logic,
to specify systems. This foundation enables mathematical reasoning to establish
that desired properties are indeed consequences of specifications written in Z.

The main feature of Z, distinguishing it from many other formal notations, is the
schema notation. It provides a very elegant way of structuring the mathematics
specifying a system as well as to structure the system itself. The Z notation
defines a schema calculus to combine schemas. It is also used to reason about
the specification. This includes the ability to reason about the development of
more concrete specifications from abstract ones, i.e. about refinement.

Z is a notation, not a method, although it is often said to be one. The Z standard
(ISO/IEC 13568, 2002) does not say how to use Z in a systematic way and to
what Z can be best applied. Neither does the Z standard give any guidance on
how to develop a system from a Z specification. Note also that Z specifications
are not executable nor, in general, can they be compiled into a running program.
Hence, Z is not some kind of a programming language.

The Z notation has been used to specify different kinds of systems. Examples of
applying Z successfully include safety critical systems, such as railway signalling
and medical devices, security systems, like transaction processing systems, and
general hard- and software developments. A comprehensive list of application
examples as well as information on tools and other resources can be found on the
Z notation home page: http://www.comlab.ox.ac.uk/archive/z.html.

The aim of this chapter is to give an overview of the Z notation and to introduce
the necessary background to be able to describe those problems we will tackle
in the next chapters. We present the schema notation, including the schema
calculus, the most common conventions and the notion of refinement in Z. Finally,
we discuss briefly tool support for Z and other methods related to Z.
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2.1 Introduction

Z is a formal specification language based on Zermelo-Fraenkel set theory and
first-order predicate logic. It provides a notation for describing the behaviour of
a system using mathematics. The key feature of Z is its schema notation, a way
to structure the mathematics elegantly. A Z specification not only consists of
mathematical text but also of informal explanatory text, describing the mean-
ing of the mathematical constructs. The purpose of the formality is to avoid
ambiguities inherent in informal descriptions and to provide a basis for rigorous
reasoning.

The Z notation includes an extensible toolkit of mathematical notation, a schema
notation for specifying structures in the system and for structuring the specifica-
tion itself and a decidable type system which allows extra checks to be performed
to reduce the risk of specification errors. Furthermore, Z has a schema calculus for
modifying and combining schemas. The schema operators enable the definition
of new schemas using existing ones in a compact and readable way.

2.1.1 History of Z

The Z notation grew out of work by (Abrial, 1974) at Oxford University’s Pro-
gramming Research Group. Its development and recognition benefited greatly
from being used at IBM UK Laboratories at Hursley Park for the re-specification,
re-design and further development of their Customer Information Control Sys-
tem (CICS). (Nix and Collins, 1988) published one of the many studies on this
project. (Barrett, 1989) reports on another important project at the time, the
use of Z in the formalization of the IEEE standard for binary floating-point arith-
metic which formed the basis for the floating-point unit of the Inmos IMS T800
Transputer. Both projects received the UK Queen’s Award for Technological
Achievement jointly with the Oxford University Computing Laboratory.

Two books helped primarily to establish Z and to stabilise the notation. (Hayes,
1987) edited a collection of case studies which where later substantially revised
in (Hayes, 1993). This collection was used as a kind of a reference on how to use
Z. Later, (Spivey, 1992) produced a reference manual which became the de facto
language definition for many years. For some time now, the Z notation has been
undergoing a standardization process. This effort resulted in the recent publica-
tion of the International Standard (ISO/IEC 13568, 2002) which “establishes the
precise syntax and semantics for some mathematics, providing a basis on which
further mathematics can be formalized.”

Many books, like (Potter et al., 1991), are aimed at the introduction to formal
specification and Z. (Barden et al., 1994), for example, provide some useful advice
on how to use Z in practice. (Jacky, 1997) demonstrates the way of Z through a
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series of short studies, introducing the essential features of the notation quickly.
(Woodcock and Davies, 1996) look more deeply at the development process based
on Z specifications. This aim has been taken further by (Derrick and Boiten,
2001) who present a thorough account on refinement in Z and Object-Z (Smith,
2000), a notation closely related to Z. Common to all these books is their emphasis
on understanding Z and making it available to a wider audience.

There is also a regular series of conferences, ZUM: The Z Formal Specification
Notation, also known as the Z User’s Meetings. These conferences are devoted
to Z and similar specification notation. Recently conferences where held jointly

with the B community. The last conference proceedings were edited by (Bowen
et al., 1998), (Bowen et al., 2000) and (Bert et al., 2002).

2.1.2 Motivation

We choose Z for our work because it is a mature notation. It has a rich litera-
ture of introductory texts and case studies and it has been an object of research
for many years. Z is among the first formal notations to make the crossover
from academia to industry. It has been applied successfully in numerous indus-
trial projects, and according to the companies saved them millions. With these
industrial applications in mind Z underwent the ISO standardization process.
Furthermore, Z is being widely taught, not only at universities.

One of the advantages of Z is that it can be used in a number of different ways
according to the application area. This, however, leads to the problem of choos-
ing the right way for the desired application. For example, we will see later in
this work that there are at least two ways of interpreting the precondition in Z.
The so called disadvantage of Z that it is not a method turns possibly into our
favour. Z not dictating a method provides us with more flexibility to investigate
Z, abstracting from methodological concerns.

The aim of this chapter is to introduce the Z notation. We focus in our presen-
tation on the background necessary for the remainder of this thesis. The reader
familiar with Z can safely skip this chapter as it provides no new insights into the
Z notation. The short discussion on Z tools and on related specification methods
might, however, be of additional value.

2.1.3 Outline

This chapter is structured as follows. In Section 2.2 we provide some background
on logic and set theory, including types, relations and functions. In Section 2.3
we introduce Z schemas, the basic building blocks of a Z specification. Schemas
can be combined appropriately using the schema calculus which we present in
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Section 2.4. The notion of refinement of Z specifications is discussed in Section
2.5. The Z notation is also supported by tools. We present a selection of them
in Section 2.6. Finally, in Section 2.7, we discuss briefly the relation of Z to
some other formal specification notations. This chapter concludes with a short
summary.

2.2 Logic, Sets, Types, Relations, Functions

The Z notation is based on set theory and first-order predicate logic. Although
we assume general familiarity with these topics, we introduce some background
notions frequently used in this work. We cover briefly the logic of Z and then we
present, some notation from set theory and its application to type theory, relations
and functions. Note, that we provide only the terminology used in this work. For
a detailed introduction we recommend one of the aforementioned textbooks.

2.2.1 Logic

The Z notation uses propositional and predicate logic to state the relationship
between the components of a system and to constrain the behaviour accordingly.
The propositional logic used contains the common connectives with their usual
meaning and order of precedence: = — negation, A — conjunction, V — disjunction,
= — implication, and < — equivalence.

Predicate logic is provided by the usual introduction of quantifiers into the lan-
guage, together with the notions of free and bound variables. The Z notation is a
typed language meaning that every variable belongs to a fixed set of values, thus
quantifications need to be typed, too. For example, universal quantification has
the form Vz : T | p @ ¢ and means that for all z in T satisfying the predicate p,
q holds. Existential quantification has the form 3z : T | p @ ¢ and means that
there exists at least one value of z in T satisfying p such that ¢ holds.

The predicate p restricting ¢ is optional. If p is omitted it is considered to be
true. The following equivalences hold for the restricted quantifiers: for univer-
sal quantification Vz : T | p ¢ ¢ < Vz : T e p = ¢ and for existential
quantification 3z : T |peq < Jz: T ep A q.

A variable introduced by a quantifier is said to be bound, and the usual scoping
laws apply. Variables that are not bound in a predicate are said to be free. As
usual, it is possible to replace all bound occurrences of a variable in a predicate.
This ensures the correctness of the following frequently used proof rule of 3-
elimination, also called the one-point rule (for existential quantification): Jz :
Tezr=tAp(z) = teTAp(t), provided that = is not free in ¢. This law
states that if we are required to demonstrate the existence of a variable and a
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suitable instantiation is given, then we can eliminate the existential quantifier.
This law is often used in the simplification of preconditions of operations.

2.2.2 Sets

Set theory is the other cornerstone of the Z notation, in fact, the name Z is
derived from Zermelo-Fraenkel set theory. Membership — € and its converse — ¢,
empty set — &, subset — C, and equality — = are defined as usual.

Sets can be given by listing their elements, like in {red, green, yellow}, or by set
comprehension. For instance, {n : T | p} is the set of all n in T satisfying
the predicate p, e.g. {n : Z | n > 0} describes the set of all natural numbers.
Furthermore, {z : S | P(z) ® Q(z)} is the set of all z of type S satisfying the
predicate P such that () is satisfied, too. Note, P(z) is omitted when P(z) = true
and Q(z) is omitted when @(z) = true. The size of a finite set is determined
by its cardinality (#), e.g. #{red, green, yellow} = 3, considering all elements of
this set are distinct.

Furthermore, we can use the common set operators, like power set construc-
tion — PP, Cartesian product — X, set union — U, set intersection — N and set
difference — \. These operators are all defined as usual. For example, P S is
the set of all subsets of S, e.g. P{red, green} = {@, {red}, {green}, {red, green}},
and the Cartesian product S x T is the set of ordered pairs whose first ele-
ment is in S and whose second element is in 7, e.g. {1,2} x {red, green} =
{(1, red), (1, green), (2, red), (2, green) }.

2.2.3 Types

Z is a typed language or, in logical terms, it is based on many-sorted first-order
predicate calculus. Every expression in Z has a unique type assigned. Basically,
types constrain the use of any kind of value. For example, when z is declared
as ¢ : S then the type of z is the largest set containing S. Thus, types are sets
and every set is contained in exactly one type. Note, however, that the symbol
@ denotes the empty set of all possible types.

Types are important because they allow to detect a wide range of specification
mistakes. For example, (1,2) € N is a type error in Z, because (1,2) is a tuple
whereas N is a set of numbers, not of tuples. The type system of Z is decidable,
thus it is possible to calculate automatically the types of expressions and to check
whether they make sense. There are several tools (see Section 2.6) to support
type checking.
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Built-in Type. Z provides a single built-in type A, called arithmos, supplying
values for use in specifying number systems. For example, the integer numbers
are defined as Z : P A, thus the set of integers, Z, is a subset of A. The set of
natural numbers is defined as N : PZ, thus the number 7 is not of type N but
of type Z and subsequently of type A. The type A has been introduced by the
current Z standard. Before, the set of integers, Z, was considered to be the only
given type and it is still common to consider Z as the “super-type” as done here.

Note, Z has no built-in Boolean type, though a type B consisting of true and false
is, for illustrative purpose, frequently used. This, however, is strictly speaking a
type error, because, in Z, true and false are defined as predicates, not expressions.

Given sets. Although Z provides only a single built-in type, a specifier has a
number of ways to define new types relevant to the particular specification. One
way is to simply declare them. A given set is a declaration of the form

[TYPE)]

introducing a new type TYPE. For example,
[NAME, BOOK|

defines two new sets NAME and BOOK. At this stage, no further information
about values or relationships between these sets are given.

Type construction. Starting with existing types there are various ways to
construct new types. The power set operator PP is an elementary type constructor
often used. For example, the set {alice, bob, charlie} is of type P NAME, given
that each of the names is in the set NAME, i.e. of type NAME. The Cartesian
product is another frequently used type constructor. For example, NAME x N
is a type consisting of ordered pairs, e.g. (alice,2) is of type NAME x N.

Free types. Another important type constructor is the free type. Basically,
free types can be transformed into other Z constructs. However, it makes it
easier to describe certain structures, in particular recursive structures like lists
and trees. Here, we only consider free types over constants. For example,

Report ::= Ok | Failure

denotes a type Report containing exactly two different constants Ok and Failure.
Alternatively, this could have been defined by a given type [Report] and the
constraint Ok, Failure : Report | Ok # Failure AN ¥z : Report @ x = Ok V © =
Failure. For more details on free type construction see (Spivey, 1992, pp. 82).

Another kind of type in the Z notation is the so called schema type, which we
will introduce in Section 2.3.7 after presenting the notion of a schema.
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2.2.4 Relations

Relations are among the most important and most extensively used mathematical
constructs in Z. A relation is a set of ordered pairs. X <> Y denotes the set of all
relations between the sets X and Y, that is, the set of all sets of ordered pairs
whose first elements are members of X and whose second elements are members
of Y. X < Y is defined as P(X x Y). When defining relations, the maplet
notation z — y is often used for (z, y).

Assume that our sets of names contains {alice, bob, charlie} C NAME. Then we
can define a relation letters describing the number of letters in the name, e.g.
letters == {alice — 5, bob — 3, charlie — T}.

For any ordered pair first and second component projection, denoted first and
second are provided. For example, first (alice,5) = alice and second (bob, 3) = 3.
The domain of a relation R : X <> Y is the set of first components of the ordered
pairs in R, i.e. dlom R = {p : R e first p}. The range of the relation R is the set
of second components of the ordered pairs in R, i.e. ran R = {p : R e second p}.
For example, given the relation letters we have dom letters = {alice, bob, charlie}
and ran letters = {3,5,7}.

Often, it is useful not to consider the whole of the domain or range of a set
but restricted subsets. The domain restriction of a relation R : X <+ Y by a set
S :P X, denoted S<IR, is the set of pairs in R whose first components are in S, i.e.
S<AR={r:Refirst r € S}. For example, {alice, charlie} < letters = {alice —
5, charlie — 7}. The domain anti-restriction, or domain subtraction, of a relation
R:X < Y byaset S:PX is the set of pairs whose first components are not in
R,ie. S9R={r:Refirst r ¢ S}. Similarly defined are range restriction and
range subtraction of a relation R : X <» Y by aset T : P Y, denoted R> T and
R & T respectively, but with respect to the second component of R.

It is often useful to specify that a relation only changed marginally. Applications
of such operation include, for example, database updates. For a relation this
means to replace some of the pairs by new ones. The operation to do this is
called overriding. If R and S are both relations between X and Y, the relational
overriding of R by S is the whole of S together with those members of R that have
no first components that are in the domain of S,i.e. R& S = ((dom S) <4 R)US.
For example, letters @ {alice — 6} = {alice — 6, bob — 3, charlie — 7}. Note, if
the domains of the relations R and S are disjoint then overriding coincides with
set union, e.g. letters @ {dan — 3} = letters U {dan — 3} = {alice — 5, bob —
3, charlie — 7, dan — 3}.

There are many more operators on relations defined in the Z standard. Arguably,
there are even more important operators than the presented ones. However, we
have only introduced those that will be valuable to us subsequently. We refer to
the aforementioned textbooks for more information.
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2.2.5 Functions

Functions are relations with particular properties, namely that each element in
the domain is mapped to at most one element of the range. Therefore, the
operators above and all the other relational operators are all defined for functions,
too. There are different kinds of functions distinguished by further properties.
Each kind of function has a name and a symbol assigned.

The set of all partial functions X + Y from X to Y is the set of all relations
between X and Y such that each z in X is related to at most one y in Y.
Basically, the terms “function” and “partial function” are used synonymously. A
function f from X to Y issaid to be total, denoted f : X — Y, ifdomf = X, i.e.
if it relates each member of X to exactly one member of Y. For example, we can
write count : NAME — N for a function count such that count(n) returns the
numbers of letters in a given name n, or names : N -+ P NAME for a function
that returns all the names of a given length. Every name has a number of letters
it consists of, hence count is total but there is at least one natural number such
that there cannot be a name of that length, hence names is partial.

Functions have additional properties. They can be injective, surjective or bijec-
tive. A function from X to Y is injective, if each y in Y is related to no more
than one z in X. A function from X to Y is surjective, if its range is equal to
Y. A function is bijective, if it is both injective and surjective. Thus, count is a
total injective function and names is a partial surjective function.

This concludes our introduction to some basic background. We introduced the
syntax of the logic of Z and some notation from set theory. We covered Z’s type
constructors as well as the use of relations and functions in Z. Next we turn to
the main feature of Z to structure specifications.

2.3 Schemas in Z

The Z specifications we consider will be written in the (usual) “states-and-
operations” style. In this style a system is given by operations describing the
change of the state of the system. The state of the system and the operations
upon it are written using Z schemas structuring the specification into manageable
components.

Schema boxes are the most recognizable feature of Z. They provide a structuring
mechanism for the powerful mathematical language introduced above. Basically,
the specification of a particular operation can be written as one predicate. How-
ever, it would be rather difficult to understand the meaning of such a predicate
at once. Therefore, it is useful to break it into smaller, manageable, components.
That is what schemas are for.
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2.3.1 Schema Syntax

A schema consists of a set of declarations and constraints upon them. For exam-
ple, the schema

__ Library
users : P NAME
borrowed : NAME + P BOOK

users C dom borrowed

introduces users which are a collection of something called NAME and borrowed,
a function that assigns to something from the set NAME a subset of whatever
the set BOOK contains. Furthermore, the predicate constrains the set users to
be a subset of the domain of the function borrowed.

In general, a schema box consists of a schema name, a set of declarations above
a short line, and a predicate below.

__ SchemaName
declaration

predicate

The declarations can be split across lines, like above, or they may be put on
the same line, separated by semicolon. A predicate split across lines denotes a
conjunction, unless another operator is used. For example,

_ Ezample; _ Ezample,
n:4; x:% n:Z
n<5 A/

z > 10 (n <5)V
(z > 10)

the predicate in Frample; means (n < 5) A (z > 10) whereas the predicate in
Ezampley stands for (n < 5) V (z > 10). We also use indentation to structure
predicates appropriately.

Note, that the predicate can be true. Then it is omitted from the schema and
the schema only provides the declarations. For example, the schema

System
message : Report
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introduces something named message of type Report, i.e. something that can be
Ok or Failure, without any further constraints attached.

Schemas can also be written in horizontal form, e.g.

OkReport == [message : Report | message = Ok

describes that the thing message of type Report should be assigned Ok. The
horizontal notation is used for two reasons. On the one hand, the naming of the
schema is made more explicit and, on the other hand, they are more compact in
notation.

In general, Z schemas are accompanied by a description in natural language to
clarify the meaning of the schema. For example, the schema Library describes
a simple library systems consisting of users who can borrow books. Unless the
natural description is given all the components of a schema can be interpreted
quite freely, they are only symbols.

2.3.2 Axiomatic Schemas

Axiomatic schemas are used to introduce new objects into a specification which
are subject to constraints. These objects will be known throughout the specifi-
cation, i.e. they are global. For example, the schema

‘ heat_max, heat_min : 7Z

heat_mazx = 65
heat_min = 45

introduces two global constants heat_maz and heat_min of integer type with
unique values assigned. In general an axiomatic schema looks like

‘ declaration

‘ predicate

Again, the predicate is optional. If it is not given, it is considered to be set
to true. An axiomatic schema without a predicate just introduces new global
names.

Free types, as introduced above, are formally defined using axiomatic schemas.
The earlier definition of

Report ::= Ok | Failure

is an abbreviation for
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[Report]

‘ Ok, Failure : Report

Ok # Failure
Vi : Report e x = Ok V x = Failure

2.3.3 Generic Schemas

We said already that the symbol @ denotes the empty set for all possible types,
thus the symbol & is defined generically, that is, it has a definition using type
parameters. For example,

— [X]

makesum : (X < Z) =7

Ve:X;y:2; 2: (X< Z)e
makesum & =0 A

makesum {(z,y)} =y A
makesum ({(z,y)} U z) = y + makesum (2 \ {(z,y)})

defines a function makesum that can take any set of pairs, where the first compo-
nent is generic but the second component is an integer. The function makesum
then calculates the sum of all the second components, regardless of what the first
components are.

The advantage of generic schemas is their re-usability. Once defined, they apply
to many different situations. For example, most operators on sets are defined
generically, so that the type of the elements does not matter. However, when
using such generic definition at a later stage in the specification, actual sets must
be provided to replace the type parameter. Replacing the generic parameter by
actual sets is called instantiation. Sometimes the actual sets can be inferred from
the context, in some circumstances they must be provided explicitly. In any case,
the value for the generic parameter must be clear.

2.3.4 Schema Inclusion
A schema can be included in another schema to form a composed schema. This

approach supports structuring of specifications. For example, we define a schema
with extra restrictions, like
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— RestrictedLibrary
Library

Vu : users e #(borrowed(u)) <7

by including the schema Library and imposing the condition that no user can
have more than 7 books on loan. Such a schema is equivalent to one obtained by
expanding all declarations and conjoining all predicates, e.g.

— RestrictedLibrary
users : PNAME
borrowed : NAME + P BOOK

users C dom borrowed
Vu : users e #(borrowed(u)) <7

Similarly, we can create a new schema by schema inclusion and additionally pro-
viding new components and constraints on them. The entire schema then consists
of the expansion of the included schema together with the new components and
the conjunction of all the predicates.

2.3.5 Decorations and Conventions

In this subsection we record some of the conventions of notation that are often
used when writing Z specifications. These conventions include the identification of
before and after states, operations on those states and input and output variables.
The conventions are permitted but not enforced by the Z standard, though they
are documented in it, too.

Primed Variables. Each operation in Z is described as a relation between
states, namely the before and after state of the operation. It is therefore necessary
to distinguish between the values of state variables before the operation and their
values afterwards. The convention in Z is to use unprimed variables, like z, to
denote values before the operation and to decorate variables with a dash, like z’,
to denote values after the operation. Note, however, that the schema predicate
can also refer to any global constants.

Primed Schemas. Variables have to be in scope of the operation. If the state
has been described in a schema S, then including S in the declaration part of the
operation schema brings the state variables into scope. The after-state variables
are similarly introduced by including S’. This is a schema obtained from S by
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decorating every variable in the signature of S with a dash, and replacing every
occurrence of such a variable in the predicate part of S by its dashed counterpart.
Thus, operations can be described in Z by a schema of the form

—Op
S
Sl

Note, the variables from the signature of S are the only ones which are primed.
Global constants, types etc. remain unprimed. If S contains a variable which has
already been decorated in some way, then an extra dash is added to the existing
decoration.

Delta. The inclusion of primed and unprimed copies of the state schema is so
common that abbreviation for its use are introduced. The abbreviation AS ==
[S,S5'] is used to denote the general inclusion of primed and unprimed state
schema, thus the operation schema becomes

— Op
AS

For example,

_ AddUser
ALibrary
name? : NAME

name? & users
users' = users U {name?}
borrowed' = borrowed

This use of A is only a convention. Occasionally some authors like to include
additional restrictions in their A-schemas, for example that a particular state
component never changes. For instance, if S contained a component z, but
none of the operations ever changed z, then AS could be defined by AS ==
[S,S8" | 2/ = z], thus making it unnecessary to include z’ = z in each operation
description. Note, however, that we will not use this feature here.
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Xi. When enquiry operations, like reading variables, are being described, it is
often necessary to specify that no change of state should occur. With the current
notation this has to be done explicitly by stating for each component that its
after-state value is the same as its before-state value. This is inconvenient and
can be avoided using the =-convention. Unless it has been explicitly defined
to mean something else, references to =S are treated as being equivalent to
[S,S8" |85 = 6S"], where the meaning of # is explained below.

Inputs and outputs. Often, it is convenient to describe relations between
inputs and outputs as well. The input values of an operation are provided by
‘the environment’, and the outputs are returned to the environment. Commonly
an additional suffix is used to distinguish a variable intended as an input (?) or
an output (1), thus for example, name? denotes an input, and result! denotes an
output.

2.3.6 Normalisation

Earlier, we introduced the Z type system. We mentioned that a type can be
constructed from a given type by constraining it. Normalisation is the process of
making such constraints explicit. Schema normalisation will produce an equiva-
lent schema where all components are declared to be members of their “maximal”
type, rather than of a set contained in those. Consider a schema S with com-
ponents z; : Xy; ...; z, : X,, such that the type of z; is T;. The normalisation
of S is obtained by replacing all declarations of z; : X; by z; : T; and conjoining
z; € X; with the predicate of S.

For example, the normalisation of the schema S1 is given by the schema 52.

~ 51 ~ 52
a,a" : N a,a : 7
()2 <a<(d+1) aeNAdeEN
(a)? <a<(a+1)>

Schema normalisation plays an important role when combining schemas using
the schema calculus.

2.3.7 Schemas as Types

So far we have not made explicit the meaning of a schema. Basically, a schema
denotes a set which is contained in some type. The elements of such a set are
called bindings. The type of these bindings is the signature of the schema, which,
viewed as a set, is the largest set of bindings containing all elements of the schema.
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There is a special operator to construct bindings in a context where all the com-
ponent names are declared. This is the #-operator. For example,

O Library = ( users == users, borrowed == borrowed |)

The two occurrences of the names have rather different meanings. The first is
local to the binding, just the name of a schema component. The second must
refer to a value, namely the value of the variable of that name which must be in
context. For example, when applying 6 to a decorated schema, like

O Library’ = (| users == users’, borrowed == borrowed’ |

it becomes evident that the first name is local and thus not subject to the deco-
ration.

A common use of the #-operator is to turn an operation into a relation between
states. If we have an operation Op on AState, then its relational interpretation
is given by the set comprehension

{Op e (0State — OState’)}

This means that for each possible binding of Op a pair consisting of the included
bindings of the before state State and those for the after state State’ is included.
Thus, each operation can be easily interpreted as a relation of before and after
states. For example, given the operation succ == [n,n' : N | n’ = n + 1] then its
relational interpretation is the set of pairs {({ n ==0),( n==1)),({ n ==

L {n==2)),({(n==2){n==3)),..}

2.4 The Z Schema Calculus

The main building blocks of a Z specification are schemas. They are used to
structure the specification and the systems under consideration. Much of the
power of the Z notation derives from the ability to combine schemas. We already
witnessed schema inclusion as such a construct. The Z notation, however, pro-
vides more operators to combine schema, some of which we present below. The
collection and the use of these operators is called the schema calculus.

Combining schemas is subject to one restriction, namely that their declarations
are compatible. This includes that the same names are used for the same meaning
and, mostly, that the schemas are normalised. Remember, a type definition
implicitly contributes not only to the declaration but also to the predicate of the
schema.

In this section we consider the application of the schema operators to at most two
schemas. This is not a restriction as the operators can be applied successively.
For illustrative purpose we use the schemas U == [Decly | predy| and V ==
[Decly | predy] with their declaration and predicate part.
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2.4.1 Renaming

Renaming schema components is another way to achieve the compatibility of
the schema declarations. Schema components can be renamed, provided that
the new name is not part of the declaration of the schema. The renaming of a
component p by a ¢ in a schema U is denoted U[g/p], thus every occurrence of
p will be replaced by ¢, except if p is bound inside the predicate of the schema.
For example, we have

__ RestrictedLibrary[members [users]
members : P NAME
borrowed : NAME + P BOOK

members C dom borrowed
YV u : members o #(borrowed(u)) <7

2.4.2 Schema Negation

For any schema U, the schema negation — U, is obtained by keeping the decla-
ration of U and negating the predicate, i.e.

= U == [Decly | = predy]

Note, schema negation requires normalisation. For example, the negation of
Ul==[z:N|pred(z)]is[z:Z |z ¢ NA = pred(z)] for some predicate pred
containing z.

Schema negation on its own is not often used in practice. However, it can play
its part in simplifying schema expression when applying schema conjunction and
schema disjunction. The schema calculus, like predicate logic, obeys the de Mor-
gan laws and thus some schema simplifications can be expressed using schema
negation.

2.4.3 Schema Conjunction

Schema conjunction is closely related to schema inclusion. The schema resulting
from the conjunction of the schemas U and V contains both U and V and
nothing else, thus

UNYV ==[U; V]| ==[Decly; Decly | predy A predy]
i.e. the predicates of U and V are conjoined and the declarations are merged

appropriately. Schema conjunction does not need normalisation due to the prop-
erties of conjunction and normalisation.
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However, it is only well-defined when components have compatible types. If the
same variable is declared in both schemas but belongs to different sets, then
the intersection of those sets needs to be taken. For example, [z : N] A [z :
{-1,1}] == [z : NN {-1,1}] == [z : {1}]. If the sets are not compatible,
like in [z : N] and [z : NAME], then the intersection is empty and thus schema
conjunction is undefined.

Schema conjunction allows one to specify different aspects of a system separately.
It can be usefully applied both on operation and on state schemas to combine
those aspects to form a complete description, thus it is used to combine require-
ments.

For example, the schema OkOp describes that an operation has been successful

and it is defined by OkOp == [message! : Report | message! = Ok]. Then
expanding OkAddUser == AddUser A OkQOp is the schema
— OkAddUser
ALibrary
name? : NAME

message! : Report

name? & users

users' = users U {name?}
borrowed' = borrowed
message! = Ok

2.4.4 Schema Disjunction

Schema disjunction is rarely used on state schemas. It is often applied on op-
eration schemas to handle separate cases, in particular error handling and other
exceptions, thus to develop total operations, i.e. operations that have no con-
straints upon their applicability. For example, given the operation OkAddUser
and the following schema

— FailAddUser
=ZLibrary
name? : NAME
message! : Report

name? € users
message! = Failure

reporting a Failure if the given name? is already contained in the set users, then
combining both via disjunction results in a total operation, i.e. TotalAddUser ==
OkAddUser V FailAddUser.
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Schema disjunction is constructed similarly to conjunction, i.e. combine the dec-
larations and apply disjunction to the predicates, thus schema disjunction for two
schemas U and V is defined as

UV V == [Decly; Decly | predy V predy]

provided both schemas U and V are normalised. This is necessary to ensure that
common component names have not only compatible but identical types. This
requirement also follows meta-theoretically because we required normalisation
for schema negation and schema disjunction can be expressed in terms of schema
conjunction and schema negation.

2.4.5 Schema Implication and Equivalence

Schema implication and equivalence have the usual meaning. They are defined
as

U=V=-UVV

provided the schemas U and V are normalised and

U V=U=VAV=>U

Both operators are rarely used to combine schemas. However, they prove useful
to validate refinement conditions or other relations between operations. For ex-
ample, for two operations Op; and Ops, on the same state whose only component
is z : X, the predicate Vz,z' : X e Op; = Op, states that the effect of Op; is
consistent with Ops and Vz,z’' : X e Op; < Op, states that the effects of both
operations are identical. Note, that we quantify over the schema component,
which is explained next.

2.4.6 Schema Quantification

The schema quantification of a schema U results in a new schema V containing a
subset of the components of U in its declaration, with a predicate that is obtained
from U by quantifying over the removed components. Quantification is used to
express universal or existential properties of the given schema, like in refinement
or in precondition calculation.
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Existential Quantification. Given a schema U == [z : X; Decly | predy]
where Decly consists of declarations but for z : X, then the existential quantifi-
cation over z in U is

dz: X ¢ U==[Decly | Iz : X o predy]

Thus, dz : X e U is a schema on all components of U except z. Examples of
the value and usage of existential quantification in Z are given below.

Universal Quantification. It is also possible to universally quantify over
schemas. This happens less frequently than existential quantification but proves
valuable when considering refinement. Given a schema U == [z : X; Decly |
predy]| where Decly consists of declarations but for z : X, then the universal
quantification over z in U is

Vi:X e U==[Decly |Vz:X epredy]

Thus, Vz : X e U is a schema on all components of U but z.

2.4.7 Schema Hiding, Projection and Composition

The following three schema operators are defined using schema quantification and
possibly other schema operators. They are abbreviations to ease the construction
of specifications.

Schema Hiding. Hiding of variables (z; : Xi,..., 2, : X,) from a schema U,
denoted U \ (21,...,2,), is basically identical to existential quantification as such
that U\(xl, ..., &) stands for the existential quantification of the schema U over
the components z; to z,, i.e.

U\(a:l,...,xn):EIJ;l:Xl,...,a:n:Xno U

Schema Projection. Schema projection of a schema U on a schema V', de-
noted U | V, combines the schemas using conjunction but hides all components
from U except those that are part of V. Formally,

UlV=UAV)\(,...,7,)

where (z1,...,1,) are components of U not shared by V.
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Schema Composition. This operation describes the effect of one operation
followed by another, i.e. it is an operation that begins in the before state of
an operation Op; and ends in the after state of an operation Ops. It is only
meaningful when applied to operation schemas on the same state. The schema
composition of two operations Op; and Op, is denoted Op; § Ops.

For example, consider the specification of the cursor movement in an editor buffer
given by (Jackson, 1995). The operations csrRight and csrLeft both operate over
the state File which represents the buffer. Consider the operation csrRight is
applicable, then applying csrLeft after csrRight should result in the same position
of the cursor as before, i.e. csrRight § csrLeft = ZFile. Thus, composition can
also be used to validate the usefulness of some definitions in the specification.

Consider State’' to be the state after the operation Op; was performed. This is
also the state immediately before operation Op,y. Lets call this intermediate state
State”. Then composition is defined as

Op1 § Opy = 3 State” o
(3 State’ o [Opy; State” | State’ = OState"]) A
(3 State o [Opy; State” | 0State = 0State"])

which is the conjunction of both operations where the intermediate state is hid-
den. Schema composition can be calculated using renaming and hiding, e.g.

Op1§ Opy = (Opi[2"/2') A Opla"/2]) \ (s”)

for all state components. Note, schema composition does not connect inputs and
outputs of an operation, which is called piping but not discussed here.

2.4.8 Precondition Calculation

The precondition of an operation characterises all the states and inputs to which
the operation can be applied such that there is an after state and output which
are related to the states and inputs by the operation. In some specification
languages, like VDM (Jones, 1990), preconditions and postconditions are given
explicitly. However, this does not apply to Z. In order to make a precondition of
a given operation explicit one needs to calculate it.

The precondition, pre Op, of an operation Op == [AState; ins?; outs! | pred] on
a state State with inputs ins? and outputs outs! is defined by

pre Op = 3 State'; outs! @ Op

Thus, pre Op is another schema on State and ins?, indicating on which before
states and inputs the operation is applicable. The precondition is, based on
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this definition, a rather abstract predicate. This predicate is usually simplified
applying, for example, the one-point rule and other equivalences. An algorithm
for calculating a precondition is given by (Woodcock and Davies, 1996, pp. 206).

For example, the precondition for the operation AddUser is pre AddUser =
3 Library' e AddUser, which can be simplified to the schema [Library; name? :
NAME | name? & users].

Discussing the issue of the precondition leads also to consider the notion of a
postcondition. Note, Z does not use a single characterisation of the postcondition
of an operation. However, in order to apply the refinement calculus (King, 1990),
a notion of postcondition was adapted. Given an operation schema Op ==
[AState | pred| satisfying the condition pred = pre Op, and a condition P, then
P is considered to be a postcondition of Op if pre Op A P < pred. In particular
this holds if P is equivalent to pred itself, however, other valid postconditions
may exist. The notion post Op is used to refer to some possible postcondition of
Op.

2.5 Refinement in Z

So far we are able to write a formal specification in the Z notation. While
this is a valuable task in its own right we also want to be able to develop a
specification towards an implementation. The process of development from an
abstract specification towards a more concrete representation is called refinement.
To (Woodcock and Davies, 1996), refinement is all about improving specifications.
It involves the removal of non-determinism, or uncertainty. A refinement is said to
be acceptable provided it is impossible for an observer to notice the replacement.

2.5.1 Operation Refinement

(Derrick and Boiten, 2001) use the term simple refinement to describe the re-
finement of operations where the state schema does not change. This notation is
commonly considered as operation refinement. However, simple refinement is a
more general concept than operation refinement.

Operations in Z are, basically, binary relations over a state space relating a be-
fore state and an after state. Operations can be, if necessary, interpreted as
total relations. Figure 2.1 shows two graphical representations of the operation
Op = {(0,0),(0,1),(2,2)} over the state {0,1,2}. The dotted lines represent the
application of the operation for before states that are outside the domain.

Basically, there are two interpretations possible for applying an operation out-
side the domain. The first graph represents the contractual interpretation in Z,
whereas the second one considers the blocking interpretation. Depending on the
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Figure 2.1: Relational Interpretations of the Operation Op = {(0,0), (0, 1), (2,2)}
over the state {0,1,2}

chosen interpretation, totalisation binds all states not in the domain to all others
and L, a distinguished state representing non-termination, or it binds all states
not in the domain only to L.

In the contractual interpretation the domain of the operation describes the area
in which the operation should be guaranteed to deliver a well-defined result as
described by the relation. This area is commonly referred to as the precondition
of the operation. Outside the domain, however, the operation may be applied but
can return any value, including an undefined one. In the blocking interpretation
operations may not be applied outside their domain. Applying the operation
anyway leads to an undefined result. In this context, the precondition is often
called the guard of the operation.

Consider a particular before state s. A substitution of the operation AOp by
an operation COp would be unnoticed if either (1) s is in the domain of AOp,
then the after state for COp should be one of the possibilities in the range of
AOp. Furthermore, this means that s should also be in the domain of COp
otherwise L would be allowed by COp but not by AOp; or (2) in the contractual
interpretation, if s is not in the domain of AOp, then any possible after state
for C'Op is acceptable. This, in turn, means that s may, or may not, be in the
domain of COp.

This intuition is formalised in the following way. An operation COp is an oper-
ation refinement of an operation AOp over the same state space State and with
the same inputs 27 : X and the same outputs y!: YV, if and only if

Applicability
Y State; z7 : X e pre AOp + pre COp
Correctness

V State; State'; z7:X; y!: Y epre AOp A COp = AOp
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Note, we use the turnstile notation as it is more general than implication. We
will find in subsequent chapters that consequence and implication are not always
interchangeable as in standard predicate logic. The correctness rule above ap-
plies within the standard, contractual, interpretation of a Z operation. In the
alternative, blocking interpretation, the correctness rule becomes

Y State; State’; z7:X; y!: Y ¢« COpE AOp

There are a few special cases worth considering. First, an operation does not
necessarily have to have inputs and outputs. The applicability and correctness
conditions simplify accordingly. Furthermore, if the precondition of the concrete
and abstract operation are the same, i.e. pre AOp = pre COp then COp is an
operation refinement of AOp if and only if

V State; State’ @ COp = AOp

i.e. the correctness condition was simplified using Op = pre Op A Op. Note, this
holds in both the blocking and the contractual interpretation.

Schema conjunction is one way of obtaining operation refinements. This au-
tomatically guarantees correctness and only applicability needs to be checked.
Thus, the operation AOp A X, for operations X and AOp both over AState, is
an operation refinement of AOp if and only if

V State @ pre AOp b pre(AOp A X)

For example, in Subsection 2.4.3 we formed the schema OkAddUser by a con-
junction of the schemas AddUser and OkOp and, indeed, we can verify that
OkAddUser is an operation refinement of AddUser using the Z/EVES proof tool.

=> try \forall Library @ \pre AddUser \implies \pre OkAddUser;
=> prove by reduce;

Proving gives ...

true

In the contractual interpretation, operation refinement allows preconditions to
be weakened and non-determinism to be reduced. The applicability condition
requires that the concrete operation is defined everywhere the abstract operation
was defined. It allows, however, that the concrete operation is defined where
the abstract operation was not. The correctness condition requires the concrete
operation to map into the range of the abstract operation everywhere the abstract
operation is defined. It does not require, however, to cover the whole range of



2.5. Refinement in Z 32

the abstract operation, i.e. it is not necessary for the concrete operation to be
identical to the abstract operation.

For example, the operation TotalAddUser is an operation refinement of the oper-
ation AddUser. The operation TotalAddUser is applicable everywhere AddUser
was defined. Additionally, it is also defined in case the user name? is already a
member of the library.

=> try \pre AddUser \shows \pre TotalAddUser;
=> prove by reduce;

Proving gives ...

true

Furthermore, the operation TotalAddUser performs every task that AddUser does
but more. We already showed that OkAddUser is an operation refinement of

AddUser. Because the preconditions of FailAddUser and OkAddUser are disjoint
correctness follows immediately.

=> try \pre AddUser \land TotalAddUser \implies AddUser;
=> prove by reduce;

Proving gives ...

true

Besides operation refinement (Derrick and Boiten, 2001) consider two more cases
of simple refinements. These are concerned with establishing and imposing in-
variants. Since we are not using such refinements in our work we will not discuss
them here.

2.5.2 Data Refinement

In data refinement we are concerned about a more concrete representation of the
state. Data refinement, however, is not much considered in this work. Neverthe-
less, we refer to it and thus we present briefly what data refinement is about. For
a thorough introduction to data refinement we recommend (Derrick and Boiten,
2001). Note, for illustrative purpose we consider here only operations with no
inputs or outputs.

Simple, operation, refinement was restricted to operations over the same state.
However, to move closer to an implementation the definition of the state needs to
be refined too. For example, in an abstract specification we use sets frequently,
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however, a more concrete representation contains lists or arrays instead. Note,
changing the data representation will also affect the operations over them.

The standard definition of data refinement for Z schemas whose operations are
total relations is now commonly given by using simulations. A simulation is also
known as a retrieve relation or abstraction relation. Basically, there are two forms
of simulation, called upward and downward simulation.

AOp AOp

AState AState’ AState AState’
: A A
v v

! !

CState cop CState CState cop CState

Figure 2.2: Refinement Using Downward and Upward Simulation

Figure 2.2 shows two commutative diagrams representing downward and upward
simulation. The abstraction R is a relation, the arrows labelling R and R’ just
indicate the direction to follow around the diagram.

The first diagram describes that the application of the relation R followed by the
operation COp can be matched by the operation AOp followed by a mapping R'.
In the second graph the simulation is reversed, i.e. the effect of COp followed by
R’ can be matched by R followed by AOp. In either case, valid applications of the
concrete operation can be simulated by applications of the abstract operation.

For Z schemas AOp and COp without input or output, the relation R on AState A
CState is a downward simulation from AOp to COp if

Initialisation

YV CState’ o Clnit = 3 AState' ® Alnit A R
Applicability
YV AState; CState; @ pre AOp A R+ pre COp

Correctness

V AState; CState; CState' o
pre AOp AN R A COp - 3 AState’ @« R' N AOp
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Note, these rules assume the standard, contractual, interpretation of Z operations.
In the blocking interpretation, the correctness rule becomes

V AState; CState; CState’ @ R AN COp = 3 AState’ @ R' N AOp

This formalisation of downward simulation extends the notion of operation re-
finement by considering initialisation and also changes in the state space. The
intuition behind applicability and correctness remain the same apart from con-
sidering the change of state space, which is described by the retrieve relation
R.

Downward simulation is the most common way of checking data refinement. How-
ever, it has been found that there are valid refinements that cannot be verified
using downward simulation but using upward simulation. Upward as well as
downward simulation are sound, i.e. if an upward or downward simulation exists
between conformal operations AOp and COp then COp is a data refinement of
AOp. However, upward and downward simulation are only jointly complete, i.e.
refinements are possible which require both kinds of simulations for their proof.

Note, we do not consider data refinement any further in this work. However, we
are interested in applying our work to data refinement in the future.

2.6 Tool Support for Z

There are a number of tools available to support the Z notation. These tools offer
various degrees of assistance in type setting Z specifications and pretty printing,
syntax and type checking, theorem proving and specification animation. The
following list of tools is a small sample and certainly not complete. We refer to
the Z home page for more details.

oz.sty is a ITEX macro for Object-Z from the SVRC (Software Verification
Research Centre) at the University of Queensland. We used this style to type-set
the Z notation in this thesis.

FuZZ is a printing and type-checking system for Z specifications. Using FuZZ
together with XTEX you can input Z specifications as ASCII file, process them for
laser printing, check specifications for their conformance to the Z language rules
and produce a listing of schemas with components and their types. The FuZZ
distribution contains a special IXTEX font of Z symbols and a library containing
the standard mathematical tool-kit. FuZZ is fully compatible with the reference
manual by (Spivey, 1992). Using FuZZ requires a licence.

ZTC - the Z Type Checker — can determine if there are syntactical and typing
errors in Z specifications. It is intended to be compliant to (Spivey, 1992). ZTC
accepts as input specifications written in IXTEX using the oz or zed packages, or
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its own ZSL notation which is an ASCII version of the Z syntax by the author of
ZTC. It is available free of charge for educational and non-profit uses.

Formaliser is a syntax-directed Z editor and interactive type checker. It provides
the facilities to interactively query attributes and to view all identifiers with
their types. Formaliser is a what-you-see-is-what-you-get type of editor showing
all Z symbols as they appear printed. Documents can be exported to KIEX or
its true-type Z font can be used to create MS-Word documents. Formaliser is
a commercial tool, developed at Logica (UK), which runs under the Windows
operating system.

ProofPower is a specification and proof tool based on an implementation of
Higher Order Logic (HOL). It provides support for specification and proof in Z
using a semantic embedding of Z in HOL. The distribution provides an interface
of ProofPower to TEX and KTEX, an X Windows front-end, the HOL as well as Z
specification and proof development system and, finally, the DAZ tool supporting
refinement from Z to the SPARK subset of Ada. ProofPower is available free
for academic and personal, non-commercial use from Lemma One (http://www.
lemma-one.com/ProofPower/).

CADIiZ is a set of integrated tools for preparing, type checking and analysing Z
specifications, which is available free of charge from the University of York (UK).
It gives direct support for the (ISO/IEC 13568, 2002) Standard Z notation and
evolves accordingly. A Z specification is prepared using IXTEX or troff mark-up
and imported into CADiZ. The CADIZ toolset then provides syntax, scope and
type checking, type-setting and specification browsing. It allows to prove conjec-
tures interactively. It provides different decision procedures, like model checking
and resolution. Furthermore, the expansion of schemas and an elementary re-
finement editor are supported. CADIZ received a BCS Award for outstanding
technological achievement in the computing field.

Z/EVES supports the analysis of Z specifications by providing syntax and type
checking, schema expansion, precondition calculation, domain checking and gen-
eral theorem proving. It supports almost the entire Z notation and includes the
mathematical toolkit as given by (Spivey, 1992). The Z/EVES theorem prover
provides powerful automated reasoning as well as interactive proof development.
Users with little experience in theorem proving can use the tool, too. Syntax
and type checking, schema expansion and precondition calculation require little
interaction.

In the current version (2.1) Z/EVES also includes a graphical user interface that
allows Z specifications to be entered, edited, and analysed in their typeset form.
It supports the incremental analysis of specifications and it manages the syn-
chronisation of the analysis with modifications to the specification. Z/EVES can
be obtain from ORA Canada (http://www.ora.on.ca/z-eves/) free of charge
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for educational use. It runs under the Linux, Windows and Solaris operating
systems.

Z/EVES, as decribed by (Saaltink, 1997), is the tool we used to analyse the spec-
ifications given in this thesis. We used the tool to type-check all specifications as
well as to calculate preconditions, to check properties and to validate refinement
conditions.

Recently a new Community Z Tools Initiative (CZT) has been proposed to join
the effort of developing a coherent and extensive set of Z tools and as such to
support further application of Z in industry.

2.7 Formal Methods and Notations related to Z

Z has some relatives in the world of formal methods and formal notations. As
such, we assume that some of the work presented in this thesis may also apply
to the notations presented below. The chosen relatives are closely related to Z.
The development of Z has benefited from and contributed to the development of
these notations. For example, Jean-Raymond Abrial developed Z while being in
Oxford together with Cliff Jones, who was largely involved in the development of
the Vienna Development Method (VDM). Later, Abrial developed the B-Method,
most certainly building upon his experiences gained earlier.

2.7.1 The B-Method

The B-Method has been developed by Jean-Raymond Abrial, also the originator
of the Z notation, and others. The B-Method is described in The B-Book by
(Abrial, 1996). It is a method because it is aimed at the development of program
code from a specification which is given in B’s own Abstract Machine Notation.
The B-Method includes extensive tool support, notably the B-Toolkit by B-Core
Ltd and Atelier B. The B-Method has been applied in many significant industrial
projects.

The basic building block of a B specification is an abstract machine. The B-
Method supports the development of large specifications from small ones by pro-
viding a number of structuring mechanisms. B and Z are both based on the same
underlying logic and set theory. The B calculus, however, is based on Dijkstra’s
guarded command language. In B, preconditions are stated explicitly and so is
non-determinism. The postcondition in B looks like an assignment in program-
ming languages but its semantics is based on substitution on the state, like in
VDM and Z. B provides also a guard construct, thus facilitating both guarded
and precondition interpretation. Note, too, that the B-Method incorporates a
particular notion of refinement within its language definition.
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(Schneider, 2001) provides a textbook introduction to the B-Method. He covers
the B approach to software development from specification through refinement,
to implementation and code generation, considering verification at each step.

In comparison to (Abrial, 1996), he also covers tool support, in particular the
B-Toolkit.

2.7.2 The Vienna Development Method

The Vienna Development Method is a set of techniques for modelling computing
systems, analysing those models and progressing to detailed design and coding.
It originated at the IBM Vienna Laboratory in the mid-1970s. The notation
and tools have been continuously developed since and are applied on a wide
range of systems. VDM is a method because it emphasises the development of
program code and provides the necessary mechanisms. (Jones, 1990) provided
one of the standard references, introducing the reader to the systematic software
development using VDM and (Jones and Shaw, 1990) present a collection of case
studies in VDM.

VDM is based on a three-valued logic, which allows treatment of undefinedness
of partial functions not explicitly cared for in Z or B. Furthermore, in VDM,
preconditions and postconditions are given explicitly, which does not apply to Z.
The advantage is an additional consistency check whether the real precondition
of the operation corresponds to the stated one. Invariants in VDM, however, are
assumed to be an implicit part of every pre- and postcondition.

B, VDM and Z were compared in the literature by (Bicarregui and Ritchie,
1995), providing a comparison of the VDM and B notations, (Hayes et al.,
1993), emphasising on understanding the differences between VDM and Z, and
http://www.b-core.com/ZVdmB.html comparing all three notations. There
are also a VDM+B project at Imperial College and a Z+VDM project at
SVRC aimed at combining these notations. More information on VDM, like
tools, bibliography and application database can be found on its home page:
http://www.csr.ncl.ac.uk/vdm/.

2.7.3 Object-Z

Object-Z is an extension of the formal specification language Z, retaining existing
syntax and semantics, to accommodate object orientation. The main reason for
this extension is to improve the clarity of large specifications through enhanced
structuring. It also facilitates modular verification and refinement.

A 7 specification, as presented above, defines a number of state and operation
schemas. A state schema introduces the variables and defines the relationship
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between their values. An operation schema defines the relationship between the
before and after states corresponding to one or more state schemas. One of
the disadvantages of Z is that one is required to examine the signature of all
operations to inferring those operation schemas that may affect a particular state
schema. In large specifications this is rather impracticable.

Object-Z overcomes this problem by introducing a new class structure which
encapsulates a single state schema with all the operations which may affect that
state. Each class can be examined and understood in isolation. An Object-Z
specification of a system comprises a number of class definitions possibly related
by inheritance, a mechanism for class adaptation by modification or extension,
and instantiation.

Differences of Z and Object-Z include that the scope of global type and constant
definitions in Object-Z is limited to the class in which they are defined. Fur-
thermore, an operation schema extends the notion of a schema in Z by adding
to it a A-list. The A-list holds the primary variables which the operation may
change when it is applied to an object of the class. All other primary variables
remain unchanged. This results also in a different treatment of the precondition
of operations. In Z, being outside the precondition leads to divergence, i.e. the
operation can perform anything. In Object-Z, however, operations are blocked
outside the precondition and thus cannot change the environment, unless they
have been explicitly declared in a so called Delta-list. Note, too, that Object-Z
has an operational semantics, unlike Z.

For an introduction to Object-Z the work by (Duke et al., 1994) is recommended.
(Stepney et al., 1992) provide a collection of papers describing various approaches
of object orientation in Z, including Object-Z. (Smith, 2000) published a reference
manual in the style of (Spivey, 1992).

2.8 Summary

Z is a formal specification notation useful for describing computing systems. Z
is a model-based notation. A system is modeled by representing its state, i.e.
its components and constraints upon them, and operations that can change the
state, thus modelling the behaviour of a system. Note, Z is not intended to specify
non-functional requirements, like usability, performance, program code size and
reliability. It is also not intended for the description of timed or concurrent
behaviour.

In this chapter we introduced some basics of the Z specification notation. We
covered the logic of Z and the underlying set theory. We went on to introduce
the concept of types and their usage in Z. Furthermore, we presented the main
features of Z, its schemas notation and the schema calculus, used to modify
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and combine schemas. Next, we gave some insight into refinement in Z, the
development of a more concrete specification from an abstract one. Finally, we
introduced some Z tools and other specification notations related to Z.

Details related to the Z notation including information on publications, the Z
standardisation process, Z courses, tool support, and other material can be found
on the Z home page: http://www.comlab.ox.ac.uk/archive/z.html.



Chapter 3

Inconsistency and
Underdefinedness in Z

We are faced on an almost daily basis with inconsistent and incomplete knowl-
edge. We have learnt to live with it and to manage it. This does not imply that
we accept the status quo and stagnate. Both kinds of deficiencies provide a tool
for development and guide research. Most importantly, however, we are able to
tolerate both problems until they can be solved. Meanwhile we make use of them
to derive as much possible and useful information as we can.

The Z notation is a specification language based on classical logic. Classical logic,
however, is not well-designed to handle inconsistent and incomplete knowledge.
Inconsistency, for example, leads to the problem of triviality, i.e. that everything
can be inferred from a single inconsistency. Z specifications can also be trivialised
by inconsistencies. So far, research on handling inconsistency in Z focused mainly
on detecting and eradicating them.

Software development, however, requires a more lightweight approach to incon-
sistencies. On the one hand, they frequently appear in large projects and con-
stant focus on detecting and eradicating inconsistencies is expensive. On the
other hand, removing one inconsistency might introduce another one and thus,
it is claimed, complete consistent specifications might not be reached in practice.
Consequently, inconsistencies need to be managed as we do it on a regular basis
too. Thus, Z needs to be extended to facilitate such inconsistency management.

In Z operations are, in general, partial relations. In the traditional interpretation,
an operation applied outside its domain can result in any behaviour, thus for any
component in the scope of the operation a definite value cannot be known. Al-
ternatively, in the guarded interpretation, no change of the components occur. It
has been observed that a combination of both interpretations is sometimes con-
venient to allow both modelling of refusals and under-specification. We propose
an extension to Z to incorporate both interpretations.

40
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3.1 Introduction

Inconsistencies are a matter of every day life. We are constantly challenged by
contradicting information. Sometimes we are able to resolve the inconsistency
right away; sometimes, however, we have to live with inconsistencies. In such
a case we tend not to derive any useless results from it. Often it is quite the
contrary and inconsistencies lead to new discoveries. This process suggests that
the logic we use to reason in everyday life is able to deal with inconsistencies in
a useful manner.

(Valentine, 1998), however, states:

Consistency is essential for a Z specification to have any useful mean-
ing.

Thus, inconsistent Z specifications are meaningless or useless. This is, however,
contrary to practical situations because, as (Ghezzi and Nuseibeh, 1998) found,

Inconsistencies are inevitable in large projects. [...] A completely
consistent state may never be reached in practice

This leads to the conclusion that Z should not be used to specify large projects in
practice because they would potentially be inconsistent and thus the specification
is meaningless. The problem is, that the Z notation cannot deal appropriately
with inconsistent situations.

This impracticality is certainly not desired by the Z community. Research on
inconsistent specifications has been an issue for some time. However, common
to all approaches is to prevent or eradicate inconsistencies. For example, the Z
type system is well designed to prevent many inconsistencies and type checkers
complement this task. Furthermore, the work by (Valentine, 1998) is aimed at
providing guidelines to the development of consistent specifications.

Another research direction is to divide inconsistent specifications into viewpoints
where each viewpoint should be internally consistent. We think, however, that the
problem of consistency does not disappear with this approach. On the one hand,
a viewpoint could include an unresolvable inconsistency and thus approaches
to find and manage this inconsistency are required. One can argue that the
viewpoint is further divided thus forming a hierarchy of viewpoints. However, at
the end of the development process viewpoints need to be combined and thus the
problem of inconsistency reappears.



3.2. Inconsistency in Z Specifications 42

3.1.1 Motivation

The aim of our work is to supplement current research on inconsistencies in Z
specifications. We are interested in a mechanism that can tolerate inconsistencies
but still derive useful information. Certainly, an inconsistent specification is never
fully correct but sometimes it is the best we can get.

In this chapter we provide some background on the notion of inconsistency in Z
specifications and the impact inconsistencies can have on the process of reason-
ing about Z specifications. We argue that the effect of inconsistencies in Z is not
compliant with the perceived effect of inconsistencies in science or in software de-
velopment practice. We illustrate with some examples what kind of reasoning we
intent to facilitate. The aim of our envisioned reasoning system are more useful
and reliable inferences in the presence of inconsistency. Additionally, we consider
the refinement process of inconsistent operation which is currently rather arbi-
trary because information present in the specification are not used appropriately.
Consequently, we propose to investigate the use of paraconsistent logics for Z.

Contradicting information often needs to be tolerated due to some lack of knowl-
edge. Thus, inconsistency and underdefinedness are closely related topics. Un-
derdefinedness occurs in Z specifications in form of partial operations. There are
two opposing interpretations of applying an operation outside its domain. We
introduce the two interpretations and we demonstrate that one interpretation
alone is not always sufficient to model, in particular, reactive behaviour. Thus,
we propose a combination of both.

3.1.2 Outline

This chapter is structured as follows. In Section 3.2 we present some sorts of
inconsistencies in Z and how they can arise. Next, in Section 3.3, we discuss
that inconsistencies can be a tool to guide development and we look at desired
inferences despite inconsistencies in 7Z specification. Underdefinedness can be
considered to be closely related to inconsistency. In Section 3.4 we introduce
the concept of underdefinedness in Z specifications and propose a way to handle
them. Finally, we provide a short summary in Section 3.5.

3.2 Inconsistency in Z Specifications

A specification is supposed to be a model of some possible system. A specification
is inconsistent if it has no models. The notion of inconsistency is central to this
thesis. Therefore, we discuss in this section the meaning of inconsistency in 7
specifications. (Boiten et al., 1999) refer to the consistency of a single specification
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as unary consistency. We also consider briefly the problem between specifications,
as it occurs in the area of viewpoint specifications.

3.2.1 Global Inconsistency

(Saaltink, 1997) distinguishes basically two different types of inconsistency in Z
specifications, called global and local inconsistency. Global inconsistency is more
serious because it makes an entire specification unsatisfiable. This occurs if some
axiomatic schema, generic schema, or predicate is too strong.

Inconsistent Axiomatic Definitions

Axiomatic definitions are commonly used in Z. They provide definitions that
range over the entire specification. Thus, if they are inconsistent they effect
the whole specification. For example, any specification containing the axiomatic
schema

‘ n:%
‘ n#n

cannot be satisfied because there is no possible value for n. Inconsistencies are
not always as obvious as above. For example, there is no function f satisfying
the following description:

‘ f:N—=N
‘ Vr,2' :Ne (z <2 = f(z) > f(2'))

Although the strong type system of Z prevents quite a few errors, it is still possible
to write some kind of contradiction, like postulating that an empty set has an
element

| z:2[N|

or using the fact that a function is a set of pairs, for example
‘ f:N—=N
|7 ={(1,2),(1,3))

In all these cases, it is possible to check whether such an axiomatic definition is
meaningful. As (Saaltink, 1997) shows, to check an axiomatic definition
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‘ Decl

‘ pred

for consistency it can be preceded with the conjecture 3 Decl e pred. For example,
proving 3f : N — Ne f = {(1,2),(1,3)} results in false and thus this axiomatic
definition is not meaningful.

All the given examples of axiomatic definitions are inconsistent in themselves,
thus it is possible to apply the aforementioned conjecture. However, it is not
always as simple. It is possible to construct a number of axioms, each consis-
tent but together they are inconsistent. (Valentine, 1998) provides the following
example of two axiomatic definitions and an enumerated type.

z:N
r=2+2

Person ::= SamValentine | thePope

Then it is possible to show, using classical logic, that = Sam Valentine = thePope
holds because of the inconsistency between the two axiomatic definitions. Basi-
cally, the proof proceeds over the cardinality of the set { Sam Valentine, thePope},
which is 2. However, due to the inconsistency it is possible to show that 2 =1,
thus the cardinality of the set is one, which means the elements must be the
same.

Inconsistent Free Types

(Spivey, 1992, p. 84) points out that free types can be inconsistent, too, because
of cardinality problems. For example, the data type definition

T == atom(N) | fun{T — T)

is inconsistent. Basically, no such set T can exist because there are many more
functions from T to T than there are members of 7. An even simpler example
is given by the definition

BigSet ::= makeSet (P BigSet))

which has no model because it specifies that BigSet is isomorphic to its power
set. This is impossible, as the power set of a set always has more elements than
the set itself. Although we introduced the problem of inconsistencies through free
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types in Z, we will not consider it any further. (Arthan, 1992), (Smith, 1992), and
(Spivey, 1992, p. 84) describe restrictions on free type definitions that guarantee
consistency.

In the standard theory of Z, no theorem that has been proved in a globally
inconsistent specification can be trusted because its proof is potentially based on
impossible assumptions. Our general aim, however, is to investigate possibilities
to reduce the impact of inconsistencies such that there will be proofs of theorems
that can be trusted.

3.2.2 Local Inconsistency

Set declarations, abbreviations and schema definitions do not introduce global
inconsistency. However, schema definitions can be locally inconsistent, i.e. they
contain an unsatisfiable predicate. This kind of error is local in the sense that
the specification of other components of the system may still be meaningful.

Inconsistent Operation Schema

A schema can have an inconsistent, i.e. unsatisfiable, predicate. If such a schema
is an operation schema, then the operation may not guarantee any outcome
or only parts of the operation can be determined. For example, consider the
following inconsistent operation

The above schema includes the contradiction that y! cannot be 2 and 3 at the
same time. The precondition for this operation is [z?7 € N | z? # 1], i.e. it
should not be applied when z?7 = 1. Thus, the operation is not “completely”
inconsistent.

Inconsistent State Schema

If a schema describing the state of a system is inconsistent then it is impossible
to build that particular system. For example, in the state schema

__S1;,
z: N

3<zr <2
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the state constraints cannot be satisfied. This error can be shown easily because
dz : N e S1,. fails as there is no z that can satisfy the state schema. However,
state inconsistencies are not always as simple. For example, the state schema

—52;
TR/

zmod2=0=y<z
zmod2#0=y=z+1Aymod2#0

is meant to ensure that two numbers are always in a particular relation to each
other. However, §2;. is partially over-constrained. It is possible to find even
numbers z such that S2;, is satisfied but no odd numbers. Thus, it is possible to
build a system based on §2;. but, possibly, not the intended one.

The Initialisation Theorem

The initialisation theorem plays an important role in checking specifications for
consistency. (Saaltink, 1997), for example, states: “many specifications give an
initialization schema of the form Init_S = [S | P|, where the predicate P further
constrains the state. In such a case, showing 35" e Init_S not only shows that S
is satisfiable, it also shows that initial states are possible.”

Unfortunately, the initialisation theorem does not prevent specification of par-
tially inconsistent state descriptions, like in S2;.. For example,

Init_SQic = [SQ,’CI | ' =2A yl = 1]

is a valid initialisation which can be proved using the above conjecture.

3.2.3 Inconsistency between Viewpoint Specifications

It is generally agreed that a system of realistic size cannot be modelled in a
single specification. It rather has to be decomposed into several specifications
of reasonable size where each such specification will have to be developed sep-
arately. (Jackson and Jackson, 1996) argue that unlike in programming, where
hierarchical or functional decomposition is often used, systems should be decom-
posed into different aspects, called viewpoints. Each viewpoint forms a partial
descriptions of the system, the combination of all viewpoints form the model of
the whole system. The viewpoints can, however, overlap and thus consistency
between viewpoints becomes an issue.

Unification is a method to combine viewpoint specifications in Z proposed by
(Derrick et al., 1995). It has been subsequently developed by (Boiten et al.,
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1995), (Bowman et al., 1996) and (Boiten et al., 1999). Two specifications are
said to be consistent if it is possible for at least one implementation to exist
that conforms to both specifications. Refinement is used to check whether an
implementation meets the requirements of a specification. The least common
refinement of two specifications is their unification. Thus, two specifications are
consistent if their unification exists. If they are inconsistent then it is not possible
to construct the unification and, therefore, their implementation.

A Digital Clock Example

We give a small, simplified example of an engineering task. Given is a timer
device, i.e. a clock. Two engineers are each asked to give a model of a device that
can initiate events within intervals of maximal 12 hours.

State. Both engineers rely on the same given clock, named Digi12 with fields
for minutes and hours, denoted m and h respectively. We model both as restricted
integers. Thus, the state schema is already normalized.

__Digil2
m,h :Z

0<m<59
0<h<23

Initialisation. Initially, the clock starts at noon, thus
InitDigil2 = [Digil2" | m' =0 A b’ = 12]

The initialisation condition holds for the given clock, i.e. the initial state exists,
which can easily be verified.

Operations. The two engineers, however, decide to model the Tick operation
differently. The operation specifies the state change of the given clock and thus it
is concerned with the behaviour of the clock when one minute has passed. This
includes to update the values of the minutes m and hours A accordingly.

_ Tickl _ Tick2
ADigil2 ADigil2
m < 09 = m < 99 =
m' =m+1AK=nh m'=m+1AKN=nh
m = 959 = m = 959 =
m' =0A m' =0A
(h<23=h =h+1)A (h<12=h=h+1)A
(h=23=h"=0) (h=12=h =1)
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Minutes range from 0 to 59 and are incremented with each Tick. Once 59 is
reached they go back to 0 and the hour is incremented, too. In viewpoint one,
the clock counts the hours from 0 to 23. When it has reached 23:59, another Tick
sets it to 0:00. In viewpoint two, hours range from 1 to 12. At 12:59 a Tick sets
it to 1:00.

We developed two different viewpoints of a particular problem. Consider that
these viewpoints describe only one part of a larger system in which they need to
be integrated. Thus, we are required to check whether both viewpoints can be
satisfied. Unification is the method to apply.

The unification of both viewpoints, however, fails. To hold, state consistency,
initialisation consistency and operation consistency for both viewpoints must be
satisfied. We omit the state and initialisation conditions because they are trivially
satisfied for this example. However, operation consistency fails.

Two operations Op; and Ops both operating over the same state S with input

z? . X and output y! : Y are operation consistent if and only if the following
holds

VS, z7: X epre Op; Apre Op, = 35" y!: Y e Opy A Ops

Applying this to both operations Tickl and Tick2 it is easy to see that they are
inconsistent in the case of m = 59 and A = 12 and another Tick. Thus unification
fails for these two viewpoints.

3.3 Inconsistency and Information

(Valentine, 1998) states the common assumption that “Consistency is essential
for a Z specification to have any useful meaning.” In this section we challenge
this commonly accepted view. We start by providing some analogy to other
sciences dealing with complex descriptions. Then, we present some inconsistent
specifications in Z which, as we argue, do have a meaning.

3.3.1 Inconsistencies in Science

A Z specification is a formal description of a possibly complex system. In practice,
large specifications are likely to contain incomnsistencies. This problem is not
limited specifically to formal specification. There are other areas dealing with
describing complex phenomena formally. For example, the natural sciences are
mostly concerned with describing, i.e. specifying, phenomena occurring in the
real world. They, too, have to face inconsistencies on a regular basis. These
sciences, however, have somehow learnt to live with inconsistencies, to manage
and to utilise them.
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Bohr’s Theory of the Atom

The sciences of Physics and Chemistry are concerned with the formal description
of mostly complex systems. It is here, in the history of science, that we find many
inconsistent but non-trivial theories. (Priest and Tanaka, 1996) present as one
example the well-known theory of the atom by Niels Bohr. According to this the-
ory, an electron orbits the nucleus of the atom without radiating energy. However,
according to Maxwell’s equations, which were an integral part of Bohr’s theory,
an electron which is accelerating in orbit must radiate energy. Hence, Bohr’s
description of the behaviour of the atom was inconsistent. However, it was still
possible to infer useful results from this theory, while other non-useful conclusions
were rejected. In science, inconsistencies are often accepted to simplify a model
as long as these inconsistencies do not lead to wrong conclusion.

Clausius’s Proof of Carnot’s Theorem

(Meheus, 2002) presents an example of reasoning in the presence of inconsistency.
The problem considered is Clausius’s proof of Carnot’s theorem: “no engine is
more efficient than a reversible engine.” At the time, two incompatible approaches
to thermodynamic phenomena existed. On the one hand, the theory by Carnot
stated that the production of work in a heat engine results from the mere transfer
of heat from a hot to a cold reservoir. On the other hand, Joule advocated that the
production of work in a heat engine results from the conversion of heat into work.
Both approaches combined lead to several contradictions, e.g. the production of
work results from the mere transfer of heat and from the conversion of heat.

Carnot’s proof of his theorem is based on Reductio ad Absurdum, i.e. he sup-
posed that the negation of his theorem holds and shows that this would lead
to a contradiction. Thus, the hypothesis must be rejected on the basis of this
contradiction and the opposite must hold. This pattern of proof is well accepted
and often applied in mathematical reasoning. Clausius developed two proofs of
Carnot’s theorem both based on this concept and both are very similar. How-
ever, he rejected the first of his proofs. Both proofs are based on Carnot’s and
Joule’s premises, however, the first proof does need the hypothesis to derive the
contradiction, while his second proof does. Thus, he found a useful and valid way
of reasoning in the presence of inconsistency.

A Little Experiment

The following is a little experiment to demonstrate how easily inconsistencies
can appear in life. Consider three water tanks, filled with hot, medium and cold
water respectively. Put one of your hands in the hot water tank, the other in
the cold one. Leave your hands in there for a while, until you do not feel any
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difference in temperature anymore. Now, put both hands at the same time in
the third water tank with the water of medium temperature. You will perceive
on the one hand that the water is hot and on the other hand that the water is
cold. This is certainly inconsistent with your knowledge of the water being of the
same temperature.

Psychology, in particular, uses such phenomena regularly to investigate the mind.
Often inconsistent phenomena are presented to a person and it is investigated how
humans solve these problems. The example above is one such phenomena, Escher
pictures are another. It has, however, not been reported that the subjects derived
unrelated or useless information despite the inconsistencies.

Inconsistency implies Action

We presented some examples of inconsistent but useful theories as well as the
human ability to derive useful conclusions from inconsistent premises. We do
not claim that inconsistencies are desirable but they are not as useless as often
thought. Inconsistencies are an important tool in science. They guide researchers
to develop better theories and they instigate the natural process of learning.
Inconsistencies cannot always be resolved, however, they can be managed. This
is, what (Gabbay and Hunter, 1991) mean when they state:

Inconsistency implies Action

3.3.2 Inconsistencies in Software Development

Inconsistencies are a fact of life. They occur frequently in the software devel-
opment process. The need for managing inconsistency in software development
has been acknowledge by many researchers. (Ghezzi and Nuseibeh, 1998) and
(Ghezzi and Nuseibeh, 1999), for example, present two special issues in IEEE
Transactions on Software Engineering covering this topic and there have been two
international workshops on “Living with Inconsistency” as presented in (IWLWI,
1997) and (Easterbrook and Chechik, 2001a).

Making Inconsistency Respectable

(Nuseibeh et al., 2001) argue that maintaining consistency at all times is coun-
terproductive. It is usually computationally expensive, descriptions evolve and
thus inconsistencies re-appear, individual descriptions can be ill-formed and var-
ious degrees of formality make inconsistency checking difficult. “In many cases,
it may be desirable to tolerate or even encourage inconsistency to facilitate dis-
tributed teamwork and to prevent premature commitment to design decisions,
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and to ensure all stakeholder views are taken into account.” Inconsistencies can
also be used as a tool for learning and guiding the development process.

(Nuseibeh et al., 1994) consider inconsistency as any situation in which two de-
scriptions do not obey some relationship that is prescribed to hold between them.
(van Lamsweerde et al., 1998), for example, consider divergent goals in require-
ment engineering. Note, this notion of inconsistency embraces the logical defini-
tion of inconsistency. The relation that should hold is the impossibility to derive
a contradiction from a set of formulae.

The proposed framework for inconsistency management consists of consistency
checking, monitoring and diagnosing inconsistency, handling inconsistency, and
measuring inconsistency. Consistency checking is based on a set of consistency
rules which need to be obeyed. Monitoring is the process of detecting the violation
of the consistency rules. Once an inconsistency is discovered, it is diagnosed.
This includes to localise the inconsistency, to identify the cause for it and its
classification. The choice of handling strategies includes to ignore, to defer, to
circumvent or to ameliorate an inconsistency. The latter means that it may
be more cost-effective to improve an inconsistent description without actually
resolving all of the inconsistencies. Finally, measuring inconsistency is important
to determine the impact of an inconsistency.

In a number of case studies they found that some inconsistencies never get fixed.
However, “the decision to repair an inconsistency is risk-based. If the cost of fixing
it outweighs the risk of ignoring it, then it makes no sense to fix it.” Tolerating
inconsistencies in such circumstances means to re-evaluate the risk continuously.
They found too that some inconsistencies are deniable. For example, in their
experience developers often debated whether a reported inconsistency really was
an issue or that it was already fixed.

Viewpoints for Managing Inconsistencies

Some researchers decided to split contradicting information into viewpoints to
manage the inconsistency. For example, (Easterbrook, 1993) suggests to use
hierarchies of viewpoints to represent alternative, conflicting views of information.
A viewpoint is a self-contained consistent description of an area of knowledge
with an identifiable originator. Viewpoints do not correspond to people but to
a description of the world from a particular angle. Viewpoints in this case are
merely seen as an organisational tool.

Later, (Easterbrook and Nuseibeh, 1996) are more concerned with inconsistency
management using viewpoints. The paper demonstrates how inconsistency man-
agement is used as a tool for requirements elicitation and how viewpoints provide
help. First, there is no requirement for changes to one viewpoint to be consistent
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with other viewpoints. Therefore inconsistency can be tolerated throughout the
development process.

However, consistency checking and resolution is still required but consistency
checking can be separated from resolution. To manage inconsistency, relation-
ships between viewpoints have to be defined. Basically, rules are used to define
partial consistency relationships between the different representations and consis-
tency checking is performed by applying these rules. This allows consistency to
be checked incrementally between viewpoints at particular stages of development.

(Easterbrook and Chechik, 2001b) extend their research to multi-valued reasoning
over inconsistent viewpoints. Each viewpoint is described using an underlying
multi-valued logic. Many-valued logics use additional truth values to represent
intermediate values between true and false. These different logical values can then
be used to represent different levels of agreement. Their framework is intended
as a means of exploring inconsistencies. The analyst is not restricted in any
way when concerned with the problem of merging information from different
viewpoints.

Analysing Inconsistent Specifications

(Hunter and Nuseibeh, 1997) and (Hunter and Nuseibeh, 1998) present another
logic-based approach to managing inconsistent specifications. Classical logic is
commonly used to construct formal specifications. Classical logic, however, is
trivialised in the presence of inconsistency, i.e. any inference follows from an
inconsistent information. Therefore, the authors propose to use quasi-classical
logic, developed by (Besnard and Hunter, 1995) to avoid such trivialisation.

The aim of their work is to demonstrate the usefulness of using alternative logical
approaches to the problem of reasoning in the presence of inconsistency in the
software development process. It provides a formal foundation for supporting
a software specification process in which inconsistencies are analysed to deter-
mine appropriate actions for further development. Such actions also include the
possibility of tolerating inconsistencies.

3.3.3 The Meaning of Inconsistent Z Specifications

We claim that inconsistent specifications do have an intended meaning. Otherwise
it is rather pointless to make the effort of writing an inconsistent specification.
Classical predicate logic, on which Z is based on, is unfortunately not very suitable
to investigate the meaning of inconsistent specifications.

Classical predicate logic, for example, does not distinguish between falsehood and
inconsistency. This problem is also carried over to the Z notation. An inconsistent
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operation, for example, behaves like an operation which has not been specified,
i.e. it is set to false. This in turn makes it much harder to analyse the source of
failure of an operation. Furthermore, refinements of inconsistent operations can
be rather arbitrary.

Operation schemas, the standard precondition interpretation and inconsistency
form an interesting combination in Z. An operation applied outside its precondi-
tion can result in any behaviour. This is, however, triviality and thus results in
the same behaviour as applying an operation in the inconsistent situation. For ex-
ample, the precondition of the operation Op;. is [z? € N | 2?7 # 1]. Thus, applying
this operation outside its precondition means to apply it when z7 < 0V 27 = 1.

Note, the way the precondition computation in Z works seems to indicate an
ordering of belief, assuming, for example, state schemas to be correct while an
operation can be faulty. This leads to operations not being permitted if they are
violating the state condition. However, this is not necessarily correct. It could
be that the operation is correctly specified but the state specification is flawed.
Such a case is, for example, presented in the next subsection.

3.3.4 Examples

Next, we present some examples of inconsistent specifications. As we claimed,
we do not think that they are meaningless. Thus, we provide some indication of
the kind of inferences we are interested in. Essentially, we want to infer less but
more useful information in the presence of inconsistency. Thus, we tend to show
what we do not want to infer in comparison with classical logic, rather than what
should be inferred.

Tweety the Penguin

The following example appears frequently in the literature on paraconsistent and
non-monotonic reasoning. It is about Tweety, the bird who is a penguin that
can but cannot fly. We decided not to provide a Z encoding of the problem be-
cause this would add some syntactical overhead not necessary for our illustration.
Thus consider this example as an introduction to the topic of reasoning about
inconsistent specifications.

Classically, the Tweety example is given as a universal theory in first-order pred-
icate logic by the first four rules:

(1) bird(X) — flies(X)

(2) penguin(X) — —flies(X)
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(3) penguin(X) — bird(X)
(4) penguin( Tweety)

(5) hungry(Tweety)

Clause (1) states that all birds can fly. Penguins, however, according to Clause(2)
cannot fly although, as Clause (3) states, they are birds. These three clauses are
not inconsistent, as long as no penguins would exist. Therefore, in Clause (4)
we give a particular penguin, named Tweety. These four clauses together cause
an inconsistency to arise. Tweety is a penguin and therefore cannot fly but
because Tweety is a penguin he is also a bird and therefore can fly. This results
in the contradiction, that Tweety can and cannot fly. However, we think this
contradiction should not influence any knowledge about Tweety being hungry, as
stated in Clause (5).

We denote the above set of rules, i.e. the theory about Tweety, with 7. In
classical logic it would be possible to show

T F = hungry( Tweety)

or even

T F = penguin( Tweety)

This seems, however, rather counter-intuitive. On the one hand whether Tweety
is hungry is actually not dependent on the issue whether he can fly or not. On the
other hand, rejecting that Tweety is a penguin would not lead to the problem of
inconsistency. This little specification provides some useful information, namely
Tweety is hungry and he is a penguin. However the inconsistency is resolved it
should respect this information.

A Flat Tyre

In (Miarka et al., 2002), we present a simplified example from the life of a mo-
torist. The motorist is the owner of a car. To be allowed to drive the car on public
roads, the car needs to pass a safety test, part of which is a tyre inspection. The
law (in Germany) says that the car must have the same kind of tyre fitted to
both the front and rear wheels. We use the set

[CAR]

as our basic type. The Boolean type is not part of standard Z, hence we define
the enumerated type
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B ::= True | False

In the state schema, Car, the Boolean flat denotes whether any of the tyres are
flat. If not the motorist is permitted to drive the car. The Law states that the
same tyres should be used on front and back. A single operation is specified,
that of changing a tyre. Unfortunately, the spare tyre is of a different type, thus
we will break the law as a result of a Change.

_Car _ Law
flat - B same : B
drive : B 7
wheels : N

flat = False = drive = True
wheels = 4

same = True

__ Change
ACar
=Law

!N

flat = True A flat' = False
same' = False
! = wheels

The Change operation is clearly inconsistent in an intuitive sense. Once the tyre
has been changed, the car is not allowed on the road by the law because the type
of tyre on at least one wheel is now different. We might, however, wish to reason
about aspects of this specification, for example, that the car is still driveable,
since this only depends on the fact that no tyre is flat. Also, the number of tyres
on the car, as reported by z! should be exactly four.

Although this example is small and rather artificial, it illustrates the type of
reasoning one might wish to perform. It provides some evidence that reasoning in
the presence of inconsistency could be useful. Note, practically the inconsistency
is not resolved by dropping the law but by providing a range of exceptions to the
law. Nevertheless, any development of the above specification should take into
account those aspects that are not directly related to the inconsistency.

Refuel A Car

Another operation often performed by a motorist is to refuel their car. We
distinguish three kinds of cars: electric cars, cars with diesel engines and cars
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running on petrol. The electric car needs a power supply to re-charge, whereas
the other cars need fuel which can be divided into unleaded, four star and diesel.
Thus we give the following two type definitions.

CAR_TYPE ::= electric | diesel | petrol
FUEL_TYPE ::= unleaded | four_star | diesel_type

We are interested in the state of a car. It can be charged, or it needs a particular
amount of some sort of fuel. Given a petrol car we assume by default that
unleaded petrol is to be used. This is compliant with current environmental
issues.

State _ Choose
charged : B AState
fuel : FUEL_TYPE car? : CAR_TYPE

amount : FUEL_TYPE — N car? = petrol =

fuel’ = unleaded

Refueling a car results in a full energy status. This means, an electric car is to
be re-charged and a petrol car has sixty liters of fuel in the tank.

__ Refuel
Choose

(car? = electric A charged’ = True) V
(car? = petrol A amount'(fuel") = 60 A fuel’ = four_star)

This refuel operation is partly inconsistent because we assign two different types
of fuel to be taken when the car requires petrol. It is consistent when applied to
electric cars; no refuel operation has been specified for diesel cars. Clearly, this
looks like a simple specification error, but in a large specification such errors can
be hidden.

Despite the inconsistency we are interested in useful inferences. Such inferences
include that the amount of fuel should be exactly sixty liters, no matter what
fuel type was used. We also need to show that diesel is not an option to be taken
as fuel for petrol cars.

3.3.5 Unification of Viewpoint Specifications

Consider the small clock example from before. We noted that the unification of
the two viewpoints failed because both engineers could not agree what to do next
when the clock reached 12 :59. We are, however, interested in the information
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this specification provides. For example, we find that no matter which viewpoint
we consider the minutes m will be set to zero and nothing else. Thus, reasoning
from this inconsistent set of viewpoints should validate this information.

In general, reasoning about viewpoints should facilitate the discovery of the com-
monalities between the specifications even in the presence of inconsistency. It
should provide a mechanism to improve the system. We think, it would even be
advantageous to first combine the inconsistent viewpoints and then to develop
the resulting specification. Otherwise, separate developments might lead to the
introduction of new problems while trying to resolve the old ones.

The unification of viewpoints is supposed to be their common refinement. Thus,
investigating unification in the presence of inconsistency leads to the problem of
refinement of inconsistent operations. However, this problem can of course be
considered independently from unification.

3.3.6 Refinement of Inconsistent Specifications

According to (Woodcock and Davies, 1996), refinement is all about improving
specifications. However, we indicated that refinements of inconsistent specifica-
tions and in particular of inconsistent operations can be rather arbitrary. Thus,
we claim, not all refinements from inconsistent operations actually do improve
the specification. This is mainly due to the lack of formal support to consider
the information given in an inconsistent operation.

Consider the following two operation schemas

—Op2ic —R0p2ic
z?,y?: % z?,y? %

X, X" Z+Z X, X"'Z+Z
X'=Xo{z?—y?} r? € dom X
#X' ' =#X X' ={z?}<9X
z? & dom X

Op2;. is meant to replace a new pair of numbers (27, y7) within a set of pairs X
resulting in the new set X’. Unfortunately, in this large operation an inconsis-
tency occurred. On the one hand, it is desired that the first component z7 of the
new pair is not in the set X already which leads to the actual addition of one
extra pair to X. One the other hand, it is required that the number of elements
in the set remain constant. Both requirements, however, cannot be supported at
the same time.

The problem we find is, that this operation can be refined by one which attempts
the complete opposite effect. ROp2;. removes those pairs from X where z7 is the
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first component. Even in the presence of inconsistency there should be a way to
prevent such unreasonable refinements and thus to support an improvement of
the specification that is in line with the intended meaning.

In general, resolving inconsistencies can be an expensive and sometimes impossi-
ble task. Many participants can be involved each having a different view on the
problem. Therefore, it might be difficult to reach an agreement on how to resolve
the inconsistency. For the specifier it might thus be helpful to continue analysis
and development of the specification despite the presence of inconsistency. An
approach to living with inconsistency is required.

3.3.7 Proposal

(Valentine, 1998) states: “Consistency is essential for a Z specification to have
any meaning.” However, we believe this claim is too strong and undesirable.
Even if a Z specification is inconsistent, it still has an intended meaning. The
problem we need to solve is to discover the meaning and to make it explicit.

Note, our work is not related to that by (Henson, 1998) where he shows that
the standard logic of Z is inconsistent. However, his work supports our claim
that inconsistencies do not necessarily lead to trivial results in practice. The
standard logic of Z, although inconsistent, has been used successfully to analyse
many specifications.

We propose to investigate what formal support can be given to the process of
analysing inconsistent specifications written in the Z notation. Such work forms a
part in the wider area of research on managing inconsistencies without necessarily
eradicating them. Formal support is based on logical reasoning. Thus, we are
interested in logics that support reasoning in the presence of inconsistency.

Logicians have developed a range of logics to continue to reason in the presence of
inconsistencies. These so called paraconsistent logics allow us to derive less but
more useful information despite inconsistencies. It is our intention to investigate
the consequences of using a paraconsistent logic to analyse Z specifications. We
envision that inconsistent Z specifications can be analysed in more depth than at
present and that refinement of inconsistent specifications can be more controlled.

Some of the more interesting candidates of paraconsistent logics have four truth
values. The logical truth values represent the four epistemological situations:
‘told True’, ‘told False’, ‘told True and False’, and ‘told neither True nor False’.
Thus, four-valued logics not only capture the notion of inconsistency but also
some form of underdefinedness. It is also our aim to make use of this extra
truth-value as discussed below.
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3.4 Underdefinedness in Z Specifications

In the common Z specification style operations are, in general, partial relations.
The domains of these partial operations are traditionally called preconditions.
There are, however, two different interpretations of the precondition according
to the behaviour of the operation if applied outside its domain.

The “design by contract” meaning is the standard interpretation of a precondition
of an operation in Z. This asserts that if the precondition holds and an attempt
is made to execute the operation, then the execution will be accepted and it will
terminate in a state as specified by the postcondition. If the precondition does
not hold, however, and the operation is attempted to be executed then it will
be executed but it may not terminate or it can terminate in an arbitrary state.
This behaviour is also called “divergence”. We usually refer to this standard
interpretation by the term precondition.

The alternative meaning is the so called guarded or firing condition interpreta-
tion. If the operation is executed within its precondition it will terminate in a
state according to the postcondition. However, if it is called outside the given
precondition, then the operation will not be executed at all, i.e. it is blocked, and
no state change occurs. This is the standard interpretation in Object-Z.

It has been observed that it is convenient to use a combination of both the
guarded and precondition interpretation to allow both modelling of refusals and
under-specification. (Josephs, 1991), for example, reports on specifying reactive
systems in Z and (Lano et al., 1997) consider non-determinism different from
under-specification.

3.4.1 Underdefinedness

Formal specifications are abstract descriptions of the behaviour of a system.
They are supposed to leave as much implementation freedom as possible. Non-
determinism is a particular tool to achieve this objective. During the refinement
process of a specification, however, non-determinism is usually eliminated. Thus,
non-determinism relates to the view of under-specification or, as we call it, un-
derdefinedness.

Undefinedness versus Underdefinedness

There might occur a little confusion between the terms undefined and underde-
fined. Thus we provide some clarification of what undefined stands for. Unde-
finedness as, for example, considered by (Valentine, 1998) is related to the appli-
cation of partial functions outside their domain. Valentine presents the following
example of an axiomatic definition
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‘ total, count, average : N

‘ - count = 0 = average = total div count

which looks rather reasonable. The problem of division by zero seems to be
covered due to the condition. Unfortunately, this is not the case because Z is not
operational. The above axiomatic schema is equivalent to the following

‘ total, count, average : N

‘ average = total div count V count = 0

Thus, the problem with dividing by zero can still occur. There are many more ex-
amples of undefined expressions in (Valentine, 1998), as well as (Stoddart et al.,
1999). In the wider scope undefinedness and underdefinedness are related be-
cause underdefinedness is concerned with the problem of applying an operation
outside its domain, which is rather similar to the issue of undefinedness. However,
undefinedness is not the problem we are interested in here.

3.4.2 Normalisation and Underdefinedness

We introduced normalisation as the process of rewriting a schema such that all the
constraint information appear in the predicate part. We presented the following
two schema S1 and S2, where S2 is the normalisation schema of S1.

_S1 _ 52
a,a - N a,a 7
(a/)? <a<(ad+1)> a€NAd eN
(/) <a<(d+1)>

Natural numbers are not a basic type of Z but constrained integers. Therefore,
a schema declaration referring to naturals can be normalised to use integers and
a constraint on the predicate.

However, somehow the interpretation of the schemas may change through that
process. As the operation S1 is defined on natural numbers, it appears unrea-
sonable to even consider applying it on negative integers, so the blocking inter-
pretation appears quite sensible for this area. However, the normalised schema
is formally equivalent to S1 but is interpreted in the precondition approach as
being fully undefined on negative integers. This means, that the specifier needs to
know about normalisation, i.e. which sets are proper types and which are proper
subsets of a type, which might not always be the case and somehow should not
be necessary in the first place. This example shows that normalisation is more
guard, rather than precondition, related and that we might want to deal with it
accordingly.
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3.4.3 Guards and Preconditions in a Buffer Example

The following example is designed to demonstrate the different meanings of a
precondition. We model a little buffer of messages. We use a new type MSG to
represent a message because we are not interested in their particular form.

[MSG]

The state schema Buffer holds the type definitions for the buffer which we model
as a sequence of messages. Furthermore, we use a flag r to indicate whether the
buffer has been read. The buffer is initially empty and the flag r is set to True
to enable the Write operation.

Buffer _ InitBuffer
|7buﬂ’er :seq MSG Buffer'
r:B buffer’ = ()
r" = True

There are two operations possible. On the one hand, messages can be stored
in the buffer. This is, however, restricted to the fact that a previous message
has been read before. On the other hand, messages can be read. The result
of the Read operation is a change in the flag. The content of the buffer after
the operation is not relevant. The Read operation can only be invoked on a
non-empty buffer and if there is a new message waiting.

_ Write _ Read
A Buffer A Buffer
z?: MSG z!: MSG
r = True buffer # () A r = False
buffer’ = buffer & {1 — z7} z! = head buffer
r" = False r' = True

In particular in the Read operation the two preconditions have different meanings.
The condition buffer # () is like a guard. No state change is permitted if the
buffer is empty. The condition r = False, however, is not as strict. If the
operation is applied outside this condition but within the guard then it could be
possible to read the content of the buffer again. No harm would occur. Note, the
condition r = True in the Write operation determines a synchronous behaviour
of the buffer because a message is not overridden before the old one was read.
Again, whether this is a guard or a precondition is important for the behaviour
outside the condition as well as for future refinements.
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3.4.4 Refinement of Underdefined Specifications

The two interpretations of the precondition of an operation lead to two different
notions of refinement, too. In the standard interpretation, the precondition can be
weakened and thus the domain of the operation can be enlarged. In the guarded
interpretation, however, the precondition cannot be weakened but possibly be
strengthened. Thus, the domain of the operation is reduced.

Both instantiation of the applicability rule of refinement have, however, one inten-
tion, namely to reduce non-determinism. Obviously, both interpretations cannot
be used at the same time for one operation schema. (Strulo, 1995), for example,
suggests to label the operation schema according to the precondition interpreta-
tion that should be used with them.

Example cont.

The precondition interpretation of r = True in the Write operation can determine
the future behaviour of the Buffer. In the standard interpretation it is possible
to weaken this condition, thus

— RWrite
ABuffer
z?: MSG
buffer’ = buffer @ {1 — 7}
r' = False

is a valid refinement. However, this makes the Buffer asynchronous. The guarded
interpretation would have forbidden such refinement. On the other hand, the
guarded interpretation does not permit the less problematic and possibly de-
sired refinement RReadl. The standard interpretation, unfortunately allows the
dangerous refinement RRead2 which suddenly permits to read an empty buffer.

_ RRead1 _ RRead?2
A Buffer A Buffer
zl: MSG z!: MSG
buffer # () z! = head buffer
z! = head buffer r' = True
r" = True

Using just the guarded or the precondition interpretation is not always suitable
for practical tasks. Like in the Read operation where two conditions have different
statuses it is difficult to determine which interpretation to choose. After choosing
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one interpretation, however, refinement can behave in an unwanted fashion not
treating the meaning of all given conditions correctly. Specifications should be
foremost intuitive, thus we propose to combine guards and preconditions in a
single notation.

3.4.5 Proposal

Guards block an operation thus rendering it impossible outside its guard and
implicitly do not allow a state change to occur. Preconditions permit operations
and guarantee its outcome. Having both, enables the specification of under-
definedness as those situations where the guard permits the operation but the
precondition fails, thus no explicit outcome is defined. These three situations
give rise to an intuitive semantics based on three logical truth values. Thus, we
propose a non-standard semantics of operations, based on a three-valued logic.

However, such an interpretation of operations requires a more expressive notation
than normal operations with explicit guards. Thus, we propose to develop a
syntax which is sufficiently expressive for this semantics. Using a three-valued
logic will also lead to a simple and intuitive notion of operation refinement, where
refinement is reduction of underdefinedness. We will define operation refinement
rules for this which generalise the traditional ones. Furthermore, we propose an
adaption of the schema calculus, based on three-valued logic, to account for the
extended syntax.

3.5 Summary

Our aim is to investigate the formal support that can be given to analyse incon-
sistent specifications written in the Z notation. This includes also the process
of refinement in the presence of inconsistencies. We propose to adopt one of
the logics that facilitate the process of reasoning in the presence of inconsistency
without leading to triviality, the so called paraconsistent logics.

Some of the investigated logics also provide a truth value for handling underde-
finedness. Operations in Z are, in general, partial descriptions. If the precondition
of an operation holds, the specified results are guaranteed. However, if the pre-
condition is not satisfied there are two interpretations possible. On the one hand,
in the standard interpretation everything can happen. Note, this notion also re-
lates to triviality. On the other hand, the operation can be blocked and thus no
state change occurs.

We propose to use the extra truth value to represent underdefinedness. This
enables us to construct an intuitive semantics for operations containing both
guards and preconditions. Underdefinedness is then characterised as the region
between the guard and the precondition of an operation.



Chapter 4

Paraconsistency and First-Order
Quasi-Classical Logic

The Z notation is based on classical first-order predicate logic. The problems
arising from inconsistencies in Z specifications can be attributed to the way clas-
sical logic handles contradictions. In particular, given a single contradiction in a
classical theory, it is possible to derive any formula from that theory. Thus, to
formally manage inconsistencies in Z specifications we can look at some general
approaches of managing inconsistency in logical formulae.

The group of logics which support the process of useful reasoning despite the
presence of inconsistencies are called paraconsistent logics. This group can be
further subdivided according to the kind of weakening of the logic used. For
example, some logics use a different negation operator, some change the meaning
of implication, sometimes new truth values are introduced, and sometimes the
proof theory of the logic is altered. However, the common aim is to develop a
paraconsistent logic as close as possible to classical logic.

One such paraconsistent logic is called quasi-classical logic (QCL). QCL has been
introduced by (Besnard and Hunter, 1995) and fully developed in (Hunter, 2000)
and (Hunter, 2001). In QCL the meaning of all the logical operators remains
unchanged. Furthermore, the deduction rules within the proof theory of QCL are
classical, too. These properties suggest that QCL is a prime candidate for a logic
to support reasoning in the presence of inconsistencies in formal specification.

In this chapter we review some of the approaches of reasoning with inconsistent
and incomplete knowledge. We focus on the presentation of paraconsistent logics,
in particular quasi-classical logic, as they offer a novel approach to reasoning
about inconsistencies in Z. Some of these logics are also meant to deal with
incomplete knowledge. This is relevant for our work on underdefinedness in Z.

64
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4.1 Introduction

In the last chapter we found that software development requires a new approach
to handling inconsistencies which is not only based on detecting and eradicating
them but on managing the information provided. This is required because incon-
sistencies frequently appear in large projects and sometimes it might not even be
possible in practice to reach a completely consistent specification.

In fact, inconsistencies are a matter of every day life. We are constantly chal-
lenged by contradicting information. Sometimes we are able to resolve the incon-
sistency right away; sometimes, however, we have to live with inconsistencies. In
such a case we tend not to derive any useless results from it. Often it is quite
the contrary and inconsistencies lead to new discoveries. This process suggests
that the logic we use to reason in everyday life is able to deal with inconsistencies
in a useful manner. Such practical reasoning from inconsistent information is,
however, not well supported by classical logic.

The Z notation is a specification language which is based on classical logic. Thus,
Z is limited by its logic to deal with inconsistencies usefully and not to derive
arbitrary conclusions. This problem has been recognised by researchers on formal
logics and they developed so called paraconsistent logics. These logics reject the
classical principle of explosion, often referred to as Ez contradictione quodlibet,
i.e. from a contradiction follows everything.

Paraconsistent logics provide an interesting alternative to classical logic for rea-
soning about inconsistent theories. However, all paraconsistent logics are weaker
than classical logic in either their logical connectives or in the derivation rules.
Thus, it is not possible to simply replace the standard logic of Z with a paracon-
sistent one but it is required to investigate the impact of such a change carefully.

4.1.1 Motivation

The aim of this chapter is to introduce the notion of paraconsistent reasoning and
some paraconsistent logics. Thus we provide the formal background for the follow-
ing chapters. Paraconsistency emphasizes a shift of concern from contradictory
to trivial theories. It is triviality that we most dislike in formal reasoning because
it has no restrictions and does not distinguish between different contradictions.
Paraconsistency, however, allows to differentiate between contradictions. As a
result, one inconsistency does not corrupt all information. Hence, it facilitates
more useful conclusions in the presence of inconsistency than classical logic.

There are many different ways to construct a paraconsistent logic. We present
some of the approaches to give some insight into the development of paraconsis-
tent logics and into the limitations they can possess. Thus, we build a foundation
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for an informed decision on which paraconsistent logic to select for our applica-
tion towards analysing inconsistent specifications. It is out of the scope of this
work to present a full overview of all the different paraconsistent logics. We rec-
ommend, for example, the collections by (Priest et al., 1989) and (Batens et al.,
2000) for further information on this subject.

It is our aim to support both reasoning about overdefined and underdefined speci-
fications. Many-valued logics, in particular four-valued ones, provide an intuitive
semantics to capture the notions of over- and underdefinedness. Thus, we in-
vestigate two representatives of these group of logics further. We find them,
unfortunately, unsuitable for our needs to reason about inconsistency but they
do prove useful for our work on underdefinedness.

We present Hunter’s quasi-classical logic in detail because we decided to apply
it to reasoning about inconsistent specifications. One of the main advantages of
QCL over other paraconsistent logics is that all connectives are interpreted clas-
sically as Boolean connectives and that the QC deduction rules hold in classical
logic, too. The logic is, however, weaker than classical logic in the way it is used.
We believe that QCL’s advantage is vital for its acceptance as a new logic in such
an established field as formal methods, because the specifiers need not change
their way of writing specifications. Therefore, QCL is our prime candidate for a
logic to support reasoning in the presence of inconsistencies.

4.1.2 Outline

This chapter is structured as follows. In Section 4.2 we cover some background
on the notion of paraconsistency, including the different motivations for para-
consistency, two definitions of paraconsistency and the approaches to construct
a paraconsistent logic. In Section 4.3 we present two four-valued paraconsis-
tent logics, namely the logic FOUR by (Belnap, 1977b) and the logic FOUR
by (Damésio and Pereira, 1998). The main part of this chapter consists of Sec-
tion 4.4 introducing quasi-classical logic by (Hunter, 2000). We contribute to the
development of QCL by providing an extended discussion on logical equivalence
presented in Section 4.4.5. We briefly summarize this chapter and discuss our
choice for QCL in Section 4.5.

Note, we extend the work on QCL in Chapter 5 by introducing equality and we
apply QCL to reason about inconsistent Z specification in Chapter 6. Further-
more, a three-valued subset of the logic FOUR is used in Chapters 7 and 8 to
provide the semantics for our work on underdefinedness.
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4.2 Incomnsistency, Triviality and
Paraconsistency

Before venturing into the presentation of some paraconsistent logics we need to
establish some background on the notion of paraconsistency. There is first the is-
sue of the motivation for paraconsistency. According to the different motivations
there are several definitions of the term paraconsistency. Fortunately, there is at
least one basic objective all paraconsistent logicians agree on, namely to avoid
triviality. A brief investigation into the source of triviality leads to a categorisa-
tion of the different paraconsistent logics and provides also a motivation for the
logics we present.

4.2.1 Motivations for Paraconsistent Logics

Paraconsistent logics are suitable for reasoning from inconsistent theories without
collapsing into triviality. There are several motivations why such a logic is nec-
essary. We provide a brief classification following (Urbas, 1990) of the different
positions.

Dialetheism. According to (Priest, 1998): “A dialethia is a true contradiction,
a statement, A, such that both it and its negation, = A, are true.” Dialethe-
ism is thus the position that some contradictions are true. This view rejects
also the classically validated inference from inconsistent premises to an arbitrary
conclusion.

The most common example of a dialethia is the “liar’s paradox”. Consider the
sentence: “This sentence is not true.” According to standard logic there are
two possibilities, either the sentence is true or it is not. If the sentence is true,
however, then what it says is correct, i.e. it is not true. Suppose the sentence is
not true. But this is what the sentence says, i.e. it is true. Thus, in either case,
the sentence is both true and not true.

Relevantism. The main interest for relevantist logicians is with the inference
relation. They insist on a connection of relevance or commonality of content
between the premises and conclusions. Though this is not directly related to the
question of inconsistency it too restricts inferences from contradictory premises.
The most notable representatives of relevantism are (Anderson and Belnap, 1975).

Pragmatism. This position recognises that there are many interesting systems
that are inconsistent but non-trivial. This includes our beliefs and judgements,
a range of scientific theories and legal codes. In fact, the likelihood of inconsis-
tencies seems to increase with the expressiveness of the theories. Nevertheless,
some mechanism prevents the deduction from arbitrary conclusions from such
inconsistent theories. The pragmatic approach is not to abandon theories once
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they are discovered to be inconsistent but to accommodate them until a better
alternative is found by means of a logic that functions plausibly in the presence
of inconsistency. An important advocate of this motivation for paraconsistency
is (da Costa, 1974). From the discussion in the last chapter it follows that we
too subscribe to this pragmatic position.

4.2.2 Definition of Paraconsistency

The different motivations for paraconsistency lead almost naturally to different
definitions of the terms paraconsistency and paraconsistent logic. (Béziau, 2000),
for example, analyses some of the occurring definitions.

A theory T is a set of formulae expressed in some, normally formal, language
which is closed under the consequence relation — of the underlying logic, i.e. if
the formulae A;,..., A, are in T and B is a consequence of Ay, ..., A,, denoted
{A,...,A,} F B, then B is alsoin T.

The following is an intuitive definition of paraconsistency often presented in the
literature. A theory is inconsistent if it contains some formula A together with
its negation — A, i.e. there is an A such that 7'+ A and T + — A, where — is
a negation connective which is intended as a “contradiction-forming operator”.
A theory is trivial if it contains every formula of its language, i.e. for every A it
holds T+ A, otherwise T is said to be non-trivial. A theory T is paraconsistent
if it is inconsistent and non-trivial. A logic is paraconsistent if it supports the
study of paraconsistent theories.

This definition, however, has been generalised because it requires the consequence
relation to be transitive to ensure non-triviality. Thus, the minimal and most
widely accepted definition amongst the paraconsistent logicians is now based on
the rejection of the principle know as

ex contradictione quodlibet (ECQ)

i.e. from a contradiction follows everything. Based on the equivalence of falsehood
and contradiction in classical logic this principle is also commonly referred to as:
“ex falso quodlibet”.

The formalisation of the principle of ECQ is that for any theory T and formulae
A and B it follows TU{A, ~ A} = B. The same principle without mentioning the
theory T is just a special case of it. A logic is paraconsistent if it rejects ECQ), i.e.
if not every formula B follows from an inconsistent premise (7'U {4, A} ¥ B).
Otherwise the logic is said to be explosive or trivialising.



4.2. Inconsistency, Triviality and Paraconsistency 69

4.2.3 Approaches to Paraconsistency

One can imagine that there are many different ways to avoid ECQ. All proposed
solutions are based on some kind of weakening of classical logic.

Lewis’s Proof of Ex Contradictione Quodlibet

The principle of ECQ is central to the notion of paraconsistency, thus a de-
tailed analysis on how it arises is appropriate. The proof of ECQ by (Lewis and
Langford, 1932) provides some insight. It proceeds by deploying various classical
reasoning rules:

(1) p A—=p Assumption

(2) p by 1, A-Elimination
(3) -p by 1, A-Elimination
(4) pVgq by2, V-Introduction
(5) ¢ by 3,4, V-Elimination

This derivation can be prevented, by blocking any of the rules in line (2), (3), (4)
or (5). Thus various strategies are open to weaken classical logic.

The most common proposal is to reject (5), i.e. V-Elimination which is also
called disjunctive syllogism. Consequently, if implication A = B is defined in
the usual way as = A V B then modus ponens fails, too. For example, the
logics by (da Costa, 1974) and (Belnap, 1977a) both reject disjunctive syllogism.
However, modus ponens is valid in (da Costa, 1974) because implication cannot
be expressed in terms of disjunction and negation.

The other two options are to block V-Introduction, favoured by logicians inter-
ested in analytic implication, and to block A-Elimination, as investigated by so
called connexive logicians. Note, for example, that the logic by (Belnap, 1977a)
does not support A-Elimination either. Thus, a combination of these options can
also occur.

Another approach is not to generally block any of the rules but to restrict the
ordering in which these rules can be applied. The derivation above requires V-
Introduction to be applied before V-Elimination. The logic by (Besnard and
Hunter, 1995), for example, is based upon the restriction that decompositional
rules like V-Elimination must not be applied after V-Introduction. The advantage
is to keep all classically valid reasoning rules including disjunctive syllogism and
the classical definitions of the logical operators.
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Weakly Negative Systems

In classical logic, the conflict A A = A is equivalent to falsity, often denoted L.
More generally, if A and B are two formulae, then A = (B = 1) expresses that
A and B are in conflict, i.e. they are inconsistent. Conflict can be represented in
classical logic by using a negation symbol. Then {A} F — B represents the same
inconsistency as above. Thus, negation and inconsistency are closely related in
classical logic.

This type of reasoning lead to much research into the nature of negation. (Gabbay
and Hunter, 1999), for example, explore the relationship between negation and
contradiction to develop better techniques for handling inconsistent information.
(Béziau, 2000) is also mainly concerned with the negation operator with respect
to paraconsistency. Thus, it is not surprising that a number of paraconsistent
logics are based on a weaker notion of negation than classical logic.

One important representative is the logic C, proposed by (da Costa, 1974). The
main idea is to use the positive part of some logic, say classical or intuitionistic,
but to allow negation in an interpretation to behave non-truth-functionally, i.e.
the truth value of = A is independent of that of A. This, in particular, allows both
to take the value 1, i.e. both can be “true”. Negation is rather weak under such an
interpretation. Many classical equivalences, like the definition law for implication,
double negation and the contraposition law do not hold in C,. Furthermore, rules
like modus tollens and disjunctive syllogism fail. However, modus pones is valid
and therefore weakly-negative logics are considered useful for rule-based reasoning
with information.

Many-Valued Systems

Problably one of the simplest and intuitive ways to produce paraconsistent sys-
tems is to use a many-valued logic, i.e. a logic with more than two truth values.
The formulae that hold in a many-valued interpretation are those which have a
truth value that is said to be “designated”. A paraconsistent many-valued logic
is thus one which allows both a formula and its negation to be designated. The
simplest form is to use three truth values, namely “true” and “false”, which func-
tion in a classical way, and “both”. One can also add a fourth value, “neither”,
to capture the problem of incomplete knowledge. We present two representatives
of such four-valued logics next.

4.3 Four-Valued Paraconsistent Logics

Many-valued systems are rather intuitive. They provide a natural way of dealing
with over-determined and under-determined knowledge. It is mainly the estab-
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lished Western philosophy that rejects extra truth values. Eastern philosophy, on
the contrary, is founded on four truth values.

(deCharms, 1997, p. 26), for example, discusses the Tibetan view of mind. “For
many Westerners [and classical logicians] these [following] two statements would
seem to cover all of the relevant possibilities, with one or the other (but not both)
being necessarily correct.”

(1) A phenomenon exists (has individual existence).
(2) The phenomenon does not exist.

“From the Tibetan viewpoint, there are two additional possible (and philosophi-
cally important) viewpoints”

(3) The phenomenon both exists and does not exist.
(4) The phenomenon neither exists nor does not exist.

Thus, the Tibetan view corresponds to a four-valued approach as presented below.

4.3.1 Belnap’s Logic FOUR

(Belnap, 1977b; Belnap, 1977a) introduces “A Useful Four-Valued Logic” to cap-
ture the idea of “How A Computer Should Think”. Belnap considers the following
situation. First, the reasoner is a computer and, therefore, need not to rely on
familiarity with classical logic. Second, the computer answers questions based on
given facts and deductions. Third, the facts the computer has, were given to it,
which means, the computer can only reason about what it was told, i.e. about
epistemic information.

The latter is surely the case in requirements engineering because the specifier
usually has to accept what was told to him. This computer, however, is not a
complete reasoner in the sense that it will not do anything else but report an
inconsistency. This means, no automated belief revision will take place. Consid-
ering its application in requirements engineering, this is not a problem because
it forces the specifier to go back and to discuss certain issues further with the
applicant.

Truth Values

First, we fix the truth values of the logical system. Based on the epistemic
information a computer is given, we have four situations: ‘told True’, ‘told False’,
‘told True and False’, and ‘told neither True nor False’. Note, this corresponds to
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the subsets obtained by forming the powerset of the classical truth values. The
truth values are given by the set {¢,f, T, L} respectively.

These truth values can be ordered according to the amount of knowledge or
information that each truth value exhibits. This ordering is denoted <j and it
holds: 1L <i f < T, and L <; t <x T. It can be observed that the four truth
values form a complete lattice under the knowledge (or information) ordering.

A complete lattice is a set, for example A, on which a partial ordering < exists
and for arbitrary subsets X of A there always exists least upper bounds LUX € A
and greatest lower bounds MX € A. A function f from one complete lattice
into another is monotonic if it preserves the lattice ordering, i.e. a =< b implies
f(a) < f(b). We need this property to explain how the truth tables for this logic
arise.

Truth Tables

Table 4.1 presents the truth tables for Belnap’s logic. In case there is no con-
tradiction or incompleteness present, everything should be as in classical logic.
Furthermore, all these truth functions shall be monotonic on the lattice over the
knowledge ordering. This, however, does not determine all resulting truth values.
It turns out that a minimal relationship between conjunction and disjunction is
needed to uniquely determine every value in the truth tables. The natural relation
is the following, classical, equivalence:

aANb=a<saVb=0D
aANb=b& aVb=a

i.e. having A as greatest lower bound and V as least upper bound of the lattice.

The truth values for the negation of T and L are forced by monotonicity of nega-
tion over the knowledge ordering and T and L in the truth tables for conjunction
and disjunction are also forced by monotonicity. Furthermore, ¢ is an identity
element with respect to conjunction, i.e. @ A ¢ = a. Thus a V ¢ = ¢ must hold by
the above obligation. Similar considerations fill in the rest of the tables except
the corners. They are, again, forced by monotonicity. Since f <, T it follows
by monotonicity that (f A L <, T A L) and hence f <y (T A L). Similarly,
1 =<y fleads to (T A L) <, (T Af),ie. (T A L) = f, and by antisymmetry
(TAL)=F.

Therefore, we derive the following truth tables for negation, conjunction and
disjunction:
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Al| -4 AT t f L vIiT ¢t f L
T T TIT T f f TIT ¢t T ¢
t ] f t|T ot f L tlt ottt
flt fyr rrr Tt f L
1] L 1l f L f L 1t t L 1

Table 4.1: Negation, Conjunction, and Disjunction of the Logic FOUR

These tables constitute the so called logical lattice, denoted L4, with the follow-
ing, related truth ordering: f <, T <; ¢, and f <; L <; t. The truth ordering
reflects the difference in the “measure of truth” that every value represents. A
double Hasse diagram of both knowledge and truth ordering of the logic FOUR
is given in Figure 4.1.

knowledge-ordering

1

truth-ordering

Figure 4.1: The Truth and Knowledge Ordering of FOUR

The propositional language of Belnap’s logic is composed of a countable set of
propositional letters and the logical connectives = ; A and V. Formulae in this
logic are constructed in the standard way. A Belnap theory is a set of formulae in
this logic. For the finite case, a Belnap theory can be seen as a single formula given
by the conjunction of all the formulae in that particular theory. For example, the
formula p A (= p V q) A (r A = q) is a finite theory in this logic.
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Semantics

We define the semantics of this logic in the normal way by using the notion of
an interpretation mapping from the propositional symbols into the set of truth
values as well as truth-valuation for a generalisation to arbitrary formulae. Inter-
pretations are ordered by the usual extension to sets of literals of the knowledge
ordering among literals. Furthermore, we use the notion of designated truth
values from many-valued logic.

Let I be an interpretation in the logic FOUR and wval; the corresponding truth-
valuation (Belnap uses the term set-up for I). Let F' be an arbitrary propositional
formula containing — , V, A. We say that [ satisfies F', denoted by [ F4 F', iff
val (F) € {t, T}, where {¢, T} forms the set of designated truth-values. An
interpretation I is a model of a theory iff it satisfies all the formulae in the
theory. I ¥, F denotes that I does not satisfy F'.

I':4A/\B iff ]':414 and ]':4B
I':4A\/B iff ]':414 or ]':4B
IF - A ifft 1F# A

The notion of entailment is based on the partial ordering associated with the
logical lattice. In L4 entailment goes up hill. That means, a sentence A entails
or implies a sentence B iff for each assignment of one of the truth-values to
variables, the value of A does not exceed the value of B, in symbols:

A entails B iff val;(A) <y val;(B) for every interpretation [

Proof Theory

Proof theoretically, Belnap’s logic is characterised by a finite axiomatization.
Given are the formulae A, B and C consisting of A, V, and = . The expression
A — B denotes that A entails B, i.e. that the inference from A to B is valid.
The expression A <> B denotes that A and B are semantically equivalent. The
following axiomatization is known to be sound and complete with respect to the
semantics of the logic presented earlier.

Ay N...NA, — By V... B, provided some A, is some B; (sharing)
A — B and B — C implies A — C
A<+ B and B + C implies A <+ C
A—-Bif -B—-4A4
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- Ao A
—|(A/\B)<—)—|AV—|B —|(A\/B)(—>—|A/\—|B
AVB+ BV A ANB+ BANA
AV(BV(C)< (AvB)vC ANBANC)< (ANB)ANC
ANBVC)< (ANB)V(ANC) AV (BANC)+< (AVB)AN(AV C)

(AVB)—» CitA— Cand B— C
A= (BAC)iff A= Band A— C
A—-Bit A< (AANB)iff B+ (AV B)

The first block of expressions captures the reflexivity, transitivity and contrapos-
itive properties of the consequence relation. The second block of expressions cor-
responds to standard classical properties of negation, disjunction and conjunction
(e.g., commutativity, associativity, de Morgan laws). Finally, the last expressions
correspond to standard classical rules for introduction and elimination of V and
A respectively.

The similarity between the above rules and classical rules shows that this four-
valued logic is very close to standard classical logic. However, the following
‘paradoxes of implication’ are not derivable, nor semantically valid, from the set
of entailment rules: A A = A — B and A — B V = B. This means that the
problem of triviality was resolved and, thus, Belnap’s logic is paraconsistent.

Belnap’s logic is strictly weaker than classical logic as it does not incorporate
modus ponens nor A-Elimination. Furthermore, implication cannot be defined
in terms of the other logical operators, nor does the deduction theorem hold.
This logic is, however, “normal” because the Tarskian properties of reflexivity,
monotonicity and transitivity hold.

Beyond Belnap

Belnap’s four-valued logic had a great impact on the research of paraconsistent
logics and it had been a constant source for further investigations. (Rodrigues
and Russo, 1998), for example, present a translation method for Belnap’s logic
into first-order predicate logic based on two principle predicates holds(A, tt) and
holds(A, ff) for any formula A. (Arieli and Avron, 1998) use Belnap’s logic as
a basis for a discussion on the general usefulness of four truth values. They
find that four values are just right. They are strictly more expressive than three
truth values but incorporate the investigated three-valued logics. There are also
a number of related approaches to Belnap’s logic, one of which is presented next.
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4.3.2 Damasio’s Logic FOUR

Belnap’s logic does not validate the use of modus ponens. However, this is an
often applied reasoning rule. Thus, Belnap’s logic is not suited for some applica-
tions, for example, in logic programming. To overcome this deficiency (Damésio
and Pereira, 1998) present in their survey of paraconsistent semantics for logic
programs a variation of Belnap’s logic.

Truth Table for Implication

The interpretation of the logical connectives A, V and — is the same as in
Belnap’s logic as given in Table 4.1. The logic FOUR by (Damésio and Pereira,
1998) then differs primarily in the definition of the consequence relation and the
inclusion of the implication connective which is presented in Table 4.2.

—|T ¢t f L
Tt t f f
t |t t f f
flt t t t
Lyttt t

Table 4.2: Truth Table for Implication in the Logic FOUR

Let I be a FOUR interpretation, val; the corresponding truth-valuation and
F an arbitrary formula. Then [ satisfies F, denoted I F, F, if and only if
val(F) € {t, T}, where {¢, T} forms the set of designated truth values. As
usual, an interpretation I is a model of a theory T if and only if it satisfies all
the formulae in 7. Furthermore, I ¥, F' denotes that I does not satisfy F'.

Note that the implication operator above always evaluates to either ¢ or f. It
is defined in such a way that the following equivalences plus modus ponens are
valid:

IFyANB if TF4A and IF;B
IrfAvB it TF4A or IFB
IFyA—B it TEF,A or IFB

Note the similarities to (Herre and Pearce, 1992) and (Herre, 1998). Each of the
two papers consider one half of this work. The first is concerned with partial
logical programs and the latter with inconsistent logic programs. Both papers
together can be used to extend the work by (Damédsio and Pereira, 1998) to the
first-order case.
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Logical Equivalence

To characterise this logic further, we introduce the notion of equivalence. Actu-
ally, in multi-valued logics one can define at least two notions of equivalence, one
based on the truth-valuation function (called strong equivalence and denoted =)
and another based on the consequence relation (referred to as weak equivalence,
H4). Given two formulae A and B of the language FOUR, we say A =4 B iff
val;(A) = val;(B) for every interpretation I. Furthermore, we say A H,4 B iff for
every interpretation I it holds I F, A iff I E4 B. Otherwise A H, B is false.

Note, for an arbitrary many-valued logic it holds that if A = B then A H B,
whenever = is defined as truth-value equality and = is expressed by means of a
set, of designated truth values. In the remainder of this subsection we mean weak
equivalence when we just say equivalence.

The equivalences holding in FOUR are similar to the ones holding in classical
logic. (Damésio and Pereira, 1998) present a list of valid equivalences. However,
a number of laws do not hold, like the law of the excluded middle (A vV = A H 1),
the law of contradiction (A A = A H f), the definition law (A - B H - AV B),
i.e. the possibility to define implication in terms of the other connectives, and
the contraposition law (A — B H — B — = A). Furthermore, modus tollens
(=B ANA— B) — — A) and disjunctive syllogism (A A (= AV B) — B) fail.
Interestingly, all axioms of propositional logic hold but

(A= B) = (A= (=B)) = (= 4)

which corresponds to the introduction rule for negation of the natural deduction
calculus. Finally, we note that the logic presented is neither daCosta’s C,, system,
because the law of the excluded middle is not satisfied, nor Belnap’s logic, because
modus ponens is a sound rule now.

Logical Consequence

Given the above, we present the correspondence between the consequence relation
(also called satisfaction relation) and the truth-valuation function of propositional
symbols, as well as between the truth-valuation function and models in FOUR.

Let A be a propositional symbol and I an interpretation in a language containing
A, then:

I=EfA and TE;-A iff wva;(A)=T
1 ':4 A and I #4 - A iff ’Ual[ (A) t
T2, A and TF;—-A iff wa;(A)=f
I #4 A and [ #4 - A iff Ual[ (A) 1
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This means, a literal L is entailed by an interpretation I iff val;(L) maps to ¢ or
T. The complement of L, i.e. = L, holds iff val;(L) maps to f or T.

To find the value of the truth-valuation function applied to the propositional
symbol A, we construct the set of all possible FOUR models of a given theory
T, i.e. Mod™(T). Then, we take the least FOUR model M of Mod™*(T) with
respect to the knowledge ordering, i.e. M € Mod™(T) AV N e N € Mod™(T) =
M <, N. The value of the truth-valuation of a propositional symbol A is then:

val;(A)=T if AeM and ~AeM
val;(A) =t iff AeM and - A¢gM
valf(A)=f iff A¢gM and ~AeM
val(A)=1 iff A¢gM and ~AgM

The Tweety Example

Consider the rules (1)-(4) of the Tweety example which we presented in Chapter
3. By applying the equivalence rules of FOUR and modus ponens we can infer
only one and thus least model:

M = {penguin( Tweety), bird( Tweety), flies( Tweety), — flies( Tweety) }

This, in turn, leads to the following assignments of truth values:

val (flies( Tweety)) = T
valy (penguin( Tweety)) = t
valp (bird( Tweety)) =t

which corresponds to our introduction of Tweety as a penguin and bird that can
and cannot fly.

4.4 Quasi-Classical Logic

The development of quasi-classical logic (QCL) was influenced by the need to
handle beliefs rather than the truth. As such, it seems particularly suitable for
reasoning about specifications because specifications are artifacts of belief. In
general, a specification is a collection of information, often provided by multiple
sources, on how a system which has yet to be developed should work. Therefore,
belief in the information is crucial as there does not exist anything providing
the ultimate truth about the future system. In such a context, the sources of
information may possibly contradict on some issues and it may well be that such
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contradictions cannot be resolved immediately. Hence, there is a need for a logic
dealing with inconsistent information.

The logics FOUR and FOUR were also designed to handle beliefs. Two extra
truth values were introduced to capture inconsistency and incompleteness. We
found, however, that practical reasoning rules, like modus pones and disjunctive
syllogism, do not hold in these logics. Furthermore, the definition law, relat-
ing implication with negation and disjunction is not valid either. We think that
specification developers would like to rely on classical correspondences and speci-
fication analysts prefer to rely on standard inference rules. Therefore, we require
a paraconsistent logic that is more practical in such respects.

(Hunter, 2000) states that QCL has been developed for applications, in particular
for reasoning about requirements specifications that might be inconsistent. For
example, (Hunter and Nuseibeh, 1997) advocate and illustrate the use of QCL to
handle and manage inconsistent specifications. The specifications presented as
examples in the work on QCL are written in first-order predicate logic. Our aim
in this thesis is to utilise QCL to reason about inconsistent specifications written
in a richer language, specifically the Z notation.

4.4.1 Syntax of Quasi-Classical Logic

To the reader familiar with first-order predicate logic (FOPL) only little will be
new in this section. For those who like to recapitulate FOPL we recommend (Fit-
ting, 1996) or (Ben-Ari, 2001) for a short introduction. Both text books present
an introduction to predicate logic and, in particular, to the tableau method which
we use later, too.

The language of quasi-classical logic is that of first-order predicate logic. It is
defined in the usual way. We start by presenting the alphabet of the language.
Based on the alphabet, we define the notions of a term, an atomic formula and,
finally, formulae belonging to the language of QCL.

Alphabet. The alphabet of the language of quasi-classical logic consists of: the
common logical connectives, like A, V, =, < and — , including the two quantifiers
V and d; a set of variables; a set of predicate symbols; a set of function symbols;
and, finally, some punctuation symbols, like ‘(" and *)’, used to form formulae.
Each relation and function symbol is associate with a positive integer, its arity.
Function symbols with arity zero are also called constant symbols. We assume
that there is at least one constant symbol in the set of function symbols. Note,
the Boolean constants true and false are not given in the QC language.

Term. The basic building block for a formula is a term. First, any variable is
a term and, second, if f is an n-ary function symbol with n > 0 and #,..., ¢,
are terms then f(t,...,%,) is a term, too. Note, that it follows from the second
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case that constant symbols are terms as well. For example, if + is a two-place
function symbol, ? is a one-place function symbol, z and y are variables, and 0
and 1 are constants, then z + y, 22 + 1, (1 4+ 0)%, ((z + y)* + (1 + y)?)?, ... are
terms. Sometimes we may use the infix notation for writing terms, like in the
example above. For instance, we write = + y rather than +(z,y).

Atom. Having defined terms we move on to define formulae. The simplest of its
kind is an atomic formula, also called an atom. If P is an n-ary predicate symbol
with n > 0 and #, ..., t, are terms, then P(¢,...,1,) is an atomic formula.

Formulae. Given atomic formulae we use the logical operators available to
construct more complicated formulae. Formulae are well-formed if they meet the
following conditions. First, any atom is a formula and, second, if ¢ and ¢ are
formulae and z is a variable then the following are also formulae: (=¢), (¢ A ),

@V ), (0=1), (1), (Vo.g(z)), (Fz.¢(z)).

We let £ denote a set of formulae formed in such an inductive way. For later ref-
erence we introduce some more vocabulary. Any atomic formula or any negation
of an atomic formula is called a literal. A disjunction of literals is called a clause.
A term or an atomic formula is ground if and only if it contains no variables and
a sentence is a formula with no free-variable occurences. Furthermore, we omit
brackets according to the general conventions.

The notion of a focus is possibly new to those acquainted with FOPL. The focus
is a syntactical rule to remove a particular disjunct from a clause. We use the
focus later as a means to introduce a particular form of disjunction with a built-in
resolution rule.

Focus. Let a; V ... V «, be a clause that includes a literal «;. The focus of
a; V ...V a, by a4 denoted ®(ay V ... V ay,«;), is defined as the clause
obtained by removing the disjunct «; from the clause o; V ...V «,. In the case
of a clause with just one disjunct we consider the focus to be undefined.

Basically, the focus of a clause is just the original formula without a particular
disjunct. For example, consider the clause o V 5 V vy, then the focus of this clause
by 3, denoted ®(a V 5V 7,5), is a V 7. The focus ®(a V «, ) is undefined,
because a V « contracts to a.

4.4.2 Semantics of Quasi-Classical Logic

One of the main ideas behind some paraconsistent logics is to separate the truth
and falsehood of a formula from each other, i.e. knowing the formula ¢ is true
does not necessarily imply that ¢ is not false. Quasi-classical logic follows the
same approach. Basically, we construct a set of all possible atomic formulae
that can be built using the symbols in the set of assumptions. Any such set
is a possible model. Then, we define two semantic relations, called strong and
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weak satisfaction to interpret QC formulae. Finally, we define the quasi-classical
satisfaction relation based on strong and weak satisfaction.

Quasi-Classical Model

The notion of a model in first-order quasi-classical logic is based on a form of
Herbrand models. Herbrand models are special in the sense that they associate
each ground term with its name. Every model has a domain, which in this case
is called the Herbrand universe.

Definition 4.4.1 (Herbrand Universe)

The Herbrand universe U(L) for a set of formulae £ is the set of ground terms
that can be formed using the function and constant symbols in £. As mentioned
before, we can always assume that there exists a constant symbol. If there is
none we add one, say c.

For example, consider the set of formulae £ = {Q(a), P(a,f(z), g(y, b))} with
predicate symbols P, (), function symbols f, g, constants a, b, and variables z, y.
Then U(L) = {a,b,f(a),f(b),f(f(...(f(a))...)), 9(a,a),g(a,b),...}is the Her-
brand universe of £. Note, if £ contains a function symbol with arity greater
than zero then the Herbrand universe is infinite. The Herbrand universe of the set
of ground formulae A = {= P(a), P(a) V P(b),P(a) V = P(b)} with predicate
symbol P and constants ¢ and b is U(A) = {a, b}.

Definition 4.4.2 (Herbrand Base)

Given is the Herbrand universe U(L) for a set of formulae £. The Herbrand base
B(L) is the set of ground atoms that can be formed using the predicate symbols
in £ and the terms in U(L).

For example, the Herbrand base for the set of formulae £ from above B(L)
{Q(a), Q(f(a)), P(a, (), g(b, b)), P(f(a), b, a),...}. The Herbrand base B(A)
of the set of formulae A is B(A) = {P(a), P(b)}.

In standard predicate logic, every Herbrand model over £ can be described as
a subset of the Herbrand base B(L). Because we deal with a paraconsistent
logic, we need to go a step further. The idea in many paraconsistent logics is
to separate formulae and their negation. To do so, we use a set of positive and
negative objects constructed from the Herbrand base.

Definition 4.4.3 (Object)
Given is the Herbrand base B(L) for a set of formulae £. O(L) is a set of objects
defined as follows, where +a is a positive object, and —« is a negative object.

O(L) = {+a | a € B(L)} U{—a|a € B(L)}
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Consider the set of formulae A from above. The set of objects is given by O(A) =
{+P(a),—P(a),+P(b),—P(b)}. Any set of such positive and negative objects
can be a quasi-classical model.

Definition 4.4.4 (Model)
Given a set of objects O(L), then any E C O(L) is called a model.

This means that a model E can contain both positive and negative objects. We
consider the following meaning for positive objects +a and negative objects —a
being in some model £ or not:

+a € F means « is “satisfiable” in the model

—a € F means — « is “satisfiable” in the model

+a ¢ E means « is not “satisfiable” in the model

—a ¢ F means — « is not “satisfiable” in the model
This semantics can also be regarded as giving one of the four truth values Both,
True, False and Neither to the elements of the Herbrand base, i.e. to the ground
atoms, as in the four-valued logic by (Belnap, 1977b). For an atom «

« is Both if both a and — « are “satisfied”

« is True if « is “satisfied” and — « is not “satisfied”

« is False if «v is not “satisfied” and — « is “satisfied”

« is Neither if neither o nor — « is “satisfied”
Hunter, however, introduces a different semantics based on a two-valued inter-

pretation. To continue, we formalise the notion of satisfiability and extend it to
formulae of the language using the following definitions.

Quasi-Classical Herbrand Interpretation

As usual, an assignment A is a function from the set of variables in £ to the
universe U(L). Given an assignment A, an z-variant assignment B is the same
assignment as A except perhaps in the assignment for z.

Definition 4.4.5
For an assignment A, terms in £ are interpreted as follows, where [.]4 is a function
from the terms in £ to U(L).
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= ¢, where ¢ is a constant symbol.
[#]* = 2/, where 7z is a variable symbol.

[f(t, - t)]A = f([0]4, ..., [ta]?), where f is a function symbol and
t,...,t, are terms.

Thus, each ground term in £ is interpreted as the equivalent term in U (L), hence
a model with such an interpretation is a Herbrand model. A subset of the set of
objects is a model of a particular literal, if the corresponding positive or negative
object is a member of the model itself.

Definition 4.4.6 (Herbrand satisfaction)

Let Fj, be a satisfiability relation called Herbrand satisfaction. For a model F and
an assignment A, an atom «(t,...,t,) in £ over terms t,...,t, is interpreted
as follows:

(E,A) B, alt,... t,) iff +a([t]4,... [t eE
(E,A) By~ alty, ... t,) iff —a([t]4,...,[t.])4) € E

This definition of Herbrand satisfaction is the base case for the two satisfaction
relations QCL is built upon. We continue by defining strong satisfaction first.

Strong Satisfaction Relation

The main idea behind QCL is that proofs in QCL are a two-stage affair. A
proof is separated into decompositional steps, including resolution, followed by
compositional steps. To capture this idea we need to establish the semantics for
both stages. Here we present the notion of strong satisfaction which corresponds
to the decompositional phase.

Definition 4.4.7 (Strong satisfaction)

Let F; be a satisfiability relation called strong satisfaction. For a model F, and
an assignment A, we define F, as follows, where a, ..., «, are literals in £, and
« is a literal in L.

(E,A)F, o iff (E,A)F) «
(E,A)Fsaq V...V q, iff
[(E,A)Esaq or ... or (E,
Vist 1<i<nl[(E,

A) E; ay,] and
A) E; = «; implies
(B, A)Ey @1 V...V ag, ;)]
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We clarify the meaning of this disjunction rule with an example. If o V 3 is the
given clause, then the above definition reduces to

(E,A)FsaVv g iff [(E,A)Fsa or (E,A)F; 3]
and [(E, A) F; - « implies (E, A) F; f]
and [(E, A) E; - ( implies (E, A) F; o]

Strong satisfaction is more restricted than classical satisfaction because the link
between a formula and its negation has been decoupled. To provide a meaning
for resolution, this link is put into the semantics of strong satisfaction via the
treatment of disjunction.

(Hunter, 2000) provides a slightly different view on disjunction, too. Given a
model £ and literals aq, ..., «a,, then

EE;a1 V...V, iff
(1) for some «; € {ay,...,a,},+a; € E and —a; € E
or (2) for all o; € {ay,...,an},+a; € F and —«; € E

Hunter proves that both definitions are equivalent by expanding the above defi-
nition. In essence, the disjunction rule of strong satisfaction provides a semantic
account for paraconsistent reasoning using resolution. We now continue defining
strong satisfaction, considering arbitrary formulae.

Definition 4.4.7 (continued)
For formulae o, 8,y € L, we extend the definition of strong satisfaction as follows:

(E,A)F;anp iff (F,A)F; o and (E,A) F,
(E,A)Fyn—~aVvyiff (E,A)F,aVy

(E,A)Fs = (A pB)Vyiff (E, A)|= “~aV-afBVy
(E,A)IZﬁ(avB)\/fyﬁ(E,A s(CaN=B)Vry
(E,A)
(E,A)
(E, A)

Y

Y

’

FyaV (BAR) iff (E ,A)i:s(avm (V")
E,aA(BV ) iff (B,A)E, (A B)V (A7)
Fs (= B) vy iff (E,A)F, (maVB)Vy

Y

Y

Let B be an z-variant assignment of A, then

( ) Vv B iff for some B, (E,B)E;aV

s (Vx.a(a:)) g iff forall B, (E,B)EF;aV
( x))vﬁlffforallB (E,B)Fs ~aVp
( z)) Vv g iff for some B, (E,B)F; ~aV

For a model E we polymorphically extend strong satisfaction as follows

E Ey ¢ iff for all assignments A, (E, A) E; ¢
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Such an E is said to be a strong model of .

For example, {—a,+a, —b,+b} is the only strong model of the set of ground
formulae A = {= a,a V b,a V = b}. Note, every formula ¢ has a strong model
even if it is classically inconsistent.

In the definition of strong satisfaction, the disjunction rule applies only to clauses.
We show that this restriction is necessary. We demonstrate on an example that
a weakening of this rule to arbitrary formulae leads to a contradiction. Consider,
for example, the propositional model E = {4+, —3, +7} for the objects +3, —
and +7v. Using a weakened disjunction rule we establish that £ F; a V (8 A 7),
because F E; B A v and E ¥, = (8 A ). According to the disjunction rule we
do not need E F; a which would not hold. However, E ¥, (a V 8) A (a V 7),
because £ ¥, o V (3, which is due to £ F;, = 8 but E ¥, «. Together, this
contradicts distributivity of disjunction, if we would allow a weakening of the
disjunction rule.

Note, the equivalences in strong satisfaction allow for any formula in £ to be
rewritten into conjunctive normal form and then into clauses which can be eval-
uated with respect to the objects in the model.

Weak Satisfaction Relation

Strong satisfaction corresponds to the decompositional rules. Now we need to
capture the compositional rules. The definition of weak satisfaction is similar
to strong satisfaction. The main difference is that disjunction is less restricted,
because it does not incorporate focusing. Indeed, weak satisfaction seems closer
to a classical notion of satisfaction.

Definition 4.4.8 (Weak satisfaction)
Let =, be a satisfiability relation called weak satisfaction. For a model F, an
assignment A, and a literal a in £, we define F,, as follows.

(E,A)F, o iff (E,A)F, «

For formulae «, § € L, we extend the definition as follows:

(E,A)Fy, aV B iff (E,A)F, o or (E,A)F,
(E,A)Fy, aNp iff (E,A)F, « and (E,A) F, B
(E,A)Fy, ~—a iff (E,A)F, «

(E,A)E, — (anp) iff (E,A)F, ~aV-p
(E,A)Ey, - (Vv p) iff (E,A)F, "anN-(
(E,A)Fy, a=p iff (E,A)F, ~aV

Let B be an z-variant assignment of A, then
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) Fw dz.a(z) iff for some B, (E,B)E, «

) Fuw Yz.a(z) iff for all B, (E,B)F, «

) Ew 0 dz.a(z) iff forall B, (E,B)F, ~«

) Fw - Vz.a(z) iff for some B, (F,B)F, -«

For a model E we polymorphically extend weak satisfaction as follows
E E, ¢ iff for all assignments A, (E, A) E, ¢
Such an £ is said to be a weak model of .

For example, the set of ground formulae A = {—=a,a V b,a V = b} has the fol-
lowing weak models: {—a,+a}, {—a,+b, -0}, {—a,+a,+b}, {—a,+a,—b} and
{—a,+a,+b,—b}. Note, every strong model of a formula ¢ is a weak model of
¢ but the converse does not hold in the general case.

Observe that the definition of weak satisfaction differs slightly from the one given
by (Hunter, 2000; Hunter, 2001). Disjunction is here applicable for formulae and
not only for literals. This change is necessary for the following property proved
in (Hunter, 2000). This property justifies Hunter’s use of the rules above rather
than his more restricted definition.

Lemma 4.4.1
Distributivity is implied by the definition of weak satisfaction, i.e. for any formu-
lae o, B,v € L, and any model E, the following distribution properties hold:

(E,A)F, aV (BAy) iff (E,A)F, (aV B)A(aVy)
(E,A)F, an(BVy) iff (E,A)F, (aApB)V (aA7)

Proof

Assume (E,A) F, aV (BAy). So (E,A)EF, aor (E,A)F, § and (E,A) F,
7). By distributivity of the classical connectives “or” and “and”, we have
(E,A) Fy o or (E,A) F, () and ((E,A) Ey, « or (E,A) E, 7). Hence,
(E,A)FEy, (aV B) A (aV ). The other case follows similarly. O

Quasi-Classical Entailment

Now we have established all the building blocks for the definition of quasi-classical
entailment. Basically, QC entailment is of the same form as classical entailment
except that strong satisfaction is used for the assumptions and weak satisfaction
is used for the conclusion.
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Definition 4.4.9 (QC entailment)

Given a set of formulae ¢1,..., ¢, and a formula ¢. Let g be an entailment
relation, called quasi-classical entailment, such that =oC P(L£) x £, and defined
as follows:

{SOIJ"'JSOH} ':Q ¢
iff for all models E, if FF; ¢, and ... and F F; ¢, then EF, ¢

Consider the set of ground formulae A = {= a,a V b,a V = b} and recall that
its only strong model is £ = {+a,—a,+b,—b}. The model F is also a weak
model of a, hence A quasi-classically entails a, i.e. {-= a,a V b,a V = b} Fq a.
Similarly, we can show {— a,a V b,a V = b} Fg = a V c as well as {— a,a V
b,aV — b} Fg aAb. However, we cannot establish {— a,a V b,a V = b} Fq d,
because the model E from above is still a strong model of A but it is not a weak
model of d.

An alternative way of defining entailment corresponds to model set inclusion. The
advantage is that we can make use of the standard properties of set inclusion when
reasoning about QC entailment.

For a set of formulae ¢, ..., ¢,, its class of strong models Mod; is defined as the
set of all its strong models F, i.e.

Mods(p1,...,0n) ={E | EFEs ¢ and ... and E F; ¢, }

and the class of weak models Mod,, for a formula ¢ is the set of its weak models
E,ie.

Mod,(¢) ={E | E Fu 6}

Then QC entailment = is defined as inclusion of the class of strong models in
the class of weak models, i.e.

{1, on} Fo ¢ iff Mody(p1, ..., o) C Mody(9)

4.4.3 The Semantic Tableau Method for First-Order QCL

A proof in QCL is a two stage affair. First, a set of assumptions is transformed
into clauses and decomposed into literals. Then, the compositional stage fol-
lows, forming clauses from the assumptions and derived literals using disjunction
or conjunction introduction, possibly followed by some rewrite steps to form
equivalent formulae. Any such obtained formula is a non-trivial inference from
the assumptions. We consider the strong satisfaction relation to capture the
decomposition of the set of assumptions and weak satisfaction to capture the
composition of the conclusion.
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The Semantic Tableau Method

The proof theory of first-order quasi-classical logic is based on the notion of
semantic tableau. A semantic tableau is a tree-like structure where nodes are
labeled with formulae. The idea is that each branch represents the conjunction
of the formulae appearing in it and that the tree itself represents the disjunction
of its branches. We refer to (Smullyan, 1968) and (Fitting, 1996) who present a
thorough overview of the techniques of the semantic tableau method.

The semantic tableau proof procedure is based on refutation, i.e. to prove a
formula ¢ is satisfiable, we begin with — ¢ and produce a contradiction. This
is done by expanding — ¢ such that inessential details of its logical structure
are removed until a contradiction appears or no expansion rule can be applied.
Such expansion results in a tableau tree. For example, to prove the tautology
q = (p = q) we construct the following tree:

—(¢=(p=19q)

|
¢,— (p=q)
|
9P, 4q
and observe the contradiction between the literals ¢ and — ¢. The tableau is
closed and thus the tautology is proven.

However, this approach does not work directly for QCL since the truth and false-
hood of a predicate are decoupled. Therefore, the atom ¢ being satisfiable does
not mean that — ¢ is not satisfiable, i.e. it is not possible to construct a contra-
diction in the same way as above. To overcome this obstacle Hunter introduces
signed formulae denoted by *, representing that a formula is unsatisfiable. Then
showing ¢ and ¢* yields a refutation, as well as = ¢ and (= ¢)*, because a formula
cannot be satisfiable and unsatisfiable at the same time.

The idea to use signed formulae is not new. They have often been used in the
construction of semantic tableau, for example by (H&hnle et al., 1994). New is
that the link between a signed formula and its conjugate has been removed. If
this link were put back into the proof theory, QCL would collapse to classical
predicate logic.

We formalise the introduced notions. The conjugate of a formula ¢ is denoted
¢*. Furthermore, the set of signed formulae of £ is denoted £* and is defined as
LU{e* | ¢ € L}. Given these notions we can define what it means to satisfy the
conjugate of a formula.

Definition 4.4.10
For any formula ¢ € £ we further extend the weak satisfaction and strong satis-
faction relations as follows:

EE, of iff FFE; ¢
EE, " it EF, @
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This means, the formula ¢* is weakly or strongly satisfiable whenever ¢ is not.

The Tableau S-Rules

In the definition of the quasi-classical (QC) semantic tableau, there are two types
of tableau expansion rules, the S-rules and the U-rules. These expansion rules
correspond roughly to the two satisfaction relations presented in the last section.
First, we introduce the tableau S-rules.

Definition 4.4.11 (S-Rules)
The following are the S-rules for a QQC semantic tableau. The | symbol denotes
the introduction of a branch point in the QC semantic tableau.

aNfp
o,

The conjunction S-rule:

The disjunction S-rules:

ar V... Va,

o) [®a V..V an o) [where ay, ..., q, are literals]
V.. .Van [where a, ..., ay, are literals]
ap | ... ] ay
The rewrite S-rules:
S oaVvy “(aAB) VY ~(aVvB)Vy
aV oy —aV-apBVy (—aAN=B)Vry
aV (BA9) aA(BV9) (a=pB)Vy
(@ V B) A (V) (@A B)V (A ) (maVvp) vy
The quantification S-rules:
(Vz.a(z)) Vy (- Jz.afz)) Vy
a(t) Vy —a(t) Vy
(Fz.a(z)) Vy (- Vz.alz)) Vy
a(t'y vy —at)Vy

where ¢ is a term in U(L) and t' is a term in U(L) but not occurring in
the tableau constructed so far.

All the tableau S-rules assume the formula above the line to be satisfiable. Basi-
cally, the S-rules correspond to the decompositional rules of a QC proof.
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The Tableau U-Rules

The tableau U-rules are a variant of the compositional rules of a QC proof.
They correspond roughly to the negation of the weak satisfaction relation. In
essence, rather than composing literals to form the conclusion we decompose the
conclusion to its literals. As such, all the U-rules assume a formula above the
line to be unsatisfiable.

Definition 4.4.12 (U-Rules)
The following are the U-rules for a QC semantic tableau. The | symbol denotes
the introduction of a branch point in the QC semantic tableau.

The conjunction U-rule: M
o | B
The disjunction U-rule: %

The rewrite U-rules:

o) (E(enp) (o (aVvp)” (o= B)"
a’ (mav=apg)yr  (man-p) (navp)

The quantification U-rules:

(Vz.o(z))* (= dz.a(z))* (Fz.az))* (= Vz.alz))*
(a(t))” (—a(t)) (a(t))” (ma(t)”

where ¢ is a term in U(L) and t' is a term in U(L) but not occurring in
the tableau constructed so far.

The QC Semantic Tableau

The S- and U-rules are both decomposition rules for signed formulae. They
are applied to construct the semantic tableau for a set of assumptions and a
conclusion according to the following definition.

Definition 4.4.13 (Semantic Tableau)
A QC semantic tableau for a set of assumptions A and a conclusion ¢ is a tree
such that:

1. the formulae in A U {¢*} are at the root of the tree;

2. each node of the tree has a set of signed formulae; and



4.4. Quasi-Classical Logic 91

3. the formulae at each node are generated by an application of one of the
decomposition rules on a signed formula at ancestors of that node.

This definition is similar to the one for the classical semantic tableau. The major
difference is that the root of the classical tableau contains A U {= ¢}. The QC
tableau does not use this because the link between a formula and its complement
has been decoupled.

Definition 4.4.14 (Closed Tableau)

A QC tableau is closed iff every branch is closed. A branch is closed iff there is
a formula ¢ for which ¢ and ¢* belong to that branch, i.e. both ¢ and ¢* are
on the same path from the root of the tree to the leaf of that branch. A branch
is open if there are no more rules that can be applied, and it is not closed. A
tableau is open if there is at least one open branch.

For example, to establish {— a,a V b,a V = b} o a we take as root the set of
formulae = a,a V b,a V = b, a* and construct the following tableau.

—a,aVbaV-b, a*
a/ \b
| pd \b*

closed CIL

|
closed closed

We applied the disjunction S-rule and the disjunction S-rule with focus to con-
struct this tree. Each branch of the tree is closed, hence the tableau is closed
and, therefore, {=a,a V b,aV = b}k, ais valid.

We say A Fg ¢, Le. a set of assumptions A implies a conclusion ¢ by QCL, if
and only if a QC tableau for A and ¢ is closed. (Hunter, 2001) shows that this
QC proof method is sound and complete with respect to the earlier introduced
semantics of QCL. We do not prove this statement here, but a generalized version
of it after introducing equality into QCL.

Note, all the definitions above are rather similar to the classical form for se-
mantic tableau. In fact, as (Hunter, 2000) points out, the QC semantic tableau
collapses to a classical semantic tableau if the following rules are added to the
decomposition rules,

o -« af (= a)*
(=) o -« «

Then we can use the classical definition for closure of a branch, i.e. a branch is
closed if it contains both 5 and — 3 for some ground atom.
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4.4.4 Properties of Quasi-Classical Logic

We now consider some properties of quasi-classical logic. These properties have
been presented and proved by (Hunter, 2000) before. However, we recapitulate
the arguments to give further insights into QCL. We present the arguments using
either QC entailment or QC inference. The decision for one or the other depends
on which of the two is more convenient for our purpose.

Paraconsistency

Quasi-classical logic is paraconsistent because it does not allow trivial inferences.
That is, given a classical inconsistent set of assumptions A, it is not the case that
every formula in the language L is entailed by A. For example, let a, ~ o and (3
be ground literals in £. Then it is not the case that {o, = a} F¢ 5 holds because
E = {+a, —a} is a possible model such that E Fg a A =« but E ¥g (.

The only inference rule that allows a new literal, like 3, to be introduced is
V-Introduction. QCL is designed such that no decomposition rules can follow
V-Introduction. Therefore, it is not possible to derive the new literal without any
context. Hence, QCL does not allow trivial inferences.

Inferences from the Empty Set of Assumptions

In QCL it is not possible to derive any conclusion from the empty set of assump-
tions, in particular no classical tautologies hold without a given assumption. For
example, the tautology ¢ = (p = ¢) as given in Section 4.4.3 cannot be verified
using QCL, i.e. the following tableau is not closed:

Mi@i@ﬁ
(ﬁqv@=>®Y
(=) (=9

(ﬁ@ﬂﬁpvw*
(=9 (p) ¢

It is not possible to construct a refutation, because an unsatisfiable formula can
only be decomposed into unsatisfiable formulae, hence, no contradiction with a
satisfiable formula can be derived. Model theoretically this is also easy to see. The
empty set is the only strong model satisfying an empty assumption. However, the
empty set is not a weak model of any conclusion but the empty one. Therefore,
no formula and, in particular, no tautology can be shown from the empty set of
assumptions.
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It is not clear whether this issue is a drawback for the application of QCL in the
context of formal specification, because any practical derivation is likely to be
based on a non-empty set of assumptions. Furthermore, when trying to prove
a tautology the attempt of performing the proof will indicate a set of necessary
assumptions. For example, to close the above tableau, we would need either g,
= ¢ or = p in the set of assumptions, in particular the classical tautology ¢ V — ¢
is a realistic candidate.

Reflexivity, Monotonicity and Transitivity

Reflexivity, monotonicity and transitivity are often regarded as desired properties
of a logic. However, it is well known that there exists a wide range of non-
monotonic logics to reason about uncertainty. This indicates that it is possible
to give up one or more of these properties if it is practical. Here, we investigate
QCL with respect to those three properties.

Quasi-classical logic is reflexive, i.e. for a set of formulae A and a formula ¢,
AU {p} kg ¢ holds. This is easy to see from the root of the corresponding
tableau, which is A, ¢, ¢*. The tableau is closed immediately, hence the inference
holds.

QCL is monotonic, too, i.e. for a set of assumptions A and formulae ¢ and ¢
it holds that A F, ¢ implies A U {¢} F, ¢. This follows simply from set
theory, because the set of strong models of A U {¢} is included in the set of
strong models of A which, in turn, are included in the set of weak models of ¢,
i.e. Mods(A U {¢}) C Mods(A) C Mod,(p). Monotonicity is desired because it
allows to add assumptions without retracting conclusions.

The property of transitivity, also called cut, fails in QCL, i.e. for sets of assump-
tions A and I' and formulae ¢ and ¢ it holds that AU {p} -, ¢ and I' k¢
does not imply AUTL 5 ¢. For example, consider {—=a}U{aV g} Fo B and
{a} o aV B, but {a, ~a} Fq B.

The failure of transitivity can be regarded as disadvantageous, in particular, with
our application in mind. However, (Tennant, 1984) introduced a paraconsistent
logic, where transitivity fails, too. In his logic, “transitivity of Proofs fails upon
accumulation of Proofs only when the newly combined premises are inconsistent
anyway, or the conclusion is a logical truth. In either case, Proofs that show
this can be effectively determined from the Proofs given. Thus, transitivity fails
where it least matters — arguably, where they ought to fail!” Consequently, we
need to investigate the failure of transitivity in QCL with respect to the property
of Tennant’s logic. If this holds for QCL, too, then the failure of transitivity may
not be a disadvantage anymore.
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Consistency Preservation

We discuss the relation of quasi-classical logic to classical logic. First, everything
that is derivable in QCL is also derivable in classical logic, i.e. A I—Q « implies
A a. For example, A -, o A = « implies A = a A = . However, the other
direction does not hold, i.e. A - « does not imply A I, . For example, consider
A to be empty, then it is possible to show in classical logic F a V — « but this
does not hold in QCL.

Even if we restrict considerations to a non-tautological inference of a formula ¢
that follows classically from a consistent set of formulae, we are not guaranteed
that ¢ also follows in QCL. For example, let A = {a}, then AF g = (a A ) is
a classical inference but it is not a QC inference. We consider the strong models
of @ and the weak models of # = (a A ). One such strong model is {+a} but
this is not a weak model of the conclusion, hence QC entailment fails.

Further Properties

(Hunter, 2000) presents some more properties, which have been discussed in the
context of non-monotonic logics and relevance logics before. It seems interesting
to look at these properties to enhance our understanding of QCL. Below, we
consider A to be a set of formulae and ¢, ¢ and 1 are formulae in our language.

And-introduction. The property of and-introduction, i.e. Aty o and Ab, ¢
implies A o ¥ A ¢, holds in QCL.

Or-elimination. The property of or-elimination, i.e. AU {¢} F, ¢ and AU
{6} o ¥ implies AU {oV ¢} =g %, holds in quasi-classical logic.

Furthermore, due to QCL being a weakening of classical logic, some of the laws of
classical logic do not hold in QCL. (Hunter, 2000) presents the following classical
properties which are not feasible in QCL. Below, we include some counterexam-
ples to give the reader a better understanding of QCL. We consider «, 3, and
to be atomic formulae in our language.

Right modus ponens. The property of right modus ponens, defined as follows,
fails in QCL: A b, ¢ and A F5 ¢ = ¢ does not imply A F5 ¢. Consider
A ={a,ma}, then A, a,and A, a= 3, but A¥Fg 3.

Deduction Theorem. The property of deduction, defined as follows, fails in
QCL: A+, ¢ = ¢ does not imply AU {p} k-, ¢. Consider A = {= a}, then
Abgya=pgbut AU{alrg B

The failure of the deduction theorem has a particular consequence: in formulating

properties and theorems the decision whether to use implication or deduction may
be crucial. Like other features of QCL, this requires the user of QCL to make
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its intensions explicit. In general, however, we can consider the main implicative
connective of a classical formula as the intended deduction operator.

Conditionalization. The property of conditionalization, defined as follows, fails
in QCL: AU {p} -, ¢ does not imply A -, ¢ = ¢. Consider A = {}. Then
Auf{a} b, a,but A¥ga=a

We introduce two further properties. To describe these properties we need to
make use of classical predicate logic, because, as mentioned before, QCL does
not allow any inferences from the empty set of assumptions.

Right weakening. The property of right weakening, defined as follows, fails
in QCL: Ak, ¢ and F ¢ = ¢ does not imply A =, ¢. Let A = {a}, then
{a} F, a. Furthermore, consider - a = 8V = 8. However, {a} Fq 8V = 3.

Left logical equivalence. The property of left logical equivalence, defined as
follows, fails in QCL: AU{p} 9 and F ¢ < ¢ does not imply AU{¢} k-, ).
Let A={}. {aV-a}lbyaV-aandtr (¢ V -a) & (BV o), but
{BV - B}FoaV -a.

4.4.5 Logical Equivalence in Quasi-Classical Logic

Logical equivalences play an important role in simplifying logical formulae. In
Chapter 6, for example, we use equivalences to simplify the precondition of an
operation given in the Z notation. Despite its importance logical equivalence has
not been thoroughly investigated in QCL. For example, the term “equivalent”
is used but not defined within QCL. It is referred to classical logic to give it a
meaning.

Equivalences and Normal Form

(Hunter, 2000) defines, a formula is in conjunctive normal form (CNF) if and
only if it is a conjunction of clauses, i.e. a conjunction of disjuncts of literals.

For example, given the literals «, 5 and « then (« V ) A 7 is in CNF, whereas
aV (B A7) is not.

It is known that any propositional formula in QCL can be transformed into CNF
by application of the following equivalences, in particular distributivity, arrow
elimination, double negation elimination and de Morgan laws. We denote this
equivalence relation by =,.
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PNp =@ ¢ Ve = ¢
PNP =q 9Ny PV = 9V
pA(PAY) =q (AP AY pV(pVy) = (pVo VY
“(pNAP) =@ eV (V) =@ ~eA-d
eV(ANY) =@ (VO AN(eVY) oA@VY) =¢ (AP A(PAY)
TToY = v

p=9¢ =@ ~pVo

ped =q (p=9) A (0=
(Hunter, 2000) points out that a formula ¢ is a CNF of a formula ¢ if and only if
© is classically equivalent to ¢ and ¢ is in CNF. Note, this form of a CNF is often
called conjunctive negation normal form (CNNF) because the negation symbol
does not apply to formulae but to literals only.

(Hunter, 2001) extends his work to first-order QCL. We follow from his definitions
of the strong and weak satisfaction relation that the following two equivalences
hold as well.

“Vr.p(r) = Fz.—p(x)
- dz.p(r) =¢ Voo p(o)

Thus, the negation symbol can be pushed inside quantified formulae.

Weak Logical Equivalence

In (Miarka et al., 2002) we defined, two formulae ¢ and ¢ are equivalent, denoted
¢ Hy ¢, if and only if {¢} -, ¢ and {¢} =, . We call this weak equivalence,
although this notion is actually not describing an equivalence relation. Consider
the following three formulae:

l.LA==-aNaAN-pf

2. B==aA- A (aV])

3. C=—-aAN-[BAS

Then it holds that A H, B and B H, C but A {4, C. This is obvious if
we consider the strong and weak model classes of these formulae. Recall, that

{} g ¢ iff Mody(¢) C Mod,, ().

1. Mody(A) = Mod,(A) = {{—a,+a, -8}, {—a, +a, — 3, +5}}

2. Mody(B) = {{—a,+a, B, +8}}
MOdw(B) = {{—Oé, +a, —ﬂ}, {—a, _Ba +5}7 {—Oé, +a, _Ba +5}}

3. Mod,(C) = Mod,(C) = {{—a, =8, +8}, {—a, +a, — 3, +4}}
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Now we see that Mods(A) C Mod,(B) and Mods(B) C Mod,(A), Mods(B) C
Mod,(C) and Mod,(C) C Mod,(B), but neither Mods;(A) C Mod,(C) nor
Mod,(C) € Mod,(A). Hence, the relation H, is not transitive and, therefore,
it is not an equivalence relation. Consequently, logical equivalence in QCL can-
not be defined in the most straightforward way in terms of the QC consequence
relation.

The Absorption Laws

Because the logical equivalence relation in QCL cannot be defined directly in
terms of the QC consequence relation, we look at the strong and weak models
separately. To gain more understanding we investigate the often applied absorp-
tion laws. For the formulae ¢ and ¢, the two absorption laws in classical logic
are defined as

EEoV(pNg)if EEp and EE@pA(pVe)iff EEp

The absorption laws do not hold for the strong satisfaction relation F,. Consider
the formulae o V (o A ) and a, then Mods(«) # Mods(ae V (o A ) because
{+a, —a} € Mod,(«) but {+a,—a} & Mods(a V (o A 3)). The same applies to
the other case.

However, the absorption laws do hold for the weak satisfaction relation. This
follows basically from the definition of F,, in particular from conjunction and
disjunction. The proof proceeds by showing the equivalence of the weak model
classes, e.g. Mod, (o) = Mod,,(a V (o A B)), which uses standard set theory.

Equivalence, Weak and Strong Model Classes

To define an appropriate equivalence relation we investigate two equivalence rela-
tions based on strong and weak satisfaction. We are interested in finding whether
the equivalence relation can be defined in terms of the classical equivalence of the
model classes.

For example, we find that if either the strong or the weak models of two formulae
are equivalent then they are weakly equivalent. Given two formulae ¢ and ¢. If
Mod,(p) = Mod,(¢) then ¢ H, ¢ and if Mod,(p) = Mod,(¢) then ¢ H, ¢.

Proof

(—): Mod, () = Mods(¢) € Mod,, (), hence ¢ &, .
(¢=): Mods(¢) = Mod ( ) € Mod, (), hence ¢ =, .
(—): Mods(p) C Mod,(p) = Mod,(¢), hence p I, ¢.
(«-): Mods(¢) € Mod,(¢) = Mod, (), hence ¢ =, .

In either case it follows o H, 0. a
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The standard equality relation = is reflexive, symmetric, and transitive. Thus,
a notion of equivalence built upon Mod, () = Mods(¢) or Mod,, () = Mod,,(¢)
would be an equivalence relation. We find, however, that Mod(¢) = Mod;(¢)
does not imply Mod,,(¢) = Mod,,(¢). That Mod,(¢) = Mod,(¢) does not im-
ply Mods(p) = Mods(¢) has already been established when we investigated the
absorption laws.

Proof

Consider the formulae p = = a A=A (aV ) and p=—-a A= FAaAp.
Then Mods(p) = {{—a, +a, =B, +8}} = Mod,(¢) = Mod,(¢) but Mod,(p) =
{{—Oé, +O[, _/8}7 {—O[, _/87 +6}7 {—Oé, +O[, _/87 +6}} 7£ MOdw (¢) O

Thus, we cannot define a generally applicable equivalence relation for QCL based
only on the strong satisfaction relation.

Strong Logical Equivalence

We have to opt for a stronger definition considering both equivalences over the
weak and strong model classes. Thus, if the model classes of two formulae are
the same, then these formulae are equivalent, i.e. given two formulae ¢ and ¢,
then ¢ =¢ ¢ iff Mod,(¢) = Mod,(¢) and Mod,(p) = Mod,(¢).

Lemma 4.4.2
Strong equivalence in QCL, i.e. =¢, is an equivalence relation.

Proof
To be an equivalence relation, = needs to be reflexive, symmetric and transitive.

e Reflexivity: ¢ =¢ ¢ iff Mod;(p) = Mod,(p) and Mod,,(¢) = Mod,,(¢) by
definition of =¢. This holds by reflexivity of equality.

e Symmetry: ¢ =¢ ¢ implies ¢ = ¢ iff (by definition of =g) Mod,(¢) =
Mods(¢) and Mod,(p) = Mody,(¢) implies Mods(¢) = Mods(p) and
Mod,(¢) = Mod,(¢) This holds by symmetry of equality.

e Transitivity: ¢ =¢ ¢ and ¢ =¢ ¢ implies p =¢ ¢ iff Mod,(p) = Mod,(¢)
and Mod,, (p) = Mod,(¢) and Mods(¢) = Mods(v)) and Mod,, (¢) = Mod,, (1))
implies Mod(p) = Mods(¢)) and Mod, () = Mod,(v). This holds by tran-
sitivity of equality.

Hence, the relation = is an equivalence relation. O
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Note, this result is compliant with Lemma 5.12 by (Hunter, 2000): For models X
and formulae ¢ and ¢, if ¢ is a CNF of ¢, then the following equivalences hold:

X Fs piff X F; o,
XFyoift XE, 0

Furthermore, it follows from the above investigations that if two formulae ¢ and
¢ are equivalent, i.e. ¢ =¢g ¢ then they are QC consequences of each other, i.e.
¢ H, ¢. Thus, the relation H,, is necessary but not sufficient for QC equivalence.

Further Quasi-Classical Equivalences

There are many useful equivalences in classical logic to simplify quantified formu-
lae. For example, the existential quantifier distributes over disjunction in classical
logic. We are interested in investigating whether such laws hold in QCL, too.

First, we establish that the universal quantifier distributes over conjunction, i.e.
Ve (o(z) A d(z)) =¢ Vz.o(z) ANV z.¢(z)

Proof
To show this, we need to establish that

EFEs Va.(o(z)Ao(z)) iff EFE; Va.p(z) AVz.g(r) and
EE, V. (p(x)Ao(x)) iff EF,Vr.po(z)AVz.d(z)

EFEVa(p(x) A ¢(r))
iff {for all assignments A}

(E,A) B Va.(o(z) A d(z))
iff {for all z-variant assignments B}

(E,B)Fs o N o
iff
(E,B)Fs ¢ and (E,B) Fy ¢
iff
(E,A)E;Vz.p(z) and (E, A) F; Vz.¢(x)
iff
(E,A) EsVz.p(z) ANV z.¢(x)
iff

EFsVz.o(z) ANVz.o(r)

The same holds for F,. O
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The next rule is particularly useful when simplifying preconditions in Z. We
establish, the existential quantifier distributes over disjunction, i.e.

dz.(p(z) V d(x)) =¢ Fz.o(z) vV Iz.9(2)

Proof
We need to show that

EFEs, Jz(o(z)V o(z)) it EF; Fz.¢(z) VIz.¢(x) and
EE,dz(o(z)Vo(r)) iff EF, Jz.p(z) vV Iz.o(z)

EF,Jz.(p(x) vV ¢(r))

iff {for all assignments A}
(B, A) Fs Fa.(p(z) V o(2))

iff {for some z-variant assignment C}
(E,C)Fs oV ¢

EF,dz.0(z) VvV dz.0(z)

iff {for all assignments A}
(E,A) Fs Jz.p(z) V Iz.¢d(x)

iff {for some z-variant assignment B}
(E,B)Es oV dz.6(x)

iff
(E,B) F, 31.¢(z) V

iff {for some z-variant assignment C'}
(E,C)F: ¢V ¢

iff
(B,C)F; oV ¢

The proof of the weak satisfaction relation is slightly simpler because disjunction
is applicable for formulae. O

Other logical equivalences that hold are

dz.(p(z) No) =¢ 3Tz.p(z) A ¢, provided z not in ¢
V. (p(z) Vo) =¢ VYz.p(z)V ¢, provided z not in ¢
dz.(p(r) = ¢) =¢ Vz.p(r)= ¢, provided z not in ¢
V. (p =o ¢ = Vuz.¢(z), provided z not in ¢

= ()
dz.(p = ¢(z)) =¢ ¢ = Jz.¢(z), provided z not in ¢
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4.5 Summary

In this chapter we introduced the notion of paraconsistency as a means to derive
non-trivial conclusions from inconsistent information. We presented briefly dif-
ferent ways of weakening classical logic to develop a paraconsistent logic. Then
we introduced the paraconsistent logics FOUR, FOUR and QCL, each allowing
a slightly different set of conclusions to be derived from inconsistent information.

All paraconsistent logics weaken classical logic in some way. Basically, the ap-
plication area determines the usefulness of any of the paraconsistent logics, i.e.
which weakening least effects the usefulness of the chosen logic. For example,
QCL allows too many conclusions for the particular application considered by
(da Costa et al., 1995):

John Smith is sick. Dr. Bouvard tells him he has cancer (¢). Dr. Pecuchet,
however tells him he has not cancer (- ¢). Both colleagues agree that If John
has got cancer he will die in the next three months (¢ = d). (da Costa et al.,
1995) show that using the logic C;' it is not possible to infer If John has not got
cancer he will not die in the next three months (— ¢ = — d). This would be an
invalid inference because he could have a car accident. Using QCL, however, it
is possible to establish this result:

c,me,c=>d,(mec=—d)f
|
(cV—=d)
|
C*,(_ld)*

|
closed

QCL is a relevance logic which is also demonstrated by this example. Because no
further information is given about other circumstances that might cause death it
is safe to conclude that If John has not got cancer he will not die in the next three
months from cancer. This example demonstrates the importance of choosing the
“right” paraconsistent logic for the envisioned application area.

The four-valued logics provide an intuitive semantics to cope with under- and
over-determined information. Thus, we strongly consider their application to
handling inconsistency or underdefinedness. Unfortunately, many useful equiv-
alences and derivation rules do not hold in these logics. The former is rather
serious for our application in mind because specifiers would need to change their
style of writing specifications. The latter influences how specifications are anal-
ysed. This might be a smaller problem in comparison to the former. The main
application areas of these logics are information systems and logic programming.

We favour Hunter’s quasi-classical logic to reason about inconsistent specifica-
tions. QCL allows inferences from inconsistent information without resulting in
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triviality. It has been designed such that all logical connectives behave classically,
which enables an easy grasp of the meaning of a formula. It also preserves the
derivation rules known from classical logic, however, in QQCL the order of appli-
cation is restricted. The role of resolution in QCL is to decompose clauses into
literals to identify those that are involved in an inconsistency. QCL enables the
reasoner to distinguish between inconsistent theories, unlike in classical logic.

We not only presented quasi-classical logic but also contributed to its develop-
ment by discussing the notion of logical equivalence. It turned out that the logical
equivalence relation in QCL cannot be defined directly in terms of the QC conse-
quence relation. Thus, we defined a notion of strong logical equivalence for QCL
based on strong and weak model classes. We showed that several standard equiv-
alences hold in QCL under strong logical equivalence. We found, however, that
the absorption laws known from standard logic do not hold in QCL. In the next
chapter we further develop QCL by incorporating a theory of equality between
expressions.



Chapter 5

Quasi-Classical Logic with
Equality

In the previous chapter we introduced first-order quasi-classical logic to enable
useful, non-trivial, reasoning in the presence of inconsistency. Many practical
reasoning processes involve the notion of equality. QCL, however, has no explicit
way of reasoning about equality. Therefore, we extend the language of QCL by
incorporating a theory of equality between expressions in this chapter.

Many relations only make sense when applied to objects of particular types.
For example, “taller than” does not apply to colours and “brighter than” not
to numbers. The equality relation, however, is universal in the sense that it
is meaningful in any domain, like the logical connectives. Thus, the study of
equality is generally considered to be part of logic. Therefore, this chapter is of
general interest to the studies of QCL.

We have, however, also a more specific reason to study equality in QCL. Our aim
is to use QCL to reason about formal specifications written in the Z notation
which we briefly introduced in Chapter 2. In Z, equality plays an important
role in developing specifications. It is commonly used to relate before- and after-
state variables and expressions denoting their values in a specification. Thus,
to formally investigate Z specifications using (QCL we need to be able to reason
about equality.

Based on the notion of equality we can state a useful and often applied rule for
reasoning with quantifications. In its most common use it says that if we have
an existentially quantified statement, part of which gives a value for the bound
variable, then the quantification can be removed and the variable is replaced by
its known value wherever it appears. This rule is called the one-point rule and
it is often used in the simplification of preconditions in Z. Due to its importance
we discuss this rule in the context of QCL towards the end of this chapter.

103
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5.1 Introduction

Equality has often been recognised to be a fundamental logical predicate because
it is meaningful no matter what domain of discourse is considered. This distin-
guishes equality from most other relations that are only applicable in restricted
circumstances. For example, the predicate “is red” makes no sense on numbers or
the predicate “to the right of” is not meaningful when applied to colours. Equal-
ity shares a universality with the logical connectives that makes it generally part
of the study of logic.

Equality represents identity, i.e. two things are equal if they denote the same
object. For example, “3+43” equals “6” and “the letter occurring in the English
alphabet after B” equals “C”. Some term ¢ is identical to some other term s,
often denoted t = s, if we cannot distinguish between them (with respect to all
properties). This is known as the Principle of the Indiscernibility of Identicals,
or Leibniz’s Law. If two things cannot be distinguished then it follows the re-
placement principle which states that we can replace any occurrence of a term ¢
in a statement by its equal s.

Equality is a two-place relation and it has some basic properties. First, everything
is equal to itself, i.e. the equality relation is reflexive. Second, the order of the
terms in the equality relation does not matter, i.e. it is symmetric. Third, the
property of transitivity: given two things a and b are equal and two things b and
c are equal then a and ¢ are equal, too. Finally, if we apply a function to two
equal objects then the result will also be equal. All the latter properties can be
derived using reflexivity and the replacement principle.

5.1.1 Motivation

Our motivation for studying equality arises from the aim to reason about formal
specifications written in the Z notation using QCL. In Z, equalities are commonly
used to express the relation between before- and after-states variables and expres-
sions denoting their values. Formal reasoning about Z specifications involves, in
particular, reasoning about such equalities. An important consequence of having
a notion of equality is the ability to eliminate universal and existential quantifi-
cation. The latter is know as the one-point rule and it is a frequently used to
analyse Z specifications, in particular when simplifying preconditions.

In the context of an inconsistency tolerant logic handling equality could become
cumbersome. For example, what does it mean to say that two numbers “1” and
“27 are equal, even though we know from mathematics that they are not? How
much does such inconsistency influence the reasoning about the given theory?
We address these questions at the end of this chapter leading to future work on
equality and QCL.
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5.1.2 Outline

This chapter is structured as follows. In Section 5.2 we introduce the syntax and
semantics for equality, including the equality axioms and some investigation of
using these axioms as extra assumptions in the reasoning process using QCL.
Section 5.3 provides the basic notations to show that we are dealing in fact with
equality. We present extra tableau rules for handling equality in QCL in Section
5.4 and prove their soundness and completeness in Section 5.5. The one-point
rule for QCL is discussed in Section 5.6. This chapter concludes with a short
discussion and summary in Section 5.7.

5.2 Equality

In this section we present some initial thoughts on equality. This includes the
extension of the syntax with a special predicate symbol to denote equality and
some initial considerations of the semantics. These are made more concrete by
presenting a set of axioms classically required for reasoning about equality. We
investigate the effect of these axioms in the context of QCL by considering them as
extra assumptions in the set of formulae given as the premise of a QC derivation.

5.2.1 Syntax and Semantics

The syntax of quasi-classical logic with equality is the same as that of QCL but
with the addition of the designated two-place relation symbol = for denoting the
equality relation. Note, we do not use the symbol = to avoid confusion between
object language and meta-language. Generally, we use the ~ symbol in infix
notation, following the standard convention. For example, given two terms ¢ and
u we write ¢ &~ u instead of ~ (¢, u).

Giving the extra symbol ~ does not yet enable us to reason about equality. For
example, given two constant symbols ¢ and b and a predicate symbol P, then
the following consequence {a =~ b, P(a)} F¢ P(b) cannot be directly established
in QCL. First, we need to ensure that the symbol & really denotes equality. We
introduced the notion of a quasi-classical model. Now we are interested in those
models only in which the ~ symbol is treated as the equality relation.

Definition 5.2.1 (Normal model)
A model F is called normal provided the relation symbol = is interpreted as the
equality relation over the domain of E.

The aim is to find a consequence relation Fq_ where A Fq_ ¢ is like A Fg ¢,
except it takes equality into account, i.e. normal models. This implies, that if
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A Fg ¢ then A Fg, ¢. The converse, however, is not true. For example, let
A ={a~b,P(a)}, then we want A g P(b), but not A kg P(b).

5.2.2 Equality Axioms

One of the features of QCL is that assumptions contributing to the reasoning
process need to be made explicit. For example, {a ~ b, P(a)} Eqo P(b) fails
because an important assumption is missing. If we add the predicate Vz,y.(z ~
y = (P(z) = P(y))) to the set of assumptions then we can infer P(b) using
QCL. The set of assumptions we need to reason about equality are called the
equality axioms.

The basic equality axioms are reflexivity and replacement. Given those, we are
able to show that equality is an equivalence relation, i.e. it is reflexive, symmetric
and transitive. Basically, we follow in our presentation (Fitting, 1996, p. 276 ff).

Definition 5.2.2 (Reflexivity)
ref is the sentence Vz.z ~ z.

The sentence ref captures the reflexivity property of equality. Next, we define
the replacement property. Note, we define two sets of replacement axioms, one
for function symbols and one for predicate symbols.

Definition 5.2.3 (Function replacement axiom)
Let f be an n-place function symbol. The following sentence is a replacement
axiom for f: Yo, ...o,Vw ... w,.(vy & wy A oo Aoy & owy) = fo,. .., 0,) &

f(wl, Ceey U}n)

For example, if *x is a two-place function symbol of the language then
Vw,z,y,z.(z 2z ANy=~w)= (r*y~z+*w) is a particular function replace-
ment axiom, say A. Assuming c¢ is a constant symbol, we show {4,ref} Fo
Vi,z(r~z)= (rxcmrzx*c)
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Vw,x,y,z.((x%z/\y%w)ix*ywz*w),
Vix=u,
Vz,z(zemz=>rxcrz%*c))*

(ax~b=a*xcrbxc)
|
(m(a=b))(a*xcrbx*c)

(a%b/\cwc)ia*c%b*c xR

a~b ucwc JVaxcrbxc

a~ c 7 c a * cxbx*xc
- (a ~b) (c=c) closed
| |
closed closed

In a first-order language we are not able to quantify over function symbols nor
predicate symbols. Thus, we do it indirectly by defining the set of all function
replacement axioms.

Definition 5.2.4
For a language £, fun(L) is the set of replacement axioms for all function symbols
of L. Members of fun(L) are called function replacement axioms.

Note, there is one function replacement axiom for each function symbol of the
language. Therefore, if the language has infinitely many function symbols, the set
of function replacement axioms is also infinite. We defined replacement only for
the simplest kind of terms but replacement for more complicated terms follows.
For example,

Va,y(z~y=f(z)=f(y)),
Va,y.(z =y = g(z) = g(y)),
(Vr,y. (v ~y=f(g(r)) =~ f(g9(y))))"

*
~
—~
RS
—~
<
N—i
SN—
—Q
~
—~
<
—~
>
SN—
SN—

—(a=b) g(a) T g(b)

closed closed
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After we have considered function symbols, we turn to the replacement property
of relation symbols.

Definition 5.2.5 (Relation replacement axiom)

Let R be an n-place relation symbol. The following sentence is a replacement ax-
iom for R: Yo, ...0,Vwy ... w,.((vy mwy Ao Aoy = wy,) = (R(v, ..., 0,) =
R(wy, ..., wy))).

We defined &~ to be a two-place relation symbol. Its replacement axiom is
Y oy, vg, wy, wa. (v & wy A vy & wp) = (v & vy = wy & wy)) which we denote by
B for now. It follows the symmetry property for ~, i.e. {B,ref} Fo Vz,y.(z ~
y = y ~ x) We can also show that transitivity is a consequence of B and ref,
Le. {B,ref FoVz,y,z.((tmyANy~z)=z=2).

Again, because we cannot quantify over the relation symbols in a first-order
language we collect all relation replacement axioms in an appropriate set.

Definition 5.2.6
For a language £, rel(L) is the set of replacement axioms for all relation symbols
of £. Members of rel(L) are called relation replacement axioms.

Reflexivity and the replacement axioms form together the set of all the equality
axioms.

Definition 5.2.7 (Equality axioms)
For a language L, by eq(L£) we mean the set {ref} U fun(L) U rel(L). Members
of this set are called equality axioms for L.

In standard first-order predicate logic the equality axioms are exactly what is re-
quired to reduce the problems about logic with equality to more general questions
about first-order logic. This relation is expressed by the following theorem:

Let £ be a first-order language and A a set of sentences over £. Then

AFy ¢ ifand only if AUeq(L)F ¢

where F is the classical consequence relation that takes equality into account,
ie. X Fy S provided X holds in every normal model in which S holds. The
question that arises is whether this also carries over to quasi-classical logic, i.e.
whether we can establish:

AFEq, p ifand only if AUeq(L) Fqg ¢



5.2. Equality 109

5.2.3 Equality and Strong Satisfiability

We developed a set of equality axioms to support reasoning about equality. To
gain some more insight into reasoning with equality we investigate the effect of
adding these axioms to the set of assumptions. QCL is monotonic, thus adding
these axioms to the set of assumptions would not affect previous inferences.

Recall the definition of QC consequence: given a set of assumptions A and a
formula ¢, then ¢ is a consequence of A, denoted A F¢ ¢, if and only if for all
models F, if E strongly satisfies every formula in A then F must weakly satisfy
¢. Now we add the equality axioms, i.e. we are interested in A U eq(L) Fqg .
According to the definition of QC consequence the model £ must now strongly
satisfy the equality axioms. Thus, for any function symbol f and relation symbol
a we have

EF, eq(L)

= {Definition of the Equality Axioms, Consider any assignment A}
(E,A)E;Vz.(z =~ ) and
(E,A)FsVa,y.(z~y=f(z)=~f(y)) and
(B, A)FsVa,y.(z =y = (a(z) = a(y)))

= {Quantification and Implication, B is z- and y-variant of A}
(E,B)Fs s~ s and
(E,B)Fs; ~ (s~ t)V f(s) =~ f(t) and
(E,B)Fs = (s~ t)V-al(s) Valt)

Using the definition of strong satisfiability for disjunction and conjunction we
break these three conditions further down. Then, because & is an atomic relation,
we can move on to set membership of relations in the model. Using several laws
of formal logic we derive

ts~seFE
and
—s~teFE or +f(s)~ f(t) € F and
if +s~te FE then +f(s)~ f(t) € F and
if —f(s)~f(t)€E then —s~teckE
and
—s~teFE or —a(s) € E or +a(t) € E and
it +s~ 1t E then
—a(s) € E or +a(t) € E and
if —a(t) € E then —a(s) € E and
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if +a(s) € E then
—s~t or +a(t) € E and
if +s~te€ FE then +a(t) € E and
if —a(t) € E then
—s~teFE or —a(s) € £ and
if +a(s) € E then —s~teFE

The equality axioms restrict the set of possible models to those that fulfill the
above conditions. For example, each model F must contain the reflexivity axiom
for every term s. Consider the atomic formula «(c), where ¢ is some constant,
then the class of all strong models satisfying a(c) and the equality axioms is
Mods(eq(L) U{a(c)}) = {{+c = ¢,+alc)},{+c = ¢, +a(c),—c = ¢}, {+c =~
¢, +a(c), —alc)}, {+ec =~ c,+a(c),—c~ ¢,—alc)}}

Furthermore, conditions like if +s /¢t € E then +f(s) =~ f(t) € E are similar
to those used by (Fitting, 1996, p. 280f) to construct the first-order Hintikka sets
with equality. Note, the conditions for handling inequality are made explicit.
This was expected because a formula is decoupled from its negation in QCL
and thus equality should be decoupled from inequality. These derived conditions
guide the further development of our theory of equality for QCL.

5.3 Equality and Normal Models

Quasi-classical logic has two satisfiability relations, called strong and weak sat-
isfaction. To add equality to QCL we restrict both satisfiability relations. We
show that these restrictions are sufficient such that any model satisfying a formula
strongly or weakly is a normal model.

Definition 5.3.1 (Strong satisfaction with equality)

Given definition 4.4.7 of the strong satisfaction relation. For any literal «;, terms
s and ¢ and function symbol f we require the following properties to hold for
every pair (E, A):

A)Fyt~

A)Es; s~ t and (F, A) Fs a(s) implies (E, A) F; a(t)

yA) Es 2 (f(s) = f(t)) implies (E,A) Fy = (s &= t)

A) E; a(s) and (E, A) E; = «(t) implies (E, A) Fy = (s &~ t)

Similar, we extend the notion of weak satisfaction to handle equality.
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Definition 5.3.2 (Weak satisfaction with equality)
Given definition 4.4.8 of the weak satisfaction relation. For any literal «, terms s
and t and function symbol f we require the following properties to hold for every

pair (E, A):

(E,A)F, t~

(E,A)F, s~t and (E, A) F, a(s) implies (F, A) F, a(t)
(E,A) Ey, = (f(s) = f(t)) implies (E,A) E, — (s = t)

(E,A) E, a(s) and (E, A) E, - «t) implies (£, A) E, = (s & t)

We have to convince ourselves that these conditions are sufficient, i.e. we need to
show that they select only models that are normal. Since the definitions above
use only literals we can unfold them to consider the models directly. Then we
have

Definition 5.3.3 (~-closed)
Any model F which satisfies the following conditions is said to be ~-closed.

1. for any term ¢ in £, +t~t € E

2.if +sy~t € E and ... and +s, ~t, € F and +a(sy,...,s,) € E
then +a(t,...,t,) € E

3.if +sy~t; € E and ... and +s, =~ t, € E and —a(sy,...,s,) € E
then —af(t,...,t,) € E

4. —f(s1,...,80) = f(tr,...,ty) €EE
then —sy~ti; € K or ... or —s, ~t, € K

5.if +a(sy,...,s,) € E and —a(ty,...,t,) € E
then —s; =4 € F or ... or —s, ~t, € FE

for any literal «, function symbols f and terms sy,...,s, and #,...,t, in L.

The literal . can be the two-place ~-relation as well. In that case the second
condition, for example, instantiates to:

if +si~t € E and +ss~ 1 € E and +~ (s1,%) € F then + =~ ({;,6) € E.
Note the ways of writing the ~-relation symbol in infix and prefix notation to
indicate the different intention in usage.

Lemma 5.3.1
The relation = is an equivalence relation in an ~-closed model.

Proof
We show that = is reflexive, transitive, and symmetric, i.e. for every =-closed
model F it holds

+t~tekl
+s~teF iff +txsekl
+s~te F and +t =~ u € F implies +s~u € F
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Reflexivity: Holds by definition.

Symmetry: We have +s ~ s € FE, i.e. +~ (s,s) € E, and by assumption of
symmetry +s~ ¢ € E. Thus we have +s~t € F and +~ (s,s) € E and
therefore by definition it follows += (¢,s) € E, i.e. +t ~s € E. The other
direction is similar.

Transitivity: By assumption of transitivity we have +s ~ ¢t € F and +t ~ u € F,
i.e. we have +s~t € F and += (t,u) € E. Then by symmetry and definition
it follows +=~ (s,u) € E, i.e. +s~u € E. O

The given replacement condition in the definition is sufficient to reason about
equality and function symbols as well, i.e. it holds the following congruence for
any model F, terms s;,...,s, and t,...,t, and function symbol f in L:

if +s1~t € F and ... and +s, ~t, € £
then —|—f(81,...,8n) %f(tl,,tn) eFE

We have +f(s1,...,8,) ~ f(s1,...,8,) € E by reflexivity, i.e. in prefix nota-
tion that is +~ (f(s1,...,8n),f(s1,...,8,)) € FE and by assumption we have
+s1~t; € EF and ... and +s,~1t, € E. Thus it follows by definition
+= (f(s1,--ySn), f(t1,... tn)) € E, which is +f(s1,...,8,) = f(ty,...,t,) € E
in infix notation.

Because = is an equivalence relation on the domain U(L) of the model E that
is ~-closed, it partitions its domain into disjoint equivalence classes. We denote
the equivalence class containing the closed term ¢ with ((¢)). Formally,

((t)) ={ue UL)|+t=ueFE}

Lemma 5.3.2
For terms ¢t and u and a model E, ({t)) = ((u)) if and only if +¢ ~ u € E.

Proof

(=) +t = t € E by reflexivity, thus ¢ € ((¢)); by assumption ((¢)) = ((u)) it
follows that ¢ € ((u)); thus +u ~ ¢t € E and by symmetry +t ~ u € E.

(<) Let v € ((t)) then +t ~ v € F and by symmetry +v ~ t € F; it follows
by assumption +¢ ~ v € F and transitivity that +v ~ v € E and by
symmetry +u ~ v € E, i.e. v € ((u)); thus ((¢)) C ((u)). It follows
similarly that ({(u)) C ((t)); hence ((t)) = ((u)). 0

Let U'(L) be the set of all equivalence classes over =, i.e.

U'(£) ={{(w)) [ u € U(L)}
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We take U’'(L) to be the domain of a new model E’. Next, we define a new
interpretation for the model E’ by relating the new interpretation [.] to the
already established interpretation [.|. First, we consider constant and function
symbols.

Definition 5.3.4
Ground terms in £ are interpreted as follows, where [.] is the new interpretation
relation.

[c] = ({c¢)), for any constant symbol c.
IF1C(t)), - ((tn))) = ((f(t1,...,t,))) for some function symbol f and

terms &, ..., ;.

Recall that for any interpretation I it holds (f(t1,...,%,))! = f1((t)%, ..., (t,)F)
and, in particular, [f(¢,..., )] = [f1([4], -, [t])-

We need to check whether these definitions are well-chosen because the behaviour
of [f] on the class ((t;)) of ground terms depends on ¢;, a member of the class.
We show: For ground terms t,...,t, and wu,...,u,, if ({(t;)) = ((w)) and

. and ((t,)) = ((un)) then ((f(t1,..., %)) = ((f(w1,...,u,))). This follows
because ((f(t1,...,t))) = [f1({{t1)), .-, {{tn))); using the assumptions we get
[£1({{u1)), .., ((un))) which is equal to ({f(uy,...,u,))).

Lemma 5.3.3
For a closed term ¢ of £ it holds that [t] = (([t]))-

Proof
We use induction over the structure of ¢ to show this.

Base case.
Consider the term ¢ is a constant, i.e. t = ¢: [t] = [¢] = ({¢)) = {([c])) = (([t]))

Induction step. Assume it holds for ground terms ¢,...,t,. We show it also
holds for terms t = f(t1,...,t,): [t] = [f(t,---,ta)] = [f1(al,---,[t]) =
[FACCCED), - () = (s ) = ((8)) =

This implies that the model we construct is canonical, i.e. that the member ((¢))
of the domain U’(L) will have the closed term ¢ as a name.

Next, we consider relation symbols. We define

Definition 5.3.5
For a relation symbol « and terms %, ..., %, it holds

+a(((t1)), ..., ((ty))) € E" iff +a(ty,..., t,) €E
—a({{t1)), ..., ((ta))) € E" iff —a(ts,...,tn) EFE



5.3. Equality and Normal Models 114

In particular, it holds +{(t)) ~ ((t2)) € E" iff +# ~ t, € E. Thus, the model £’
we construct is normal because +t; ~ t, € E iff ((t;)) = ((t)), i.e. the symbol ~
is interpreted as equality.

Again, we need to demonstrate that the definition is well-chosen because the
satisfaction of a relation a over equivalence classes depends on its satisfaction over
particular members. Thus, for ground terms ¢, ..., ¢, and w, ..., uy,, if ((t;)) =
((w1)) and ... and ((#,)) = ((u,)) then +a(t,...,t,) € Fiff +a(uw,...,u,) € E.
This holds because +a(ty, ..., t,) € E iff +a({{t1)), ..., ({t,))) € E' by definition;
using the assumptions it follows +a(((u)), ..., ({u,))) € E' and by definition
+a(uy,...,u,) € E. A similar property can be established for negative objects,
too.

Givenis A : Var — U (L), the assignment in a model E. We introduce A’ : Var —

U'(L) the assignment in E’ such that for a variable z it holds 4" = ((z*)). Then
it follows

Lemma 5.3.4
For a term ¢ of £, not necessarily closed, it holds that [t]4" = (([t]*)).

Proof
We use induction over the structure of ¢ to show this.

Base cases. Consider the term ¢ is a constant, i.e. t = ¢: [t]4 = [c]* =]
((c)) = ({[c]M)) = (([t]*)), or a variable, i.e. t = z: [t]4 = [z]4 = 2
((z4)) = ([11)

Induction step. Assume it holds for terms t¢,...,¢,. We show it also holds
for terms ¢ = f(ty,...,t,): [(]* = [f(t,-.-, t.)]* = FI[L]Y,- .., [t]Y) =
PTG, - (KEal0)) = (S (B [l D) = (f (s )] ) = ()

O

Finally, we need to define the variants of the weak and strong satisfaction rela-
tions. Basically, they are similar to the standard definitions. The major difference
occurs in the atomic case:

(B A Es at,... ty) iff +o([t] [.]7)
(E'" A Es ~alty,... t,) iff —a([t]?,...,[t]")
(B A Ey alty,... t,) U +a([u]?,. ... [t]Y) € B
(B A Ey —malty,... t,) it —a([t]?, ..., [t]")
Lemma 5.3.5
For any formula ¢ and any assignment A in an ~-closed model E it holds

(E,A)E; p iff (B A Es ¢
(E,A)E, p ift (E'A")Fy, @

i.e. it holds for every formula that it is satisfiable in a model E if and only if it
is also satisfiable in a normal model £’.
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Proof

We use induction over the structure of ¢ to show this.

e Base cases.

(a)

(b)

Let ¢ = a(ty,...,t,), t1,...,t, terms. Then (E' A") Fy a(ty, ..., t,)
iff +a([t]?, ..., [t]Y) € B iff +a((([t]), ..., {([t]4))) € B iff
+a([t])?, ..., [t]?) € E iff (E,A) B, a(t,...,t,). The case for the
weak satisfaction relation follows similarly.

Let o = = a(ty, ..., t,). Then it follows similarly as for ¢ = a(t, ..., t,)
but using negative objects —a instead of positive objects +a.

e Induction step.

Suppose it holds for formulae ¢, ¥ and p. We show that it also holds for
more complicated formulae.

The propositional cases are straightforward.

(")

(Vu)

For example: (E',A") E; ¢ A ¢ iff (E',A") Es ¢ and (E', A') F; ¢, it
follows by the induction hypothesis (E, A) F; ¢ and (E, A) F, ¢ iff
(E, A) E5; ¢ A 9. The case for weak satisfaction follows similarly.

The disjunctive case needs to be treated separately, because strong
and weak satisfaction are defined differently for disjunctive formulae.
First, the weak satisfaction relation: (E', A") E, ¢ V ¢ iff (E', A") F,
¢ or (E',A") E, 1, by hypothesis (E,A) E, ¢ or (E,A) F, v iff
(E,A) Fy ¢V 1.

Strong satisfaction for disjunction is defined for literals only. Hence,
for literals aq,...,ay,, (E',A") Fs an V ... V a, iff [[(E',A") Fs
ap or ... or (B'JA") Fs a,] and Vi st. 1 < i < n [(EA") F
- o implies (E', A") Ey @(oq V... V ay, @)]]-

By base case [[(E,A) Fs a; or ... or (E,A) F; o] and Vi s.t. 1 <
i <nl[(E,A)Fs; 7 «; implies (E,A4) F, ®(a1 V ... V g, q;)]] and by
definition of strong satisfaction (E,A) Es a1 V...V a,.

The other propositional cases follow similarly.

We consider one of the quantifier cases (the others follow similarly).

(32)

(3.)

Suppose (E,A) Fy (z.¢) V . Then for some z-variant B of A,
(E,B) Fs ¢ V 1. By the induction hypothesis, (E', B") E; ¢ V .
But B'is an z-variant of A’, and so (E', A") Fs (3z.¢) V 1. Similar for
weak satisfaction.

Suppose (E';A") Es; (Fz.¢) V . Then for some z-variant V of A’
(E', V) Es ¢ V1. Define an assignment B in F as follows: On variables
other than =, B agrees with A, and on z, 24 is some arbitrary member
of 2V (zV is a member of U’(L), hence it is an equivalence class and
thus we can choose any member). Then B is an z-variant of A, and it
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also easy to see that B’ = V. Then (E', B") E; ¢ V 1. so by induction
hypothesis (E, B) F, ¢ V 1, and therefore (E,A) E; (Fz.¢) V 9.
Similarly for weak satisfaction. O

5.4 Equality Tableau Rules

The aim of this chapter is to develop a proof procedure incorporating reasoning
about equalities. Basically, it is sufficient to add the equality rules to the set
of assumptions. However, we can also incorporate equality rules explicitly into
the tableau method. Adding equality to the semantic tableau for classical logic
has been discussed, for example, by (Reeves, 1987), (Fitting, 1996) and (Beckert,
1997).

Definition 5.4.1 (Tableau Equality Rules)
The following are the EQ-rules for QC semantic tableau, where s and ¢ are terms,
f is a function symbol and « is a literal.

Reflexivity:
t~t
a(s)
Replacement: st

Inequality rules:

(S, .-y 8p)
= (f(s1y-ey8n) = [ty tn)) —a(ty,..., t,)
(siRt) ] (st A(siRb) ] (s Rt
Note, the tableau rule ﬁ is implicitly given due to the reflexivity and

replacement rules, i.e. by reflexivity we have f(s) = f(s) and by assumption s ~ ¢
thus it follows by replacement f(s) =~ f(t).

In a simplified notation, the tableau U-Rules are given by

(t=1) (a(t)” (£ (s)
closed  (a(s))" | (s ~ )° (s

22 22

) ()" | (= alt)”

but they are dismissable because each can be simulated by the EQ-rules for the
QC semantic tableau as introduced above. First, if we derived (¢ ~ ¢)* in some
branch then we can close that branch by using the reflexivity rule to add ¢ = ¢ to
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the end of it. After applying the second rule we need to establish a(s) and s ~ ¢
to close each branch. However, given both we can apply the replacement rule
to derive «(t) which closes the branch with («(¢))* in it. Applying the function
U-rule results in showing s & ¢ to close it. However, given this and reflexivity we
obtain f(s) ~ f(¢) which would close the branch, too. Finally, the last rule can
be simulated using the inequality rule for relation symbols. Consequently we do
not require the use of the equality U-rules.

We illustrate the use of the tableau rules with a couple of examples. The following
reasoning tree shows an example of how to use equality and function symbols.

We show {Vz,y.(z =~y A f(y) = g(y))} Fo. V2, y.(h(f(z)) = h(g(y)))

Va,y.(z =y Afy) = g(y), Ve, y.(h(f(z)) = hig(y))))"
a = b,f(:b) ~ g(b)
f(a) T g(b)
h(f(a)) T h(f(a))
h(f(a)) T h(g(b))
(h(f(a) %l h(g(b)))*
closed

Next, we use equality, function symbols and predicates. To construct the tree
below we apply symmetry and transitivity. We already established the validity
of these rules on the semantic level but will not repeat this argument here. How-
ever, using both properties of equality shortens the proof considerably. We show

{Vz,y.(f(z) = g(y) = p(z,9)),f(a) = ¢,g(b) = c} k- pla, D).

Va,y.(f(z) = g(y) = p(z,y)),f(a) = ¢, g(b) = ¢, (p(a, b))*
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5.5 Soundness and Completeness

We need to establish the link between the QC tableau method and the QCL
semantics. We need to show that we can only prove with the QC semantic
tableau method what is satisfiable by QCL, i.e. soundness, and that we can
prove everything that is satisfiable, i.e. completeness. Hunter showed that a set
of assumptions A implies a conclusion ¢ by QCL (A Fq ¢), if and only if a QC
tableau for A and conclusion ¢ is closed (A I, ). We extend this proof to QCL
with equality.

Theorem 5.5.1
For any set of formulae A C £ and any formula ¢ € £, a quasi-classical tableau
with equality for A and ¢ is closed if and only if A Fg_ .

The basic idea of the proof relies on the fact that a tableau method is sound and
complete if each tableau rule is sound and complete. Hunter already uses this
principle thus we have little to change from the case without equality to the case
with equality.

Soundness of the Tableau Rules

Basically, we need to show that the application of a tableau rule or equality rule
to a tableau that is satisfiable in a normal model will produce another tableau
that is satisfiable in the same normal model.

Lemma 5.5.1 (Soundness S-rules)

Each tableau rule given in definition 4.4.11 and definition 5.4.1 is sound in the
following sense: If ¢ € L* is a formula above the line, and ¢ € L£* is a formula
below the line, and £’ is a normal model such that £’ £, ¢, then E' E; .

Proof

According to (Hunter, 2001), the tableau rules in definition 4.4.11 are sound in
the sense that if ¢ € L£* is a formula above the line, and ¢ € L£* is a formula
below the line, and £ is a model such that £ E, ¢, then E F, p. Because £’ E, ¢
iff £ E, ¢ and E F, ¢ iff E' E, ¢ it follows that the tableau rules in definition
4.4.11 are sound in the above sense.

The EQ reflexivity rule is sound because ¢ & ¢ is the formula below the line and
according to definition 5.3.1 we consider only those models such that for all £, A,
(E,A)Fs t ~ t,ie (E' A") F; t = t. The EQ replacement rule is sound because
according to definition 5.3.1 for all E, A, if (E,A) F, a(s) and (E,A) F, s~ t
then (E,A) F, «(t) and using lemma 5.3.5 it follows if (E', A") F, a(s) and
(E',A") Ey s &~ t then (E', A’) Fs a(t) for all E’, A’. Similarly for the inequality
rules. O
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Lemma 5.5.2 (Soundness U-rules)

Each tableau rule given in definition 4.4.12 is sound in the following sense: If
¢ € L* is a formula above the line, and ¢ € L£* is a formula below the line, and
E' is a normal model such that E' F, ¢, then E'E,, ©.

Proof

This follows from (Hunter, 2001), i.e. each tableau rule given in definition 4.4.12
is sound in the following sense: If ¢ € L* is a formula above the line, and ¢ € L£*
is a formula below the line, and £ is a model such that £ F, ¢, then £ F, ¢;
and from E' F, ¢ iff E F, ¢ and E E, ¢ iff E' F, ¢. There are no equality
U-rules thus we are done. O

Completeness of the Tableau Rules

Lemma 5.5.3 (Completeness S-rules)

The set of tableau rules given in definitions 4.4.11 and 5.4.1 is complete in the
following sense: If ¢ € L* is a formula in a branch of a QC semantic tableau, and
there is a pair (E’, A’) such that (E', A") F, ¢, and according to definitions 4.4.7
and 5.3.1 there is a derivation of the form (E’, A’) E; ¢ implies (E', A") F; ¢, then
¢ can be obtained as a formula in the branch by using the S-rules in definition
4.4.11 or the equality rules in definition 5.4.1.

Proof

The completeness of the S-rules follows from (Hunter, 2001) and lemma 5.3.5.
It remains to be shown the completeness of the EQ-rules. The EQ rules for the
stong satisfaction relation are captured in definition 5.3.1. According to definition
5.3.1 always (E,A) F, t = t, i.e. (E',A") Es t = t which can be obtained by the
reflexivity rule. Given «(s) and s &~ ¢ in a branch, according to definition 5.3.1
there is a derivation (E, A) Fy a(s) and (E, A) Fy s &~ ¢ implies (E', A') F; a(t)
which can be obtained using the replacement rule. Similarly for the inequality
rules. O

Lemma 5.5.4 (Completeness U-rules)

The set of tableau rules given in definition 4.4.12 and 5.4.1 is complete in the
following sense: If ¢ € L£* is a formula in a branch of a QC semantic tableau, and
there is a pair (E’, A’) such that (E’, A") F,, ¢, and according to definitions 4.4.8
and 5.3.2 there is a derivation of the form (E’, A") F,, ¢ implies (E', A") E,, ¢, then
¢ can be obtained as a formula in the branch by using the U-rules in definition
4.4.12 or the equality rules in definition 5.4.1.

Proof
The completeness of the U-rules follows from (Hunter, 2001) and lemma 5.3.5. It
remains to be shown the completeness of the EQ-rules. This follows basically from

the earlier discussion that each EQ U-rule can be modelled using the EQ-rules.
(I
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Given the soundness and completeness of each of the tableau rules it is easy to
show that the tableau method is sound and complete, i.e. for any set of formulae
A and any formula ¢ there is a QC semantic tableau with equality for A and ¢
that is closed if and only if there is no model £ such that F F; A and E F,, ¢*.

This, however, has essentially been proved by (Hunter, 2001). According to the
above lemmata each application of the S-rules, U-rules and EQ-rules is sound and
complete. Consider a particular A and . There is a QC tableau with equality
for A and ¢ that is closed iff every branch of the tableau with root A U {¢*} is
closed iff every branch of the tableau with root A U {¢*} contains ¢ and ¢* for
some ground literal ¢ iff there is no model for each branch of the tableau with
root A U {¢*} iff there is no model F such that E F; A and E F, ¢*.

5.6 The One-Point Rule

The notion of equality allows us to introduce or eliminate the existential quan-
tifier. If a variable is found to be bound by an existential quantifier and it
is identical to some given term, then we can replace all instances of the vari-
able by that term and remove the existential quantifier. Consider the predicate
dz.(p(z) A z =~ t). This states that there is a value for z for which the predicate
p(z) A z ~ t holds. Obviously, ¢ itself is a reasonable candidate for replacing z.
The one-point rule in standard predicate logic expresses the following equivalence:

dz.(p(x) ANz~ t)=p(t) [provided z is not free in ¢

We are interested in preserving this rule in QCL, i.e. we want
Jz.(p(z) Nz~ t)=q p(t)

under the same provision. This means, that the class of the strong models and the
class of the weak models of the left and right hand side of this equivalence must
be equal. We found that bi-directional QC derivability is a necessary condition to
hold. It is, however, easy to see that for any formula p it is the case: Jz.(p(z) A
T~ t)H, p(t)

Jz.(p(z) A @ t), (p(t))" p(t), (Hx.(p(.lr) Az~ t))
p(t) At ~ t,(p(t)” p(t), (p(t) /\\t ~t)*
p(t), 1 %lt, (p(8)) (p(lt))* (t af t)*
closed closed tT t
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The strong model classes of both sides are equal if for every strong model of
dz.(p(z) A z ~ t) there is an equivalent strong model for p(t), i.e. if for every
model £ it holds F £, Jz.(p(z) A z =~ t) iff £ F, p(t). The case for the weak
satisfaction relation follows similarly.

E =, p(t)
iff {for all assignments A}
(E,A) Fs p(t)
iff {Consider normal models}
(B, A') Ey p(t)
iff {By Reflexivity}
(E',A") Es p(t) and (E',A") Es t =t
iff {Definition}
(B A Esp(t)y Nt =t
iff {B’ is x-variant assignment of A’}
(E',B")Esdz.(p(z) Nz =~ t)
iff
(E,B)Fs; Jz.(p(z) Nz~ t)
iff {for all assignments B}
EF,dz.(p(z) Nz~ t)

5.7 Discussion and Summary

Adding equality to a paraconsistent logic has previously been considered by
(Batens and De Clercq, 1999) and (da Costa, 2000). Basically, both approaches
are similar to ours by being based on adding reflexivity and the replacement
principle.

We find, however, that equivalence classes can be trivialised in the presence of
inconsistency. For example, under the assumption 1 ~ 2 all numbers collapse
into one equivalence class, i.e. all numbers are provably equal. This problem
can be contributed to the richness of reasoning with equality, in particular to
functionality. (Mortensen, 1995, p. 12f) notes:

Fortunately or unfortunately, the methods and results in this book
[(Mortensen, 1995)] indicate that the ‘essence’ of mathematics is
deeper than paraconsistentists have thought |...].

[...] classical mathematics, interested in functionality, concentrated
on the consistent subtheory [...]
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[...] it is not true that there are no interactions between functionality
and inconsistency or incompleteness. [...] this can lead to interesting
insights about functionality;

(Mortensen, 1995) suggests a controlled relaxation of functionality to avoid such
trivialities and (Vermeir, 2001) investigates a new axiomatisation of inconsis-
tent arithmetic by means of inconsistency-adaptive logics (see (Batens, 1999)
and (Batens, 2000), for example). The latter approach, however, abandons the
property of monotonicity which we identified as desirable.

Surely, this issue of inconsistency and arithmetic needs to be further investigated.
Note, however, given such inconsistency between numbers does not necessarily
mean that the given theory is trivialised too. For example, 1 ~ 2 A «, for some
formula «, does not imply that we can infer = o using QCL with equality.

In this chapter we introduced the notion of equality to the semantics of QCL. We
showed that extra tableau rules to reason about equality are sound and complete
with respect to the given semantics. Given equality we established the validity
of the one-point rule, a commonly used rule to introduce and remove existential
quantification. We will use QCL with equality in the next chapter to reason
about formal specifications written in the Z notation.



Chapter 6

Formal Reasoning about
Inconsistent Z Specifications
using Quasi-Classical Logic

The aim of this chapter is to discuss what formal support can be given to the
process of analysing and refining Z specifications in a context that explicitly allows
and recognises inconsistencies. This work is part of the wider area of research
on living with inconsistencies, rather than eradicating them. We discussed in
Chapter 4 that logicians have developed a range of logics to continue to reason in
the presence of inconsistencies and we introduced in particular one representative
of such paraconsistent logics, namely Hunter’s quasi-classical logic (QCL). Here
we apply QCL to analyse inconsistent Z schemas. Quasi-classical logic allows us
to derive less, but more “useful”, information, in the presence of inconsistency.
Consequently, inconsistent Z specifications can be analysed in more depth than
at present.

Part of the analysis of a Z operation is the calculation of the precondition. In
the presence of an inconsistency, however, information about the intended ap-
plication of the operation may be lost. It is our aim to regain this information.
We introduce a new classification of precondition areas, based on the notions of
definedness, overdefinedness and undefinedness. We discuss an option for deter-
mining these areas which is based on quasi-classical reasoning.

Refinement is the process of developing abstract specifications into more con-
crete ones. This is a major development tool for formal specifications. Here, we
consider the refinement of inconsistent operation schemas. Given an inconsistent
predicate in an operation, any other predicate replacing it is a valid refinement.
This, however, allows a wide range of non-intuitive refinements. We claim that
inconsistent operations carry information that should be preserved during refine-
ment, like consistent operations do. We develop a refinement method based on
quasi-classical reasoning to account for this.

123
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6.1 Introduction

The purpose of this chapter is to discuss how to reason in the presence of in-
consistencies in a formal setting. Although this might sound strange, specifica-
tions, especially large ones, are often inconsistent at some level. Inconsistencies
range from contradictory descriptions of the system at hand to contradictions
specified in the operations. A significant proportion of the specification analysis
process is then devoted to detecting and eliminating such inconsistencies, be-
cause, classically (and intuitively), inconsistencies in specifications are regarded
as undesirable.

6.1.1 Motivation

Those involved in large scale software engineering in practice treat inconsistencies
as a fact of life. They occur frequently in large projects and need to be tolerated
(possibly for some time) and managed, rather than eradicated immediately. This
has led to a considerable amount of research on the development of tools and
techniques for living with inconsistencies (Ghezzi and Nuseibeh, 1998; Ghezzi
and Nuseibeh, 1999), (Balzer, 1991), (Schwanke and Kaiser, 1988), and handling
inconsistencies (Finkelstein et al., 1994), (Hunter and Nuseibeh, 1998). The
general aim of such work is to provide practical support for deciding if, when,
and how to remove inconsistencies, and to possibly reason in the presence of
inconsistencies.

Although the techniques and tools developed for this approach have had a certain
amount of success they have, however, mainly focused on informal and semi-
formal specification techniques. There has been recent work on more formal
approaches (Hunter and Nuseibeh, 1997) but these have largely concentrated on
purely logical issues, not connecting them to current specification languages. We
are interested in seeing what support we can give for the process of living with
inconsistencies in a specification notation, namely Z.

Our purpose here is to explore the issue of handling inconsistencies in Z, especially
those present in operations. The general aim is, in the presence of inconsistency,
not to immediately derive falsehood, but to rather allow further, intermediate,
reasoning on other aspects of the state, operation, or specification. This should
enable us to infer more useful conclusions from inconsistent Z schemas or speci-
fications. One particular aspect is how tolerating inconsistencies can benefit the
development process from abstract to concrete specifications.

6.1.2 The Use of Quasi-Classical Logic

In classical predicate logic, on which Z is based, inconsistent information results
in triviality, because everything can be inferred from it. This, in turn, renders the
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information useless, when, in fact, there may be further valid inferences we wish to
make. However, there are several ways of handling inconsistent information. One
is to divide the pieces of information into (possibly maximal) consistent subsets
(Rescher and Manor, 1970), another is paraconsistent reasoning. The latter allows
the derivation of only non-trivial inferences from inconsistent information, i.e. not
everything can be inferred.

One representative of paraconsistent logics is quasi-classical logic, developed by
(Besnard and Hunter, 1995). We introduced the semantics and proof theory of
QCL with Equality in the previous chapter. The key to QCL is that it allows only
the derivation of information already present in a given theory, even though that
theory might be inconsistent. This feature is what we need to analyse inconsistent
Z operations. QCL is not so much aimed at reasoning about the truth in the real
world but about handling beliefs. This seems to be compliant with the idea of
formal specification where we gather requirements of a system yet to be built.

The main advantage of QCL, in comparison with many other paraconsistent
logics, is that the logical connectives behave classically. Therefore, we believe
that QCL is more suitable for our application to Z, because specifiers and analysts
will already be familiar with the notation and meaning of the connectives.

6.1.3 Hypothesis

In this chapter we show that quasi-classical logic enables us to analyse inconsistent
operations specified in the formal notation Z. QCL allows us to infer less but
more useful information in the presence of inconsistencies. We understand the
term “useful” with respect to the problem of triviality arising from inconsistency,
i.e. everything is derivable. In comparison to standard predicate logic, QCL
restricts the amount of information inferable from inconsistent premises.

Furthermore, quasi-classical logic is a tool to direct the process of refinement
of inconsistent operation schemas such that fewer but more useful refinements
remain. In standard Z, an inconsistent predicate in an operation can be refined
by any other predicate. For example, we present an inconsistent operation to add
a user to a library but refine it by an operation removing a user. QCL allows us to
distinguish between some forms of unwanted refinements and desired refinements.

Quasi-classical logic proves helpful for both tasks. However, we found that QCL
itself needs to be further developed to suit this particular application within the
notation Z. We already reported some of the necessary extensions, like equality
and logical equivalence, in the previous chapter. Here, we identify further areas
to guide the development of QCL. In particular, QCL and its application to set
theory come to mind.
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6.1.4 Scope

In this work, we only consider the issue of local inconsistency. A schema can
have an inconsistent, i.e. unsatisfiable, predicate. If such a schema is an opera-
tion schema, then the operation may not be applicable at all, or only parts of the
operation are applicable. This is due to the fact that contradictions in an opera-
tion only restrict the precondition of that operation which characterises where the
operation is feasible. In the case of the schema describing the state of the system,
the entire part of the system governed by that state is not implementable. These
kinds of errors are local in the sense that the specification of other components
of the system may still be meaningful (although it is usually assumed implicitly,
in a state and operation specification that at least one possible (initial) value of
the state should exist).

In contrast, global inconsistencies are more serious, because they make an entire
specification unsatisfiable. They occur if some axiom schema, generic schema,
or constraint is unsatisfiable. Furthermore, they can arise due to a combina-
tion of different paragraphs of a specification, each being consistent. However,
set declarations, abbreviations, and schema definitions cannot introduce global
inconsistency. In this work we do not consider global inconsistencies though
we believe that our work could contribute to the research on analysing globally
inconsistent specifications, too.

There is another issue related to inconsistency. (Henson and Reeves, 2000) inves-
tigate the logic of Z. Their intent is to define Z based on proof theory. As part of
their research, (Henson, 1998) reported that a previous development of the logic
of Z, as published by (Nicholls, 1995), was inconsistent. We do not investigate
the consistency of Z but the consistency of specifications written in 7, and in
particular of their operations.

6.1.5 Outline

This chapter is structured as follows. First, we present a small example of a
library system specified using the Z notation. We introduce an inconsistency to
use it as an illustration throughout this chapter. Next, we use quasi-classical
logic to infer some properties of a part of this specification. We also show, that
QCL allows fewer inferences than standard predicate logic. In Section 6.4, we
apply QCL to the process of calculating the precondition of inconsistent operation
schemas. It was here, that we found that we need QCL to possess a notion of
logical equivalence as introduced in Chapter 4. Given the notion of a quasi-
classical precondition, we turn to the refinement process of inconsistent operations
in Section 6.5. Following the notions of standard refinement, we establish the
principles of quasi-classical applicability and QC correctness. We summarize this
chapter in Section 6.6.
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6.2 An Inconsistent Library Specification in Z

The following example presents a specification of a simple library system. We
have been inspired by some of our students who developed a similar system
(including the inconsistency) in their 2002 exam on Software Engineering.

Our library consists of users who are allowed to borrow books. The sets NAME
of user’s names, and BOOK, of books, are taken as given; their structure is of
no concern for this detail of specification.

[NAME, BOOK]

The state of the library is modelled by the schema Library. The Library schema
uses a partial function borrowed to record the books borrowed by a user. The set
users contains the names of the people who joined the library.

__ Library
users : P NAME
borrowed : NAME + P BOOK

users = dom borrowed

Initially, there are no members of the library and, therefore, no books are bor-
rowed.

__InitLibrar