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Abstra
t

In software engineering, formal methods are meant to 
apture the requirements

of software yet to be built using notations based on logi
 and mathemati
s. The

formal language Z is su
h a notation. It has been found that in large proje
ts

in
onsisten
ies are inevitable. It is also said, however, that 
onsisten
y is required

for Z spe
i�
ations to have any useful meaning. Thus, it seems, Z is not suitable

for large proje
ts.

In
onsisten
ies are a fa
t of life. We are 
onstantly 
hallenged by in
onsisten
ies

and we are able to manage them in a useful manner. Logi
ians re
ognised this

fa
t and developed so 
alled para
onsistent logi
s to 
ontinue useful, non-trivial,

reasoning in the presen
e of in
onsisten
ies. Quasi-
lassi
al logi
 is one repre-

sentative of these logi
s. It has been designed su
h that the logi
al 
onne
tives

behave in a 
lassi
al manner and that standard inferen
e rules are valid. As su
h,

users of logi
, like software engineers, should �nd it easy to work with QCL.

The aim of this work is to investigate the support that 
an be given to rea-

son about in
onsistent Z spe
i�
ations using quasi-
lassi
al logi
. Some of the

para
onsistent logi
s provide an extra truth value whi
h we use to handle under-

de�nedness in Z. It has been observed that it is sometimes useful to 
ombine the

guarded and pre
ondition approa
h to allow the representation of both refusals

and underspe
i�
ation.

This work 
ontributes to the development of quasi-
lassi
al logi
 by providing a

notion of strong logi
al equivalen
e, a method to reason about equality in QCL

and a tableau-based theorem prover. The use of QCL to analyse Z spe
i�
ations

resulted in a re�ned notion of operation appli
ability. This also led to a revised

re�nement 
ondition for appli
ability. Furthermore, we showed that QCL allows

fewer but more useful inferen
es in the presen
e of in
onsisten
y.

Our work on handling underde�nedness in Z led to an improved s
hema repre-

sentation 
ombining the pre
ondition and the guarded interpretation in Z. Our

inspiration 
omes from a non-standard three-valued interpretation of operation

appli
ability. Based on this semanti
s, we developed a s
hema 
al
ulus. Further-

more, we provide re�nement rules based on the 
on
ept that re�nement means

redu
tion of underde�nedness. We also show that the re�nement 
onditions ex-

tend the standard rules for both the guarded and pre
ondition approa
h in Z.
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Chapter 1

Introdu
tion

Ja, i
h sage s
hon jetzt voraus: es werden mathematis
he Unter-

su
hungen �uber Kalk�ule kommen, die einen Widerspru
h enthalten,

und man wird si
h no
h etwas darauf zugute tun, da� man si
h au
h

von der Widerspru
hsfreiheit emanzipiert.

1

Ludwig Wittgenstein

30

th

De
ember 1930

Software engineering is the bran
h of 
omputer s
ien
e that is 
on
erned with

the development of software. Its aim is to provide engineering methods and te
h-

niques to build and maintain software. An analogy 
ommonly drawn is between

ar
hite
ts and software engineers. In early stages houses were just built without

a systemati
 knowledge of how to 
onstru
t them. However, to build sky s
rap-

ers that will not 
ollapse a deep mathemati
al understanding of the stati
s of

su
h buildings was required. As su
h, only the formalisation of the methods in

ar
hite
ture allowed new developments.

Software engineering is undergoing a similar metamorphosis. Rather than build-

ing software in an ad ho
 fashion, a deeper understanding of its requirements

and its 
onstru
tion is needed to make software more reliable. Formal methods is

the �eld of software engineering that is aimed at developing te
hniques to make

the meaning of software artifa
ts mathemati
ally and logi
ally pre
ise in order

to improve software reliability.

Formal spe
i�
ations are the main mathemati
al obje
ts 
onsidered in formal

methods. Unfortunately, it has been found that espe
ially large spe
i�
ations

are often in
onsistent. Consisten
y, however, is required for spe
i�
ations to be

meaningful. Taken together, this implies that large spe
i�
ations are usually not

meaningful. The aim of our resear
h is to over
ome this problem by handling

in
onsisten
ies in a more pra
ti
al way.

1

\Indeed, even at this stage, I predi
t a time when there will be mathemati
al investigations

of 
al
uli 
ontaining 
ontradi
tions, and people will a
tually be proud of having eman
ipated

themselves from 
onsisten
y."(Wittgenstein, 1964, p. 332), English translation in (Priest, 2000).

1
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onsisten
y in Z Spe
i�
ations 2

1.1 Managing In
onsisten
y in Z Spe
i�
ations

Formal methods are seen as the way forward to more reliable software. Their

appli
ation in the development pro
ess leads to a deeper understanding of the

requirements of the software under 
onstru
tion. One of the main obje
ts 
on-

sidered by formal methods are formal spe
i�
ations. They express the software

requirements in terms of logi
 and mathemati
s. This foundation enables the

formal analysis of the requirements and it provides a possibility to verify whether

the requirements are met by the software produ
t.

The development of a spe
i�
ation depends primarily on the sour
es of informa-

tion, like designers, engineers and others. Often, several developers' views need

to be in
orporated into the des
ription of the software produ
t. It has been found

that, in parti
ular in large proje
ts, the parti
ipants disagree on a range of issues.

Furthermore, due to the 
omplexity of large des
riptions errors 
an easily appear.

In general, it has been found that

\In
onsisten
ies are inevitable in large proje
ts."

(Ghezzi and Nuseibeh, 1998)

The Z notation is one of several languages used to develop formal spe
i�
ations.

It is based on logi
 and mathemati
s, in parti
ular set theory, and provides a

rather elegant way of stru
turing the mathemati
s that des
ribe the system at

hand. However, 
onsidering the argument from above we fa
e a pra
ti
al problem,

be
ause

\Consisten
y is essential for a Z spe
i�
ation to have any useful meaning."

(Valentine, 1998)

The 
onjun
tion of both 
laims means that the Z notation is not suitable for

large proje
ts be
ause they 
an be in
onsistent but a Z spe
i�
ation in
luding

an in
onsisten
y would be meaningless or useless. This 
on
lusion is, however,

not pra
ti
al. As a matter of fa
t, even in
onsistent spe
i�
ations have a desired

meaning and an intended use.

In
onsisten
ies are generally regarded as undesirable in software development

and, in parti
ular, in formal spe
i�
ation. A formal spe
i�
ation written in the

Z notation is basi
ally a logi
al des
ription of a system and its behaviour, i.e.

it is a logi
al theory. Logi
ians, however, often regard in
onsistent theories as

uninteresting be
ause they allow to derive any 
on
lusion within their language

and therefore none 
an be trusted. This is also the reason for Valentine's 
laim

above.
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Be
ause in
onsisten
ies are seen as undesirable, resear
hers developed tools and

te
hniques to remove in
onsisten
ies as soon as, or soon after they are dete
ted.

Another approa
h is to follow guidelines to prevent the introdu
tion of in
onsis-

ten
ies into spe
i�
ations in the �rst pla
e. This resear
h is 
ertainly valuable to

minimise the o

urren
e of in
onsisten
ies. At times, however, su
h an approa
h


an be impra
ti
al.

Re
ently it has been a
knowledged that in pra
ti
e it is not always possible

nor desirable to eradi
ate in
onsisten
ies immediately, if at all. For example,

the engineer who 
ould de
ide on how to resolve the in
onsisten
y may not be

available. This would in turn bring the proje
t to almost a standstill be
ause

the spe
i�
ation is 
onsidered useless. It 
ould be that no-one knows how to

resolve the in
onsisten
y at all. Also, in
onsisten
ies 
an be useful to guide the

future development, pointing out areas that need more attention. Moreover, in

parti
ular in large proje
ts, the removal of one in
onsisten
y might bring up

another and sometimes a 
ompletely 
onsistent stage is unrea
hable in pra
ti
e.

Thus, we are required to manage in
onsisten
ies in a more general fashion.

The Z notation is founded on standard predi
ate logi
 but we identi�ed that

in
onsisten
ies 
annot be handled appropriately by su
h a logi
. Therefore, it

seems natural to investigate other logi
al foundations for the Z notation. The

group of logi
s that 
an be used to manage in
onsisten
ies are 
alled para
onsis-

tent logi
s. The aim of our resear
h is to investigate the formal support we 
an

give to managing in
onsisten
ies in Z spe
i�
ations using a para
onsistent logi


to fa
ilitate useful formal reasoning in the presen
e of in
onsisten
y.

1.2 Underde�nedness in Z Spe
i�
ations

We found that there is a wide range of para
onsistent logi
s. Some of them 
ap-

ture in
onsisten
y rather intuitively by providing an extra logi
al truth value,

often 
alled \both" in the semanti
s. Furthermore, many of these logi
s in
lude

another truth value, 
alled \neither", to denote in
omplete knowledge. For ex-

ample, if asked \Who is the 
urrent 
han
ellor of Germany?" we 
an answer \I

was told it is Mr. S
hr�oder", \I was told it is not Mr. Stoiber", \I was told it is

Mr. S
h�oder and I was told it is Mr. Stoiber" or \I do not know at all". These

four s
enarios 
apture the idea of the four truth values.

An appli
ation area for this \don't know" value in formal spe
i�
ation is un-

derde�nedness. This notion refers to those situations where the operation is

applied outside its domain. In the 
ommon Z spe
i�
ation style operations are,

in general, partial relations. The domains of these partial operations are tradi-

tionally 
alled pre
onditions. Depending on the appli
ation area there are two

possible interpretations of the result of applying an operation outside its domain.
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In the traditional interpretation anything may result whereas in the alternative,

guarded, interpretation the operation is blo
ked outside its pre
ondition. It has

been observed that it is often 
onvenient to use a 
ombination of the guarded and

pre
ondition interpretation to allow both modelling of refusals and underspe
i�-


ation.

1.3 Aims and Obje
tive

We identi�ed two interesting areas of resear
h 
on
erning the Z notation. On the

one hand, we found that in
onsisten
ies in Z spe
i�
ations need to be managed

in a more pra
ti
al fashion, rather than being eradi
ated. On the other hand,

modelling underde�nedness expli
itly in the Z notation 
an be further explored.

Managing In
onsisten
y in Z using Quasi-Classi
al Logi


The problem is, that the Z notation 
annot deal appropriately with in
onsistent

situations be
ause it is founded on 
lassi
al predi
ate logi
. Classi
al predi
ate

logi
 allows trivial inferen
es in the presen
e of in
onsisten
y. Para
onsistent

logi
s, on the other hand, allow only non-trivial inferen
es despite the presen
e

of in
onsisten
y. Therefore, it is our aim to investigate whether the Z notation


an be founded on a para
onsistent logi
 to manage in
onsisten
ies more appro-

priately.

Para
onsistent logi
s are, in general, weaker than 
lassi
al logi
 in the sense

that not all 
lassi
ally valid inferen
es are possible. This is a
hieved by non-

standard behaviour of the logi
al 
onne
tives, by the introdu
tion of new logi
al


onne
tives, by disallowing established proof rules, like resolution, or by other

means. Furthermore, properties of 
lassi
al logi
, like monotoni
ity or transitivity


an fail. We need to �nd a suitable logi
 for our task, one that will be a

eptable

to both spe
i�
ation developers and spe
i�
ation analysts.

On
e we have found an appropriate para
onsistent logi
 we are interested in its

appli
ation to the analysis of Z spe
i�
ations. Our aim is to avoid triviality

in the presen
e of in
onsisten
y whi
h means that we opt for deriving less but

more useful information. Re�nement is 
on
erned with the formal development

of 
on
rete spe
i�
ations from abstra
t ones. We are interested in providing a

meaning for re�nement of in
onsistent spe
i�
ations. This should, on the one

hand, fa
ilitate the 
ontrolled removal of in
onsisten
ies and, on the other hand,

the pro
ess of living with in
onsisten
ies in Z spe
i�
ations.
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Handling Underde�nedness in Z

The aim of this thesis with respe
t to underde�nedness is to develop a notation

that 
ombines both the guarded and the standard pre
ondition interpretation to

model underde�nedness expli
itly. We de
ide to 
onsider a three-valued semanti
s

to 
apture the intuition that (1) an operation 
an be blo
ked by a guard, (2) that

the operation 
an be allowed by the guard but no result has been de�ned and

(3) the operation is appli
able and its result is de�ned. Then we 
an use existing

three-valued logi
s to investigate spe
i�
ations based on su
h an interpretation.

The redu
tion of underde�nedness and non-determinism is a 
ommon goal of

re�nement. Given su
h a three-valued interpretation of the appli
ability of oper-

ations it is our aim to �nd suitable and intuitive re�nement 
onditions to support

further spe
i�
ation development. We identi�ed that there are systems whi
h re-

quire non-deterministi
 behaviour. Therefore, we are also interested in re�nement

that takes su
h behaviour into a

ount.

The extensive use of s
hemas to stru
ture spe
i�
ations has made Z su

essful.

The s
hema 
al
ulus provides a means to 
ombine s
hemas and to reason about

them. It is a further aim of our work to see whether we 
an 
onstru
t a s
hema


al
ulus suitable for the three-valued interpretation of the operations. Su
h a


al
ulus should be as fun
tional as the standard 
al
ulus, i.e. it should fa
ilitate

reasoning about the 
ombination of s
hemas. Note, re�nement 
al
ulations are

also an appli
ation area of the s
hema 
al
ulus.

1.4 Contributions

There are several 
ontributions to be found in this work. Essentially they 
an

be grouped a

ording to the notions of in
onsisten
y and underde�nedness. The

former 
onsists of work on quasi-
lassi
al logi
 and its appli
ation to the analysis

of Z spe
i�
ations, while the latter refers to the work on a s
hema representation

for underde�nedness based on a three-valued logi
.

On Quasi-Classi
al Logi
. In order to use quasi-
lassi
al logi
 to analyse

Z spe
i�
ations we were required to develop QCL further. On the one hand,

the literature on QCL does not provide a general notion of logi
al equivalen
e

for QCL. Su
h a notion is, however, ne
essary to fa
ilitate the simpli�
ation of

logi
al formulae. Therefore we investigate a number of di�erent notions based on

the QC 
onsequen
e relation and QC model 
lasses. Our work results in a strong

notion of logi
al equivalen
e allowing general repla
ement of equal formulae.

On the other hand, QCL did not in
lude the notion of equality. However, the use

of equality is a 
ommon feature in Z spe
i�
ations. Therefore, we in
orporated
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reasoning about equality into QCL. This led also to the investigation of the one-

point rule in QCL and we established it to be a valid reasoning rule. Finally, we

developed an automated theorem prover based on the tableau method for QCL.

Quasi-Classi
al Logi
 and Z. Quasi-
lassi
al logi
 proved useful in the formal

analysis of in
onsistent Z spe
i�
ations. We demonstrated that fewer but more

useful inferen
es from in
onsistent spe
i�
ations are possible. Given the standard

de�nition of a pre
ondition but using QCL, we found a notion of appli
ability

that is able to 
apture the intended appli
ation area of an in
onsistently de�ned

operation. This quasi-
lassi
al pre
ondition is then used to investigate the pro
ess

of re�nement of in
onsistent operations. The result is an appli
ability rule that

prevents some \useless" re�nements from in
onsistent operations.

Guarded Pre
ondition S
hema. Based on a three-valued intuition of the

appli
ability of an operation we developed a Z-like s
hema representation for

both guards and pre
onditions in an operation thus enabling the spe
i�
ation of

underde�nedness. Our s
hema representation is more expressive than previous

developments by allowing after-state variables in the guard. This required the

development of rules for 
al
ulating the impli
it guard and pre
ondition of an

operation. Given those, we were able to provide a set of re�nement rules for

operations and showed that they extend the standard rules with respe
t to the

guarded and pre
ondition interpretation.

A S
hema Cal
ulus. To improve the usefulness of guarded pre
ondition

s
hemas we developed a s
hema 
al
ulus 
onsidering the standard Z s
hema op-

erators. We were guided by our three-valued interpretation of the appli
ability of

operations. The de�nition of most s
hema operators was straightforward. How-

ever, due to the non-
lassi
al interpretation, s
hema impli
ation and entailment

turned out to be di�erent. We were, however, able to re-gain a suitable entailment

operator to fa
ilitate, for example, re�nement 
al
ulations.

1.5 Outline

This thesis starts with a short introdu
tion to Z followed by a dis
ussion on

in
onsisten
y and underde�nedness in Z spe
i�
ations. Then we present some

insight into para
onsistent reasoning and, in parti
ular, into quasi-
lassi
al logi
.

In the following 
hapters we apply these logi
s to reasoning about in
onsisten
ies

in Z and to develop a new semanti
s for handling underde�nedness in Z. Below,

we give a more detailed des
ription of the stru
ture of this thesis.
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Chapter 2. In Chapter 2 we introdu
e the Z notation. We provide some ba
k-

ground from logi
 and set theory, in
luding types, relations and fun
tions, and we

introdu
e Z s
hemas, the basi
 building blo
ks of a Z spe
i�
ation. We present

the s
hema 
al
ulus as a means to stru
ture Z spe
i�
ations and to 
ombine

s
hemas. Furthermore, we 
onsider the notion of re�nement of Z spe
i�
ations

to develop abstra
t spe
i�
ations into 
on
rete ones. Throughout this thesis we

use the support of tools whi
h are presented in this 
hapter. Finally, we dis
uss

brie
y the relation of Z to some other formal spe
i�
ation notations.

Chapter 3. In Chapter 3 we des
ribe the aim of our resear
h in more detail.

We are interested in the sorts of in
onsisten
ies that 
an arise in Z spe
i�
ations.

We 
laim that in
onsisten
ies 
an be a tool guiding the development of spe
i�
a-

tions and we look at desired inferen
es despite the presen
e of in
onsisten
ies in

Z spe
i�
ation. Underde�nedness 
an be 
onsidered to be 
losely related to in-


onsisten
y thus we introdu
e the 
on
ept of underde�nedness in Z spe
i�
ations

and we propose a new way to handle it.

Chapter 4. In Chapter 4 we introdu
e some ba
kground on the notion of para-


onsisten
y, in
luding the di�erent motivations for para
onsisten
y, two de�ni-

tions of para
onsisten
y and some of the approa
hes to 
onstru
t a para
onsis-

tent logi
. Then we present two 
losely related four-valued para
onsistent logi
s,

namely the logi
 FOUR by (Belnap, 1977b) and the logi
 FOUR by (Dam�asio

and Pereira, 1998). A three-valued subset of the logi
 FOUR is used in Chapters

7 and 8 to provide the semanti
s for our work on underde�nedness. The main part

of Chapter 4, however, is devoted to the introdu
tion of quasi-
lassi
al logi
 by

(Hunter, 2000) whi
h plays a major role in the following 
hapter. We 
ontribute

to the development of QCL by investigating the notion of logi
al equivalen
e in

QCL.

Chapter 5. In Chapter 5 we in
orporate reasoning about equality into QCL.

We introdu
e the syntax and semanti
s for equality, in
luding the equality ax-

ioms and some investigation of using these axioms as extra assumptions in the

reasoning pro
ess using QCL. Then we develop the ma
hinery to re
e
t that

we are dealing in fa
t with equality. We extend the proof system of QCL by

extra tableau rules for handling equality and we prove their soundness and 
om-

pleteness. Finally, we present a version of the one-point rule for QCL to further

fa
ilitate QCL's appli
ability to our resear
h.

Chapter 6. In Chapter 6 we bring together QCL and Z. We present a small

example of a library system spe
i�ed using the Z notation. We introdu
e an in-


onsisten
y into the example to use it as an illustration throughout this 
hapter.



1.5. Outline 8

In the 
lassi
al setting su
h a spe
i�
ation would be meaningless but not so when

using quasi-
lassi
al logi
. We demonstrate that QCL allows fewer but more use-

ful inferen
es than standard predi
ate logi
. Then we apply QCL to the pro
ess

of 
al
ulating the pre
ondition of in
onsistent operation s
hemas fa
ilitating a

dis
ussion on the re�nement pro
ess of in
onsistent operations. Following the

notions of standard re�nement, we establish the prin
iples of quasi-
lassi
al ap-

pli
ability and QC 
orre
tness and thus show that QCL 
an be used to 
ontrol

the 
ontinuous development of in
onsistent spe
i�
ations. Note, some parts of

this 
hapter were previously published by (Miarka et al., 2002).

Chapter 7. In Chapter 7 we link up the Z notation, the problem of underde-

�nedness and the two interpretations of the meaning of a pre
ondition in Z. We

demonstrate by means of two examples, normalisation and a simple money trans-

a
tion system, that a 
ombination of the traditional and blo
king interpretation

is sometimes required. Then we de�ne a s
hema notation in
luding both guards

and e�e
t s
hemas. Based on that we de�ne regions of operation behaviour,

i.e. whether an operation is inside or outside the guard, or inside or outside the

pre
ondition. These regions 
an naturally be de�ned in a three-valued inter-

pretation leading to a simple and intuitive notion of re�nement that generalises

standard operation re�nement. We introdu
e these re�nement rules and show

their 
ompatibility to the standard ones. Note, some parts of this 
hapter were

previously published by (Miarka et al., 2000).

Chapter 8. In Chapter 8 we develop a s
hema 
al
ulus for su
h guarded pre-


ondition s
hemas. We start the 
hapter with a brief re
apitulation of the notion

of a guarded pre
ondition s
hema and we 
ontinue with an illustration of its use

by presenting a small example of a heat 
ontrol system. It follows the main part


onsisting of the development of the s
hema 
al
ulus itself whi
h is based on the

standard s
hema operators. We validate the 
al
ulus by proving several laws for

our s
hema operators. Furthermore, we show that some laws of the 
lassi
al Z

s
hema 
al
ulus do not hold within our 
al
ulus. We revise the standard notions

of s
hema appli
ability and we return to investigating operation re�nement, using

the newly developed s
hema 
al
ulus.

Appendix A. In Appendix A we present work in progress on a tableau-based

theorem prover for QCL. The theorem prover, 
alled QC-LeanTaP, is based on

leanT

A

P whi
h we brie
y introdu
e �rst. Part of leanT

A

P is a small program to


al
ulate the 
onjun
tive negation normal form of a �rst order predi
ate formula.

We adapt this program for our needs by removing skolemization of existential

predi
ates. Finally we present our tableau-based theorem prover for QCL.



Chapter 2

A Short Introdu
tion to Z

Z is a formal spe
i�
ation notation. It is used to model a system by naming

the 
omponents and to state the 
onstraints upon them and their relations, thus

des
ribing the behaviour of the system. Z is formal in the sense that it uses

mathemati
s, whi
h 
onsists basi
ally of set theory and �rst-order predi
ate logi
,

to spe
ify systems. This foundation enables mathemati
al reasoning to establish

that desired properties are indeed 
onsequen
es of spe
i�
ations written in Z.

The main feature of Z, distinguishing it from many other formal notations, is the

s
hema notation. It provides a very elegant way of stru
turing the mathemati
s

spe
ifying a system as well as to stru
ture the system itself. The Z notation

de�nes a s
hema 
al
ulus to 
ombine s
hemas. It is also used to reason about

the spe
i�
ation. This in
ludes the ability to reason about the development of

more 
on
rete spe
i�
ations from abstra
t ones, i.e. about re�nement.

Z is a notation, not a method, although it is often said to be one. The Z standard

(ISO/IEC 13568, 2002) does not say how to use Z in a systemati
 way and to

what Z 
an be best applied. Neither does the Z standard give any guidan
e on

how to develop a system from a Z spe
i�
ation. Note also that Z spe
i�
ations

are not exe
utable nor, in general, 
an they be 
ompiled into a running program.

Hen
e, Z is not some kind of a programming language.

The Z notation has been used to spe
ify di�erent kinds of systems. Examples of

applying Z su

essfully in
lude safety 
riti
al systems, su
h as railway signalling

and medi
al devi
es, se
urity systems, like transa
tion pro
essing systems, and

general hard- and software developments. A 
omprehensive list of appli
ation

examples as well as information on tools and other resour
es 
an be found on the

Z notation home page: http://www.
omlab.ox.a
.uk/ar
hive/z.html.

The aim of this 
hapter is to give an overview of the Z notation and to introdu
e

the ne
essary ba
kground to be able to des
ribe those problems we will ta
kle

in the next 
hapters. We present the s
hema notation, in
luding the s
hema


al
ulus, the most 
ommon 
onventions and the notion of re�nement in Z. Finally,

we dis
uss brie
y tool support for Z and other methods related to Z.

9
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2.1 Introdu
tion

Z is a formal spe
i�
ation language based on Zermelo-Fraenkel set theory and

�rst-order predi
ate logi
. It provides a notation for des
ribing the behaviour of

a system using mathemati
s. The key feature of Z is its s
hema notation, a way

to stru
ture the mathemati
s elegantly. A Z spe
i�
ation not only 
onsists of

mathemati
al text but also of informal explanatory text, des
ribing the mean-

ing of the mathemati
al 
onstru
ts. The purpose of the formality is to avoid

ambiguities inherent in informal des
riptions and to provide a basis for rigorous

reasoning.

The Z notation in
ludes an extensible toolkit of mathemati
al notation, a s
hema

notation for spe
ifying stru
tures in the system and for stru
turing the spe
i�
a-

tion itself and a de
idable type system whi
h allows extra 
he
ks to be performed

to redu
e the risk of spe
i�
ation errors. Furthermore, Z has a s
hema 
al
ulus for

modifying and 
ombining s
hemas. The s
hema operators enable the de�nition

of new s
hemas using existing ones in a 
ompa
t and readable way.

2.1.1 History of Z

The Z notation grew out of work by (Abrial, 1974) at Oxford University's Pro-

gramming Resear
h Group. Its development and re
ognition bene�ted greatly

from being used at IBM UK Laboratories at Hursley Park for the re-spe
i�
ation,

re-design and further development of their Customer Information Control Sys-

tem (CICS). (Nix and Collins, 1988) published one of the many studies on this

proje
t. (Barrett, 1989) reports on another important proje
t at the time, the

use of Z in the formalization of the IEEE standard for binary 
oating-point arith-

meti
 whi
h formed the basis for the 
oating-point unit of the Inmos IMS T800

Transputer. Both proje
ts re
eived the UK Queen's Award for Te
hnologi
al

A
hievement jointly with the Oxford University Computing Laboratory.

Two books helped primarily to establish Z and to stabilise the notation. (Hayes,

1987) edited a 
olle
tion of 
ase studies whi
h where later substantially revised

in (Hayes, 1993). This 
olle
tion was used as a kind of a referen
e on how to use

Z. Later, (Spivey, 1992) produ
ed a referen
e manual whi
h be
ame the de fa
to

language de�nition for many years. For some time now, the Z notation has been

undergoing a standardization pro
ess. This e�ort resulted in the re
ent publi
a-

tion of the International Standard (ISO/IEC 13568, 2002) whi
h \establishes the

pre
ise syntax and semanti
s for some mathemati
s, providing a basis on whi
h

further mathemati
s 
an be formalized."

Many books, like (Potter et al., 1991), are aimed at the introdu
tion to formal

spe
i�
ation and Z. (Barden et al., 1994), for example, provide some useful advi
e

on how to use Z in pra
ti
e. (Ja
ky, 1997) demonstrates the way of Z through a
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series of short studies, introdu
ing the essential features of the notation qui
kly.

(Wood
o
k and Davies, 1996) look more deeply at the development pro
ess based

on Z spe
i�
ations. This aim has been taken further by (Derri
k and Boiten,

2001) who present a thorough a

ount on re�nement in Z and Obje
t-Z (Smith,

2000), a notation 
losely related to Z. Common to all these books is their emphasis

on understanding Z and making it available to a wider audien
e.

There is also a regular series of 
onferen
es, ZUM: The Z Formal Spe
i�
ation

Notation, also known as the Z User's Meetings. These 
onferen
es are devoted

to Z and similar spe
i�
ation notation. Re
ently 
onferen
es where held jointly

with the B 
ommunity. The last 
onferen
e pro
eedings were edited by (Bowen

et al., 1998), (Bowen et al., 2000) and (Bert et al., 2002).

2.1.2 Motivation

We 
hoose Z for our work be
ause it is a mature notation. It has a ri
h litera-

ture of introdu
tory texts and 
ase studies and it has been an obje
t of resear
h

for many years. Z is among the �rst formal notations to make the 
rossover

from a
ademia to industry. It has been applied su

essfully in numerous indus-

trial proje
ts, and a

ording to the 
ompanies saved them millions. With these

industrial appli
ations in mind Z underwent the ISO standardization pro
ess.

Furthermore, Z is being widely taught, not only at universities.

One of the advantages of Z is that it 
an be used in a number of di�erent ways

a

ording to the appli
ation area. This, however, leads to the problem of 
hoos-

ing the right way for the desired appli
ation. For example, we will see later in

this work that there are at least two ways of interpreting the pre
ondition in Z.

The so 
alled disadvantage of Z that it is not a method turns possibly into our

favour. Z not di
tating a method provides us with more 
exibility to investigate

Z, abstra
ting from methodologi
al 
on
erns.

The aim of this 
hapter is to introdu
e the Z notation. We fo
us in our presen-

tation on the ba
kground ne
essary for the remainder of this thesis. The reader

familiar with Z 
an safely skip this 
hapter as it provides no new insights into the

Z notation. The short dis
ussion on Z tools and on related spe
i�
ation methods

might, however, be of additional value.

2.1.3 Outline

This 
hapter is stru
tured as follows. In Se
tion 2.2 we provide some ba
kground

on logi
 and set theory, in
luding types, relations and fun
tions. In Se
tion 2.3

we introdu
e Z s
hemas, the basi
 building blo
ks of a Z spe
i�
ation. S
hemas


an be 
ombined appropriately using the s
hema 
al
ulus whi
h we present in
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Se
tion 2.4. The notion of re�nement of Z spe
i�
ations is dis
ussed in Se
tion

2.5. The Z notation is also supported by tools. We present a sele
tion of them

in Se
tion 2.6. Finally, in Se
tion 2.7, we dis
uss brie
y the relation of Z to

some other formal spe
i�
ation notations. This 
hapter 
on
ludes with a short

summary.

2.2 Logi
, Sets, Types, Relations, Fun
tions

The Z notation is based on set theory and �rst-order predi
ate logi
. Although

we assume general familiarity with these topi
s, we introdu
e some ba
kground

notions frequently used in this work. We 
over brie
y the logi
 of Z and then we

present some notation from set theory and its appli
ation to type theory, relations

and fun
tions. Note, that we provide only the terminology used in this work. For

a detailed introdu
tion we re
ommend one of the aforementioned textbooks.

2.2.1 Logi


The Z notation uses propositional and predi
ate logi
 to state the relationship

between the 
omponents of a system and to 
onstrain the behaviour a

ordingly.

The propositional logi
 used 
ontains the 
ommon 
onne
tives with their usual

meaning and order of pre
eden
e: : { negation, ^ { 
onjun
tion, _ { disjun
tion,

) { impli
ation, and , { equivalen
e.

Predi
ate logi
 is provided by the usual introdu
tion of quanti�ers into the lan-

guage, together with the notions of free and bound variables. The Z notation is a

typed language meaning that every variable belongs to a �xed set of values, thus

quanti�
ations need to be typed, too. For example, universal quanti�
ation has

the form 8 x : T j p � q and means that for all x in T satisfying the predi
ate p,

q holds. Existential quanti�
ation has the form 9 x : T j p � q and means that

there exists at least one value of x in T satisfying p su
h that q holds.

The predi
ate p restri
ting q is optional. If p is omitted it is 
onsidered to be

true. The following equivalen
es hold for the restri
ted quanti�ers: for univer-

sal quanti�
ation 8 x : T j p � q , 8 x : T � p ) q and for existential

quanti�
ation 9 x : T j p � q , 9 x : T � p ^ q .

A variable introdu
ed by a quanti�er is said to be bound, and the usual s
oping

laws apply. Variables that are not bound in a predi
ate are said to be free. As

usual, it is possible to repla
e all bound o

urren
es of a variable in a predi
ate.

This ensures the 
orre
tness of the following frequently used proof rule of 9-

elimination, also 
alled the one-point rule (for existential quanti�
ation): 9 x :

T � x = t ^ p(x ) � t 2 T ^ p(t), provided that x is not free in t . This law

states that if we are required to demonstrate the existen
e of a variable and a
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suitable instantiation is given, then we 
an eliminate the existential quanti�er.

This law is often used in the simpli�
ation of pre
onditions of operations.

2.2.2 Sets

Set theory is the other 
ornerstone of the Z notation, in fa
t, the name Z is

derived from Zermelo-Fraenkel set theory. Membership { 2 and its 
onverse { 62,

empty set { ?, subset { �, and equality { = are de�ned as usual.

Sets 
an be given by listing their elements, like in fred ; green; yellowg, or by set


omprehension. For instan
e, fn : T j pg is the set of all n in T satisfying

the predi
ate p, e.g. fn : Z j n � 0g des
ribes the set of all natural numbers.

Furthermore, fx : S j P(x ) � Q(x )g is the set of all x of type S satisfying the

predi
ate P su
h that Q is satis�ed, too. Note, P(x ) is omitted when P(x ) = true

and Q(x ) is omitted when Q(x ) = true. The size of a �nite set is determined

by its 
ardinality (#), e.g. #fred ; green; yellowg = 3, 
onsidering all elements of

this set are distin
t.

Furthermore, we 
an use the 
ommon set operators, like power set 
onstru
-

tion { P, Cartesian produ
t { �, set union { [, set interse
tion { \ and set

di�eren
e { n. These operators are all de�ned as usual. For example, P S is

the set of all subsets of S , e.g. Pfred ; greeng = f?; fredg; fgreeng; fred ; greengg,

and the Cartesian produ
t S � T is the set of ordered pairs whose �rst ele-

ment is in S and whose se
ond element is in T , e.g. f1; 2g � fred ; greeng =

f(1; red); (1; green); (2; red); (2; green)g.

2.2.3 Types

Z is a typed language or, in logi
al terms, it is based on many-sorted �rst-order

predi
ate 
al
ulus. Every expression in Z has a unique type assigned. Basi
ally,

types 
onstrain the use of any kind of value. For example, when x is de
lared

as x : S then the type of x is the largest set 
ontaining S . Thus, types are sets

and every set is 
ontained in exa
tly one type. Note, however, that the symbol

? denotes the empty set of all possible types.

Types are important be
ause they allow to dete
t a wide range of spe
i�
ation

mistakes. For example, (1; 2) 2 N is a type error in Z, be
ause (1; 2) is a tuple

whereas N is a set of numbers, not of tuples. The type system of Z is de
idable,

thus it is possible to 
al
ulate automati
ally the types of expressions and to 
he
k

whether they make sense. There are several tools (see Se
tion 2.6) to support

type 
he
king.
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Built-in Type. Z provides a single built-in type A , 
alled arithmos, supplying

values for use in spe
ifying number systems. For example, the integer numbers

are de�ned as Z : P A , thus the set of integers, Z, is a subset of A . The set of

natural numbers is de�ned as N : PZ, thus the number 7 is not of type N but

of type Z and subsequently of type A . The type A has been introdu
ed by the


urrent Z standard. Before, the set of integers, Z, was 
onsidered to be the only

given type and it is still 
ommon to 
onsider Z as the \super-type" as done here.

Note, Z has no built-in Boolean type, though a type B 
onsisting of true and false

is, for illustrative purpose, frequently used. This, however, is stri
tly speaking a

type error, be
ause, in Z, true and false are de�ned as predi
ates, not expressions.

Given sets. Although Z provides only a single built-in type, a spe
i�er has a

number of ways to de�ne new types relevant to the parti
ular spe
i�
ation. One

way is to simply de
lare them. A given set is a de
laration of the form

[TYPE ℄

introdu
ing a new type TYPE . For example,

[NAME ;BOOK ℄

de�nes two new sets NAME and BOOK . At this stage, no further information

about values or relationships between these sets are given.

Type 
onstru
tion. Starting with existing types there are various ways to


onstru
t new types. The power set operator P is an elementary type 
onstru
tor

often used. For example, the set fali
e; bob; 
harlieg is of type PNAME , given

that ea
h of the names is in the set NAME , i.e. of type NAME . The Cartesian

produ
t is another frequently used type 
onstru
tor. For example, NAME � N

is a type 
onsisting of ordered pairs, e.g. (ali
e; 2) is of type NAME � N .

Free types. Another important type 
onstru
tor is the free type. Basi
ally,

free types 
an be transformed into other Z 
onstru
ts. However, it makes it

easier to des
ribe 
ertain stru
tures, in parti
ular re
ursive stru
tures like lists

and trees. Here, we only 
onsider free types over 
onstants. For example,

Report ::= Ok j Failure

denotes a type Report 
ontaining exa
tly two di�erent 
onstants Ok and Failure.

Alternatively, this 
ould have been de�ned by a given type [Report ℄ and the


onstraint Ok ;Failure : Report j Ok 6= Failure ^ 8 x : Report � x = Ok _ x =

Failure. For more details on free type 
onstru
tion see (Spivey, 1992, pp. 82).

Another kind of type in the Z notation is the so 
alled s
hema type, whi
h we

will introdu
e in Se
tion 2.3.7 after presenting the notion of a s
hema.
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2.2.4 Relations

Relations are among the most important and most extensively used mathemati
al


onstru
ts in Z. A relation is a set of ordered pairs. X $ Y denotes the set of all

relations between the sets X and Y , that is, the set of all sets of ordered pairs

whose �rst elements are members of X and whose se
ond elements are members

of Y . X $ Y is de�ned as P(X � Y ). When de�ning relations, the maplet

notation x 7! y is often used for (x ; y).

Assume that our sets of names 
ontains fali
e; bob; 
harlieg � NAME . Then we


an de�ne a relation letters des
ribing the number of letters in the name, e.g.

letters == fali
e 7! 5; bob 7! 3; 
harlie 7! 7g.

For any ordered pair �rst and se
ond 
omponent proje
tion, denoted �rst and

se
ond are provided. For example, �rst (ali
e; 5) = ali
e and se
ond (bob; 3) = 3.

The domain of a relation R : X $ Y is the set of �rst 
omponents of the ordered

pairs in R, i.e. domR = fp : R � �rst pg. The range of the relation R is the set

of se
ond 
omponents of the ordered pairs in R, i.e. ranR = fp : R � se
ond pg.

For example, given the relation letters we have dom letters = fali
e; bob; 
harlieg

and ran letters = f3; 5; 7g.

Often, it is useful not to 
onsider the whole of the domain or range of a set

but restri
ted subsets. The domain restri
tion of a relation R : X $ Y by a set

S : PX , denoted SCR, is the set of pairs in R whose �rst 
omponents are in S , i.e.

S CR = fr : R � �rst r 2 Sg. For example, fali
e; 
harliegC letters = fali
e 7!

5; 
harlie 7! 7g. The domain anti-restri
tion, or domain subtra
tion, of a relation

R : X $ Y by a set S : PX is the set of pairs whose �rst 
omponents are not in

R, i.e. S

�

CR = fr : R � �rst r 62 Sg. Similarly de�ned are range restri
tion and

range subtra
tion of a relation R : X $ Y by a set T : PY , denoted RBT and

R

�

B T respe
tively, but with respe
t to the se
ond 
omponent of R.

It is often useful to spe
ify that a relation only 
hanged marginally. Appli
ations

of su
h operation in
lude, for example, database updates. For a relation this

means to repla
e some of the pairs by new ones. The operation to do this is


alled overriding. If R and S are both relations between X and Y , the relational

overriding of R by S is the whole of S together with those members of R that have

no �rst 
omponents that are in the domain of S , i.e. R�S = ((domS )

�

CR)[ S .

For example, letters � fali
e 7! 6g = fali
e 7! 6; bob 7! 3; 
harlie 7! 7g. Note, if

the domains of the relations R and S are disjoint then overriding 
oin
ides with

set union, e.g. letters � fdan 7! 3g = letters [ fdan 7! 3g = fali
e 7! 5; bob 7!

3; 
harlie 7! 7; dan 7! 3g.

There are many more operators on relations de�ned in the Z standard. Arguably,

there are even more important operators than the presented ones. However, we

have only introdu
ed those that will be valuable to us subsequently. We refer to

the aforementioned textbooks for more information.
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2.2.5 Fun
tions

Fun
tions are relations with parti
ular properties, namely that ea
h element in

the domain is mapped to at most one element of the range. Therefore, the

operators above and all the other relational operators are all de�ned for fun
tions,

too. There are di�erent kinds of fun
tions distinguished by further properties.

Ea
h kind of fun
tion has a name and a symbol assigned.

The set of all partial fun
tions X 7! Y from X to Y is the set of all relations

between X and Y su
h that ea
h x in X is related to at most one y in Y .

Basi
ally, the terms \fun
tion" and \partial fun
tion" are used synonymously. A

fun
tion f from X to Y is said to be total, denoted f : X ! Y , if dom f = X , i.e.

if it relates ea
h member of X to exa
tly one member of Y . For example, we 
an

write 
ount : NAME ! N for a fun
tion 
ount su
h that 
ount(n) returns the

numbers of letters in a given name n, or names : N 7! PNAME for a fun
tion

that returns all the names of a given length. Every name has a number of letters

it 
onsists of, hen
e 
ount is total but there is at least one natural number su
h

that there 
annot be a name of that length, hen
e names is partial.

Fun
tions have additional properties. They 
an be inje
tive, surje
tive or bije
-

tive. A fun
tion from X to Y is inje
tive, if ea
h y in Y is related to no more

than one x in X . A fun
tion from X to Y is surje
tive, if its range is equal to

Y . A fun
tion is bije
tive, if it is both inje
tive and surje
tive. Thus, 
ount is a

total inje
tive fun
tion and names is a partial surje
tive fun
tion.

This 
on
ludes our introdu
tion to some basi
 ba
kground. We introdu
ed the

syntax of the logi
 of Z and some notation from set theory. We 
overed Z's type


onstru
tors as well as the use of relations and fun
tions in Z. Next we turn to

the main feature of Z to stru
ture spe
i�
ations.

2.3 S
hemas in Z

The Z spe
i�
ations we 
onsider will be written in the (usual) \states-and-

operations" style. In this style a system is given by operations des
ribing the


hange of the state of the system. The state of the system and the operations

upon it are written using Z s
hemas stru
turing the spe
i�
ation into manageable


omponents.

S
hema boxes are the most re
ognizable feature of Z. They provide a stru
turing

me
hanism for the powerful mathemati
al language introdu
ed above. Basi
ally,

the spe
i�
ation of a parti
ular operation 
an be written as one predi
ate. How-

ever, it would be rather diÆ
ult to understand the meaning of su
h a predi
ate

at on
e. Therefore, it is useful to break it into smaller, manageable, 
omponents.

That is what s
hemas are for.
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2.3.1 S
hema Syntax

A s
hema 
onsists of a set of de
larations and 
onstraints upon them. For exam-

ple, the s
hema

Library

users : PNAME

borrowed : NAME 7! PBOOK

users � dom borrowed

introdu
es users whi
h are a 
olle
tion of something 
alled NAME and borrowed ,

a fun
tion that assigns to something from the set NAME a subset of whatever

the set BOOK 
ontains. Furthermore, the predi
ate 
onstrains the set users to

be a subset of the domain of the fun
tion borrowed .

In general, a s
hema box 
onsists of a s
hema name, a set of de
larations above

a short line, and a predi
ate below.

S
hemaName

de
laration

predi
ate

The de
larations 
an be split a
ross lines, like above, or they may be put on

the same line, separated by semi
olon. A predi
ate split a
ross lines denotes a


onjun
tion, unless another operator is used. For example,

Example

1

n : Z; x : Z

n < 5

x > 10

Example

2

n : Z

x : Z

(n < 5) _

(x > 10)

the predi
ate in Example

1

means (n < 5) ^ (x > 10) whereas the predi
ate in

Example

2

stands for (n < 5) _ (x > 10). We also use indentation to stru
ture

predi
ates appropriately.

Note, that the predi
ate 
an be true. Then it is omitted from the s
hema and

the s
hema only provides the de
larations. For example, the s
hema

System

message : Report
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introdu
es something named message of type Report , i.e. something that 
an be

Ok or Failure, without any further 
onstraints atta
hed.

S
hemas 
an also be written in horizontal form, e.g.

OkReport == [message : Report j message = Ok ℄

des
ribes that the thing message of type Report should be assigned Ok . The

horizontal notation is used for two reasons. On the one hand, the naming of the

s
hema is made more expli
it and, on the other hand, they are more 
ompa
t in

notation.

In general, Z s
hemas are a

ompanied by a des
ription in natural language to


larify the meaning of the s
hema. For example, the s
hema Library des
ribes

a simple library systems 
onsisting of users who 
an borrow books. Unless the

natural des
ription is given all the 
omponents of a s
hema 
an be interpreted

quite freely, they are only symbols.

2.3.2 Axiomati
 S
hemas

Axiomati
 s
hemas are used to introdu
e new obje
ts into a spe
i�
ation whi
h

are subje
t to 
onstraints. These obje
ts will be known throughout the spe
i�-


ation, i.e. they are global. For example, the s
hema

heat max ; heat min : Z

heat max = 65

heat min = 45

introdu
es two global 
onstants heat max and heat min of integer type with

unique values assigned. In general an axiomati
 s
hema looks like

de
laration

predi
ate

Again, the predi
ate is optional. If it is not given, it is 
onsidered to be set

to true. An axiomati
 s
hema without a predi
ate just introdu
es new global

names.

Free types, as introdu
ed above, are formally de�ned using axiomati
 s
hemas.

The earlier de�nition of

Report ::= Ok j Failure

is an abbreviation for
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[Report ℄

Ok ;Failure : Report

Ok 6= Failure

8 x : Report � x = Ok _ x = Failure

2.3.3 Generi
 S
hemas

We said already that the symbol ? denotes the empty set for all possible types,

thus the symbol ? is de�ned generi
ally, that is, it has a de�nition using type

parameters. For example,

[X ℄

makesum : (X $ Z)! Z

8 x : X ; y : Z; z : (X $ Z) �

makesum ? = 0 ^

makesum f(x ; y)g = y ^

makesum (f(x ; y)g [ z ) = y +makesum (z n f(x ; y)g)

de�nes a fun
tion makesum that 
an take any set of pairs, where the �rst 
ompo-

nent is generi
 but the se
ond 
omponent is an integer. The fun
tion makesum

then 
al
ulates the sum of all the se
ond 
omponents, regardless of what the �rst


omponents are.

The advantage of generi
 s
hemas is their re-usability. On
e de�ned, they apply

to many di�erent situations. For example, most operators on sets are de�ned

generi
ally, so that the type of the elements does not matter. However, when

using su
h generi
 de�nition at a later stage in the spe
i�
ation, a
tual sets must

be provided to repla
e the type parameter. Repla
ing the generi
 parameter by

a
tual sets is 
alled instantiation. Sometimes the a
tual sets 
an be inferred from

the 
ontext, in some 
ir
umstan
es they must be provided expli
itly. In any 
ase,

the value for the generi
 parameter must be 
lear.

2.3.4 S
hema In
lusion

A s
hema 
an be in
luded in another s
hema to form a 
omposed s
hema. This

approa
h supports stru
turing of spe
i�
ations. For example, we de�ne a s
hema

with extra restri
tions, like
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Restri
tedLibrary

Library

8 u : users � #(borrowed(u)) � 7

by in
luding the s
hema Library and imposing the 
ondition that no user 
an

have more than 7 books on loan. Su
h a s
hema is equivalent to one obtained by

expanding all de
larations and 
onjoining all predi
ates, e.g.

Restri
tedLibrary

users : PNAME

borrowed : NAME 7! PBOOK

users � dom borrowed

8 u : users � #(borrowed(u)) � 7

Similarly, we 
an 
reate a new s
hema by s
hema in
lusion and additionally pro-

viding new 
omponents and 
onstraints on them. The entire s
hema then 
onsists

of the expansion of the in
luded s
hema together with the new 
omponents and

the 
onjun
tion of all the predi
ates.

2.3.5 De
orations and Conventions

In this subse
tion we re
ord some of the 
onventions of notation that are often

used when writing Z spe
i�
ations. These 
onventions in
lude the identi�
ation of

before and after states, operations on those states and input and output variables.

The 
onventions are permitted but not enfor
ed by the Z standard, though they

are do
umented in it, too.

Primed Variables. Ea
h operation in Z is des
ribed as a relation between

states, namely the before and after state of the operation. It is therefore ne
essary

to distinguish between the values of state variables before the operation and their

values afterwards. The 
onvention in Z is to use unprimed variables, like x , to

denote values before the operation and to de
orate variables with a dash, like x

0

,

to denote values after the operation. Note, however, that the s
hema predi
ate


an also refer to any global 
onstants.

Primed S
hemas. Variables have to be in s
ope of the operation. If the state

has been des
ribed in a s
hema S , then in
luding S in the de
laration part of the

operation s
hema brings the state variables into s
ope. The after-state variables

are similarly introdu
ed by in
luding S

0

. This is a s
hema obtained from S by
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de
orating every variable in the signature of S with a dash, and repla
ing every

o

urren
e of su
h a variable in the predi
ate part of S by its dashed 
ounterpart.

Thus, operations 
an be des
ribed in Z by a s
hema of the form

Op

S

S

0

: : :

Note, the variables from the signature of S are the only ones whi
h are primed.

Global 
onstants, types et
. remain unprimed. If S 
ontains a variable whi
h has

already been de
orated in some way, then an extra dash is added to the existing

de
oration.

Delta. The in
lusion of primed and unprimed 
opies of the state s
hema is so


ommon that abbreviation for its use are introdu
ed. The abbreviation �S ==

[S ; S

0

℄ is used to denote the general in
lusion of primed and unprimed state

s
hema, thus the operation s
hema be
omes

Op

�S

: : :

For example,

AddUser

�Library

name? : NAME

name? 62 users

users

0

= users [ fname?g

borrowed

0

= borrowed

This use of � is only a 
onvention. O

asionally some authors like to in
lude

additional restri
tions in their �-s
hemas, for example that a parti
ular state


omponent never 
hanges. For instan
e, if S 
ontained a 
omponent z , but

none of the operations ever 
hanged z , then �S 
ould be de�ned by �S ==

[S ; S

0

j z

0

= z ℄, thus making it unne
essary to in
lude z

0

= z in ea
h operation

des
ription. Note, however, that we will not use this feature here.
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Xi. When enquiry operations, like reading variables, are being des
ribed, it is

often ne
essary to spe
ify that no 
hange of state should o

ur. With the 
urrent

notation this has to be done expli
itly by stating for ea
h 
omponent that its

after-state value is the same as its before-state value. This is in
onvenient and


an be avoided using the �-
onvention. Unless it has been expli
itly de�ned

to mean something else, referen
es to �S are treated as being equivalent to

[S ; S

0

j �S = �S

0

℄, where the meaning of � is explained below.

Inputs and outputs. Often, it is 
onvenient to des
ribe relations between

inputs and outputs as well. The input values of an operation are provided by

`the environment', and the outputs are returned to the environment. Commonly

an additional suÆx is used to distinguish a variable intended as an input (?) or

an output (!), thus for example, name? denotes an input, and result ! denotes an

output.

2.3.6 Normalisation

Earlier, we introdu
ed the Z type system. We mentioned that a type 
an be


onstru
ted from a given type by 
onstraining it. Normalisation is the pro
ess of

making su
h 
onstraints expli
it. S
hema normalisation will produ
e an equiva-

lent s
hema where all 
omponents are de
lared to be members of their \maximal"

type, rather than of a set 
ontained in those. Consider a s
hema S with 
om-

ponents x

1

: X

1

; : : : ; x

n

: X

n

, su
h that the type of x

i

is T

i

. The normalisation

of S is obtained by repla
ing all de
larations of x

i

: X

i

by x

i

: T

i

and 
onjoining

x

i

2 X

i

with the predi
ate of S .

For example, the normalisation of the s
hema S1 is given by the s
hema S2.

S1

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

S2

a; a

0

: Z

a 2 N ^ a

0

2 N

(a

0

)

2

� a < (a

0

+ 1)

2

S
hema normalisation plays an important role when 
ombining s
hemas using

the s
hema 
al
ulus.

2.3.7 S
hemas as Types

So far we have not made expli
it the meaning of a s
hema. Basi
ally, a s
hema

denotes a set whi
h is 
ontained in some type. The elements of su
h a set are


alled bindings. The type of these bindings is the signature of the s
hema, whi
h,

viewed as a set, is the largest set of bindings 
ontaining all elements of the s
hema.
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There is a spe
ial operator to 
onstru
t bindings in a 
ontext where all the 
om-

ponent names are de
lared. This is the �-operator. For example,

�Library = hj users == users; borrowed == borrowed ji

The two o

urren
es of the names have rather di�erent meanings. The �rst is

lo
al to the binding, just the name of a s
hema 
omponent. The se
ond must

refer to a value, namely the value of the variable of that name whi
h must be in


ontext. For example, when applying � to a de
orated s
hema, like

�Library

0

= hj users == users

0

; borrowed == borrowed

0

ji

it be
omes evident that the �rst name is lo
al and thus not subje
t to the de
o-

ration.

A 
ommon use of the �-operator is to turn an operation into a relation between

states. If we have an operation Op on �State, then its relational interpretation

is given by the set 
omprehension

fOp � (�State 7! �State

0

)g

This means that for ea
h possible binding of Op a pair 
onsisting of the in
luded

bindings of the before state State and those for the after state State

0

is in
luded.

Thus, ea
h operation 
an be easily interpreted as a relation of before and after

states. For example, given the operation su

 == [n; n

0

: N j n

0

= n + 1℄ then its

relational interpretation is the set of pairs f(hj n == 0 ji; hj n == 1 ji); (hj n ==

1 ji; hj n == 2 ji); (hj n == 2 ji; hj n == 3 ji); :::g.

2.4 The Z S
hema Cal
ulus

The main building blo
ks of a Z spe
i�
ation are s
hemas. They are used to

stru
ture the spe
i�
ation and the systems under 
onsideration. Mu
h of the

power of the Z notation derives from the ability to 
ombine s
hemas. We already

witnessed s
hema in
lusion as su
h a 
onstru
t. The Z notation, however, pro-

vides more operators to 
ombine s
hema, some of whi
h we present below. The


olle
tion and the use of these operators is 
alled the s
hema 
al
ulus.

Combining s
hemas is subje
t to one restri
tion, namely that their de
larations

are 
ompatible. This in
ludes that the same names are used for the same meaning

and, mostly, that the s
hemas are normalised. Remember, a type de�nition

impli
itly 
ontributes not only to the de
laration but also to the predi
ate of the

s
hema.

In this se
tion we 
onsider the appli
ation of the s
hema operators to at most two

s
hemas. This is not a restri
tion as the operators 
an be applied su

essively.

For illustrative purpose we use the s
hemas U == [De
l

U

j pred

U

℄ and V ==

[De
l

V

j pred

V

℄ with their de
laration and predi
ate part.
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2.4.1 Renaming

Renaming s
hema 
omponents is another way to a
hieve the 
ompatibility of

the s
hema de
larations. S
hema 
omponents 
an be renamed, provided that

the new name is not part of the de
laration of the s
hema. The renaming of a


omponent p by a q in a s
hema U is denoted U [q=p℄, thus every o

urren
e of

p will be repla
ed by q , ex
ept if p is bound inside the predi
ate of the s
hema.

For example, we have

Restri
tedLibrary [members=users℄

members : PNAME

borrowed : NAME 7! PBOOK

members � dom borrowed

8 u : members � #(borrowed(u)) � 7

2.4.2 S
hema Negation

For any s
hema U , the s
hema negation : U , is obtained by keeping the de
la-

ration of U and negating the predi
ate, i.e.

: U == [De
l

U

j : pred

U

℄

Note, s
hema negation requires normalisation. For example, the negation of

U 1 == [x : N j pred(x )℄ is [x : Z j x 62 N ^ : pred(x )℄ for some predi
ate pred


ontaining x .

S
hema negation on its own is not often used in pra
ti
e. However, it 
an play

its part in simplifying s
hema expression when applying s
hema 
onjun
tion and

s
hema disjun
tion. The s
hema 
al
ulus, like predi
ate logi
, obeys the de Mor-

gan laws and thus some s
hema simpli�
ations 
an be expressed using s
hema

negation.

2.4.3 S
hema Conjun
tion

S
hema 
onjun
tion is 
losely related to s
hema in
lusion. The s
hema resulting

from the 
onjun
tion of the s
hemas U and V 
ontains both U and V and

nothing else, thus

U ^ V == [U ; V ℄ == [De
l

U

; De
l

V

j pred

U

^ pred

V

℄

i.e. the predi
ates of U and V are 
onjoined and the de
larations are merged

appropriately. S
hema 
onjun
tion does not need normalisation due to the prop-

erties of 
onjun
tion and normalisation.
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However, it is only well-de�ned when 
omponents have 
ompatible types. If the

same variable is de
lared in both s
hemas but belongs to di�erent sets, then

the interse
tion of those sets needs to be taken. For example, [x : N ℄ ^ [x :

f�1; 1g℄ == [x : N \ f�1; 1g℄ == [x : f1g℄. If the sets are not 
ompatible,

like in [x : N ℄ and [x : NAME ℄, then the interse
tion is empty and thus s
hema


onjun
tion is unde�ned.

S
hema 
onjun
tion allows one to spe
ify di�erent aspe
ts of a system separately.

It 
an be usefully applied both on operation and on state s
hemas to 
ombine

those aspe
ts to form a 
omplete des
ription, thus it is used to 
ombine require-

ments.

For example, the s
hema OkOp des
ribes that an operation has been su

essful

and it is de�ned by OkOp == [message! : Report j message! = Ok ℄. Then

expanding OkAddUser == AddUser ^ OkOp is the s
hema

OkAddUser

�Library

name? : NAME

message! : Report

name? 62 users

users

0

= users [ fname?g

borrowed

0

= borrowed

message! = Ok

2.4.4 S
hema Disjun
tion

S
hema disjun
tion is rarely used on state s
hemas. It is often applied on op-

eration s
hemas to handle separate 
ases, in parti
ular error handling and other

ex
eptions, thus to develop total operations, i.e. operations that have no 
on-

straints upon their appli
ability. For example, given the operation OkAddUser

and the following s
hema

FailAddUser

�Library

name? : NAME

message! : Report

name? 2 users

message! = Failure

reporting a Failure if the given name? is already 
ontained in the set users, then


ombining both via disjun
tion results in a total operation, i.e. TotalAddUser ==

OkAddUser _ FailAddUser .
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S
hema disjun
tion is 
onstru
ted similarly to 
onjun
tion, i.e. 
ombine the de
-

larations and apply disjun
tion to the predi
ates, thus s
hema disjun
tion for two

s
hemas U and V is de�ned as

U _ V == [De
l

U

; De
l

V

j pred

U

_ pred

V

℄

provided both s
hemas U and V are normalised. This is ne
essary to ensure that


ommon 
omponent names have not only 
ompatible but identi
al types. This

requirement also follows meta-theoreti
ally be
ause we required normalisation

for s
hema negation and s
hema disjun
tion 
an be expressed in terms of s
hema


onjun
tion and s
hema negation.

2.4.5 S
hema Impli
ation and Equivalen
e

S
hema impli
ation and equivalen
e have the usual meaning. They are de�ned

as

U ) V == : U _ V

provided the s
hemas U and V are normalised and

U , V == U ) V ^ V ) U

Both operators are rarely used to 
ombine s
hemas. However, they prove useful

to validate re�nement 
onditions or other relations between operations. For ex-

ample, for two operations Op

1

and Op

2

on the same state whose only 
omponent

is x : X , the predi
ate 8 x ; x

0

: X � Op

1

) Op

2

states that the e�e
t of Op

1

is


onsistent with Op

2

and 8 x ; x

0

: X � Op

1

, Op

2

states that the e�e
ts of both

operations are identi
al. Note, that we quantify over the s
hema 
omponent,

whi
h is explained next.

2.4.6 S
hema Quanti�
ation

The s
hema quanti�
ation of a s
hema U results in a new s
hema V 
ontaining a

subset of the 
omponents of U in its de
laration, with a predi
ate that is obtained

from U by quantifying over the removed 
omponents. Quanti�
ation is used to

express universal or existential properties of the given s
hema, like in re�nement

or in pre
ondition 
al
ulation.
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Existential Quanti�
ation. Given a s
hema U == [x : X ; De
l

U

j pred

U

℄

where De
l

U


onsists of de
larations but for x : X , then the existential quanti�-


ation over x in U is

9 x : X � U == [De
l

U

j 9 x : X � pred

U

℄

Thus, 9 x : X � U is a s
hema on all 
omponents of U ex
ept x . Examples of

the value and usage of existential quanti�
ation in Z are given below.

Universal Quanti�
ation. It is also possible to universally quantify over

s
hemas. This happens less frequently than existential quanti�
ation but proves

valuable when 
onsidering re�nement. Given a s
hema U == [x : X ; De
l

U

j

pred

U

℄ where De
l

U


onsists of de
larations but for x : X , then the universal

quanti�
ation over x in U is

8 x : X � U == [De
l

U

j 8 x : X � pred

U

℄

Thus, 8 x : X � U is a s
hema on all 
omponents of U but x .

2.4.7 S
hema Hiding, Proje
tion and Composition

The following three s
hema operators are de�ned using s
hema quanti�
ation and

possibly other s
hema operators. They are abbreviations to ease the 
onstru
tion

of spe
i�
ations.

S
hema Hiding. Hiding of variables (x

1

: X

1

; : : : ; x

n

: X

n

) from a s
hema U ,

denoted U n(x

1

; : : : ; x

n

), is basi
ally identi
al to existential quanti�
ation as su
h

that U n(x

1

; : : : ; x

n

) stands for the existential quanti�
ation of the s
hema U over

the 
omponents x

1

to x

n

, i.e.

U n (x

1

; : : : ; x

n

) = 9 x

1

: X

1

; : : : ; x

n

: X

n

� U

S
hema Proje
tion. S
hema proje
tion of a s
hema U on a s
hema V , de-

noted U � V , 
ombines the s
hemas using 
onjun
tion but hides all 
omponents

from U ex
ept those that are part of V . Formally,

U � V = (U ^ V ) n (x

1

; : : : ; x

n

)

where (x

1

; : : : ; x

n

) are 
omponents of U not shared by V .
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S
hema Composition. This operation des
ribes the e�e
t of one operation

followed by another, i.e. it is an operation that begins in the before state of

an operation Op

1

and ends in the after state of an operation Op

2

. It is only

meaningful when applied to operation s
hemas on the same state. The s
hema


omposition of two operations Op

1

and Op

2

is denoted Op

1

o

9

Op

2

.

For example, 
onsider the spe
i�
ation of the 
ursor movement in an editor bu�er

given by (Ja
kson, 1995). The operations 
srRight and 
srLeft both operate over

the state File whi
h represents the bu�er. Consider the operation 
srRight is

appli
able, then applying 
srLeft after 
srRight should result in the same position

of the 
ursor as before, i.e. 
srRight

o

9


srLeft = �File. Thus, 
omposition 
an

also be used to validate the usefulness of some de�nitions in the spe
i�
ation.

Consider State

0

to be the state after the operation Op

1

was performed. This is

also the state immediately before operation Op

2

. Lets 
all this intermediate state

State

00

. Then 
omposition is de�ned as

Op

1

o

9

Op

2

= 9 State

00

�

(9 State

0

� [Op

1

; State

00

j �State

0

= �State

00

℄) ^

(9 State � [Op

2

; State

00

j �State = �State

00

℄)

whi
h is the 
onjun
tion of both operations where the intermediate state is hid-

den. S
hema 
omposition 
an be 
al
ulated using renaming and hiding, e.g.

Op

1

o

9

Op

2

= (Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄) n (x

00

)

for all state 
omponents. Note, s
hema 
omposition does not 
onne
t inputs and

outputs of an operation, whi
h is 
alled piping but not dis
ussed here.

2.4.8 Pre
ondition Cal
ulation

The pre
ondition of an operation 
hara
terises all the states and inputs to whi
h

the operation 
an be applied su
h that there is an after state and output whi
h

are related to the states and inputs by the operation. In some spe
i�
ation

languages, like VDM (Jones, 1990), pre
onditions and post
onditions are given

expli
itly. However, this does not apply to Z. In order to make a pre
ondition of

a given operation expli
it one needs to 
al
ulate it.

The pre
ondition, preOp, of an operation Op == [�State; ins?; outs! j pred ℄ on

a state State with inputs ins? and outputs outs! is de�ned by

preOp = 9 State

0

; outs! � Op

Thus, preOp is another s
hema on State and ins?, indi
ating on whi
h before

states and inputs the operation is appli
able. The pre
ondition is, based on
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this de�nition, a rather abstra
t predi
ate. This predi
ate is usually simpli�ed

applying, for example, the one-point rule and other equivalen
es. An algorithm

for 
al
ulating a pre
ondition is given by (Wood
o
k and Davies, 1996, pp. 206).

For example, the pre
ondition for the operation AddUser is preAddUser =

9Library

0

� AddUser , whi
h 
an be simpli�ed to the s
hema [Library ; name? :

NAME j name? 62 users℄.

Dis
ussing the issue of the pre
ondition leads also to 
onsider the notion of a

post
ondition. Note, Z does not use a single 
hara
terisation of the post
ondition

of an operation. However, in order to apply the re�nement 
al
ulus (King, 1990),

a notion of post
ondition was adapted. Given an operation s
hema Op ==

[�State j pred ℄ satisfying the 
ondition pred ) preOp, and a 
ondition P , then

P is 
onsidered to be a post
ondition of Op if preOp ^ P , pred . In parti
ular

this holds if P is equivalent to pred itself, however, other valid post
onditions

may exist. The notion postOp is used to refer to some possible post
ondition of

Op.

2.5 Re�nement in Z

So far we are able to write a formal spe
i�
ation in the Z notation. While

this is a valuable task in its own right we also want to be able to develop a

spe
i�
ation towards an implementation. The pro
ess of development from an

abstra
t spe
i�
ation towards a more 
on
rete representation is 
alled re�nement.

To (Wood
o
k and Davies, 1996), re�nement is all about improving spe
i�
ations.

It involves the removal of non-determinism, or un
ertainty. A re�nement is said to

be a

eptable provided it is impossible for an observer to noti
e the repla
ement.

2.5.1 Operation Re�nement

(Derri
k and Boiten, 2001) use the term simple re�nement to des
ribe the re-

�nement of operations where the state s
hema does not 
hange. This notation is


ommonly 
onsidered as operation re�nement. However, simple re�nement is a

more general 
on
ept than operation re�nement.

Operations in Z are, basi
ally, binary relations over a state spa
e relating a be-

fore state and an after state. Operations 
an be, if ne
essary, interpreted as

total relations. Figure 2.1 shows two graphi
al representations of the operation

Op = f(0; 0); (0; 1); (2; 2)g over the state f0; 1; 2g. The dotted lines represent the

appli
ation of the operation for before states that are outside the domain.

Basi
ally, there are two interpretations possible for applying an operation out-

side the domain. The �rst graph represents the 
ontra
tual interpretation in Z,

whereas the se
ond one 
onsiders the blo
king interpretation. Depending on the
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Figure 2.1: Relational Interpretations of the OperationOp = f(0; 0); (0; 1); (2; 2)g

over the state f0; 1; 2g


hosen interpretation, totalisation binds all states not in the domain to all others

and ?, a distinguished state representing non-termination, or it binds all states

not in the domain only to ?.

In the 
ontra
tual interpretation the domain of the operation des
ribes the area

in whi
h the operation should be guaranteed to deliver a well-de�ned result as

des
ribed by the relation. This area is 
ommonly referred to as the pre
ondition

of the operation. Outside the domain, however, the operation may be applied but


an return any value, in
luding an unde�ned one. In the blo
king interpretation

operations may not be applied outside their domain. Applying the operation

anyway leads to an unde�ned result. In this 
ontext, the pre
ondition is often


alled the guard of the operation.

Consider a parti
ular before state s. A substitution of the operation AOp by

an operation COp would be unnoti
ed if either (1) s is in the domain of AOp,

then the after state for COp should be one of the possibilities in the range of

AOp. Furthermore, this means that s should also be in the domain of COp

otherwise ? would be allowed by COp but not by AOp; or (2) in the 
ontra
tual

interpretation, if s is not in the domain of AOp, then any possible after state

for COp is a

eptable. This, in turn, means that s may, or may not, be in the

domain of COp.

This intuition is formalised in the following way. An operation COp is an oper-

ation re�nement of an operation AOp over the same state spa
e State and with

the same inputs x? : X and the same outputs y ! : Y , if and only if

Appli
ability

8 State; x? : X � preAOp ` preCOp

Corre
tness

8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ` AOp
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Note, we use the turnstile notation as it is more general than impli
ation. We

will �nd in subsequent 
hapters that 
onsequen
e and impli
ation are not always

inter
hangeable as in standard predi
ate logi
. The 
orre
tness rule above ap-

plies within the standard, 
ontra
tual, interpretation of a Z operation. In the

alternative, blo
king interpretation, the 
orre
tness rule be
omes

8 State; State

0

; x? : X ; y ! : Y � COp ` AOp

There are a few spe
ial 
ases worth 
onsidering. First, an operation does not

ne
essarily have to have inputs and outputs. The appli
ability and 
orre
tness


onditions simplify a

ordingly. Furthermore, if the pre
ondition of the 
on
rete

and abstra
t operation are the same, i.e. preAOp = preCOp then COp is an

operation re�nement of AOp if and only if

8 State; State

0

� COp ` AOp

i.e. the 
orre
tness 
ondition was simpli�ed using Op = preOp ^ Op. Note, this

holds in both the blo
king and the 
ontra
tual interpretation.

S
hema 
onjun
tion is one way of obtaining operation re�nements. This au-

tomati
ally guarantees 
orre
tness and only appli
ability needs to be 
he
ked.

Thus, the operation AOp ^ X , for operations X and AOp both over �State, is

an operation re�nement of AOp if and only if

8 State � preAOp ` pre(AOp ^ X )

For example, in Subse
tion 2.4.3 we formed the s
hema OkAddUser by a 
on-

jun
tion of the s
hemas AddUser and OkOp and, indeed, we 
an verify that

OkAddUser is an operation re�nement of AddUser using the Z/EVES proof tool.

=> try \forall Library � \pre AddUser \implies \pre OkAddUser;

=> prove by redu
e;

Proving gives ...

true

In the 
ontra
tual interpretation, operation re�nement allows pre
onditions to

be weakened and non-determinism to be redu
ed. The appli
ability 
ondition

requires that the 
on
rete operation is de�ned everywhere the abstra
t operation

was de�ned. It allows, however, that the 
on
rete operation is de�ned where

the abstra
t operation was not. The 
orre
tness 
ondition requires the 
on
rete

operation to map into the range of the abstra
t operation everywhere the abstra
t

operation is de�ned. It does not require, however, to 
over the whole range of
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the abstra
t operation, i.e. it is not ne
essary for the 
on
rete operation to be

identi
al to the abstra
t operation.

For example, the operation TotalAddUser is an operation re�nement of the oper-

ation AddUser . The operation TotalAddUser is appli
able everywhere AddUser

was de�ned. Additionally, it is also de�ned in 
ase the user name? is already a

member of the library.

=> try \pre AddUser \shows \pre TotalAddUser;

=> prove by redu
e;

Proving gives ...

true

Furthermore, the operationTotalAddUser performs every task that AddUser does

but more. We already showed that OkAddUser is an operation re�nement of

AddUser . Be
ause the pre
onditions of FailAddUser and OkAddUser are disjoint


orre
tness follows immediately.

=> try \pre AddUser \land TotalAddUser \implies AddUser;

=> prove by redu
e;

Proving gives ...

true

Besides operation re�nement (Derri
k and Boiten, 2001) 
onsider two more 
ases

of simple re�nements. These are 
on
erned with establishing and imposing in-

variants. Sin
e we are not using su
h re�nements in our work we will not dis
uss

them here.

2.5.2 Data Re�nement

In data re�nement we are 
on
erned about a more 
on
rete representation of the

state. Data re�nement, however, is not mu
h 
onsidered in this work. Neverthe-

less, we refer to it and thus we present brie
y what data re�nement is about. For

a thorough introdu
tion to data re�nement we re
ommend (Derri
k and Boiten,

2001). Note, for illustrative purpose we 
onsider here only operations with no

inputs or outputs.

Simple, operation, re�nement was restri
ted to operations over the same state.

However, to move 
loser to an implementation the de�nition of the state needs to

be re�ned too. For example, in an abstra
t spe
i�
ation we use sets frequently,
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however, a more 
on
rete representation 
ontains lists or arrays instead. Note,


hanging the data representation will also a�e
t the operations over them.

The standard de�nition of data re�nement for Z s
hemas whose operations are

total relations is now 
ommonly given by using simulations. A simulation is also

known as a retrieve relation or abstra
tion relation. Basi
ally, there are two forms

of simulation, 
alled upward and downward simulation.

AState

R

��

AOp //
AState

0

R

0

��
CState

COp

//
CState

0

AState

AOp //
AState

0

CState

R

OO

COp

//
CState

0

R

0

OO

Figure 2.2: Re�nement Using Downward and Upward Simulation

Figure 2.2 shows two 
ommutative diagrams representing downward and upward

simulation. The abstra
tion R is a relation, the arrows labelling R and R

0

just

indi
ate the dire
tion to follow around the diagram.

The �rst diagram des
ribes that the appli
ation of the relation R followed by the

operation COp 
an be mat
hed by the operation AOp followed by a mapping R

0

.

In the se
ond graph the simulation is reversed, i.e. the e�e
t of COp followed by

R

0


an be mat
hed by R followed by AOp. In either 
ase, valid appli
ations of the


on
rete operation 
an be simulated by appli
ations of the abstra
t operation.

For Z s
hemas AOp and COp without input or output, the relationR on AState ^

CState is a downward simulation from AOp to COp if

Initialisation

8CState

0

� CInit ` 9AState

0

� AInit ^ R

Appli
ability

8AState; CState; � preAOp ^ R ` preCOp

Corre
tness

8AState; CState; CState

0

�

preAOp ^ R ^ COp ` 9AState

0

� R

0

^ AOp
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Note, these rules assume the standard, 
ontra
tual, interpretation of Z operations.

In the blo
king interpretation, the 
orre
tness rule be
omes

8AState; CState; CState

0

� R ^ COp ` 9AState

0

� R

0

^ AOp

This formalisation of downward simulation extends the notion of operation re-

�nement by 
onsidering initialisation and also 
hanges in the state spa
e. The

intuition behind appli
ability and 
orre
tness remain the same apart from 
on-

sidering the 
hange of state spa
e, whi
h is des
ribed by the retrieve relation

R.

Downward simulation is the most 
ommon way of 
he
king data re�nement. How-

ever, it has been found that there are valid re�nements that 
annot be veri�ed

using downward simulation but using upward simulation. Upward as well as

downward simulation are sound, i.e. if an upward or downward simulation exists

between 
onformal operations AOp and COp then COp is a data re�nement of

AOp. However, upward and downward simulation are only jointly 
omplete, i.e.

re�nements are possible whi
h require both kinds of simulations for their proof.

Note, we do not 
onsider data re�nement any further in this work. However, we

are interested in applying our work to data re�nement in the future.

2.6 Tool Support for Z

There are a number of tools available to support the Z notation. These tools o�er

various degrees of assistan
e in type setting Z spe
i�
ations and pretty printing,

syntax and type 
he
king, theorem proving and spe
i�
ation animation. The

following list of tools is a small sample and 
ertainly not 
omplete. We refer to

the Z home page for more details.

oz.sty is a L

A

T

E

X ma
ro for Obje
t-Z from the SVRC (Software Veri�
ation

Resear
h Centre) at the University of Queensland. We used this style to type-set

the Z notation in this thesis.

FuZZ is a printing and type-
he
king system for Z spe
i�
ations. Using FuZZ

together with L

A

T

E

X you 
an input Z spe
i�
ations as ASCII �le, pro
ess them for

laser printing, 
he
k spe
i�
ations for their 
onforman
e to the Z language rules

and produ
e a listing of s
hemas with 
omponents and their types. The FuZZ

distribution 
ontains a spe
ial L

A

T

E

X font of Z symbols and a library 
ontaining

the standard mathemati
al tool-kit. FuZZ is fully 
ompatible with the referen
e

manual by (Spivey, 1992). Using FuZZ requires a li
en
e.

ZTC { the Z Type Che
ker { 
an determine if there are synta
ti
al and typing

errors in Z spe
i�
ations. It is intended to be 
ompliant to (Spivey, 1992). ZTC

a

epts as input spe
i�
ations written in L

A

T

E

X using the oz or zed pa
kages, or
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its own ZSL notation whi
h is an ASCII version of the Z syntax by the author of

ZTC. It is available free of 
harge for edu
ational and non-pro�t uses.

Formaliser is a syntax-dire
ted Z editor and intera
tive type 
he
ker. It provides

the fa
ilities to intera
tively query attributes and to view all identi�ers with

their types. Formaliser is a what-you-see-is-what-you-get type of editor showing

all Z symbols as they appear printed. Do
uments 
an be exported to L

A

T

E

X or

its true-type Z font 
an be used to 
reate MS-Word do
uments. Formaliser is

a 
ommer
ial tool, developed at Logi
a (UK), whi
h runs under the Windows

operating system.

ProofPower is a spe
i�
ation and proof tool based on an implementation of

Higher Order Logi
 (HOL). It provides support for spe
i�
ation and proof in Z

using a semanti
 embedding of Z in HOL. The distribution provides an interfa
e

of ProofPower to T

E

X and L

A

T

E

X, an X Windows front-end, the HOL as well as Z

spe
i�
ation and proof development system and, �nally, the DAZ tool supporting

re�nement from Z to the SPARK subset of Ada. ProofPower is available free

for a
ademi
 and personal, non-
ommer
ial use from Lemma One (http://www.

lemma-one.
om/ProofPower/).

CADiZ is a set of integrated tools for preparing, type 
he
king and analysing Z

spe
i�
ations, whi
h is available free of 
harge from the University of York (UK).

It gives dire
t support for the (ISO/IEC 13568, 2002) Standard Z notation and

evolves a

ordingly. A Z spe
i�
ation is prepared using L

A

T

E

X or tro� mark-up

and imported into CADiZ. The CADiZ toolset then provides syntax, s
ope and

type 
he
king, type-setting and spe
i�
ation browsing. It allows to prove 
onje
-

tures intera
tively. It provides di�erent de
ision pro
edures, like model 
he
king

and resolution. Furthermore, the expansion of s
hemas and an elementary re-

�nement editor are supported. CADiZ re
eived a BCS Award for outstanding

te
hnologi
al a
hievement in the 
omputing �eld.

Z/EVES supports the analysis of Z spe
i�
ations by providing syntax and type


he
king, s
hema expansion, pre
ondition 
al
ulation, domain 
he
king and gen-

eral theorem proving. It supports almost the entire Z notation and in
ludes the

mathemati
al toolkit as given by (Spivey, 1992). The Z/EVES theorem prover

provides powerful automated reasoning as well as intera
tive proof development.

Users with little experien
e in theorem proving 
an use the tool, too. Syntax

and type 
he
king, s
hema expansion and pre
ondition 
al
ulation require little

intera
tion.

In the 
urrent version (2.1) Z/EVES also in
ludes a graphi
al user interfa
e that

allows Z spe
i�
ations to be entered, edited, and analysed in their typeset form.

It supports the in
remental analysis of spe
i�
ations and it manages the syn-


hronisation of the analysis with modi�
ations to the spe
i�
ation. Z/EVES 
an

be obtain from ORA Canada (http://www.ora.on.
a/z-eves/) free of 
harge
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for edu
ational use. It runs under the Linux, Windows and Solaris operating

systems.

Z/EVES, as de
ribed by (Saaltink, 1997), is the tool we used to analyse the spe
-

i�
ations given in this thesis. We used the tool to type-
he
k all spe
i�
ations as

well as to 
al
ulate pre
onditions, to 
he
k properties and to validate re�nement


onditions.

Re
ently a new Community Z Tools Initiative (CZT) has been proposed to join

the e�ort of developing a 
oherent and extensive set of Z tools and as su
h to

support further appli
ation of Z in industry.

2.7 Formal Methods and Notations related to Z

Z has some relatives in the world of formal methods and formal notations. As

su
h, we assume that some of the work presented in this thesis may also apply

to the notations presented below. The 
hosen relatives are 
losely related to Z.

The development of Z has bene�ted from and 
ontributed to the development of

these notations. For example, Jean-Raymond Abrial developed Z while being in

Oxford together with Cli� Jones, who was largely involved in the development of

the Vienna Development Method (VDM). Later, Abrial developed the B-Method,

most 
ertainly building upon his experien
es gained earlier.

2.7.1 The B-Method

The B-Method has been developed by Jean-Raymond Abrial, also the originator

of the Z notation, and others. The B-Method is des
ribed in The B-Book by

(Abrial, 1996). It is a method be
ause it is aimed at the development of program


ode from a spe
i�
ation whi
h is given in B's own Abstra
t Ma
hine Notation.

The B-Method in
ludes extensive tool support, notably the B-Toolkit by B-Core

Ltd and Atelier B. The B-Method has been applied in many signi�
ant industrial

proje
ts.

The basi
 building blo
k of a B spe
i�
ation is an abstra
t ma
hine. The B-

Method supports the development of large spe
i�
ations from small ones by pro-

viding a number of stru
turing me
hanisms. B and Z are both based on the same

underlying logi
 and set theory. The B 
al
ulus, however, is based on Dijkstra's

guarded 
ommand language. In B, pre
onditions are stated expli
itly and so is

non-determinism. The post
ondition in B looks like an assignment in program-

ming languages but its semanti
s is based on substitution on the state, like in

VDM and Z. B provides also a guard 
onstru
t, thus fa
ilitating both guarded

and pre
ondition interpretation. Note, too, that the B-Method in
orporates a

parti
ular notion of re�nement within its language de�nition.
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(S
hneider, 2001) provides a textbook introdu
tion to the B-Method. He 
overs

the B approa
h to software development from spe
i�
ation through re�nement,

to implementation and 
ode generation, 
onsidering veri�
ation at ea
h step.

In 
omparison to (Abrial, 1996), he also 
overs tool support, in parti
ular the

B-Toolkit.

2.7.2 The Vienna Development Method

The Vienna Development Method is a set of te
hniques for modelling 
omputing

systems, analysing those models and progressing to detailed design and 
oding.

It originated at the IBM Vienna Laboratory in the mid-1970s. The notation

and tools have been 
ontinuously developed sin
e and are applied on a wide

range of systems. VDM is a method be
ause it emphasises the development of

program 
ode and provides the ne
essary me
hanisms. (Jones, 1990) provided

one of the standard referen
es, introdu
ing the reader to the systemati
 software

development using VDM and (Jones and Shaw, 1990) present a 
olle
tion of 
ase

studies in VDM.

VDM is based on a three-valued logi
, whi
h allows treatment of unde�nedness

of partial fun
tions not expli
itly 
ared for in Z or B. Furthermore, in VDM,

pre
onditions and post
onditions are given expli
itly, whi
h does not apply to Z.

The advantage is an additional 
onsisten
y 
he
k whether the real pre
ondition

of the operation 
orresponds to the stated one. Invariants in VDM, however, are

assumed to be an impli
it part of every pre- and post
ondition.

B, VDM and Z were 
ompared in the literature by (Bi
arregui and Rit
hie,

1995), providing a 
omparison of the VDM and B notations, (Hayes et al.,

1993), emphasising on understanding the di�eren
es between VDM and Z, and

http://www.b-
ore.
om/ZVdmB.html 
omparing all three notations. There

are also a VDM+B proje
t at Imperial College and a Z+VDM proje
t at

SVRC aimed at 
ombining these notations. More information on VDM, like

tools, bibliography and appli
ation database 
an be found on its home page:

http://www.
sr.n
l.a
.uk/vdm/.

2.7.3 Obje
t-Z

Obje
t-Z is an extension of the formal spe
i�
ation language Z, retaining existing

syntax and semanti
s, to a

ommodate obje
t orientation. The main reason for

this extension is to improve the 
larity of large spe
i�
ations through enhan
ed

stru
turing. It also fa
ilitates modular veri�
ation and re�nement.

A Z spe
i�
ation, as presented above, de�nes a number of state and operation

s
hemas. A state s
hema introdu
es the variables and de�nes the relationship
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between their values. An operation s
hema de�nes the relationship between the

before and after states 
orresponding to one or more state s
hemas. One of

the disadvantages of Z is that one is required to examine the signature of all

operations to inferring those operation s
hemas that may a�e
t a parti
ular state

s
hema. In large spe
i�
ations this is rather impra
ti
able.

Obje
t-Z over
omes this problem by introdu
ing a new 
lass stru
ture whi
h

en
apsulates a single state s
hema with all the operations whi
h may a�e
t that

state. Ea
h 
lass 
an be examined and understood in isolation. An Obje
t-Z

spe
i�
ation of a system 
omprises a number of 
lass de�nitions possibly related

by inheritan
e, a me
hanism for 
lass adaptation by modi�
ation or extension,

and instantiation.

Di�eren
es of Z and Obje
t-Z in
lude that the s
ope of global type and 
onstant

de�nitions in Obje
t-Z is limited to the 
lass in whi
h they are de�ned. Fur-

thermore, an operation s
hema extends the notion of a s
hema in Z by adding

to it a �-list. The �-list holds the primary variables whi
h the operation may


hange when it is applied to an obje
t of the 
lass. All other primary variables

remain un
hanged. This results also in a di�erent treatment of the pre
ondition

of operations. In Z, being outside the pre
ondition leads to divergen
e, i.e. the

operation 
an perform anything. In Obje
t-Z, however, operations are blo
ked

outside the pre
ondition and thus 
annot 
hange the environment, unless they

have been expli
itly de
lared in a so 
alled Delta-list. Note, too, that Obje
t-Z

has an operational semanti
s, unlike Z.

For an introdu
tion to Obje
t-Z the work by (Duke et al., 1994) is re
ommended.

(Stepney et al., 1992) provide a 
olle
tion of papers des
ribing various approa
hes

of obje
t orientation in Z, in
luding Obje
t-Z. (Smith, 2000) published a referen
e

manual in the style of (Spivey, 1992).

2.8 Summary

Z is a formal spe
i�
ation notation useful for des
ribing 
omputing systems. Z

is a model-based notation. A system is modeled by representing its state, i.e.

its 
omponents and 
onstraints upon them, and operations that 
an 
hange the

state, thus modelling the behaviour of a system. Note, Z is not intended to spe
ify

non-fun
tional requirements, like usability, performan
e, program 
ode size and

reliability. It is also not intended for the des
ription of timed or 
on
urrent

behaviour.

In this 
hapter we introdu
ed some basi
s of the Z spe
i�
ation notation. We


overed the logi
 of Z and the underlying set theory. We went on to introdu
e

the 
on
ept of types and their usage in Z. Furthermore, we presented the main

features of Z, its s
hemas notation and the s
hema 
al
ulus, used to modify
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and 
ombine s
hemas. Next, we gave some insight into re�nement in Z, the

development of a more 
on
rete spe
i�
ation from an abstra
t one. Finally, we

introdu
ed some Z tools and other spe
i�
ation notations related to Z.

Details related to the Z notation in
luding information on publi
ations, the Z

standardisation pro
ess, Z 
ourses, tool support, and other material 
an be found

on the Z home page: http://www.
omlab.ox.a
.uk/ar
hive/z.html.



Chapter 3

In
onsisten
y and

Underde�nedness in Z

We are fa
ed on an almost daily basis with in
onsistent and in
omplete knowl-

edge. We have learnt to live with it and to manage it. This does not imply that

we a

ept the status quo and stagnate. Both kinds of de�
ien
ies provide a tool

for development and guide resear
h. Most importantly, however, we are able to

tolerate both problems until they 
an be solved. Meanwhile we make use of them

to derive as mu
h possible and useful information as we 
an.

The Z notation is a spe
i�
ation language based on 
lassi
al logi
. Classi
al logi
,

however, is not well-designed to handle in
onsistent and in
omplete knowledge.

In
onsisten
y, for example, leads to the problem of triviality, i.e. that everything


an be inferred from a single in
onsisten
y. Z spe
i�
ations 
an also be trivialised

by in
onsisten
ies. So far, resear
h on handling in
onsisten
y in Z fo
used mainly

on dete
ting and eradi
ating them.

Software development, however, requires a more lightweight approa
h to in
on-

sisten
ies. On the one hand, they frequently appear in large proje
ts and 
on-

stant fo
us on dete
ting and eradi
ating in
onsisten
ies is expensive. On the

other hand, removing one in
onsisten
y might introdu
e another one and thus,

it is 
laimed, 
omplete 
onsistent spe
i�
ations might not be rea
hed in pra
ti
e.

Consequently, in
onsisten
ies need to be managed as we do it on a regular basis

too. Thus, Z needs to be extended to fa
ilitate su
h in
onsisten
y management.

In Z operations are, in general, partial relations. In the traditional interpretation,

an operation applied outside its domain 
an result in any behaviour, thus for any


omponent in the s
ope of the operation a de�nite value 
annot be known. Al-

ternatively, in the guarded interpretation, no 
hange of the 
omponents o

ur. It

has been observed that a 
ombination of both interpretations is sometimes 
on-

venient to allow both modelling of refusals and under-spe
i�
ation. We propose

an extension to Z to in
orporate both interpretations.

40
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3.1 Introdu
tion

In
onsisten
ies are a matter of every day life. We are 
onstantly 
hallenged by


ontradi
ting information. Sometimes we are able to resolve the in
onsisten
y

right away; sometimes, however, we have to live with in
onsisten
ies. In su
h

a 
ase we tend not to derive any useless results from it. Often it is quite the


ontrary and in
onsisten
ies lead to new dis
overies. This pro
ess suggests that

the logi
 we use to reason in everyday life is able to deal with in
onsisten
ies in

a useful manner.

(Valentine, 1998), however, states:

Consisten
y is essential for a Z spe
i�
ation to have any useful mean-

ing.

Thus, in
onsistent Z spe
i�
ations are meaningless or useless. This is, however,


ontrary to pra
ti
al situations be
ause, as (Ghezzi and Nuseibeh, 1998) found,

In
onsisten
ies are inevitable in large proje
ts. [...℄ A 
ompletely


onsistent state may never be rea
hed in pra
ti
e

This leads to the 
on
lusion that Z should not be used to spe
ify large proje
ts in

pra
ti
e be
ause they would potentially be in
onsistent and thus the spe
i�
ation

is meaningless. The problem is, that the Z notation 
annot deal appropriately

with in
onsistent situations.

This impra
ti
ality is 
ertainly not desired by the Z 
ommunity. Resear
h on

in
onsistent spe
i�
ations has been an issue for some time. However, 
ommon

to all approa
hes is to prevent or eradi
ate in
onsisten
ies. For example, the Z

type system is well designed to prevent many in
onsisten
ies and type 
he
kers


omplement this task. Furthermore, the work by (Valentine, 1998) is aimed at

providing guidelines to the development of 
onsistent spe
i�
ations.

Another resear
h dire
tion is to divide in
onsistent spe
i�
ations into viewpoints

where ea
h viewpoint should be internally 
onsistent. We think, however, that the

problem of 
onsisten
y does not disappear with this approa
h. On the one hand,

a viewpoint 
ould in
lude an unresolvable in
onsisten
y and thus approa
hes

to �nd and manage this in
onsisten
y are required. One 
an argue that the

viewpoint is further divided thus forming a hierar
hy of viewpoints. However, at

the end of the development pro
ess viewpoints need to be 
ombined and thus the

problem of in
onsisten
y reappears.
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3.1.1 Motivation

The aim of our work is to supplement 
urrent resear
h on in
onsisten
ies in Z

spe
i�
ations. We are interested in a me
hanism that 
an tolerate in
onsisten
ies

but still derive useful information. Certainly, an in
onsistent spe
i�
ation is never

fully 
orre
t but sometimes it is the best we 
an get.

In this 
hapter we provide some ba
kground on the notion of in
onsisten
y in Z

spe
i�
ations and the impa
t in
onsisten
ies 
an have on the pro
ess of reason-

ing about Z spe
i�
ations. We argue that the e�e
t of in
onsisten
ies in Z is not


ompliant with the per
eived e�e
t of in
onsisten
ies in s
ien
e or in software de-

velopment pra
ti
e. We illustrate with some examples what kind of reasoning we

intent to fa
ilitate. The aim of our envisioned reasoning system are more useful

and reliable inferen
es in the presen
e of in
onsisten
y. Additionally, we 
onsider

the re�nement pro
ess of in
onsistent operation whi
h is 
urrently rather arbi-

trary be
ause information present in the spe
i�
ation are not used appropriately.

Consequently, we propose to investigate the use of para
onsistent logi
s for Z.

Contradi
ting information often needs to be tolerated due to some la
k of knowl-

edge. Thus, in
onsisten
y and underde�nedness are 
losely related topi
s. Un-

derde�nedness o

urs in Z spe
i�
ations in form of partial operations. There are

two opposing interpretations of applying an operation outside its domain. We

introdu
e the two interpretations and we demonstrate that one interpretation

alone is not always suÆ
ient to model, in parti
ular, rea
tive behaviour. Thus,

we propose a 
ombination of both.

3.1.2 Outline

This 
hapter is stru
tured as follows. In Se
tion 3.2 we present some sorts of

in
onsisten
ies in Z and how they 
an arise. Next, in Se
tion 3.3, we dis
uss

that in
onsisten
ies 
an be a tool to guide development and we look at desired

inferen
es despite in
onsisten
ies in Z spe
i�
ation. Underde�nedness 
an be


onsidered to be 
losely related to in
onsisten
y. In Se
tion 3.4 we introdu
e

the 
on
ept of underde�nedness in Z spe
i�
ations and propose a way to handle

them. Finally, we provide a short summary in Se
tion 3.5.

3.2 In
onsisten
y in Z Spe
i�
ations

A spe
i�
ation is supposed to be a model of some possible system. A spe
i�
ation

is in
onsistent if it has no models. The notion of in
onsisten
y is 
entral to this

thesis. Therefore, we dis
uss in this se
tion the meaning of in
onsisten
y in Z

spe
i�
ations. (Boiten et al., 1999) refer to the 
onsisten
y of a single spe
i�
ation
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as unary 
onsisten
y. We also 
onsider brie
y the problem between spe
i�
ations,

as it o

urs in the area of viewpoint spe
i�
ations.

3.2.1 Global In
onsisten
y

(Saaltink, 1997) distinguishes basi
ally two di�erent types of in
onsisten
y in Z

spe
i�
ations, 
alled global and lo
al in
onsisten
y. Global in
onsisten
y is more

serious be
ause it makes an entire spe
i�
ation unsatis�able. This o

urs if some

axiomati
 s
hema, generi
 s
hema, or predi
ate is too strong.

In
onsistent Axiomati
 De�nitions

Axiomati
 de�nitions are 
ommonly used in Z. They provide de�nitions that

range over the entire spe
i�
ation. Thus, if they are in
onsistent they e�e
t

the whole spe
i�
ation. For example, any spe
i�
ation 
ontaining the axiomati


s
hema

n : Z

n 6= n


annot be satis�ed be
ause there is no possible value for n. In
onsisten
ies are

not always as obvious as above. For example, there is no fun
tion f satisfying

the following des
ription:

f : N ! N

8 x ; x

0

: N � (x < x

0

) f (x ) > f (x

0

))

Although the strong type system of Z prevents quite a few errors, it is still possible

to write some kind of 
ontradi
tion, like postulating that an empty set has an

element

x : ?[N ℄

or using the fa
t that a fun
tion is a set of pairs, for example

f : N ! N

f = f(1; 2); (1; 3)g

In all these 
ases, it is possible to 
he
k whether su
h an axiomati
 de�nition is

meaningful. As (Saaltink, 1997) shows, to 
he
k an axiomati
 de�nition
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De
l

pred

for 
onsisten
y it 
an be pre
eded with the 
onje
ture 9De
l � pred . For example,

proving 9 f : N ! N � f = f(1; 2); (1; 3)g results in false and thus this axiomati


de�nition is not meaningful.

All the given examples of axiomati
 de�nitions are in
onsistent in themselves,

thus it is possible to apply the aforementioned 
onje
ture. However, it is not

always as simple. It is possible to 
onstru
t a number of axioms, ea
h 
onsis-

tent but together they are in
onsistent. (Valentine, 1998) provides the following

example of two axiomati
 de�nitions and an enumerated type.

x : N

x = 2 + 2

y : N

y = x

y = 5

Person ::= SamValentine j thePope

Then it is possible to show, using 
lassi
al logi
, that ` SamValentine = thePope

holds be
ause of the in
onsisten
y between the two axiomati
 de�nitions. Basi-


ally, the proof pro
eeds over the 
ardinality of the set fSamValentine; thePopeg,

whi
h is 2. However, due to the in
onsisten
y it is possible to show that 2 = 1,

thus the 
ardinality of the set is one, whi
h means the elements must be the

same.

In
onsistent Free Types

(Spivey, 1992, p. 84) points out that free types 
an be in
onsistent, too, be
ause

of 
ardinality problems. For example, the data type de�nition

T ::= atomhhNii j funhhT ! T ii

is in
onsistent. Basi
ally, no su
h set T 
an exist be
ause there are many more

fun
tions from T to T than there are members of T . An even simpler example

is given by the de�nition

BigSet ::= makeSethhPBigSetii

whi
h has no model be
ause it spe
i�es that BigSet is isomorphi
 to its power

set. This is impossible, as the power set of a set always has more elements than

the set itself. Although we introdu
ed the problem of in
onsisten
ies through free
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types in Z, we will not 
onsider it any further. (Arthan, 1992), (Smith, 1992), and

(Spivey, 1992, p. 84) des
ribe restri
tions on free type de�nitions that guarantee


onsisten
y.

In the standard theory of Z, no theorem that has been proved in a globally

in
onsistent spe
i�
ation 
an be trusted be
ause its proof is potentially based on

impossible assumptions. Our general aim, however, is to investigate possibilities

to redu
e the impa
t of in
onsisten
ies su
h that there will be proofs of theorems

that 
an be trusted.

3.2.2 Lo
al In
onsisten
y

Set de
larations, abbreviations and s
hema de�nitions do not introdu
e global

in
onsisten
y. However, s
hema de�nitions 
an be lo
ally in
onsistent, i.e. they


ontain an unsatis�able predi
ate. This kind of error is lo
al in the sense that

the spe
i�
ation of other 
omponents of the system may still be meaningful.

In
onsistent Operation S
hema

A s
hema 
an have an in
onsistent, i.e. unsatis�able, predi
ate. If su
h a s
hema

is an operation s
hema, then the operation may not guarantee any out
ome

or only parts of the operation 
an be determined. For example, 
onsider the

following in
onsistent operation

Op

i


x?; y ! : N

x? = 1) y ! = 2

x? = 1) y ! = 3

The above s
hema in
ludes the 
ontradi
tion that y ! 
annot be 2 and 3 at the

same time. The pre
ondition for this operation is [x? 2 N j x? 6= 1℄, i.e. it

should not be applied when x? = 1. Thus, the operation is not \
ompletely"

in
onsistent.

In
onsistent State S
hema

If a s
hema des
ribing the state of a system is in
onsistent then it is impossible

to build that parti
ular system. For example, in the state s
hema

S1

i


x : N

3 � x � 2
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the state 
onstraints 
annot be satis�ed. This error 
an be shown easily be
ause

9 x : N � S1

i


fails as there is no x that 
an satisfy the state s
hema. However,

state in
onsisten
ies are not always as simple. For example, the state s
hema

S2

i


x ; y : Z

x mod 2 = 0) y < x

x mod 2 6= 0) y = x + 1 ^ y mod 2 6= 0

is meant to ensure that two numbers are always in a parti
ular relation to ea
h

other. However, S2

i


is partially over-
onstrained. It is possible to �nd even

numbers x su
h that S2

i


is satis�ed but no odd numbers. Thus, it is possible to

build a system based on S2

i


but, possibly, not the intended one.

The Initialisation Theorem

The initialisation theorem plays an important role in 
he
king spe
i�
ations for


onsisten
y. (Saaltink, 1997), for example, states: \many spe
i�
ations give an

initialization s
hema of the form Init S b= [S j P ℄, where the predi
ate P further


onstrains the state. In su
h a 
ase, showing 9 S

0

� Init S not only shows that S

is satis�able, it also shows that initial states are possible."

Unfortunately, the initialisation theorem does not prevent spe
i�
ation of par-

tially in
onsistent state des
riptions, like in S2

i


. For example,

Init S2

i


b= [S2

i


0

j x

0

= 2 ^ y

0

= 1℄

is a valid initialisation whi
h 
an be proved using the above 
onje
ture.

3.2.3 In
onsisten
y between Viewpoint Spe
i�
ations

It is generally agreed that a system of realisti
 size 
annot be modelled in a

single spe
i�
ation. It rather has to be de
omposed into several spe
i�
ations

of reasonable size where ea
h su
h spe
i�
ation will have to be developed sep-

arately. (Ja
kson and Ja
kson, 1996) argue that unlike in programming, where

hierar
hi
al or fun
tional de
omposition is often used, systems should be de
om-

posed into di�erent aspe
ts, 
alled viewpoints. Ea
h viewpoint forms a partial

des
riptions of the system, the 
ombination of all viewpoints form the model of

the whole system. The viewpoints 
an, however, overlap and thus 
onsisten
y

between viewpoints be
omes an issue.

Uni�
ation is a method to 
ombine viewpoint spe
i�
ations in Z proposed by

(Derri
k et al., 1995). It has been subsequently developed by (Boiten et al.,
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1995), (Bowman et al., 1996) and (Boiten et al., 1999). Two spe
i�
ations are

said to be 
onsistent if it is possible for at least one implementation to exist

that 
onforms to both spe
i�
ations. Re�nement is used to 
he
k whether an

implementation meets the requirements of a spe
i�
ation. The least 
ommon

re�nement of two spe
i�
ations is their uni�
ation. Thus, two spe
i�
ations are


onsistent if their uni�
ation exists. If they are in
onsistent then it is not possible

to 
onstru
t the uni�
ation and, therefore, their implementation.

A Digital Clo
k Example

We give a small, simpli�ed example of an engineering task. Given is a timer

devi
e, i.e. a 
lo
k. Two engineers are ea
h asked to give a model of a devi
e that


an initiate events within intervals of maximal 12 hours.

State. Both engineers rely on the same given 
lo
k, named Digi12 with �elds

for minutes and hours, denoted m and h respe
tively. We model both as restri
ted

integers. Thus, the state s
hema is already normalized.

Digi12

m; h : Z

0 � m � 59

0 � h � 23

Initialisation. Initially, the 
lo
k starts at noon, thus

InitDigi12 b= [Digi12

0

j m

0

= 0 ^ h

0

= 12℄

The initialisation 
ondition holds for the given 
lo
k, i.e. the initial state exists,

whi
h 
an easily be veri�ed.

Operations. The two engineers, however, de
ide to model the Ti
k operation

di�erently. The operation spe
i�es the state 
hange of the given 
lo
k and thus it

is 
on
erned with the behaviour of the 
lo
k when one minute has passed. This

in
ludes to update the values of the minutes m and hours h a

ordingly.

Ti
k1

�Digi12

m < 59)

m

0

= m + 1 ^ h

0

= h

m = 59)

m

0

= 0 ^

(h < 23) h

0

= h + 1) ^

(h = 23) h

0

= 0)

Ti
k2

�Digi12

m < 59)

m

0

= m + 1 ^ h

0

= h

m = 59)

m

0

= 0 ^

(h < 12) h

0

= h + 1) ^

(h = 12) h

0

= 1)
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Minutes range from 0 to 59 and are in
remented with ea
h Ti
k . On
e 59 is

rea
hed they go ba
k to 0 and the hour is in
remented, too. In viewpoint one,

the 
lo
k 
ounts the hours from 0 to 23. When it has rea
hed 23:59, another Ti
k

sets it to 0:00. In viewpoint two, hours range from 1 to 12. At 12:59 a Ti
k sets

it to 1:00.

We developed two di�erent viewpoints of a parti
ular problem. Consider that

these viewpoints des
ribe only one part of a larger system in whi
h they need to

be integrated. Thus, we are required to 
he
k whether both viewpoints 
an be

satis�ed. Uni�
ation is the method to apply.

The uni�
ation of both viewpoints, however, fails. To hold, state 
onsisten
y,

initialisation 
onsisten
y and operation 
onsisten
y for both viewpoints must be

satis�ed. We omit the state and initialisation 
onditions be
ause they are trivially

satis�ed for this example. However, operation 
onsisten
y fails.

Two operations Op

1

and Op

2

both operating over the same state S with input

x? : X and output y ! : Y are operation 
onsistent if and only if the following

holds

8 S ; x? : X � preOp

1

^ preOp

2

) 9 S

0

; y ! : Y � Op

1

^ Op

2

Applying this to both operations Ti
k1 and Ti
k2 it is easy to see that they are

in
onsistent in the 
ase of m = 59 and h = 12 and another Ti
k . Thus uni�
ation

fails for these two viewpoints.

3.3 In
onsisten
y and Information

(Valentine, 1998) states the 
ommon assumption that \Consisten
y is essential

for a Z spe
i�
ation to have any useful meaning." In this se
tion we 
hallenge

this 
ommonly a

epted view. We start by providing some analogy to other

s
ien
es dealing with 
omplex des
riptions. Then, we present some in
onsistent

spe
i�
ations in Z whi
h, as we argue, do have a meaning.

3.3.1 In
onsisten
ies in S
ien
e

A Z spe
i�
ation is a formal des
ription of a possibly 
omplex system. In pra
ti
e,

large spe
i�
ations are likely to 
ontain in
onsisten
ies. This problem is not

limited spe
i�
ally to formal spe
i�
ation. There are other areas dealing with

des
ribing 
omplex phenomena formally. For example, the natural s
ien
es are

mostly 
on
erned with des
ribing, i.e. spe
ifying, phenomena o

urring in the

real world. They, too, have to fa
e in
onsisten
ies on a regular basis. These

s
ien
es, however, have somehow learnt to live with in
onsisten
ies, to manage

and to utilise them.
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Bohr's Theory of the Atom

The s
ien
es of Physi
s and Chemistry are 
on
erned with the formal des
ription

of mostly 
omplex systems. It is here, in the history of s
ien
e, that we �nd many

in
onsistent but non-trivial theories. (Priest and Tanaka, 1996) present as one

example the well-known theory of the atom by Niels Bohr. A

ording to this the-

ory, an ele
tron orbits the nu
leus of the atom without radiating energy. However,

a

ording to Maxwell's equations, whi
h were an integral part of Bohr's theory,

an ele
tron whi
h is a

elerating in orbit must radiate energy. Hen
e, Bohr's

des
ription of the behaviour of the atom was in
onsistent. However, it was still

possible to infer useful results from this theory, while other non-useful 
on
lusions

were reje
ted. In s
ien
e, in
onsisten
ies are often a

epted to simplify a model

as long as these in
onsisten
ies do not lead to wrong 
on
lusion.

Clausius's Proof of Carnot's Theorem

(Meheus, 2002) presents an example of reasoning in the presen
e of in
onsisten
y.

The problem 
onsidered is Clausius's proof of Carnot's theorem: \no engine is

more eÆ
ient than a reversible engine." At the time, two in
ompatible approa
hes

to thermodynami
 phenomena existed. On the one hand, the theory by Carnot

stated that the produ
tion of work in a heat engine results from the mere transfer

of heat from a hot to a 
old reservoir. On the other hand, Joule advo
ated that the

produ
tion of work in a heat engine results from the 
onversion of heat into work.

Both approa
hes 
ombined lead to several 
ontradi
tions, e.g. the produ
tion of

work results from the mere transfer of heat and from the 
onversion of heat.

Carnot's proof of his theorem is based on Redu
tio ad Absurdum, i.e. he sup-

posed that the negation of his theorem holds and shows that this would lead

to a 
ontradi
tion. Thus, the hypothesis must be reje
ted on the basis of this


ontradi
tion and the opposite must hold. This pattern of proof is well a

epted

and often applied in mathemati
al reasoning. Clausius developed two proofs of

Carnot's theorem both based on this 
on
ept and both are very similar. How-

ever, he reje
ted the �rst of his proofs. Both proofs are based on Carnot's and

Joule's premises, however, the �rst proof does need the hypothesis to derive the


ontradi
tion, while his se
ond proof does. Thus, he found a useful and valid way

of reasoning in the presen
e of in
onsisten
y.

A Little Experiment

The following is a little experiment to demonstrate how easily in
onsisten
ies


an appear in life. Consider three water tanks, �lled with hot, medium and 
old

water respe
tively. Put one of your hands in the hot water tank, the other in

the 
old one. Leave your hands in there for a while, until you do not feel any
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di�eren
e in temperature anymore. Now, put both hands at the same time in

the third water tank with the water of medium temperature. You will per
eive

on the one hand that the water is hot and on the other hand that the water is


old. This is 
ertainly in
onsistent with your knowledge of the water being of the

same temperature.

Psy
hology, in parti
ular, uses su
h phenomena regularly to investigate the mind.

Often in
onsistent phenomena are presented to a person and it is investigated how

humans solve these problems. The example above is one su
h phenomena, Es
her

pi
tures are another. It has, however, not been reported that the subje
ts derived

unrelated or useless information despite the in
onsisten
ies.

In
onsisten
y implies A
tion

We presented some examples of in
onsistent but useful theories as well as the

human ability to derive useful 
on
lusions from in
onsistent premises. We do

not 
laim that in
onsisten
ies are desirable but they are not as useless as often

thought. In
onsisten
ies are an important tool in s
ien
e. They guide resear
hers

to develop better theories and they instigate the natural pro
ess of learning.

In
onsisten
ies 
annot always be resolved, however, they 
an be managed. This

is, what (Gabbay and Hunter, 1991) mean when they state:

In
onsisten
y implies A
tion

3.3.2 In
onsisten
ies in Software Development

In
onsisten
ies are a fa
t of life. They o

ur frequently in the software devel-

opment pro
ess. The need for managing in
onsisten
y in software development

has been a
knowledge by many resear
hers. (Ghezzi and Nuseibeh, 1998) and

(Ghezzi and Nuseibeh, 1999), for example, present two spe
ial issues in IEEE

Transa
tions on Software Engineering 
overing this topi
 and there have been two

international workshops on \Living with In
onsisten
y" as presented in (IWLWI,

1997) and (Easterbrook and Che
hik, 2001a).

Making In
onsisten
y Respe
table

(Nuseibeh et al., 2001) argue that maintaining 
onsisten
y at all times is 
oun-

terprodu
tive. It is usually 
omputationally expensive, des
riptions evolve and

thus in
onsisten
ies re-appear, individual des
riptions 
an be ill-formed and var-

ious degrees of formality make in
onsisten
y 
he
king diÆ
ult. \In many 
ases,

it may be desirable to tolerate or even en
ourage in
onsisten
y to fa
ilitate dis-

tributed teamwork and to prevent premature 
ommitment to design de
isions,
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and to ensure all stakeholder views are taken into a

ount." In
onsisten
ies 
an

also be used as a tool for learning and guiding the development pro
ess.

(Nuseibeh et al., 1994) 
onsider in
onsisten
y as any situation in whi
h two de-

s
riptions do not obey some relationship that is pres
ribed to hold between them.

(van Lamsweerde et al., 1998), for example, 
onsider divergent goals in require-

ment engineering. Note, this notion of in
onsisten
y embra
es the logi
al de�ni-

tion of in
onsisten
y. The relation that should hold is the impossibility to derive

a 
ontradi
tion from a set of formulae.

The proposed framework for in
onsisten
y management 
onsists of 
onsisten
y


he
king, monitoring and diagnosing in
onsisten
y, handling in
onsisten
y, and

measuring in
onsisten
y. Consisten
y 
he
king is based on a set of 
onsisten
y

rules whi
h need to be obeyed. Monitoring is the pro
ess of dete
ting the violation

of the 
onsisten
y rules. On
e an in
onsisten
y is dis
overed, it is diagnosed.

This in
ludes to lo
alise the in
onsisten
y, to identify the 
ause for it and its


lassi�
ation. The 
hoi
e of handling strategies in
ludes to ignore, to defer, to


ir
umvent or to ameliorate an in
onsisten
y. The latter means that it may

be more 
ost-e�e
tive to improve an in
onsistent des
ription without a
tually

resolving all of the in
onsisten
ies. Finally, measuring in
onsisten
y is important

to determine the impa
t of an in
onsisten
y.

In a number of 
ase studies they found that some in
onsisten
ies never get �xed.

However, \the de
ision to repair an in
onsisten
y is risk-based. If the 
ost of �xing

it outweighs the risk of ignoring it, then it makes no sense to �x it." Tolerating

in
onsisten
ies in su
h 
ir
umstan
es means to re-evaluate the risk 
ontinuously.

They found too that some in
onsisten
ies are deniable. For example, in their

experien
e developers often debated whether a reported in
onsisten
y really was

an issue or that it was already �xed.

Viewpoints for Managing In
onsisten
ies

Some resear
hers de
ided to split 
ontradi
ting information into viewpoints to

manage the in
onsisten
y. For example, (Easterbrook, 1993) suggests to use

hierar
hies of viewpoints to represent alternative, 
on
i
ting views of information.

A viewpoint is a self-
ontained 
onsistent des
ription of an area of knowledge

with an identi�able originator. Viewpoints do not 
orrespond to people but to

a des
ription of the world from a parti
ular angle. Viewpoints in this 
ase are

merely seen as an organisational tool.

Later, (Easterbrook and Nuseibeh, 1996) are more 
on
erned with in
onsisten
y

management using viewpoints. The paper demonstrates how in
onsisten
y man-

agement is used as a tool for requirements eli
itation and how viewpoints provide

help. First, there is no requirement for 
hanges to one viewpoint to be 
onsistent
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with other viewpoints. Therefore in
onsisten
y 
an be tolerated throughout the

development pro
ess.

However, 
onsisten
y 
he
king and resolution is still required but 
onsisten
y


he
king 
an be separated from resolution. To manage in
onsisten
y, relation-

ships between viewpoints have to be de�ned. Basi
ally, rules are used to de�ne

partial 
onsisten
y relationships between the di�erent representations and 
onsis-

ten
y 
he
king is performed by applying these rules. This allows 
onsisten
y to

be 
he
ked in
rementally between viewpoints at parti
ular stages of development.

(Easterbrook and Che
hik, 2001b) extend their resear
h to multi-valued reasoning

over in
onsistent viewpoints. Ea
h viewpoint is des
ribed using an underlying

multi-valued logi
. Many-valued logi
s use additional truth values to represent

intermediate values between true and false. These di�erent logi
al values 
an then

be used to represent di�erent levels of agreement. Their framework is intended

as a means of exploring in
onsisten
ies. The analyst is not restri
ted in any

way when 
on
erned with the problem of merging information from di�erent

viewpoints.

Analysing In
onsistent Spe
i�
ations

(Hunter and Nuseibeh, 1997) and (Hunter and Nuseibeh, 1998) present another

logi
-based approa
h to managing in
onsistent spe
i�
ations. Classi
al logi
 is


ommonly used to 
onstru
t formal spe
i�
ations. Classi
al logi
, however, is

trivialised in the presen
e of in
onsisten
y, i.e. any inferen
e follows from an

in
onsistent information. Therefore, the authors propose to use quasi-
lassi
al

logi
, developed by (Besnard and Hunter, 1995) to avoid su
h trivialisation.

The aim of their work is to demonstrate the usefulness of using alternative logi
al

approa
hes to the problem of reasoning in the presen
e of in
onsisten
y in the

software development pro
ess. It provides a formal foundation for supporting

a software spe
i�
ation pro
ess in whi
h in
onsisten
ies are analysed to deter-

mine appropriate a
tions for further development. Su
h a
tions also in
lude the

possibility of tolerating in
onsisten
ies.

3.3.3 The Meaning of In
onsistent Z Spe
i�
ations

We 
laim that in
onsistent spe
i�
ations do have an intended meaning. Otherwise

it is rather pointless to make the e�ort of writing an in
onsistent spe
i�
ation.

Classi
al predi
ate logi
, on whi
h Z is based on, is unfortunately not very suitable

to investigate the meaning of in
onsistent spe
i�
ations.

Classi
al predi
ate logi
, for example, does not distinguish between falsehood and

in
onsisten
y. This problem is also 
arried over to the Z notation. An in
onsistent
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operation, for example, behaves like an operation whi
h has not been spe
i�ed,

i.e. it is set to false. This in turn makes it mu
h harder to analyse the sour
e of

failure of an operation. Furthermore, re�nements of in
onsistent operations 
an

be rather arbitrary.

Operation s
hemas, the standard pre
ondition interpretation and in
onsisten
y

form an interesting 
ombination in Z. An operation applied outside its pre
ondi-

tion 
an result in any behaviour. This is, however, triviality and thus results in

the same behaviour as applying an operation in the in
onsistent situation. For ex-

ample, the pre
ondition of the operationOp

i


is [x? 2 N j x? 6= 1℄. Thus, applying

this operation outside its pre
ondition means to apply it when x? < 0 _ x? = 1.

Note, the way the pre
ondition 
omputation in Z works seems to indi
ate an

ordering of belief, assuming, for example, state s
hemas to be 
orre
t while an

operation 
an be faulty. This leads to operations not being permitted if they are

violating the state 
ondition. However, this is not ne
essarily 
orre
t. It 
ould

be that the operation is 
orre
tly spe
i�ed but the state spe
i�
ation is 
awed.

Su
h a 
ase is, for example, presented in the next subse
tion.

3.3.4 Examples

Next, we present some examples of in
onsistent spe
i�
ations. As we 
laimed,

we do not think that they are meaningless. Thus, we provide some indi
ation of

the kind of inferen
es we are interested in. Essentially, we want to infer less but

more useful information in the presen
e of in
onsisten
y. Thus, we tend to show

what we do not want to infer in 
omparison with 
lassi
al logi
, rather than what

should be inferred.

Tweety the Penguin

The following example appears frequently in the literature on para
onsistent and

non-monotoni
 reasoning. It is about Tweety, the bird who is a penguin that


an but 
annot 
y. We de
ided not to provide a Z en
oding of the problem be-


ause this would add some synta
ti
al overhead not ne
essary for our illustration.

Thus 
onsider this example as an introdu
tion to the topi
 of reasoning about

in
onsistent spe
i�
ations.

Classi
ally, the Tweety example is given as a universal theory in �rst-order pred-

i
ate logi
 by the �rst four rules:

(1) bird(X )! 
ies(X )

(2) penguin(X )! :
ies(X )
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(3) penguin(X )! bird(X )

(4) penguin(Tweety)

(5) hungry(Tweety)

Clause (1) states that all birds 
an 
y. Penguins, however, a

ording to Clause(2)


annot 
y although, as Clause (3) states, they are birds. These three 
lauses are

not in
onsistent, as long as no penguins would exist. Therefore, in Clause (4)

we give a parti
ular penguin, named Tweety. These four 
lauses together 
ause

an in
onsisten
y to arise. Tweety is a penguin and therefore 
annot 
y but

be
ause Tweety is a penguin he is also a bird and therefore 
an 
y. This results

in the 
ontradi
tion, that Tweety 
an and 
annot 
y. However, we think this


ontradi
tion should not in
uen
e any knowledge about Tweety being hungry, as

stated in Clause (5).

We denote the above set of rules, i.e. the theory about Tweety, with T . In


lassi
al logi
 it would be possible to show

T ` : hungry(Tweety)

or even

T ` : penguin(Tweety)

This seems, however, rather 
ounter-intuitive. On the one hand whether Tweety

is hungry is a
tually not dependent on the issue whether he 
an 
y or not. On the

other hand, reje
ting that Tweety is a penguin would not lead to the problem of

in
onsisten
y. This little spe
i�
ation provides some useful information, namely

Tweety is hungry and he is a penguin. However the in
onsisten
y is resolved it

should respe
t this information.

A Flat Tyre

In (Miarka et al., 2002), we present a simpli�ed example from the life of a mo-

torist. The motorist is the owner of a 
ar. To be allowed to drive the 
ar on publi


roads, the 
ar needs to pass a safety test, part of whi
h is a tyre inspe
tion. The

law (in Germany) says that the 
ar must have the same kind of tyre �tted to

both the front and rear wheels. We use the set

[CAR℄

as our basi
 type. The Boolean type is not part of standard Z, hen
e we de�ne

the enumerated type
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B ::= True j False

In the state s
hema, Car , the Boolean 
at denotes whether any of the tyres are


at. If not the motorist is permitted to drive the 
ar. The Law states that the

same tyres should be used on front and ba
k. A single operation is spe
i�ed,

that of 
hanging a tyre. Unfortunately, the spare tyre is of a di�erent type, thus

we will break the law as a result of a Change.

Car


at : B

drive : B

wheels : N


at = False ) drive = True

wheels = 4

Law

same : B

same = True

Change

�Car

�Law

x ! : N


at = True ^ 
at

0

= False

same

0

= False

x ! = wheels

The Change operation is 
learly in
onsistent in an intuitive sense. On
e the tyre

has been 
hanged, the 
ar is not allowed on the road by the law be
ause the type

of tyre on at least one wheel is now di�erent. We might, however, wish to reason

about aspe
ts of this spe
i�
ation, for example, that the 
ar is still driveable,

sin
e this only depends on the fa
t that no tyre is 
at. Also, the number of tyres

on the 
ar, as reported by x ! should be exa
tly four.

Although this example is small and rather arti�
ial, it illustrates the type of

reasoning one might wish to perform. It provides some eviden
e that reasoning in

the presen
e of in
onsisten
y 
ould be useful. Note, pra
ti
ally the in
onsisten
y

is not resolved by dropping the law but by providing a range of ex
eptions to the

law. Nevertheless, any development of the above spe
i�
ation should take into

a

ount those aspe
ts that are not dire
tly related to the in
onsisten
y.

Refuel A Car

Another operation often performed by a motorist is to refuel their 
ar. We

distinguish three kinds of 
ars: ele
tri
 
ars, 
ars with diesel engines and 
ars
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running on petrol. The ele
tri
 
ar needs a power supply to re-
harge, whereas

the other 
ars need fuel whi
h 
an be divided into unleaded, four star and diesel.

Thus we give the following two type de�nitions.

CAR TYPE ::= ele
tri
 j diesel j petrol

FUEL TYPE ::= unleaded j four star j diesel type

We are interested in the state of a 
ar. It 
an be 
harged, or it needs a parti
ular

amount of some sort of fuel. Given a petrol 
ar we assume by default that

unleaded petrol is to be used. This is 
ompliant with 
urrent environmental

issues.

State


harged : B

fuel : FUEL TYPE

amount : FUEL TYPE ! N

Choose

�State


ar? : CAR TYPE


ar? = petrol )

fuel

0

= unleaded

Refueling a 
ar results in a full energy status. This means, an ele
tri
 
ar is to

be re-
harged and a petrol 
ar has sixty liters of fuel in the tank.

Refuel

Choose

(
ar? = ele
tri
 ^ 
harged

0

= True) _

(
ar? = petrol ^ amount

0

(fuel

0

) = 60 ^ fuel

0

= four star)

This refuel operation is partly in
onsistent be
ause we assign two di�erent types

of fuel to be taken when the 
ar requires petrol. It is 
onsistent when applied to

ele
tri
 
ars; no refuel operation has been spe
i�ed for diesel 
ars. Clearly, this

looks like a simple spe
i�
ation error, but in a large spe
i�
ation su
h errors 
an

be hidden.

Despite the in
onsisten
y we are interested in useful inferen
es. Su
h inferen
es

in
lude that the amount of fuel should be exa
tly sixty liters, no matter what

fuel type was used. We also need to show that diesel is not an option to be taken

as fuel for petrol 
ars.

3.3.5 Uni�
ation of Viewpoint Spe
i�
ations

Consider the small 
lo
k example from before. We noted that the uni�
ation of

the two viewpoints failed be
ause both engineers 
ould not agree what to do next

when the 
lo
k rea
hed 12 : 59. We are, however, interested in the information
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this spe
i�
ation provides. For example, we �nd that no matter whi
h viewpoint

we 
onsider the minutes m will be set to zero and nothing else. Thus, reasoning

from this in
onsistent set of viewpoints should validate this information.

In general, reasoning about viewpoints should fa
ilitate the dis
overy of the 
om-

monalities between the spe
i�
ations even in the presen
e of in
onsisten
y. It

should provide a me
hanism to improve the system. We think, it would even be

advantageous to �rst 
ombine the in
onsistent viewpoints and then to develop

the resulting spe
i�
ation. Otherwise, separate developments might lead to the

introdu
tion of new problems while trying to resolve the old ones.

The uni�
ation of viewpoints is supposed to be their 
ommon re�nement. Thus,

investigating uni�
ation in the presen
e of in
onsisten
y leads to the problem of

re�nement of in
onsistent operations. However, this problem 
an of 
ourse be


onsidered independently from uni�
ation.

3.3.6 Re�nement of In
onsistent Spe
i�
ations

A

ording to (Wood
o
k and Davies, 1996), re�nement is all about improving

spe
i�
ations. However, we indi
ated that re�nements of in
onsistent spe
i�
a-

tions and in parti
ular of in
onsistent operations 
an be rather arbitrary. Thus,

we 
laim, not all re�nements from in
onsistent operations a
tually do improve

the spe
i�
ation. This is mainly due to the la
k of formal support to 
onsider

the information given in an in
onsistent operation.

Consider the following two operation s
hemas

Op2

i


x?; y? : Z

X ;X

0

: Z$ Z

X

0

= X � fx? 7! y?g

#X

0

= #X

x? 62 domX

ROp2

i


x?; y? : Z

X ;X

0

: Z$ Z

x? 2 domX

X

0

= fx?g

�

C X

Op2

i


is meant to repla
e a new pair of numbers (x?; y?) within a set of pairs X

resulting in the new set X

0

. Unfortunately, in this large operation an in
onsis-

ten
y o

urred. On the one hand, it is desired that the �rst 
omponent x? of the

new pair is not in the set X already whi
h leads to the a
tual addition of one

extra pair to X . One the other hand, it is required that the number of elements

in the set remain 
onstant. Both requirements, however, 
annot be supported at

the same time.

The problem we �nd is, that this operation 
an be re�ned by one whi
h attempts

the 
omplete opposite e�e
t. ROp2

i


removes those pairs from X where x? is the
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�rst 
omponent. Even in the presen
e of in
onsisten
y there should be a way to

prevent su
h unreasonable re�nements and thus to support an improvement of

the spe
i�
ation that is in line with the intended meaning.

In general, resolving in
onsisten
ies 
an be an expensive and sometimes impossi-

ble task. Many parti
ipants 
an be involved ea
h having a di�erent view on the

problem. Therefore, it might be diÆ
ult to rea
h an agreement on how to resolve

the in
onsisten
y. For the spe
i�er it might thus be helpful to 
ontinue analysis

and development of the spe
i�
ation despite the presen
e of in
onsisten
y. An

approa
h to living with in
onsisten
y is required.

3.3.7 Proposal

(Valentine, 1998) states: \Consisten
y is essential for a Z spe
i�
ation to have

any meaning." However, we believe this 
laim is too strong and undesirable.

Even if a Z spe
i�
ation is in
onsistent, it still has an intended meaning. The

problem we need to solve is to dis
over the meaning and to make it expli
it.

Note, our work is not related to that by (Henson, 1998) where he shows that

the standard logi
 of Z is in
onsistent. However, his work supports our 
laim

that in
onsisten
ies do not ne
essarily lead to trivial results in pra
ti
e. The

standard logi
 of Z, although in
onsistent, has been used su

essfully to analyse

many spe
i�
ations.

We propose to investigate what formal support 
an be given to the pro
ess of

analysing in
onsistent spe
i�
ations written in the Z notation. Su
h work forms a

part in the wider area of resear
h on managing in
onsisten
ies without ne
essarily

eradi
ating them. Formal support is based on logi
al reasoning. Thus, we are

interested in logi
s that support reasoning in the presen
e of in
onsisten
y.

Logi
ians have developed a range of logi
s to 
ontinue to reason in the presen
e of

in
onsisten
ies. These so 
alled para
onsistent logi
s allow us to derive less but

more useful information despite in
onsisten
ies. It is our intention to investigate

the 
onsequen
es of using a para
onsistent logi
 to analyse Z spe
i�
ations. We

envision that in
onsistent Z spe
i�
ations 
an be analysed in more depth than at

present and that re�nement of in
onsistent spe
i�
ations 
an be more 
ontrolled.

Some of the more interesting 
andidates of para
onsistent logi
s have four truth

values. The logi
al truth values represent the four epistemologi
al situations:

`told True', `told False', `told True and False', and `told neither True nor False'.

Thus, four-valued logi
s not only 
apture the notion of in
onsisten
y but also

some form of underde�nedness. It is also our aim to make use of this extra

truth-value as dis
ussed below.
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3.4 Underde�nedness in Z Spe
i�
ations

In the 
ommon Z spe
i�
ation style operations are, in general, partial relations.

The domains of these partial operations are traditionally 
alled pre
onditions.

There are, however, two di�erent interpretations of the pre
ondition a

ording

to the behaviour of the operation if applied outside its domain.

The \design by 
ontra
t" meaning is the standard interpretation of a pre
ondition

of an operation in Z. This asserts that if the pre
ondition holds and an attempt

is made to exe
ute the operation, then the exe
ution will be a

epted and it will

terminate in a state as spe
i�ed by the post
ondition. If the pre
ondition does

not hold, however, and the operation is attempted to be exe
uted then it will

be exe
uted but it may not terminate or it 
an terminate in an arbitrary state.

This behaviour is also 
alled \divergen
e". We usually refer to this standard

interpretation by the term pre
ondition.

The alternative meaning is the so 
alled guarded or �ring 
ondition interpreta-

tion. If the operation is exe
uted within its pre
ondition it will terminate in a

state a

ording to the post
ondition. However, if it is 
alled outside the given

pre
ondition, then the operation will not be exe
uted at all, i.e. it is blo
ked, and

no state 
hange o

urs. This is the standard interpretation in Obje
t-Z.

It has been observed that it is 
onvenient to use a 
ombination of both the

guarded and pre
ondition interpretation to allow both modelling of refusals and

under-spe
i�
ation. (Josephs, 1991), for example, reports on spe
ifying rea
tive

systems in Z and (Lano et al., 1997) 
onsider non-determinism di�erent from

under-spe
i�
ation.

3.4.1 Underde�nedness

Formal spe
i�
ations are abstra
t des
riptions of the behaviour of a system.

They are supposed to leave as mu
h implementation freedom as possible. Non-

determinism is a parti
ular tool to a
hieve this obje
tive. During the re�nement

pro
ess of a spe
i�
ation, however, non-determinism is usually eliminated. Thus,

non-determinism relates to the view of under-spe
i�
ation or, as we 
all it, un-

derde�nedness.

Unde�nedness versus Underde�nedness

There might o

ur a little 
onfusion between the terms unde�ned and underde-

�ned. Thus we provide some 
lari�
ation of what unde�ned stands for. Unde-

�nedness as, for example, 
onsidered by (Valentine, 1998) is related to the appli-


ation of partial fun
tions outside their domain. Valentine presents the following

example of an axiomati
 de�nition



3.4. Underde�nedness in Z Spe
i�
ations 60

total ; 
ount ; average : N

: 
ount = 0) average = total div 
ount

whi
h looks rather reasonable. The problem of division by zero seems to be


overed due to the 
ondition. Unfortunately, this is not the 
ase be
ause Z is not

operational. The above axiomati
 s
hema is equivalent to the following

total ; 
ount ; average : N

average = total div 
ount _ 
ount = 0

Thus, the problem with dividing by zero 
an still o

ur. There are many more ex-

amples of unde�ned expressions in (Valentine, 1998), as well as (Stoddart et al.,

1999). In the wider s
ope unde�nedness and underde�nedness are related be-


ause underde�nedness is 
on
erned with the problem of applying an operation

outside its domain, whi
h is rather similar to the issue of unde�nedness. However,

unde�nedness is not the problem we are interested in here.

3.4.2 Normalisation and Underde�nedness

We introdu
ed normalisation as the pro
ess of rewriting a s
hema su
h that all the


onstraint information appear in the predi
ate part. We presented the following

two s
hema S1 and S2, where S2 is the normalisation s
hema of S1.

S1

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

S2

a; a

0

: Z

a 2 N ^ a

0

2 N

(a

0

)

2

� a < (a

0

+ 1)

2

Natural numbers are not a basi
 type of Z but 
onstrained integers. Therefore,

a s
hema de
laration referring to naturals 
an be normalised to use integers and

a 
onstraint on the predi
ate.

However, somehow the interpretation of the s
hemas may 
hange through that

pro
ess. As the operation S1 is de�ned on natural numbers, it appears unrea-

sonable to even 
onsider applying it on negative integers, so the blo
king inter-

pretation appears quite sensible for this area. However, the normalised s
hema

is formally equivalent to S1 but is interpreted in the pre
ondition approa
h as

being fully unde�ned on negative integers. This means, that the spe
i�er needs to

know about normalisation, i.e. whi
h sets are proper types and whi
h are proper

subsets of a type, whi
h might not always be the 
ase and somehow should not

be ne
essary in the �rst pla
e. This example shows that normalisation is more

guard, rather than pre
ondition, related and that we might want to deal with it

a

ordingly.
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3.4.3 Guards and Pre
onditions in a Bu�er Example

The following example is designed to demonstrate the di�erent meanings of a

pre
ondition. We model a little bu�er of messages. We use a new type MSG to

represent a message be
ause we are not interested in their parti
ular form.

[MSG ℄

The state s
hema Bu�er holds the type de�nitions for the bu�er whi
h we model

as a sequen
e of messages. Furthermore, we use a 
ag r to indi
ate whether the

bu�er has been read. The bu�er is initially empty and the 
ag r is set to True

to enable the Write operation.

Bu�er

bu�er : seqMSG

r : B

InitBu�er

Bu�er

0

bu�er

0

= hi

r

0

= True

There are two operations possible. On the one hand, messages 
an be stored

in the bu�er. This is, however, restri
ted to the fa
t that a previous message

has been read before. On the other hand, messages 
an be read. The result

of the Read operation is a 
hange in the 
ag. The 
ontent of the bu�er after

the operation is not relevant. The Read operation 
an only be invoked on a

non-empty bu�er and if there is a new message waiting.

Write

�Bu�er

x? : MSG

r = True

bu�er

0

= bu�er � f1 7! x?g

r

0

= False

Read

�Bu�er

x ! : MSG

bu�er 6= hi ^ r = False

x ! = head bu�er

r

0

= True

In parti
ular in the Read operation the two pre
onditions have di�erent meanings.

The 
ondition bu�er 6= hi is like a guard. No state 
hange is permitted if the

bu�er is empty. The 
ondition r = False, however, is not as stri
t. If the

operation is applied outside this 
ondition but within the guard then it 
ould be

possible to read the 
ontent of the bu�er again. No harm would o

ur. Note, the


ondition r = True in the Write operation determines a syn
hronous behaviour

of the bu�er be
ause a message is not overridden before the old one was read.

Again, whether this is a guard or a pre
ondition is important for the behaviour

outside the 
ondition as well as for future re�nements.
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3.4.4 Re�nement of Underde�ned Spe
i�
ations

The two interpretations of the pre
ondition of an operation lead to two di�erent

notions of re�nement, too. In the standard interpretation, the pre
ondition 
an be

weakened and thus the domain of the operation 
an be enlarged. In the guarded

interpretation, however, the pre
ondition 
annot be weakened but possibly be

strengthened. Thus, the domain of the operation is redu
ed.

Both instantiation of the appli
ability rule of re�nement have, however, one inten-

tion, namely to redu
e non-determinism. Obviously, both interpretations 
annot

be used at the same time for one operation s
hema. (Strulo, 1995), for example,

suggests to label the operation s
hema a

ording to the pre
ondition interpreta-

tion that should be used with them.

Example 
ont.

The pre
ondition interpretation of r = True in theWrite operation 
an determine

the future behaviour of the Bu�er . In the standard interpretation it is possible

to weaken this 
ondition, thus

RWrite

�Bu�er

x? : MSG

bu�er

0

= bu�er � f1 7! x?g

r

0

= False

is a valid re�nement. However, this makes the Bu�er asyn
hronous. The guarded

interpretation would have forbidden su
h re�nement. On the other hand, the

guarded interpretation does not permit the less problemati
 and possibly de-

sired re�nement RRead1. The standard interpretation, unfortunately allows the

dangerous re�nement RRead2 whi
h suddenly permits to read an empty bu�er.

RRead1

�Bu�er

x ! : MSG

bu�er 6= hi

x ! = head bu�er

r

0

= True

RRead2

�Bu�er

x ! : MSG

x ! = head bu�er

r

0

= True

Using just the guarded or the pre
ondition interpretation is not always suitable

for pra
ti
al tasks. Like in the Read operation where two 
onditions have di�erent

statuses it is diÆ
ult to determine whi
h interpretation to 
hoose. After 
hoosing
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one interpretation, however, re�nement 
an behave in an unwanted fashion not

treating the meaning of all given 
onditions 
orre
tly. Spe
i�
ations should be

foremost intuitive, thus we propose to 
ombine guards and pre
onditions in a

single notation.

3.4.5 Proposal

Guards blo
k an operation thus rendering it impossible outside its guard and

impli
itly do not allow a state 
hange to o

ur. Pre
onditions permit operations

and guarantee its out
ome. Having both, enables the spe
i�
ation of under-

de�nedness as those situations where the guard permits the operation but the

pre
ondition fails, thus no expli
it out
ome is de�ned. These three situations

give rise to an intuitive semanti
s based on three logi
al truth values. Thus, we

propose a non-standard semanti
s of operations, based on a three-valued logi
.

However, su
h an interpretation of operations requires a more expressive notation

than normal operations with expli
it guards. Thus, we propose to develop a

syntax whi
h is suÆ
iently expressive for this semanti
s. Using a three-valued

logi
 will also lead to a simple and intuitive notion of operation re�nement, where

re�nement is redu
tion of underde�nedness. We will de�ne operation re�nement

rules for this whi
h generalise the traditional ones. Furthermore, we propose an

adaption of the s
hema 
al
ulus, based on three-valued logi
, to a

ount for the

extended syntax.

3.5 Summary

Our aim is to investigate the formal support that 
an be given to analyse in
on-

sistent spe
i�
ations written in the Z notation. This in
ludes also the pro
ess

of re�nement in the presen
e of in
onsisten
ies. We propose to adopt one of

the logi
s that fa
ilitate the pro
ess of reasoning in the presen
e of in
onsisten
y

without leading to triviality, the so 
alled para
onsistent logi
s.

Some of the investigated logi
s also provide a truth value for handling underde-

�nedness. Operations in Z are, in general, partial des
riptions. If the pre
ondition

of an operation holds, the spe
i�ed results are guaranteed. However, if the pre-


ondition is not satis�ed there are two interpretations possible. On the one hand,

in the standard interpretation everything 
an happen. Note, this notion also re-

lates to triviality. On the other hand, the operation 
an be blo
ked and thus no

state 
hange o

urs.

We propose to use the extra truth value to represent underde�nedness. This

enables us to 
onstru
t an intuitive semanti
s for operations 
ontaining both

guards and pre
onditions. Underde�nedness is then 
hara
terised as the region

between the guard and the pre
ondition of an operation.



Chapter 4

Para
onsisten
y and First-Order

Quasi-Classi
al Logi


The Z notation is based on 
lassi
al �rst-order predi
ate logi
. The problems

arising from in
onsisten
ies in Z spe
i�
ations 
an be attributed to the way 
las-

si
al logi
 handles 
ontradi
tions. In parti
ular, given a single 
ontradi
tion in a


lassi
al theory, it is possible to derive any formula from that theory. Thus, to

formally manage in
onsisten
ies in Z spe
i�
ations we 
an look at some general

approa
hes of managing in
onsisten
y in logi
al formulae.

The group of logi
s whi
h support the pro
ess of useful reasoning despite the

presen
e of in
onsisten
ies are 
alled para
onsistent logi
s. This group 
an be

further subdivided a

ording to the kind of weakening of the logi
 used. For

example, some logi
s use a di�erent negation operator, some 
hange the meaning

of impli
ation, sometimes new truth values are introdu
ed, and sometimes the

proof theory of the logi
 is altered. However, the 
ommon aim is to develop a

para
onsistent logi
 as 
lose as possible to 
lassi
al logi
.

One su
h para
onsistent logi
 is 
alled quasi-
lassi
al logi
 (QCL). QCL has been

introdu
ed by (Besnard and Hunter, 1995) and fully developed in (Hunter, 2000)

and (Hunter, 2001). In QCL the meaning of all the logi
al operators remains

un
hanged. Furthermore, the dedu
tion rules within the proof theory of QCL are


lassi
al, too. These properties suggest that QCL is a prime 
andidate for a logi


to support reasoning in the presen
e of in
onsisten
ies in formal spe
i�
ation.

In this 
hapter we review some of the approa
hes of reasoning with in
onsistent

and in
omplete knowledge. We fo
us on the presentation of para
onsistent logi
s,

in parti
ular quasi-
lassi
al logi
, as they o�er a novel approa
h to reasoning

about in
onsisten
ies in Z. Some of these logi
s are also meant to deal with

in
omplete knowledge. This is relevant for our work on underde�nedness in Z.

64
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4.1 Introdu
tion

In the last 
hapter we found that software development requires a new approa
h

to handling in
onsisten
ies whi
h is not only based on dete
ting and eradi
ating

them but on managing the information provided. This is required be
ause in
on-

sisten
ies frequently appear in large proje
ts and sometimes it might not even be

possible in pra
ti
e to rea
h a 
ompletely 
onsistent spe
i�
ation.

In fa
t, in
onsisten
ies are a matter of every day life. We are 
onstantly 
hal-

lenged by 
ontradi
ting information. Sometimes we are able to resolve the in
on-

sisten
y right away; sometimes, however, we have to live with in
onsisten
ies. In

su
h a 
ase we tend not to derive any useless results from it. Often it is quite

the 
ontrary and in
onsisten
ies lead to new dis
overies. This pro
ess suggests

that the logi
 we use to reason in everyday life is able to deal with in
onsisten
ies

in a useful manner. Su
h pra
ti
al reasoning from in
onsistent information is,

however, not well supported by 
lassi
al logi
.

The Z notation is a spe
i�
ation language whi
h is based on 
lassi
al logi
. Thus,

Z is limited by its logi
 to deal with in
onsisten
ies usefully and not to derive

arbitrary 
on
lusions. This problem has been re
ognised by resear
hers on formal

logi
s and they developed so 
alled para
onsistent logi
s. These logi
s reje
t the


lassi
al prin
iple of explosion, often referred to as Ex 
ontradi
tione quodlibet,

i.e. from a 
ontradi
tion follows everything.

Para
onsistent logi
s provide an interesting alternative to 
lassi
al logi
 for rea-

soning about in
onsistent theories. However, all para
onsistent logi
s are weaker

than 
lassi
al logi
 in either their logi
al 
onne
tives or in the derivation rules.

Thus, it is not possible to simply repla
e the standard logi
 of Z with a para
on-

sistent one but it is required to investigate the impa
t of su
h a 
hange 
arefully.

4.1.1 Motivation

The aim of this 
hapter is to introdu
e the notion of para
onsistent reasoning and

some para
onsistent logi
s. Thus we provide the formal ba
kground for the follow-

ing 
hapters. Para
onsisten
y emphasizes a shift of 
on
ern from 
ontradi
tory

to trivial theories. It is triviality that we most dislike in formal reasoning be
ause

it has no restri
tions and does not distinguish between di�erent 
ontradi
tions.

Para
onsisten
y, however, allows to di�erentiate between 
ontradi
tions. As a

result, one in
onsisten
y does not 
orrupt all information. Hen
e, it fa
ilitates

more useful 
on
lusions in the presen
e of in
onsisten
y than 
lassi
al logi
.

There are many di�erent ways to 
onstru
t a para
onsistent logi
. We present

some of the approa
hes to give some insight into the development of para
onsis-

tent logi
s and into the limitations they 
an possess. Thus, we build a foundation
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for an informed de
ision on whi
h para
onsistent logi
 to sele
t for our appli
a-

tion towards analysing in
onsistent spe
i�
ations. It is out of the s
ope of this

work to present a full overview of all the di�erent para
onsistent logi
s. We re
-

ommend, for example, the 
olle
tions by (Priest et al., 1989) and (Batens et al.,

2000) for further information on this subje
t.

It is our aim to support both reasoning about overde�ned and underde�ned spe
i-

�
ations. Many-valued logi
s, in parti
ular four-valued ones, provide an intuitive

semanti
s to 
apture the notions of over- and underde�nedness. Thus, we in-

vestigate two representatives of these group of logi
s further. We �nd them,

unfortunately, unsuitable for our needs to reason about in
onsisten
y but they

do prove useful for our work on underde�nedness.

We present Hunter's quasi-
lassi
al logi
 in detail be
ause we de
ided to apply

it to reasoning about in
onsistent spe
i�
ations. One of the main advantages of

QCL over other para
onsistent logi
s is that all 
onne
tives are interpreted 
las-

si
ally as Boolean 
onne
tives and that the QC dedu
tion rules hold in 
lassi
al

logi
, too. The logi
 is, however, weaker than 
lassi
al logi
 in the way it is used.

We believe that QCL's advantage is vital for its a

eptan
e as a new logi
 in su
h

an established �eld as formal methods, be
ause the spe
i�ers need not 
hange

their way of writing spe
i�
ations. Therefore, QCL is our prime 
andidate for a

logi
 to support reasoning in the presen
e of in
onsisten
ies.

4.1.2 Outline

This 
hapter is stru
tured as follows. In Se
tion 4.2 we 
over some ba
kground

on the notion of para
onsisten
y, in
luding the di�erent motivations for para-


onsisten
y, two de�nitions of para
onsisten
y and the approa
hes to 
onstru
t

a para
onsistent logi
. In Se
tion 4.3 we present two four-valued para
onsis-

tent logi
s, namely the logi
 FOUR by (Belnap, 1977b) and the logi
 FOUR

by (Dam�asio and Pereira, 1998). The main part of this 
hapter 
onsists of Se
-

tion 4.4 introdu
ing quasi-
lassi
al logi
 by (Hunter, 2000). We 
ontribute to the

development of QCL by providing an extended dis
ussion on logi
al equivalen
e

presented in Se
tion 4.4.5. We brie
y summarize this 
hapter and dis
uss our


hoi
e for QCL in Se
tion 4.5.

Note, we extend the work on QCL in Chapter 5 by introdu
ing equality and we

apply QCL to reason about in
onsistent Z spe
i�
ation in Chapter 6. Further-

more, a three-valued subset of the logi
 FOUR is used in Chapters 7 and 8 to

provide the semanti
s for our work on underde�nedness.
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4.2 In
onsisten
y, Triviality and

Para
onsisten
y

Before venturing into the presentation of some para
onsistent logi
s we need to

establish some ba
kground on the notion of para
onsisten
y. There is �rst the is-

sue of the motivation for para
onsisten
y. A

ording to the di�erent motivations

there are several de�nitions of the term para
onsisten
y. Fortunately, there is at

least one basi
 obje
tive all para
onsistent logi
ians agree on, namely to avoid

triviality. A brief investigation into the sour
e of triviality leads to a 
ategorisa-

tion of the di�erent para
onsistent logi
s and provides also a motivation for the

logi
s we present.

4.2.1 Motivations for Para
onsistent Logi
s

Para
onsistent logi
s are suitable for reasoning from in
onsistent theories without


ollapsing into triviality. There are several motivations why su
h a logi
 is ne
-

essary. We provide a brief 
lassi�
ation following (Urbas, 1990) of the di�erent

positions.

Dialetheism. A

ording to (Priest, 1998): \A dialethia is a true 
ontradi
tion,

a statement, A, su
h that both it and its negation, : A, are true." Dialethe-

ism is thus the position that some 
ontradi
tions are true. This view reje
ts

also the 
lassi
ally validated inferen
e from in
onsistent premises to an arbitrary


on
lusion.

The most 
ommon example of a dialethia is the \liar's paradox". Consider the

senten
e: \This senten
e is not true." A

ording to standard logi
 there are

two possibilities, either the senten
e is true or it is not. If the senten
e is true,

however, then what it says is 
orre
t, i.e. it is not true. Suppose the senten
e is

not true. But this is what the senten
e says, i.e. it is true. Thus, in either 
ase,

the senten
e is both true and not true.

Relevantism. The main interest for relevantist logi
ians is with the inferen
e

relation. They insist on a 
onne
tion of relevan
e or 
ommonality of 
ontent

between the premises and 
on
lusions. Though this is not dire
tly related to the

question of in
onsisten
y it too restri
ts inferen
es from 
ontradi
tory premises.

The most notable representatives of relevantism are (Anderson and Belnap, 1975).

Pragmatism. This position re
ognises that there are many interesting systems

that are in
onsistent but non-trivial. This in
ludes our beliefs and judgements,

a range of s
ienti�
 theories and legal 
odes. In fa
t, the likelihood of in
onsis-

ten
ies seems to in
rease with the expressiveness of the theories. Nevertheless,

some me
hanism prevents the dedu
tion from arbitrary 
on
lusions from su
h

in
onsistent theories. The pragmati
 approa
h is not to abandon theories on
e
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they are dis
overed to be in
onsistent but to a

ommodate them until a better

alternative is found by means of a logi
 that fun
tions plausibly in the presen
e

of in
onsisten
y. An important advo
ate of this motivation for para
onsisten
y

is (da Costa, 1974). From the dis
ussion in the last 
hapter it follows that we

too subs
ribe to this pragmati
 position.

4.2.2 De�nition of Para
onsisten
y

The di�erent motivations for para
onsisten
y lead almost naturally to di�erent

de�nitions of the terms para
onsisten
y and para
onsistent logi
. (B�eziau, 2000),

for example, analyses some of the o

urring de�nitions.

A theory T is a set of formulae expressed in some, normally formal, language

whi
h is 
losed under the 
onsequen
e relation ` of the underlying logi
, i.e. if

the formulae A

1

; : : : ;A

n

are in T and B is a 
onsequen
e of A

1

; : : : ;A

n

, denoted

fA

1

; : : : ;A

n

g ` B , then B is also in T .

The following is an intuitive de�nition of para
onsisten
y often presented in the

literature. A theory is in
onsistent if it 
ontains some formula A together with

its negation : A, i.e. there is an A su
h that T ` A and T ` : A, where : is

a negation 
onne
tive whi
h is intended as a \
ontradi
tion-forming operator".

A theory is trivial if it 
ontains every formula of its language, i.e. for every A it

holds T ` A, otherwise T is said to be non-trivial. A theory T is para
onsistent

if it is in
onsistent and non-trivial. A logi
 is para
onsistent if it supports the

study of para
onsistent theories.

This de�nition, however, has been generalised be
ause it requires the 
onsequen
e

relation to be transitive to ensure non-triviality. Thus, the minimal and most

widely a

epted de�nition amongst the para
onsistent logi
ians is now based on

the reje
tion of the prin
iple know as

ex 
ontradi
tione quodlibet (ECQ)

i.e. from a 
ontradi
tion follows everything. Based on the equivalen
e of falsehood

and 
ontradi
tion in 
lassi
al logi
 this prin
iple is also 
ommonly referred to as:

\ex falso quodlibet".

The formalisation of the prin
iple of ECQ is that for any theory T and formulae

A and B it follows T [fA;: Ag ` B . The same prin
iple without mentioning the

theory T is just a spe
ial 
ase of it. A logi
 is para
onsistent if it reje
ts ECQ, i.e.

if not every formula B follows from an in
onsistent premise (T [ fA;: Ag 0 B).

Otherwise the logi
 is said to be explosive or trivialising.
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4.2.3 Approa
hes to Para
onsisten
y

One 
an imagine that there are many di�erent ways to avoid ECQ. All proposed

solutions are based on some kind of weakening of 
lassi
al logi
.

Lewis's Proof of Ex Contradi
tione Quodlibet

The prin
iple of ECQ is 
entral to the notion of para
onsisten
y, thus a de-

tailed analysis on how it arises is appropriate. The proof of ECQ by (Lewis and

Langford, 1932) provides some insight. It pro
eeds by deploying various 
lassi
al

reasoning rules:

(1) p ^ :p Assumption

(2) p by 1, ^-Elimination

(3) :p by 1, ^-Elimination

(4) p _ q by 2, _-Introdu
tion

(5) q by 3,4, _-Elimination

This derivation 
an be prevented, by blo
king any of the rules in line (2), (3), (4)

or (5). Thus various strategies are open to weaken 
lassi
al logi
.

The most 
ommon proposal is to reje
t (5), i.e. _-Elimination whi
h is also


alled disjun
tive syllogism. Consequently, if impli
ation A ) B is de�ned in

the usual way as : A _ B then modus ponens fails, too. For example, the

logi
s by (da Costa, 1974) and (Belnap, 1977a) both reje
t disjun
tive syllogism.

However, modus ponens is valid in (da Costa, 1974) be
ause impli
ation 
annot

be expressed in terms of disjun
tion and negation.

The other two options are to blo
k _-Introdu
tion, favoured by logi
ians inter-

ested in analyti
 impli
ation, and to blo
k ^-Elimination, as investigated by so


alled 
onnexive logi
ians. Note, for example, that the logi
 by (Belnap, 1977a)

does not support ^-Elimination either. Thus, a 
ombination of these options 
an

also o

ur.

Another approa
h is not to generally blo
k any of the rules but to restri
t the

ordering in whi
h these rules 
an be applied. The derivation above requires _-

Introdu
tion to be applied before _-Elimination. The logi
 by (Besnard and

Hunter, 1995), for example, is based upon the restri
tion that de
ompositional

rules like _-Elimination must not be applied after _-Introdu
tion. The advantage

is to keep all 
lassi
ally valid reasoning rules in
luding disjun
tive syllogism and

the 
lassi
al de�nitions of the logi
al operators.
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Weakly Negative Systems

In 
lassi
al logi
, the 
on
i
t A ^ : A is equivalent to falsity, often denoted ?.

More generally, if A and B are two formulae, then A) (B ) ?) expresses that

A and B are in 
on
i
t, i.e. they are in
onsistent. Con
i
t 
an be represented in


lassi
al logi
 by using a negation symbol. Then fAg ` : B represents the same

in
onsisten
y as above. Thus, negation and in
onsisten
y are 
losely related in


lassi
al logi
.

This type of reasoning lead to mu
h resear
h into the nature of negation. (Gabbay

and Hunter, 1999), for example, explore the relationship between negation and


ontradi
tion to develop better te
hniques for handling in
onsistent information.

(B�eziau, 2000) is also mainly 
on
erned with the negation operator with respe
t

to para
onsisten
y. Thus, it is not surprising that a number of para
onsistent

logi
s are based on a weaker notion of negation than 
lassi
al logi
.

One important representative is the logi
 C

!

proposed by (da Costa, 1974). The

main idea is to use the positive part of some logi
, say 
lassi
al or intuitionisti
,

but to allow negation in an interpretation to behave non-truth-fun
tionally, i.e.

the truth value of : A is independent of that of A. This, in parti
ular, allows both

to take the value 1, i.e. both 
an be \true". Negation is rather weak under su
h an

interpretation. Many 
lassi
al equivalen
es, like the de�nition law for impli
ation,

double negation and the 
ontraposition law do not hold in C

!

. Furthermore, rules

like modus tollens and disjun
tive syllogism fail. However, modus pones is valid

and therefore weakly-negative logi
s are 
onsidered useful for rule-based reasoning

with information.

Many-Valued Systems

Problably one of the simplest and intuitive ways to produ
e para
onsistent sys-

tems is to use a many-valued logi
, i.e. a logi
 with more than two truth values.

The formulae that hold in a many-valued interpretation are those whi
h have a

truth value that is said to be \designated". A para
onsistent many-valued logi


is thus one whi
h allows both a formula and its negation to be designated. The

simplest form is to use three truth values, namely \true" and \false", whi
h fun
-

tion in a 
lassi
al way, and \both". One 
an also add a fourth value, \neither",

to 
apture the problem of in
omplete knowledge. We present two representatives

of su
h four-valued logi
s next.

4.3 Four-Valued Para
onsistent Logi
s

Many-valued systems are rather intuitive. They provide a natural way of dealing

with over-determined and under-determined knowledge. It is mainly the estab-
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lished Western philosophy that reje
ts extra truth values. Eastern philosophy, on

the 
ontrary, is founded on four truth values.

(deCharms, 1997, p. 26), for example, dis
usses the Tibetan view of mind. \For

many Westerners [and 
lassi
al logi
ians℄ these [following℄ two statements would

seem to 
over all of the relevant possibilities, with one or the other (but not both)

being ne
essarily 
orre
t."

(1) A phenomenon exists (has individual existen
e).

(2) The phenomenon does not exist.

\From the Tibetan viewpoint, there are two additional possible (and philosophi-


ally important) viewpoints"

(3) The phenomenon both exists and does not exist.

(4) The phenomenon neither exists nor does not exist.

Thus, the Tibetan view 
orresponds to a four-valued approa
h as presented below.

4.3.1 Belnap's Logi
 FOUR

(Belnap, 1977b; Belnap, 1977a) introdu
es \A Useful Four-Valued Logi
" to 
ap-

ture the idea of \How A Computer Should Think". Belnap 
onsiders the following

situation. First, the reasoner is a 
omputer and, therefore, need not to rely on

familiarity with 
lassi
al logi
. Se
ond, the 
omputer answers questions based on

given fa
ts and dedu
tions. Third, the fa
ts the 
omputer has, were given to it,

whi
h means, the 
omputer 
an only reason about what it was told, i.e. about

epistemi
 information.

The latter is surely the 
ase in requirements engineering be
ause the spe
i�er

usually has to a

ept what was told to him. This 
omputer, however, is not a


omplete reasoner in the sense that it will not do anything else but report an

in
onsisten
y. This means, no automated belief revision will take pla
e. Consid-

ering its appli
ation in requirements engineering, this is not a problem be
ause

it for
es the spe
i�er to go ba
k and to dis
uss 
ertain issues further with the

appli
ant.

Truth Values

First, we �x the truth values of the logi
al system. Based on the epistemi


information a 
omputer is given, we have four situations: `told True', `told False',

`told True and False', and `told neither True nor False'. Note, this 
orresponds to
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the subsets obtained by forming the powerset of the 
lassi
al truth values. The

truth values are given by the set ft ; f ;>;?g respe
tively.

These truth values 
an be ordered a

ording to the amount of knowledge or

information that ea
h truth value exhibits. This ordering is denoted �

k

and it

holds: ? �

k

f �

k

>, and ? �

k

t �

k

>. It 
an be observed that the four truth

values form a 
omplete latti
e under the knowledge (or information) ordering.

A 
omplete latti
e is a set, for example A, on whi
h a partial ordering � exists

and for arbitrary subsets X of A there always exists least upper bounds tX 2 A

and greatest lower bounds uX 2 A. A fun
tion f from one 
omplete latti
e

into another is monotoni
 if it preserves the latti
e ordering, i.e. a � b implies

f (a) � f (b). We need this property to explain how the truth tables for this logi


arise.

Truth Tables

Table 4.1 presents the truth tables for Belnap's logi
. In 
ase there is no 
on-

tradi
tion or in
ompleteness present, everything should be as in 
lassi
al logi
.

Furthermore, all these truth fun
tions shall be monotoni
 on the latti
e over the

knowledge ordering. This, however, does not determine all resulting truth values.

It turns out that a minimal relationship between 
onjun
tion and disjun
tion is

needed to uniquely determine every value in the truth tables. The natural relation

is the following, 
lassi
al, equivalen
e:

a ^ b = a , a _ b = b

a ^ b = b , a _ b = a

i.e. having ^ as greatest lower bound and _ as least upper bound of the latti
e.

The truth values for the negation of > and ? are for
ed by monotoni
ity of nega-

tion over the knowledge ordering and > and ? in the truth tables for 
onjun
tion

and disjun
tion are also for
ed by monotoni
ity. Furthermore, t is an identity

element with respe
t to 
onjun
tion, i.e. a ^ t = a. Thus a _ t = t must hold by

the above obligation. Similar 
onsiderations �ll in the rest of the tables ex
ept

the 
orners. They are, again, for
ed by monotoni
ity. Sin
e f �

k

> it follows

by monotoni
ity that (f ^ ? �

k

> ^ ?) and hen
e f �

k

(> ^ ?). Similarly,

? �

k

f leads to (> ^ ?) �

k

(> ^ f ), i.e. (> ^ ?) �

k

f , and by antisymmetry

(> ^ ?) = f .

Therefore, we derive the following truth tables for negation, 
onjun
tion and

disjun
tion:
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A :A

> >

t f

f t

? ?

^ > t f ?

> > > f f

t > t f ?

f f f f f

? f ? f ?

_ > t f ?

> > t > t

t t t t t

f > t f ?

? t t ? ?

Table 4.1: Negation, Conjun
tion, and Disjun
tion of the Logi
 FOUR

These tables 
onstitute the so 
alled logi
al latti
e, denoted L4, with the follow-

ing, related truth ordering: f �

t

> �

t

t , and f �

t

? �

t

t . The truth ordering

re
e
ts the di�eren
e in the \measure of truth" that every value represents. A

double Hasse diagram of both knowledge and truth ordering of the logi
 FOUR

is given in Figure 4.1.

T

T

f t

truth-ordering

k
n
o
w

le
d
g
e-

o
rd

er
in

g

Figure 4.1: The Truth and Knowledge Ordering of FOUR

The propositional language of Belnap's logi
 is 
omposed of a 
ountable set of

propositional letters and the logi
al 
onne
tives : , ^ and _. Formulae in this

logi
 are 
onstru
ted in the standard way. A Belnap theory is a set of formulae in

this logi
. For the �nite 
ase, a Belnap theory 
an be seen as a single formula given

by the 
onjun
tion of all the formulae in that parti
ular theory. For example, the

formula p ^ (: p _ q) ^ (r ^ : q) is a �nite theory in this logi
.
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Semanti
s

We de�ne the semanti
s of this logi
 in the normal way by using the notion of

an interpretation mapping from the propositional symbols into the set of truth

values as well as truth-valuation for a generalisation to arbitrary formulae. Inter-

pretations are ordered by the usual extension to sets of literals of the knowledge

ordering among literals. Furthermore, we use the notion of designated truth

values from many-valued logi
.

Let I be an interpretation in the logi
 FOUR and val

I

the 
orresponding truth-

valuation (Belnap uses the term set-up for I ). Let F be an arbitrary propositional

formula 
ontaining : , _, ^. We say that I satis�es F , denoted by I �

4

F , i�

val

I

(F ) 2 ft ;>g, where ft ;>g forms the set of designated truth-values. An

interpretation I is a model of a theory i� it satis�es all the formulae in the

theory. I 2

4

F denotes that I does not satisfy F .

I �

4

A ^ B i� I �

4

A and I �

4

B

I �

4

A _ B i� I �

4

A or I �

4

B

I �

4

: A i� I 2

4

A

The notion of entailment is based on the partial ordering asso
iated with the

logi
al latti
e. In L4 entailment goes up hill. That means, a senten
e A entails

or implies a senten
e B i� for ea
h assignment of one of the truth-values to

variables, the value of A does not ex
eed the value of B , in symbols:

A entails B i� val

I

(A) �

t

val

I

(B) for every interpretation I

Proof Theory

Proof theoreti
ally, Belnap's logi
 is 
hara
terised by a �nite axiomatization.

Given are the formulae A, B and C 
onsisting of ^, _, and : . The expression

A ! B denotes that A entails B , i.e. that the inferen
e from A to B is valid.

The expression A $ B denotes that A and B are semanti
ally equivalent. The

following axiomatization is known to be sound and 
omplete with respe
t to the

semanti
s of the logi
 presented earlier.

A

1

^ : : : ^ A

m

! B

1

_ : : :B

n

provided some A

i

is some B

j

(sharing)

A! B and B ! C implies A! C

A$ B and B $ C implies A$ C

A! B i� : B ! : A
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: : A$ A

: (A ^ B)$ : A _ : B : (A _ B)$ : A ^ : B

A _ B $ B _ A A ^ B $ B ^ A

A _ (B _ C )$ (A _ B) _ C A ^ (B ^ C )$ (A ^ B) ^ C

A ^ (B _ C )$ (A ^ B) _ (A ^ C ) A _ (B ^ C )$ (A _ B) ^ (A _ C )

(A _ B)! C i� A! C and B ! C

A! (B ^ C ) i� A! B and A! C

A! B i� A$ (A ^ B) i� B $ (A _ B)

The �rst blo
k of expressions 
aptures the re
exivity, transitivity and 
ontrapos-

itive properties of the 
onsequen
e relation. The se
ond blo
k of expressions 
or-

responds to standard 
lassi
al properties of negation, disjun
tion and 
onjun
tion

(e.g., 
ommutativity, asso
iativity, de Morgan laws). Finally, the last expressions


orrespond to standard 
lassi
al rules for introdu
tion and elimination of _ and

^ respe
tively.

The similarity between the above rules and 
lassi
al rules shows that this four-

valued logi
 is very 
lose to standard 
lassi
al logi
. However, the following

`paradoxes of impli
ation' are not derivable, nor semanti
ally valid, from the set

of entailment rules: A ^ : A ! B and A ! B _ : B . This means that the

problem of triviality was resolved and, thus, Belnap's logi
 is para
onsistent.

Belnap's logi
 is stri
tly weaker than 
lassi
al logi
 as it does not in
orporate

modus ponens nor ^-Elimination. Furthermore, impli
ation 
annot be de�ned

in terms of the other logi
al operators, nor does the dedu
tion theorem hold.

This logi
 is, however, \normal" be
ause the Tarskian properties of re
exivity,

monotoni
ity and transitivity hold.

Beyond Belnap

Belnap's four-valued logi
 had a great impa
t on the resear
h of para
onsistent

logi
s and it had been a 
onstant sour
e for further investigations. (Rodrigues

and Russo, 1998), for example, present a translation method for Belnap's logi


into �rst-order predi
ate logi
 based on two prin
iple predi
ates holds(A; tt) and

holds(A;� ) for any formula A. (Arieli and Avron, 1998) use Belnap's logi
 as

a basis for a dis
ussion on the general usefulness of four truth values. They

�nd that four values are just right. They are stri
tly more expressive than three

truth values but in
orporate the investigated three-valued logi
s. There are also

a number of related approa
hes to Belnap's logi
, one of whi
h is presented next.



4.3. Four-Valued Para
onsistent Logi
s 76

4.3.2 Damasio's Logi
 FOUR

Belnap's logi
 does not validate the use of modus ponens. However, this is an

often applied reasoning rule. Thus, Belnap's logi
 is not suited for some appli
a-

tions, for example, in logi
 programming. To over
ome this de�
ien
y (Dam�asio

and Pereira, 1998) present in their survey of para
onsistent semanti
s for logi


programs a variation of Belnap's logi
.

Truth Table for Impli
ation

The interpretation of the logi
al 
onne
tives ^, _ and : is the same as in

Belnap's logi
 as given in Table 4.1. The logi
 FOUR by (Dam�asio and Pereira,

1998) then di�ers primarily in the de�nition of the 
onsequen
e relation and the

in
lusion of the impli
ation 
onne
tive whi
h is presented in Table 4.2.

! > t f ?

> t t f f

t t t f f

f t t t t

? t t t t

Table 4.2: Truth Table for Impli
ation in the Logi
 FOUR

Let I be a FOUR interpretation, val

I

the 
orresponding truth-valuation and

F an arbitrary formula. Then I satis�es F , denoted I �

4

F , if and only if

val

I

(F ) 2 ft ;>g, where ft ;>g forms the set of designated truth values. As

usual, an interpretation I is a model of a theory T if and only if it satis�es all

the formulae in T . Furthermore, I 2

4

F denotes that I does not satisfy F .

Note that the impli
ation operator above always evaluates to either t or f . It

is de�ned in su
h a way that the following equivalen
es plus modus ponens are

valid:

I �

4

A ^ B i� I �

4

A and I �

4

B

I �

4

A _ B i� I �

4

A or I �

4

B

I �

4

A! B i� I 2

4

A or I �

4

B

Note the similarities to (Herre and Pear
e, 1992) and (Herre, 1998). Ea
h of the

two papers 
onsider one half of this work. The �rst is 
on
erned with partial

logi
al programs and the latter with in
onsistent logi
 programs. Both papers

together 
an be used to extend the work by (Dam�asio and Pereira, 1998) to the

�rst-order 
ase.
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Logi
al Equivalen
e

To 
hara
terise this logi
 further, we introdu
e the notion of equivalen
e. A
tu-

ally, in multi-valued logi
s one 
an de�ne at least two notions of equivalen
e, one

based on the truth-valuation fun
tion (
alled strong equivalen
e and denoted �

4

)

and another based on the 
onsequen
e relation (referred to as weak equivalen
e,

j=j

4

). Given two formulae A and B of the language FOUR, we say A �

4

B i�

val

I

(A) = val

I

(B) for every interpretation I . Furthermore, we say A j=j

4

B i� for

every interpretation I it holds I �

4

A i� I �

4

B . Otherwise A j=j

4

B is false.

Note, for an arbitrary many-valued logi
 it holds that if A � B then A j=j B ,

whenever � is de�ned as truth-value equality and j= is expressed by means of a

set of designated truth values. In the remainder of this subse
tion we mean weak

equivalen
e when we just say equivalen
e.

The equivalen
es holding in FOUR are similar to the ones holding in 
lassi
al

logi
. (Dam�asio and Pereira, 1998) present a list of valid equivalen
es. However,

a number of laws do not hold, like the law of the ex
luded middle (A _ : A j=j t),

the law of 
ontradi
tion (A ^ : A j=j f ), the de�nition law (A! B j=j : A _ B),

i.e. the possibility to de�ne impli
ation in terms of the other 
onne
tives, and

the 
ontraposition law (A ! B j=j : B ! : A). Furthermore, modus tollens

((: B ^ A! B) ! : A) and disjun
tive syllogism (A ^ (: A _ B) ! B) fail.

Interestingly, all axioms of propositional logi
 hold but

(A! B)! ((A! (: B))! (: A))

whi
h 
orresponds to the introdu
tion rule for negation of the natural dedu
tion


al
ulus. Finally, we note that the logi
 presented is neither daCosta's C

!

system,

be
ause the law of the ex
luded middle is not satis�ed, nor Belnap's logi
, be
ause

modus ponens is a sound rule now.

Logi
al Consequen
e

Given the above, we present the 
orresponden
e between the 
onsequen
e relation

(also 
alled satisfa
tion relation) and the truth-valuation fun
tion of propositional

symbols, as well as between the truth-valuation fun
tion and models in FOUR.

Let A be a propositional symbol and I an interpretation in a language 
ontaining

A, then:

I �

4

A and I �

4

: A i� val

I

(A) = >

I �

4

A and I 2

4

: A i� val

I

(A) = t

I 2

4

A and I �

4

: A i� val

I

(A) = f

I 2

4

A and I 2

4

: A i� val

I

(A) = ?
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This means, a literal L is entailed by an interpretation I i� val

I

(L) maps to t or

>. The 
omplement of L, i.e. : L, holds i� val

I

(L) maps to f or >.

To �nd the value of the truth-valuation fun
tion applied to the propositional

symbol A, we 
onstru
t the set of all possible FOUR models of a given theory

T , i.e. Mod

�

4

(T ). Then, we take the least FOUR model M of Mod

�

4

(T ) with

respe
t to the knowledge ordering, i.e.M 2 Mod

�

4

(T ) ^ 8N � N 2 Mod

�

4

(T ))

M �

k

N . The value of the truth-valuation of a propositional symbol A is then:

val

I

(A) = > i� A 2 M and : A 2 M

val

I

(A) = t i� A 2 M and : A 62 M

val

I

(A) = f i� A 62 M and : A 2 M

val

I

(A) = ? i� A 62 M and : A 62 M

The Tweety Example

Consider the rules (1)-(4) of the Tweety example whi
h we presented in Chapter

3. By applying the equivalen
e rules of FOUR and modus ponens we 
an infer

only one and thus least model:

M = fpenguin(Tweety); bird(Tweety);
ies(Tweety);: 
ies(Tweety)g

This, in turn, leads to the following assignments of truth values:

val

I

(
ies(Tweety)) = >

val

I

(penguin(Tweety)) = t

val

I

(bird(Tweety)) = t

whi
h 
orresponds to our introdu
tion of Tweety as a penguin and bird that 
an

and 
annot 
y.

4.4 Quasi-Classi
al Logi


The development of quasi-
lassi
al logi
 (QCL) was in
uen
ed by the need to

handle beliefs rather than the truth. As su
h, it seems parti
ularly suitable for

reasoning about spe
i�
ations be
ause spe
i�
ations are artifa
ts of belief. In

general, a spe
i�
ation is a 
olle
tion of information, often provided by multiple

sour
es, on how a system whi
h has yet to be developed should work. Therefore,

belief in the information is 
ru
ial as there does not exist anything providing

the ultimate truth about the future system. In su
h a 
ontext, the sour
es of

information may possibly 
ontradi
t on some issues and it may well be that su
h
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ontradi
tions 
annot be resolved immediately. Hen
e, there is a need for a logi


dealing with in
onsistent information.

The logi
s FOUR and FOUR were also designed to handle beliefs. Two extra

truth values were introdu
ed to 
apture in
onsisten
y and in
ompleteness. We

found, however, that pra
ti
al reasoning rules, like modus pones and disjun
tive

syllogism, do not hold in these logi
s. Furthermore, the de�nition law, relat-

ing impli
ation with negation and disjun
tion is not valid either. We think that

spe
i�
ation developers would like to rely on 
lassi
al 
orresponden
es and spe
i-

�
ation analysts prefer to rely on standard inferen
e rules. Therefore, we require

a para
onsistent logi
 that is more pra
ti
al in su
h respe
ts.

(Hunter, 2000) states that QCL has been developed for appli
ations, in parti
ular

for reasoning about requirements spe
i�
ations that might be in
onsistent. For

example, (Hunter and Nuseibeh, 1997) advo
ate and illustrate the use of QCL to

handle and manage in
onsistent spe
i�
ations. The spe
i�
ations presented as

examples in the work on QCL are written in �rst-order predi
ate logi
. Our aim

in this thesis is to utilise QCL to reason about in
onsistent spe
i�
ations written

in a ri
her language, spe
i�
ally the Z notation.

4.4.1 Syntax of Quasi-Classi
al Logi


To the reader familiar with �rst-order predi
ate logi
 (FOPL) only little will be

new in this se
tion. For those who like to re
apitulate FOPL we re
ommend (Fit-

ting, 1996) or (Ben-Ari, 2001) for a short introdu
tion. Both text books present

an introdu
tion to predi
ate logi
 and, in parti
ular, to the tableau method whi
h

we use later, too.

The language of quasi-
lassi
al logi
 is that of �rst-order predi
ate logi
. It is

de�ned in the usual way. We start by presenting the alphabet of the language.

Based on the alphabet, we de�ne the notions of a term, an atomi
 formula and,

�nally, formulae belonging to the language of QCL.

Alphabet. The alphabet of the language of quasi-
lassi
al logi
 
onsists of: the


ommon logi
al 
onne
tives, like ^;_;);, and : , in
luding the two quanti�ers

8 and 9; a set of variables; a set of predi
ate symbols; a set of fun
tion symbols;

and, �nally, some pun
tuation symbols, like `(' and `)', used to form formulae.

Ea
h relation and fun
tion symbol is asso
iate with a positive integer, its arity.

Fun
tion symbols with arity zero are also 
alled 
onstant symbols. We assume

that there is at least one 
onstant symbol in the set of fun
tion symbols. Note,

the Boolean 
onstants true and false are not given in the QC language.

Term. The basi
 building blo
k for a formula is a term. First, any variable is

a term and, se
ond, if f is an n-ary fun
tion symbol with n � 0 and t

1

; : : : ; t

n

are terms then f (t

1

; : : : ; t

n

) is a term, too. Note, that it follows from the se
ond
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ase that 
onstant symbols are terms as well. For example, if + is a two-pla
e

fun
tion symbol,

2

is a one-pla
e fun
tion symbol, x and y are variables, and 0

and 1 are 
onstants, then x + y ; x

2

+ 1; (1 + 0)

2

; ((x + y)

2

+ (1 + y)

2

)

2

; : : : are

terms. Sometimes we may use the in�x notation for writing terms, like in the

example above. For instan
e, we write x + y rather than +(x ; y).

Atom. Having de�ned terms we move on to de�ne formulae. The simplest of its

kind is an atomi
 formula, also 
alled an atom. If P is an n-ary predi
ate symbol

with n � 0 and t

1

; : : : ; t

n

are terms, then P(t

1

; : : : ; t

n

) is an atomi
 formula.

Formulae. Given atomi
 formulae we use the logi
al operators available to


onstru
t more 
ompli
ated formulae. Formulae are well-formed if they meet the

following 
onditions. First, any atom is a formula and, se
ond, if � and  are

formulae and x is a variable then the following are also formulae: (:�), (� ^  ),

(� _  ), (�)  ), (�,  ), (8 x :�(x )), (9 x :�(x )).

We let L denote a set of formulae formed in su
h an indu
tive way. For later ref-

eren
e we introdu
e some more vo
abulary. Any atomi
 formula or any negation

of an atomi
 formula is 
alled a literal. A disjun
tion of literals is 
alled a 
lause.

A term or an atomi
 formula is ground if and only if it 
ontains no variables and

a senten
e is a formula with no free-variable o

uren
es. Furthermore, we omit

bra
kets a

ording to the general 
onventions.

The notion of a fo
us is possibly new to those a
quainted with FOPL. The fo
us

is a synta
ti
al rule to remove a parti
ular disjun
t from a 
lause. We use the

fo
us later as a means to introdu
e a parti
ular form of disjun
tion with a built-in

resolution rule.

Fo
us. Let �

1

_ : : : _ �

n

be a 
lause that in
ludes a literal �

i

. The fo
us of

�

1

_ : : : _ �

n

by �

i

, denoted 
(�

1

_ : : : _ �

n

; �

i

), is de�ned as the 
lause

obtained by removing the disjun
t �

i

from the 
lause �

1

_ : : : _ �

n

. In the 
ase

of a 
lause with just one disjun
t we 
onsider the fo
us to be unde�ned.

Basi
ally, the fo
us of a 
lause is just the original formula without a parti
ular

disjun
t. For example, 
onsider the 
lause � _ � _ 
, then the fo
us of this 
lause

by �, denoted 
(� _ � _ 
; �), is � _ 
. The fo
us 
(� _ �; �) is unde�ned,

be
ause � _ � 
ontra
ts to �.

4.4.2 Semanti
s of Quasi-Classi
al Logi


One of the main ideas behind some para
onsistent logi
s is to separate the truth

and falsehood of a formula from ea
h other, i.e. knowing the formula ' is true

does not ne
essarily imply that ' is not false. Quasi-
lassi
al logi
 follows the

same approa
h. Basi
ally, we 
onstru
t a set of all possible atomi
 formulae

that 
an be built using the symbols in the set of assumptions. Any su
h set

is a possible model. Then, we de�ne two semanti
 relations, 
alled strong and
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weak satisfa
tion to interpret QC formulae. Finally, we de�ne the quasi-
lassi
al

satisfa
tion relation based on strong and weak satisfa
tion.

Quasi-Classi
al Model

The notion of a model in �rst-order quasi-
lassi
al logi
 is based on a form of

Herbrand models. Herbrand models are spe
ial in the sense that they asso
iate

ea
h ground term with its name. Every model has a domain, whi
h in this 
ase

is 
alled the Herbrand universe.

De�nition 4.4.1 (Herbrand Universe)

The Herbrand universe U (L) for a set of formulae L is the set of ground terms

that 
an be formed using the fun
tion and 
onstant symbols in L. As mentioned

before, we 
an always assume that there exists a 
onstant symbol. If there is

none we add one, say 
.

For example, 
onsider the set of formulae L = fQ(a);P(a; f (x ); g(y ; b))g with

predi
ate symbols P ;Q , fun
tion symbols f ; g , 
onstants a; b, and variables x ; y .

Then U (L) = fa; b; f (a); f (b); f (f (: : : (f (a)) : : :)); g(a; a); g(a; b); : : :g is the Her-

brand universe of L. Note, if L 
ontains a fun
tion symbol with arity greater

than zero then the Herbrand universe is in�nite. The Herbrand universe of the set

of ground formulae � = f: P(a);P(a) _ P(b);P(a) _ : P(b)g with predi
ate

symbol P and 
onstants a and b is U (�) = fa; bg.

De�nition 4.4.2 (Herbrand Base)

Given is the Herbrand universe U (L) for a set of formulae L. The Herbrand base

B(L) is the set of ground atoms that 
an be formed using the predi
ate symbols

in L and the terms in U (L).

For example, the Herbrand base for the set of formulae L from above B(L) =

fQ(a);Q(f (a));P(a; f (a); g(b; b));P(f (a); b; a); :::g. The Herbrand base B(�)

of the set of formulae � is B(�) = fP(a);P(b)g.

In standard predi
ate logi
, every Herbrand model over L 
an be des
ribed as

a subset of the Herbrand base B(L). Be
ause we deal with a para
onsistent

logi
, we need to go a step further. The idea in many para
onsistent logi
s is

to separate formulae and their negation. To do so, we use a set of positive and

negative obje
ts 
onstru
ted from the Herbrand base.

De�nition 4.4.3 (Obje
t)

Given is the Herbrand base B(L) for a set of formulae L. O(L) is a set of obje
ts

de�ned as follows, where +� is a positive obje
t, and �� is a negative obje
t.

O(L) = f+� j � 2 B(L)g [ f�� j � 2 B(L)g
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Consider the set of formulae � from above. The set of obje
ts is given by O(�) =

f+P(a);�P(a);+P(b);�P(b)g. Any set of su
h positive and negative obje
ts


an be a quasi-
lassi
al model.

De�nition 4.4.4 (Model)

Given a set of obje
ts O(L), then any E � O(L) is 
alled a model.

This means that a model E 
an 
ontain both positive and negative obje
ts. We


onsider the following meaning for positive obje
ts +� and negative obje
ts ��

being in some model E or not:

+� 2 E means � is \satis�able" in the model

�� 2 E means : � is \satis�able" in the model

+� 62 E means � is not \satis�able" in the model

�� 62 E means : � is not \satis�able" in the model

This semanti
s 
an also be regarded as giving one of the four truth values Both,

True, False and Neither to the elements of the Herbrand base, i.e. to the ground

atoms, as in the four-valued logi
 by (Belnap, 1977b). For an atom �

� is Both if both � and : � are \satis�ed"

� is True if � is \satis�ed" and : � is not \satis�ed"

� is False if � is not \satis�ed" and : � is \satis�ed"

� is Neither if neither � nor : � is \satis�ed"

Hunter, however, introdu
es a di�erent semanti
s based on a two-valued inter-

pretation. To 
ontinue, we formalise the notion of satis�ability and extend it to

formulae of the language using the following de�nitions.

Quasi-Classi
al Herbrand Interpretation

As usual, an assignment A is a fun
tion from the set of variables in L to the

universe U (L). Given an assignment A, an x -variant assignment B is the same

assignment as A ex
ept perhaps in the assignment for x .

De�nition 4.4.5

For an assignment A, terms in L are interpreted as follows, where [:℄

A

is a fun
tion

from the terms in L to U (L).
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[
℄

A

= 
, where 
 is a 
onstant symbol.

[x ℄

A

= x

A

, where x is a variable symbol.

[f (t

1

; : : : ; t

n

)℄

A

= f ([t

1

℄

A

; : : : ; [t

n

℄

A

), where f is a fun
tion symbol and

t

1

; : : : ; t

n

are terms.

Thus, ea
h ground term in L is interpreted as the equivalent term in U (L), hen
e

a model with su
h an interpretation is a Herbrand model. A subset of the set of

obje
ts is a model of a parti
ular literal, if the 
orresponding positive or negative

obje
t is a member of the model itself.

De�nition 4.4.6 (Herbrand satisfa
tion)

Let �

h

be a satis�ability relation 
alled Herbrand satisfa
tion. For a model E and

an assignment A, an atom �(t

1

; : : : ; t

n

) in L over terms t

1

; : : : ; t

n

is interpreted

as follows:

(E ;A) �

h

�(t

1

; : : : ; t

n

) i� +�([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E

(E ;A) �

h

: �(t

1

; : : : ; t

n

) i� ��([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E

This de�nition of Herbrand satisfa
tion is the base 
ase for the two satisfa
tion

relations QCL is built upon. We 
ontinue by de�ning strong satisfa
tion �rst.

Strong Satisfa
tion Relation

The main idea behind QCL is that proofs in QCL are a two-stage a�air. A

proof is separated into de
ompositional steps, in
luding resolution, followed by


ompositional steps. To 
apture this idea we need to establish the semanti
s for

both stages. Here we present the notion of strong satisfa
tion whi
h 
orresponds

to the de
ompositional phase.

De�nition 4.4.7 (Strong satisfa
tion)

Let �

s

be a satis�ability relation 
alled strong satisfa
tion. For a model E , and

an assignment A, we de�ne �

s

as follows, where �

1

; : : : ; �

n

are literals in L, and

� is a literal in L.

(E ;A) �

s

� i� (E ;A) �

h

�

(E ;A) �

s

�

1

_ : : : _ �

n

i�

[(E ;A) �

s

�

1

or : : : or (E ;A) �

s

�

n

℄ and

8 i s.t. 1 � i � n [(E ;A) �

s

: �

i

implies

(E ;A) �

s


(�

1

_ : : : _ �

n

; �

i

)℄



4.4. Quasi-Classi
al Logi
 84

We 
larify the meaning of this disjun
tion rule with an example. If � _ � is the

given 
lause, then the above de�nition redu
es to

(E ;A) �

s

� _ � i� [(E ;A) �

s

� or (E ;A) �

s

�℄

and [(E ;A) �

s

: � implies (E ;A) �

s

�℄

and [(E ;A) �

s

: � implies (E ;A) �

s

�℄

Strong satisfa
tion is more restri
ted than 
lassi
al satisfa
tion be
ause the link

between a formula and its negation has been de
oupled. To provide a meaning

for resolution, this link is put into the semanti
s of strong satisfa
tion via the

treatment of disjun
tion.

(Hunter, 2000) provides a slightly di�erent view on disjun
tion, too. Given a

model E and literals �

1

; : : : ; �

n

, then

E �

s

�

1

_ : : : _ �

n

i�

(1) for some �

i

2 f�

1

; : : : ; �

n

g;+�

i

2 E and ��

i

62 E

or (2) for all �

i

2 f�

1

; : : : ; �

n

g;+�

i

2 E and ��

i

2 E

Hunter proves that both de�nitions are equivalent by expanding the above de�-

nition. In essen
e, the disjun
tion rule of strong satisfa
tion provides a semanti


a

ount for para
onsistent reasoning using resolution. We now 
ontinue de�ning

strong satisfa
tion, 
onsidering arbitrary formulae.

De�nition 4.4.7 (
ontinued)

For formulae �; �; 
 2 L, we extend the de�nition of strong satisfa
tion as follows:

(E ;A) �

s

� ^ � i� (E ;A) �

s

� and (E ;A) �

s

�

(E ;A) �

s

: : � _ 
 i� (E ;A) �

s

� _ 


(E ;A) �

s

: (� ^ �) _ 
 i� (E ;A) �

s

: � _ : � _ 


(E ;A) �

s

: (� _ �) _ 
 i� (E ;A) �

s

(: � ^ : �) _ 


(E ;A) �

s

� _ (� ^ 
) i� (E ;A) �

s

(� _ �) ^ (� _ 
)

(E ;A) �

s

� ^ (� _ 
) i� (E ;A) �

s

(� ^ �) _ (� ^ 
)

(E ;A) �

s

(�) �) _ 
 i� (E ;A) �

s

(: � _ �) _ 


Let B be an x -variant assignment of A, then

(E ;A) �

s

(9 x :�(x )) _ � i� for some B ; (E ;B) �

s

� _ �

(E ;A) �

s

(8 x :�(x )) _ � i� for all B ; (E ;B) �

s

� _ �

(E ;A) �

s

(: 9 x :�(x )) _ � i� for all B ; (E ;B) �

s

: � _ �

(E ;A) �

s

(: 8 x :�(x )) _ � i� for some B ; (E ;B) �

s

: � _ �

For a model E we polymorphi
ally extend strong satisfa
tion as follows

E �

s

' i� for all assignments A, (E ;A) �

s

'
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Su
h an E is said to be a strong model of '.

For example, f�a;+a;�b;+bg is the only strong model of the set of ground

formulae � = f: a; a _ b; a _ : bg. Note, every formula ' has a strong model

even if it is 
lassi
ally in
onsistent.

In the de�nition of strong satisfa
tion, the disjun
tion rule applies only to 
lauses.

We show that this restri
tion is ne
essary. We demonstrate on an example that

a weakening of this rule to arbitrary formulae leads to a 
ontradi
tion. Consider,

for example, the propositional model E = f+�;��;+
g for the obje
ts +�, ��

and +
. Using a weakened disjun
tion rule we establish that E �

s

� _ (� ^ 
),

be
ause E �

s

� ^ 
 and E 2

s

: (� ^ 
). A

ording to the disjun
tion rule we

do not need E �

s

� whi
h would not hold. However, E 2

s

(� _ �) ^ (� _ 
),

be
ause E 2

s

� _ �, whi
h is due to E �

s

: � but E 2

s

�. Together, this


ontradi
ts distributivity of disjun
tion, if we would allow a weakening of the

disjun
tion rule.

Note, the equivalen
es in strong satisfa
tion allow for any formula in L to be

rewritten into 
onjun
tive normal form and then into 
lauses whi
h 
an be eval-

uated with respe
t to the obje
ts in the model.

Weak Satisfa
tion Relation

Strong satisfa
tion 
orresponds to the de
ompositional rules. Now we need to


apture the 
ompositional rules. The de�nition of weak satisfa
tion is similar

to strong satisfa
tion. The main di�eren
e is that disjun
tion is less restri
ted,

be
ause it does not in
orporate fo
using. Indeed, weak satisfa
tion seems 
loser

to a 
lassi
al notion of satisfa
tion.

De�nition 4.4.8 (Weak satisfa
tion)

Let �

w

be a satis�ability relation 
alled weak satisfa
tion. For a model E , an

assignment A, and a literal � in L, we de�ne �

w

as follows.

(E ;A) �

w

� i� (E ;A) �

h

�

For formulae �; � 2 L, we extend the de�nition as follows:

(E ;A) �

w

� _ � i� (E ;A) �

w

� or (E ;A) �

w

�

(E ;A) �

w

� ^ � i� (E ;A) �

w

� and (E ;A) �

w

�

(E ;A) �

w

: : � i� (E ;A) �

w

�

(E ;A) �

w

: (� ^ �) i� (E ;A) �

w

: � _ : �

(E ;A) �

w

: (� _ �) i� (E ;A) �

w

: � ^ : �

(E ;A) �

w

�) � i� (E ;A) �

w

: � _ �

Let B be an x -variant assignment of A, then
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(E ;A) �

w

9 x :�(x ) i� for some B ; (E ;B) �

w

�

(E ;A) �

w

8 x :�(x ) i� for all B ; (E ;B) �

w

�

(E ;A) �

w

: 9 x :�(x ) i� for all B ; (E ;B) �

w

: �

(E ;A) �

w

: 8 x :�(x ) i� for some B ; (E ;B) �

w

: �

For a model E we polymorphi
ally extend weak satisfa
tion as follows

E �

w

' i� for all assignments A, (E ;A) �

w

'

Su
h an E is said to be a weak model of '.

For example, the set of ground formulae � = f: a; a _ b; a _ : bg has the fol-

lowing weak models: f�a;+ag, f�a;+b;�bg, f�a;+a;+bg, f�a;+a;�bg and

f�a;+a;+b;�bg. Note, every strong model of a formula ' is a weak model of

' but the 
onverse does not hold in the general 
ase.

Observe that the de�nition of weak satisfa
tion di�ers slightly from the one given

by (Hunter, 2000; Hunter, 2001). Disjun
tion is here appli
able for formulae and

not only for literals. This 
hange is ne
essary for the following property proved

in (Hunter, 2000). This property justi�es Hunter's use of the rules above rather

than his more restri
ted de�nition.

Lemma 4.4.1

Distributivity is implied by the de�nition of weak satisfa
tion, i.e. for any formu-

lae �; �; 
 2 L, and any model E , the following distribution properties hold:

(E ;A) �

w

� _ (� ^ 
) i� (E ;A) �

w

(� _ �) ^ (� _ 
)

(E ;A) �

w

� ^ (� _ 
) i� (E ;A) �

w

(� ^ �) _ (� ^ 
)

Proof

Assume (E ;A) �

w

� _ (� ^ 
). So (E ;A) �

w

� or ((E ;A) �

w

� and (E ;A) �

w


). By distributivity of the 
lassi
al 
onne
tives \or" and \and", we have

((E ;A) �

w

� or (E ;A) �

w

�) and ((E ;A) �

w

� or (E ;A) �

w


). Hen
e,

(E ;A) �

w

(� _ �) ^ (� _ 
). The other 
ase follows similarly. 2

Quasi-Classi
al Entailment

Now we have established all the building blo
ks for the de�nition of quasi-
lassi
al

entailment. Basi
ally, QC entailment is of the same form as 
lassi
al entailment

ex
ept that strong satisfa
tion is used for the assumptions and weak satisfa
tion

is used for the 
on
lusion.
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De�nition 4.4.9 (QC entailment)

Given a set of formulae '

1

; : : : ; '

n

and a formula �. Let �

Q

be an entailment

relation, 
alled quasi-
lassi
al entailment, su
h that �

Q

� P(L)� L, and de�ned

as follows:

f'

1

; : : : ; '

n

g �

Q

�

i� for all models E ; if E �

s

'

1

and : : : and E �

s

'

n

then E �

w

�

Consider the set of ground formulae � = f: a; a _ b; a _ : bg and re
all that

its only strong model is E = f+a;�a;+b;�bg. The model E is also a weak

model of a, hen
e � quasi-
lassi
ally entails a, i.e. f: a; a _ b; a _ : bg �

Q

a.

Similarly, we 
an show f: a; a _ b; a _ : bg �

Q

: a _ 
 as well as f: a; a _

b; a _ : bg �

Q

a ^ b. However, we 
annot establish f: a; a _ b; a _ : bg �

Q

d ,

be
ause the model E from above is still a strong model of � but it is not a weak

model of d .

An alternative way of de�ning entailment 
orresponds to model set in
lusion. The

advantage is that we 
an make use of the standard properties of set in
lusion when

reasoning about QC entailment.

For a set of formulae '

1

; : : : ; '

n

, its 
lass of strong models Mod

s

is de�ned as the

set of all its strong models E , i.e.

Mod

s

('

1

; : : : ; '

n

) = fE j E �

s

'

1

and : : : and E �

s

'

n

g

and the 
lass of weak models Mod

w

for a formula � is the set of its weak models

E , i.e.

Mod

w

(�) = fE j E �

w

�g

Then QC entailment �

Q

is de�ned as in
lusion of the 
lass of strong models in

the 
lass of weak models, i.e.

f'

1

; : : : ; '

n

g �

Q

� i� Mod

s

('

1

; : : : ; '

n

) � Mod

w

(�)

4.4.3 The Semanti
 Tableau Method for First-Order QCL

A proof in QCL is a two stage a�air. First, a set of assumptions is transformed

into 
lauses and de
omposed into literals. Then, the 
ompositional stage fol-

lows, forming 
lauses from the assumptions and derived literals using disjun
tion

or 
onjun
tion introdu
tion, possibly followed by some rewrite steps to form

equivalent formulae. Any su
h obtained formula is a non-trivial inferen
e from

the assumptions. We 
onsider the strong satisfa
tion relation to 
apture the

de
omposition of the set of assumptions and weak satisfa
tion to 
apture the


omposition of the 
on
lusion.
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The Semanti
 Tableau Method

The proof theory of �rst-order quasi-
lassi
al logi
 is based on the notion of

semanti
 tableau. A semanti
 tableau is a tree-like stru
ture where nodes are

labeled with formulae. The idea is that ea
h bran
h represents the 
onjun
tion

of the formulae appearing in it and that the tree itself represents the disjun
tion

of its bran
hes. We refer to (Smullyan, 1968) and (Fitting, 1996) who present a

thorough overview of the te
hniques of the semanti
 tableau method.

The semanti
 tableau proof pro
edure is based on refutation, i.e. to prove a

formula ' is satis�able, we begin with : ' and produ
e a 
ontradi
tion. This

is done by expanding : ' su
h that inessential details of its logi
al stru
ture

are removed until a 
ontradi
tion appears or no expansion rule 
an be applied.

Su
h expansion results in a tableau tree. For example, to prove the tautology

q ) (p ) q) we 
onstru
t the following tree:

: (q ) (p ) q))

q ;: (p ) q)

q ; p;: q

and observe the 
ontradi
tion between the literals q and : q . The tableau is


losed and thus the tautology is proven.

However, this approa
h does not work dire
tly for QCL sin
e the truth and false-

hood of a predi
ate are de
oupled. Therefore, the atom q being satis�able does

not mean that : q is not satis�able, i.e. it is not possible to 
onstru
t a 
ontra-

di
tion in the same way as above. To over
ome this obsta
le Hunter introdu
es

signed formulae denoted by

�

, representing that a formula is unsatis�able. Then

showing q and q

�

yields a refutation, as well as : q and (: q)

�

, be
ause a formula


annot be satis�able and unsatis�able at the same time.

The idea to use signed formulae is not new. They have often been used in the


onstru
tion of semanti
 tableau, for example by (H�ahnle et al., 1994). New is

that the link between a signed formula and its 
onjugate has been removed. If

this link were put ba
k into the proof theory, QCL would 
ollapse to 
lassi
al

predi
ate logi
.

We formalise the introdu
ed notions. The 
onjugate of a formula ' is denoted

'

�

. Furthermore, the set of signed formulae of L is denoted L

�

and is de�ned as

L[f'

�

j ' 2 Lg. Given these notions we 
an de�ne what it means to satisfy the


onjugate of a formula.

De�nition 4.4.10

For any formula ' 2 L we further extend the weak satisfa
tion and strong satis-

fa
tion relations as follows:

E �

s

'

�

i� E 2

s

'

E �

w

'

�

i� E 2

w

'
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This means, the formula '

�

is weakly or strongly satis�able whenever ' is not.

The Tableau S-Rules

In the de�nition of the quasi-
lassi
al (QC) semanti
 tableau, there are two types

of tableau expansion rules, the S-rules and the U-rules. These expansion rules


orrespond roughly to the two satisfa
tion relations presented in the last se
tion.

First, we introdu
e the tableau S-rules.

De�nition 4.4.11 (S-Rules)

The following are the S-rules for a QC semanti
 tableau. The j symbol denotes

the introdu
tion of a bran
h point in the QC semanti
 tableau.

The 
onjun
tion S-rule:

� ^ �

�; �

The disjun
tion S-rules:

�

1

_ : : : _ �

n

(: �

i

)

�

j 
(�

1

_ : : : _ �

n

; �

i

)

[where �

1

; : : : ; �

n

are literals℄

�

1

_ : : : _ �

n

�

1

j : : : j �

n

[where �

1

; : : : ; �

n

are literals℄

The rewrite S-rules:

: : � _ 


� _ 


: (� ^ �) _ 


: � _ : � _ 


: (� _ �) _ 


(: � ^ : �) _ 


� _ (� ^ 
)

(� _ �) ^ (� _ 
)

� ^ (� _ 
)

(� ^ �) _ (� ^ 
)

(�) �) _ 


(: � _ �) _ 


The quanti�
ation S-rules:

(8 x :�(x )) _ 


�(t) _ 


(: 9 x :�(x )) _ 


: �(t) _ 


(9 x :�(x )) _ 


�(t

0

) _ 


(: 8 x :�(x )) _ 


: �(t

0

) _ 


where t is a term in U (L) and t

0

is a term in U (L) but not o

urring in

the tableau 
onstru
ted so far.

All the tableau S-rules assume the formula above the line to be satis�able. Basi-


ally, the S-rules 
orrespond to the de
ompositional rules of a QC proof.
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The Tableau U-Rules

The tableau U-rules are a variant of the 
ompositional rules of a QC proof.

They 
orrespond roughly to the negation of the weak satisfa
tion relation. In

essen
e, rather than 
omposing literals to form the 
on
lusion we de
ompose the


on
lusion to its literals. As su
h, all the U-rules assume a formula above the

line to be unsatis�able.

De�nition 4.4.12 (U-Rules)

The following are the U-rules for a QC semanti
 tableau. The j symbol denotes

the introdu
tion of a bran
h point in the QC semanti
 tableau.

The 
onjun
tion U-rule:

(� ^ �)

�

�

�

j �

�

The disjun
tion U-rule:

(� _ �)

�

�

�

; �

�

The rewrite U-rules:

(: : �)

�

�

�

(: (� ^ �))

�

(: � _ : �)

�

(: (� _ �))

�

(: � ^ : �)

�

(�) �)

�

(: � _ �)

�

The quanti�
ation U-rules:

(8 x :�(x ))

�

(�(t

0

))

�

(: 9 x :�(x ))

�

(: �(t

0

))

�

(9 x :�(x ))

�

(�(t))

�

(: 8 x :�(x ))

�

(: �(t))

�

where t is a term in U (L) and t

0

is a term in U (L) but not o

urring in

the tableau 
onstru
ted so far.

The QC Semanti
 Tableau

The S- and U-rules are both de
omposition rules for signed formulae. They

are applied to 
onstru
t the semanti
 tableau for a set of assumptions and a


on
lusion a

ording to the following de�nition.

De�nition 4.4.13 (Semanti
 Tableau)

A QC semanti
 tableau for a set of assumptions � and a 
on
lusion ' is a tree

su
h that:

1. the formulae in � [ f'

�

g are at the root of the tree;

2. ea
h node of the tree has a set of signed formulae; and
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3. the formulae at ea
h node are generated by an appli
ation of one of the

de
omposition rules on a signed formula at an
estors of that node.

This de�nition is similar to the one for the 
lassi
al semanti
 tableau. The major

di�eren
e is that the root of the 
lassi
al tableau 
ontains � [ f: 'g. The QC

tableau does not use this be
ause the link between a formula and its 
omplement

has been de
oupled.

De�nition 4.4.14 (Closed Tableau)

A QC tableau is 
losed i� every bran
h is 
losed. A bran
h is 
losed i� there is

a formula ' for whi
h ' and '

�

belong to that bran
h, i.e. both ' and '

�

are

on the same path from the root of the tree to the leaf of that bran
h. A bran
h

is open if there are no more rules that 
an be applied, and it is not 
losed. A

tableau is open if there is at least one open bran
h.

For example, to establish f: a; a _ b; a _ : bg `

Q

a we take as root the set of

formulae : a; a _ b; a _ : b; a

�

and 
onstru
t the following tableau.

: a; a _ b; a _ : b; a

�

a


losed

b

a


losed

b

�


losed

We applied the disjun
tion S-rule and the disjun
tion S-rule with fo
us to 
on-

stru
t this tree. Ea
h bran
h of the tree is 
losed, hen
e the tableau is 
losed

and, therefore, f: a; a _ b; a _ : bg `

Q

a is valid.

We say � `

Q

', i.e. a set of assumptions � implies a 
on
lusion ' by QCL, if

and only if a QC tableau for � and ' is 
losed. (Hunter, 2001) shows that this

QC proof method is sound and 
omplete with respe
t to the earlier introdu
ed

semanti
s of QCL. We do not prove this statement here, but a generalized version

of it after introdu
ing equality into QCL.

Note, all the de�nitions above are rather similar to the 
lassi
al form for se-

manti
 tableau. In fa
t, as (Hunter, 2000) points out, the QC semanti
 tableau


ollapses to a 
lassi
al semanti
 tableau if the following rules are added to the

de
omposition rules,

�

(: �)

�

: �

�

�

�

�

: �

(: �)

�

�

Then we 
an use the 
lassi
al de�nition for 
losure of a bran
h, i.e. a bran
h is


losed if it 
ontains both � and : � for some ground atom.
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4.4.4 Properties of Quasi-Classi
al Logi


We now 
onsider some properties of quasi-
lassi
al logi
. These properties have

been presented and proved by (Hunter, 2000) before. However, we re
apitulate

the arguments to give further insights into QCL. We present the arguments using

either QC entailment or QC inferen
e. The de
ision for one or the other depends

on whi
h of the two is more 
onvenient for our purpose.

Para
onsisten
y

Quasi-
lassi
al logi
 is para
onsistent be
ause it does not allow trivial inferen
es.

That is, given a 
lassi
al in
onsistent set of assumptions �, it is not the 
ase that

every formula in the language L is entailed by �. For example, let �;: � and �

be ground literals in L. Then it is not the 
ase that f�;: �g �

Q

� holds be
ause

E = f+�;��g is a possible model su
h that E �

Q

� ^ : � but E 2

Q

�.

The only inferen
e rule that allows a new literal, like �, to be introdu
ed is

_-Introdu
tion. QCL is designed su
h that no de
omposition rules 
an follow

_-Introdu
tion. Therefore, it is not possible to derive the new literal without any


ontext. Hen
e, QCL does not allow trivial inferen
es.

Inferen
es from the Empty Set of Assumptions

In QCL it is not possible to derive any 
on
lusion from the empty set of assump-

tions, in parti
ular no 
lassi
al tautologies hold without a given assumption. For

example, the tautology q ) (p ) q) as given in Se
tion 4.4.3 
annot be veri�ed

using QCL, i.e. the following tableau is not 
losed:

(q ) (p ) q))

�

(: q _ (p ) q))

�

(: q)

�

; (p ) q)

�

(: q)

�

; (: p _ q)

�

(: q)

�

; (: p)

�

; q

�

It is not possible to 
onstru
t a refutation, be
ause an unsatis�able formula 
an

only be de
omposed into unsatis�able formulae, hen
e, no 
ontradi
tion with a

satis�able formula 
an be derived. Model theoreti
ally this is also easy to see. The

empty set is the only strong model satisfying an empty assumption. However, the

empty set is not a weak model of any 
on
lusion but the empty one. Therefore,

no formula and, in parti
ular, no tautology 
an be shown from the empty set of

assumptions.
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It is not 
lear whether this issue is a drawba
k for the appli
ation of QCL in the


ontext of formal spe
i�
ation, be
ause any pra
ti
al derivation is likely to be

based on a non-empty set of assumptions. Furthermore, when trying to prove

a tautology the attempt of performing the proof will indi
ate a set of ne
essary

assumptions. For example, to 
lose the above tableau, we would need either q ,

: q or : p in the set of assumptions, in parti
ular the 
lassi
al tautology q _ : q

is a realisti
 
andidate.

Re
exivity, Monotoni
ity and Transitivity

Re
exivity, monotoni
ity and transitivity are often regarded as desired properties

of a logi
. However, it is well known that there exists a wide range of non-

monotoni
 logi
s to reason about un
ertainty. This indi
ates that it is possible

to give up one or more of these properties if it is pra
ti
al. Here, we investigate

QCL with respe
t to those three properties.

Quasi-
lassi
al logi
 is re
exive, i.e. for a set of formulae � and a formula ',

� [ f'g `

Q

' holds. This is easy to see from the root of the 
orresponding

tableau, whi
h is �; '; '

�

. The tableau is 
losed immediately, hen
e the inferen
e

holds.

QCL is monotoni
, too, i.e. for a set of assumptions � and formulae ' and �

it holds that � `

Q

' implies � [ f�g `

Q

'. This follows simply from set

theory, be
ause the set of strong models of � [ f�g is in
luded in the set of

strong models of � whi
h, in turn, are in
luded in the set of weak models of ',

i.e. Mod

s

(� [ f�g) � Mod

s

(�) � Mod

w

('). Monotoni
ity is desired be
ause it

allows to add assumptions without retra
ting 
on
lusions.

The property of transitivity, also 
alled 
ut, fails in QCL, i.e. for sets of assump-

tions � and � and formulae ' and � it holds that � [ f'g `

Q

� and � `

Q

'

does not imply � [ � `

Q

�. For example, 
onsider f: �g [ f� _ �g `

Q

� and

f�g `

Q

� _ �, but f�;: �g 0

Q

�.

The failure of transitivity 
an be regarded as disadvantageous, in parti
ular, with

our appli
ation in mind. However, (Tennant, 1984) introdu
ed a para
onsistent

logi
, where transitivity fails, too. In his logi
, \transitivity of Proofs fails upon

a

umulation of Proofs only when the newly 
ombined premises are in
onsistent

anyway, or the 
on
lusion is a logi
al truth. In either 
ase, Proofs that show

this 
an be e�e
tively determined from the Proofs given. Thus, transitivity fails

where it least matters { arguably, where they ought to fail!" Consequently, we

need to investigate the failure of transitivity in QCL with respe
t to the property

of Tennant's logi
. If this holds for QCL, too, then the failure of transitivity may

not be a disadvantage anymore.
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Consisten
y Preservation

We dis
uss the relation of quasi-
lassi
al logi
 to 
lassi
al logi
. First, everything

that is derivable in QCL is also derivable in 
lassi
al logi
, i.e. � `

Q

� implies

� ` �. For example, � `

Q

� ^ : � implies � ` � ^ : �. However, the other

dire
tion does not hold, i.e. � ` � does not imply � `

Q

�. For example, 
onsider

� to be empty, then it is possible to show in 
lassi
al logi
 ` � _ : � but this

does not hold in QCL.

Even if we restri
t 
onsiderations to a non-tautologi
al inferen
e of a formula '

that follows 
lassi
ally from a 
onsistent set of formulae, we are not guaranteed

that ' also follows in QCL. For example, let � = f�g, then � ` � ) (� ^ �) is

a 
lassi
al inferen
e but it is not a QC inferen
e. We 
onsider the strong models

of � and the weak models of � ) (� ^ �). One su
h strong model is f+�g but

this is not a weak model of the 
on
lusion, hen
e QC entailment fails.

Further Properties

(Hunter, 2000) presents some more properties, whi
h have been dis
ussed in the


ontext of non-monotoni
 logi
s and relevan
e logi
s before. It seems interesting

to look at these properties to enhan
e our understanding of QCL. Below, we


onsider � to be a set of formulae and ', � and  are formulae in our language.

And-introdu
tion. The property of and-introdu
tion, i.e. � `

Q

' and � `

Q

�

implies � `

Q

' ^ �, holds in QCL.

Or-elimination. The property of or-elimination, i.e. � [ f'g `

Q

 and � [

f�g `

Q

 implies � [ f' _ �g `

Q

 , holds in quasi-
lassi
al logi
.

Furthermore, due to QCL being a weakening of 
lassi
al logi
, some of the laws of


lassi
al logi
 do not hold in QCL. (Hunter, 2000) presents the following 
lassi
al

properties whi
h are not feasible in QCL. Below, we in
lude some 
ounterexam-

ples to give the reader a better understanding of QCL. We 
onsider �, �, and 


to be atomi
 formulae in our language.

Right modus ponens. The property of right modus ponens, de�ned as follows,

fails in QCL: � `

Q

' and � `

Q

' ) � does not imply � `

Q

�. Consider

� = f�;: �g, then � `

Q

�, and � `

Q

�) �, but � 0

Q

�.

Dedu
tion Theorem. The property of dedu
tion, de�ned as follows, fails in

QCL: � `

Q

' ) � does not imply � [ f'g `

Q

�. Consider � = f: �g, then

� `

Q

�) � but � [ f�g 0

Q

�.

The failure of the dedu
tion theorem has a parti
ular 
onsequen
e: in formulating

properties and theorems the de
ision whether to use impli
ation or dedu
tion may

be 
ru
ial. Like other features of QCL, this requires the user of QCL to make
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its intensions expli
it. In general, however, we 
an 
onsider the main impli
ative


onne
tive of a 
lassi
al formula as the intended dedu
tion operator.

Conditionalization. The property of 
onditionalization, de�ned as follows, fails

in QCL: � [ f'g `

Q

� does not imply � `

Q

' ) �. Consider � = fg. Then

� [ f�g `

Q

�, but � 0

Q

�) �.

We introdu
e two further properties. To des
ribe these properties we need to

make use of 
lassi
al predi
ate logi
, be
ause, as mentioned before, QCL does

not allow any inferen
es from the empty set of assumptions.

Right weakening. The property of right weakening, de�ned as follows, fails

in QCL: � `

Q

' and ` ' ) � does not imply � `

Q

�. Let � = f�g, then

f�g `

Q

�. Furthermore, 
onsider ` �) � _ : �. However, f�g 0

Q

� _ : �.

Left logi
al equivalen
e. The property of left logi
al equivalen
e, de�ned as

follows, fails in QCL: �[f'g `

Q

 and ` ', � does not imply �[f�g `

Q

 .

Let � = fg. f� _ : �g `

Q

� _ : � and ` (� _ : �) , (� _ : �), but

f� _ : �g 0

Q

� _ : �.

4.4.5 Logi
al Equivalen
e in Quasi-Classi
al Logi


Logi
al equivalen
es play an important role in simplifying logi
al formulae. In

Chapter 6, for example, we use equivalen
es to simplify the pre
ondition of an

operation given in the Z notation. Despite its importan
e logi
al equivalen
e has

not been thoroughly investigated in QCL. For example, the term \equivalent"

is used but not de�ned within QCL. It is referred to 
lassi
al logi
 to give it a

meaning.

Equivalen
es and Normal Form

(Hunter, 2000) de�nes, a formula is in 
onjun
tive normal form (CNF) if and

only if it is a 
onjun
tion of 
lauses, i.e. a 
onjun
tion of disjun
ts of literals.

For example, given the literals �; � and 
 then (� _ �) ^ 
 is in CNF, whereas

� _ (� ^ 
) is not.

It is known that any propositional formula in QCL 
an be transformed into CNF

by appli
ation of the following equivalen
es, in parti
ular distributivity, arrow

elimination, double negation elimination and de Morgan laws. We denote this

equivalen
e relation by �

Q

.
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' ^ ' �

Q

' ' _ ' �

Q

'

' ^ � �

Q

� ^ ' ' _ � �

Q

� _ '

' ^ (� ^  ) �

Q

(' ^ �) ^  ' _ (� _  ) �

Q

(' _ �) _  

: (' ^ �) �

Q

: ' _ : � : (' _ �) �

Q

: ' ^ : �

' _ (� ^  ) �

Q

(' _ �) ^ (' _  ) ' ^ (� _  ) �

Q

(' ^ �) ^ (' ^  )

: : ' �

Q

'

') � �

Q

: ' _ �

', � �

Q

(') �) ^ (�) ')

(Hunter, 2000) points out that a formula ' is a CNF of a formula � if and only if

' is 
lassi
ally equivalent to � and ' is in CNF. Note, this form of a CNF is often


alled 
onjun
tive negation normal form (CNNF) be
ause the negation symbol

does not apply to formulae but to literals only.

(Hunter, 2001) extends his work to �rst-order QCL. We follow from his de�nitions

of the strong and weak satisfa
tion relation that the following two equivalen
es

hold as well.

: 8 x :'(x ) �

Q

9 x :: '(x )

: 9 x :'(x ) �

Q

8 x :: '(x )

Thus, the negation symbol 
an be pushed inside quanti�ed formulae.

Weak Logi
al Equivalen
e

In (Miarka et al., 2002) we de�ned, two formulae ' and � are equivalent, denoted

' à

Q

�, if and only if f'g `

Q

� and f�g `

Q

'. We 
all this weak equivalen
e,

although this notion is a
tually not des
ribing an equivalen
e relation. Consider

the following three formulae:

1. A = : � ^ � ^ : �

2. B = : � ^ : � ^ (� _ �)

3. C = : � ^ : � ^ �

Then it holds that A à

Q

B and B à

Q

C but A 6 à

Q

C . This is obvious if

we 
onsider the strong and weak model 
lasses of these formulae. Re
all, that

f'g `

Q

� i� Mod

s

(') � Mod

w

(�).

1. Mod

s

(A) = Mod

w

(A) = ff��;+�;��g; f��;+�;��;+�gg

2. Mod

s

(B) = ff��;+�;��;+�gg

Mod

w

(B) = ff��;+�;��g; f��;��;+�g; f��;+�;��;+�gg

3. Mod

s

(C ) = Mod

w

(C ) = ff��;��;+�g; f��;+�;��;+�gg
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Now we see that Mod

s

(A) � Mod

w

(B) and Mod

s

(B) � Mod

w

(A), Mod

s

(B) �

Mod

w

(C ) and Mod

s

(C ) � Mod

w

(B), but neither Mod

s

(A) � Mod

w

(C ) nor

Mod

s

(C ) � Mod

w

(A). Hen
e, the relation à

Q

is not transitive and, therefore,

it is not an equivalen
e relation. Consequently, logi
al equivalen
e in QCL 
an-

not be de�ned in the most straightforward way in terms of the QC 
onsequen
e

relation.

The Absorption Laws

Be
ause the logi
al equivalen
e relation in QCL 
annot be de�ned dire
tly in

terms of the QC 
onsequen
e relation, we look at the strong and weak models

separately. To gain more understanding we investigate the often applied absorp-

tion laws. For the formulae ' and �, the two absorption laws in 
lassi
al logi


are de�ned as

E � ' _ (' ^ �) i� E � ' and E � ' ^ (' _ �) i� E � '

The absorption laws do not hold for the strong satisfa
tion relation �

s

. Consider

the formulae � _ (� ^ �) and �, then Mod

s

(�) 6= Mod

s

(� _ (� ^ �)) be
ause

f+�;��g 2 Mod

s

(�) but f+�;��g 62 Mod

s

(� _ (� ^ �)). The same applies to

the other 
ase.

However, the absorption laws do hold for the weak satisfa
tion relation. This

follows basi
ally from the de�nition of �

w

, in parti
ular from 
onjun
tion and

disjun
tion. The proof pro
eeds by showing the equivalen
e of the weak model


lasses, e.g. Mod

w

(�) = Mod

w

(� _ (� ^ �)), whi
h uses standard set theory.

Equivalen
e, Weak and Strong Model Classes

To de�ne an appropriate equivalen
e relation we investigate two equivalen
e rela-

tions based on strong and weak satisfa
tion. We are interested in �nding whether

the equivalen
e relation 
an be de�ned in terms of the 
lassi
al equivalen
e of the

model 
lasses.

For example, we �nd that if either the strong or the weak models of two formulae

are equivalent then they are weakly equivalent. Given two formulae ' and �. If

Mod

s

(') = Mod

s

(�) then ' à

Q

� and if Mod

w

(') = Mod

w

(�) then ' à

Q

�.

Proof

(!): Mod

s

(') = Mod

s

(�) � Mod

w

(�), hen
e ' `

Q

�.

( ): Mod

s

(�) = Mod

s

(') � Mod

w

('), hen
e � `

Q

'.

(!): Mod

s

(') � Mod

w

(') = Mod

w

(�), hen
e ' `

Q

�.

( ): Mod

s

(�) � Mod

w

(�) = Mod

w

('), hen
e � `

Q

'.

In either 
ase it follows ' à

Q

�. 2
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The standard equality relation = is re
exive, symmetri
, and transitive. Thus,

a notion of equivalen
e built upon Mod

s

(') = Mod

s

(�) or Mod

w

(') = Mod

w

(�)

would be an equivalen
e relation. We �nd, however, that Mod

s

(') = Mod

s

(�)

does not imply Mod

w

(') = Mod

w

(�). That Mod

w

(') = Mod

w

(�) does not im-

ply Mod

s

(') = Mod

s

(�) has already been established when we investigated the

absorption laws.

Proof

Consider the formulae ' = : � ^ : � ^ (� _ �) and � = : � ^ : � ^ � ^ �.

Then Mod

s

(') = ff��;+�;��;+�gg = Mod

s

(�) = Mod

w

(�) but Mod

w

(') =

ff��;+�;��g; f��;��;+�g; f��;+�;��;+�gg 6= Mod

w

(�) 2

Thus, we 
annot de�ne a generally appli
able equivalen
e relation for QCL based

only on the strong satisfa
tion relation.

Strong Logi
al Equivalen
e

We have to opt for a stronger de�nition 
onsidering both equivalen
es over the

weak and strong model 
lasses. Thus, if the model 
lasses of two formulae are

the same, then these formulae are equivalent, i.e. given two formulae ' and �,

then ' �

Q

� i� Mod

s

(') = Mod

s

(�) and Mod

w

(') = Mod

w

(�).

Lemma 4.4.2

Strong equivalen
e in QCL, i.e. �

Q

, is an equivalen
e relation.

Proof

To be an equivalen
e relation, �

Q

needs to be re
exive, symmetri
 and transitive.

� Re
exivity: ' �

Q

' i� Mod

s

(') = Mod

s

(') and Mod

w

(') = Mod

w

(') by

de�nition of �

Q

. This holds by re
exivity of equality.

� Symmetry: ' �

Q

� implies � �

Q

' i� (by de�nition of �

Q

) Mod

s

(') =

Mod

s

(�) and Mod

w

(') = Mod

w

(�) implies Mod

s

(�) = Mod

s

(') and

Mod

w

(�) = Mod

w

(') This holds by symmetry of equality.

� Transitivity: ' �

Q

� and � �

Q

 implies ' �

Q

 i� Mod

s

(') = Mod

s

(�)

andMod

w

(') = Mod

w

(�) andMod

s

(�) = Mod

s

( ) andMod

w

(�) = Mod

w

( )

implies Mod

s

(') = Mod

s

( ) and Mod

w

(') = Mod

w

( ). This holds by tran-

sitivity of equality.

Hen
e, the relation �

Q

is an equivalen
e relation. 2
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Note, this result is 
ompliant with Lemma 5.12 by (Hunter, 2000): For models X

and formulae ' and �, if ' is a CNF of �, then the following equivalen
es hold:

X �

s

' i� X �

s

�;

X �

w

' i� X �

w

�

Furthermore, it follows from the above investigations that if two formulae ' and

� are equivalent, i.e. ' �

Q

� then they are QC 
onsequen
es of ea
h other, i.e.

' à

Q

�. Thus, the relation à

Q

is ne
essary but not suÆ
ient for QC equivalen
e.

Further Quasi-Classi
al Equivalen
es

There are many useful equivalen
es in 
lassi
al logi
 to simplify quanti�ed formu-

lae. For example, the existential quanti�er distributes over disjun
tion in 
lassi
al

logi
. We are interested in investigating whether su
h laws hold in QCL, too.

First, we establish that the universal quanti�er distributes over 
onjun
tion, i.e.

8 x :('(x ) ^ �(x )) �

Q

8 x :'(x ) ^ 8 x :�(x )

Proof

To show this, we need to establish that

E �

s

8 x :('(x ) ^ �(x )) i� E �

s

8 x :'(x ) ^ 8 x :�(x ) and

E �

w

8 x :('(x ) ^ �(x )) i� E �

w

8 x :'(x ) ^ 8 x :�(x )

E �

s

8 x :('(x ) ^ �(x ))

i� ffor all assignments Ag

(E ;A) �

s

8 x :('(x ) ^ �(x ))

i� ffor all x -variant assignments Bg

(E ;B) �

s

' ^ �

i�

(E ;B) �

s

' and (E ;B) �

s

�

i�

(E ;A) �

s

8 x :'(x ) and (E ;A) �

s

8 x :�(x )

i�

(E ;A) �

s

8 x :'(x ) ^ 8 x :�(x )

i�

E �

s

8 x :'(x ) ^ 8 x :�(x )

The same holds for �

w

. 2
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The next rule is parti
ularly useful when simplifying pre
onditions in Z. We

establish, the existential quanti�er distributes over disjun
tion, i.e.

9 x :('(x ) _ �(x )) �

Q

9 x :'(x ) _ 9 x :�(x )

Proof

We need to show that

E �

s

9 x :('(x ) _ �(x )) i� E �

s

9 x :'(x ) _ 9 x :�(x ) and

E �

w

9 x :('(x ) _ �(x )) i� E �

w

9 x :'(x ) _ 9 x :�(x )

E �

s

9 x :('(x ) _ �(x ))

i� ffor all assignments Ag

(E ;A) �

s

9 x :('(x ) _ �(x ))

i� ffor some x -variant assignment Cg

(E ;C ) �

s

' _ �

E �

s

9 x :'(x ) _ 9 x :�(x )

i� ffor all assignments Ag

(E ;A) �

s

9 x :'(x ) _ 9 x :�(x )

i� ffor some x -variant assignment Bg

(E ;B) �

s

' _ 9 x :�(x )

i�

(E ;B) �

s

9 x :�(x ) _ '

i� ffor some x -variant assignment C g

(E ;C ) �

s

� _ '

i�

(E ;C ) �

s

' _ �

The proof of the weak satisfa
tion relation is slightly simpler be
ause disjun
tion

is appli
able for formulae. 2

Other logi
al equivalen
es that hold are

9 x :('(x ) ^ �) �

Q

9 x :'(x ) ^ �, provided x not in �

8 x :('(x ) _ �) �

Q

8 x :'(x ) _ �, provided x not in �

9 x :('(x )) �) �

Q

8 x :'(x )) �, provided x not in �

8 x :(') �(x )) �

Q

') 8 x :�(x ), provided x not in '

9 x :(') �(x )) �

Q

') 9 x :�(x ), provided x not in '
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4.5 Summary

In this 
hapter we introdu
ed the notion of para
onsisten
y as a means to derive

non-trivial 
on
lusions from in
onsistent information. We presented brie
y dif-

ferent ways of weakening 
lassi
al logi
 to develop a para
onsistent logi
. Then

we introdu
ed the para
onsistent logi
s FOUR, FOUR and QCL, ea
h allowing

a slightly di�erent set of 
on
lusions to be derived from in
onsistent information.

All para
onsistent logi
s weaken 
lassi
al logi
 in some way. Basi
ally, the ap-

pli
ation area determines the usefulness of any of the para
onsistent logi
s, i.e.

whi
h weakening least e�e
ts the usefulness of the 
hosen logi
. For example,

QCL allows too many 
on
lusions for the parti
ular appli
ation 
onsidered by

(da Costa et al., 1995):

John Smith is si
k. Dr. Bouvard tells him he has 
an
er (
). Dr. Pe
u
het,

however tells him he has not 
an
er (: 
). Both 
olleagues agree that If John

has got 
an
er he will die in the next three months (
 ) d). (da Costa et al.,

1995) show that using the logi
 C

+

1

it is not possible to infer If John has not got


an
er he will not die in the next three months (: 
 ) : d). This would be an

invalid inferen
e be
ause he 
ould have a 
ar a

ident. Using QCL, however, it

is possible to establish this result:


;: 
; 
 ) d ; (: 
 ) : d)

�

(
 _ : d)

�




�

; (: d)

�


losed

QCL is a relevan
e logi
 whi
h is also demonstrated by this example. Be
ause no

further information is given about other 
ir
umstan
es that might 
ause death it

is safe to 
on
lude that If John has not got 
an
er he will not die in the next three

months from 
an
er. This example demonstrates the importan
e of 
hoosing the

\right" para
onsistent logi
 for the envisioned appli
ation area.

The four-valued logi
s provide an intuitive semanti
s to 
ope with under- and

over-determined information. Thus, we strongly 
onsider their appli
ation to

handling in
onsisten
y or underde�nedness. Unfortunately, many useful equiv-

alen
es and derivation rules do not hold in these logi
s. The former is rather

serious for our appli
ation in mind be
ause spe
i�ers would need to 
hange their

style of writing spe
i�
ations. The latter in
uen
es how spe
i�
ations are anal-

ysed. This might be a smaller problem in 
omparison to the former. The main

appli
ation areas of these logi
s are information systems and logi
 programming.

We favour Hunter's quasi-
lassi
al logi
 to reason about in
onsistent spe
i�
a-

tions. QCL allows inferen
es from in
onsistent information without resulting in
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triviality. It has been designed su
h that all logi
al 
onne
tives behave 
lassi
ally,

whi
h enables an easy grasp of the meaning of a formula. It also preserves the

derivation rules known from 
lassi
al logi
, however, in QCL the order of appli-


ation is restri
ted. The role of resolution in QCL is to de
ompose 
lauses into

literals to identify those that are involved in an in
onsisten
y. QCL enables the

reasoner to distinguish between in
onsistent theories, unlike in 
lassi
al logi
.

We not only presented quasi-
lassi
al logi
 but also 
ontributed to its develop-

ment by dis
ussing the notion of logi
al equivalen
e. It turned out that the logi
al

equivalen
e relation in QCL 
annot be de�ned dire
tly in terms of the QC 
onse-

quen
e relation. Thus, we de�ned a notion of strong logi
al equivalen
e for QCL

based on strong and weak model 
lasses. We showed that several standard equiv-

alen
es hold in QCL under strong logi
al equivalen
e. We found, however, that

the absorption laws known from standard logi
 do not hold in QCL. In the next


hapter we further develop QCL by in
orporating a theory of equality between

expressions.



Chapter 5

Quasi-Classi
al Logi
 with

Equality

In the previous 
hapter we introdu
ed �rst-order quasi-
lassi
al logi
 to enable

useful, non-trivial, reasoning in the presen
e of in
onsisten
y. Many pra
ti
al

reasoning pro
esses involve the notion of equality. QCL, however, has no expli
it

way of reasoning about equality. Therefore, we extend the language of QCL by

in
orporating a theory of equality between expressions in this 
hapter.

Many relations only make sense when applied to obje
ts of parti
ular types.

For example, \taller than" does not apply to 
olours and \brighter than" not

to numbers. The equality relation, however, is universal in the sense that it

is meaningful in any domain, like the logi
al 
onne
tives. Thus, the study of

equality is generally 
onsidered to be part of logi
. Therefore, this 
hapter is of

general interest to the studies of QCL.

We have, however, also a more spe
i�
 reason to study equality in QCL. Our aim

is to use QCL to reason about formal spe
i�
ations written in the Z notation

whi
h we brie
y introdu
ed in Chapter 2. In Z, equality plays an important

role in developing spe
i�
ations. It is 
ommonly used to relate before- and after-

state variables and expressions denoting their values in a spe
i�
ation. Thus,

to formally investigate Z spe
i�
ations using QCL we need to be able to reason

about equality.

Based on the notion of equality we 
an state a useful and often applied rule for

reasoning with quanti�
ations. In its most 
ommon use it says that if we have

an existentially quanti�ed statement, part of whi
h gives a value for the bound

variable, then the quanti�
ation 
an be removed and the variable is repla
ed by

its known value wherever it appears. This rule is 
alled the one-point rule and

it is often used in the simpli�
ation of pre
onditions in Z. Due to its importan
e

we dis
uss this rule in the 
ontext of QCL towards the end of this 
hapter.

103
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5.1 Introdu
tion

Equality has often been re
ognised to be a fundamental logi
al predi
ate be
ause

it is meaningful no matter what domain of dis
ourse is 
onsidered. This distin-

guishes equality from most other relations that are only appli
able in restri
ted


ir
umstan
es. For example, the predi
ate \is red" makes no sense on numbers or

the predi
ate \to the right of" is not meaningful when applied to 
olours. Equal-

ity shares a universality with the logi
al 
onne
tives that makes it generally part

of the study of logi
.

Equality represents identity, i.e. two things are equal if they denote the same

obje
t. For example, \3+3" equals \6" and \the letter o

urring in the English

alphabet after B" equals \C". Some term t is identi
al to some other term s,

often denoted t = s, if we 
annot distinguish between them (with respe
t to all

properties). This is known as the Prin
iple of the Indis
ernibility of Identi
als,

or Leibniz's Law. If two things 
annot be distinguished then it follows the re-

pla
ement prin
iple whi
h states that we 
an repla
e any o

urren
e of a term t

in a statement by its equal s.

Equality is a two-pla
e relation and it has some basi
 properties. First, everything

is equal to itself, i.e. the equality relation is re
exive. Se
ond, the order of the

terms in the equality relation does not matter, i.e. it is symmetri
. Third, the

property of transitivity: given two things a and b are equal and two things b and


 are equal then a and 
 are equal, too. Finally, if we apply a fun
tion to two

equal obje
ts then the result will also be equal. All the latter properties 
an be

derived using re
exivity and the repla
ement prin
iple.

5.1.1 Motivation

Our motivation for studying equality arises from the aim to reason about formal

spe
i�
ations written in the Z notation using QCL. In Z, equalities are 
ommonly

used to express the relation between before- and after-states variables and expres-

sions denoting their values. Formal reasoning about Z spe
i�
ations involves, in

parti
ular, reasoning about su
h equalities. An important 
onsequen
e of having

a notion of equality is the ability to eliminate universal and existential quanti�-


ation. The latter is know as the one-point rule and it is a frequently used to

analyse Z spe
i�
ations, in parti
ular when simplifying pre
onditions.

In the 
ontext of an in
onsisten
y tolerant logi
 handling equality 
ould be
ome


umbersome. For example, what does it mean to say that two numbers \1" and

\2" are equal, even though we know from mathemati
s that they are not? How

mu
h does su
h in
onsisten
y in
uen
e the reasoning about the given theory?

We address these questions at the end of this 
hapter leading to future work on

equality and QCL.
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5.1.2 Outline

This 
hapter is stru
tured as follows. In Se
tion 5.2 we introdu
e the syntax and

semanti
s for equality, in
luding the equality axioms and some investigation of

using these axioms as extra assumptions in the reasoning pro
ess using QCL.

Se
tion 5.3 provides the basi
 notations to show that we are dealing in fa
t with

equality. We present extra tableau rules for handling equality in QCL in Se
tion

5.4 and prove their soundness and 
ompleteness in Se
tion 5.5. The one-point

rule for QCL is dis
ussed in Se
tion 5.6. This 
hapter 
on
ludes with a short

dis
ussion and summary in Se
tion 5.7.

5.2 Equality

In this se
tion we present some initial thoughts on equality. This in
ludes the

extension of the syntax with a spe
ial predi
ate symbol to denote equality and

some initial 
onsiderations of the semanti
s. These are made more 
on
rete by

presenting a set of axioms 
lassi
ally required for reasoning about equality. We

investigate the e�e
t of these axioms in the 
ontext of QCL by 
onsidering them as

extra assumptions in the set of formulae given as the premise of a QC derivation.

5.2.1 Syntax and Semanti
s

The syntax of quasi-
lassi
al logi
 with equality is the same as that of QCL but

with the addition of the designated two-pla
e relation symbol � for denoting the

equality relation. Note, we do not use the symbol = to avoid 
onfusion between

obje
t language and meta-language. Generally, we use the � symbol in in�x

notation, following the standard 
onvention. For example, given two terms t and

u we write t � u instead of � (t ; u).

Giving the extra symbol � does not yet enable us to reason about equality. For

example, given two 
onstant symbols a and b and a predi
ate symbol P , then

the following 
onsequen
e fa � b;P(a)g �

Q

P(b) 
annot be dire
tly established

in QCL. First, we need to ensure that the symbol � really denotes equality. We

introdu
ed the notion of a quasi-
lassi
al model. Now we are interested in those

models only in whi
h the � symbol is treated as the equality relation.

De�nition 5.2.1 (Normal model)

A model E is 
alled normal provided the relation symbol � is interpreted as the

equality relation over the domain of E .

The aim is to �nd a 
onsequen
e relation �

Q

�

where � �

Q

�

' is like � �

Q

',

ex
ept it takes equality into a

ount, i.e. normal models. This implies, that if
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� �

Q

' then � �

Q

�

'. The 
onverse, however, is not true. For example, let

� = fa � b;P(a)g, then we want � �

Q

�

P(b), but not � �

Q

P(b).

5.2.2 Equality Axioms

One of the features of QCL is that assumptions 
ontributing to the reasoning

pro
ess need to be made expli
it. For example, fa � b;P(a)g �

Q

P(b) fails

be
ause an important assumption is missing. If we add the predi
ate 8 x ; y :(x �

y ) (P(x ) ) P(y))) to the set of assumptions then we 
an infer P(b) using

QCL. The set of assumptions we need to reason about equality are 
alled the

equality axioms.

The basi
 equality axioms are re
exivity and repla
ement. Given those, we are

able to show that equality is an equivalen
e relation, i.e. it is re
exive, symmetri


and transitive. Basi
ally, we follow in our presentation (Fitting, 1996, p. 276 �).

De�nition 5.2.2 (Re
exivity)

ref is the senten
e 8 x :x � x .

The senten
e ref 
aptures the re
exivity property of equality. Next, we de�ne

the repla
ement property. Note, we de�ne two sets of repla
ement axioms, one

for fun
tion symbols and one for predi
ate symbols.

De�nition 5.2.3 (Fun
tion repla
ement axiom)

Let f be an n-pla
e fun
tion symbol. The following senten
e is a repla
ement

axiom for f : 8 v

1

: : : v

n

8w

1

: : :w

n

:(v

1

� w

1

^ : : : ^ v

n

� w

n

) ) f (v

1

; : : : ; v

n

) �

f (w

1

; : : : ;w

n

).

For example, if � is a two-pla
e fun
tion symbol of the language then

8w ; x ; y ; z :(x � z ^ y � w)) (x � y � z � w) is a parti
ular fun
tion repla
e-

ment axiom, say A. Assuming 
 is a 
onstant symbol, we show fA; ref g �

Q

8 x ; z :(x � z )) (x � 
 � z � 
):
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8w ; x ; y ; z :((x � z ^ y � w)) x � y � z � w),

8 x :x � x ,

(8 x ; z :(x � z ) x � 
 � z � 
))

�

(a � b ) a � 
 � b � 
)

�

(: (a � b))

�

,(a � 
 � b � 
)

�

(a � b ^ 
 � 
)) a � 
 � b � 
, 
 � 


: (a � b) _ : (
 � 
) _ a � 
 � b � 


: (a � b) _ : (
 � 
)

: (a � b)


losed

(
 � 
)

�


losed

a � 
 � b � 



losed

In a �rst-order language we are not able to quantify over fun
tion symbols nor

predi
ate symbols. Thus, we do it indire
tly by de�ning the set of all fun
tion

repla
ement axioms.

De�nition 5.2.4

For a language L, fun(L) is the set of repla
ement axioms for all fun
tion symbols

of L. Members of fun(L) are 
alled fun
tion repla
ement axioms.

Note, there is one fun
tion repla
ement axiom for ea
h fun
tion symbol of the

language. Therefore, if the language has in�nitely many fun
tion symbols, the set

of fun
tion repla
ement axioms is also in�nite. We de�ned repla
ement only for

the simplest kind of terms but repla
ement for more 
ompli
ated terms follows.

For example,

8 x ; y :(x � y ) f (x ) � f (y)),

8 x ; y :(x � y ) g(x ) � g(y)),

(8 x ; y :(x � y ) f (g(x )) � f (g(y))))

�

(a � b ) f (g(a)) � f (g(b)))

�

(: (a � b))

�

,(f (g(a)) � f (g(b)))

�

g(a) � g(b)) f (g(a)) � f (g(b))

: (g(a) � g(b)) _ f (g(a)) � f (g(b))

(g(a) � g(b))

�

8 x ; y :(x � y ) g(x ) � g(y))

a � b ) g(a) � g(b)

: (a � b)


losed

g(a) � g(b)


losed

f (g(a)) � f (g(b))


losed
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After we have 
onsidered fun
tion symbols, we turn to the repla
ement property

of relation symbols.

De�nition 5.2.5 (Relation repla
ement axiom)

Let R be an n-pla
e relation symbol. The following senten
e is a repla
ement ax-

iom for R: 8 v

1

: : : v

n

8w

1

: : :w

n

:((v

1

� w

1

^ : : : ^ v

n

� w

n

) ) (R(v

1

; : : : ; v

n

) )

R(w

1

; : : : ;w

n

))).

We de�ned � to be a two-pla
e relation symbol. Its repla
ement axiom is

8 v

1

; v

2

;w

1

;w

2

:((v

1

� w

1

^ v

2

� w

2

)) (v

1

� v

2

) w

1

� w

2

)) whi
h we denote by

B for now. It follows the symmetry property for �, i.e. fB ; ref g �

Q

8 x ; y :(x �

y ) y � x ) We 
an also show that transitivity is a 
onsequen
e of B and ref ,

i.e. fB ; ref g �

Q

8 x ; y ; z :((x � y ^ y � z )) x � z ).

Again, be
ause we 
annot quantify over the relation symbols in a �rst-order

language we 
olle
t all relation repla
ement axioms in an appropriate set.

De�nition 5.2.6

For a language L, rel(L) is the set of repla
ement axioms for all relation symbols

of L. Members of rel(L) are 
alled relation repla
ement axioms.

Re
exivity and the repla
ement axioms form together the set of all the equality

axioms.

De�nition 5.2.7 (Equality axioms)

For a language L, by eq(L) we mean the set fref g [ fun(L) [ rel(L). Members

of this set are 
alled equality axioms for L.

In standard �rst-order predi
ate logi
 the equality axioms are exa
tly what is re-

quired to redu
e the problems about logi
 with equality to more general questions

about �rst-order logi
. This relation is expressed by the following theorem:

Let L be a �rst-order language and � a set of senten
es over L. Then

� �

�

' if and only if � [ eq(L) � '

where �

�

is the 
lassi
al 
onsequen
e relation that takes equality into a

ount,

i.e. X �

�

S provided X holds in every normal model in whi
h S holds. The

question that arises is whether this also 
arries over to quasi-
lassi
al logi
, i.e.

whether we 
an establish:

� �

Q

�

' if and only if � [ eq(L) �

Q

'
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5.2.3 Equality and Strong Satis�ability

We developed a set of equality axioms to support reasoning about equality. To

gain some more insight into reasoning with equality we investigate the e�e
t of

adding these axioms to the set of assumptions. QCL is monotoni
, thus adding

these axioms to the set of assumptions would not a�e
t previous inferen
es.

Re
all the de�nition of QC 
onsequen
e: given a set of assumptions � and a

formula ', then ' is a 
onsequen
e of �, denoted � �

Q

', if and only if for all

models E , if E strongly satis�es every formula in � then E must weakly satisfy

'. Now we add the equality axioms, i.e. we are interested in � [ eq(L) �

Q

'.

A

ording to the de�nition of QC 
onsequen
e the model E must now strongly

satisfy the equality axioms. Thus, for any fun
tion symbol f and relation symbol

� we have

E �

s

eq(L)

� fDe�nition of the Equality Axioms, Consider any assignment Ag

(E ;A) �

s

8 x :(x � x ) and

(E ;A) �

s

8 x ; y :(x � y ) f (x ) � f (y)) and

(E ;A) �

s

8 x ; y :(x � y ) (�(x )) �(y)))

� fQuanti�
ation and Impli
ation, B is x - and y-variant of Ag

(E ;B) �

s

s � s and

(E ;B) �

s

: (s � t) _ f (s) � f (t) and

(E ;B) �

s

: (s � t) _ : �(s) _ �(t)

Using the de�nition of strong satis�ability for disjun
tion and 
onjun
tion we

break these three 
onditions further down. Then, be
ause � is an atomi
 relation,

we 
an move on to set membership of relations in the model. Using several laws

of formal logi
 we derive

+s � s 2 E

and

�s � t 2 E or +f (s) � f (t) 2 E and

if +s � t 2 E then +f (s) � f (t) 2 E and

if �f (s) � f (t) 2 E then �s � t 2 E

and

�s � t 2 E or ��(s) 2 E or +�(t) 2 E and

if +s � t 2 E then

��(s) 2 E or +�(t) 2 E and

if��(t) 2 E then ��(s) 2 E and
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if +�(s) 2 E then

�s � t or +�(t) 2 E and

if +s � t 2 E then +�(t) 2 E and

if ��(t) 2 E then

�s � t 2 E or ��(s) 2 E and

if +�(s) 2 E then �s � t 2 E

The equality axioms restri
t the set of possible models to those that ful�ll the

above 
onditions. For example, ea
h model E must 
ontain the re
exivity axiom

for every term s. Consider the atomi
 formula �(
), where 
 is some 
onstant,

then the 
lass of all strong models satisfying �(
) and the equality axioms is

Mod

s

(eq(L) [ f�(
)g) = ff+
 � 
;+�(
)g; f+
 � 
;+�(
);�
 � 
g; f+
 �


;+�(
);��(
)g; f+
 � 
;+�(
);�
 � 
;��(
)gg

Furthermore, 
onditions like if +s � t 2 E then +f (s) � f (t) 2 E are similar

to those used by (Fitting, 1996, p. 280f) to 
onstru
t the �rst-order Hintikka sets

with equality. Note, the 
onditions for handling inequality are made expli
it.

This was expe
ted be
ause a formula is de
oupled from its negation in QCL

and thus equality should be de
oupled from inequality. These derived 
onditions

guide the further development of our theory of equality for QCL.

5.3 Equality and Normal Models

Quasi-
lassi
al logi
 has two satis�ability relations, 
alled strong and weak sat-

isfa
tion. To add equality to QCL we restri
t both satis�ability relations. We

show that these restri
tions are suÆ
ient su
h that any model satisfying a formula

strongly or weakly is a normal model.

De�nition 5.3.1 (Strong satisfa
tion with equality)

Given de�nition 4.4.7 of the strong satisfa
tion relation. For any literal �, terms

s and t and fun
tion symbol f we require the following properties to hold for

every pair (E ;A):

(E ;A) �

s

t � t

(E ;A) �

s

s � t and (E ;A) �

s

�(s) implies (E ;A) �

s

�(t)

(E ;A) �

s

: (f (s) � f (t)) implies (E ;A) �

s

: (s � t)

(E ;A) �

s

�(s) and (E ;A) �

s

: �(t) implies (E ;A) �

s

: (s � t)

Similar, we extend the notion of weak satisfa
tion to handle equality.
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De�nition 5.3.2 (Weak satisfa
tion with equality)

Given de�nition 4.4.8 of the weak satisfa
tion relation. For any literal �, terms s

and t and fun
tion symbol f we require the following properties to hold for every

pair (E ;A):

(E ;A) �

w

t � t

(E ;A) �

w

s � t and (E ;A) �

w

�(s) implies (E ;A) �

s

�(t)

(E ;A) �

w

: (f (s) � f (t)) implies (E ;A) �

w

: (s � t)

(E ;A) �

w

�(s) and (E ;A) �

w

: �(t) implies (E ;A) �

w

: (s � t)

We have to 
onvin
e ourselves that these 
onditions are suÆ
ient, i.e. we need to

show that they sele
t only models that are normal. Sin
e the de�nitions above

use only literals we 
an unfold them to 
onsider the models dire
tly. Then we

have

De�nition 5.3.3 (�-
losed)

Any model E whi
h satis�es the following 
onditions is said to be �-
losed.

1. for any term t in L;+t � t 2 E

2. if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E and +�(s

1

; : : : ; s

n

) 2 E

then +�(t

1

; : : : ; t

n

) 2 E

3. if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E and ��(s

1

; : : : ; s

n

) 2 E

then ��(t

1

; : : : ; t

n

) 2 E

4. if �f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

then �s

1

� t

1

2 E or : : : or �s

n

� t

n

2 E

5. if +�(s

1

; : : : ; s

n

) 2 E and ��(t

1

; : : : ; t

n

) 2 E

then �s

1

� t

1

2 E or : : : or �s

n

� t

n

2 E

for any literal �, fun
tion symbols f and terms s

1

; : : : ; s

n

and t

1

; : : : ; t

n

in L :

The literal � 
an be the two-pla
e �-relation as well. In that 
ase the se
ond


ondition, for example, instantiates to:

if +s

1

� t

1

2 E and +s

2

� t

2

2 E and +� (s

1

; s

2

) 2 E then + � (t

1

; t

2

) 2 E .

Note the ways of writing the �-relation symbol in in�x and pre�x notation to

indi
ate the di�erent intention in usage.

Lemma 5.3.1

The relation � is an equivalen
e relation in an �-
losed model.

Proof

We show that � is re
exive, transitive, and symmetri
, i.e. for every �-
losed

model E it holds

+t � t 2 E

+s � t 2 E i� +t � s 2 E

+s � t 2 E and +t � u 2 E implies +s � u 2 E
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Re
exivity: Holds by de�nition.

Symmetry: We have +s � s 2 E , i.e. +� (s; s) 2 E , and by assumption of

symmetry +s � t 2 E . Thus we have +s � t 2 E and +� (s; s) 2 E and

therefore by de�nition it follows +� (t ; s) 2 E , i.e. +t � s 2 E . The other

dire
tion is similar.

Transitivity: By assumption of transitivity we have +s � t 2 E and +t � u 2 E ,

i.e. we have +s � t 2 E and +� (t ; u) 2 E . Then by symmetry and de�nition

it follows +� (s; u) 2 E , i.e. +s � u 2 E . 2

The given repla
ement 
ondition in the de�nition is suÆ
ient to reason about

equality and fun
tion symbols as well, i.e. it holds the following 
ongruen
e for

any model E , terms s

1

; : : : ; s

n

and t

1

; : : : ; t

n

and fun
tion symbol f in L:

if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E

then +f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

We have +f (s

1

; : : : ; s

n

) � f (s

1

; : : : ; s

n

) 2 E by re
exivity, i.e. in pre�x nota-

tion that is +� (f (s

1

; : : : ; s

n

); f (s

1

; : : : ; s

n

)) 2 E and by assumption we have

+s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E . Thus it follows by de�nition

+� (f (s

1

; : : : ; s

n

); f (t

1

; : : : ; t

n

)) 2 E , whi
h is +f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

in in�x notation.

Be
ause � is an equivalen
e relation on the domain U (L) of the model E that

is �-
losed, it partitions its domain into disjoint equivalen
e 
lasses. We denote

the equivalen
e 
lass 
ontaining the 
losed term t with hhtii. Formally,

hhtii = fu 2 U (L) j +t � u 2 Eg

Lemma 5.3.2

For terms t and u and a model E , hhtii = hhuii if and only if +t � u 2 E .

Proof

(!) +t � t 2 E by re
exivity, thus t 2 hhtii; by assumption hhtii = hhuii it

follows that t 2 hhuii; thus +u � t 2 E and by symmetry +t � u 2 E .

( ) Let v 2 hhtii then +t � v 2 E and by symmetry +v � t 2 E ; it follows

by assumption +t � u 2 E and transitivity that +v � u 2 E and by

symmetry +u � v 2 E , i.e. v 2 hhuii; thus hhtii � hhuii. It follows

similarly that hhuii � hhtii; hen
e hhtii = hhuii.

2

Let U

0

(L) be the set of all equivalen
e 
lasses over �, i.e.

U

0

(L) = fhhuii j u 2 U (L)g
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We take U

0

(L) to be the domain of a new model E

0

. Next, we de�ne a new

interpretation for the model E

0

by relating the new interpretation [[:℄℄ to the

already established interpretation [:℄. First, we 
onsider 
onstant and fun
tion

symbols.

De�nition 5.3.4

Ground terms in L are interpreted as follows, where [[:℄℄ is the new interpretation

relation.

[[
℄℄ = hh
ii, for any 
onstant symbol 
.

[[f ℄℄(hht

1

ii; :::; hht

n

ii) = hhf (t

1

; : : : ; t

n

)ii for some fun
tion symbol f and

terms t

1

; : : : ; t

n

.

Re
all that for any interpretation I it holds (f (t

1

; : : : ; t

n

))

I

= f

I

((t

1

)

I

; :::; (t

n

)

I

)

and, in parti
ular, [[f (t

1

; : : : ; t

n

)℄℄ = [[f ℄℄([[t

1

℄℄; :::; [[t

n

℄℄).

We need to 
he
k whether these de�nitions are well-
hosen be
ause the behaviour

of [[f ℄℄ on the 
lass hht

i

ii of ground terms depends on t

i

, a member of the 
lass.

We show: For ground terms t

1

; : : : ; t

n

and u

1

; : : : ; u

n

, if hht

1

ii = hhu

1

ii and

... and hht

n

ii = hhu

n

ii then hhf (t

1

; : : : ; t

n

)ii = hhf (u

1

; : : : ; u

n

)ii. This follows

be
ause hhf (t

1

; : : : ; t

n

)ii = [[f ℄℄(hht

1

ii; :::; hht

n

ii); using the assumptions we get

[[f ℄℄(hhu

1

ii; :::; hhu

n

ii) whi
h is equal to hhf (u

1

; : : : ; u

n

)ii.

Lemma 5.3.3

For a 
losed term t of L it holds that [[t ℄℄ = hh[t ℄ii.

Proof

We use indu
tion over the stru
ture of t to show this.

Base 
ase.

Consider the term t is a 
onstant, i.e. t = 
: [[t ℄℄ = [[
℄℄ = hh
ii = hh[
℄ii = hh[t ℄ii

Indu
tion step. Assume it holds for ground terms t

1

; : : : ; t

n

. We show it also

holds for terms t = f (t

1

; : : : ; t

n

): [[t ℄℄ = [[f (t

1

; : : : ; t

n

)℄℄ = [[f ℄℄([[t

1

℄℄; : : : ; [[t

n

℄℄) =

[[f ℄℄(hht

1

ii; : : : ; hht

n

ii) = hhf (t

1

; : : : ; t

n

)ii = hhtii 2

This implies that the model we 
onstru
t is 
anoni
al, i.e. that the member hhtii

of the domain U

0

(L) will have the 
losed term t as a name.

Next, we 
onsider relation symbols. We de�ne

De�nition 5.3.5

For a relation symbol � and terms t

1

; : : : ; t

n

it holds

+�(hht

1

ii; :::; hht

n

ii) 2 E

0

i� +�(t

1

; : : : ; t

n

) 2 E

��(hht

1

ii; :::; hht

n

ii) 2 E

0

i� ��(t

1

; : : : ; t

n

) 2 E
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In parti
ular, it holds +hht

1

ii � hht

2

ii 2 E

0

i� +t

1

� t

2

2 E . Thus, the model E

0

we 
onstru
t is normal be
ause +t

1

� t

2

2 E i� hht

1

ii = hht

2

ii, i.e. the symbol �

is interpreted as equality.

Again, we need to demonstrate that the de�nition is well-
hosen be
ause the

satisfa
tion of a relation � over equivalen
e 
lasses depends on its satisfa
tion over

parti
ular members. Thus, for ground terms t

1

; : : : ; t

n

and u

1

; : : : ; u

n

, if hht

1

ii =

hhu

1

ii and ... and hht

n

ii = hhu

n

ii then +�(t

1

; : : : ; t

n

) 2 E i� +�(u

1

; : : : ; u

n

) 2 E .

This holds be
ause +�(t

1

; : : : ; t

n

) 2 E i� +�(hht

1

ii; :::; hht

n

ii) 2 E

0

by de�nition;

using the assumptions it follows +�(hhu

1

ii; :::; hhu

n

ii) 2 E

0

and by de�nition

+�(u

1

; : : : ; u

n

) 2 E . A similar property 
an be established for negative obje
ts,

too.

Given is A : Var ! U (L), the assignment in a model E . We introdu
e A

0

: Var !

U

0

(L) the assignment in E

0

su
h that for a variable x it holds x

A

0

= hhx

A

ii. Then

it follows

Lemma 5.3.4

For a term t of L, not ne
essarily 
losed, it holds that [[t ℄℄

A

0

= hh[t ℄

A

ii.

Proof

We use indu
tion over the stru
ture of t to show this.

Base 
ases. Consider the term t is a 
onstant, i.e. t = 
: [[t ℄℄

A

0

= [[
℄℄

A

0

= [[
℄℄ =

hh
ii = hh[
℄

A

ii = hh[t ℄

A

ii, or a variable, i.e. t = x : [[t ℄℄

A

0

= [[x ℄℄

A

0

= x

A

0

=

hhx

A

ii = hh[t ℄

A

ii

Indu
tion step. Assume it holds for terms t

1

; : : : ; t

n

. We show it also holds

for terms t = f (t

1

; : : : ; t

n

): [[t ℄℄

A

0

= [[f (t

1

; : : : ; t

n

)℄℄

A

0

= [[f ℄℄([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) =

[[f ℄℄(hh[t

1

℄

A

ii; : : : ; hh[t

n

℄

A

ii) = hhf ([t

1

℄

A

; : : : ; [t

n

℄

A

)ii = hh[f (t

1

; : : : ; t

n

)℄

A

ii = hh[t ℄

A

ii

2

Finally, we need to de�ne the variants of the weak and strong satisfa
tion rela-

tions. Basi
ally, they are similar to the standard de�nitions. The major di�eren
e

o

urs in the atomi
 
ase:

(E

0

;A

0

) �

s

�(t

1

; : : : ; t

n

) i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

s

: �(t

1

; : : : ; t

n

) i� ��([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

w

�(t

1

; : : : ; t

n

) i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

w

: �(t

1

; : : : ; t

n

) i� ��([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

Lemma 5.3.5

For any formula ' and any assignment A in an �-
losed model E it holds

(E ;A) �

s

' i� (E

0

;A

0

) �

s

'

(E ;A) �

w

' i� (E

0

;A

0

) �

w

'

i.e. it holds for every formula that it is satis�able in a model E if and only if it

is also satis�able in a normal model E

0

.
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Proof

We use indu
tion over the stru
ture of ' to show this.

� Base 
ases.

(a) Let ' = �(t

1

; : : : ; t

n

), t

1

; : : : ; t

n

terms. Then (E

0

;A

0

) �

s

�(t

1

; : : : ; t

n

)

i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

i� +�(hh[t

1

℄

A

ii; : : : ; hh[t

n

℄

A

ii) 2 E

0

i�

+�([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E i� (E ;A) �

s

�(t

1

; : : : ; t

n

). The 
ase for the

weak satisfa
tion relation follows similarly.

(b) Let ' = : �(t

1

; : : : ; t

n

). Then it follows similarly as for ' = �(t

1

; : : : ; t

n

)

but using negative obje
ts �� instead of positive obje
ts +�.

� Indu
tion step.

Suppose it holds for formulae �,  and �. We show that it also holds for

more 
ompli
ated formulae.

The propositional 
ases are straightforward.

(^ ) For example: (E

0

;A

0

) �

s

� ^  i� (E

0

;A

0

) �

s

� and (E

0

;A

0

) �

s

 , it

follows by the indu
tion hypothesis (E ;A) �

s

� and (E ;A) �

s

 i�

(E ;A) �

s

� ^  . The 
ase for weak satisfa
tion follows similarly.

(_

w

) The disjun
tive 
ase needs to be treated separately, be
ause strong

and weak satisfa
tion are de�ned di�erently for disjun
tive formulae.

First, the weak satisfa
tion relation: (E

0

;A

0

) �

w

� _  i� (E

0

;A

0

) �

w

� or (E

0

;A

0

) �

w

 , by hypothesis (E ;A) �

w

� or (E ;A) �

w

 i�

(E ;A) �

w

� _  .

(_

s

) Strong satisfa
tion for disjun
tion is de�ned for literals only. Hen
e,

for literals �

1

; : : : ; �

n

, (E

0

;A

0

) �

s

�

1

_ : : : _ �

n

i� [[(E

0

;A

0

) �

s

�

1

or : : : or (E

0

;A

0

) �

s

�

n

℄ and 8 i s.t. 1 � i � n [(E

0

;A

0

) �

s

: �

i

implies (E

0

;A

0

) �

s


(�

1

_ : : : _ �

n

; �

i

)℄℄.

By base 
ase [[(E ;A) �

s

�

1

or : : : or (E ;A) �

s

�

n

℄ and 8 i s.t. 1 �

i � n [(E ;A) �

s

: �

i

implies (E ;A) �

s


(�

1

_ : : : _ �

n

; �

i

)℄℄ and by

de�nition of strong satisfa
tion (E ;A) �

s

�

1

_ : : : _ �

n

.

The other propositional 
ases follow similarly.

We 
onsider one of the quanti�er 
ases (the others follow similarly).

(9

!

) Suppose (E ;A) �

s

(9 x :�) _  . Then for some x -variant B of A,

(E ;B) �

s

� _  . By the indu
tion hypothesis, (E

0

;B

0

) �

s

� _  .

But B

0

is an x -variant of A

0

, and so (E

0

;A

0

) �

s

(9 x :�) _  . Similar for

weak satisfa
tion.

(9

 

) Suppose (E

0

;A

0

) �

s

(9 x :�) _  . Then for some x -variant V of A

0

,

(E

0

;V ) �

s

� _  . De�ne an assignment B in E as follows: On variables

other than x , B agrees with A, and on x , x

A

is some arbitrary member

of x

V

(x

V

is a member of U

0

(L), hen
e it is an equivalen
e 
lass and

thus we 
an 
hoose any member). Then B is an x -variant of A, and it
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also easy to see that B

0

= V . Then (E

0

;B

0

) �

s

� _  . so by indu
tion

hypothesis (E ;B) �

s

� _  , and therefore (E ;A) �

s

(9 x :�) _  .

Similarly for weak satisfa
tion.

2

5.4 Equality Tableau Rules

The aim of this 
hapter is to develop a proof pro
edure in
orporating reasoning

about equalities. Basi
ally, it is suÆ
ient to add the equality rules to the set

of assumptions. However, we 
an also in
orporate equality rules expli
itly into

the tableau method. Adding equality to the semanti
 tableau for 
lassi
al logi


has been dis
ussed, for example, by (Reeves, 1987), (Fitting, 1996) and (Be
kert,

1997).

De�nition 5.4.1 (Tableau Equality Rules)

The following are the EQ-rules for QC semanti
 tableau, where s and t are terms,

f is a fun
tion symbol and � is a literal.

Re
exivity:

t � t

Repla
ement:

�(s)

s � t

�(t)

Inequality rules:

: (f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

))

: (s

1

� t

1

) j : : : j : (s

n

� t

n

)

�(s

1

; : : : ; s

n

)

: �(t

1

; : : : ; t

n

)

: (s

1

� t

1

) j : : : j : (s

n

� t

n

)

Note, the tableau rule

s � t

f (s) � f (t)

is impli
itly given due to the re
exivity and

repla
ement rules, i.e. by re
exivity we have f (s) � f (s) and by assumption s � t

thus it follows by repla
ement f (s) � f (t).

In a simpli�ed notation, the tableau U-Rules are given by

(t � t)

�


losed

(�(t))

�

(�(s))

�

j (s � t)

�

(f (s) � f (t))

�

(s � t)

�

(: (s � t))

�

(�(s))

�

j (: �(t))

�

but they are dismissable be
ause ea
h 
an be simulated by the EQ-rules for the

QC semanti
 tableau as introdu
ed above. First, if we derived (t � t)

�

in some

bran
h then we 
an 
lose that bran
h by using the re
exivity rule to add t � t to
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the end of it. After applying the se
ond rule we need to establish �(s) and s � t

to 
lose ea
h bran
h. However, given both we 
an apply the repla
ement rule

to derive �(t) whi
h 
loses the bran
h with (�(t))

�

in it. Applying the fun
tion

U-rule results in showing s � t to 
lose it. However, given this and re
exivity we

obtain f (s) � f (t) whi
h would 
lose the bran
h, too. Finally, the last rule 
an

be simulated using the inequality rule for relation symbols. Consequently we do

not require the use of the equality U-rules.

We illustrate the use of the tableau rules with a 
ouple of examples. The following

reasoning tree shows an example of how to use equality and fun
tion symbols.

We show f8 x ; y :(x � y ^ f (y) � g(y))g `

Q

�

8 x ; y :(h(f (x )) � h(g(y))).

8 x ; y :(x � y ^ f (y) � g(y)); (8 x ; y :(h(f (x )) � h(g(y))))

�

a � b; f (b) � g(b)

f (a) � g(b)

h(f (a)) � h(f (a))

h(f (a)) � h(g(b))

(h(f (a) � h(g(b)))

�


losed

Next, we use equality, fun
tion symbols and predi
ates. To 
onstru
t the tree

below we apply symmetry and transitivity. We already established the validity

of these rules on the semanti
 level but will not repeat this argument here. How-

ever, using both properties of equality shortens the proof 
onsiderably. We show

f8 x ; y :(f (x ) � g(y)) p(x ; y)); f (a) � 
; g(b) � 
g `

Q

�

p(a; b).

8 x ; y :(f (x ) � g(y)) p(x ; y)); f (a) � 
; g(b) � 
; (p(a; b))

�

f (a) � g(b)) p(a; b)

: (f (a) � g(b)) _ p(a; b)

(f (a) � g(b))

�

f (a) � 
; g(b) � 


f (a) � g(b)


losed

p(a; b)


losed
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5.5 Soundness and Completeness

We need to establish the link between the QC tableau method and the QCL

semanti
s. We need to show that we 
an only prove with the QC semanti


tableau method what is satis�able by QCL, i.e. soundness, and that we 
an

prove everything that is satis�able, i.e. 
ompleteness. Hunter showed that a set

of assumptions � implies a 
on
lusion ' by QCL (� �

Q

'), if and only if a QC

tableau for � and 
on
lusion ' is 
losed (� `

Q

'). We extend this proof to QCL

with equality.

Theorem 5.5.1

For any set of formulae � � L and any formula ' 2 L, a quasi-
lassi
al tableau

with equality for � and ' is 
losed if and only if � �

Q

�

'.

The basi
 idea of the proof relies on the fa
t that a tableau method is sound and


omplete if ea
h tableau rule is sound and 
omplete. Hunter already uses this

prin
iple thus we have little to 
hange from the 
ase without equality to the 
ase

with equality.

Soundness of the Tableau Rules

Basi
ally, we need to show that the appli
ation of a tableau rule or equality rule

to a tableau that is satis�able in a normal model will produ
e another tableau

that is satis�able in the same normal model.

Lemma 5.5.1 (Soundness S-rules)

Ea
h tableau rule given in de�nition 4.4.11 and de�nition 5.4.1 is sound in the

following sense: If � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula

below the line, and E

0

is a normal model su
h that E

0

�

s

�, then E

0

�

s

'.

Proof

A

ording to (Hunter, 2001), the tableau rules in de�nition 4.4.11 are sound in

the sense that if � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula

below the line, and E is a model su
h that E �

s

�, then E �

s

'. Be
ause E

0

�

s

�

i� E �

s

� and E �

s

' i� E

0

�

s

' it follows that the tableau rules in de�nition

4.4.11 are sound in the above sense.

The EQ re
exivity rule is sound be
ause t � t is the formula below the line and

a

ording to de�nition 5.3.1 we 
onsider only those models su
h that for all E ;A,

(E ;A) �

s

t � t , i.e. (E

0

;A

0

) �

s

t � t . The EQ repla
ement rule is sound be
ause

a

ording to de�nition 5.3.1 for all E ;A, if (E ;A) �

s

�(s) and (E ;A) �

s

s � t

then (E ;A) �

s

�(t) and using lemma 5.3.5 it follows if (E

0

;A

0

) �

s

�(s) and

(E

0

;A

0

) �

s

s � t then (E

0

;A

0

) �

s

�(t) for all E

0

;A

0

. Similarly for the inequality

rules. 2
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Lemma 5.5.2 (Soundness U-rules)

Ea
h tableau rule given in de�nition 4.4.12 is sound in the following sense: If

� 2 L

�

is a formula above the line, and ' 2 L

�

is a formula below the line, and

E

0

is a normal model su
h that E

0

�

w

�, then E

0

�

w

'.

Proof

This follows from (Hunter, 2001), i.e. ea
h tableau rule given in de�nition 4.4.12

is sound in the following sense: If � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula below the line, and E is a model su
h that E �

w

�, then E �

w

';

and from E

0

�

w

� i� E �

w

� and E �

w

' i� E

0

�

w

'. There are no equality

U-rules thus we are done. 2

Completeness of the Tableau Rules

Lemma 5.5.3 (Completeness S-rules)

The set of tableau rules given in de�nitions 4.4.11 and 5.4.1 is 
omplete in the

following sense: If � 2 L

�

is a formula in a bran
h of a QC semanti
 tableau, and

there is a pair (E

0

;A

0

) su
h that (E

0

;A

0

) �

s

�, and a

ording to de�nitions 4.4.7

and 5.3.1 there is a derivation of the form (E

0

;A

0

) �

s

� implies (E

0

;A

0

) �

s

', then

' 
an be obtained as a formula in the bran
h by using the S-rules in de�nition

4.4.11 or the equality rules in de�nition 5.4.1.

Proof

The 
ompleteness of the S-rules follows from (Hunter, 2001) and lemma 5.3.5.

It remains to be shown the 
ompleteness of the EQ-rules. The EQ rules for the

stong satisfa
tion relation are 
aptured in de�nition 5.3.1. A

ording to de�nition

5.3.1 always (E ;A) �

s

t � t , i.e. (E

0

;A

0

) �

s

t � t whi
h 
an be obtained by the

re
exivity rule. Given �(s) and s � t in a bran
h, a

ording to de�nition 5.3.1

there is a derivation (E ;A) �

s

�(s) and (E ;A) �

s

s � t implies (E

0

;A

0

) �

s

�(t)

whi
h 
an be obtained using the repla
ement rule. Similarly for the inequality

rules. 2

Lemma 5.5.4 (Completeness U-rules)

The set of tableau rules given in de�nition 4.4.12 and 5.4.1 is 
omplete in the

following sense: If � 2 L

�

is a formula in a bran
h of a QC semanti
 tableau, and

there is a pair (E

0

;A

0

) su
h that (E

0

;A

0

) �

w

�, and a

ording to de�nitions 4.4.8

and 5.3.2 there is a derivation of the form (E

0

;A

0

) �

w

� implies (E

0

;A

0

) �

w

', then

' 
an be obtained as a formula in the bran
h by using the U-rules in de�nition

4.4.12 or the equality rules in de�nition 5.4.1.

Proof

The 
ompleteness of the U-rules follows from (Hunter, 2001) and lemma 5.3.5. It

remains to be shown the 
ompleteness of the EQ-rules. This follows basi
ally from

the earlier dis
ussion that ea
h EQ U-rule 
an be modelled using the EQ-rules.

2
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Given the soundness and 
ompleteness of ea
h of the tableau rules it is easy to

show that the tableau method is sound and 
omplete, i.e. for any set of formulae

� and any formula ' there is a QC semanti
 tableau with equality for � and '

that is 
losed if and only if there is no model E su
h that E �

s

� and E �

w

'

�

.

This, however, has essentially been proved by (Hunter, 2001). A

ording to the

above lemmata ea
h appli
ation of the S-rules, U-rules and EQ-rules is sound and


omplete. Consider a parti
ular � and '. There is a QC tableau with equality

for � and ' that is 
losed i� every bran
h of the tableau with root � [ f'

�

g is


losed i� every bran
h of the tableau with root � [ f'

�

g 
ontains � and �

�

for

some ground literal � i� there is no model for ea
h bran
h of the tableau with

root � [ f'

�

g i� there is no model E su
h that E �

s

� and E �

w

'

�

.

5.6 The One-Point Rule

The notion of equality allows us to introdu
e or eliminate the existential quan-

ti�er. If a variable is found to be bound by an existential quanti�er and it

is identi
al to some given term, then we 
an repla
e all instan
es of the vari-

able by that term and remove the existential quanti�er. Consider the predi
ate

9 x :(p(x ) ^ x � t). This states that there is a value for x for whi
h the predi
ate

p(x ) ^ x � t holds. Obviously, t itself is a reasonable 
andidate for repla
ing x .

The one-point rule in standard predi
ate logi
 expresses the following equivalen
e:

9 x :(p(x ) ^ x � t) � p(t) [provided x is not free in t ℄

We are interested in preserving this rule in QCL, i.e. we want

9 x :(p(x ) ^ x � t) �

Q

p(t)

under the same provision. This means, that the 
lass of the strong models and the


lass of the weak models of the left and right hand side of this equivalen
e must

be equal. We found that bi-dire
tional QC derivability is a ne
essary 
ondition to

hold. It is, however, easy to see that for any formula p it is the 
ase: 9 x :(p(x ) ^

x � t) à

Q

p(t)

9 x :(p(x ) ^ x � t); (p(t))

�

p(t) ^ t � t ; (p(t))

�

p(t); t � t ; (p(t))

�


losed

p(t); (9 x :(p(x ) ^ x � t))

�

p(t); (p(t) ^ t � t)

�

(p(t))

�


losed

(t � t)

�

t � t


losed
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The strong model 
lasses of both sides are equal if for every strong model of

9 x :(p(x ) ^ x � t) there is an equivalent strong model for p(t), i.e. if for every

model E it holds E �

s

9 x :(p(x ) ^ x � t) i� E �

s

p(t). The 
ase for the weak

satisfa
tion relation follows similarly.

E �

s

p(t)

i� ffor all assignments Ag

(E ;A) �

s

p(t)

i� fConsider normal modelsg

(E

0

;A

0

) �

s

p(t)

i� fBy Re
exivityg

(E

0

;A

0

) �

s

p(t) and (E

0

;A

0

) �

s

t � t

i� fDe�nitiong

(E

0

;A

0

) �

s

p(t) ^ t � t

i� fB

0

is x-variant assignment of A

0

g

(E

0

;B

0

) �

s

9 x :(p(x ) ^ x � t)

i�

(E ;B) �

s

9 x :(p(x ) ^ x � t)

i� ffor all assignments Bg

E �

s

9 x :(p(x ) ^ x � t)

5.7 Dis
ussion and Summary

Adding equality to a para
onsistent logi
 has previously been 
onsidered by

(Batens and De Cler
q, 1999) and (da Costa, 2000). Basi
ally, both approa
hes

are similar to ours by being based on adding re
exivity and the repla
ement

prin
iple.

We �nd, however, that equivalen
e 
lasses 
an be trivialised in the presen
e of

in
onsisten
y. For example, under the assumption 1 � 2 all numbers 
ollapse

into one equivalen
e 
lass, i.e. all numbers are provably equal. This problem


an be 
ontributed to the ri
hness of reasoning with equality, in parti
ular to

fun
tionality. (Mortensen, 1995, p. 12f) notes:

Fortunately or unfortunately, the methods and results in this book

[(Mortensen, 1995)℄ indi
ate that the `essen
e' of mathemati
s is

deeper than para
onsistentists have thought [...℄.

[...℄ 
lassi
al mathemati
s, interested in fun
tionality, 
on
entrated

on the 
onsistent subtheory [...℄
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[...℄ it is not true that there are no intera
tions between fun
tionality

and in
onsisten
y or in
ompleteness. [...℄ this 
an lead to interesting

insights about fun
tionality;

(Mortensen, 1995) suggests a 
ontrolled relaxation of fun
tionality to avoid su
h

trivialities and (Vermeir, 2001) investigates a new axiomatisation of in
onsis-

tent arithmeti
 by means of in
onsisten
y-adaptive logi
s (see (Batens, 1999)

and (Batens, 2000), for example). The latter approa
h, however, abandons the

property of monotoni
ity whi
h we identi�ed as desirable.

Surely, this issue of in
onsisten
y and arithmeti
 needs to be further investigated.

Note, however, given su
h in
onsisten
y between numbers does not ne
essarily

mean that the given theory is trivialised too. For example, 1 � 2 ^ �, for some

formula �, does not imply that we 
an infer : � using QCL with equality.

In this 
hapter we introdu
ed the notion of equality to the semanti
s of QCL. We

showed that extra tableau rules to reason about equality are sound and 
omplete

with respe
t to the given semanti
s. Given equality we established the validity

of the one-point rule, a 
ommonly used rule to introdu
e and remove existential

quanti�
ation. We will use QCL with equality in the next 
hapter to reason

about formal spe
i�
ations written in the Z notation.



Chapter 6

Formal Reasoning about

In
onsistent Z Spe
i�
ations

using Quasi-Classi
al Logi


The aim of this 
hapter is to dis
uss what formal support 
an be given to the

pro
ess of analysing and re�ning Z spe
i�
ations in a 
ontext that expli
itly allows

and re
ognises in
onsisten
ies. This work is part of the wider area of resear
h

on living with in
onsisten
ies, rather than eradi
ating them. We dis
ussed in

Chapter 4 that logi
ians have developed a range of logi
s to 
ontinue to reason in

the presen
e of in
onsisten
ies and we introdu
ed in parti
ular one representative

of su
h para
onsistent logi
s, namely Hunter's quasi-
lassi
al logi
 (QCL). Here

we apply QCL to analyse in
onsistent Z s
hemas. Quasi-
lassi
al logi
 allows us

to derive less, but more \useful", information, in the presen
e of in
onsisten
y.

Consequently, in
onsistent Z spe
i�
ations 
an be analysed in more depth than

at present.

Part of the analysis of a Z operation is the 
al
ulation of the pre
ondition. In

the presen
e of an in
onsisten
y, however, information about the intended ap-

pli
ation of the operation may be lost. It is our aim to regain this information.

We introdu
e a new 
lassi�
ation of pre
ondition areas, based on the notions of

de�nedness, overde�nedness and unde�nedness. We dis
uss an option for deter-

mining these areas whi
h is based on quasi-
lassi
al reasoning.

Re�nement is the pro
ess of developing abstra
t spe
i�
ations into more 
on-


rete ones. This is a major development tool for formal spe
i�
ations. Here, we


onsider the re�nement of in
onsistent operation s
hemas. Given an in
onsistent

predi
ate in an operation, any other predi
ate repla
ing it is a valid re�nement.

This, however, allows a wide range of non-intuitive re�nements. We 
laim that

in
onsistent operations 
arry information that should be preserved during re�ne-

ment, like 
onsistent operations do. We develop a re�nement method based on

quasi-
lassi
al reasoning to a

ount for this.

123
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6.1 Introdu
tion

The purpose of this 
hapter is to dis
uss how to reason in the presen
e of in-


onsisten
ies in a formal setting. Although this might sound strange, spe
i�
a-

tions, espe
ially large ones, are often in
onsistent at some level. In
onsisten
ies

range from 
ontradi
tory des
riptions of the system at hand to 
ontradi
tions

spe
i�ed in the operations. A signi�
ant proportion of the spe
i�
ation analysis

pro
ess is then devoted to dete
ting and eliminating su
h in
onsisten
ies, be-


ause, 
lassi
ally (and intuitively), in
onsisten
ies in spe
i�
ations are regarded

as undesirable.

6.1.1 Motivation

Those involved in large s
ale software engineering in pra
ti
e treat in
onsisten
ies

as a fa
t of life. They o

ur frequently in large proje
ts and need to be tolerated

(possibly for some time) and managed, rather than eradi
ated immediately. This

has led to a 
onsiderable amount of resear
h on the development of tools and

te
hniques for living with in
onsisten
ies (Ghezzi and Nuseibeh, 1998; Ghezzi

and Nuseibeh, 1999), (Balzer, 1991), (S
hwanke and Kaiser, 1988), and handling

in
onsisten
ies (Finkelstein et al., 1994), (Hunter and Nuseibeh, 1998). The

general aim of su
h work is to provide pra
ti
al support for de
iding if, when,

and how to remove in
onsisten
ies, and to possibly reason in the presen
e of

in
onsisten
ies.

Although the te
hniques and tools developed for this approa
h have had a 
ertain

amount of su

ess they have, however, mainly fo
used on informal and semi-

formal spe
i�
ation te
hniques. There has been re
ent work on more formal

approa
hes (Hunter and Nuseibeh, 1997) but these have largely 
on
entrated on

purely logi
al issues, not 
onne
ting them to 
urrent spe
i�
ation languages. We

are interested in seeing what support we 
an give for the pro
ess of living with

in
onsisten
ies in a spe
i�
ation notation, namely Z.

Our purpose here is to explore the issue of handling in
onsisten
ies in Z, espe
ially

those present in operations. The general aim is, in the presen
e of in
onsisten
y,

not to immediately derive falsehood, but to rather allow further, intermediate,

reasoning on other aspe
ts of the state, operation, or spe
i�
ation. This should

enable us to infer more useful 
on
lusions from in
onsistent Z s
hemas or spe
i-

�
ations. One parti
ular aspe
t is how tolerating in
onsisten
ies 
an bene�t the

development pro
ess from abstra
t to 
on
rete spe
i�
ations.

6.1.2 The Use of Quasi-Classi
al Logi


In 
lassi
al predi
ate logi
, on whi
h Z is based, in
onsistent information results

in triviality, be
ause everything 
an be inferred from it. This, in turn, renders the
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information useless, when, in fa
t, there may be further valid inferen
es we wish to

make. However, there are several ways of handling in
onsistent information. One

is to divide the pie
es of information into (possibly maximal) 
onsistent subsets

(Res
her andManor, 1970), another is para
onsistent reasoning. The latter allows

the derivation of only non-trivial inferen
es from in
onsistent information, i.e. not

everything 
an be inferred.

One representative of para
onsistent logi
s is quasi-
lassi
al logi
, developed by

(Besnard and Hunter, 1995). We introdu
ed the semanti
s and proof theory of

QCL with Equality in the previous 
hapter. The key to QCL is that it allows only

the derivation of information already present in a given theory, even though that

theory might be in
onsistent. This feature is what we need to analyse in
onsistent

Z operations. QCL is not so mu
h aimed at reasoning about the truth in the real

world but about handling beliefs. This seems to be 
ompliant with the idea of

formal spe
i�
ation where we gather requirements of a system yet to be built.

The main advantage of QCL, in 
omparison with many other para
onsistent

logi
s, is that the logi
al 
onne
tives behave 
lassi
ally. Therefore, we believe

that QCL is more suitable for our appli
ation to Z, be
ause spe
i�ers and analysts

will already be familiar with the notation and meaning of the 
onne
tives.

6.1.3 Hypothesis

In this 
hapter we show that quasi-
lassi
al logi
 enables us to analyse in
onsistent

operations spe
i�ed in the formal notation Z. QCL allows us to infer less but

more useful information in the presen
e of in
onsisten
ies. We understand the

term \useful" with respe
t to the problem of triviality arising from in
onsisten
y,

i.e. everything is derivable. In 
omparison to standard predi
ate logi
, QCL

restri
ts the amount of information inferable from in
onsistent premises.

Furthermore, quasi-
lassi
al logi
 is a tool to dire
t the pro
ess of re�nement

of in
onsistent operation s
hemas su
h that fewer but more useful re�nements

remain. In standard Z, an in
onsistent predi
ate in an operation 
an be re�ned

by any other predi
ate. For example, we present an in
onsistent operation to add

a user to a library but re�ne it by an operation removing a user. QCL allows us to

distinguish between some forms of unwanted re�nements and desired re�nements.

Quasi-
lassi
al logi
 proves helpful for both tasks. However, we found that QCL

itself needs to be further developed to suit this parti
ular appli
ation within the

notation Z. We already reported some of the ne
essary extensions, like equality

and logi
al equivalen
e, in the previous 
hapter. Here, we identify further areas

to guide the development of QCL. In parti
ular, QCL and its appli
ation to set

theory 
ome to mind.
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6.1.4 S
ope

In this work, we only 
onsider the issue of lo
al in
onsisten
y. A s
hema 
an

have an in
onsistent, i.e. unsatis�able, predi
ate. If su
h a s
hema is an opera-

tion s
hema, then the operation may not be appli
able at all, or only parts of the

operation are appli
able. This is due to the fa
t that 
ontradi
tions in an opera-

tion only restri
t the pre
ondition of that operation whi
h 
hara
terises where the

operation is feasible. In the 
ase of the s
hema des
ribing the state of the system,

the entire part of the system governed by that state is not implementable. These

kinds of errors are lo
al in the sense that the spe
i�
ation of other 
omponents

of the system may still be meaningful (although it is usually assumed impli
itly,

in a state and operation spe
i�
ation that at least one possible (initial) value of

the state should exist).

In 
ontrast, global in
onsisten
ies are more serious, be
ause they make an entire

spe
i�
ation unsatis�able. They o

ur if some axiom s
hema, generi
 s
hema,

or 
onstraint is unsatis�able. Furthermore, they 
an arise due to a 
ombina-

tion of di�erent paragraphs of a spe
i�
ation, ea
h being 
onsistent. However,

set de
larations, abbreviations, and s
hema de�nitions 
annot introdu
e global

in
onsisten
y. In this work we do not 
onsider global in
onsisten
ies though

we believe that our work 
ould 
ontribute to the resear
h on analysing globally

in
onsistent spe
i�
ations, too.

There is another issue related to in
onsisten
y. (Henson and Reeves, 2000) inves-

tigate the logi
 of Z. Their intent is to de�ne Z based on proof theory. As part of

their resear
h, (Henson, 1998) reported that a previous development of the logi


of Z, as published by (Ni
holls, 1995), was in
onsistent. We do not investigate

the 
onsisten
y of Z but the 
onsisten
y of spe
i�
ations written in Z, and in

parti
ular of their operations.

6.1.5 Outline

This 
hapter is stru
tured as follows. First, we present a small example of a

library system spe
i�ed using the Z notation. We introdu
e an in
onsisten
y to

use it as an illustration throughout this 
hapter. Next, we use quasi-
lassi
al

logi
 to infer some properties of a part of this spe
i�
ation. We also show, that

QCL allows fewer inferen
es than standard predi
ate logi
. In Se
tion 6.4, we

apply QCL to the pro
ess of 
al
ulating the pre
ondition of in
onsistent operation

s
hemas. It was here, that we found that we need QCL to possess a notion of

logi
al equivalen
e as introdu
ed in Chapter 4. Given the notion of a quasi-


lassi
al pre
ondition, we turn to the re�nement pro
ess of in
onsistent operations

in Se
tion 6.5. Following the notions of standard re�nement, we establish the

prin
iples of quasi-
lassi
al appli
ability and QC 
orre
tness. We summarize this


hapter in Se
tion 6.6.
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6.2 An In
onsistent Library Spe
i�
ation in Z

The following example presents a spe
i�
ation of a simple library system. We

have been inspired by some of our students who developed a similar system

(in
luding the in
onsisten
y) in their 2002 exam on Software Engineering.

Our library 
onsists of users who are allowed to borrow books. The sets NAME

of user's names, and BOOK , of books, are taken as given; their stru
ture is of

no 
on
ern for this detail of spe
i�
ation.

[NAME ;BOOK ℄

The state of the library is modelled by the s
hema Library . The Library s
hema

uses a partial fun
tion borrowed to re
ord the books borrowed by a user. The set

users 
ontains the names of the people who joined the library.

Library

users : PNAME

borrowed : NAME 7! PBOOK

users = dom borrowed

Initially, there are no members of the library and, therefore, no books are bor-

rowed.

InitLibrary

Library

0

borrowed

0

= ?

users

0

= ?

A sensible 
ondition to impose on the state s
hema Library is that it allows at

least one initial state. We spe
i�ed su
h an initial state by the s
hema InitLibrary .

We use Z/EVES to show that InitLibrary is indeed an initial state of Library .

=> try \exists Library' � InitLibrary;

=> prove by redu
e;

Proving gives ...

true
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Next, we spe
ify the operation AddUser to register a new user, given a name.

To register, the user must not be a member of the library. The re
ord of books

borrowed remains un
hanged.

AddUser

�Library

name? : NAME

name? 62 users

users

0

= users [ fname?g

borrowed

0

= borrowed

Operation s
hemas 
an be analysed in di�erent ways. It is 
ommon to determine

the pre
ondition of the operation to �nd those states where the operation is

appli
able. We use Z/EVES as a starting point for this 
al
ulation.

=> try \pre AddUser;

=> prove by redu
e;

Proving gives ...

borrowed 2 P(NAME � PBOOK )

^ borrowed 2 NAME 7! PBOOK

^ users = dom borrowed

^ name? 2 NAME

^ : name? 2 dom borrowed

^ dom borrowed = fname?g [ dom borrowed

whi
h, in turn, simpli�es to

preAddUser = [Library ; name? : NAME j false℄

We �nd, the operation AddUser is never appli
able. This suggests an in
onsis-

ten
y in the spe
i�
ation. Therefore, we 
an use AddUser as one example for the

work we present in the next se
tions.

Furthermore, we spe
ify the operation of removing a user from the library system.

The user to be removed must be registered but is not allowed to have any books

on loan. We report the out
ome of the operation in 
ase the operation does not

su

eed. Therefore, we introdu
e the type

Report ::= su

ess j failure

before turning to the a
tual operation
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RemoveUser

�Library

name? : NAME

out ! : Report

(name? 62 users ^ borrowed

0

= borrowed ^ out ! = failure) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ borrowed

0

= borrowed ^

out ! = su

ess)

Using Z/EVES, we also determine the pre
ondition of the operation RemoveUser ,

to identify those states where the operation is appli
able.

=> try \pre RemoveUser;

=> prove by redu
e;

Proving gives ...

borrowed 2 P(NAME � PBOOK )

^ borrowed 2 NAME 7! PBOOK

^ users = dom borrowed

^ name? 2 NAME

^ : name? 2 dom borrowed

i.e.

preRemoveUser = [Library ; name? : NAME j name? 62 dom borrowed ℄

We know, the operation RemoveUser is not 
orre
tly spe
i�ed be
ause we ex-

pe
ted to 
over all 
ases. However, the 
al
ulated pre
ondition of RemoveUser

may a
tually distra
t from �nding the real problem, be
ause the given pre
ondi-

tion is designed to restri
t the remove operation to those users who returned all

books. A
tually, the 
ondition arose from the predi
ate in
luding out ! = failure

and not from the predi
ate out ! = su

ess whi
h one might have assumed.

This spe
i�
ation is small enough to look for the mistakes by inspe
ting all the

s
hemas involved. However, 
onsider a larger system with several s
hemas in-


luded. Inspe
tion be
omes a laborious task. Below we introdu
e me
hanisms

to support the analysis of su
h in
onsistent spe
i�
ations. Also, we introdu
e an

approa
h to re�ning su
h in
onsistent s
hema preserving the intended appli
a-

tion. The given spe
i�
ation is used as an example to guide our development and

to demonstrate and validate our results.
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6.3 Investigating In
onsistent Z Spe
i�
ations

One of the distinguishing features of formal methods is the ability to formally

investigate spe
i�
ations. Formal reasoning enables us to infer new properties

or to 
he
k whether a set of properties holds for a given spe
i�
ation. Su
h

properties may be demanded in the informal requirements for the spe
i�
ation,

or they may be identi�ed as key points about the spe
i�
ation.

Investigating an in
onsistent spe
i�
ation is a 
hallenge, be
ause, in 
lassi
al

predi
ate logi
, a 
ontradi
tion enables the reasoner to infer any property. We


laim, that this is not very helpful in the pro
ess of analysing in
onsistent spe
i�-


ations. We introdu
ed quasi-
lassi
al logi
 as a logi
 that deals with this problem

of triviality di�erently. In QCL not every property 
an be inferred from an in-


onsisten
y. Therefore, QCL is more suitable to derive more useful information

about an in
onsistent spe
i�
ation.

For example, we introdu
ed the operation AddUser to des
ribe the task of adding

a new member to the library. This operation should result in an in
rease of the

number of members, i.e.

AddUser `

Q

�

name? 62 users ) #users

0

> #users

and indeed we 
an show this

name? 62 users ) #(users \ fname?g) = 0;#fname?g = 1;

users = dom borrowed ; user

0

= dom borrowed

0

;

name? 62 users; users

0

= users [ fname?g; borrowed

0

= borrowed ;

(name? 62 users ) #users

0

> #users)

�

(: (name? 62 users))

�

; (#users

0

> #users)

�

#users

0

= #(users [ fname?g)

#users

0

= #users +#fname?g �#(users \ fname?g)

: (name? 62 users)


losed

#(users \ fname?g) = 0

#users

0

= #users +#fname?g � 0

#users

0

= #users + 1

#users

0

> #users


losed

We introdu
ed the predi
ates name? 62 users ) #(users \ fname?g = 0) and

#fname?g = 1 as extra assumptions. Both predi
ates are derived from the

mathemati
al toolkit of Z. Often, su
h assumptions are not made expli
it and
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proofs in Z are, therefore, semi-formal. A
tually, our proof is only semi-formal,

too. For example, we did not introdu
e the laws about the length of sets nor

that the value of a number in
reases through addition. As su
h, we follow the Z

\tradition" and apply obvious repla
ements without introdu
ing them expli
itly.

Due to the information provided in AddUser we are also able to show that the

amount of users of this library system remains un
hanged, i.e.

AddUser `

Q

�

#users

0

= #users

whi
h is validated by the following proof tree

users = dom borrowed ; user

0

= dom borrowed

0

;

name? 62 users; users

0

= users [ fname?g; borrowed

0

= borrowed ;

(#users

0

= #users)

�

dom borrowed

0

= dom borrowed

users

0

= users

#users

0

= #users

The advantage of quasi-
lassi
al logi
 over 
lassi
al predi
ate logi
 be
omes ap-

parent when we try to prove that adding a new member 
ould a
tually redu
e

the number of users of the library. Using standard logi
 we would be able to infer

this statement but not when we use quasi-
lassi
al logi
, i.e.

AddUser 0

Q

�

#users

0

< #users

Apart from the operation AddUser we introdu
ed the operation RemoveUser .

Using QCL and its proof theory we also establish the following properties.

1. RemoveUser `

Q

�

name? 62 users ) users

0

= users

2. RemoveUser `

Q

�

name? 62 users ) borrowed

0

= borrowed

3. RemoveUser `

Q

�

name? 62 users ) out ! = failure

4. RemoveUser `

Q

�

name? 62 users ) #users

0

< #users

5. RemoveUser `

Q

�

name? 2 users ) #users

0

< #users

6. RemoveUser 0

Q

�

name? 2 users ) #users

0

> #users

7. RemoveUser 0

Q

�

name? 2 users ) out ! = failure
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Examples (1)-(3) establish some fa
ts about the 
lassi
ally appli
able 
ase. Ex-

ample (4) shows, the in
onsisten
y in the operation also allows to infer that

the number of users 
an be redu
ed even if the user is not a member of the li-

brary. The same holds if the user is a member of the library, whi
h we intended.

The examples (6) and (7), however, demonstrate that not everything is inferable

from an in
onsisten
y. Using QCL we 
annot establish those \undesired" fa
ts.

Standard predi
ate logi
, however, veri�es those inferen
es. We use Z/EVES to

demonstrate this.

=> try RemoveUser \implies

(name? \in users \implies \# users' > \# users);

=> prove by redu
e;

Proving gives ...

true

=> try RemoveUser \implies

(name?\in users\implies out!=failure);

=> prove by redu
e;

Proving gives ...

true

We promised that QCL will help us to infer less but more useful information. The

above examples demonstrates the value of this approa
h. Using QCL enables the

reasoner to validate only information whi
h is present in a spe
i�
ation, even

if it is in
onsistent, but no more. Next, we look at further issues of reasoning

about formal spe
i�
ations. First, we investigate quasi-
lassi
al pre
onditions of

in
onsistent spe
i�
ations. Afterwards, we turn to the problem of re�nement.

6.4 Quasi-Classi
al Pre
onditions of In
onsis-

tent Z Spe
i�
ations

(Wood
o
k and Davies, 1996) write: \The pre
ondition of an operation s
hema

des
ribes the set of states for whi
h the out
ome of the operation is properly

de�ned." In standard Z, this means that the out
ome of the operation needs to

be de�ned and must not be overde�ned, i.e. in
onsistent. Overde�nedness and

unde�nedness are, in standard Z, inseparable. However, when using alternative

forms of reasoning, unde�nedness and overde�nedness 
an be distinguished.
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We believe that from the developer's point of view unde�nedness and overde-

�nedness should be treated di�erently. In the one 
ase, the developer had no

intention to spe
ify the e�e
t of an operation, therefore it was left unde�ned.

In the other 
ase, a spe
i�
ation mistake or an unforeseen intera
tion of parts

of the spe
i�
ation rendered the operation inappli
able. Being able to formally

separate these situations will help to analyse the spe
i�
ation more deeply and

to develop it further in a more dire
ted way.

The aim of this se
tion is to investigate the e�e
t of 
al
ulating the pre
onditions

of possible in
onsistent operation s
hemas using quasi-
lassi
al logi
. We demon-

strate that QCL is able to separate the unde�ned part of an operation from the

overde�ned. We also investigate QCL itself by applying it to su
h tasks. We �nd

that QCL needs to be further developed to be fully suitable for our needs.

6.4.1 The Quasi-Classi
al Pre
ondition

The pre
ondition of an operation des
ribes all the initial states in whi
h the

operation is de�ned. To us, an operation is de�ned if it is 
onsistently de�ned or

possibly overde�ned. Given an operation s
hema Op we write

pre

Q

Op

to denote the quasi-
lassi
al pre
ondition of Op. This is another s
hema obtained

by hiding all the 
omponents from Op that 
orrespond to the after state of the

operation in
luding any outputs. If the state of the system is modelled by a

s
hema S , and outs! is the list of outputs asso
iated with the operation, then the

QC pre
ondition of Op on a state s
hema S is de�ned by

pre

Q

Op = 9 S

0

; outs! � Op

At �rst, this de�nition seems identi
al to the standard de�nition of the pre
on-

dition. However, we now 
onsider QCL as the ba
kground logi
. Therefore,

in
onsisten
ies do not evaluate to false and the notion of logi
al equivalen
e is


hanged, too. Thus, the 
lassi
al and quasi-
lassi
al pre
ondition of an operation

are di�erent in their e�e
t.

The QC pre
ondition of the operation s
hema AddUser , whi
h des
ribes the e�e
t

of adding a new member to the library, is given by

pre

Q

AddUser = 9Library

0

� AddUser

Using the standard rules of quanti�
ation and s
hema expansion this results in
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PreAddUser

Library

name? : NAME

9Library

0

�

name? 62 users ^

users

0

= users [ fname?g ^

borrowed

0

= borrowed

This s
hema des
ribes the QC pre
ondition of AddUser . However, this s
hema

is over-
ompli
ated to simply identify the 
onditions under whi
h AddUser is

appli
able. Next, we investigate how QCL 
an be used to simplify this s
hema

to give a neater but logi
ally equivalent statement.

6.4.2 Simplifying Quasi-Classi
al Pre
onditions

To simplify a pre
ondition s
hema we need to perform a series of equivalen
e

preserving steps to redu
e the 
omplexity of the given predi
ate. However, not

only do we need ea
h step to preserve equivalen
e but we need transitivity of this

pro
ess, too. Otherwise, the resulting formula might not be logi
ally equivalent

to the starting one.

The problem of simplifying quasi-
lassi
al pre
onditions made us aware of the

fa
t, that the issue of logi
al equivalen
e has not been 
overed by the published

resear
h on quasi-
lassi
al logi
. One reason 
ould be that logi
al equivalen
e

is a simple property in QCL. We do not think so. Logi
al equivalen
e in QCL

is more 
ompli
ated due to the two satisfa
tion relations involved. Therefore,

for example, bi-dire
tional inferen
e is not a valid notion of equivalen
e, be
ause

transitivity fails. In Chapter 4, we summarised our work on logi
al equivalen
e

in QCL. Given �

Q

to denote equivalen
e preserving steps in a proof, we simplify

the pre
ondition of AddUser .

pre

Q

AddUser

�

Q

fDe�nition of pre

Q

g

9Library

0

� AddUser

�

Q

fS
hema Expansion and Quanti�
ationg

[Library ; name? : NAME j

9 users

0

: PNAME ; borrowed

0

: NAME 7! PBOOK j

users

0

= dom borrowed

0

� name? 62 users ^

users

0

= users [ fname?g ^ borrowed

0

= borrowed ℄



6.4. Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations 135

The One-Point Rule

A

ording to the semanti
s of QCL we 
an eliminate an existential quanti�er

if there is an assignment of a �xed value to the bound variable. This step 
an

formally be expressed by a derivation law, the so 
alled one-point rule:

9 x � p(x ) ^ x = t �

Q

p(t) [provided x is not free in t ℄

In the 
ontext of Z spe
i�
ations we need to 
onsider the typing information as

well. Therefore, the pre
ise one-point rule is slightly more 
ompli
ated:

9 x : T � p(x ) ^ x = t �

Q

t 2 T ^ p(t)

Given the one-point rule, we further simplify the QC pre
ondition of AddUser .

[Library ; name? : NAME j

9 users

0

: PNAME ; borrowed

0

: NAME 7! PBOOK j

users

0

= dom borrowed

0

� name? 62 users ^

users

0

= users [ fname?g ^ borrowed

0

= borrowed ℄

�

Q

fOne-point rule on borrowed

0

g

[Library ; name? : NAME j

9 users

0

: PNAME � borrowed 2 NAME 7! PBOOK ^

users

0

= dom borrowed ^ name? 62 users ^

users

0

= users [ fname?g℄

�

Q

fOne-point rule on users

0

g

[Library ; name? : NAME j

users 2 PNAME ^ borrowed 2 NAME 7! PBOOK ^

users [ fname?g = dom borrowed ^ name? 62 users℄

�

Q

fType information provided in Libraryg

[Library ; name? : NAME j

users [ fname?g = dom borrowed ^ name? 62 users℄

�

Q

fRepla
ement of Equals, Symmetryg

[Library ; name? : NAME j

users = users [ fname?g ^ name? 62 users℄

�

Q

fRepla
ement of Equalsg

[Library ; name? : NAME j

users = users [ fname?g ^ name? 62 users [ fname?g℄

�

Q

fSet theoryg

[Library ; name? : NAME j

users = users [ fname?g ^ name? 62 users ^ name? 62 fname?g℄
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We 
ould 
ontinue substituting the de�nition of users a

ordingly but we do

not derive anything new. Therefore, the quasi-
lassi
al pre
ondition s
hema of

AddUser is

Pre

Q

AddUser

Library

name? : NAME

name? 62 users

name? 62 fname?g

users = users [ fname?g

We interpret this QC pre
ondition in the following way. The operation AddUser

was designed to perform a task when a user name? is not a member of the set of

users. However, there is an in
onsisten
y present, whi
h for
es the 
onstraint that

the set of users must not 
hange after adding a new user name?. This, however,

is only possible, if name? is not a member of the set 
ontaining name?, whi
h is


learly violating a basi
 set theoreti
 axiom. We believe that this quasi-
lassi
al

pre
ondition is more insightful than the 
lassi
al pre
ondition

preAddUser = [Library ; name? : NAME j false℄

The operation AddUser is de�ned for the 
ase that name? 62 users. Unfortu-

nately, it is also overde�ned. We dis
uss below some advantages of 
al
ulating

both the 
lassi
al and quasi-
lassi
al pre
ondition. Later, when 
onsidering re-

�nement, we extend this work even further.

6.4.3 Using Classi
al and Quasi-Classi
al Pre
onditions

With the introdu
tion of the quasi-
lassi
al pre
ondition of an operation we have

established a se
ond notion of a pre
ondition besides the standard notion as

introdu
ed in Chapter 2. We now investigate whether using both notions together

gives some advantages to the pro
ess of analysing formal spe
i�
ations.

Overde�nedness

Earlier we introdu
ed the s
hema RemoveUser to spe
ify the operation of re-

moving a user from the library. We intended that an error message o

urs if

we try to remove a user who is not a member of the library. Furthermore, the

operation of removing a user is only guaranteed if the user has no books on loan.

We established the standard pre
ondition as

preRemoveUser = [Library ; name? : NAME j name? 62 dom borrowed ℄
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We also established the notion of a quasi-
lassi
al pre
ondition whi
h we now

apply to the s
hema RemoveUser . We present the simpli�
ation steps in detail

to demonstrate the approa
h on a se
ond example.

pre

Q

RemoveUser

�

Q

fDe�nition of pre

Q

g

9 users

0

; borrowed

0

; out ! � Library ; name? : NAME ; out ! : Report j

users

0

= dom borrowed

0

^

((name? 62 users ^ out ! = failure ^ borrowed

0

= borrowed) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ borrowed

0

= borrowed ^

out ! = su

ess))

�

Q

fOPR on borrowed

0

g

9 users

0

; out ! � Library ; name? : NAME ; out ! : Report j

users

0

= dom borrowed ^

((name? 62 users ^ out ! = failure) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ out ! = su

ess))

�

Q

fDistribution of Conjun
tiong

9 users

0

; out ! � Library ; name? : NAME ; out ! : Report j

(users

0

= dom borrowed ^ name? 62 users ^ out ! = failure) _

(users

0

= dom borrowed ^ name? 2 users ^

name? 62 dom borrowed ^ users

0

= users n fname?g ^

out ! = su

ess)

�

Q

fDistribution of Existential Quanti�
ationg

Library ; name? : NAME j

9 users

0

; out ! � out ! : Report ^

(users

0

= dom borrowed ^ name? 62 users ^ out ! = failure) _

9 users

0

; out ! � out ! : Report ^

(users

0

= dom borrowed ^ name? 2 users ^

name? 62 dom borrowed ^ users

0

= users n fname?g ^

out ! = su

ess)

�

Q

fOPR on out ! (2x)g

Library ; name? : NAME j

9 users

0

� (users

0

= dom borrowed ^ name? 62 users) _

9 users

0

� (users

0

= dom borrowed ^ name? 2 users ^
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name? 62 dom borrowed ^ users

0

= users n fname?g)

�

Q

fOPR on users

0

(2x)g

Library ; name? : NAME j (name? 62 users) _

(name? 2 users ^ name? 62 dom borrowed ^

dom borrowed = users n fname?g)

�

Q

fRepla
ement of Equalsg

Library ; name? : NAME j (name? 62 users) _

(name? 2 users ^ name? 62 users ^ users = users n fname?g)

The absorption laws do not hold in QCL. Therefore, we 
annot simplify the

predi
ate to name 62 users. We 
ould apply repla
ement to yield name? 2

users n fname?g ^ name? 62 users ^ users = users n fname?g. This, however,

does not deliver any new insight, nor is it an intuitive simpli�
ation of the above

predi
ate. Therefore, we de
ided to stop the simpli�
ation pro
ess.

The quasi-
lassi
al pre
ondition identi�es both the de�ned and the overde�ned

area of appli
ability of an operation. The 
lassi
al pre
ondition shows only the

de�ned area. Both together 
ould help us to separate the overde�ned area. For

example, the operation RemoveUser is de�ned for the 
ase that name? 62 users

and overde�ned for name? 2 users ^ name? 62 users ^ users = users n fname?g.

The overde�ned area is of parti
ular interest, be
ause it 
ontains the in
onsis-

ten
y. However, we have not formally determined the overde�ned area yet.

Given both the standard and QC pre
ondition we should be able to derive the 
on-

dition where the operation is overde�ned. Unfortunately, the following problems

arise. On the one hand we 
annot use 
lassi
al logi
, otherwise the in
onsisten
y

in the overde�ned predi
ate would allow us to derive the predi
ate false. On the

other hand, QCL does not have a notion of true or false, both of whi
h 
ould

be the 
lassi
al pre
ondition. Therefore, separating the overde�ned predi
ate

formally remains an open problem for now.

Operation Consisten
y

In standard Z, we 
annot formally distinguish between the operation RemoveUser

and the following s
hema

RemoveUser

x

�Library

name? : NAME

out ! : Report

name? 62 users ^ borrowed

0

= borrowed ^ out ! = failure

i.e.
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=> try RemoveUser \iff RemoveUser\_x;

=> prove by redu
e;

Proving gives ...

true

The pre
onditions of both s
hemas RemoveUser and RemoveUser

x

are equivalent

and so are their post
onditions. How do we know that RemoveUser is a
tually

in
onsistent, apart from the fa
t that it does not perform the task it was designed

for? How does an analyst know what the operation was meant for, apart from the

informal text that should des
ribe the meaning of the formal s
hemas? Standard

predi
ate logi
 does not help to solve this problem satisfa
torily but 
ombining

it with quasi-
lassi
al logi
 we hope to provide an answer.

Cal
ulating both types of pre
ondition of an operation 
ould enables us to de-


ide formally whether an operation is 
onsistent. Given the 
lassi
al and QC

pre
ondition of an operation Op we de�ne operation 
onsisten
y 
ons(Op) as

Operation 
onsisten
y: 
ons(Op) i� preOp �

?

pre

Q

Op

i.e. an operation is 
onsistent if both its 
lassi
al and QC pre
ondition are equiva-

lent. Informally, we �nd that the operations AddUser and RemoveUser are both

in
onsistent but the operation RemoveUser

x

, for example, is 
onsistent.

There is, however, a major problem. We have not spe
i�ed the equivalen
e

relation and, therefore, we 
annot 
ompare the 
lassi
al and the QC pre
ondition.

For example, the 
lassi
al pre
ondition might 
ontain the predi
ates true or false

whi
h are not 
omparable to any predi
ate from QCL. Furthermore, QCL uses

two di�erent satisfa
tion relations. However, whi
h of the two 
ould be used

to de�ne an appropriate equivalen
e relation? This issue remains for further

resear
h.

6.5 Re�nement of In
onsistent Z Spe
i�
ations

So far we investigated how quasi-
lassi
al logi
 
an support the pro
ess of rea-

soning about formal spe
i�
ations, in parti
ular about in
onsistent spe
i�
ations.

The aim of a spe
i�
ation is to 
apture the essentials of a system as abstra
tly

as possible in order to fo
us on the essential properties of the system. Su
h

an abstra
t spe
i�
ation is not dire
tly implementable, be
ause it is not 
lose

enough to a 
omputer program. However, we 
an develop a su

ession of more


on
rete spe
i�
ations leading us towards an implementation. This pro
ess of

development is 
alled re�nement.

(Derri
k and Boiten, 2001) des
ribe the intuition behind re�nement as the
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Prin
iple of Substitutivity: it is a

eptable to repla
e one program

by another, provided it is impossible for a user of the programs to

observe that the substitution has taken pla
e. If a program 
an be

a

eptably substituted by another, then the se
ond program is said

to be a re�nement of the �rst.

To (Wood
o
k and Davies, 1996), re�nement is all about improving spe
i�
ations.

It involves the removal of non-determinism, or un
ertainty. In
onsisten
y is a

form of un
ertainty. Hen
e, re�nement is also about removing in
onsisten
y. In

standard Z, the pro
ess of removing in
onsisten
ies as a re�nement step is rather

unrestri
ted leading to some possible re�nements whi
h we intuitively reje
t. In

this se
tion we investigate how quasi-
lassi
al logi
 
an be applied to the pro
ess

of re�ning formal spe
i�
ations written in the Z notation.

6.5.1 Two Re�nement Examples

Earlier in this 
hapter we introdu
ed a simple library spe
i�
ation. One of the

spe
i�ed operations is AddUser aimed at admitting a new member to the library.

Unfortunately, the operation AddUser is in
onsistent. This leaves us with a wide


hoi
e of possible re�nements. For example, the following two s
hemas are both

standard re�nements of AddUser . We believe, however, that at least one of these

two should intuitively be reje
ted.

AddUser R1

�Library

name? : NAME

name? 2 users

users

0

= users n fname?g

borrowed

0

=

fname?g

�

C borrowed

AddUser R2

�Library

name? : NAME

name? 62 users

users

0

= users [ fname?g

borrowed

0

=

borrowed [ fname? 7! ?g

The s
hema AddUser R1 des
ribes the operation of removing a member from

the library. This 
ertainly was not the intention when spe
ifying the operation

AddUser . Therefore, we 
laim, that AddUser R1 should not be a valid re�ne-

ment of AddUser . The operation s
hema AddUser R2 des
ribes the operation of

adding a new member to the library. It removes the in
onsisten
y by assigning

an empty set of books to the user. To us, this operation looks more like a valid

re�nement of AddUser . Below, we �nd out whether AddUser R2 
an be shown

to be a quasi-
lassi
al re�nement of AddUser .
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6.5.2 Classi
al Re�nement Conditions

Before we go into detail of quasi-
lassi
al re�nement, i.e. re�nement using quasi-


lassi
al logi
, we brie
y re-
ap the formal notion of standard re�nement. To keep

our illustration simple we 
hoose to 
on
entrate on the re�nement of operations

on the same state.

A re�nement has to ensure that a more 
on
rete operation is still appli
able

when the abstra
t operation was. Appli
ability relates to the pre
onditions of

the operation. In re�nement, we 
an weaken the pre
ondition but not strengthen

it. Furthermore, re�nement needs to ensure that all the properties of the abstra
t

spe
i�
ation are preserved. This means, that whenever the abstra
t operation

was appli
able in state S but the 
on
rete operation was applied, relating the

state S to an after state S

0

, then the abstra
t operation also relates S to S

0

.

Formally, we say that an operation COp re�nes an operation AOp, denoted

AOp v COp, when it ful�lls the following two 
onditions:

1. Appli
ability: preAOp ` preCOp

2. Corre
tness: preAOp ^ COp ` AOp

The s
hemas AddUser R1 as well as AddUser R2 are both standard re�ne-

ments of the s
hema AddUser , i.e. AddUser v AddUser R1 and AddUser v

AddUser R2. It is easy to see that the left-hand side of the 
onsequen
e

evaluates to false be
ause, as we re
all from the last se
tion, preAddUser =

[Library ; name? : NAME j false℄. Next, we investigate a notion of quasi-
lassi
al

re�nement.

6.5.3 Quasi-Classi
al Appli
ability

We saw earlier that the quasi-
lassi
al pre
ondition of an operation determines

those states for whi
h an operation is de�ned or overde�ned. Consider the idea

that overde�ned is a spe
ial 
ase of being de�ned. Then we 
an use the standard

notion of appli
ability, i.e. that the 
on
rete operation must be de�ned or overde-

�ned on those states where the abstra
t operation was de�ned or overde�ned on.

We express this notion formally by

Quasi-Classi
al Appli
ability: pre

Q

AOp `

Q

pre

Q

COp

This notion of quasi-
lassi
al appli
ability allows weakening of QC pre
onditions

but not strengthening.
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Example

Given quasi-
lassi
al appli
ability, we are now able to show that the operation

s
hema AddUser R1 is not a valid re�nement of the s
hema AddUser . First, we

need the quasi-
lassi
al pre
ondition of AddUser R1. This is the same as the


lassi
al pre
ondition, i.e.

pre

Q

AddUser R1 = [Library ; name? : NAME j name? 2 users℄

Then, we show that the proof tree for pre

Q

AddUser `

Q

pre

Q

AddUser R1 does

not 
lose:

users = dom borrowed ; name? 62 users;

name? 62 fname?g; users = users [ fname?g;

(users = dom borrowed ^ name? 2 users)

�

(users = dom borrowed)

�


losed

(name? 2 users)

�

not possible to 
lose

Hen
e, pre

Q

AddUser 0

Q

pre

Q

AddUser R1 and, therefore, AddUser R1 is not

a valid re�nement. The operation s
hema AddUser R2, however, is quasi-


lassi
ally appli
able. The quasi-
lassi
al pre
ondition of AddUser R2 is

pre

Q

AddUser R2 = [Library ; name? : NAME j name? 62 users℄

and the proof for pre

Q

AddUser `

Q

pre

Q

AddUser R2 su

eeds:

users = dom borrowed ; name? 62 users;

name? 62 fname?g; users = users [ fname?g;

(users = dom borrowed ^ name? 62 users)

�

(users = dom borrowed)

�


losed

(name? 62 users)

�


losed

Properties of QC Appli
ability

QC appli
ability extends the standard notion of appli
ability. It is sound with

respe
t to standard appli
ability be
ause whenever QC appli
ability holds, stan-

dard appli
ability must hold, too. This follows dire
tly from the properties of

QCL. Consequently, QC appli
ability fails if a 
onsistent operation was made

in
onsistent, as this is not permitted by standard appli
ability either.

The 
onverse, however, is not true. For example, 
onsider the operations

AddUser R1 and AddUser R2 both standard re�nements of AddUser . There-

fore, standard appli
ability holds for both operations but we showed that QC
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appli
ability failed for AddUser R1. The question is when does QC appli
ability

reje
t a re�nement that is valid a

ording to the standard notion, i.e. 
ould QC

appli
ability be too restri
tive?

We do not think that QC appli
ability is too restri
tive, i.e. it does not reje
t

any re�nement of 
onsistent operations that standard appli
ability would a
-


ept. Unfortunately, we la
k meta-theoreti
al results about QCL to verify this

formally. QC appli
ability does not validate all re�nements of in
onsistent op-

erations, be
ause in
onsisten
y arises from overde�nedness, i.e. an in
onsistent

predi
ate provides too mu
h information. As in standard re�nement this infor-

mation needs to be in
orporated into the 
on
rete operation.

6.5.4 Quasi-Classi
al Corre
tness

On
e we established appli
ability we need to verify the 
orre
tness of an oper-

ation. A 
on
rete operation behaves 
orre
tly with respe
t to an abstra
t op-

eration if an observer 
annot distinguish the out
ome of the 
on
rete operation

and abstra
t operation, provided they are both applied on the same domain. We

introdu
ed the formal de�nition of standard 
orre
tness earlier.

Establishing QC Corre
tness using the Classi
al Law and QC Inferen
e

QC appli
ability is very similar to standard appli
ability. Basi
ally, we 
hanged

the inferen
e relation to use QC entailment rather than standard entailment.

This e�e
ts also the notion of a pre
ondition whi
h we dis
ussed separately. It

seems natural to investigate the impa
t of using a similar method for deriving

QC 
orre
tness, i.e. to 
hange the inferen
e system. We de�ne

Quasi-Classi
al Corre
tness: pre

Q

AOp ^ COp `

Q

AOp

Unfortunately, it is not as simple as that. We introdu
e the following two oper-

ation s
hemas AbsExample and ConExample for illustrative purpose.

AbsExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 0

ConExample

n? : Z

x ! : Z

(n? = 1 ^ x ! = 0) _

(n? = 2 ^ x ! = 1)

The s
hema ConExample is intuitively, and a

ording to the standard re�nement

rules, a valid re�nement of AbsExample, be
ause the operation has not been


hanged if the given number is one. Only the pre
ondition has been weakened to
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onsider also the 
ase of the number two. We are interested in QC 
orre
tness to

hold for 
onsistent operations if standard 
orre
tness holds. Therefore, we should

be able to establish the QC 
orre
tness 
ondition, i.e. we need to show

pre

Q

AbsExample ^ ConExample `

Q

AbsExample

with pre

Q

AbsExample = [n? : Z j n? = 1℄. Using the tableau method we


onstru
t the following proof tree

n? = 1;

(n? = 1 ^ x ! = 0) _ (n? = 2 ^ x ! = 1);

(n? = 1 ^ x ! = 0)

�

n? = 1 _ n? = 2; n? = 1 _ x ! = 1; x ! = 0 _ n? = 2; x ! = 0 _ x ! = 1

(n? = 1)

�


losed

(x ! = 0)

�

x ! = 0


losed

n? = 2

.

.

.

This tree remains open and the proof fails, be
ause the bran
h 
ontaining n? = 2


annot be 
losed. Alternatively, we 
ould have 
hosen x ! = 0 _ x ! = 1 but,

equally, the tree 
ould not be 
losed.

The Problem of the Classi
al Approa
h with respe
t to QCL

In 
lassi
al logi
, preAOp restri
ts the appli
ability of COp to those 
ases where

AOp was appli
able, too. This restri
tion is a
hieved by 
ontrolled use of in
on-

sisten
ies, i.e. the part of the pre
ondition of COp that is not the pre
ondition of

AOp is redu
ed to false. For example,

preAbsExample ^ ConExample

� fg

n? = 1 ^ ((n? = 1 ^ x ! = 1) _ (n? = 2 ^ x ! = 2))

� fg

(n? = 1 ^ n? = 1 ^ x ! = 1) _ (n? = 1 ^ n? = 2 ^ x ! = 2)

� fg

(n? = 1 ^ x ! = 1) _ false

� fg

(n? = 1 ^ x ! = 1)

The result is the part of ConExample that is appli
able if the pre
ondition of

AbsExample holds. This derivation used the information that n? = 1 ^ n? =

2 is in
onsistent. In QCL, however, we 
annot use su
h restri
tions be
ause

in
onsisten
ies are tolerated.
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Three Possible Solutions

One solution is to in
orporate expli
itly the information about su
h in
onsisten-


ies. For example, in
luding the assumption n? = 2) : (n? = 1) would enable

us to 
omplete the 
orre
tness proof.

n? = 2) : (n? = 1);

n? = 1;

(n? = 1 ^ x ! = 0) _ (n? = 2 ^ x ! = 1);

(n? = 1 ^ x ! = 0)

�

: (n? = 2) _ : (n? = 1);

n? = 1 _ n? = 2; n? = 1 _ x ! = 1; x ! = 0 _ n? = 2; x ! = 0 _ x ! = 1

(n? = 1)

�


losed

(x ! = 0)

�

x ! = 0


losed

: (n? = 2)

�

: (n? = 2)


losed

(n? = 1)

�


losed

Somehow it seems not satisfa
tory to expli
itly add side 
onditions to the 
orre
t-

ness proof ea
h time. For example, the use of automated theorem provers would

be restri
ted. Therefore, we would prefer a more general approa
h to over
ome

the problem. We 
ould imagine to 
ombine the pre
onditions of the abstra
t and


on
rete operation su
h that they always provide the ne
essary proof 
onditions.

We observe, for example, that the predi
ate n? = 2 is the part of the pre
ondition

of the 
on
rete operation that has been introdu
ed by weakening the pre
ondi-

tion of the abstra
t operation. Basi
ally, weakening of the pre
ondition 
an be

expressed as a disjun
tion of the abstra
t pre
ondition and some predi
ate p, i.e.

pre

Q

COp � pre

Q

AOp _ p . Then, we would need to isolate the predi
ate p

and we 
ould add (p)

�

to the tree by a disjun
tion of p with the 
on
lusion AOp,

i.e. we derive the following 
orre
tness 
ondition

pre

Q

AOp ^ COp `

Q

AOp _ p

This 
ondition expresses that we 
an either show AOp or the weakening of the

pre
ondition. Su
h an approa
h seems not to violate the 
lassi
al 
orre
tness 
on-

dition but to extend it. The problem, however, remains to extra
t the weakening

pre
ondition predi
ate p.

We 
ould also try to generalise the idea of adding the in
onsisten
y assumption

expli
itly. For example, the predi
ate n? = 2 ) : (n? = 1) is an impli
it


onjun
t in the more general statement
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pre

Q

ConExample ) : pre

Q

AbsExample

� fg

(n? = 1 _ n? = 2)) : (n? = 1)

� fg

(: (n? = 1) ^ : (n? = 2)) _ : (n? = 1)

� fg

: (n? = 1) ^ (: (n? = 1) _ : (n? = 2))

� fg

: (n? = 1) ^ ((n? = 2)) : (n? = 1))

Using that pre

Q

COp � pre

Q

AOp _ p, this generalises to : pre

Q

AOp ^ (p )

: pre

Q

AOp). The question now is whether : pre

Q

AOp 
an interfere with the


ompleteness or soundness of the proof. Assuming our reasoning above is valid,

the 
orre
tness proof 
ondition for re�nement would be
ome

(pre

Q

COp ) : pre

Q

AOp) ^ pre

Q

AOp ^ COp `

Q

AOp

It is 
umbersome and, furthermore, in terms of 
lassi
al logi
 not possible to val-

idate. The ante
edent evaluates, using 
lassi
al logi
, to false. In QCL, however,

preAOp and : preAOp are two di�erent entities. We admit that this solution

seems not entirely satisfa
tory either. Therefore, resear
h on the 
orre
tness


ondition needs to be 
ontinued.

Properties of QC Corre
tness

Despite the problems above we try to investigate QC 
orre
tness further. We

established that it is not possible to introdu
e in
onsisten
ies during re�nement,

be
ause appli
ability would fail. Removing in
onsisten
ies by 
hoosing one of

the possible 
ases is, however, allowed by appli
ability. Now we want to �nd out

whether this is also valid with respe
t to 
orre
tness.

We introdu
e the following simple example of two operations. The abstra
t op-

eration is 
learly in
onsistent and the 
on
rete one is not. Furthermore, the


on
rete operation is meant to return one of the possible two results from the

abstra
t operation. We would assume that su
h re�nement fails, be
ause we

weakened the post
ondition.

PrimAbsExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 1 ^ x ! = 2

PrimConExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 1
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The pre
ondition of PrimAbsExample is n? = 1 ^ 1 = 2 and it is easy to show

that QC appli
ability of PrimConExample holds. We also �nd that we su

eed

in 
losing the proof tree for the 
orre
tness 
ondition of this example.

(n? = 1 ^ 1 = 2); (n? = 1 ^ x ! = 1);

(n? = 1 ^ x ! = 1 ^ x ! = 2)

�

(n? = 1)

�


losed

(x ! = 1)

�


losed

(x ! = 2)

�

x ! = 1,1 = 2

x ! = 2


losed

The example demonstrates that QC 
orre
tness is not enough to prevent removing

in
onsisten
ies from an operation s
hema. Some might 
onsider this result as

positive, although it is against the idea of re�nement. Removing in
onsisten
ies


an be regarded as desired but a little alteration of the above example would show

that this also allows \trivial" re�nements, e.g. the operation PrimConExample


ould return x ! = 3, whi
h is not what we intended.

The next question is whether the removal of in
onsisten
ies 
an always be veri-

�ed. Unfortunately, this is not the 
ase. In the last se
tion, we established the

appli
ability of the operation s
hema AddUser R2 with respe
t to the abstra
t

operation AddUser . We are left to verify the 
orre
tness of this s
hema. We use

the 
orre
tness 
ondition

pre

Q

AddUser ^ AddUser R2 `

Q

AddUser

whi
h results in the following proof tree

name? 62 users ^ name? 62 fname?g ^ users = users [ fname?g;

name? 62 users ^ users

0

= users [ fname?g ^

borrowed

0

= borrowed [ fname? 7! ?g ^

users = dom borrowed ^ users

0

= dom borrowed

0

;

(name? 62 users ^ users

0

= users [ fname?g ^ borrowed

0

= borrowed ^

users = dom borrowed ^ users

0

= dom borrowed

0

)

�

(name? 62 users)

�


losed

(users = dom borrowed)

�


losed

(users

0

= dom borrowed)

�


losed

(users

0

= users [ fname?g)

�


losed (borrowed

0

= borrowed)

�

.

.

.
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This tree 
annot be 
losed and, therefore, the proof fails. Here, the result is as

expe
ted, be
ause we weakened the post
ondition of AddUser by removing the

in
onsisten
y. A

ording to the standard rules of re�nement, a post
ondition 
an

only be strengthened. In this 
ase, QC re�nement followed the idea of \living

with in
onsisten
ies" rather than eradi
ating them.

Both examples share the 
ommon property that an in
onsisten
y was removed

from the post
ondition of the operation. However, for one example, su
h a re-

�nement step is 
orre
t, for the other not. Both examples did not relate to the

earlier problem of restri
ting the appli
ability of the 
on
rete operation to those

states where the abstra
t operation is appli
able. Therefore, we have dis
overed

another problem of QC 
orre
tness that needs to be added to the list of future

work.

Corre
tness with respe
t to Invariant Properties

(Ja
ky, 1997, p. 247) writes: \An abstra
t model has some properties of the thing

it models, but not all of them. A design is more 
on
rete than a spe
i�
ation.

A design is 
orre
t if it has all the properties of the spe
i�
ation; it usually has

some additional properties as well."

We need to relax this 
laim slightly in the presen
e of in
onsisten
y. An operation

is in
onsistent if it 
ontains properties that 
ontradi
t ea
h other. Insisting on

the fa
t that a 
on
rete spe
i�
ation possesses all the properties of the abstra
t

spe
i�
ation would prevent us from removing in
onsisten
ies. Therefore we re-

phrase the above statement: A design is 
orre
t if it has all the desired properties

of the spe
i�
ation.

This approa
h involves identifying all the required properties of the operation

and then to verify that the 
on
rete operation possesses all those properties.

This assumes that these sele
ted properties have been validated with respe
t to

the abstra
t operation. As su
h, we do not prove the 
orre
tness of re�nement

but the 
orre
tness of the new spe
i�
ation.

6.5.5 Quasi-Classi
al Operation Re�nement

The aim of quasi-
lassi
al operation re�nement is to extend the standard re�ne-

ment notation by restri
ting the possible re�nements of in
onsistent operations.

We introdu
ed two examples to 
larify this idea. We also introdu
ed QC appli-


ability and QC 
orre
tness. Now we 
ombine all re�nement rules to propose an

extended notion of re�nement.

We showed that QC appli
ability implies standard appli
ability. Therefore, the

�rst re�nement 
ondition is
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1. QC Appli
ability: pre

Q

AOp `

Q

pre

Q

COp

QC appli
ability, in parti
ular, restri
ts the re�nements to those that respe
t the

intended appli
ation domain. Next, we need to verify that the 
on
rete operation

does at least what the abstra
t operation was designed for. We were not able

to develop a suitable QC 
orre
tness 
ondition. Therefore we use the standard


ondition whi
h is

2. Corre
tness: preAOp ^ COp ` AOp

The standard 
orre
tness 
ondition still allows re�nements whi
h we would intu-

itively reje
t. As we showed earlier, it allows one to repla
e in
onsistent out
omes

of an operation by one whi
h is not related to the 
ontradi
tion. Therefore, we

suggest to 
he
k those properties that the re�ned system should obey again, using

QCL to deal with in
onsisten
ies appropriately.

These re�nement 
onditions extend the standard approa
h be
ause QC appli
a-

bility extends standard appli
ability. However, in QCL the transitivity of infer-

en
es fails, in parti
ular, in the presen
e of in
onsisten
ies. This implies that the

above 
onditions do not fa
ilitate stepwise re�nement, at least with respe
t to

appli
ability.

6.6 Summary

In this 
hapter we applied quasi-
lassi
al logi
 to analyse, espe
ially in
onsistent,

operations spe
i�ed using the Z notation. QCL proved valuable to infer properties

of in
onsistent operations, in parti
ular not to infer \useless" properties.

Then we 
al
ulated the quasi-
lassi
al pre
ondition of an operation, de�ned as

existential quanti�
ation over the after state's variables and outputs. To simplify

the pre
ondition we had to adapt QCL and to develop a notion of logi
al equiv-

alen
e whi
h we presented in Chapter 4. Like in standard Z, the one-point rule

plays a 
entral role in the simpli�
ation pro
ess. It also provided a ben
hmark

for the development of QCL with equality.

Next, we turned to QC re�nement. We presented the notions of QC appli
ability

and QC 
orre
tness. However, only QC appli
ability proved valuable for now,

be
ause we 
ould not fully establish a notion of QC 
orre
tness. Therefore,

QC re�nement has been de�ned using the QC appli
ability and the standard


orre
tness 
ondition.

We have not only investigated in
onsisten
y handling in Z using quasi-
lassi
al

logi
 but QCL itself. QCL has only been re
ently developed and, therefore, only a

limited amount of appli
ations of QCL exist. Furthermore, as far as we are aware,
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QCL has only been used to reason about spe
i�
ations written in predi
ate logi
.

The appli
ation of QCL to the pro
ess of reasoning about formal spe
i�
ations

written in a language ri
her than �rst-order predi
ate logi
 is new. As su
h,

we dis
overed several problems that need to be addressed while developing QCL

further.



Chapter 7

Un(der)de�nedness in Z: Guards,

Pre
onditions and Re�nement

In the 
ommon Z spe
i�
ation style operations are, in general, partial relations.

The domains of these partial operations are traditionally 
alled pre
onditions,

and there are two interpretations of the result of applying an operation outside

its domain. In the traditional interpretation anything may result whereas in the

alternative, guarded, interpretation the operation is blo
ked outside its pre
on-

dition.

In fa
t these two interpretations 
an be 
ombined, and this allows representation

of both refusals and underspe
i�
ation in the same model. In this 
hapter, we

explore this issue and we extend existing work in this area. To do so we adopt a

non-standard three-valued interpretation of an operation by introdu
ing a third

truth value. This value 
orresponds to a situation where we don't 
are what e�e
t

the operation has, i.e. the guard holds but we may be outside the pre
ondition.

In this 
hapter, we develop a s
hema representation based on su
h a three-valued

interpretation. We extend in parti
ular the work by (Fis
her, 1998) by allowing

arbitrary predi
ates in the guard. We demonstrate the advantage of this approa
h

by means of a small example. Furthermore, we 
lassify regions of before states

based on the familiar 
on
epts of pre
ondition and guard. We extend these

notions to the \impossible" and the \unde�ned" region.

Using the three-valued interpretation leads to a simple and intuitive semanti
s

for operation re�nement, where re�nement means redu
tion of unde�nedness or

redu
tion of non-determinism. In this approa
h, both weakening of the pre
on-

dition as well as strengthening of the guard is possible. We also show that this

notion of re�nement extends the standard Z re�nement for both the pre
ondition

and the guarded interpretation.

151
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7.1 Introdu
tion

In the states-and-operations (abstra
t data type) spe
i�
ation style in Z, oper-

ations are, in general, partial relations. The domains of these partial relations

are traditionally 
alled pre
onditions. Depending on whi
h 
ontext the abstra
t

data types are used in, there are two interpretations of the result of applying an

operation outside its domain.

In the traditional interpretation, presented, for example, by (Spivey, 1992), any-

thing may happen outside the pre
ondition, in
luding divergen
e; in the blo
king,

also 
alled guarded, interpretation the operation is not possible. The latter in-

terpretation is the 
ommon one when modelling rea
tive systems or 
ombining

Z with pro
ess algebra, and also in Obje
t-Z. (Strulo, 1995) 
alls it the '�ring


ondition' and (Josephs, 1991) 
alls it the 'enabling 
ondition' interpretation.

It has been observed that it is often 
onvenient to use a 
ombination of the

guarded and pre
ondition interpretation to allow both modelling of refusals and

underspe
i�
ation. One way of doing this is by having expli
it guards as intro-

du
ed by (Abrial, 1996) in the B-Method or by (Fis
her, 1998) for CSP-OZ.

7.1.1 Hypothesis

In this 
hapter, we generalise existing work on 
ombining the guarded and the

pre
ondition interpretation by allowing arbitrary predi
ates in the guards. Fur-

thermore, we give a model of re�nement, re�ning both guard and pre
ondition.

We previously presented the main 
on
epts of this work in (Miarka et al., 2000).

Our inspiration 
omes from a non-standard semanti
s of operations, viz. an inter-

pretation in three-valued logi
. The third logi
al truth value, denoted ?, stands

for the idea that we \don't 
are" about the out
ome of an operation. We do

o

asionally refer to \unde�nedness", although this should be distinguished from

the kind of unde�nedness dis
ussed by (Valentine, 1998) and solved by VDM's

third logi
 value. Using a three-valued logi
 leads to a simple and intuitive no-

tion of (operation) re�nement, where re�nement is redu
tion of unde�nedness

or redu
tion of non-determinism (or both). It would even allow an alternative

de�nition of re�nement whi
h preserves \required non-determinism"as dis
ussed

by (Lano et al., 1997) and (Steen et al., 1997).

However, su
h an interpretation of operations requires a more expressive nota-

tion than normal operations with expli
it guards. In su
h notation, we take the

operation to be false (impossible) outside its guard, and unde�ned where the

guard holds but not the pre
ondition. This allows us to state that, for 
ertain

before states, any after state \is unde�ned", but not that some after states are

unde�ned, and others possible or impossible. We will de�ne a syntax whi
h is

suÆ
iently expressive for this semanti
s, and de�ne operation re�nement rules

for this whi
h generalise the traditional ones.
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7.1.2 Outline

The remainder of this 
hapter is stru
tured as follows. In Se
tion 7.2, we demon-

strate by means of two examples, normalisation and a simple money transa
tion

system, that a 
ombination of the traditional and blo
king interpretations is

sometimes required. Then, in Se
tion 7.3, we de�ne a s
hema notation in
luding

both guards and e�e
t s
hemas. Based on that we de�ne regions of operation

behaviour, i.e. whether an operation is inside or outside the guard, or inside or

outside the pre
ondition. These regions 
an also be related to a three-valued

interpretation, whi
h we present in Se
tion 7.4. Using su
h a three-valued in-

terpretation leads to a simple and intuitive notion of re�nement that generalises

standard operation re�nement. We introdu
e the rules in Se
tion 7.5 and show

their 
ompatibility to the standard ones. We dis
uss some related work in Se
tion

7.6 and 
on
lude with a short summary in Se
tion 7.7. In Chapter 8 we develop

a s
hema 
al
ulus for the guarded pre
ondition s
hema notation we present here.

7.2 Guards and Pre
onditions in Z

The pre
ondition of an operation 
hara
terises all the states and inputs to whi
h

the operation 
an be applied su
h that there is an after state and output whi
h

are related to the states and inputs by the operation, i.e. it 
hara
terises \before"

states. However, there are two di�erent points of view on how to interpret su
h a

pre
ondition. On the one hand, it 
an be read to be a guard, i.e. the operation will

not be exe
uted if the pre
ondition is false. On the other hand, the interpretation

may be that the operation 
an be exe
uted at any time but the result of it is only

guaranteed if the pre
ondition is true. In our opinion both interpretations 
an


oexist and sometimes should. We illustrate our point of view with the following

two examples.

7.2.1 Normalisation in Z

Normalisation is the pro
ess of rewriting a s
hema su
h that all the 
onstraint

information appears in the predi
ate part. For example, the natural numbers are

not a basi
 type of Z but 
onstrained integers

1

. Therefore, a s
hema de
laration

referring to naturals 
an be normalised to use integers and a 
onstraint on the

predi
ate, e.g.

1

This is the 
ase in Spivey's de fa
to standard (Spivey, 1992); in the 
urrent draft standard

(ISO/IEC 13568, 2002) even Z is a true subset of another type A (\arithmos").
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S
hema

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

Normalised S
hema

a; a

0

: Z

a 2 N ^ a

0

2 N ^

(a

0

)

2

� a < (a

0

+ 1)

2

However, somehow the interpretation may 
hange through that pro
ess. As the

operation S
hema is de�ned on natural numbers, it appears unreasonable to even


onsider applying it on negative integers, so the blo
king interpretation appears

quite reasonable for this area. However, the normalised s
hema is formally equiv-

alent to S
hema but is interpreted in the pre
ondition approa
h as being fully

unde�ned on integers. This means, that the spe
i�er needs to know about nor-

malisation, i.e. whi
h sets are proper types and whi
h are proper subsets of a type,

whi
h might not always be the 
ase and somehow should not be ne
essary in the

�rst pla
e. This example also shows that normalisation is more guard, rather

than pre
ondition, related and that we might want to deal with it a

ordingly.

7.2.2 A Money Transfer System

Consider the following example of a simple money transa
tion system. It allows

to transfer a positive amount of money to a person's bank a

ount. Therefore,

we need a set of bank a

ount holders

[PID ℄

Ea
h bank a

ount is 
hara
terised by its holder and the amount of money in

it. Of 
ourse, we allow negative amounts in the a

ount as well. On the other

hand, not every person in the above set has to have a bank a

ount, therefore, a


olle
tion of a

ounts is a partial fun
tion. Furthermore, total is a derived state


omponent whi
h 
al
ulates the amount of money in our bank by taking the sum

of the money in all a

ounts.

Bank

a

ount : PID 7! Z

total : Z

total = makesum a

ount

with the fun
tion
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[X ℄

makesum : (X $ Z)! Z

8 x : X ; y : Z; z : (X $ Z) �

makesum ? = 0 ^

makesum f(x ; y)g = y ^

makesum (f(x ; y)g [ z ) = y +makesum (z n f(x ; y)g)

to 
al
ulate the total sum of all the a

ounts.

We des
ribe a transa
tion that will transfer a given amount of money to someone's

bank a

ount. Clearly the amount transfered has to be positive, be
ause we do

not want to be able to de
rease someone else's a

ount.

Transfer

�Bank

a? : Z

p? : PID

a? � 0

p? 2 dom(a

ount)

a

ount

0

= a

ount � fp? 7! a

ount(p?) + a?g

Below we analyse this small example and point out weaknesses in both the

guarded and pre
ondition interpretation.

7.2.3 Classi
al Pre
ondition and Guarded Interpretation

We determine the 
lassi
al pre
ondition of the operation s
hema Transfer using

Z/EVES. We �nd that in the above example two 
onditions have to be ful�lled

for a transfer to be su

essful. On the one hand, the amount must be positive

and on the other hand the re
eiving person must have an a

ount.

=> try \pre Transfer;

=> prove by redu
e;

Proving gives ...

a

ount 2 PID 7! Z

^ total = makesum a

ount

^ a? 2 Z

^ p? 2 PID

^ p? 2 dom a

ount

^ a? � 0
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whi
h is equal to the following s
hema:

PreTransfer

Bank

a? : Z

p? : PID

p? 2 doma

ount ^ a? � 0

But what happens if we try to apply the operation outside of these 
onditions?

There are two possible interpretations: the pre
ondition interpretation, allowing

the operation, and the guarded interpretation, preventing it. A related issue is

re�nement, the development from a spe
i�
ation towards a more 
on
rete repre-

sentation. How do both interpretations deal with it?

In the standard Z interpretation a pre
ondition represents the set of states where

the operation is de�ned, i.e. guaranteed to produ
e the spe
i�ed result. Outside

the pre
ondition the operation is 
onsidered to be unde�ned whi
h means that the

operation 
an do anything in
luding non-termination (\divergen
e"). Therefore,

re�nement 
an, apart from redu
tion of non-determinism, weaken a pre
ondition,

allowing one to widen the s
ope of the operation and thereby redu
e the area of

unde�nedness.

Other spe
i�
ation languages, like Obje
t-Z (Smith, 2000) treat the pre
ondition

di�erently. There the pre
ondition is 
onsidered as a guard, blo
king the oper-

ation if the pre
ondition is not ful�lled. Su
h an interpretation is o

asionally

used in Z as well, for example, when modelling rea
tive systems, as reported by

(Josephs, 1991) and (Strulo, 1995). Re�nement of guards is treated di�erently.

In Obje
t-Z, for example, one is not allowed to 
hange the guard. Other ap-

proa
hes, notably the one presented by (Lano et al., 1997), where pre
onditions

and guards are 
ombined, allow strengthening of guards, i.e. the redu
tion of

the appli
ability of the operation. They also allow to weaken any pre
ondition.

However, the pre
ondition is the upper bound for strengthening the guard and

the guard is the lower bound for weakening the pre
onditions.

7.2.4 Re�nement

In the pre
ondition interpretation, the following two re�nements of the operation

s
hema Transfer would be possible, ea
h of them weakening one of the 
onstraints

of the pre
ondition of Transfer . First, we 
ould allow the 
reation of an a

ount

if the re
ipient of the transfer does not have one:
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Transfer R1

�Bank

a? : Z

p? : PID

a? � 0

p? 62 dom(a

ount)) a

ount

0

= a

ount � fp? 7! a?g

p? 2 dom(a

ount)) a

ount

0

= a

ount � fp? 7! a

ount(p?) + a?g

The given amount will be put into the newly 
reated a

ount. This appears a

sensible re�nement, however, in the guarded interpretation it would be forbidden.

The guarded interpretation rightly forbids the more dangerous re�nement

Transfer R2

�Bank

a? : Z

p? : PID

p? 2 dom(a

ount)

a

ount

0

= a

ount � fp? 7! a

ount(p?) + a?g

whi
h, by removing the requirement that a? � 0, suddenly allows withdrawal

of someone else's money. In the pre
ondition interpretation this is still a valid

re�nement, though. We verify the appli
ability and 
orre
tness 
onditions by

using Z/EVES

=> try \pre Transfer \implies \pre Transfer\_R2;

=> prove by redu
e;

Proving gives ...

true

=> try \pre Transfer \land Transfer\_R2 \implies Transfer;

=> prove by redu
e;

Proving gives ...

true

Apparently, the two predi
ates in PreTransfer have a di�erent status: a? � 0 is

more like a guard, whereas p? 2 dom(a

ount) is more like a pre
ondition. This

example shows that ea
h interpretation alone is not always suÆ
ient. Therefore,

we propose to have both guards and pre
onditions in the same spe
i�
ation.
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7.2.5 Combining Guards and Pre
onditions

The idea to 
ombine guards and pre
onditions is not new. For example, (Fis
her,

1997; Fis
her, 1998) provides a solution to this problem by using an \enabled"

s
hema to denote the guard and an \e�e
t" s
hema for the standard operation

s
hema with its pre
ondition interpretation. Using this approa
h the Transfer

operation in our example evolves to

F Transfer

enable Transfer

a? : Z

a? � 0

effe
t Transfer

�Bank

a? : Z

p? : PID

p? 2 dom(a

ount)

a

ount

0

= a

ount �

fp? 7! a

ount(p?) + a?g

where enable refers to the guard of the operation and effe
t to the e�e
t of the

operation. Now the operation F Transfer is blo
ked whenever a? is negative.

However, the update of someone's a

ount is only guaranteed if the a

ount

already exists. In 
ase it does not, divergen
e may o

ur.

With this notation we are able to develop re�nement rules whi
h deal with the

guards and pre
onditions in an appropriate fashion. Su
h re�nement rules would

allow one to weaken the pre
ondition of F Transfer (i.e. effe
t Transfer), re-

du
e any non-determinism in the spe
i�
ation, and potentially strengthen the

guard (i.e. enable Transfer). With these rules in pla
e we are able to weaken

the pre
ondition p? 2 dom(a

ount) provided we do preserve the guard a? � 0.

However, a

ording to (Fis
her, 1998) the guard \must 
ontain unprimed state

variables only". Unfortunately, this would still allow undesired re�nements, as

the after state is 
ompletely un
onstrained for before states satisfying the guard

but not the pre
ondition. Sensible restri
tions like

fp?g

�

C a

ount

0

= fp?g

�

C a

ount

and total

0

= total + a?

whi
h express that no one else's a

ount 
hanges and that the total amount of

money 
annot ex
eed the previous amount plus the newly added, 
annot be im-

posed. Adding this restri
tion to effe
t Transfer would have no e�e
t, be
ause

it 
an be derived from effe
t Transfer already. However, for states 
urrently

outside the pre
ondition but within the guard, we have no way of imposing this

as a post
ondition.
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7.3 The En
oding of Un(der)de�nedness in Z

In
orporating both guards and pre
onditions for operations enables a parti
ular

way of spe
ifying un(der)de�nedness in Z. Basi
ally, an operation 
an be blo
ked

by the guard. However, if not blo
ked it leaves two possibilities, either its result

is guaranteed, i.e. applied within its pre
ondition, or its result is un(der)de�ned.

In this se
tion we introdu
e the syntax to des
ribe an operation in terms of guards

and pre
onditions. We then use this 
hara
terisation to de�ne the di�erent re-

gions of de�nition that an operation 
an have. The operation syntax we introdu
e

splits an operation into two parts 
onsisting of its guard and its e�e
t in a way

similar to that des
ribed in Se
tion 7.2.5.

7.3.1 A S
hema Representation of Un(der)de�nedness

An operation is de�ned as a triple (De
l Op; gd Op; do Op), where De
l denotes

the de
laration part of the operation, gd the guard of the operation and do the

e�e
t of the operation itself. It is depi
ted by the following s
hema:

Op

De
l Op

De
l

gd Op

pred

gd

do Op

pred

do

where De
l Op is impli
itly in
luded in gd Op and do Op. Note, that this is

di�erent to (Miarka et al., 2000) where we put the de
laration in the gd - and

do-part separately. However, this way should ease the writing of s
hemas by

not dupli
ating information. Often, we use the abbreviation (gd Op; do Op)

assuming the de
laration to be in
luded where ne
essary.

The following axiom ensures that the only relevant part of the do-part of the

operation is that whi
h lies within the guard, i.e. that it 
an only be applied if

the guard is ful�lled.

Axiom 1 8P ;Q � (P ;Q) � (P ;P ^ Q)

In any formal interpretation we should ensure that this Axiom holds. Hen
e,

we 
an, where ne
essary, restri
t our 
onsiderations to spe
i�
ations where the

guard is in
luded in the de�nition of the e�e
t.
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Theorem 7.3.1

For every s
hema, there is an equivalent one, su
h that the e�e
t implies the

guard, i.e. that the guard is embedded within the e�e
t.

8P ;Q 9P

0

;Q

0

� (P ;Q) � (P

0

;Q

0

) ^ Q

0

) P

0

Proof

The required P

0

and Q

0

are given by P and P ^ Q , respe
tively:

8P ;Q 9P

0

;Q

0

� (P ;Q) � (P

0

;Q

0

) ^ Q

0

) P

0

^

P

0

= P ^ Q

0

= P ^ Q

� fOne-point rule (twi
e)g

8P ;Q � (P ;Q) � (P ;P ^ Q) ^ (P ^ Q)) P

� fPredi
ate Cal
ulusg

8P ;Q � (P ;Q) � (P ;P ^ Q)

whi
h is valid by Axiom 1. 2

Theorem 7.3.2

A formally weaker version of (P ;Q) is obtained by repla
ing Q with P ) Q , i.e.

8P ;Q � (P ;Q) � (P ;P ) Q)

Proof

(P ;Q)

� fAxiom 1g

(P ;P ^ Q)

� fPredi
ate Cal
ulusg

(P ;P ^ (P ) Q))

� fAxiom 1g

(P ;P ) Q)

2

7.3.2 Normalisation revisited

Given the above s
hema notation for expressing guards and pre
onditions we 
an

express normalisation di�erently.

Normalised S
hema

De
l Normalised S
hema

a; a

0

: Z

gd Normalised S
hema

a 2 N ^ a

0

2 N

do Normalised S
hema

(a

0

)

2

� a < (a

0

+ 1)

2
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Now the operation is blo
ked, if a is not a natural number, whi
h is probably

more like the intended interpretation of a : N . Following this intuition, we de�ne

normalisation of guarded pre
ondition s
hemas su
h that any type 
onstraints

whi
h are impli
it have to be made expli
it and will be
ome part of the guard.

7.3.3 The Money Transfer System revisited

The previously dis
ussed operation Transfer with the desired extension of the

guard 
an now be expressed as

Transfer2

De
l Transfer2

�Bank

a? : Z

p? : PID

gd Transfer2

a? � 0

total

0

= total + a?

fp?g

�

C a

ount

0

=

fp?g

�

C a

ount

do Transfer2

p? 2 dom(a

ount)

a

ount

0

= a

ount�

fp? 7! a

ount(p?) + a?g

Having primed state variables in the guard 
auses the guard not to be exe
utable,

be
ause we 
annot test the after state beforehand. However, we may 
onsider

spe
i�
ations that 
ontain unde�ned areas as not implementable anyway, be
ause

some re�nement is still missing. For re�nement rules whi
h remove unde�nedness

see Se
tion 7.5. Primed state variables in the guard do not limit implementations

in general, they just give us more expressiveness.

7.3.4 Regions of Before States

Using su
h a notation of guarded pre
ondition s
hema, we 
an des
ribe (at least)

three di�erent possibilities for a parti
ular pair of before/after states:

1. gd Op holds and do Op holds: the states belong to the operation.

2. gd Op holds but do Op does not hold: the states may or may not belong

to the operation, we don't 
are.

3. gd Op does not hold: we do not wish the states to belong to the operation.

(Note, that this makes do Op for this pair of states redundant information.)
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Based on this des
ription, we 
an de�ne a number of regions of before states that

are of interest.

Impossible. The impossible region is the set of states where the operation is

blo
ked, i.e. it is always going to fail.

impo(Op) b= [S ; ins? j : 9 S

0

; outs! � gd Op℄

Analysing our example, we identify that the operation Transfer2 is always re-

je
ted when the amount a? is negative, i.e.

impo(Transfer2) = [Bank ; a? : Z; p? : PID j a? < 0℄:

Pre
ondition. The pre
ondition region is the area where the operation is pos-

sible and well de�ned. It is de�ned by

pre(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op ^ do Op℄

Observe that this is 
onsistent with our 
onvention of Op denoting gd Op ^

do Op. Then this results in the following pre
ondition for our example:

pre(Transfer2) = [Bank ; a? : Z; p? : PID j p? 2 dom(a

ount) ^ a? � 0℄:

Guard. The guarded region is simply the 
omplement to the impossible region,

i.e. it is the area where the blo
king predi
ate holds.

guard(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op℄

This, however, is the same as 
al
ulating the pre
ondition of the guarded part of

the operation, i.e. guard(Op) = pre(gd Op). Then it holds for our example

guard(Transfer2) = pre(gd Transfer2) = [Bank ; a? : Z; p? : PID j a? � 0℄:

Here it is 
lear that our approa
h is stri
tly more expressive than Fis
her's:

guard(Op) 
ontains an abstra
tion of the information in our approa
h, whereas

in his pre(enable) = enable. In Transfer2 the guard is a? � 0, loosing the infor-

mation that any widening of the pre
ondition should respe
t fp?g

�

C a

ount

0

=

fp?g

�

C a

ount and total

0

= total + a?.

Unde�ned. Given the regions de�ned by guard and pre
ondition we 
ould

de�ne the \
ompletely unde�ned" region as the di�eren
e between guard and

pre
ondition. This would be

undef(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op ^ (: 9 S

0

� gd Op ^ do Op)℄

In the initial Transfer operation it is

undef(Transfer) = [Bank ; a? : Z; p? : PID j a? � 0 ^ p? 62 dom(a

ount)℄

whereas in Transfer2 this region is empty.

In the next 
hapter, we develop formally a s
hema 
al
ulus for guarded pre
on-

dition s
hemas. We introdu
e existential quanti�
ation and review our work on


al
ulating the pre
ondition, the guard, and the other regions.
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7.4 Three Valued Interpretation

In the last se
tion we de�ned several regions a

ording to pairs of before/after

states. We distinguished three di�erent possibilities: First, the region where

gd Op does not hold, i.e. where the operation should be impossible. Se
ond, the

region where both gd Op and do Op hold, i.e. where after states belong to the

operation. Third, the remaining region where gd Op holds but do Op does not

hold. In that 
ase the out
ome of the operation is unde�ned. These three regions

are depi
ted in Figure 7.1 and 
an be naturally des
ribed using a set of three

truth values ff ; t;?g respe
tively.

UndefinedImpossible

(gd_Op and do_Op)

Defined

(gd_Op and not do_Op)
(not gd_Op)

Figure 7.1: Combining Guard and Pre
ondition

7.4.1 Semanti
al Des
ription of the Regions

Formally, we de�ne the transition from pairs of s
hemas to a three-valued logi


via a mapping fun
tion val that returns the appropriate truth value related to

the s
hema. Given a boolean-like type

bool3 ::= t j f j ?

we de�ne the three-valued interpretation of an operation Op = (P ;Q) on state

S as follows:

val(Op)= fx ; y j (x ; y) 2 rel(P ^ Q) � (x ; y) 7! tg

[ fx ; y j (x ; y) 62 rel(P) � (x ; y) 7! fg

[ fx ; y j (x ; y) 2 rel(P ^ :Q) � (x ; y) 7! ?g

where rel(Op) is a binary relation between bindings of type S and bindings of

type S

0

, i.e. rel(Op) = fOp � �S 7! �S

0

g.

We show that the given Axiom 1 also holds in this three-valued interpretation.

This is the 
ase, if and only if it maps to the same truth values in either 
ase of

using pairs (P ;Q) or (P ;P ^ Q).
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Proof sket
h:

val(P ;Q) =

8

>

<

>

:

t i� P ^ Q = P ^ (P ^ Q) i� t

f i� : P = : P i� f

? i� P ^ : Q = P ^ : (P ^ Q) i�?

9

>

=

>

;

= val(P ;P ^ Q)

7.4.2 Depi
ting Before and After States

We use a table style notation to depi
t the relation of before states and after

states of an operation by means of the possible out
ome, i.e. by val(Op). For

example, given an operation

Filter

De
l Filter

a? : Z

b! : Z

gd Filter

a? > 0

do Filter

isEven(a?) ^ b! � a?

whi
h takes only a positive number as input and returns any number less or equal

to it if the given number is even. Then the table representation is

a?

b!

: : : -1 0 1 2 3 4 5 : : :

.

.

.

-1 f f f f f f f

0 f f f f f f f

1 ? ? ? ? ? ? ?

2 t t t t f f f

3 ? ? ? ? ? ? ?

4 t t t t t t f

5 ? ? ? ? ? ? ?

.

.

.

Table 7.1: Before and After States Relations

7.4.3 Meaning of Re�nement

Operation re�nement is de�ned as removal of unde�nedness as well as non-

determinism. Taking our three-valued interpretation and the above represen-

tation, we 
an explain re�nement intuitively as repla
ing multiple ? in a row by
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t provided it enlarges the pre
ondition region or by repla
ing any ? by f whi
h

in turn may redu
e the guarded region. Furthermore, we 
an repla
e multiple t

in a line by f (as long as one t remains) to redu
e non-determinism. Note, the

latter step does not 
hange either the pre
ondition nor the guarded region.

We 
onsider the Filter operation from above to 
larify the presented notion of

re�nement. Therefore, we introdu
e a possible re�nement C Filter .

C Filter

De
l C Filter

a? : Z

b! : Z

gd C Filter

a? > 0

b! < a?

do C Filter

isEven(a?)

b! = a?=2

The following re�nement took pla
e. First, we ensure that b! is always less than

a?. This is done by strengthening the guard and 
orresponds to 
hanging ? to f

for all 
ases where b! � a?. Note, that this re�nement step also strengthens the

post
ondition of Filter in some 
ases. Se
ond, we remove non-determinism by

providing a more 
on
rete representation of the output in 
ase that a? is even.

This is done by repla
ing multiple t by f . Weakening of the pre
ondition did not

take pla
e but we may de�ne an output for the 
ase that a? is an odd number

in another re�nement step. However, the result will always be bound by the

newly introdu
ed predi
ate in the guard. The out
ome of this re�nement step is

illustrated in the following table.

a?

b!

: : : -1 0 1 2 3 4 5 : : :

.

.

.

-1 f f f f f f f

0 f f f f f f f

1 ? ? f f f f f

2 f f t f f f f

3 ? ? ? ? f f f

4 f f f t f f f

5 ? ? ? ? ? ? f

.

.

.

Table 7.2: Before and After States Relations after Re�nement
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7.5 Operation Re�nement

In this work, we restri
t ourselves to operation re�nement. Our work is intended

to generalise the standard approa
h of re�nement. In this se
tion, we �rst present

our generalised rules of re�nement whi
h we then apply to the Transfer example.

Finally, we show that our new re�nement 
onditions indeed generalise both the

guarded and the pre
onditioned approa
h.

7.5.1 Rules for Operation Re�nement

Given an abstra
t operation AOp = (gd AOp; do AOp) and a 
on
rete operation

COp = (gd COp; do COp) both over the same state State with input x? : X and

output y ! : Y , then COp re�nes AOp, denoted AOp v COp, if and only if

appli
ability (1) and 
orre
tness (2) hold:

(1) 8 State; x? : X � preAOp ` preCOp

(2) 8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ` AOp

The �rst 
ondition allows to weaken the pre
ondition and the se
ond 
ondition

ensures that the re�ned operation does at least what the abstra
t operation did.

Additionally, we allow strengthening of guards but not weakening:

(3) 8 State; State

0

; x? : X ; y ! : Y � gd COp ` gd AOp

Conditions (1) and (3) together ensure that the pre
ondition is the upper bound

for strengthening the guard and that the guard is the lower bound for weakening

the pre
ondition.

We observe that the 
orre
tness rule 
an be formally weakened using (3):

preAOp ^ COp ) AOp

� fDe�nition of Opg

pre(gd AOp ^ do AOp) ^ gd COp ^ do COp ) gd AOp ^ do AOp

� fUsing gd COp ) gd AOpg

pre(gd AOp ^ do AOp) ^ gd COp ^ do COp ) do AOp

� fDe�nition of Opg

preAOp ^ COp ) do AOp

However, it turns out ni
ely that the shape of the standard re�nement rules is

preserved when we use the introdu
ed abbreviation.
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7.5.2 Re�nement of the Money Transfer System

We introdu
ed in Se
tion 7.2.2 a simple money transa
tion system that allows to

put money into the a

ount of an existing 
ustomer. We showed via an example

that using only the guarded or pre
ondition interpretation limits the expressive-

ness, and also perhaps allows unintended re�nement. In our 
ombined approa
h

we solved these problems. Therefore, we are now able to express the following

re�nement of the Transfer2 operation:

C Transfer2

De
l C Transfer2

�Bank

a? : Z

p? : Z

gd C Transfer2

a? � 0

total

0

= total + a?

fp?g

�

C a

ount

0

=

fp?g

�

C a

ount

do C Transfer2

p? 62 dom(a

ount))

a

ount

0

=

a

ount � fp? 7! a?g

p? 2 dom(a

ount))

a

ount

0

= a

ount �

fp? 7! a

ount(p?) + a?g

First, we strengthened the guard gd Transfer2. Now, the money to be transfered

has to be positive and we are not permitted to 
hange another person's bank

a

ount, no matter what future re�nement will do to the pre
ondition. Se
ond,

we also re�ned the do Transfer2 operation. We weakened the pre
ondition of

Transfer2 to handle the 
ase that the re
eiving user does not have an a

ount.

In this 
ase we allow the 
reation of a new bank a

ount whi
h will have the

amount a? as initial input.

7.5.3 Generalisation of Traditional Re�nement Rules

Our 
on
ept of re�nement is a valid generalisation of the traditional operation

re�nement rules in both the guarded and the pre
onditioned approa
h. Taking

gd Op = preOp and do Op = Op or gd Op = true and do Op = Op, respe
-

tively, we show that our re�nement rules redu
e to the traditional ones.

Guarded Approa
h

In the guarded interpretation the guard is the pre
ondition of the operation.

Therefore, we use gd Op = preOp and do Op = Op.
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Let Op

1

= (gd Op

1

; do Op

1

) = (preAOp;AOp) and Op

2

= (gd Op

2

; do Op

2

) =

(preCOp;COp). We show that for this 
hoi
e of Op

1

, Op

2

it holds Op

1

v Op

2

�

AOp v COp in the guarded approa
h.

(1) Appli
ability.

preOp

1

` preOp

2

� fOp = (gd Op ^ do Op)g

pre(gd AOp ^ do AOp) ` pre(gd COp ^ do COp)

� fgd Op = preOp and do Op = Opg

pre(preAOp ^ AOp) ` pre(preCOp ^ COp)

� fSimpli�
ation: preOp ^ Op � Opg

preAOp ` preCOp

(2) Corre
tness.

preOp

1

^ Op

2

` Op

1

� fOp = (gd Op ^ do Op)g

pre(gd AOp ^ do AOp) ^ (gd COp ^ do COp)

` (gd AOp ^ do AOp)

� fgd Op = preOp and do Op = Opg

pre(preAOp ^ AOp) ^ (preCOp ^ COp) ` (preAOp ^ AOp)

� fSimpli�
ation: preOp ^ Op � Opg

preAOp ^ COp ` AOp

(3) Strengthening.

gd Op

2

` gd Op

1

� fgd Op

1

= preAOp, gd Op

2

= preCOpg

preCOp ` preAOp

Appli
ability and strengthening together result in the fa
t that preCOp =

preAOp, i.e. the standard 
ondition in Obje
t-Z that a guard 
annot be strength-

ened nor weakened. The 
orre
tness rule is as in standard re�nement as well.

Pre
ondition Approa
h

To show that our approa
h is a generalisation of the pre
ondition approa
h, we


onsider that the guard of the operation is the weakest possible, i.e. gd Op = true.
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Then our notation 
oin
ides with the standard Z notation, where do Op = Op.

Using the fa
t that we 
onsider Op = gd Op ^ do Op it is easy to show that

appli
ability (1) and 
orre
tness (2) hold. The rule for strengthening (3) evaluates

to 8 State; State

0

; x? : X ; y ! : Y � true whi
h means there is no strengthening

at all. Therefore, in the 
ase of no guards our re�nement rules are equivalent to

the standard ones.

7.5.4 Re�nement Rules for Required Non-Determinism

A di�erent interpretation is possible for the operations in three-valued logi
 that

we have des
ribed. Various authors, like (Lano et al., 1997) and (Steen et al.,

1997) have argued that for behavioural spe
i�
ations, the traditional identi�
a-

tion of non-determinism with implementation freedom is unsatisfa
tory. They

would like the opportunity to spe
ify required non-determinism, whi
h implies

a need for additional spe
i�
ation operators to express implementation free-

dom. Re�nement rules should then remove implementation freedom but not non-

determinism. (Steen et al., 1997) des
ribe su
h a 
al
ulus, obtained by adding a

disjun
tion operator to LOTOS.

We 
ould introdu
e a similar 
al
ulus for Z by reinterpreting the three-valued

operations des
ribed above. As before, when the operation evaluates to f for

a parti
ular before and after state, it denotes an impossibility. However, the


olle
tion of after states that are related by t to a parti
ular before state represents

required non-determinism. As a 
onsequen
e, none of these t values may be

removed in re�nement. Finally, the 
olle
tion of after states that are related by

? to a parti
ular before state represent an implementation 
hoi
e, i.e. at least

one of those after states will need to be related by t in a �nal re�nement.

As a 
onsequen
e, expressed in terms of the tabular representation used before,

re�nement rules for required non-determinism and disjun
tive spe
i�
ation are:

� if a line 
ontains a single ?, it is equivalent to t (required 
hoi
e from a

singleton set);

� if a line 
ontains multiple o

urren
es of ?, some but not all of them may

be 
hanged to f (redu
ing possibility of 
hoi
e);

� any ? may be 
hanged to t (in parti
ular, an implementation 
hoi
e be-

tween several after states may be re�ned to a non-deterministi
 
hoi
e be-

tween some of them).

This approa
h generalises only the guarded approa
h { the pre
ondition just


hara
terises those before states for whi
h possible after states have been deter-

mined already. It also prevents some undesired intera
tion between removing

unde�nedness and in
reasing determinism.
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7.6 Related Work

Dealing with un(der)de�nedness in Z expli
itly has been an issue for a while.

It 
ame up when resear
hers, like (Josephs, 1991), tried to use Z for spe
ifying


on
urrent systems and it be
ame apparent that one might need guards and

pre
onditions together.

7.6.1 Strulo's Work on Firing Conditions

(Strulo, 1995) attempts to unify both the pre
ondition and the guarded interpre-

tation to model passive and a
tive behaviour in Z a

ordingly. He developed the

idea of 
lassifying a s
hema a

ording to its fun
tion and to use at one time the

guarded interpretation and another time the pre
ondition interpretation. Note,

that Strulo uses the term �ring 
ondition rather than guard.

An operation is des
ribed by a single state s
hema, plus a label indi
ating whether

the operation is either a
tive or passive. A distin
tion is made between a
tive

operations being impossible or divergent, by interpreting before states whi
h allow

all possible after states as divergent. This en
oding extends the guarded approa
h

to pre
onditions in Z. Re�nement in Strulo's work is subtle as \the 
onditions

for re�nement depend on the identi�
ation of a
tive and passive behaviours".

The 
hara
terisation of an \un
onstrained" operation, whose predi
ate interpre-

tation is universally true, as divergent is somewhat arti�
ial. For example, given

an operation over a singleton state, the 
lassi�
ation into un
onstrained and in-

teresting region 
ontradi
t. An operation over a singleton state is either true or

false, but not one or the other at some time, i.e. there is no interesting region

but only an empty or an un
onstrained. However, su
h an operation is 
learly

not divergent, so it should not be in the un
onstrained area but in the interesting

region. This is a 
ontradi
tion, showing that Strulo's 
lassi�
ation is not always

suÆ
ient.

7.6.2 The (R;A)-Cal
ulus by Doornbos

The (R;A)-
al
ulus by (Doornbos, 1994) separates well-de�nedness of an oper-

ation from its e�e
t, in an abstra
t setting of binary relations and sets. An

operation (R;A) 
onsists of a set A essentially representing its pre
ondition, and

a relation R spe
ifying its e�e
t. This is substantially di�erent from having a

relation with an expli
it guard, in parti
ular it allows the spe
i�
ation of \mira-


les". The fragment of the 
al
ulus satisfying A � domR (i.e., the \law"of the ex-


luded mira
le), is generalised by our 
al
ulus, viz. (gd Op; do Op) b= (R;ACR).

Doornbos also draws a parallel between the (R;A) 
al
ulus and weakest (liberal)

pre
onditions whi
h suggests a similar exer
ise would be possible for our 
al
ulus.
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7.6.3 Hehner and Hoare's Predi
ative Approa
h to Pro-

gramming

In (Hehner, 1993; Hehner, 1999; Hoare and He Jifeng, 1998) the authors 
onsider

a spe
i�
ation to be a predi
ate of the form P ) Q meaning that if P is satis�ed,

then the 
omputation terminates and satis�es Q . A spe
i�
ation S is re�ned by

a spe
i�
ation T if all 
omputations satisfying T also satisfy S , i.e. the reverse

impli
ation S ( T (T v S ). This allows weakening of the pre
ondition P as

well as strenghtening of the post
ondition Q .

Within this approa
h, the predi
ate guard ^ (pre ) post) in a s
hema body

would express nearly the desired e�e
t under the guarding interpretation of Z

s
hemas. In this interpretation, a false guard 
auses the spe
i�
ation to be false,

i.e. impossible, and a false pre
ondition pre leads to the spe
i�
ation being true,

whi
h in turn allows any output.

However, the advantage of our approa
h with two s
hemas gd and do is a 
ertain

independen
e of the guard and pre
ondition. Even when the pre
ondition is false,

not every output is permitted: it is still restri
ted by the guard.

7.7 Summary

In this 
hapter we presented the idea of using a three-valued interpretation of op-

erations to 
ombine and extend the guarded and pre
ondition approa
hes. Using

this non-standard interpretation we were able to present a simple and intuitive

notion of operation re�nement, whi
h generalizes the traditional re�nement rela-

tions.

A full theory of re�nement would also in
lude a notion of data re�nement. How-

ever, when the retrieve relation is a two-valued predi
ate the extension be
omes

obvious. It remains, however, un
lear what might be represented by a three-

valued retrieve relation.

In our interpretation of pairs of s
hemas (gd Op; do Op) we identi�ed only three

regions. Clearly, we 
ould further distinguish the areas : gd Op ^ : do Op and

: gd Op ^ do Op. The latter area might be regarded as representing \mira
les"

or in
onsisten
y. Dete
ting and managing in
onsisten
y between the guarded and

the pre
onditioned region is another of our topi
s for future resear
h, possibly

based on the work presented in Chapter 6.



Chapter 8

A S
hema Cal
ulus for

Un(der)de�nedness in Z

In the states-and-operations style in the spe
i�
ation language Z, un(der)de-

�nedness is not normally made expli
it. However, in the last 
hapter we showed

that it is possible to adapt Z s
hemas su
h that both guards and pre
ondi-

tions are represented at the same time, and thus enabling the spe
i�
ation of

un(der)de�nedness. We 
all su
h s
hemas guarded pre
ondition s
hemas.

S
hemas are 
entral building blo
ks in standard Z and it is possible to perform

a variety of operations with and on them. In the last 
hapter, we presented the

semanti
s for guarded pre
ondition s
hemas based on a non-standard three-valued

interpretation of an operation. We introdu
ed a third truth value to 
orrespond

to a situation where we don't 
are what e�e
t the operation has. In this 
hapter,

we use this three-valued interpretation to develop a s
hema 
al
ulus for guarded

pre
ondition s
hemas.

Our approa
h is based on three-valued truth tables for the 
ommon logi
al op-

erators, i.e. negation, 
onjun
tion, disjun
tion, and entailment. These truth ta-

bles guide the development pro
ess of the 
orresponding s
hema operators. We

demonstrate the validity of the de�nitions by proving several laws from standard

predi
ate logi
. However, we also �nd that some laws do not hold. This is not

surprising as we do not deal with two- but three-valued logi
. Furthermore, we

�nd that entailment and impli
ation are de
oupled but s
hema entailment 
an

be de�ned using standard impli
ation.

S
hema quanti�
ation is also an important part of standard Z. We, too, present

a notion of s
hema quanti�
ation for guarded pre
ondition s
hema and apply it

to s
hema hiding, proje
tion, 
omposition and pre
ondition 
al
ulation. Given

this 
al
ulus we revise the regions of operation appli
ability, as introdu
ed in the

last 
hapter. We also revise operation re�nement using the new s
hema 
al
ulus.

172
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8.1 Introdu
tion

S
hemas are 
entral building blo
ks in standard Z and it is possible to perform

a variety of operations with and on them. In the last 
hapter, we presented the

semanti
s for guarded pre
ondition s
hemas based on a non-standard three-valued

interpretation of an operation. We introdu
ed a third truth value to 
orrespond

to a situation where we don't 
are what e�e
t the operation has. In this 
hapter,

we use this three-valued interpretation to develop a s
hema 
al
ulus for guarded

pre
ondition s
hemas.

8.1.1 Motivation

In Chapter 7 we introdu
ed a new s
hema representation to 
ombine both guarded

and pre
ondition interpretation of Z s
hemas. We demonstrated the use of our

notation by means of an example. We introdu
ed the 
on
epts of the regions

of appli
ability of an operation and operation re�nement rules for su
h guarded

pre
ondition s
hemas. However, we did not present me
hanisms to 
ombine su
h

s
hemas.

The s
hema 
al
ulus is used to stru
ture and 
ompose des
riptions. This allows

to divide up the information 
ontent of a spe
i�
ation into manageable pie
es.

In parti
ular, this enables re-usability of 
ommon 
omponents. Of 
ourse, while

developing a new s
hema representation we do not want to loose the advantages of

the standard Z notation, i.e. we need a s
hema 
al
ulus for guarded pre
ondition

s
hemas as well.

In standard Z, the existential quanti�
ation over the after states and output

variables of an operation s
hema enables the 
al
ulation of the pre
ondition of

that operation. The result is a s
hema 
ontaining the predi
ate that needs to

hold to guarantee the out
ome of an operation. Furthermore, quanti�
ation,

s
hema impli
ation and s
hema 
onjun
tion are used in standard Z to formalise

the notion of re�nement. Surely, we want to be able to perform pre
ondition


al
ulation and re�nement, too.

(Fis
her, 1998) introdu
ed a s
hema notation based on enable and effe
t

s
hemas to 
apture guards and pre
onditions. His resear
h was aimed at 
om-

bining Obje
t-Z and CSP spe
i�
ations. While it inspired our work in guarded

pre
ondition s
hemas it did not provide a s
hema 
al
ulus.

(Strulo, 1995), too, works on unifying both the pre
ondition and the guarded

interpretation. His aim is to model passive and a
tive behaviour in Z a

ordingly.

Strulo de
ided to 
lassify a s
hema a

ording to its fun
tion and to use at one time

the guarded interpretation and another time the pre
ondition interpretation. To


ombine and to reason about s
hemas he uses the s
hema 
al
ulus from standard

Z. Obviously this is not possible in our approa
h as we develop a new s
hema

representation whi
h is more expressive than Strulo's.
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8.1.2 Hypothesis

In the last this 
hapter, we developed our new s
hema representation based on a

three-valued interpretation. We propose to extend this work by using the same

interpretation to develop a s
hema 
al
ulus for guarded pre
ondition s
hemas.

We show that it is possible to de�ne the s
hema operators based on the given

valuation fun
tion, mapping the s
hema representation to three distin
t truth

values, and three-valued truth tables. We then extend the 
al
ulus to enable

quanti�
ation of s
hemas variables.

By developing this 
al
ulus we demonstrate that our guarded pre
ondition

s
hemas 
an be used to 
onstru
t 
omplex spe
i�
ations. We already introdu
ed

the regions of appli
ability of an operation. The s
hema operators 
an be used

to formally determine these regions. Also, the s
hema 
al
ulus is suÆ
ient to en-

able the spe
i�er to verify the re�nement of an abstra
t operation by a 
on
rete

operation.

8.1.3 Outline

Here, we develop a s
hema 
al
ulus for guarded pre
ondition s
hemas. We brie
y

re-
ap the notion of a guarded pre
ondition s
hema in Se
tion 8.2 and we illustrate

its use by presenting an example of a heat 
ontrol system. We present the main

part of this 
hapter in Se
tion 8.3 whi
h 
onsists of the development of the s
hema


al
ulus itself. Based on the standard s
hema operators, we introdu
e the s
hema

operators for the guarded pre
ondition s
hemas. We also prove several laws for

the s
hema operators, to validate the 
orre
tness of our de�nitions. Furthermore,

we show that some laws of two-valued predi
ate logi
 do not hold within our


al
ulus. Next, in Se
tion 8.5, we revise the notions of s
hema appli
ability and,

�nally, in Se
tion 8.6 we look at operation re�nement again, using the newly

developed s
hema 
al
ulus.

8.2 Un(der)de�nedness in Z: Guarded Pre
on-

dition S
hemas

In
orporating both guards and pre
onditions for operations enables a parti
ular

way of spe
ifying un(der)de�nedness in Z. Basi
ally, an operation 
an be blo
ked

by the guard. However, if not blo
ked it leaves two possibilities, either its result

is guaranteed, i.e. applied within its pre
ondition, or its result is un(der)de�ned.
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8.2.1 A S
hema Representation of Un(der)de�nedness

An operation is de�ned as a triple (De
l Op; gd Op; do Op), where De
l denotes

the de
laration part of the operation, gd the guard of the operation and do the

e�e
t of the operation itself. It is depi
ted by the following s
hema:

Op

De
l Op

De
l

gd Op

pred

gd

do Op

pred

do

where De
l Op is impli
itly in
luded in gd Op and do Op. Often, we will use

the abbreviation (gd Op; do Op) assuming the de
laration to be in
luded where

ne
essary.

8.2.2 Example: A Heat Control System

Here we give an example spe
i�
ation using guarded pre
ondition s
hemas to

illustrate the 
on
ept and use of guarded pre
ondition s
hemas. We develop a

heat 
ontrol system whi
h turns a fan on or o� a

ording to a given temperature.

The fan has to run when the temperature is above a maximum and it is o�

when the temperature is below a given minimum. However, between these two

boundaries it 
an be on or o�. We de�ne a boolean like type FanType to 
apture

the two possible operation modes of a fan.

FanType ::= On j O�

The state of our system is only 
on
erned about the status of the fan.

System

fan : FanType

We use an axiomati
 de�nition for the temperature range su
h that both values


onstrain the entire spe
i�
ation.

heat max ; heat min : Z

heat max = 65

heat min = 45
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The maximum temperature is set to be 65 degrees Celsius and the minimum

temperature to be 45 degrees. These are average values for the operation of some


omputer pro
essor fans. Initially, the fan will be on, for safety reasons.

InitFan

System

0

fan

0

= On

The fan 
an be turned on if the 
urrent temperature, given by the input heat?, is

above the minimum temperature and if the fan is not running. However, it must

be turned on if the temperature is above the maximum allowed temperature.

On

De
l

�System

heat? : Z

gd On

heat? > heat min

fan = O�

do On

heat? � heat max

fan

0

= On

The O� operation is spe
i�ed similar to the On operation, being allowed if

the temperature is below maximum but being 
ertainly applied if it is below

minimum.

O�

De
l

�System

heat? : Z

gd O�

heat? < heat max

fan = On

do O�

heat? � heat min

fan

0

= O�

8.2.3 S
hemas using true and false.

In this 
hapter, we use two spe
ial s
hemas, denoted TRUE and FALSE. The

s
hema TRUE 
an always be applied and the out
ome of its appli
ation is un
on-

strained. Therefore, its representation is given by the pair (true; true). Contrary

to TRUE, the s
hema FALSE is never appli
able, i.e. it is always blo
ked, hen
e
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its guard is false. A

ording to Axiom 1, the do-part is irrelevant in su
h 
ases.

However, for pra
ti
al use we de�ne it to be false, too, i.e. FALSE = (false; false).

S
hemas using false in the guard are not appli
able, they do not allow any oper-

ation and 
annot be weakened in re�nement. However, they may 
ome in handy

to add 
onstraints to the do-part using s
hema disjun
tion. If the do-part is false

but not the guard then it is possible to perform an operation though no out
ome

is de�ned. However, during re�nement this operation may be
ome de�ned.

The s
hema (gd Op; true) is mostly used to add 
onstraints to the guard via

s
hema 
onjun
tion. Otherwise, any out
ome is possible as long as the guard

permits the operation. Finally, we turn to the s
hema (true; do Op). Due to the

guard being true, su
h an operation is always appli
able, i.e. it is never blo
ked,

though its result 
an be both unde�ned or well-de�ned. However, this is the

same situation that o

urs in standard Z with the pre
ondition interpretation.

Therefore, it is possible to embed standard Z s
hemas into guarded pre
ondition

s
hemas using the following three steps: �rst, move its de
larations into the

de
laration part, se
ond, let the guard be true and, third, let the do-part be

equivalent to the predi
ate of the standard s
hema, i.e.

S b= [De
l j pred ℄ � S = (De
l ; true; pred)

8.3 A S
hema Cal
ulus for Guarded Pre
ondi-

tion S
hemas

In this se
tion, we develop a s
hema 
al
ulus for the guarded pre
ondition

s
hemas. We 
onsider the main Z s
hema operators: negation, 
onjun
tion,

disjun
tion, quanti�
ation, hiding, proje
tion, and sequential 
omposition. An

overview of the standard de�nitions of these operators 
an be found in Chapter

2 as well as in (Wood
o
k and Davies, 1996) and (Potter et al., 1991).

We also show that this 
al
ulus obeys several laws of predi
ate logi
. This is

ne
essary sin
e we are not dealing with standard predi
ate logi
 anymore but

with an en
oding of three-valued logi
 with two two-valued predi
ates. This is

illustrated by the fa
t that some 
lassi
al laws, like the law of ex
luded middle,

do not hold. However, we are able to use two-valued predi
ate logi
 and its laws

whenever we are dealing with 
lassi
al predi
ates, whi
h are 
ontained in both

the gd - and do-part of an operation.

8.3.1 Three-Valued Truth Tables

In the previous se
tion we introdu
ed a s
hema representation that allows the

spe
i�
ation of un(der)de�nedness in Z. We used two predi
ates, one, the guard,
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to des
ribe that the operation is permitted and another one, the do-part to de-

s
ribe that the operation is also de�ned. Both together 
apture that the operation

is well-de�ned. We are also able to express that the operation is possible but not

de�ned, i.e. it is unde�ned. Finally, the negated guard is used to express that

the operation is forbidden, i.e. impossible. These three 
ases 
an be des
ribed

using a set of three truth values ft;?; fg respe
tively, where ? is often 
alled

\bottom".

We de�ned the transition from pairs of s
hemas to a three-valued logi
 via a

mapping fun
tion val that returns the appropriate truth value relating to the

s
hema. Given a boolean-like type

bool3 ::= t j f j ?

we also de�ned the three-valued interpretation of an operation Op = (P ;Q) as

follows:

val(Op)= fx ; y j (x ; y) 2 rel(P ^ Q) � (x ; y) 7! tg

[ fx ; y j (x ; y) 62 rel(P) � (x ; y) 7! fg

[ fx ; y j (x ; y) 2 rel(P ^ :Q) � (x ; y) 7! ?g

where rel(Op) = fOp � �State 7! �State

0

g.

Given the three truth values we introdu
e the following truth tables whi
h are the

three-valued fragment with ? of (Dam�asio and Pereira, 1998), as well as those

derived from (Herre and Pear
e, 1992). These tables de�ne the propositional

fragment of a logi
 we need for this work:

p : p

t f

f t

? ?

p^q t f ?

t t f ?

f f f f

? ? f ?

p_q t f ?

t t t t

f t f ?

? t ? ?

p!q t f ?

t t f f

f t t t

? t t t

Table 8.1: Three-Valued Truth Tables

These truth tables will guide us in the development of the s
hema 
al
ulus, i.e. the

s
hema operators will be de�ned with respe
t to these three-valued 
onne
tives.

8.3.2 S
hema In
lusion and S
hema De
oration

Both s
hema in
lusion and s
hema de
oration follow the standard Z 
onventions.

They allow us to hide some details of a s
hema and to fo
us on the relationship

of the relevant variables, leaving impli
it the invariant properties of a system. Of


ourse, those properties 
an be made expli
it again by expanding the s
hemas.
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S
hema In
lusion. S
hema in
lusion is one of the simplest s
hema operations.

It allows to use the name of a s
hema amongst the de
larations of another s
hema.

Like in standard Z, the e�e
t of in
lusion of a s
hema U amongst the de
larations

of a s
hema V is that the de
larations of U are in
luded in those of V , the

predi
ates of the guard of U are in
luded in the guard of V and the predi
ates of

the do-part of U are appended to the do-part of V . Note, that no type 
lashed

must o

ur if the s
hemas are fully expanded. For example, the s
hemas On

and O� of the heat 
ontrol system that we spe
i�ed earlier in
lude the s
hemas

System and System

0

.

S
hema De
oration. The rules of s
hema de
oration are similar to those in

standard Z. In parti
ular, the use of primed s
hema names follows the standard


onvention, i.e. the e�e
t is that the de
oration is applied to all the variables

in the de
laration of the de
orated s
hema both within the de
laration and the

predi
ate parts of the s
hema. For example, within the s
hema InitFan, the

s
hema System is de
orated with a prime and, therefore, the same applies to the

variable fan.

A further notational 
onvention is the use of � and � in front of a s
hema name.

For any s
hema U , �U is de�ned as

�U b= [U ; U

0

℄

i.e. it 
ontains all the variables and predi
ates de
lared in the s
hema U to-

gether with another set of primed de
larations and predi
ates 
orresponding to

the de�nitions in the s
hema U .

Sometimes, an operation does not 
ause any 
hange of a parti
ular state U but

the operation requires some information provided by that state. Then we use

�U , as de�ned by

�U b= [�U j �U = �U

0

℄

to express that no 
hanges to the variables de
lared in U o

ur.

8.3.3 S
hema Negation

Negation is a fun
tion that 
hanges truth but not knowledge. Sin
e we are deal-

ing with unde�nedness the latter is important. An operation 
an be forbidden,

unde�ned, or well-de�ned. A

ording to the truth table for negation, the nega-

tion of forbidden is well-de�ned, and vi
e versa, leaving the unde�ned region to

remain unde�ned. Sin
e the guard being false de�nes the forbidden, or impos-

sible, region, it has to de�ne the well-de�ned region after negation. It is just
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the opposite for the de�ned area, i.e. it should be
ome impossible. Therefore,

whenever there was an e�e
t, it will be forbidden after negation. This intuition

leads to the following de�nition of s
hema negation.

We de�ne s
hema negation to preserve the de
laration of the operation but to

swap and to negate its predi
ates, i.e. given the s
hema U

U

De
l U

a : A

b : B

gd U

P

do U

Q

The negation W = : U is:

W

De
l W

a : A

b : B

gd W

: (P ^ Q)

do W

: P

The appearan
e of P in the new guard 
an be explained from Axiom 1. However,

if originally Q ) P , then the predi
ate in the guard is equivalent to : Q , in

whi
h 
ase negation 
an be written as : (P ;Q) = (: Q ;: P).

To derive the above de�nition of negation we used the following reasoning pro
ess:

if : P stands for \the operation is not appli
able", i.e. false then it should be

true after negation, i.e. it should be appli
able and de�ned, hen
e : P in the

do-part. Furthermore, an operation is de�ned if P ^ Q holds, whi
h should in

turn be
ome false after negation, i.e. operations inside it should be blo
ked, or

in other words, operations outside it should be allowed, hen
e : (P ^ Q) in the

guard.

However, we need to assume that the given s
hema U is normalised. As in

standard Z, a synta
ti
 form of a s
hema negation 
an only be given on the

assumption that the negated s
hema was normalised �rst. Thus, we assume that

s
hemas are normalised whenever s
hema negation is applied in any inferen
e in

the following se
tions and subse
tions.
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The Double Negation Law. The �rst law we show to hold is the double

negation law, i.e. that : : U = U holds:

: : U

� fDe�nition of U g

: : (P ;Q)

� fS
hema Negationg

: (: (P ^ Q);: P)

� fS
hema Negationg

(: (: (P ^ Q) ^ : P);: : (P ^ Q))

� fClassi
al de Morgan Lawg

(: : ((P ^ Q) _ P);: : (P ^ Q))

� fClassi
al Double Negation (twi
e)g

((P ^ Q) _ P ;P ^ Q)

� fClassi
al Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

We 
an simplify s
hema negation and subsequently the proof of the double nega-

tion law when Q ) P holds:

: : U

� fDe�nition of U g

: : (P ;Q)

� fS
hema Negationg

: (: Q ;: P)

� fS
hema Negationg

(: : P ;: : Q)

� fClassi
al Double Negation Lawg

(P ;Q)

� fDe�nition of U g

U

It may seem trivial but nevertheless, the following law is rather useful in many

proofs: : TRUE = FALSE

: TRUE
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� fDe�nition of TRUEg

: (true; true)

� fS
hema Negationg

(false; false)

� fDe�nition of FALSEg

FALSE

8.3.4 S
hema Conjun
tion

A

ording to the truth table of three-valued logi
, 
onjun
tion is true if both

its arguments are true, i.e. the 
onjun
tion of two s
hemas should be in the

de�ned region in 
ase both s
hemas are in their de�ned region, too. Furthermore,


onjun
tion results in false, i.e. the operation is outside the guard, if either of

the s
hemas involved in the 
onjun
tion is outside their guards, i.e. it is true if

both are inside the guard.

For example, given:

U

De
l U

a : A

b : B

gd U

P

do U

Q

V

De
l V

a : A

d : D

gd V

S

do V

T

then their 
onjun
tion is given by the s
hema W = U ^ V :

W

De
l W

a : A

b : B

d : D

gd W

P ^ S

do W

P ^ Q ^ S ^ T

Following from the Axiom 1 the following simpli�
ation is always 
orre
t:
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W

De
l W

a : A

b : B

d : D

gd W

P ^ S

do W

Q ^ T

Note, for every variable de
lared in both s
hemas we de�ne its 
ommon type to

be the interse
tion of both given types. Thus, just like for standard Z s
hema


onjun
tion, names de
lared in both s
hemas from in
ompatible sets will lead to

a type error.

Here, and throughout this 
hapter, we prove several laws for working with s
hema

operators. We already showed that the double negation law holds. Now we turn

to some prin
ipal laws for s
hema 
onjun
tion.

Idempotent Law for Conjun
tion: U ^ U = U

Applying 
onjun
tion to two identi
al s
hemas results in nothing but the s
hema

itself.

U ^ U

� fDe�nition of U g

(P ;Q) ^ (P ;Q)

� fS
hema Conjun
tion, Axiom 1g

(P ^ P ;Q ^ Q)

� fClassi
al Idempoten
y of Conjun
tiong

(P ;Q)

� fDe�nition of U g

U

Zero Law for Conjun
tion: U ^ FALSE = FALSE

Using the s
hema FALSE as an argument for s
hema 
onjun
tion results in the

s
hema FALSE.

U ^ FALSE

� fDe�nition of U and FALSEg

(P ;Q) ^ (false; false)
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� fS
hema Conjun
tiong

(P ^ false;P ^ Q ^ false ^ false)

� fClassi
al Zero Law for Conjun
tiong

(false; false)

� fDe�nition of FALSEg

FALSE

One Law for Conjun
tion: U ^ TRUE = U

Complementing the Zero Law is the One Law. A 
onjun
tion between a s
hema

U and the s
hema TRUE is the same as the s
hema U itself.

U ^ TRUE

� fDe�nition of U and TRUEg

(P ;Q) ^ (true; true)

� fS
hema Conjun
tion, Axiom 1g

(P ^ true;Q ^ true)

� fClassi
al One Law for Conjun
tiong

(P ;Q)

� fDe�nition of U g

U

All three laws are 
ompression laws, in the sense, that given two s
hemas their

appli
ation results in one s
hema. On the other hand, there are also laws that

allow the arguments of s
hema 
onjun
tion to be swapped as well as to 
hange

bra
keting of 
onjun
ts, i.e. the 
ommutativity and asso
iativity laws. However,

they also follow from the 
ommutativity and asso
iativity of the 
lassi
al 
on-

jun
tion operator. Therefore, we do not prove them in detail.

8.3.5 S
hema Disjun
tion

Basi
ally, there are two possible ways to de�ne s
hema disjun
tion. Firstly, it 
an

be done by applying a similar reasoning pro
ess as in de�ning s
hema 
onjun
tion,

i.e. inferring it from the three-valued truth table. Se
ondly, s
hema disjun
tion


ould be 
al
ulated using s
hema 
onjun
tion and negation. We will follow the

�rst path and show that the same result would be obtained by using the se
ond

method, i.e. we show that the de Morgan laws hold.

For disjun
tion to be true, i.e. de�ned, either of its arguments must be de�ned,

i.e. gd ^ do must hold. Disjun
tion is false, i.e. outside its guard, if both s
hemas
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are outside their guards, hen
e it is inside the guard, if either one s
hema is inside

its guard. Therefore, given the s
hemas U and V from above, their disjun
tion

W = U _ V is given as:

W

De
l W

a : A

b : B

d : D

gd W

P _ S

do W

(P ^ Q) _ (S ^ T )

The type of variables de
lared in both s
hemas is the union of the types given to

that variable in ea
h of the s
hemas.

Like for s
hema 
onjun
tion we show idempoten
y, the Zero Law, as well as the

One Law for s
hema disjun
tion to hold. Again, we do not prove 
ommutativ-

ity and asso
iativity but their proofs are based on both properties holding for


lassi
al disjun
tion.

Idempotent Law for Disjun
tion: U _ U = U

U _ U

� fDe�nition of U g

(P ;Q) _ (P ;Q)

� fS
hema Disjun
tiong

(P _ P ; (P ^ Q) _ (P ^ Q))

� fIdempoten
y of Classi
al Disjun
tiong

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

Zero Law for Disjun
tion: U _ FALSE = U

U _ FALSE

� fDe�nition of U and FALSEg

(P ;Q) _ (false; false)

� fS
hema Disjun
tiong

(P _ false; (P ^ Q) _ (false ^ false))
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� fClassi
al Zero Law for Conjun
tiong

(P _ false; (P ^ Q) _ false)

� fClassi
al Zero Law for Disjun
tiong

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

One Law for Disjun
tion: U _ TRUE = TRUE

U _ TRUE

� fDe�nition of U and TRUEg

(P ;Q) _ (true; true)

� fS
hema Disjun
tiong

(P _ true; (P ^ Q) _ (true ^ true))

� fClassi
al One Law for Conjun
tion as well as Disjun
tiong

(true; true)

� fDe�nition of TRUEg

TRUE

De Morgan Laws. Classi
ally, disjun
tion 
an be de�ned in terms of negation

and 
onjun
tion as (U _ V ) = : (: U ^ : V ). For our de�nition of disjun
tion

to be useful we require it to obey the de Morgan laws, too.

Given the two normalised s
hemas U and V , then

: (: U ^ : V )

� fDe�nition of U and V g

: (: (P ;Q) ^ : (S ;T ))

� fS
hema Negationg

: ((: (P ^ Q);: P) ^ (: (S ^ T );: S ))

� fS
hema Conjun
tiong

: (: (P ^ Q) ^ : (S ^ T );: P ^ : (P ^ Q) ^ : S ^ : (S ^ T ))

� fClassi
al de Morgan Law, Absorption Lawg

: (: ((P ^ Q) _ (S ^ T ));: (P _ S ))

� fS
hema Negationg

(: (: ((P ^ Q) _ (S ^ T )) ^ : (P _ S ));: : ((P ^ Q) _ (S ^ T )))

� fClassi
al de Morgan Law, Classi
al Double Negation (twi
e)g

((P ^ Q) _ (S ^ T ) _ P _ S ; (P ^ Q) _ (S ^ T ))
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� fClassi
al Commutativity, Classi
al Absorption Lawg

(P _ S ; (P ^ Q) _ (S ^ T ))

� fDe�nition of S
hema Disjun
tiong

(P ;Q) _ (S ;T )

� fDe�nition of U and V g

U _ V

Similarly, it 
an be shown that 
onjun
tion 
an be de�ned in terms of disjun
tion

and negation. If the given s
hemas are not normalised then normalisation needs

to be added to the above derivation before applying negation, sin
e, as mentioned

earlier, it is a ne
essary 
ondition for s
hema negation.

Distribution Laws: U _ (V ^W ) = (U _ V ) ^ (U _W )

The �rst of the two distribution laws states that disjun
tion distributes over


onjun
tion:

U _ (V ^W )

� fDe�nition of U , V , and W g

(P ;Q) _ ((S ;T ) ^ (X ;Y ))

� fS
hema Conjun
tiong

(P ;Q) _ (S ^ X ; (S ^ T ) ^ (X ^ Y ))

� fS
hema Disjun
tiong

(P _ (S ^ X ); (P ^ Q) _ ((S ^ T ) ^ (X ^ Y ))

� fClassi
al Distribution Law for Disjun
tiong

((P _ S ) ^ (P _ X ); ((P ^ Q) _ (S ^ T )) ^ ((P ^ Q) _ (X ^ Y )))

� fS
hema Conjun
tiong

(P _ S ; (P ^ Q) _ (S ^ T )) ^ (P _ X ; (P ^ Q) _ (X ^ Y ))

� fS
hema Disjun
tiong

((P ;Q) _ (S ;T )) ^ ((P ;Q) _ (X ;Y ))

� fDe�nition of U , V , and W g

(U _ V ) ^ (U _W )

Similarly, 
onjun
tion distributes over disjun
tion:

U ^ (V _W ) = (U ^ V ) _ (U ^W )

U ^ (V _W )

� fDe�nition of U , V , and W g
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(P ;Q) ^ ((S ;T ) _ (X ;Y ))

� fS
hema Disjun
tiong

(P ;Q) ^ (S _ X ; (S ^ T ) _ (X ^ Y ))

� fS
hema Conjun
tiong

(P ^ (S _ X ); (P ^ Q) ^ ((S ^ T ) _ (X ^ Y )))

� fClassi
al Distribution Law for Conjun
tiong

((P ^ S ) _ (P ^ X ); ((P ^ Q) ^ (S ^ T )) _ ((P ^ Q) ^ (X ^ Y )))

� fS
hema Disjun
tiong

(P ^ S ; (P ^ Q) ^ (S ^ T )) _ (P ^ X ; (P ^ Q) ^ (X ^ Y ))

� fS
hema Conjun
tiong

((P ;Q) ^ (S ;T )) _ ((P ;Q) ^ (X ;Y ))

� fDe�nition of U , V , and W g

(U ^ V ) _ (U ^W )

Absorption Laws: U _ (U ^ V ) = U

Another set of useful laws often used to simplify proofs are the two absorption

laws provided here:

U _ (U ^ V )

� fDe�nition of U and V g

(P ;Q) _ ((P ;Q) ^ (S ;T ))

� fS
hema Conjun
tiong

(P ;Q) _ (P ^ S ; (P ^ Q) ^ (S ^ T ))

� fS
hema Disjun
tiong

(P _ (P ^ S ); (P ^ Q) _ ((P ^ Q) ^ (S ^ T ))

� fClassi
al Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

Dual to the above is the following law: U ^ (U _ V ) = U

U ^ (U _ V )

� fDe�nition of U and V g

(P ;Q) ^ ((P ;Q) _ (S ;T ))

� fS
hema Disjun
tiong

(P ;Q) ^ (P _ S ; (P ^ Q) _ (S ^ T ))
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� fS
hema Conjun
tiong

(P ^ (P _ S ); (P ^ Q) ^ ((P ^ Q) _ (S ^ T ))

� fClassi
al Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

So far, we proved that many laws related to negation, 
onjun
tion and disjun
tion

known from 
lassi
al logi
 also hold for the newly developed s
hema representa-

tion and, therefore, that they 
an be used in the s
hema 
al
ulus. We now turn

to de�ne quanti�
ation and to investigate its laws.

8.3.6 S
hema Quanti�
ation

Both de�nitions of universal and existential quanti�
ation are analogous to stan-

dard Z, i.e. the quanti�ed variable is going to be removed from the s
hema de
-

laration and will be quanti�ed in the predi
ate.

Universal Quanti�
ation. Sin
e the de
laration of the s
hema is impli
itly

in
luded in both the gd - and the do-part of the s
hema, quanti�
ation has to be

applied in both sub-s
hemas as well. Therefore, we de�ne:

8 a : A � U =

W

De
l W

b : B

gd W

8 a : A � P

do W

8 a : A � (P ^ Q)

Existential Quanti�
ation. In a similar fashion we de�ne existential quan-

ti�
ation, by:

9 a : A � U =
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W

De
l W

b : B

gd W

9 a : A � P

do W

9 a : A � (P ^ Q)

Following these de�nitions, we show that idempoten
y of quanti�
ation, as well

as the de Morgan laws hold, too. Later, we apply s
hema quanti�
ation to the

notions of hiding and pre
ondition 
al
ulation.

Idempoten
y of Quanti�
ation: Qa : A � Qa : A � U = Qa : A � U

Quantifying over a bound variable with the same quanti�er results in the same

s
hema already provided.

Qa : A � Qa : A � U

� fDe�nition of U g

Qa : A � Qa : A � (P ;Q)

� fS
hema Quanti�
ationg

Qa : A � (Qa : A � P ;Qa : A � (P ^ Q))

� fS
hema Quanti�
ationg

(Qa : A � Qa : A � P ;Qa : A � Qa : A � (P ^ Q))

� fIdempoten
y of Classi
al Quanti�
ationg

(Qa : A � P ;Qa : A � (P ^ Q))

� fDe�nition of S
hema Quanti�
ationg

Qa : A � (P ;Q)

� fDe�nition of U g

Qa : A � U

where Q is either one of the quanti�ers 8 or 9.

De Morgan Laws for Quanti�
ation. Of 
ourse, the quanti�
ation opera-

tors should respe
t the de Morgan rules for quanti�
ation known from 
lassi
al

logi
, and they do, as we show for two 
ases:

Given the normalised s
hema U then we show

9 a : A � U = : 8 a : A � : U

by the following derivation:
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: 8 a : A � : U

� fDe�nition of U g

: 8 a : A � : (P ;Q)

� fS
hema Negationg

: 8 a : A � (: (P ^ Q);: P)

� fS
hema Generalisationg

: (8 a : A � : (P ^ Q); 8 a : A � : P)

� fS
hema Negationg

(: (8 a : A � : (P ^ Q) ^ 8 a : A � : P);: 8 a : A � : (P ^ Q))

� fSimpli�
ation and Classi
al de Morgan Law for Quanti�
ationg

(: 8 a : A � (: (P ^ Q) ^ : P); 9 a : A � (P ^ Q))

� fClassi
al de Morgan Lawg

(: 8 a : A � : ((P ^ Q) _ P); 9 a : A � (P ^ Q))

� fClassi
al de Morgan Law for Quanti�
ationg

(9 a : A � (P ^ Q) _ P ; 9 a : A � (P ^ Q))

� fClassi
al Absorption Lawg

(9 a : A � P ; 9 a : A � (P ^ Q))

� fS
hema Parti
ularisationg

9 a : A � (P ;Q)

� fDe�nition of U g

9 a : A � U

Given the normalised s
hema U , we also show that

9 a : A � : U = : 8 a : A � U

by this short inferen
e:

9 a : A � : U

� fPrevious Proofg

: 8 a : A � : : U

� fDouble Negation Lawg

: 8 a : A � U

The above laws show how existential quanti�
ation and universal quanti�
ation

as well as negation are related. Similarly, it 
an be shown that : 9 a : A � U =

8 a : A � : U and : 9 a : A � : U = 8 a : A � U hold, too. In the above

proof, we assumed U to be normalised. If U is not normalised, we will have to

add normalisation to the proofs, sin
e s
hema negation is only well-de�ned for

normalised s
hemas.
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8.3.7 S
hema Hiding and Proje
tion

S
hema hiding and proje
tion are another set of operators. In both 
ases, the

purpose is to lo
alise, i.e. to hide, 
omponents, either given as a set or through

another s
hema.

S
hema Hiding. Normally, hiding of the variables (x

1

; : : : ; x

n

) from a s
hema

S , S n (x

1

; : : : ; x

n

), is de�ned using existential quanti�
ation, i.e. (9 x

1

:

t

1

; : : : ; x

n

: t

n

� S ). Therefore, we use the existential quanti�
ation intro-

du
ed above. For example, hiding a from the s
hema U results in the following:

U n (a) = 9 a : A � U , whi
h is represented by the s
hema W :

W

De
l W

b : B

gd W

9 a : A � P

do W

9 a : A � P ^ Q

S
hema Proje
tion. The s
hema proje
tion operator U � V 
ombines two

s
hemas using 
onjun
tion but hiding all 
omponents of U ex
ept those that are

part of V . Both s
hemas must be type 
ompatible, but V might have extra


omponents not shared by U . Therefore, the resulting s
hema has the signature

of V . Formally, U � V = (U ^ V ) n (x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are the


omponents of U not shared by V . Therefore, the s
hema W = U � V is

W

De
l W

a : A

d : D

gd W

9 
 : C � P ^ S

do W

9 
 : C � (P ^ S ) ^ (Q ^ T )

8.3.8 S
hema Composition

One way of 
ombining s
hemas is to use logi
al s
hema operators as introdu
ed

before, another is to use 
omposition, i.e. to state that one operation is to be

applied after another operation. To use sequential 
omposition it is ne
essary to

ensure that the s
hema de
larations are 
ompatible.
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Renaming. In standard Z, s
hema 
omponents 
an be renamed. Renaming

is also 
alled substitution and allows to introdu
e a di�erent 
olle
tion of vari-

ables with the same pattern of de
larations and 
onstraints. We, too, provide

a de�nition of renaming for our 
al
ulus. Substituting variables is denoted by

[newvar=oldvar ℄ where the old variables will be renamed to new variables. How-

ever, renaming will only be applied if the new name is not already present in

the s
hema and only for any free o

urren
e of the old name. For example,

U [x=a; y=b℄ results in the s
hema W

W

De
l W

x : A

y : B

gd W

P [x=a; y=b℄

do W

Q [x=a; y=b℄

Sequential Composition. Sequential 
omposition is an operation that begins

in an initial state of the operation Op

1

and ends in a �nal state of Op

2

. This

makes only sense when the �nal state of Op

1

mat
hes the initial state of Op

2

.

Given two operation s
hemas Op

1

and Op

2

both in
luding primed and unprimed


opies of a state s
hema S , then operation 
omposition is the result of applying

operation Op

2

to the result of applying Op

1

. It is de�ned by

Op

1

o

9

Op

2

= 9 S

00

�

(9 S

0

� [Op

1

; S

00

j �S

0

= �S

00

℄) ^ (9 S � [Op

2

; S

00

j �S = �S

00

℄)

where � is the operator to 
onstru
t the set of 
orresponding bindings. Note, that

�S = �S

0

, x

0

1

= x

1

^ : : : ^ x

0

n

= x

n

.

Sequential 
omposition 
an be 
al
ulated using renaming and hiding, i.e.

Op

1

o

9

Op

2

= (Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄) n (x

00

)

when x is the only state variable, whi
h is equivalent to

Op

1

o

9

Op

2

De
l (Op

1

o

9

Op

2

)

x ; x

0

: X

gd (Op

1

o

9

Op

2

)

9 x

00

� P [x

00

=x

0

℄ ^ S [x

00

=x

0

℄

do (Op

1

o

9

Op

2

)

9 x

00

� (P [x

00

=x

0

℄ ^ S [x

00

=x

0

℄)

^ (Q [x

00

=x ℄ ^ T [x

00

=x ℄)
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Using Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄ = (Op

1

^ Op

2

)[x

00

=x

0

; x

00

=x ℄ the above s
hema 
an

be simpli�ed to

Op

1

o

9

Op

2

De
l (Op

1

o

9

Op

2

)

x ; x

0

: X

gd (Op

1

o

9

Op

2

)

9 x

00

� (P ^ S )[x

00

=x

0

℄

do (Op

1

o

9

Op

2

)

9 x

00

� (P ^ S )[x

00

=x

0

℄

^ (Q ^ T )[x

00

=x ℄

8.3.9 Further Classi
al Laws

In this subse
tion we deal with three laws that do not hold over guarded pre
on-

dition s
hemas even though they hold in standard Z. First, the law of ex
luded

middle fails, be
ause we now have a third truth value. Se
ond, the 
ontradi
tion

law fails due to similar reasons. Finally, we show that the de�nition law, relating

impli
ation to negation and disjun
tion, does not hold either.

The Law of the Ex
luded Middle: U _ : U = TRUE

The law of the ex
luded middle, adapted to the guarded pre
ondition s
hema


al
ulus does not hold:

U _ : U

� fDe�nition of U g

(P ;Q) _ : (P ;Q)

� fS
hema Negationg

(P ;Q) _ (: (P ^ Q);: P)

� fS
hema Disjun
tiong

(P _ : (P ^ Q); (P ^ Q) _ : P)

� fClassi
al de Morgan and Commutativityg

(P _ : P _ : Q ; (: P _ P) ^ (: P _ Q)

� fClassi
al Ex
luded Middleg

(true; true ^ (: P _ Q)

� fCommutativity and One Lawg

(true;: P _ Q)

This operation 
an always be applied but its result is only de�ned if : P holds,

i.e. the out
ome is false, or where Q holds, i.e. the out
ome was spe
i�ed. In
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ase of the unde�ned area nothing 
an be said. This 
onforms to the standard

point of view in three-valued logi
.

The Contradi
tion Law: U ^ : U = FALSE

The 
ontradi
tion law, adapted to the guarded pre
ondition s
hema 
al
ulus does

not hold:

U ^ : U

� fde Morgan Law, Double Negation Law, Commutativityg

: (U _ : U )

� fLaw of Ex
luded Middleg

: (true;: P _ Q)

� fS
hema Negationg

(: (: P _ Q);: true)

� fClassi
al Predi
ate Logi
g

(P ^ : Q ; false)

This resulting operation 
an be applied exa
tly in the unde�ned area of the given

operation but no post
ondition is spe
i�ed. This result is somehow surprising

be
ause most three-valued logi
s obey the 
ontradi
tion law. Para
onsistent log-

i
s are a set of logi
s where the 
ontradi
tion law does not hold. This raises

the question whether our s
hema 
al
ulus is para
onsistent. After introdu
ing

entailment in Se
tion 8.3.10 we show, however, that this is not the 
ase.

De�nition Law: U ) V = : U _ V

There are two ways of looking at the de�nition law. On the one hand, it is a

law re
e
ting the relation between negation, disjun
tion and impli
ation. On the

other hand, it is a de�nition, de�ning impli
ation in terms of negation and 
on-

jun
tion. We show that : U _ V does not re
e
t the truth table of impli
ation

as given in Se
tion 8.3.1. Using the s
hema 
al
ulus we derive:

: U _ V

� fDe�nition of U and V g

: (P ;Q) _ (S ;T )

� fS
hema Negationg

(: (P ^ Q);: P) _ (S ; S ^ T )

� fS
hema Disjun
tiong

(: (P ^ Q) _ S ;: P _ (S ^ T ))
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Therefore, s
hema impli
ation results in non-appli
ability if U is true, i.e. within

its de�ned area and V is false, i.e. outside its guard. It is de�ned, if U is forbidden

or V is de�ned. The 
orresponding truth table is:

p)q t f ?

t t f ?

f t t t

? t ? ?

Table 8.2: Truth Table for S
hema Impli
ation

However, this is not equivalent to the truth table given in Se
tion 8.3.1. Impli
a-

tion de�ned via the de�nition law is not ne
essarily an entailment operation. In

the next subse
tion we will de�ne entailment a

ording to the earlier given truth

table.

8.3.10 S
hema Entailment

In Table 8.1 a truth table for three-valued impli
ation is given. This impli
ation

operator is a three-valued entailment operator, denoted!, but does not preserve

the de�nition law as shown in Se
tion 8.3.9. While de�ning s
hema negation and

s
hema 
onjun
tion we introdu
ed an approa
h to infer s
hema representations

of the operators a

ording to their truth table. We use the same approa
h to

de�ne the entailment operator for guarded pre
ondition s
hema.

Given are two s
hemas (P ;Q) and (S ;T ) and the truth table for entailment in

Table 8.1. We en
ode t = P ^ Q , f = : P , and ? = P ^ : Q , as well as

t = S ^ T , f = : S , and ? = S ^ : T . We observe that the result of entailment

is either true or false, i.e. there is no unde�ned area, whi
h in turn means, that

both the gd - and the do-part have to be the same predi
ate. Following the earlier

approa
h, we derive the guard as being the part, where entailment holds, i.e. if

(P ;Q) is true and (S ;T ) is false or unde�ned, then (P ;Q) ! (S ;T ) should be

false as well. (P ;Q) ! (S ;T ) is de�ned if (P ;Q) is false or unde�ned. This

leads to the following s
hema for entailment:
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W

De
l W

a : A

b : B

d : D

gd W

: ((P ^ Q) ^

(: S _ (S ^ : T )))

do W

(P ^ Q ^ S ^ T ) _

(: P _ (P ^ : Q))

Using the standard predi
ate 
al
ulus to simplify both predi
ates results in:

W

De
l W

a : A

b : B

d : D

gd W

(P ^ Q)) (S ^ T )

do W

(P ^ Q)) (S ^ T )

i.e. there is no unde�ned area. Of 
ourse, this means that the question whether

one s
hema entails another 
an always be answered. It is also worth noting the

relation between entailment and impli
ation, though it does not have the same

properties, as shown in the previous subse
tion.

Self-appli
ation of Entailment: U ! U = TRUE

A guarded pre
ondition s
hema always entails itself:

U ! U

� fDe�nition of U g

(P ;Q)! (P ;Q)

� fDe�nition of !g

((P ^ Q)) (P ^ Q); (P ^ Q)) (P ^ Q))

� fClassi
al Predi
ate Cal
ulusg

(true; true)

� fDe�nition of TRUEg

TRUE

One example of applying the entailment operator is found in re�nement proofs.

We refer to Se
tion 8.6 for more details.
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Double Entailment. Like double impli
ation in 
lassi
al logi
, we de�ne the

double entailment U $ V as the 
onjun
tion of the entailment U ! V and

V ! U . This results in substituting 
lassi
al impli
ation with double impli
ation

in the gd - and do-part of the above given de�nition of entailment.

Para
onsisten
y. We 
an also determine whether or not our 
al
ulus is para-


onsistent by showing whether or not U ! (: U ! V ) is a theorem of our


al
ulus.

U ! (: U ! V )

� fDe�nition of U and V g

(P ;Q)! (: (P ;Q)! (R; S ))

� fS
hema Negationg

(P ;Q)! ((: (P ^ Q);: Q)! (R; S ))

� fS
hema Entailmentg

(P ;Q)!

((: (P ^ Q) ^ : Q)) (R ^ S ); (: (P ^ Q) ^ : Q ) (R ^ S )))

� fCl. de Morgan Law, Cl. Absorption Law, S
hema Entailmentg

((P ^ Q)) (: Q ) (R ^ S )); (P ^ Q)) (: Q ) (R ^ S )))

� fClassi
al De�nition Law, Cl. de Morgan Lawg

(: P _ : Q _ Q _ (R ^ S );: P _ : Q _ Q _ (R ^ S ))

� fSimpli�
ationg

(true; true)

� fDe�nition of TRUEg

TRUE

This theorem is a parti
ular form of ECQ (ex 
ontradi
tione quodlibet) whi
h

has to be reje
ted in a para
onsistent logi
, be
ause it allows an arbitrary s
hema

to be inferred from a set of 
ontradi
ting s
hemas. Hen
e, this 
al
ulus is not

para
onsistent.

8.4 The Appli
ation of the S
hema Operators:

An Example

In this se
tion, we present a small example to illustrate and validate the in-

trodu
ed s
hema representation as well as the use of the s
hema 
al
ulus. We

introdu
e a simple spe
i�
ation involving even and odd numbers. We illustrate
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how the s
hema 
al
ulus 
an be used to 
ombine s
hemas to form a larger spe
i-

�
ation.

We de�ne two s
hemas Even and Odd whi
h des
ribe two operations for even

and odd numbers. The operation Even works as follows: Given an even natural

number, the result shall be a number whi
h is less or equal to the given number.

In 
ontrast, given an odd natural number, the result shall be a number greater or

equal to the given number. Being a natural number is a ne
essary requirement

for the operation to be performed, therefore it is part of the guard. We assume

the existen
e of the predi
ates isEven and isOdd .

Even

De
l Even

a? : N

b! : Z

gd Even

true

do Even

isEven(a?) ^ b! � a?

Above, we used unders
ores around the s
hema name to denote that it has not

been normalised yet. Normalising the s
hema Even results in:

Even

De
l Even

a? : Z

b! : Z

gd Even

a? � 0

do Even

isEven(a?) ^ b! � a?

The already normalised operation Odd is spe
i�ed as follows:

Odd

De
l Odd

a? : Z

b! : Z

gd Odd

a? � 0

do Odd

isOdd(a?) ^ b! � a?

Note, ea
h operation 
an be invoked upon both even and odd natural numbers

but in only one 
ase the out
ome is guaranteed. Using the s
hema 
al
ulus we
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ombine both s
hemas to 
reate a single operation where the out
ome is de�ned

for both even and odd numbers.

Numbers == Even _ Odd

i.e.

Numbers

De
l Numbers

a? : Z

b! : Z

gd Numbers

a? � 0

do Numbers

a? � 0

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?))

Further we would like to report whether the operation was performed, i.e. that a

natural number was given. Therefore we introdu
e the REPORT type

REPORT ::= error j no error

We de�ne an operation s
hema that 
an always be exe
uted and the only thing

it does is to report its su

essful exe
ution.

Ok

De
l Ok

report ! : REPORT

gd Ok

true

do Ok

report ! = no error

We 
an join this s
hema with Numbers to report its su

essful operation:

NumbersOk == Numbers ^ Ok

i.e.
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NumbersOk

De
l NumbersOk

a? : Z

b! : Z

report ! : REPORT

gd NumbersOk

a? � 0

do NumbersOk

a? � 0 ^ report ! = no error

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?))

This s
hema will only report no error if the number a? given was a natural. In


ase a? was not a natural number we want to report an error , therefore, we de�ne

Error

De
l Error

a? : Z

report ! : REPORT

gd Error

a? < 0

do Error

report ! = error

Putting everything together we derive the 
omplete operation

Complete == NumbersOk _ Error

i.e.

Complete

De
l Complete

a? : Z

b! : Z

report ! : REPORT

gd Complete

true

do Complete

(a? � 0 ^

report ! = no error ^

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?)))

_

(a? < 0 ^ report ! = error)
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whi
h is now total, i.e. it 
an always be invoked and the out
ome is guaranteed.

Given any number it will now report either its failure to be able to perform a

valid operation if the number is less or equal to zero or, if it is a natural number,

it will be applied a

ording to the 
ondition set in the do-part.

Furthermore, this s
hema 
an now be translated into standard Z, where it is

represented as:

do Complete

a? : Z

b! : Z

report ! : REPORT

(a? � 0 ^ report ! = no error ^

((isEven(a?) ^ b! � a?) _ (isOdd(a?) ^ b! � a?)))

_

(a? < 0 ^ report ! = error)

Note that it does not matter whi
h interpretation is used, either the guarded

or pre
ondition interpretation work 
orre
tly, be
ause the operation is total and

normalised.

8.5 Operation Appli
ability

In this se
tion we re-
ap the notions of operation appli
ability as introdu
ed in

Se
tion 7.3.4. We distinguished a number of regions of before states that are of

interest. In parti
ular, we presented the pre
ondition, i.e. the well-de�ned region;

the guard, i.e. the enabled region; the unde�ned region, i.e. the guard permits

the operation but no out
ome is spe
i�ed; �nally, the impossible region where the

operation is blo
ked. Here, we use the newly developed s
hema 
al
ulus to revise

and validate our earlier de�nitions. For example, the de�nitions in Se
tion 7.3.4

return s
hemas based on the standard Z notation but here we return guarded

pre
ondition s
hemas. We also present some meta-theoreti
al investigations of

the relation between the di�erent regions.

8.5.1 S
hema Pre
ondition

In standard Z, the pre
ondition of an operation is de�ned as the existential quan-

ti�
ation over the after state and output variables, i.e.

preOp = 9 S

0

; outs! � Op
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We introdu
ed existential quanti�
ation so it seems natural to investigate the

result of 
al
ulating the pre
ondition of a guarded pre
ondition s
hema, i.e. the

result of applying existential quanti�
ation to the after states and outputs of a

guarded pre
ondition s
hema. For example, for the s
hema NormalisedS
hema

in Se
tion 7.2.1, the pre
ondition is 
al
ulated as follows:

preNormalised S
hema = 9 a

0

: Z � Normalised S
hema

i.e.

PreNormalised S
hema

De
l

a : Z

gd

9 a

0

: Z � a 2 N ^ a

0

2 N

do

9 a

0

: Z � a 2 N ^ a

0

2 N

^ (a

0

)

2

� a < (a

0

+ 1)

2

� fSimpli�
ation and Instantiationg

PreNormalised S
hema

De
l

a : Z

gd

a 2 N

do

a 2 N

The pre
ondition of a guarded pre
ondition s
hema is another s
hema, where the

guard 
ontains a predi
ate that permits the operation and the do-part 
ontains

the pre
ondition predi
ate, i.e. the pre
ondition is the 
ondition su
h that the

out
ome of the operation is well-de�ned.

We brie
y present the pre
onditions of some operations de�ned in this 
hapter

for illustrative purpose. First, the pre
onditions of the operations On and O� of

the heat 
ontrol system are

preOn = (heat? > heat min ^ fan = O� ;

heat? > heat min ^ fan = O� ^ heat? � heat max )

preO� = (heat? < heat max ^ fan = On;

heat? < heat max ^ fan = On ^ heat? � heat min)

Using Axiom 1 we 
an simplify those s
hemas by removing the gd -predi
ate from

the do-part, i.e.
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preOn = (heat? > heat min ^ fan = O� ; heat? � heat max )

preO� = (heat? < heat max ^ fan = On; heat? � heat min)

Finally, the pre
onditions for the number example from the last se
tion are

preEven = (a? � 0; isEven(a?))

preOdd = (a? � 0; isOdd(a?))

preNumbers = (a? � 0; true)

preComplete = (true; true)

8.5.2 S
hema Guard

The guard of an operation is the area that allows the operation to take pla
e.

We de�ne the s
hema guardOp of an operation s
hema (P ;Q) to be the s
hema

9 S

0

; outs! � (P ; true), where (P ; true) is the s
hema obtained from applying

an operator gd, whi
h returns the guard of the operation. Then guard Op =

pre gd Op

GuardNormalised S
hema

De
l

a : Z

gd

a 2 N

do

true

Please note the di�eren
e between gd, gd , and guard. The �rst one is the operator

returning the guarded part of an operation, the se
ond is the guarded part of a

s
hema, and the third is the s
hema that 
onsists of the guarded part of a s
hema

where the do-part is set to true.

The operations On and O� are only supposed to be applied if the fan is not

in the mode it will be swit
hed to and if the 
urrent temperature is within the


orre
t range. These 
onstraints are expressed by the guard of the operation.

guardOn = (heat? > heat min ^ fan = O� ; true)

guardO� = (heat? < heat max ^ fan = On; true)

If the guard is not ful�lled, the operation 
an not be applied. Furthermore, if the

operation is not appli
able, the guard must have blo
ked it, i.e.

: Op $ : gd Op

whi
h we 
an show to hold by
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: Op $ : gd Op

� fDe�nition of Op and gd Opg

: (P ;P ^ Q)$ : (P ; true)

� fS
hema Negationg

(: (P ^ Q);: P)$ (: P ;: P)

� fS
hema Double Entailmentg

((: (P ^ Q) ^ : P), : P ; (: (P ^ Q) ^ : P), : P)

� f*g

(true; true)

� fDe�nition of TRUEg

TRUE

We perform the step marked * separately by taking only one of the two predi
ates

into a

ount:

: (P ^ Q) ^ : P , : P

� fde Morgan Lawg

: ((P ^ Q) _ P), : P

� fAbsorption Lawg

: P , : P

� fEquivalen
eg

true

We also show that the pre
ondition of an operation entails the guard of an oper-

ation, i.e.

preOp ! guardOp

preOp ! guardOp

� fDe�nitions of Op, pre and guardg

(9 S

0

� P ; 9 S

0

� (P ^ Q))! (9S

0

� P ; true)

� fS
hema Entailmentg

(9 S

0

� P ^ 9 S

0

� (P ^ Q)) 9 S

0

� P ;

9 S

0

� P ^ 9 S

0

� (P ^ Q)) 9 S

0

� P)

� fa ^ b ) a � trueg

(true; true)

� fDe�nition of TRUEg

TRUE
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This is not really surprising sin
e the purpose of the Axiom 1 from Se
tion 7.3.1

was to ensure this. However, it gives additional 
on�den
e to see that it works


orre
tly on the s
hema level, too.

The idea of the guard is to blo
k the operation under 
ertain 
onstraints, i.e. to

make the operation impossible, hen
e

impoOp = : (guard Op)

Simplifying this de�nition yields

: (guard Op)

� fDe�nition of Opg

: (guard (P ;Q))

� fDe�nition of guardg

: (9 S

0

; outs! � (P ; true))

i.e. the operation is impossible if there is no state su
h that the operation 
an be

applied.

8.5.3 Unde�ned S
hema Appli
ation

The area where the guard holds but the pre
ondition does not is the unde�ned

one, i.e.

undef Op = guardOp ^ : pre Op

Applying the s
hema 
al
ulus this simpli�es to

guardOp ^ : pre Op

� fDe�nition of guard Op and pre Opg

9 S

0

; outs! � (P ; true) ^ : 9 S

0

; outs! � (P ;Q)

� fExistential Quanti�
ation, de Morgan Law for Quanti�
ationg

(9 S

0

; outs! � P ; true) ^ 8 S

0

; outs! � : (P ;Q)

� fS
hema Negationg

(9 S

0

; outs! � P ; true) ^ 8 S

0

; outs! � (: (P ^ Q);: P)

� fUniversal Quanti�
ationg

(9 S

0

; outs! � P ; true) ^ (8 S

0

; outs! � : (P ^ Q); 8S

0

; outs! � : P)

� fPredi
ate Cal
ulusg

(9 S

0

; outs! � P ; true) ^ (: 9 S

0

; outs! � (P ^ Q);: 9 S

0

; outs! � P)
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� fS
hema Conjun
tiong

(9 S

0

; outs! � P ^ : 9 S

0

; outs! � (P ^ Q);

9 S

0

; outs! � P ^ true ^ : 9 S

0

; outs! � (P ^ Q) ^ : 9 S

0

; outs! � P)

� fPredi
ate Cal
ulusg

(9 S

0

; outs! � P ^ : 9 S

0

; outs! � (P ^ Q); false)

whi
h 
orresponds 
losely to the de�nition provided in Se
tion 7.3.4.

Identifying these regions 
an help the development pro
ess of an operation. For

example, totalisation means to remove the impossible area and re�nement is

meant to redu
e the unde�ned region. The �nal produ
t is a spe
i�
ation with

no unde�ned nor impossible areas. Su
h a spe
i�
ation 
an then be translated

into standard Z under both the guarded and the pre
ondition interpretation.

8.6 Re�nement Cal
ulations

In the last 
hapter we developed an intuitive understanding for the re�nement


onditions for guarded pre
ondition s
hemas. We presented three 
onditions,

appli
ability, 
orre
tness and strengthening of the guard. Here we develop the

notion of re�nement further by using the s
hema entailment operator ! instead

of `, as well as the presented s
hema 
al
ulus. We demonstrate the re�nement


onditions by means of an example.

8.6.1 Re�nement Conditions

Given an abstra
t operation AOp = (gd AOp; do AOp) and a 
on
rete operation

COp = (gd COp; do COp) both over the same state State with input x? : X and

output y ! : Y , then COp re�nes AOp, denoted AOp v COp, if and only if the

following three 
onditions hold:

(1) 8 State; x? : X � preAOp ! preCOp

(2) 8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ! AOp

(3) 8 State; State

0

; x? : X ; y ! : Y � gdCOp ! gdAOp

Conditions (1) and (3) together ensure the pre
ondition is the upper bound for

strengthening the guard and the guard is the lower bound for weakening the

pre
ondition.
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8.6.2 Example

Given are the two operation s
hemas Filter and C Filter as introdu
ed in the

last 
hapter

Filter

De
l Filter

a? : Z

b! : Z

gd Filter

a? > 0

do Filter

isEven(a?)

b! � a?

C Filter

De
l C Filter

a? : Z

b! : Z

gd C Filter

a? > 0

b! < a?

do C Filter

isEven(a?)

b! = a?=2

Using the s
hema 
al
ulus we show now formally, that C Filter re�nes Filter .

First, we 
al
ulate the pre
onditions of both operations:

preFilter = (a? > 0; a? > 0 ^ isEven(a?))

preC Filter = (a? > 0; a? > 0 ^ isEven(a?))

8.6.3 Appli
ability

The operation Filter is appli
able if an even natural number is given. The re�ned

operationC Filter must be appli
able under the same 
onditions. This properties

follows simply from the pre
onditions.

(1) 8 a? : Z � preFilter ! preC Filter

preFilter ! preC Filter

� fDe�nitions of preFilter , and preC Filterg

(a? > 0; a? > 0 ^ isEven(a?))! (a? > 0; a? > 0 ^ isEven(a?))

� fS
hema Self-Entailmentg

TRUE

8.6.4 Corre
tness

The operation C Filter 
an always be applied when Filter 
ould. Next, we prove


orre
tness, i.e. whether the result of C Filter is a possible result of Filter if

applied in the same situation.

(2) 8 a? : Z; b! : Z � preFilter ^ C Filter ! Filter
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preFilter ^ C Filter ! Filter

� fDe�nitions of preFilter , C Filter , and Filterg

((a? > 0; a? > 0 ^ isEven(a?))

^ (a? > 0 ^ b! < a?; isEven(a?) ^ b! = a?=2))

! (a? > 0; isEven(a?) ^ b! � a?)

� fS
hema Conjun
tiong

(a? > 0 ^ b! < a?; a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

! (a? > 0; isEven(a?) ^ b! � a?)

� fS
hema Entailmentg

((a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?);

(a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?))

� f*g

(true; true)

� fDe�nition of TRUEg

TRUE

We look at the above reasoning step marked � separately. S
hema entailment

is the impli
ation of the 
onjun
tion of the gd - and do-part in both guard and

e�e
t. We 
onsider now only one of the two s
hema predi
ates:

(a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?)

� fSplitting of b! � a?g

(a? > 0 ^ b! < a? ^ isEven(a?)) ^ b! = a?=2

) (a? > 0 ^ isEven(a?) ^ b! < a?) _ (a? > 0 ^ isEven(a?) ^ b! = a?)

� fx ^ y ) x _ z = trueg

true

Hen
e, 
orre
tness holds.

8.6.5 Strengthening of the Guard

Finally, the guard of C Filter must not be less restri
tive than the guard of

Filter :

(3) 8 a? : Z; b! : Z � gdC Filter ! gdFilter
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gdC Filter ! gdFilter

� fDe�nition of gdC Filter and gdFilterg

(a? > 0 ^ b! < a?; true)! (a? > 0; true)

� fS
hema Entailmentg

(a? > 0 ^ b! < a?) a? > 0; a? > 0 ^ b! < a?) a? > 0)

� fClassi
al De�nition Law for Impli
ation and de Morgan Lawg

(: (a? > 0) _ : (b! < a?) _ (a? > 0);

: (a? > 0) _ : (b! < a?) _ (a? > 0))

� fClassi
al Law of Ex
luded Middleg

(true; true)

� fDe�nition of TRUEg

TRUE

All three properties hold and, therefore, the s
hema C Filter re�nes the s
hema

Filter , i.e. it 
ould repla
e it without a user noti
ing it.

8.7 Summary

The aim of this 
hapter was to develop a s
hema 
al
ulus for s
hemas that 
an

represent un(der)de�nedness in Z more expli
itly than those in standard Z. We

provided a set of rules to enable a spe
i�er to join s
hemas, to 
al
ulate 
ertain

properties of s
hemas, in
luding its pre
ondition and guard. We also showed,

that this s
hema 
al
ulus 
an be used in the re�nement pro
ess.

Note, however, that it was ne
essary to distinguish between s
hema impli
ation,

as de�ned via negation and disjun
tion, and entailment. Nevertheless, it turned

out that the de�nition of the entailment operator is based upon 
lassi
al impli-


ation itself. Furthermore, we demonstrated that not all reasoning rules from


lassi
al logi
 hold within this work. This even led to the question, whether the


al
ulus possesses the property of being para
onsistent. This had to be reje
ted

due to the fa
t that a variant of EC does hold.

The development of the s
hema 
al
ulus has been based on a three-valued se-

manti
s. We have not formally shown that the 
al
ulus is sound and 
omplete

with respe
t to this semanti
s. This remains future work. However, the proof

theoreti
al properties that we validated in this 
hapter give us enough 
on�den
e

to believe that the 
al
ulus is 
orre
t.



Chapter 9

Con
lusion

The aim of this thesis was to investigate the support we 
an give to reasoning

about in
onsistent spe
i�
ations written in the Z notation. We de
ided to explore

the usefulness of applying a para
onsistent logi
 to a
hieve our goal. It turned out

that para
onsistent logi
s had not been applied extensively to reasoning about

theories in ri
h languages, like Z. On the other side, some of the logi
s we studied

also provided information on how to handle in
omplete information. This raised

our interest in studying the problem of underde�nedness in Z.

In
onsisten
y is a re-o

urring problem in spe
i�
ation development. Our work

provides some insights on how in
onsistent spe
i�
ations 
an be better managed.

We used quasi-
lassi
al logi
 to reason about Z spe
i�
ations. This, however,

required several improvements of QCL. Our work is therefore not only relevant

to the Z 
ommunity. We provide the logi
ians interested in para
onsisten
y with

a 
omplex appli
ation area leading to new 
hallenges for their resear
h. In the


ontext of this work it in
luded to add a theory of equality to QCL.

Spe
ifying and handling underde�nedness in Z has been a topi
 of resear
h for

some time. Our work 
ontributes to the development in this area by provid-

ing a modi�ed s
hema representation, by presenting re�nement rules and by

introdu
ing a s
hema 
al
ulus. We de
ided to base our work on a three-valued

interpretation be
ause it provides an intuitive a

ount for operation appli
abil-

ity. Furthermore, we were able to use previous resear
h on three-valued logi
s to

guide our work.

The main results of this thesis relate to our work on quasi-
lassi
al logi
, on

applying QCL to reasoning about Z spe
i�
ations and re�nement of in
onsistent

Z spe
i�
ations, as well as to our resear
h on handling underde�nedness in Z.

We present a summary of our �ndings, followed by a dis
ussion on the value of

our work, in
luding suggestions for improvements, followed by a more general

a

ount of possible future work.

211
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9.1 Results

Our work 
ontributes both to the development of quasi-
lassi
al logi
 and to the

resear
h on the Z notation. This work 
onsists mainly of three parts: the in-

trodu
tion and development of QCL, the appli
ation of QCL to reasoning about

in
onsistent Z spe
i�
ations and the presentation of a s
hema notation for un-

derde�nedness, in
luding re�nement rules and a s
hema 
al
ulus.

9.1.1 Quasi-Classi
al Logi


In Chapter 4 we introdu
ed quasi-
lassi
al logi
 and we investigated some no-

tions of logi
al equivalen
e for QCL. First, it turned out that a notion of logi
al

equivalen
e based only on the QC 
onsequen
e relation is not suÆ
ient be
ause

it is not transitive. However, it is a ne
essary 
ondition for equivalen
e to hold.

Then we investigated other possibilities to de�ne an appropriate notion of equiv-

alen
e. As a part of this investigation we found that the absorption laws do not

generally hold in QCL. We �nally de�ned a strong notion of equivalen
e based

on the equivalen
e of weak and strong model 
lasses.

In Chapter 5 we developed quasi-
lassi
al logi
 with equality. We presented the

semanti
s and proof theory for reasoning about equality. Furthermore, we showed

the validity of the one-point rule in QCL, a rule 
ommonly used to eliminate

existential quanti�
ation.

In Appendix A we present an implementation of the QCL tableau method based

on leanT

A

P by (Be
kert and Posegga, 1994). We 
onsider this work in progress

be
ause we have not yet veri�ed our implementation. It has been tested though

on available examples. Our implementation 
ontributes to the usability of QCL as

a tool to reason about in
onsistent theories. It also raised a small issue regarding

some weakening of fo
using in the disjun
tion S-rule of QCL.

9.1.2 The Appli
ation of Quasi-Classi
al Logi
 in Z

In Chapter 6 we applied QCL to reasoning about in
onsistent Z spe
i�
ations.

The out
ome was that QCL allows fewer but more useful, inferen
es in the pres-

en
e of in
onsisten
y.

In Se
tion 6.4 we developed a notion of quasi-
lassi
al pre
ondition. This en-

ables the analyst to determine the intended appli
ability of the operation. By


omparison with the standard pre
ondition it is possible to 
he
k operations for


onsisten
y.

In Se
tion 6.5 we investigated the pro
ess of re�nement of in
onsistent Z spe
i-

�
ations. We established the notion of QC appli
ability extending the standard



9.2. Dis
ussion 213

notion. QC appli
ability is stronger than the standard form with respe
t to in-


onsisten
ies in the sense that it validates fewer re�nements. We also investigated

a notion of QC 
orre
tness.

9.1.3 Guarded Pre
ondition S
hemas

In Chapter 7 we developed a s
hema representation that enables the represen-

tation of both guards and pre
onditions in a single notation. We generalised

previous work by allowing arbitrary predi
ates in the guards. This required,

however, a notion of guard 
al
ulation, similar to pre
ondition 
al
ulation. Op-

erations were given a three-valued semanti
s to 
apture the intuition behind their

appli
ability. This led to a rather simple notion of operation re�nement.

In Se
tion 7.5 we developed rules to verify the 
orre
tness of the re�nement of

guarded pre
ondition s
hemas. Operation re�nement is seen as removal of un-

derde�nedness and non-determinism. It is a feature of our re�nement 
onditions

that they provided boundaries for weakening of the pre
ondition and strength-

ening of the guard. Furthermore, we showed that the given 
onditions generalise

the standard operation re�nement rules in both guarded and pre
ondition inter-

pretation.

Finally, in Chapter 8, we developed a s
hema 
al
ulus for guarded pre
ondition

s
hemas. We established the validity of our s
hema operators by proving several


onditions that seem useful to hold. It turned out, however, that the law of the

ex
luded middle, the 
ontradi
tion law and the de�nition law for impli
ation do

not hold. We de�ned a new s
hema entailment operator to fa
ilitate reasoning

about guarded pre
ondition s
hemas. We showed its validity by re-
onsidering

operation re�nement.

9.2 Dis
ussion

9.2.1 Z and QCL

The goal of our resear
h is to manage in
onsisten
ies in formal spe
i�
ations writ-

ten in the Z notation. The 
urrent view is that an in
onsistent Z spe
i�
ation

is meaningless. Previous work on handling in
onsisten
y in Z fo
used, therefore,

on 
reating 
onsistent spe
i�
ations. This in
ludes to either avoid or eradi
ate

in
onsisten
ies or on separating 
ontradi
ting 
on
erns into hierar
hies of 
onsis-

tent viewpoints. Our work, however, provides a novel view on the problem by

proposing to manage in
onsisten
y by means of using a para
onsistent logi
 to

reason about in
onsistent Z spe
i�
ations.
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In standard logi
, a single in
onsisten
y in a set of assumptions leads to the

problem of triviality, i.e. any well-formed formula in the given language is a

valid 
on
lusion from the assumptions. The formal spe
i�
ation language Z is

based on standard predi
ate logi
. Therefore, it is said that an in
onsisten
y

in a Z spe
i�
ation renders the spe
i�
ation meaningless. Para
onsistent logi
s,

however, avoid triviality in the presen
e of in
onsisten
y. Therefore, they are

suitable to our task of managing in
onsisten
y and we de
ided to investigate the

Z notation being supported by a para
onsistent logi
.

We 
hose quasi-
lassi
al logi
 to reason about Z spe
i�
ations be
ause we think

that its properties make it rather suitable for this task. Furthermore, QCL has

been previously applied to reasoning about spe
i�
ations. These spe
i�
ations,

however, were written in standard predi
ate logi
. One 
hallenge we fa
ed was

to investigate QCL's usefulness for reasoning about formulae 
onstru
ted using a

language mu
h ri
her than predi
ate logi
. This opened some interesting dire
-

tions for resear
h on QCL itself, as dis
ussed below.

We see our work on managing in
onsisten
y in Z only as a starting point. We

provide, however, some interesting insights into the nature of in
onsisten
y in

Z spe
i�
ation and its 
onsequen
es, in parti
ular, to re�nement of operations.

We showed that QCL allows fewer but more useful 
on
lusions to be drawn

from in
onsistent spe
i�
ations. This should help to analyse even in
onsistent Z

spe
i�
ations in more detail and thus fa
ilitate validation and veri�
ation without


onstant removal of in
onsisten
y.

The pro
ess of developing an abstra
t spe
i�
ation towards an implementation,

i.e. re�nement, is an important task in software engineering. In order for re�ne-

ment to be useful, however, requires the abstra
t spe
i�
ation to be 
onsistent.

Managing in
onsisten
y and being able to derive and verify only useful re�ne-

ments seems to redu
e the problem of in
onsisten
y. The theory of re�nement

developed in this work is not yet 
omplete. We are missing a QC 
orre
tness


ondition to further eliminate non-
orresponding re�nements. However, the idea

of using both standard and QC re�nement rules together 
an prove valuable.

Note, the aim is not to build in
onsistent spe
i�
ations, a task not very diÆ
ult,

nor to distra
t from the danger of in
onsisten
y, in parti
ular in later stages of the

development. Our work serves the purpose to understand the intention behind

an in
onsistent spe
i�
ation and, thus, to give it a meaning. Given a meaning,

su
h spe
i�
ations 
an be useful to guide further development.

9.2.2 QCL and Z

On the other side, a real-world spe
i�
ation notation like Z provides an inter-

esting �eld of resear
h for logi
ians interested in para
onsistent logi
. Being
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well-established in the formal methods 
ommunity and undergoing standardis-

ation, the Z notation 
annot be altered mu
h. For example, the Z standard

determines the meanings of the logi
al operators. Therefore, it is not really pos-

sible to 
hange the meaning of negation or impli
ation. This eliminates a wide

range of para
onsistent logi
s from being appli
able with respe
t to Z.

Furthermore, the Z notation is a very expressive language. It is based on �rst-

order predi
ate logi
 with equality and in
orporates an extensive mathemati
al

toolkit. Equality, however, is a property not often 
onsidered in para
onsistent

logi
s. In parti
ular, quasi-
lassi
al logi
 did not provide means to reason about

equality. Therefore, we 
ontributed to the development of QCL by in
orporating

reasoning about equality.

We note, however, that equality introdu
es a problem of \partial" triviality. Rea-

soning about equality is a
hieved by grouping all equal terms into equivalen
e


lasses. However, in the presen
e of in
onsisten
y two 
lassi
ally distin
t equiva-

len
e 
lasses 
ollapse to form just one 
lass. In the 
ase of numbers, in parti
ular,

this leads to all numbers belonging to the same equivalen
e 
lass if there is one

single in
onsisten
y.

(Mortensen, 1995) links this problem to the property of fun
tionality of equality.

He proposes to weaken fun
tionality to 
ontrol the 
ollapse of equivalen
e 
lasses.

This 
ould, for example, in
lude to apply fun
tionality only in the 
onsistent 
ase.

The 
onsequen
es of su
h an approa
h are, however, not 
lear yet. Another ap-

proa
h 
ould be to follow QCL's idea of using 
ompositional and de
ompositional

rules. The equality rules, however, seem not to �t su
h a distin
tion. Both prob-

lems suggest, though, that equality and para
onsisten
y have an interesting link

that needs further investigation.

Reasoning about Z spe
i�
ations in
ludes a variety of tasks. For example, it is


ommon to determine the pre
ondition of an operation to 
he
k the appli
ability

of an operation. Investigating su
h a task raised new questions on what the pre-


ondition is of an in
onsistent operation and how to simplify a pre
ondition. In

parti
ular, we needed to look at the notion of logi
al equivalen
e in QCL and of

the validity of the one-point rule. It follows from these examples that the Z nota-

tion provides an interesting ben
hmark for the appli
ability of a para
onsistent

logi
, like QCL.

9.2.3 Underde�nedness in Z

It has been observed that it is sometimes 
onvenient to use a 
ombination of

the guarded and pre
ondition interpretation to allow both modelling of refusals

and underde�nedness. Our work 
ontributes to investigations into this issue by

extending previous work on the representation of both guards and pre
ondition.

It is novel in the sense that we used a non-standard semanti
s of operations viz. an
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interpretation in three-valued logi
. Furthermore, our notion is more expressive

by allowing after-state variables in the guard.

Re�nement is an important 
on
ept in developing spe
i�
ations further. Our

operation re�nement 
onditions enable the 
ontinuous development of guarded

pre
ondition s
hemas 
onsidering guards and pre
onditions at the same time.

This approa
h ensures that pre
onditions 
annot be weakened beyond the guard

and that the guard 
annot be strengthened further than the pre
ondition. This

is an essential di�eren
e to the work by (Strulo, 1995).

The Z s
hema 
al
ulus is used to stru
ture and develop spe
i�
ations. By pro-

viding a s
hema 
al
ulus for guarded pre
ondition s
hemas we fa
ilitate stru
-

tural development of spe
i�
ations modelling underde�nedness expli
itly. Fur-

thermore, the entailment operator enables us to analyse spe
i�
ations in mu
h

the same way as in standard Z.

9.3 Future Work

This thesis draws to an end but our resear
h is just at its beginning. During

our investigation many questions were raised and only a few 
ould be answered

here. The future work 
onsist of further investigations of QCL, of analysing

its appli
ability to Z further, in parti
ular the notion of re�nement, and the

handling of underde�nedness and in
onsisten
y in 
ombination. Furthermore,

we are interested in applying our resear
h to more elaborate examples.

9.3.1 Properties of Quasi-Classi
al Logi


For quasi-
lassi
al logi
 the property of transitivity fails in general. (Tennant,

1984) notes that for his logi
 transitivity fails as well, but only where it ought

to, i.e. transitivity fails only in the presen
e of in
onsisten
y. Su
h a property

for QCL would 
ertainly be interesting when analysing 
onsistent theories. This

would, in general, make QCL more useful when applying it not only to investigate

in
onsistent but also 
onsistent theories.

We identi�ed a problem of \partial" triviality when adding equality to QCL.

Analysing the relationship between equality, fun
tionality and in
onsisten
y in

the 
ontext of QCL 
an provide more insight into reasoning about in
onsisten
ies

in general and about in
onsisten
ies in Z in parti
ular. Further resear
h into

equality also in
ludes extending the theorem prover with equality rules.

The Z standard does not �x a logi
 for Z and it is said that any logi
 
ompliant

with the standard is suÆ
ient. The question that follows is whether QCL is a

suÆ
ient logi
 with respe
t to the Z standard?
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9.3.2 Re�nement of In
onsistent Spe
i�
ations

One major motivation for this work is the belief in a theory that allows 
ontinued

development of spe
i�
ations despite the presen
e of in
onsisten
ies. Re�nement

is one of the pro
esses of spe
i�
ation development from an abstra
t form to

a more 
on
rete representation. Re�nement is also the pro
ess of adding in-

formation. This 
an, however, lead to the introdu
tion of in
onsisten
ies. The

idea behind the alternative pre
ondition regions is to support re�nement in the

presen
e of overde�nedness. Current investigations suggest that a 
ombination of


lassi
al and quasi-
lassi
al re�nement rules 
an support dete
tion and 
ontrolled

removal of in
onsisten
ies. However, this relation requires further investigation.

Our work fo
used on operation re�nement. However, data re�nement is fre-

quently used to develop a more 
on
rete representation of the system's 
ompo-

nents. For example, sets are a mathemati
al notion whi
h are usually not used

in programs. During data re�nement they are turned into sequen
es or arrays

thus providing a more 
on
rete representation. In
onsisten
ies 
an, for instan
e,

o

ur due to di�erent opinions on the 
on
rete representation. Thus, managing

in
onsisten
y in data re�nement and subsequently in operation re�nement is an

important issue to look at.

9.3.3 In
onsisten
y and Underde�nedness

So far, we only 
onsidered lo
al in
onsisten
ies. Surely, to develop a pra
ti
ally

useful way of managing in
onsisten
y we need to 
onsider global in
onsisten
ies

too. On su
h a s
ale, however, it be
omes even more important to identify an

order of \harmfulness" of in
onsisten
ies.

In our interpretation of pairs of guarded pre
ondition s
hemas (gd Op; do Op)

we identi�ed only three regions. Clearly, we 
ould further distinguish the areas

: gd Op ^ : do Op and : gd Op ^ do Op. The latter area might be regarded as

representing \mira
les" or in
onsisten
y. This leads to the problem of dete
ting

and managing in
onsisten
y between the guarded and the pre
onditioned region.

9.3.4 Appli
ations

A theory of re�nement in the presen
e of in
onsisten
y 
an 
ontribute to work

on viewpoint spe
i�
ations (Boiten et al., 1999), where the uni�
ation of two or

more viewpoints is de�ned as the least 
ommon re�nement of the viewpoints. So

far, the veri�
ation of this property also 
ontains a 
onsisten
y 
he
k between

the viewpoint spe
i�
ations. However, this for
es removal of the in
onsisten
y

to unify the viewpoints. Our work 
an possibly support viewpoint uni�
ation
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and the analysis of the resulting spe
i�
ation without ne
essarily removing the

in
onsisten
y.

The usefulness of after-state variables in guards is sometimes doubted. This is

due to the evaluation of the guard before exe
uting the operation. However, there

are at least two appli
ation domains that 
ould bene�t from after-state guards.

In geneti
 programming, for example, a range of solutions is 
al
ulated provided

some initiation but only a small set of the solutions are sele
ted a

ording to

some given 
riteria. These 
riteria 
an possibly be expressed in terms of after-

state guards.

(Turski, 2001) presents an unorthodox way of spe
ifying behaviour. He uses so


alled doubly guarded a
tions where two guards are asso
iated with ea
h a
tion:

the preguard is spe
ifying the 
ondition in whi
h the a
tion is to be started and the

postguard is spe
ifying under whi
h 
ondition the result is to be a

epted. Again,

we think that this is expressed within our approa
h of guarded pre
ondition

s
hemas. Thus, it would be interesting to investigate the appli
ability of our

notation with respe
t to these appli
ations.

Finally, some 
ase studies on handling in
onsisten
y in large proje
ts using QCL

and the Z notation would be interesting to further validate our approa
h and the

usefulness of in
onsisten
y tolerant methods. Also, a 
ase study using guarded

pre
ondition s
hemas to model rea
tive behaviour would further support our

work.
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Appendix A

QC-LeanTaP: A Tableau-Based

Theorem Prover for QCL

We present some work in progress on a tableau-based theorem prover for QCL.

Our theorem prover, 
alled QC-LeanTaP, is based on the work by (Be
kert and

Posegga, 1994) on leanT

A

P whi
h we introdu
e �rst. Then we turn to a small

program to 
al
ulate the 
onjun
tive negation normal form of a �rst order predi-


ate formula. We do not skolemize existential predi
ates, unlike the version used

for leanT

A

P . Finally, we present the tableau-based theorem prover for QCL.

A.1 leanT

A

P

LeanT

A

P is a 
omplete and sound theorem prover for 
lassi
al �rst-order logi


based on free-variable semanti
 tableau. The unique thing about leanT

A

P is that

it is probably the smallest theorem prover around: The original leanT

A

P program

is only about 12 lines of Prolog.

prove((E,F),A,B,C,D) :- !,prove(E,[F|A℄,B,C,D).

prove((E;F),A,B,C,D) :- !,prove(E,A,B,C,D),prove(F,A,B,C,D).

prove(all(I,J),A,B,C,D) :- !,

\+length(C,D),
opy_term((I,J,C),(G,F,C)),

append(A,[all(I,J)℄,E),prove(F,E,B,[G|C℄,D).

prove(A,_,[C|D℄,_,_) :-

((A= -(B);-(A)=B) -> (unify(B,C);prove(A,[℄,D,_,_))).

prove(A,[E|F℄,B,C,D) :- prove(E,F,[A|B℄,C,D).

(Be
kert and Posegga, 1994) des
ribe the basi
 version of leanT

A

P , whi
h is an

implementation of standard free-variable semanti
 tableau. An extended report

on leanT

A

P and the sour
e 
ode 
an be anonymously ftp-ed from

230
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i12ftp.ira.uka.de:pub/posegga/LeanTaP.ps.Z and

i12ftp.ira.uka.de:pub/posegga/LeanTaPsr
.shar.Z

LeanT

A

P is written in Si
stus Prolog but to port it to GProlog was easily done.

The prover lives in leantap.pl and is de�ned as the predi
ates prove/2 and

prove uv/2. See the 
omments there for details.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% $Id: leantap.pl,v 2.3 1994/12/14 18:09:13 posegga Exp $

% Si
stus Prolog

% Copyright (C) 1993: Bernhard Be
kert & Joa
him Posegga

% Universitaet Karlsruhe

% Email: {be
kert|posegga}�ira.uka.de

%

% Purpose: \LeanTaP: tableau-based theorem prover for NNF.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:- module(leantap,[prove/2,prove_uv/2℄).

:- use_module(library(lists),[append/3℄).

:- use_module(unify,[unify/2℄).

%%%%%%%%%% BEGIN OF TOPLEVEL PREDICATES

% ----------------------------------------------------------------

% prove(+Fml,?VarLim)

% prove_uv(+Fml,?VarLim)

%

% su

eeds if there is a 
losed tableau for Fml with not more

% than VarLim free variables on ea
h bran
h.

% prove_uv uses universal variables, prove does not.

%

% Iterative deepening is used when VarLim is unbound.

% Examples:

%

% | ?- prove((p(a) , -p(f(f(a))) , all(X,(-p(X) ; p(f(X))))), 1).

% no

% | ?- prove((p(a) , -p(f(f(a))) , all(X,(-p(X) ; p(f(X))))), 2).

% yes

%
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prove(Fml,VarLim) :-

nonvar(VarLim),!,prove(Fml,[℄,[℄,[℄,VarLim).

prove(Fml,Result) :-

iterate(VarLim,1,prove(Fml,[℄,[℄,[℄,VarLim),Result).

prove_uv(Fml,VarLim) :-

nonvar(VarLim),!,prove(Fml,[℄,[℄,[℄,[℄,[℄,VarLim).

prove_uv(Fml,Result) :-

iterate(VarLim,1,prove(Fml,[℄,[℄,[℄,[℄,[℄,VarLim),Result).

iterate(Current,Current,Goal,Current) :- nl,

write('Limit = '),

write(Current),nl,

Goal.

iterate(VarLim,Current,Goal,Result) :-

Current1 is Current + 1,

iterate(VarLim,Current1,Goal,Result).

%%%%%%%%%% END OF TOPLEVEL PREDICATES

% ----------------------------------------------------------------

% prove(+Fml,+UnExp,+Lits,+FreeV,+VarLim)

%

% su

eeds if there is a 
losed tableau for Fml with not more

% than VarLim free variables on ea
h bran
h.

% Fml: in
onsistent formula in skolemized negation normal form.

% syntax: negation: '-', disj: ';', 
onj: ','

% quantifiers: 'all(X,<Formula>)',

% where 'X' is a prolog variable.

%

% UnExp: list of formula not yet expanded

% Lits: list of literals on the 
urrent bran
h

% FreeV: list of free variables on the 
urrent bran
h

% VarLim: max. number of free variables on ea
h bran
h

% (
ontrols when ba
ktra
king starts and alternate

% substitutions for 
losing bran
hes are 
onsidered)

%

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,[B|UnExp℄,Lits,FreeV,VarLim).
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prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),


opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)℄,UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV℄,VarLim).

prove(Lit,_,[L|Lits℄,_,_) :-

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[℄,Lits,_,_)).

prove(Lit,[Next|UnExp℄,Lits,FreeV,VarLim) :-

prove(Next,UnExp,[Lit|Lits℄,FreeV,VarLim).

% ----------------------------------------------------------------

% prove(+Fml,+UnExp,+Lits,+DisV,+FreeV,+UnivV,+VarLim)

%

% same as prove/5 above, but uses universal variables.

% additional parameters:

% DisV: list of non-universal variables on bran
h

% UnivV: list of universal variables on bran
h

prove((A,B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

prove(A,[(UnivV:B)|UnExp℄,Lits,DisV,FreeV,UnivV,VarLim).

prove((A;B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,


opy_term((Lits,DisV),(Lits1,DisV)),

prove(A,UnExp,Lits,(DisV+UnivV),FreeV,[℄,VarLim),

prove(B,UnExp,Lits1,(DisV+UnivV),FreeV,[℄,VarLim).

prove(all(X,Fml),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

\+ length(FreeV,VarLim),


opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[(UnivV:all(X,Fml))℄,UnExp1),

prove(Fml1,UnExp1,Lits,DisV,[X1|FreeV℄,[X1|UnivV℄,VarLim).

prove(Lit,_,[L|Lits℄,_,_,_,_) :-

(Lit = -Neg; -Lit = Neg ) ->

(unify(Neg,L); prove(Lit,[℄,Lits,_,_,_,_)).
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prove(Lit,[(UnivV:Next)|UnExp℄,Lits,DisV,FreeV,_,VarLim) :-

prove(Next,UnExp,[Lit|Lits℄,DisV,FreeV,UnivV,VarLim).

A.2 Normal Form Cal
ulation for QC-LeanTaP

It follows a small program to 
al
ulate the negation 
onjun
tive normal form of a

formula in �rst-order predi
ate logi
. The main di�eren
e to the original version

by (Be
kert and Posegga, 1994) is the in
lusion of two rewrite rules (distribution

laws) and the removal of the skolemization. The former prevents the disjun
tion

rule to be applied to non-literals and the latter to skolemize existentially quan-

ti�ed formulae. Both 
onditions are required be
ause of the distin
tion between

S- and U-rules.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 
nnf

%

% GProlog

%

% August 2001: Ralph Miarka

% University of Kent, Canterbury, UK

% Email: rm17�uk
.a
.uk

%

% Purpose:

% - 
omputes 
onjun
tive negation normal form for a

% formula given in first-order predi
ate logi


% - used in 
onjun
tion with q
_leantap

%

% based on nnf.pl by

%

% Copyright (C) 1993: Bernhard Be
kert & Joa
him Posegga

% Universitaet Karlsruhe

% Email: {be
kert|posegga}�ira.uka.de

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 
he
k - xfy means right asso
iative; yfx means left asso
iative

:- op(400,fy,-). % negation

:- op(500,xfy,&). % 
onjun
tion

:- op(600,xfy,v). % disjun
tion

:- op(650,xfy,=>). % impli
ation
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:- op(700,xfy,<=>). % equivalen
e

% ----------------------------------------------------------------

% 
nnf(+Fml,?CNNF)

% Fml is a first-order formula and

% CNNF is its 
onjun
tive negation normal form.

%

% Syntax of Fml:

% negation: '-', disj: 'v', 
onj: '&', impl: '=>', equiv: '<=>',

%

% Syntax of CNNF: negation: '-', disj: ';', 
onj: ','

%


nnf(Fml,CNNF) :- 
nnf(Fml,CNNF,_).

% ----------------------------------------------------------------

% 
nnf(+Fml,-CNNF,-Paths)

%

% Fml,CNNF See above.

% Paths: Number of disjun
tive paths in Fml.


nnf(Fml,CNNF,Paths) :-

(Fml = -(-A) -> Fml1 = A;

Fml = -all(X,F) -> Fml1 = ex(X,-F);

Fml = -ex(X,F) -> Fml1 = all(X,-F);

Fml = -(A v B) -> Fml1 = -A & -B;

Fml = -(A & B) -> Fml1 = -A v -B;

Fml = A v (B & C) -> Fml1 = (A v B) & (A v C);

Fml = (A & B) v (A & C) -> Fml1 = A & (B v C);

Fml = (A => B) -> Fml1 = -A v B;

Fml = -(A => B) -> Fml1 = A & -B;

Fml = (A <=> B) -> Fml1 = (A & B) v (-A & -B);

Fml = -(A <=> B) -> Fml1 = (A & -B) v (-A & B)),!,


nnf(Fml1,CNNF,Paths).


nnf(all(X,F),all(X,CNNF),Paths) :- !,


nnf(F,CNNF,Paths).


nnf(ex(X,Fml),ex(X,CNNF),Paths) :- !,


nnf(Fml,CNNF,Paths).


nnf(A & B,CNNF,Paths) :- !,
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nnf(A,CNNF1,Paths1),


nnf(B,CNNF2,Paths2),

Paths is Paths1 * Paths2,

(Paths1 > Paths2 -> CNNF = (CNNF2,CNNF1);

CNNF = (CNNF1,CNNF2)).


nnf(A v B,CNNF,Paths) :- !,


nnf(A,CNNF1,Paths1),


nnf(B,CNNF2,Paths2),

Paths is Paths1 + Paths2,

(Paths1 > Paths2 -> CNNF = (CNNF2;CNNF1);

CNNF = (CNNF1;CNNF2)).


nnf(Lit,Lit,1).

A.3 QC-LeanTaP

QC-LeanTaP is the tableau-based theorem prover for QCL. We almost doubled

the rules in 
omparison with leanT

A

P to handle the tableau S- and U-Rules

separately. Skolemization is re-introdu
ed at appropriate stages. The 
ru
ial

rule is, however, the disjun
tion S-Rule be
ause it is only appli
able to literals

and it allows fo
using. The appli
ation of the disjun
tion S-Rule to literals is

ensured by its positioning within the rule system. Fo
using is 
aptured by a

small rule to sele
t a disjun
tion of literals to fo
us over. This is slightly di�erent

to the original proof theory of QCL. The disjun
tion rule used is

�

1

_ : : : _ �

i

_ : : : _ �

n

(: (�

i

_ : : : _ �

n

))

�

j �

1

_ : : : _ �

i�1

[where �

1

; : : : ; �

n

are literals℄

It 
an be shown that this is a short-hand for the multiple appli
ation of the

disjun
tion S-rule. Furthermore, the original disjun
tion S-rule is a spe
ial 
ase

of this rule. We have, however, not established the formal proof of soundness

and 
orre
tness for this variant of the disjun
tion S-rule yet. Note also that we

in
luded the double negation rule be
ause fo
using does introdu
e negation, thus

double negations 
an appear.

We have not established the 
orre
tness of this implementation nor any improve-

ments. Thus, we 
onsider it as work in progress. The prover has been tested

using range of examples from the publi
ations on QCL.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% q
_leantap

%
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% GProlog

%

% August 2001: Ralph Miarka

% University of Kent, Canterbury, UK

% Email: rm17�uk
.a
.uk

%

% Purpose: Lean tableau based prover for Quasi-
lassi
al logi


% by A.Hunter; used in 
onjun
tion with 
nnf.pl to get

% the negation normal form

%

% based on \LeanTaP by

%

% Copyright (C) 1993: Bernhard Be
kert & Joa
him Posegga

% Universitaet Karlsruhe

% Email: {be
kert|posegga}�ira.uka.de

% Purpose: \LeanTaP: tableau-based theorem prover for NNF.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:- in
lude(
nnf).

:- in
lude(unify).

%%%%%%%%%% BEGIN OF TOPLEVEL PREDICATES

% 
onvert a list of formulae into 
nnf

% return a list of 
nnfs Fml


nnffmls([℄,[℄).


nnffmls([F|Res℄,[(CNNF,s)|Rem℄) :-


nnf(F,CNNF),

write('CNNF = '), write(CNNF),nl,


nnffmls(Res,Rem).

prove(Fml,F,VarLim) :-


nnffmls(Fml,Res), 
nnf(F,CNNF),

write('CNNFVarLim = '), write(CNNF),nl,

nonvar(VarLim),!,prove((CNNF,u),Res,[℄,[℄,VarLim).

prove(Fml,F,Result) :-


nnffmls(Fml,Res), 
nnf(F,CNNF),

write('CNNFResult = '), write(CNNF),nl,

iterate(VarLim,1,prove((CNNF,u),Res,[℄,[℄,VarLim),Result).
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iterate(Current,Current,Goal,Current) :- nl,

write('Limit = '),

write(Current),nl,

Goal.

iterate(VarLim,Current,Goal,Result) :-

Current1 is Current + 1,

iterate(VarLim,Current1,Goal,Result).

% ----------------------------------------------------------------

% prove(+(Fml,Sign),+UnExp,+Lits,+FreeV,+VarLim)

%

% su

eeds if there is a 
losed tableau for Fml with not more

% than VarLim free variables on ea
h bran
h.

% Fml: list of formulae in negation normal form.

% syntax: negation: '-', disj: ';', 
onj: ','

%

% UnExp: list of formula not yet expanded

% Lits: list of literals on the 
urrent bran
h

% FreeV: list of free variables on the 
urrent bran
h

% VarLim: max. number of free variables on ea
h bran
h

% (
ontrols when ba
ktra
king starts and alternate

% substitutions for 
losing bran
hes are 
onsidered)

% Sign: whether S- or U-rules should be used.

% Conjun
tion S-Rule

prove(((A,B),s),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,s),[(B,s)|UnExp℄,Lits,FreeV,VarLim).

% U-Double Negation Rule (a
tually it also works for the S-Rules)

% needed, be
ause the fo
us rule 
an introdu
e double negation

prove((-(-A),Sign),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,Sign),UnExp,Lits,FreeV,VarLim).

% Disjun
tion U-Rule:

prove(((A;B),u),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,u),[(B,u)|UnExp℄,Lits,FreeV,VarLim).

% Conjun
tion U-Rule

prove(((A,B),u),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,u),UnExp,Lits,FreeV,VarLim),

prove((B,u),UnExp,Lits,FreeV,VarLim).
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% Disjun
tion S-Rules:

prove(((A;B),s),UnExp,Lits,FreeV,VarLim) :-

prove((A,s),UnExp,Lits,FreeV,VarLim),

prove((B,s),UnExp,Lits,FreeV,VarLim).

% fo
us

prove(((A;B),s),UnExp,Lits,FreeV,VarLim) :-

fo
us((A;B),C,D),

prove((-(C),u),UnExp,Lits,FreeV,VarLim),

prove((D,s),UnExp,Lits,FreeV,VarLim).

% Quantifi
ation S-rules

% Existential Quantifi
ation:

% Skolemize first, then prove skolem. fml

prove((ex(X,Fml),s),UnExp,Lits,FreeV,VarLim) :- !,


opy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),


opy_term((X,Fml1,FreeV),(ex,Fml2,FreeV)),

prove((Fml2,s),UnExp,Lits,FreeV,VarLim).

prove((all(X,Fml),s),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),


opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,(Fml,s))℄,UnExp1),

prove((Fml1,s),UnExp1,Lits,[X1|FreeV℄,VarLim).

% Quantifi
ation U-rules

% Universal Quantifi
ation:

% Skolemize first, then prove skolem. fml

prove((all(X,Fml),u),UnExp,Lits,FreeV,VarLim) :- !,


opy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),


opy_term((X,Fml1,FreeV),(ex,Fml2,FreeV)),

prove((Fml2,u),UnExp,Lits,FreeV,VarLim).

prove((ex(X,Fml),u),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),


opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[ex(X,(Fml,u))℄,UnExp1),

prove((Fml1,u),UnExp1,Lits,[X1|FreeV℄,VarLim).

%

prove((Lit,Sign),_,[(L,Si)|Lits℄,_,_) :-
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rev(Si,S) ->

(unify((Lit,Sign),(L,S)); prove((Lit,Sign),[℄,Lits,_,_)).

prove((Lit,Sign),[Next|UnExp℄,Lits,FreeV,VarLim) :-

prove(Next,UnExp,[(Lit,Sign)|Lits℄,FreeV,VarLim).

% this fo
us rule is not only for literals

fo
us((A;B),A,B).

fo
us((A;B),B,A).

% needed for unifi
ation

rev(s,u).

rev(u,s).


