
INCONSISTENCY AND UNDERDEFINEDNESS

IN Z SPECIFICATIONS

a thesis submitted to

The University of Kent at Canterbury

in the subje
t of
omputer s
ien
e

for the degree

of do
tor of philosophy.

By

Ralph Miarka

De
ember 2002

Abstra
t

In software engineering, formal methods are meant to
apture the requirements

of software yet to be built using notations based on logi
 and mathemati
s. The

formal language Z is su
h a notation. It has been found that in large proje
ts

in
onsisten
ies are inevitable. It is also said, however, that
onsisten
y is required

for Z spe
i�
ations to have any useful meaning. Thus, it seems, Z is not suitable

for large proje
ts.

In
onsisten
ies are a fa
t of life. We are
onstantly
hallenged by in
onsisten
ies

and we are able to manage them in a useful manner. Logi
ians re
ognised this

fa
t and developed so
alled para
onsistent logi
s to
ontinue useful, non-trivial,

reasoning in the presen
e of in
onsisten
ies. Quasi-
lassi
al logi
 is one repre-

sentative of these logi
s. It has been designed su
h that the logi
al
onne
tives

behave in a
lassi
al manner and that standard inferen
e rules are valid. As su
h,

users of logi
, like software engineers, should �nd it easy to work with QCL.

The aim of this work is to investigate the support that
an be given to rea-

son about in
onsistent Z spe
i�
ations using quasi-
lassi
al logi
. Some of the

para
onsistent logi
s provide an extra truth value whi
h we use to handle under-

de�nedness in Z. It has been observed that it is sometimes useful to
ombine the

guarded and pre
ondition approa
h to allow the representation of both refusals

and underspe
i�
ation.

This work
ontributes to the development of quasi-
lassi
al logi
 by providing a

notion of strong logi
al equivalen
e, a method to reason about equality in QCL

and a tableau-based theorem prover. The use of QCL to analyse Z spe
i�
ations

resulted in a re�ned notion of operation appli
ability. This also led to a revised

re�nement
ondition for appli
ability. Furthermore, we showed that QCL allows

fewer but more useful inferen
es in the presen
e of in
onsisten
y.

Our work on handling underde�nedness in Z led to an improved s
hema repre-

sentation
ombining the pre
ondition and the guarded interpretation in Z. Our

inspiration
omes from a non-standard three-valued interpretation of operation

appli
ability. Based on this semanti
s, we developed a s
hema
al
ulus. Further-

more, we provide re�nement rules based on the
on
ept that re�nement means

redu
tion of underde�nedness. We also show that the re�nement
onditions ex-

tend the standard rules for both the guarded and pre
ondition approa
h in Z.

ii

A
knowledgements

This thesis represents four years of work and four years of my life. Many people

ontributed in a variety of ways. I would like to thank everybody from the bottom

of my heart. Unfortunately, I
annot mention all of you by name. Nevertheless,

your
ontribution is not forgotten.

First and foremost I would like to thank both my supervisors Prof. John Derri
k

and Dr. Eerke Boiten for their guidan
e and support they have given me. Their

availability throughout the last years helped me tremendously and their moti-

vation has been a
onstant sour
e of energy for me. I
ould not have done this

without them.

Furthermore, I am very grateful to the Computing Laboratory of the University of

Kent at Canterbury who funded me for the �rst three years with an E. B. Spratt

Bursary and also provided me with the opportunity to tea
h in the undergraduate

ourse. I am also very appre
iative for the support I have re
eived from the

members of the department.

Parts of this work have been presented at the ZB User Meetings in 2000 and 2002.

I would like to thank the anonymous referees for their thoughtful
omments and

all the attendants for their readiness to dis
uss parts of this work. I am also

very grateful to Dr. Anthony Hunter for the inspiring dis
ussions we had on

quasi-
lassi
al logi
.

I also thank the many people who I have had the pleasure to meet and who made

my stay in Canterbury even more enjoyable. My friends, in parti
ular, helped

me not only to go through the work but also through life. I am not sure whether

I
ould have done without their support and en
ouragement.

Last but not least, my heartfelt thanks go to my parents, Ernst and Me
hthild,

for their
ontinuous support they have provided during all my life.

I owe you all very mu
h. Danke!

Ralph Miarka

Canterbury, De
ember 2002

iii

Contents

Abstra
t ii

A
knowledgements iii

List of Figures xi

List of Tables xii

1 Introdu
tion 1

1.1 Managing In
onsisten
y in Z Spe
i�
ations 2

1.2 Underde�nedness in Z Spe
i�
ations 3

1.3 Aims and Obje
tive . 4

1.4 Contributions . 5

1.5 Outline . 6

2 A Short Introdu
tion to Z 9

2.1 Introdu
tion . 10

2.1.1 History of Z . 10

2.1.2 Motivation . 11

2.1.3 Outline . 11

2.2 Logi
, Sets, Types, Relations, Fun
tions 12

2.2.1 Logi
 . 12

2.2.2 Sets . 13

2.2.3 Types . 13

2.2.4 Relations . 15

2.2.5 Fun
tions . 16

iv

A
knowledgements v

2.3 S
hemas in Z . 16

2.3.1 S
hema Syntax . 17

2.3.2 Axiomati
 S
hemas . 18

2.3.3 Generi
 S
hemas . 19

2.3.4 S
hema In
lusion . 19

2.3.5 De
orations and Conventions 20

2.3.6 Normalisation . 22

2.3.7 S
hemas as Types . 22

2.4 The Z S
hema Cal
ulus . 23

2.4.1 Renaming . 24

2.4.2 S
hema Negation . 24

2.4.3 S
hema Conjun
tion . 24

2.4.4 S
hema Disjun
tion . 25

2.4.5 S
hema Impli
ation and Equivalen
e 26

2.4.6 S
hema Quanti�
ation . 26

2.4.7 S
hema Hiding, Proje
tion and Composition 27

2.4.8 Pre
ondition Cal
ulation 28

2.5 Re�nement in Z . 29

2.5.1 Operation Re�nement . 29

2.5.2 Data Re�nement . 32

2.6 Tool Support for Z . 34

2.7 Formal Methods and Notations related to Z 36

2.7.1 The B-Method . 36

2.7.2 The Vienna Development Method 37

2.7.3 Obje
t-Z . 37

2.8 Summary . 38

A
knowledgements vi

3 In
onsisten
y and Underde�nedness in Z 40

3.1 Introdu
tion . 41

3.1.1 Motivation . 42

3.1.2 Outline . 42

3.2 In
onsisten
y in Z Spe
i�
ations 42

3.2.1 Global In
onsisten
y . 43

3.2.2 Lo
al In
onsisten
y . 45

3.2.3 In
onsisten
y between Viewpoint Spe
i�
ations 46

3.3 In
onsisten
y and Information . 48

3.3.1 In
onsisten
ies in S
ien
e 48

3.3.2 In
onsisten
ies in Software Development 50

3.3.3 The Meaning of In
onsistent Z Spe
i�
ations 52

3.3.4 Examples . 53

3.3.5 Uni�
ation of Viewpoint Spe
i�
ations 56

3.3.6 Re�nement of In
onsistent Spe
i�
ations 57

3.3.7 Proposal . 58

3.4 Underde�nedness in Z Spe
i�
ations 59

3.4.1 Underde�nedness . 59

3.4.2 Normalisation and Underde�nedness 60

3.4.3 Guards and Pre
onditions in a Bu�er Example 61

3.4.4 Re�nement of Underde�ned Spe
i�
ations 62

3.4.5 Proposal . 63

3.5 Summary . 63

4 Para
onsisten
y and First-Order Quasi-Classi
al Logi
 64

4.1 Introdu
tion . 65

4.1.1 Motivation . 65

4.1.2 Outline . 66

4.2 In
onsisten
y, Triviality and Para
onsisten
y 67

4.2.1 Motivations for Para
onsistent Logi
s 67

4.2.2 De�nition of Para
onsisten
y 68

4.2.3 Approa
hes to Para
onsisten
y 69

4.3 Four-Valued Para
onsistent Logi
s 70

A
knowledgements vii

4.3.1 Belnap's Logi
 FOUR . 71

4.3.2 Damasio's Logi
 FOUR 76

4.4 Quasi-Classi
al Logi
 . 78

4.4.1 Syntax of Quasi-Classi
al Logi
 79

4.4.2 Semanti
s of Quasi-Classi
al Logi
 80

4.4.3 The Semanti
 Tableau Method for First-Order QCL 87

4.4.4 Properties of Quasi-Classi
al Logi
 92

4.4.5 Logi
al Equivalen
e in Quasi-Classi
al Logi
 95

4.5 Summary . 101

5 Quasi-Classi
al Logi
 with Equality 103

5.1 Introdu
tion . 104

5.1.1 Motivation . 104

5.1.2 Outline . 105

5.2 Equality . 105

5.2.1 Syntax and Semanti
s . 105

5.2.2 Equality Axioms . 106

5.2.3 Equality and Strong Satis�ability 109

5.3 Equality and Normal Models . 110

5.4 Equality Tableau Rules . 116

5.5 Soundness and Completeness . 118

5.6 The One-Point Rule . 120

5.7 Dis
ussion and Summary . 121

6 Formal Reasoning about In
onsistent Z Spe
i�
ations using

Quasi-Classi
al Logi
 123

6.1 Introdu
tion . 124

6.1.1 Motivation . 124

6.1.2 The Use of Quasi-Classi
al Logi
 124

6.1.3 Hypothesis . 125

6.1.4 S
ope . 126

6.1.5 Outline . 126

6.2 An In
onsistent Library Spe
i�
ation in Z 127

A
knowledgements viii

6.3 Investigating In
onsistent Z Spe
i�
ations 130

6.4 Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations . . . 132

6.4.1 The Quasi-Classi
al Pre
ondition 133

6.4.2 Simplifying Quasi-Classi
al Pre
onditions 134

6.4.3 Using Classi
al and Quasi-Classi
al Pre
onditions 136

6.5 Re�nement of In
onsistent Z Spe
i�
ations 139

6.5.1 Two Re�nement Examples 140

6.5.2 Classi
al Re�nement Conditions 141

6.5.3 Quasi-Classi
al Appli
ability 141

6.5.4 Quasi-Classi
al Corre
tness 143

6.5.5 Quasi-Classi
al Operation Re�nement 148

6.6 Summary . 149

7 Un(der)de�nedness in Z: Guards, Pre
onditions and Re�nement151

7.1 Introdu
tion . 152

7.1.1 Hypothesis . 152

7.1.2 Outline . 153

7.2 Guards and Pre
onditions in Z . 153

7.2.1 Normalisation in Z . 153

7.2.2 A Money Transfer System 154

7.2.3 Classi
al Pre
ondition and Guarded Interpretation 155

7.2.4 Re�nement . 156

7.2.5 Combining Guards and Pre
onditions 158

7.3 The En
oding of Un(der)de�nedness in Z 159

7.3.1 A S
hema Representation of Un(der)de�nedness 159

7.3.2 Normalisation revisited . 160

7.3.3 The Money Transfer System revisited 161

7.3.4 Regions of Before States 161

7.4 Three Valued Interpretation . 163

7.4.1 Semanti
al Des
ription of the Regions 163

7.4.2 Depi
ting Before and After States 164

7.4.3 Meaning of Re�nement . 164

7.5 Operation Re�nement . 166

A
knowledgements ix

7.5.1 Rules for Operation Re�nement 166

7.5.2 Re�nement of the Money Transfer System 167

7.5.3 Generalisation of Traditional Re�nement Rules 167

7.5.4 Re�nement Rules for Required Non-Determinism 169

7.6 Related Work . 170

7.6.1 Strulo's Work on Firing Conditions 170

7.6.2 The (R;A)-Cal
ulus by Doornbos 170

7.6.3 Hehner and Hoare's Predi
ative Approa
h to Programming 171

7.7 Summary . 171

8 A S
hema Cal
ulus for Un(der)de�nedness in Z 172

8.1 Introdu
tion . 173

8.1.1 Motivation . 173

8.1.2 Hypothesis . 174

8.1.3 Outline . 174

8.2 Un(der)de�nedness in Z: Guarded Pre
ondition S
hemas 174

8.2.1 A S
hema Representation of Un(der)de�nedness 175

8.2.2 Example: A Heat Control System 175

8.2.3 S
hemas using true and false. 176

8.3 A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 177

8.3.1 Three-Valued Truth Tables 177

8.3.2 S
hema In
lusion and S
hema De
oration 178

8.3.3 S
hema Negation . 179

8.3.4 S
hema Conjun
tion . 182

8.3.5 S
hema Disjun
tion . 184

8.3.6 S
hema Quanti�
ation . 189

8.3.7 S
hema Hiding and Proje
tion 192

8.3.8 S
hema Composition . 192

8.3.9 Further Classi
al Laws . 194

8.3.10 S
hema Entailment . 196

8.4 The Appli
ation of the S
hema Operators: An Example 198

8.5 Operation Appli
ability . 202

8.5.1 S
hema Pre
ondition . 202

A
knowledgements x

8.5.2 S
hema Guard . 204

8.5.3 Unde�ned S
hema Appli
ation 206

8.6 Re�nement Cal
ulations . 207

8.6.1 Re�nement Conditions . 207

8.6.2 Example . 208

8.6.3 Appli
ability . 208

8.6.4 Corre
tness . 208

8.6.5 Strengthening of the Guard 209

8.7 Summary . 210

9 Con
lusion 211

9.1 Results . 212

9.1.1 Quasi-Classi
al Logi
 . 212

9.1.2 The Appli
ation of Quasi-Classi
al Logi
 in Z 212

9.1.3 Guarded Pre
ondition S
hemas 213

9.2 Dis
ussion . 213

9.2.1 Z and QCL . 213

9.2.2 QCL and Z . 214

9.2.3 Underde�nedness in Z . 215

9.3 Future Work . 216

9.3.1 Properties of Quasi-Classi
al Logi
 216

9.3.2 Re�nement of In
onsistent Spe
i�
ations 217

9.3.3 In
onsisten
y and Underde�nedness 217

9.3.4 Appli
ations . 217

Bibliography 219

A QC-LeanTaP: A Tableau-Based Theorem Prover for QCL 230

A.1 leanT

A

P . 230

A.2 Normal Form Cal
ulation for QC-LeanTaP 234

A.3 QC-LeanTaP . 236

List of Figures

2 A Short Introdu
tion to Z 9

2.1 Relational Interpretations of Operations 30

2.2 Re�nement Using Downward and Upward Simulation 33

4 Para
onsisten
y and First-Order Quasi-Classi
al Logi

4.1 The Truth and Knowledge Ordering of FOUR 73

7 Un(der)de�nedness in Z: Guards, Pre
onditions and Re�nement

7.1 Combining Guard and Pre
ondition 163

xi

List of Tables

4 Para
onsisten
y and First-Order Quasi-Classi
al Logi

4.1 Negation, Conjun
tion, and Disjun
tion of the Logi
 FOUR . . . 73

4.2 Truth Table for Impli
ation in the Logi
 FOUR 76

7 Un(der)de�nedness in Z: Guards, Pre
onditions and Re�nement

7.1 Before and After States Relations 164

7.2 Before and After States Relations after Re�nement 165

8 A S
hema Cal
ulus for Un(der)de�nedness in Z

8.1 Three-Valued Truth Tables . 178

8.2 Truth Table for S
hema Impli
ation 196

xii

Chapter 1

Introdu
tion

Ja, i
h sage s
hon jetzt voraus: es werden mathematis
he Unter-

su
hungen �uber Kalk�ule kommen, die einen Widerspru
h enthalten,

und man wird si
h no
h etwas darauf zugute tun, da� man si
h au
h

von der Widerspru
hsfreiheit emanzipiert.

1

Ludwig Wittgenstein

30

th

De
ember 1930

Software engineering is the bran
h of
omputer s
ien
e that is
on
erned with

the development of software. Its aim is to provide engineering methods and te
h-

niques to build and maintain software. An analogy
ommonly drawn is between

ar
hite
ts and software engineers. In early stages houses were just built without

a systemati
 knowledge of how to
onstru
t them. However, to build sky s
rap-

ers that will not
ollapse a deep mathemati
al understanding of the stati
s of

su
h buildings was required. As su
h, only the formalisation of the methods in

ar
hite
ture allowed new developments.

Software engineering is undergoing a similar metamorphosis. Rather than build-

ing software in an ad ho
 fashion, a deeper understanding of its requirements

and its
onstru
tion is needed to make software more reliable. Formal methods is

the �eld of software engineering that is aimed at developing te
hniques to make

the meaning of software artifa
ts mathemati
ally and logi
ally pre
ise in order

to improve software reliability.

Formal spe
i�
ations are the main mathemati
al obje
ts
onsidered in formal

methods. Unfortunately, it has been found that espe
ially large spe
i�
ations

are often in
onsistent. Consisten
y, however, is required for spe
i�
ations to be

meaningful. Taken together, this implies that large spe
i�
ations are usually not

meaningful. The aim of our resear
h is to over
ome this problem by handling

in
onsisten
ies in a more pra
ti
al way.

1

\Indeed, even at this stage, I predi
t a time when there will be mathemati
al investigations

of
al
uli
ontaining
ontradi
tions, and people will a
tually be proud of having eman
ipated

themselves from
onsisten
y."(Wittgenstein, 1964, p. 332), English translation in (Priest, 2000).

1

1.1. Managing In
onsisten
y in Z Spe
i�
ations 2

1.1 Managing In
onsisten
y in Z Spe
i�
ations

Formal methods are seen as the way forward to more reliable software. Their

appli
ation in the development pro
ess leads to a deeper understanding of the

requirements of the software under
onstru
tion. One of the main obje
ts
on-

sidered by formal methods are formal spe
i�
ations. They express the software

requirements in terms of logi
 and mathemati
s. This foundation enables the

formal analysis of the requirements and it provides a possibility to verify whether

the requirements are met by the software produ
t.

The development of a spe
i�
ation depends primarily on the sour
es of informa-

tion, like designers, engineers and others. Often, several developers' views need

to be in
orporated into the des
ription of the software produ
t. It has been found

that, in parti
ular in large proje
ts, the parti
ipants disagree on a range of issues.

Furthermore, due to the
omplexity of large des
riptions errors
an easily appear.

In general, it has been found that

\In
onsisten
ies are inevitable in large proje
ts."

(Ghezzi and Nuseibeh, 1998)

The Z notation is one of several languages used to develop formal spe
i�
ations.

It is based on logi
 and mathemati
s, in parti
ular set theory, and provides a

rather elegant way of stru
turing the mathemati
s that des
ribe the system at

hand. However,
onsidering the argument from above we fa
e a pra
ti
al problem,

be
ause

\Consisten
y is essential for a Z spe
i�
ation to have any useful meaning."

(Valentine, 1998)

The
onjun
tion of both
laims means that the Z notation is not suitable for

large proje
ts be
ause they
an be in
onsistent but a Z spe
i�
ation in
luding

an in
onsisten
y would be meaningless or useless. This
on
lusion is, however,

not pra
ti
al. As a matter of fa
t, even in
onsistent spe
i�
ations have a desired

meaning and an intended use.

In
onsisten
ies are generally regarded as undesirable in software development

and, in parti
ular, in formal spe
i�
ation. A formal spe
i�
ation written in the

Z notation is basi
ally a logi
al des
ription of a system and its behaviour, i.e.

it is a logi
al theory. Logi
ians, however, often regard in
onsistent theories as

uninteresting be
ause they allow to derive any
on
lusion within their language

and therefore none
an be trusted. This is also the reason for Valentine's
laim

above.

1.2. Underde�nedness in Z Spe
i�
ations 3

Be
ause in
onsisten
ies are seen as undesirable, resear
hers developed tools and

te
hniques to remove in
onsisten
ies as soon as, or soon after they are dete
ted.

Another approa
h is to follow guidelines to prevent the introdu
tion of in
onsis-

ten
ies into spe
i�
ations in the �rst pla
e. This resear
h is
ertainly valuable to

minimise the o

urren
e of in
onsisten
ies. At times, however, su
h an approa
h

an be impra
ti
al.

Re
ently it has been a
knowledged that in pra
ti
e it is not always possible

nor desirable to eradi
ate in
onsisten
ies immediately, if at all. For example,

the engineer who
ould de
ide on how to resolve the in
onsisten
y may not be

available. This would in turn bring the proje
t to almost a standstill be
ause

the spe
i�
ation is
onsidered useless. It
ould be that no-one knows how to

resolve the in
onsisten
y at all. Also, in
onsisten
ies
an be useful to guide the

future development, pointing out areas that need more attention. Moreover, in

parti
ular in large proje
ts, the removal of one in
onsisten
y might bring up

another and sometimes a
ompletely
onsistent stage is unrea
hable in pra
ti
e.

Thus, we are required to manage in
onsisten
ies in a more general fashion.

The Z notation is founded on standard predi
ate logi
 but we identi�ed that

in
onsisten
ies
annot be handled appropriately by su
h a logi
. Therefore, it

seems natural to investigate other logi
al foundations for the Z notation. The

group of logi
s that
an be used to manage in
onsisten
ies are
alled para
onsis-

tent logi
s. The aim of our resear
h is to investigate the formal support we
an

give to managing in
onsisten
ies in Z spe
i�
ations using a para
onsistent logi

to fa
ilitate useful formal reasoning in the presen
e of in
onsisten
y.

1.2 Underde�nedness in Z Spe
i�
ations

We found that there is a wide range of para
onsistent logi
s. Some of them
ap-

ture in
onsisten
y rather intuitively by providing an extra logi
al truth value,

often
alled \both" in the semanti
s. Furthermore, many of these logi
s in
lude

another truth value,
alled \neither", to denote in
omplete knowledge. For ex-

ample, if asked \Who is the
urrent
han
ellor of Germany?" we
an answer \I

was told it is Mr. S
hr�oder", \I was told it is not Mr. Stoiber", \I was told it is

Mr. S
h�oder and I was told it is Mr. Stoiber" or \I do not know at all". These

four s
enarios
apture the idea of the four truth values.

An appli
ation area for this \don't know" value in formal spe
i�
ation is un-

derde�nedness. This notion refers to those situations where the operation is

applied outside its domain. In the
ommon Z spe
i�
ation style operations are,

in general, partial relations. The domains of these partial operations are tradi-

tionally
alled pre
onditions. Depending on the appli
ation area there are two

possible interpretations of the result of applying an operation outside its domain.

1.3. Aims and Obje
tive 4

In the traditional interpretation anything may result whereas in the alternative,

guarded, interpretation the operation is blo
ked outside its pre
ondition. It has

been observed that it is often
onvenient to use a
ombination of the guarded and

pre
ondition interpretation to allow both modelling of refusals and underspe
i�-

ation.

1.3 Aims and Obje
tive

We identi�ed two interesting areas of resear
h
on
erning the Z notation. On the

one hand, we found that in
onsisten
ies in Z spe
i�
ations need to be managed

in a more pra
ti
al fashion, rather than being eradi
ated. On the other hand,

modelling underde�nedness expli
itly in the Z notation
an be further explored.

Managing In
onsisten
y in Z using Quasi-Classi
al Logi

The problem is, that the Z notation
annot deal appropriately with in
onsistent

situations be
ause it is founded on
lassi
al predi
ate logi
. Classi
al predi
ate

logi
 allows trivial inferen
es in the presen
e of in
onsisten
y. Para
onsistent

logi
s, on the other hand, allow only non-trivial inferen
es despite the presen
e

of in
onsisten
y. Therefore, it is our aim to investigate whether the Z notation

an be founded on a para
onsistent logi
 to manage in
onsisten
ies more appro-

priately.

Para
onsistent logi
s are, in general, weaker than
lassi
al logi
 in the sense

that not all
lassi
ally valid inferen
es are possible. This is a
hieved by non-

standard behaviour of the logi
al
onne
tives, by the introdu
tion of new logi
al

onne
tives, by disallowing established proof rules, like resolution, or by other

means. Furthermore, properties of
lassi
al logi
, like monotoni
ity or transitivity

an fail. We need to �nd a suitable logi
 for our task, one that will be a

eptable

to both spe
i�
ation developers and spe
i�
ation analysts.

On
e we have found an appropriate para
onsistent logi
 we are interested in its

appli
ation to the analysis of Z spe
i�
ations. Our aim is to avoid triviality

in the presen
e of in
onsisten
y whi
h means that we opt for deriving less but

more useful information. Re�nement is
on
erned with the formal development

of
on
rete spe
i�
ations from abstra
t ones. We are interested in providing a

meaning for re�nement of in
onsistent spe
i�
ations. This should, on the one

hand, fa
ilitate the
ontrolled removal of in
onsisten
ies and, on the other hand,

the pro
ess of living with in
onsisten
ies in Z spe
i�
ations.

1.4. Contributions 5

Handling Underde�nedness in Z

The aim of this thesis with respe
t to underde�nedness is to develop a notation

that
ombines both the guarded and the standard pre
ondition interpretation to

model underde�nedness expli
itly. We de
ide to
onsider a three-valued semanti
s

to
apture the intuition that (1) an operation
an be blo
ked by a guard, (2) that

the operation
an be allowed by the guard but no result has been de�ned and

(3) the operation is appli
able and its result is de�ned. Then we
an use existing

three-valued logi
s to investigate spe
i�
ations based on su
h an interpretation.

The redu
tion of underde�nedness and non-determinism is a
ommon goal of

re�nement. Given su
h a three-valued interpretation of the appli
ability of oper-

ations it is our aim to �nd suitable and intuitive re�nement
onditions to support

further spe
i�
ation development. We identi�ed that there are systems whi
h re-

quire non-deterministi
 behaviour. Therefore, we are also interested in re�nement

that takes su
h behaviour into a

ount.

The extensive use of s
hemas to stru
ture spe
i�
ations has made Z su

essful.

The s
hema
al
ulus provides a means to
ombine s
hemas and to reason about

them. It is a further aim of our work to see whether we
an
onstru
t a s
hema

al
ulus suitable for the three-valued interpretation of the operations. Su
h a

al
ulus should be as fun
tional as the standard
al
ulus, i.e. it should fa
ilitate

reasoning about the
ombination of s
hemas. Note, re�nement
al
ulations are

also an appli
ation area of the s
hema
al
ulus.

1.4 Contributions

There are several
ontributions to be found in this work. Essentially they
an

be grouped a

ording to the notions of in
onsisten
y and underde�nedness. The

former
onsists of work on quasi-
lassi
al logi
 and its appli
ation to the analysis

of Z spe
i�
ations, while the latter refers to the work on a s
hema representation

for underde�nedness based on a three-valued logi
.

On Quasi-Classi
al Logi
. In order to use quasi-
lassi
al logi
 to analyse

Z spe
i�
ations we were required to develop QCL further. On the one hand,

the literature on QCL does not provide a general notion of logi
al equivalen
e

for QCL. Su
h a notion is, however, ne
essary to fa
ilitate the simpli�
ation of

logi
al formulae. Therefore we investigate a number of di�erent notions based on

the QC
onsequen
e relation and QC model
lasses. Our work results in a strong

notion of logi
al equivalen
e allowing general repla
ement of equal formulae.

On the other hand, QCL did not in
lude the notion of equality. However, the use

of equality is a
ommon feature in Z spe
i�
ations. Therefore, we in
orporated

1.5. Outline 6

reasoning about equality into QCL. This led also to the investigation of the one-

point rule in QCL and we established it to be a valid reasoning rule. Finally, we

developed an automated theorem prover based on the tableau method for QCL.

Quasi-Classi
al Logi
 and Z. Quasi-
lassi
al logi
 proved useful in the formal

analysis of in
onsistent Z spe
i�
ations. We demonstrated that fewer but more

useful inferen
es from in
onsistent spe
i�
ations are possible. Given the standard

de�nition of a pre
ondition but using QCL, we found a notion of appli
ability

that is able to
apture the intended appli
ation area of an in
onsistently de�ned

operation. This quasi-
lassi
al pre
ondition is then used to investigate the pro
ess

of re�nement of in
onsistent operations. The result is an appli
ability rule that

prevents some \useless" re�nements from in
onsistent operations.

Guarded Pre
ondition S
hema. Based on a three-valued intuition of the

appli
ability of an operation we developed a Z-like s
hema representation for

both guards and pre
onditions in an operation thus enabling the spe
i�
ation of

underde�nedness. Our s
hema representation is more expressive than previous

developments by allowing after-state variables in the guard. This required the

development of rules for
al
ulating the impli
it guard and pre
ondition of an

operation. Given those, we were able to provide a set of re�nement rules for

operations and showed that they extend the standard rules with respe
t to the

guarded and pre
ondition interpretation.

A S
hema Cal
ulus. To improve the usefulness of guarded pre
ondition

s
hemas we developed a s
hema
al
ulus
onsidering the standard Z s
hema op-

erators. We were guided by our three-valued interpretation of the appli
ability of

operations. The de�nition of most s
hema operators was straightforward. How-

ever, due to the non-
lassi
al interpretation, s
hema impli
ation and entailment

turned out to be di�erent. We were, however, able to re-gain a suitable entailment

operator to fa
ilitate, for example, re�nement
al
ulations.

1.5 Outline

This thesis starts with a short introdu
tion to Z followed by a dis
ussion on

in
onsisten
y and underde�nedness in Z spe
i�
ations. Then we present some

insight into para
onsistent reasoning and, in parti
ular, into quasi-
lassi
al logi
.

In the following
hapters we apply these logi
s to reasoning about in
onsisten
ies

in Z and to develop a new semanti
s for handling underde�nedness in Z. Below,

we give a more detailed des
ription of the stru
ture of this thesis.

1.5. Outline 7

Chapter 2. In Chapter 2 we introdu
e the Z notation. We provide some ba
k-

ground from logi
 and set theory, in
luding types, relations and fun
tions, and we

introdu
e Z s
hemas, the basi
 building blo
ks of a Z spe
i�
ation. We present

the s
hema
al
ulus as a means to stru
ture Z spe
i�
ations and to
ombine

s
hemas. Furthermore, we
onsider the notion of re�nement of Z spe
i�
ations

to develop abstra
t spe
i�
ations into
on
rete ones. Throughout this thesis we

use the support of tools whi
h are presented in this
hapter. Finally, we dis
uss

brie
y the relation of Z to some other formal spe
i�
ation notations.

Chapter 3. In Chapter 3 we des
ribe the aim of our resear
h in more detail.

We are interested in the sorts of in
onsisten
ies that
an arise in Z spe
i�
ations.

We
laim that in
onsisten
ies
an be a tool guiding the development of spe
i�
a-

tions and we look at desired inferen
es despite the presen
e of in
onsisten
ies in

Z spe
i�
ation. Underde�nedness
an be
onsidered to be
losely related to in-

onsisten
y thus we introdu
e the
on
ept of underde�nedness in Z spe
i�
ations

and we propose a new way to handle it.

Chapter 4. In Chapter 4 we introdu
e some ba
kground on the notion of para-

onsisten
y, in
luding the di�erent motivations for para
onsisten
y, two de�ni-

tions of para
onsisten
y and some of the approa
hes to
onstru
t a para
onsis-

tent logi
. Then we present two
losely related four-valued para
onsistent logi
s,

namely the logi
 FOUR by (Belnap, 1977b) and the logi
 FOUR by (Dam�asio

and Pereira, 1998). A three-valued subset of the logi
 FOUR is used in Chapters

7 and 8 to provide the semanti
s for our work on underde�nedness. The main part

of Chapter 4, however, is devoted to the introdu
tion of quasi-
lassi
al logi
 by

(Hunter, 2000) whi
h plays a major role in the following
hapter. We
ontribute

to the development of QCL by investigating the notion of logi
al equivalen
e in

QCL.

Chapter 5. In Chapter 5 we in
orporate reasoning about equality into QCL.

We introdu
e the syntax and semanti
s for equality, in
luding the equality ax-

ioms and some investigation of using these axioms as extra assumptions in the

reasoning pro
ess using QCL. Then we develop the ma
hinery to re
e
t that

we are dealing in fa
t with equality. We extend the proof system of QCL by

extra tableau rules for handling equality and we prove their soundness and
om-

pleteness. Finally, we present a version of the one-point rule for QCL to further

fa
ilitate QCL's appli
ability to our resear
h.

Chapter 6. In Chapter 6 we bring together QCL and Z. We present a small

example of a library system spe
i�ed using the Z notation. We introdu
e an in-

onsisten
y into the example to use it as an illustration throughout this
hapter.

1.5. Outline 8

In the
lassi
al setting su
h a spe
i�
ation would be meaningless but not so when

using quasi-
lassi
al logi
. We demonstrate that QCL allows fewer but more use-

ful inferen
es than standard predi
ate logi
. Then we apply QCL to the pro
ess

of
al
ulating the pre
ondition of in
onsistent operation s
hemas fa
ilitating a

dis
ussion on the re�nement pro
ess of in
onsistent operations. Following the

notions of standard re�nement, we establish the prin
iples of quasi-
lassi
al ap-

pli
ability and QC
orre
tness and thus show that QCL
an be used to
ontrol

the
ontinuous development of in
onsistent spe
i�
ations. Note, some parts of

this
hapter were previously published by (Miarka et al., 2002).

Chapter 7. In Chapter 7 we link up the Z notation, the problem of underde-

�nedness and the two interpretations of the meaning of a pre
ondition in Z. We

demonstrate by means of two examples, normalisation and a simple money trans-

a
tion system, that a
ombination of the traditional and blo
king interpretation

is sometimes required. Then we de�ne a s
hema notation in
luding both guards

and e�e
t s
hemas. Based on that we de�ne regions of operation behaviour,

i.e. whether an operation is inside or outside the guard, or inside or outside the

pre
ondition. These regions
an naturally be de�ned in a three-valued inter-

pretation leading to a simple and intuitive notion of re�nement that generalises

standard operation re�nement. We introdu
e these re�nement rules and show

their
ompatibility to the standard ones. Note, some parts of this
hapter were

previously published by (Miarka et al., 2000).

Chapter 8. In Chapter 8 we develop a s
hema
al
ulus for su
h guarded pre-

ondition s
hemas. We start the
hapter with a brief re
apitulation of the notion

of a guarded pre
ondition s
hema and we
ontinue with an illustration of its use

by presenting a small example of a heat
ontrol system. It follows the main part

onsisting of the development of the s
hema
al
ulus itself whi
h is based on the

standard s
hema operators. We validate the
al
ulus by proving several laws for

our s
hema operators. Furthermore, we show that some laws of the
lassi
al Z

s
hema
al
ulus do not hold within our
al
ulus. We revise the standard notions

of s
hema appli
ability and we return to investigating operation re�nement, using

the newly developed s
hema
al
ulus.

Appendix A. In Appendix A we present work in progress on a tableau-based

theorem prover for QCL. The theorem prover,
alled QC-LeanTaP, is based on

leanT

A

P whi
h we brie
y introdu
e �rst. Part of leanT

A

P is a small program to

al
ulate the
onjun
tive negation normal form of a �rst order predi
ate formula.

We adapt this program for our needs by removing skolemization of existential

predi
ates. Finally we present our tableau-based theorem prover for QCL.

Chapter 2

A Short Introdu
tion to Z

Z is a formal spe
i�
ation notation. It is used to model a system by naming

the
omponents and to state the
onstraints upon them and their relations, thus

des
ribing the behaviour of the system. Z is formal in the sense that it uses

mathemati
s, whi
h
onsists basi
ally of set theory and �rst-order predi
ate logi
,

to spe
ify systems. This foundation enables mathemati
al reasoning to establish

that desired properties are indeed
onsequen
es of spe
i�
ations written in Z.

The main feature of Z, distinguishing it from many other formal notations, is the

s
hema notation. It provides a very elegant way of stru
turing the mathemati
s

spe
ifying a system as well as to stru
ture the system itself. The Z notation

de�nes a s
hema
al
ulus to
ombine s
hemas. It is also used to reason about

the spe
i�
ation. This in
ludes the ability to reason about the development of

more
on
rete spe
i�
ations from abstra
t ones, i.e. about re�nement.

Z is a notation, not a method, although it is often said to be one. The Z standard

(ISO/IEC 13568, 2002) does not say how to use Z in a systemati
 way and to

what Z
an be best applied. Neither does the Z standard give any guidan
e on

how to develop a system from a Z spe
i�
ation. Note also that Z spe
i�
ations

are not exe
utable nor, in general,
an they be
ompiled into a running program.

Hen
e, Z is not some kind of a programming language.

The Z notation has been used to spe
ify di�erent kinds of systems. Examples of

applying Z su

essfully in
lude safety
riti
al systems, su
h as railway signalling

and medi
al devi
es, se
urity systems, like transa
tion pro
essing systems, and

general hard- and software developments. A
omprehensive list of appli
ation

examples as well as information on tools and other resour
es
an be found on the

Z notation home page: http://www.
omlab.ox.a
.uk/ar
hive/z.html.

The aim of this
hapter is to give an overview of the Z notation and to introdu
e

the ne
essary ba
kground to be able to des
ribe those problems we will ta
kle

in the next
hapters. We present the s
hema notation, in
luding the s
hema

al
ulus, the most
ommon
onventions and the notion of re�nement in Z. Finally,

we dis
uss brie
y tool support for Z and other methods related to Z.

9

2.1. Introdu
tion 10

2.1 Introdu
tion

Z is a formal spe
i�
ation language based on Zermelo-Fraenkel set theory and

�rst-order predi
ate logi
. It provides a notation for des
ribing the behaviour of

a system using mathemati
s. The key feature of Z is its s
hema notation, a way

to stru
ture the mathemati
s elegantly. A Z spe
i�
ation not only
onsists of

mathemati
al text but also of informal explanatory text, des
ribing the mean-

ing of the mathemati
al
onstru
ts. The purpose of the formality is to avoid

ambiguities inherent in informal des
riptions and to provide a basis for rigorous

reasoning.

The Z notation in
ludes an extensible toolkit of mathemati
al notation, a s
hema

notation for spe
ifying stru
tures in the system and for stru
turing the spe
i�
a-

tion itself and a de
idable type system whi
h allows extra
he
ks to be performed

to redu
e the risk of spe
i�
ation errors. Furthermore, Z has a s
hema
al
ulus for

modifying and
ombining s
hemas. The s
hema operators enable the de�nition

of new s
hemas using existing ones in a
ompa
t and readable way.

2.1.1 History of Z

The Z notation grew out of work by (Abrial, 1974) at Oxford University's Pro-

gramming Resear
h Group. Its development and re
ognition bene�ted greatly

from being used at IBM UK Laboratories at Hursley Park for the re-spe
i�
ation,

re-design and further development of their Customer Information Control Sys-

tem (CICS). (Nix and Collins, 1988) published one of the many studies on this

proje
t. (Barrett, 1989) reports on another important proje
t at the time, the

use of Z in the formalization of the IEEE standard for binary
oating-point arith-

meti
 whi
h formed the basis for the
oating-point unit of the Inmos IMS T800

Transputer. Both proje
ts re
eived the UK Queen's Award for Te
hnologi
al

A
hievement jointly with the Oxford University Computing Laboratory.

Two books helped primarily to establish Z and to stabilise the notation. (Hayes,

1987) edited a
olle
tion of
ase studies whi
h where later substantially revised

in (Hayes, 1993). This
olle
tion was used as a kind of a referen
e on how to use

Z. Later, (Spivey, 1992) produ
ed a referen
e manual whi
h be
ame the de fa
to

language de�nition for many years. For some time now, the Z notation has been

undergoing a standardization pro
ess. This e�ort resulted in the re
ent publi
a-

tion of the International Standard (ISO/IEC 13568, 2002) whi
h \establishes the

pre
ise syntax and semanti
s for some mathemati
s, providing a basis on whi
h

further mathemati
s
an be formalized."

Many books, like (Potter et al., 1991), are aimed at the introdu
tion to formal

spe
i�
ation and Z. (Barden et al., 1994), for example, provide some useful advi
e

on how to use Z in pra
ti
e. (Ja
ky, 1997) demonstrates the way of Z through a

2.1. Introdu
tion 11

series of short studies, introdu
ing the essential features of the notation qui
kly.

(Wood
o
k and Davies, 1996) look more deeply at the development pro
ess based

on Z spe
i�
ations. This aim has been taken further by (Derri
k and Boiten,

2001) who present a thorough a

ount on re�nement in Z and Obje
t-Z (Smith,

2000), a notation
losely related to Z. Common to all these books is their emphasis

on understanding Z and making it available to a wider audien
e.

There is also a regular series of
onferen
es, ZUM: The Z Formal Spe
i�
ation

Notation, also known as the Z User's Meetings. These
onferen
es are devoted

to Z and similar spe
i�
ation notation. Re
ently
onferen
es where held jointly

with the B
ommunity. The last
onferen
e pro
eedings were edited by (Bowen

et al., 1998), (Bowen et al., 2000) and (Bert et al., 2002).

2.1.2 Motivation

We
hoose Z for our work be
ause it is a mature notation. It has a ri
h litera-

ture of introdu
tory texts and
ase studies and it has been an obje
t of resear
h

for many years. Z is among the �rst formal notations to make the
rossover

from a
ademia to industry. It has been applied su

essfully in numerous indus-

trial proje
ts, and a

ording to the
ompanies saved them millions. With these

industrial appli
ations in mind Z underwent the ISO standardization pro
ess.

Furthermore, Z is being widely taught, not only at universities.

One of the advantages of Z is that it
an be used in a number of di�erent ways

a

ording to the appli
ation area. This, however, leads to the problem of
hoos-

ing the right way for the desired appli
ation. For example, we will see later in

this work that there are at least two ways of interpreting the pre
ondition in Z.

The so
alled disadvantage of Z that it is not a method turns possibly into our

favour. Z not di
tating a method provides us with more
exibility to investigate

Z, abstra
ting from methodologi
al
on
erns.

The aim of this
hapter is to introdu
e the Z notation. We fo
us in our presen-

tation on the ba
kground ne
essary for the remainder of this thesis. The reader

familiar with Z
an safely skip this
hapter as it provides no new insights into the

Z notation. The short dis
ussion on Z tools and on related spe
i�
ation methods

might, however, be of additional value.

2.1.3 Outline

This
hapter is stru
tured as follows. In Se
tion 2.2 we provide some ba
kground

on logi
 and set theory, in
luding types, relations and fun
tions. In Se
tion 2.3

we introdu
e Z s
hemas, the basi
 building blo
ks of a Z spe
i�
ation. S
hemas

an be
ombined appropriately using the s
hema
al
ulus whi
h we present in

2.2. Logi
, Sets, Types, Relations, Fun
tions 12

Se
tion 2.4. The notion of re�nement of Z spe
i�
ations is dis
ussed in Se
tion

2.5. The Z notation is also supported by tools. We present a sele
tion of them

in Se
tion 2.6. Finally, in Se
tion 2.7, we dis
uss brie
y the relation of Z to

some other formal spe
i�
ation notations. This
hapter
on
ludes with a short

summary.

2.2 Logi
, Sets, Types, Relations, Fun
tions

The Z notation is based on set theory and �rst-order predi
ate logi
. Although

we assume general familiarity with these topi
s, we introdu
e some ba
kground

notions frequently used in this work. We
over brie
y the logi
 of Z and then we

present some notation from set theory and its appli
ation to type theory, relations

and fun
tions. Note, that we provide only the terminology used in this work. For

a detailed introdu
tion we re
ommend one of the aforementioned textbooks.

2.2.1 Logi

The Z notation uses propositional and predi
ate logi
 to state the relationship

between the
omponents of a system and to
onstrain the behaviour a

ordingly.

The propositional logi
 used
ontains the
ommon
onne
tives with their usual

meaning and order of pre
eden
e: : { negation, ^ {
onjun
tion, _ { disjun
tion,

) { impli
ation, and , { equivalen
e.

Predi
ate logi
 is provided by the usual introdu
tion of quanti�ers into the lan-

guage, together with the notions of free and bound variables. The Z notation is a

typed language meaning that every variable belongs to a �xed set of values, thus

quanti�
ations need to be typed, too. For example, universal quanti�
ation has

the form 8 x : T j p � q and means that for all x in T satisfying the predi
ate p,

q holds. Existential quanti�
ation has the form 9 x : T j p � q and means that

there exists at least one value of x in T satisfying p su
h that q holds.

The predi
ate p restri
ting q is optional. If p is omitted it is
onsidered to be

true. The following equivalen
es hold for the restri
ted quanti�ers: for univer-

sal quanti�
ation 8 x : T j p � q , 8 x : T � p) q and for existential

quanti�
ation 9 x : T j p � q , 9 x : T � p ^ q .

A variable introdu
ed by a quanti�er is said to be bound, and the usual s
oping

laws apply. Variables that are not bound in a predi
ate are said to be free. As

usual, it is possible to repla
e all bound o

urren
es of a variable in a predi
ate.

This ensures the
orre
tness of the following frequently used proof rule of 9-

elimination, also
alled the one-point rule (for existential quanti�
ation): 9 x :

T � x = t ^ p(x) � t 2 T ^ p(t), provided that x is not free in t . This law

states that if we are required to demonstrate the existen
e of a variable and a

2.2. Logi
, Sets, Types, Relations, Fun
tions 13

suitable instantiation is given, then we
an eliminate the existential quanti�er.

This law is often used in the simpli�
ation of pre
onditions of operations.

2.2.2 Sets

Set theory is the other
ornerstone of the Z notation, in fa
t, the name Z is

derived from Zermelo-Fraenkel set theory. Membership { 2 and its
onverse { 62,

empty set { ?, subset { �, and equality { = are de�ned as usual.

Sets
an be given by listing their elements, like in fred ; green; yellowg, or by set

omprehension. For instan
e, fn : T j pg is the set of all n in T satisfying

the predi
ate p, e.g. fn : Z j n � 0g des
ribes the set of all natural numbers.

Furthermore, fx : S j P(x) � Q(x)g is the set of all x of type S satisfying the

predi
ate P su
h that Q is satis�ed, too. Note, P(x) is omitted when P(x) = true

and Q(x) is omitted when Q(x) = true. The size of a �nite set is determined

by its
ardinality (#), e.g. #fred ; green; yellowg = 3,
onsidering all elements of

this set are distin
t.

Furthermore, we
an use the
ommon set operators, like power set
onstru
-

tion { P, Cartesian produ
t { �, set union { [, set interse
tion { \ and set

di�eren
e { n. These operators are all de�ned as usual. For example, P S is

the set of all subsets of S , e.g. Pfred ; greeng = f?; fredg; fgreeng; fred ; greengg,

and the Cartesian produ
t S � T is the set of ordered pairs whose �rst ele-

ment is in S and whose se
ond element is in T , e.g. f1; 2g � fred ; greeng =

f(1; red); (1; green); (2; red); (2; green)g.

2.2.3 Types

Z is a typed language or, in logi
al terms, it is based on many-sorted �rst-order

predi
ate
al
ulus. Every expression in Z has a unique type assigned. Basi
ally,

types
onstrain the use of any kind of value. For example, when x is de
lared

as x : S then the type of x is the largest set
ontaining S . Thus, types are sets

and every set is
ontained in exa
tly one type. Note, however, that the symbol

? denotes the empty set of all possible types.

Types are important be
ause they allow to dete
t a wide range of spe
i�
ation

mistakes. For example, (1; 2) 2 N is a type error in Z, be
ause (1; 2) is a tuple

whereas N is a set of numbers, not of tuples. The type system of Z is de
idable,

thus it is possible to
al
ulate automati
ally the types of expressions and to
he
k

whether they make sense. There are several tools (see Se
tion 2.6) to support

type
he
king.

2.2. Logi
, Sets, Types, Relations, Fun
tions 14

Built-in Type. Z provides a single built-in type A ,
alled arithmos, supplying

values for use in spe
ifying number systems. For example, the integer numbers

are de�ned as Z : P A , thus the set of integers, Z, is a subset of A . The set of

natural numbers is de�ned as N : PZ, thus the number 7 is not of type N but

of type Z and subsequently of type A . The type A has been introdu
ed by the

urrent Z standard. Before, the set of integers, Z, was
onsidered to be the only

given type and it is still
ommon to
onsider Z as the \super-type" as done here.

Note, Z has no built-in Boolean type, though a type B
onsisting of true and false

is, for illustrative purpose, frequently used. This, however, is stri
tly speaking a

type error, be
ause, in Z, true and false are de�ned as predi
ates, not expressions.

Given sets. Although Z provides only a single built-in type, a spe
i�er has a

number of ways to de�ne new types relevant to the parti
ular spe
i�
ation. One

way is to simply de
lare them. A given set is a de
laration of the form

[TYPE ℄

introdu
ing a new type TYPE . For example,

[NAME ;BOOK ℄

de�nes two new sets NAME and BOOK . At this stage, no further information

about values or relationships between these sets are given.

Type
onstru
tion. Starting with existing types there are various ways to

onstru
t new types. The power set operator P is an elementary type
onstru
tor

often used. For example, the set fali
e; bob;
harlieg is of type PNAME , given

that ea
h of the names is in the set NAME , i.e. of type NAME . The Cartesian

produ
t is another frequently used type
onstru
tor. For example, NAME � N

is a type
onsisting of ordered pairs, e.g. (ali
e; 2) is of type NAME � N .

Free types. Another important type
onstru
tor is the free type. Basi
ally,

free types
an be transformed into other Z
onstru
ts. However, it makes it

easier to des
ribe
ertain stru
tures, in parti
ular re
ursive stru
tures like lists

and trees. Here, we only
onsider free types over
onstants. For example,

Report ::= Ok j Failure

denotes a type Report
ontaining exa
tly two di�erent
onstants Ok and Failure.

Alternatively, this
ould have been de�ned by a given type [Report ℄ and the

onstraint Ok ;Failure : Report j Ok 6= Failure ^ 8 x : Report � x = Ok _ x =

Failure. For more details on free type
onstru
tion see (Spivey, 1992, pp. 82).

Another kind of type in the Z notation is the so
alled s
hema type, whi
h we

will introdu
e in Se
tion 2.3.7 after presenting the notion of a s
hema.

2.2. Logi
, Sets, Types, Relations, Fun
tions 15

2.2.4 Relations

Relations are among the most important and most extensively used mathemati
al

onstru
ts in Z. A relation is a set of ordered pairs. X $ Y denotes the set of all

relations between the sets X and Y , that is, the set of all sets of ordered pairs

whose �rst elements are members of X and whose se
ond elements are members

of Y . X $ Y is de�ned as P(X � Y). When de�ning relations, the maplet

notation x 7! y is often used for (x ; y).

Assume that our sets of names
ontains fali
e; bob;
harlieg � NAME . Then we

an de�ne a relation letters des
ribing the number of letters in the name, e.g.

letters == fali
e 7! 5; bob 7! 3;
harlie 7! 7g.

For any ordered pair �rst and se
ond
omponent proje
tion, denoted �rst and

se
ond are provided. For example, �rst (ali
e; 5) = ali
e and se
ond (bob; 3) = 3.

The domain of a relation R : X $ Y is the set of �rst
omponents of the ordered

pairs in R, i.e. domR = fp : R � �rst pg. The range of the relation R is the set

of se
ond
omponents of the ordered pairs in R, i.e. ranR = fp : R � se
ond pg.

For example, given the relation letters we have dom letters = fali
e; bob;
harlieg

and ran letters = f3; 5; 7g.

Often, it is useful not to
onsider the whole of the domain or range of a set

but restri
ted subsets. The domain restri
tion of a relation R : X $ Y by a set

S : PX , denoted SCR, is the set of pairs in R whose �rst
omponents are in S , i.e.

S CR = fr : R � �rst r 2 Sg. For example, fali
e;
harliegC letters = fali
e 7!

5;
harlie 7! 7g. The domain anti-restri
tion, or domain subtra
tion, of a relation

R : X $ Y by a set S : PX is the set of pairs whose �rst
omponents are not in

R, i.e. S

�

CR = fr : R � �rst r 62 Sg. Similarly de�ned are range restri
tion and

range subtra
tion of a relation R : X $ Y by a set T : PY , denoted RBT and

R

�

B T respe
tively, but with respe
t to the se
ond
omponent of R.

It is often useful to spe
ify that a relation only
hanged marginally. Appli
ations

of su
h operation in
lude, for example, database updates. For a relation this

means to repla
e some of the pairs by new ones. The operation to do this is

alled overriding. If R and S are both relations between X and Y , the relational

overriding of R by S is the whole of S together with those members of R that have

no �rst
omponents that are in the domain of S , i.e. R�S = ((domS)

�

CR)[S .

For example, letters � fali
e 7! 6g = fali
e 7! 6; bob 7! 3;
harlie 7! 7g. Note, if

the domains of the relations R and S are disjoint then overriding
oin
ides with

set union, e.g. letters � fdan 7! 3g = letters [fdan 7! 3g = fali
e 7! 5; bob 7!

3;
harlie 7! 7; dan 7! 3g.

There are many more operators on relations de�ned in the Z standard. Arguably,

there are even more important operators than the presented ones. However, we

have only introdu
ed those that will be valuable to us subsequently. We refer to

the aforementioned textbooks for more information.

2.3. S
hemas in Z 16

2.2.5 Fun
tions

Fun
tions are relations with parti
ular properties, namely that ea
h element in

the domain is mapped to at most one element of the range. Therefore, the

operators above and all the other relational operators are all de�ned for fun
tions,

too. There are di�erent kinds of fun
tions distinguished by further properties.

Ea
h kind of fun
tion has a name and a symbol assigned.

The set of all partial fun
tions X 7! Y from X to Y is the set of all relations

between X and Y su
h that ea
h x in X is related to at most one y in Y .

Basi
ally, the terms \fun
tion" and \partial fun
tion" are used synonymously. A

fun
tion f from X to Y is said to be total, denoted f : X ! Y , if dom f = X , i.e.

if it relates ea
h member of X to exa
tly one member of Y . For example, we
an

write
ount : NAME ! N for a fun
tion
ount su
h that
ount(n) returns the

numbers of letters in a given name n, or names : N 7! PNAME for a fun
tion

that returns all the names of a given length. Every name has a number of letters

it
onsists of, hen
e
ount is total but there is at least one natural number su
h

that there
annot be a name of that length, hen
e names is partial.

Fun
tions have additional properties. They
an be inje
tive, surje
tive or bije
-

tive. A fun
tion from X to Y is inje
tive, if ea
h y in Y is related to no more

than one x in X . A fun
tion from X to Y is surje
tive, if its range is equal to

Y . A fun
tion is bije
tive, if it is both inje
tive and surje
tive. Thus,
ount is a

total inje
tive fun
tion and names is a partial surje
tive fun
tion.

This
on
ludes our introdu
tion to some basi
 ba
kground. We introdu
ed the

syntax of the logi
 of Z and some notation from set theory. We
overed Z's type

onstru
tors as well as the use of relations and fun
tions in Z. Next we turn to

the main feature of Z to stru
ture spe
i�
ations.

2.3 S
hemas in Z

The Z spe
i�
ations we
onsider will be written in the (usual) \states-and-

operations" style. In this style a system is given by operations des
ribing the

hange of the state of the system. The state of the system and the operations

upon it are written using Z s
hemas stru
turing the spe
i�
ation into manageable

omponents.

S
hema boxes are the most re
ognizable feature of Z. They provide a stru
turing

me
hanism for the powerful mathemati
al language introdu
ed above. Basi
ally,

the spe
i�
ation of a parti
ular operation
an be written as one predi
ate. How-

ever, it would be rather diÆ
ult to understand the meaning of su
h a predi
ate

at on
e. Therefore, it is useful to break it into smaller, manageable,
omponents.

That is what s
hemas are for.

2.3. S
hemas in Z 17

2.3.1 S
hema Syntax

A s
hema
onsists of a set of de
larations and
onstraints upon them. For exam-

ple, the s
hema

Library

users : PNAME

borrowed : NAME 7! PBOOK

users � dom borrowed

introdu
es users whi
h are a
olle
tion of something
alled NAME and borrowed ,

a fun
tion that assigns to something from the set NAME a subset of whatever

the set BOOK
ontains. Furthermore, the predi
ate
onstrains the set users to

be a subset of the domain of the fun
tion borrowed .

In general, a s
hema box
onsists of a s
hema name, a set of de
larations above

a short line, and a predi
ate below.

S
hemaName

de
laration

predi
ate

The de
larations
an be split a
ross lines, like above, or they may be put on

the same line, separated by semi
olon. A predi
ate split a
ross lines denotes a

onjun
tion, unless another operator is used. For example,

Example

1

n : Z; x : Z

n < 5

x > 10

Example

2

n : Z

x : Z

(n < 5) _

(x > 10)

the predi
ate in Example

1

means (n < 5) ^ (x > 10) whereas the predi
ate in

Example

2

stands for (n < 5) _ (x > 10). We also use indentation to stru
ture

predi
ates appropriately.

Note, that the predi
ate
an be true. Then it is omitted from the s
hema and

the s
hema only provides the de
larations. For example, the s
hema

System

message : Report

2.3. S
hemas in Z 18

introdu
es something named message of type Report , i.e. something that
an be

Ok or Failure, without any further
onstraints atta
hed.

S
hemas
an also be written in horizontal form, e.g.

OkReport == [message : Report j message = Ok ℄

des
ribes that the thing message of type Report should be assigned Ok . The

horizontal notation is used for two reasons. On the one hand, the naming of the

s
hema is made more expli
it and, on the other hand, they are more
ompa
t in

notation.

In general, Z s
hemas are a

ompanied by a des
ription in natural language to

larify the meaning of the s
hema. For example, the s
hema Library des
ribes

a simple library systems
onsisting of users who
an borrow books. Unless the

natural des
ription is given all the
omponents of a s
hema
an be interpreted

quite freely, they are only symbols.

2.3.2 Axiomati
 S
hemas

Axiomati
 s
hemas are used to introdu
e new obje
ts into a spe
i�
ation whi
h

are subje
t to
onstraints. These obje
ts will be known throughout the spe
i�-

ation, i.e. they are global. For example, the s
hema

heat max ; heat min : Z

heat max = 65

heat min = 45

introdu
es two global
onstants heat max and heat min of integer type with

unique values assigned. In general an axiomati
 s
hema looks like

de
laration

predi
ate

Again, the predi
ate is optional. If it is not given, it is
onsidered to be set

to true. An axiomati
 s
hema without a predi
ate just introdu
es new global

names.

Free types, as introdu
ed above, are formally de�ned using axiomati
 s
hemas.

The earlier de�nition of

Report ::= Ok j Failure

is an abbreviation for

2.3. S
hemas in Z 19

[Report ℄

Ok ;Failure : Report

Ok 6= Failure

8 x : Report � x = Ok _ x = Failure

2.3.3 Generi
 S
hemas

We said already that the symbol ? denotes the empty set for all possible types,

thus the symbol ? is de�ned generi
ally, that is, it has a de�nition using type

parameters. For example,

[X ℄

makesum : (X $ Z)! Z

8 x : X ; y : Z; z : (X $ Z) �

makesum ? = 0 ^

makesum f(x ; y)g = y ^

makesum (f(x ; y)g [z) = y +makesum (z n f(x ; y)g)

de�nes a fun
tion makesum that
an take any set of pairs, where the �rst
ompo-

nent is generi
 but the se
ond
omponent is an integer. The fun
tion makesum

then
al
ulates the sum of all the se
ond
omponents, regardless of what the �rst

omponents are.

The advantage of generi
 s
hemas is their re-usability. On
e de�ned, they apply

to many di�erent situations. For example, most operators on sets are de�ned

generi
ally, so that the type of the elements does not matter. However, when

using su
h generi
 de�nition at a later stage in the spe
i�
ation, a
tual sets must

be provided to repla
e the type parameter. Repla
ing the generi
 parameter by

a
tual sets is
alled instantiation. Sometimes the a
tual sets
an be inferred from

the
ontext, in some
ir
umstan
es they must be provided expli
itly. In any
ase,

the value for the generi
 parameter must be
lear.

2.3.4 S
hema In
lusion

A s
hema
an be in
luded in another s
hema to form a
omposed s
hema. This

approa
h supports stru
turing of spe
i�
ations. For example, we de�ne a s
hema

with extra restri
tions, like

2.3. S
hemas in Z 20

Restri
tedLibrary

Library

8 u : users � #(borrowed(u)) � 7

by in
luding the s
hema Library and imposing the
ondition that no user
an

have more than 7 books on loan. Su
h a s
hema is equivalent to one obtained by

expanding all de
larations and
onjoining all predi
ates, e.g.

Restri
tedLibrary

users : PNAME

borrowed : NAME 7! PBOOK

users � dom borrowed

8 u : users � #(borrowed(u)) � 7

Similarly, we
an
reate a new s
hema by s
hema in
lusion and additionally pro-

viding new
omponents and
onstraints on them. The entire s
hema then
onsists

of the expansion of the in
luded s
hema together with the new
omponents and

the
onjun
tion of all the predi
ates.

2.3.5 De
orations and Conventions

In this subse
tion we re
ord some of the
onventions of notation that are often

used when writing Z spe
i�
ations. These
onventions in
lude the identi�
ation of

before and after states, operations on those states and input and output variables.

The
onventions are permitted but not enfor
ed by the Z standard, though they

are do
umented in it, too.

Primed Variables. Ea
h operation in Z is des
ribed as a relation between

states, namely the before and after state of the operation. It is therefore ne
essary

to distinguish between the values of state variables before the operation and their

values afterwards. The
onvention in Z is to use unprimed variables, like x , to

denote values before the operation and to de
orate variables with a dash, like x

0

,

to denote values after the operation. Note, however, that the s
hema predi
ate

an also refer to any global
onstants.

Primed S
hemas. Variables have to be in s
ope of the operation. If the state

has been des
ribed in a s
hema S , then in
luding S in the de
laration part of the

operation s
hema brings the state variables into s
ope. The after-state variables

are similarly introdu
ed by in
luding S

0

. This is a s
hema obtained from S by

2.3. S
hemas in Z 21

de
orating every variable in the signature of S with a dash, and repla
ing every

o

urren
e of su
h a variable in the predi
ate part of S by its dashed
ounterpart.

Thus, operations
an be des
ribed in Z by a s
hema of the form

Op

S

S

0

: : :

Note, the variables from the signature of S are the only ones whi
h are primed.

Global
onstants, types et
. remain unprimed. If S
ontains a variable whi
h has

already been de
orated in some way, then an extra dash is added to the existing

de
oration.

Delta. The in
lusion of primed and unprimed
opies of the state s
hema is so

ommon that abbreviation for its use are introdu
ed. The abbreviation �S ==

[S ; S

0

℄ is used to denote the general in
lusion of primed and unprimed state

s
hema, thus the operation s
hema be
omes

Op

�S

: : :

For example,

AddUser

�Library

name? : NAME

name? 62 users

users

0

= users [fname?g

borrowed

0

= borrowed

This use of � is only a
onvention. O

asionally some authors like to in
lude

additional restri
tions in their �-s
hemas, for example that a parti
ular state

omponent never
hanges. For instan
e, if S
ontained a
omponent z , but

none of the operations ever
hanged z , then �S
ould be de�ned by �S ==

[S ; S

0

j z

0

= z ℄, thus making it unne
essary to in
lude z

0

= z in ea
h operation

des
ription. Note, however, that we will not use this feature here.

2.3. S
hemas in Z 22

Xi. When enquiry operations, like reading variables, are being des
ribed, it is

often ne
essary to spe
ify that no
hange of state should o

ur. With the
urrent

notation this has to be done expli
itly by stating for ea
h
omponent that its

after-state value is the same as its before-state value. This is in
onvenient and

an be avoided using the �-
onvention. Unless it has been expli
itly de�ned

to mean something else, referen
es to �S are treated as being equivalent to

[S ; S

0

j �S = �S

0

℄, where the meaning of � is explained below.

Inputs and outputs. Often, it is
onvenient to des
ribe relations between

inputs and outputs as well. The input values of an operation are provided by

`the environment', and the outputs are returned to the environment. Commonly

an additional suÆx is used to distinguish a variable intended as an input (?) or

an output (!), thus for example, name? denotes an input, and result ! denotes an

output.

2.3.6 Normalisation

Earlier, we introdu
ed the Z type system. We mentioned that a type
an be

onstru
ted from a given type by
onstraining it. Normalisation is the pro
ess of

making su
h
onstraints expli
it. S
hema normalisation will produ
e an equiva-

lent s
hema where all
omponents are de
lared to be members of their \maximal"

type, rather than of a set
ontained in those. Consider a s
hema S with
om-

ponents x

1

: X

1

; : : : ; x

n

: X

n

, su
h that the type of x

i

is T

i

. The normalisation

of S is obtained by repla
ing all de
larations of x

i

: X

i

by x

i

: T

i

and
onjoining

x

i

2 X

i

with the predi
ate of S .

For example, the normalisation of the s
hema S1 is given by the s
hema S2.

S1

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

S2

a; a

0

: Z

a 2 N ^ a

0

2 N

(a

0

)

2

� a < (a

0

+ 1)

2

S
hema normalisation plays an important role when
ombining s
hemas using

the s
hema
al
ulus.

2.3.7 S
hemas as Types

So far we have not made expli
it the meaning of a s
hema. Basi
ally, a s
hema

denotes a set whi
h is
ontained in some type. The elements of su
h a set are

alled bindings. The type of these bindings is the signature of the s
hema, whi
h,

viewed as a set, is the largest set of bindings
ontaining all elements of the s
hema.

2.4. The Z S
hema Cal
ulus 23

There is a spe
ial operator to
onstru
t bindings in a
ontext where all the
om-

ponent names are de
lared. This is the �-operator. For example,

�Library = hj users == users; borrowed == borrowed ji

The two o

urren
es of the names have rather di�erent meanings. The �rst is

lo
al to the binding, just the name of a s
hema
omponent. The se
ond must

refer to a value, namely the value of the variable of that name whi
h must be in

ontext. For example, when applying � to a de
orated s
hema, like

�Library

0

= hj users == users

0

; borrowed == borrowed

0

ji

it be
omes evident that the �rst name is lo
al and thus not subje
t to the de
o-

ration.

A
ommon use of the �-operator is to turn an operation into a relation between

states. If we have an operation Op on �State, then its relational interpretation

is given by the set
omprehension

fOp � (�State 7! �State

0

)g

This means that for ea
h possible binding of Op a pair
onsisting of the in
luded

bindings of the before state State and those for the after state State

0

is in
luded.

Thus, ea
h operation
an be easily interpreted as a relation of before and after

states. For example, given the operation su

 == [n; n

0

: N j n

0

= n + 1℄ then its

relational interpretation is the set of pairs f(hj n == 0 ji; hj n == 1 ji); (hj n ==

1 ji; hj n == 2 ji); (hj n == 2 ji; hj n == 3 ji); :::g.

2.4 The Z S
hema Cal
ulus

The main building blo
ks of a Z spe
i�
ation are s
hemas. They are used to

stru
ture the spe
i�
ation and the systems under
onsideration. Mu
h of the

power of the Z notation derives from the ability to
ombine s
hemas. We already

witnessed s
hema in
lusion as su
h a
onstru
t. The Z notation, however, pro-

vides more operators to
ombine s
hema, some of whi
h we present below. The

olle
tion and the use of these operators is
alled the s
hema
al
ulus.

Combining s
hemas is subje
t to one restri
tion, namely that their de
larations

are
ompatible. This in
ludes that the same names are used for the same meaning

and, mostly, that the s
hemas are normalised. Remember, a type de�nition

impli
itly
ontributes not only to the de
laration but also to the predi
ate of the

s
hema.

In this se
tion we
onsider the appli
ation of the s
hema operators to at most two

s
hemas. This is not a restri
tion as the operators
an be applied su

essively.

For illustrative purpose we use the s
hemas U == [De
l

U

j pred

U

℄ and V ==

[De
l

V

j pred

V

℄ with their de
laration and predi
ate part.

2.4. The Z S
hema Cal
ulus 24

2.4.1 Renaming

Renaming s
hema
omponents is another way to a
hieve the
ompatibility of

the s
hema de
larations. S
hema
omponents
an be renamed, provided that

the new name is not part of the de
laration of the s
hema. The renaming of a

omponent p by a q in a s
hema U is denoted U [q=p℄, thus every o

urren
e of

p will be repla
ed by q , ex
ept if p is bound inside the predi
ate of the s
hema.

For example, we have

Restri
tedLibrary [members=users℄

members : PNAME

borrowed : NAME 7! PBOOK

members � dom borrowed

8 u : members � #(borrowed(u)) � 7

2.4.2 S
hema Negation

For any s
hema U , the s
hema negation : U , is obtained by keeping the de
la-

ration of U and negating the predi
ate, i.e.

: U == [De
l

U

j : pred

U

℄

Note, s
hema negation requires normalisation. For example, the negation of

U 1 == [x : N j pred(x)℄ is [x : Z j x 62 N ^ : pred(x)℄ for some predi
ate pred

ontaining x .

S
hema negation on its own is not often used in pra
ti
e. However, it
an play

its part in simplifying s
hema expression when applying s
hema
onjun
tion and

s
hema disjun
tion. The s
hema
al
ulus, like predi
ate logi
, obeys the de Mor-

gan laws and thus some s
hema simpli�
ations
an be expressed using s
hema

negation.

2.4.3 S
hema Conjun
tion

S
hema
onjun
tion is
losely related to s
hema in
lusion. The s
hema resulting

from the
onjun
tion of the s
hemas U and V
ontains both U and V and

nothing else, thus

U ^ V == [U ; V ℄ == [De
l

U

; De
l

V

j pred

U

^ pred

V

℄

i.e. the predi
ates of U and V are
onjoined and the de
larations are merged

appropriately. S
hema
onjun
tion does not need normalisation due to the prop-

erties of
onjun
tion and normalisation.

2.4. The Z S
hema Cal
ulus 25

However, it is only well-de�ned when
omponents have
ompatible types. If the

same variable is de
lared in both s
hemas but belongs to di�erent sets, then

the interse
tion of those sets needs to be taken. For example, [x : N ℄ ^ [x :

f�1; 1g℄ == [x : N \ f�1; 1g℄ == [x : f1g℄. If the sets are not
ompatible,

like in [x : N ℄ and [x : NAME ℄, then the interse
tion is empty and thus s
hema

onjun
tion is unde�ned.

S
hema
onjun
tion allows one to spe
ify di�erent aspe
ts of a system separately.

It
an be usefully applied both on operation and on state s
hemas to
ombine

those aspe
ts to form a
omplete des
ription, thus it is used to
ombine require-

ments.

For example, the s
hema OkOp des
ribes that an operation has been su

essful

and it is de�ned by OkOp == [message! : Report j message! = Ok ℄. Then

expanding OkAddUser == AddUser ^ OkOp is the s
hema

OkAddUser

�Library

name? : NAME

message! : Report

name? 62 users

users

0

= users [fname?g

borrowed

0

= borrowed

message! = Ok

2.4.4 S
hema Disjun
tion

S
hema disjun
tion is rarely used on state s
hemas. It is often applied on op-

eration s
hemas to handle separate
ases, in parti
ular error handling and other

ex
eptions, thus to develop total operations, i.e. operations that have no
on-

straints upon their appli
ability. For example, given the operation OkAddUser

and the following s
hema

FailAddUser

�Library

name? : NAME

message! : Report

name? 2 users

message! = Failure

reporting a Failure if the given name? is already
ontained in the set users, then

ombining both via disjun
tion results in a total operation, i.e. TotalAddUser ==

OkAddUser _ FailAddUser .

2.4. The Z S
hema Cal
ulus 26

S
hema disjun
tion is
onstru
ted similarly to
onjun
tion, i.e.
ombine the de
-

larations and apply disjun
tion to the predi
ates, thus s
hema disjun
tion for two

s
hemas U and V is de�ned as

U _ V == [De
l

U

; De
l

V

j pred

U

_ pred

V

℄

provided both s
hemas U and V are normalised. This is ne
essary to ensure that

ommon
omponent names have not only
ompatible but identi
al types. This

requirement also follows meta-theoreti
ally be
ause we required normalisation

for s
hema negation and s
hema disjun
tion
an be expressed in terms of s
hema

onjun
tion and s
hema negation.

2.4.5 S
hema Impli
ation and Equivalen
e

S
hema impli
ation and equivalen
e have the usual meaning. They are de�ned

as

U) V == : U _ V

provided the s
hemas U and V are normalised and

U , V == U) V ^ V) U

Both operators are rarely used to
ombine s
hemas. However, they prove useful

to validate re�nement
onditions or other relations between operations. For ex-

ample, for two operations Op

1

and Op

2

on the same state whose only
omponent

is x : X , the predi
ate 8 x ; x

0

: X � Op

1

) Op

2

states that the e�e
t of Op

1

is

onsistent with Op

2

and 8 x ; x

0

: X � Op

1

, Op

2

states that the e�e
ts of both

operations are identi
al. Note, that we quantify over the s
hema
omponent,

whi
h is explained next.

2.4.6 S
hema Quanti�
ation

The s
hema quanti�
ation of a s
hema U results in a new s
hema V
ontaining a

subset of the
omponents of U in its de
laration, with a predi
ate that is obtained

from U by quantifying over the removed
omponents. Quanti�
ation is used to

express universal or existential properties of the given s
hema, like in re�nement

or in pre
ondition
al
ulation.

2.4. The Z S
hema Cal
ulus 27

Existential Quanti�
ation. Given a s
hema U == [x : X ; De
l

U

j pred

U

℄

where De
l

U

onsists of de
larations but for x : X , then the existential quanti�-

ation over x in U is

9 x : X � U == [De
l

U

j 9 x : X � pred

U

℄

Thus, 9 x : X � U is a s
hema on all
omponents of U ex
ept x . Examples of

the value and usage of existential quanti�
ation in Z are given below.

Universal Quanti�
ation. It is also possible to universally quantify over

s
hemas. This happens less frequently than existential quanti�
ation but proves

valuable when
onsidering re�nement. Given a s
hema U == [x : X ; De
l

U

j

pred

U

℄ where De
l

U

onsists of de
larations but for x : X , then the universal

quanti�
ation over x in U is

8 x : X � U == [De
l

U

j 8 x : X � pred

U

℄

Thus, 8 x : X � U is a s
hema on all
omponents of U but x .

2.4.7 S
hema Hiding, Proje
tion and Composition

The following three s
hema operators are de�ned using s
hema quanti�
ation and

possibly other s
hema operators. They are abbreviations to ease the
onstru
tion

of spe
i�
ations.

S
hema Hiding. Hiding of variables (x

1

: X

1

; : : : ; x

n

: X

n

) from a s
hema U ,

denoted U n(x

1

; : : : ; x

n

), is basi
ally identi
al to existential quanti�
ation as su
h

that U n(x

1

; : : : ; x

n

) stands for the existential quanti�
ation of the s
hema U over

the
omponents x

1

to x

n

, i.e.

U n (x

1

; : : : ; x

n

) = 9 x

1

: X

1

; : : : ; x

n

: X

n

� U

S
hema Proje
tion. S
hema proje
tion of a s
hema U on a s
hema V , de-

noted U � V ,
ombines the s
hemas using
onjun
tion but hides all
omponents

from U ex
ept those that are part of V . Formally,

U � V = (U ^ V) n (x

1

; : : : ; x

n

)

where (x

1

; : : : ; x

n

) are
omponents of U not shared by V .

2.4. The Z S
hema Cal
ulus 28

S
hema Composition. This operation des
ribes the e�e
t of one operation

followed by another, i.e. it is an operation that begins in the before state of

an operation Op

1

and ends in the after state of an operation Op

2

. It is only

meaningful when applied to operation s
hemas on the same state. The s
hema

omposition of two operations Op

1

and Op

2

is denoted Op

1

o

9

Op

2

.

For example,
onsider the spe
i�
ation of the
ursor movement in an editor bu�er

given by (Ja
kson, 1995). The operations
srRight and
srLeft both operate over

the state File whi
h represents the bu�er. Consider the operation
srRight is

appli
able, then applying
srLeft after
srRight should result in the same position

of the
ursor as before, i.e.
srRight

o

9

srLeft = �File. Thus,
omposition
an

also be used to validate the usefulness of some de�nitions in the spe
i�
ation.

Consider State

0

to be the state after the operation Op

1

was performed. This is

also the state immediately before operation Op

2

. Lets
all this intermediate state

State

00

. Then
omposition is de�ned as

Op

1

o

9

Op

2

= 9 State

00

�

(9 State

0

� [Op

1

; State

00

j �State

0

= �State

00

℄) ^

(9 State � [Op

2

; State

00

j �State = �State

00

℄)

whi
h is the
onjun
tion of both operations where the intermediate state is hid-

den. S
hema
omposition
an be
al
ulated using renaming and hiding, e.g.

Op

1

o

9

Op

2

= (Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄) n (x

00

)

for all state
omponents. Note, s
hema
omposition does not
onne
t inputs and

outputs of an operation, whi
h is
alled piping but not dis
ussed here.

2.4.8 Pre
ondition Cal
ulation

The pre
ondition of an operation
hara
terises all the states and inputs to whi
h

the operation
an be applied su
h that there is an after state and output whi
h

are related to the states and inputs by the operation. In some spe
i�
ation

languages, like VDM (Jones, 1990), pre
onditions and post
onditions are given

expli
itly. However, this does not apply to Z. In order to make a pre
ondition of

a given operation expli
it one needs to
al
ulate it.

The pre
ondition, preOp, of an operation Op == [�State; ins?; outs! j pred ℄ on

a state State with inputs ins? and outputs outs! is de�ned by

preOp = 9 State

0

; outs! � Op

Thus, preOp is another s
hema on State and ins?, indi
ating on whi
h before

states and inputs the operation is appli
able. The pre
ondition is, based on

2.5. Re�nement in Z 29

this de�nition, a rather abstra
t predi
ate. This predi
ate is usually simpli�ed

applying, for example, the one-point rule and other equivalen
es. An algorithm

for
al
ulating a pre
ondition is given by (Wood
o
k and Davies, 1996, pp. 206).

For example, the pre
ondition for the operation AddUser is preAddUser =

9Library

0

� AddUser , whi
h
an be simpli�ed to the s
hema [Library ; name? :

NAME j name? 62 users℄.

Dis
ussing the issue of the pre
ondition leads also to
onsider the notion of a

post
ondition. Note, Z does not use a single
hara
terisation of the post
ondition

of an operation. However, in order to apply the re�nement
al
ulus (King, 1990),

a notion of post
ondition was adapted. Given an operation s
hema Op ==

[�State j pred ℄ satisfying the
ondition pred) preOp, and a
ondition P , then

P is
onsidered to be a post
ondition of Op if preOp ^ P , pred . In parti
ular

this holds if P is equivalent to pred itself, however, other valid post
onditions

may exist. The notion postOp is used to refer to some possible post
ondition of

Op.

2.5 Re�nement in Z

So far we are able to write a formal spe
i�
ation in the Z notation. While

this is a valuable task in its own right we also want to be able to develop a

spe
i�
ation towards an implementation. The pro
ess of development from an

abstra
t spe
i�
ation towards a more
on
rete representation is
alled re�nement.

To (Wood
o
k and Davies, 1996), re�nement is all about improving spe
i�
ations.

It involves the removal of non-determinism, or un
ertainty. A re�nement is said to

be a

eptable provided it is impossible for an observer to noti
e the repla
ement.

2.5.1 Operation Re�nement

(Derri
k and Boiten, 2001) use the term simple re�nement to des
ribe the re-

�nement of operations where the state s
hema does not
hange. This notation is

ommonly
onsidered as operation re�nement. However, simple re�nement is a

more general
on
ept than operation re�nement.

Operations in Z are, basi
ally, binary relations over a state spa
e relating a be-

fore state and an after state. Operations
an be, if ne
essary, interpreted as

total relations. Figure 2.1 shows two graphi
al representations of the operation

Op = f(0; 0); (0; 1); (2; 2)g over the state f0; 1; 2g. The dotted lines represent the

appli
ation of the operation for before states that are outside the domain.

Basi
ally, there are two interpretations possible for applying an operation out-

side the domain. The �rst graph represents the
ontra
tual interpretation in Z,

whereas the se
ond one
onsiders the blo
king interpretation. Depending on the

2.5. Re�nement in Z 30

0 �

//

))S

S

S

S

S

S

S

S

S

S

S

S

S

S
� 0

1 �

55

//

))

""

� 1

2 �

//
� 2

?�

//

55

<<

AA

� ?

0 �

//

))S

S

S

S

S

S

S

S

S

S

S

S

S

S
� 0

1 �

""

� 1

2 �

//
� 2

?�

//
� ?

Figure 2.1: Relational Interpretations of the OperationOp = f(0; 0); (0; 1); (2; 2)g

over the state f0; 1; 2g

hosen interpretation, totalisation binds all states not in the domain to all others

and ?, a distinguished state representing non-termination, or it binds all states

not in the domain only to ?.

In the
ontra
tual interpretation the domain of the operation des
ribes the area

in whi
h the operation should be guaranteed to deliver a well-de�ned result as

des
ribed by the relation. This area is
ommonly referred to as the pre
ondition

of the operation. Outside the domain, however, the operation may be applied but

an return any value, in
luding an unde�ned one. In the blo
king interpretation

operations may not be applied outside their domain. Applying the operation

anyway leads to an unde�ned result. In this
ontext, the pre
ondition is often

alled the guard of the operation.

Consider a parti
ular before state s. A substitution of the operation AOp by

an operation COp would be unnoti
ed if either (1) s is in the domain of AOp,

then the after state for COp should be one of the possibilities in the range of

AOp. Furthermore, this means that s should also be in the domain of COp

otherwise ? would be allowed by COp but not by AOp; or (2) in the
ontra
tual

interpretation, if s is not in the domain of AOp, then any possible after state

for COp is a

eptable. This, in turn, means that s may, or may not, be in the

domain of COp.

This intuition is formalised in the following way. An operation COp is an oper-

ation re�nement of an operation AOp over the same state spa
e State and with

the same inputs x? : X and the same outputs y ! : Y , if and only if

Appli
ability

8 State; x? : X � preAOp ` preCOp

Corre
tness

8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ` AOp

2.5. Re�nement in Z 31

Note, we use the turnstile notation as it is more general than impli
ation. We

will �nd in subsequent
hapters that
onsequen
e and impli
ation are not always

inter
hangeable as in standard predi
ate logi
. The
orre
tness rule above ap-

plies within the standard,
ontra
tual, interpretation of a Z operation. In the

alternative, blo
king interpretation, the
orre
tness rule be
omes

8 State; State

0

; x? : X ; y ! : Y � COp ` AOp

There are a few spe
ial
ases worth
onsidering. First, an operation does not

ne
essarily have to have inputs and outputs. The appli
ability and
orre
tness

onditions simplify a

ordingly. Furthermore, if the pre
ondition of the
on
rete

and abstra
t operation are the same, i.e. preAOp = preCOp then COp is an

operation re�nement of AOp if and only if

8 State; State

0

� COp ` AOp

i.e. the
orre
tness
ondition was simpli�ed using Op = preOp ^ Op. Note, this

holds in both the blo
king and the
ontra
tual interpretation.

S
hema
onjun
tion is one way of obtaining operation re�nements. This au-

tomati
ally guarantees
orre
tness and only appli
ability needs to be
he
ked.

Thus, the operation AOp ^ X , for operations X and AOp both over �State, is

an operation re�nement of AOp if and only if

8 State � preAOp ` pre(AOp ^ X)

For example, in Subse
tion 2.4.3 we formed the s
hema OkAddUser by a
on-

jun
tion of the s
hemas AddUser and OkOp and, indeed, we
an verify that

OkAddUser is an operation re�nement of AddUser using the Z/EVES proof tool.

=> try \forall Library � \pre AddUser \implies \pre OkAddUser;

=> prove by redu
e;

Proving gives ...

true

In the
ontra
tual interpretation, operation re�nement allows pre
onditions to

be weakened and non-determinism to be redu
ed. The appli
ability
ondition

requires that the
on
rete operation is de�ned everywhere the abstra
t operation

was de�ned. It allows, however, that the
on
rete operation is de�ned where

the abstra
t operation was not. The
orre
tness
ondition requires the
on
rete

operation to map into the range of the abstra
t operation everywhere the abstra
t

operation is de�ned. It does not require, however, to
over the whole range of

2.5. Re�nement in Z 32

the abstra
t operation, i.e. it is not ne
essary for the
on
rete operation to be

identi
al to the abstra
t operation.

For example, the operation TotalAddUser is an operation re�nement of the oper-

ation AddUser . The operation TotalAddUser is appli
able everywhere AddUser

was de�ned. Additionally, it is also de�ned in
ase the user name? is already a

member of the library.

=> try \pre AddUser \shows \pre TotalAddUser;

=> prove by redu
e;

Proving gives ...

true

Furthermore, the operationTotalAddUser performs every task that AddUser does

but more. We already showed that OkAddUser is an operation re�nement of

AddUser . Be
ause the pre
onditions of FailAddUser and OkAddUser are disjoint

orre
tness follows immediately.

=> try \pre AddUser \land TotalAddUser \implies AddUser;

=> prove by redu
e;

Proving gives ...

true

Besides operation re�nement (Derri
k and Boiten, 2001)
onsider two more
ases

of simple re�nements. These are
on
erned with establishing and imposing in-

variants. Sin
e we are not using su
h re�nements in our work we will not dis
uss

them here.

2.5.2 Data Re�nement

In data re�nement we are
on
erned about a more
on
rete representation of the

state. Data re�nement, however, is not mu
h
onsidered in this work. Neverthe-

less, we refer to it and thus we present brie
y what data re�nement is about. For

a thorough introdu
tion to data re�nement we re
ommend (Derri
k and Boiten,

2001). Note, for illustrative purpose we
onsider here only operations with no

inputs or outputs.

Simple, operation, re�nement was restri
ted to operations over the same state.

However, to move
loser to an implementation the de�nition of the state needs to

be re�ned too. For example, in an abstra
t spe
i�
ation we use sets frequently,

2.5. Re�nement in Z 33

however, a more
on
rete representation
ontains lists or arrays instead. Note,

hanging the data representation will also a�e
t the operations over them.

The standard de�nition of data re�nement for Z s
hemas whose operations are

total relations is now
ommonly given by using simulations. A simulation is also

known as a retrieve relation or abstra
tion relation. Basi
ally, there are two forms

of simulation,
alled upward and downward simulation.

AState

R

��

AOp //
AState

0

R

0

��
CState

COp

//
CState

0

AState

AOp //
AState

0

CState

R

OO

COp

//
CState

0

R

0

OO

Figure 2.2: Re�nement Using Downward and Upward Simulation

Figure 2.2 shows two
ommutative diagrams representing downward and upward

simulation. The abstra
tion R is a relation, the arrows labelling R and R

0

just

indi
ate the dire
tion to follow around the diagram.

The �rst diagram des
ribes that the appli
ation of the relation R followed by the

operation COp
an be mat
hed by the operation AOp followed by a mapping R

0

.

In the se
ond graph the simulation is reversed, i.e. the e�e
t of COp followed by

R

0

an be mat
hed by R followed by AOp. In either
ase, valid appli
ations of the

on
rete operation
an be simulated by appli
ations of the abstra
t operation.

For Z s
hemas AOp and COp without input or output, the relationR on AState ^

CState is a downward simulation from AOp to COp if

Initialisation

8CState

0

� CInit ` 9AState

0

� AInit ^ R

Appli
ability

8AState; CState; � preAOp ^ R ` preCOp

Corre
tness

8AState; CState; CState

0

�

preAOp ^ R ^ COp ` 9AState

0

� R

0

^ AOp

2.6. Tool Support for Z 34

Note, these rules assume the standard,
ontra
tual, interpretation of Z operations.

In the blo
king interpretation, the
orre
tness rule be
omes

8AState; CState; CState

0

� R ^ COp ` 9AState

0

� R

0

^ AOp

This formalisation of downward simulation extends the notion of operation re-

�nement by
onsidering initialisation and also
hanges in the state spa
e. The

intuition behind appli
ability and
orre
tness remain the same apart from
on-

sidering the
hange of state spa
e, whi
h is des
ribed by the retrieve relation

R.

Downward simulation is the most
ommon way of
he
king data re�nement. How-

ever, it has been found that there are valid re�nements that
annot be veri�ed

using downward simulation but using upward simulation. Upward as well as

downward simulation are sound, i.e. if an upward or downward simulation exists

between
onformal operations AOp and COp then COp is a data re�nement of

AOp. However, upward and downward simulation are only jointly
omplete, i.e.

re�nements are possible whi
h require both kinds of simulations for their proof.

Note, we do not
onsider data re�nement any further in this work. However, we

are interested in applying our work to data re�nement in the future.

2.6 Tool Support for Z

There are a number of tools available to support the Z notation. These tools o�er

various degrees of assistan
e in type setting Z spe
i�
ations and pretty printing,

syntax and type
he
king, theorem proving and spe
i�
ation animation. The

following list of tools is a small sample and
ertainly not
omplete. We refer to

the Z home page for more details.

oz.sty is a L

A

T

E

X ma
ro for Obje
t-Z from the SVRC (Software Veri�
ation

Resear
h Centre) at the University of Queensland. We used this style to type-set

the Z notation in this thesis.

FuZZ is a printing and type-
he
king system for Z spe
i�
ations. Using FuZZ

together with L

A

T

E

X you
an input Z spe
i�
ations as ASCII �le, pro
ess them for

laser printing,
he
k spe
i�
ations for their
onforman
e to the Z language rules

and produ
e a listing of s
hemas with
omponents and their types. The FuZZ

distribution
ontains a spe
ial L

A

T

E

X font of Z symbols and a library
ontaining

the standard mathemati
al tool-kit. FuZZ is fully
ompatible with the referen
e

manual by (Spivey, 1992). Using FuZZ requires a li
en
e.

ZTC { the Z Type Che
ker {
an determine if there are synta
ti
al and typing

errors in Z spe
i�
ations. It is intended to be
ompliant to (Spivey, 1992). ZTC

a

epts as input spe
i�
ations written in L

A

T

E

X using the oz or zed pa
kages, or

2.6. Tool Support for Z 35

its own ZSL notation whi
h is an ASCII version of the Z syntax by the author of

ZTC. It is available free of
harge for edu
ational and non-pro�t uses.

Formaliser is a syntax-dire
ted Z editor and intera
tive type
he
ker. It provides

the fa
ilities to intera
tively query attributes and to view all identi�ers with

their types. Formaliser is a what-you-see-is-what-you-get type of editor showing

all Z symbols as they appear printed. Do
uments
an be exported to L

A

T

E

X or

its true-type Z font
an be used to
reate MS-Word do
uments. Formaliser is

a
ommer
ial tool, developed at Logi
a (UK), whi
h runs under the Windows

operating system.

ProofPower is a spe
i�
ation and proof tool based on an implementation of

Higher Order Logi
 (HOL). It provides support for spe
i�
ation and proof in Z

using a semanti
 embedding of Z in HOL. The distribution provides an interfa
e

of ProofPower to T

E

X and L

A

T

E

X, an X Windows front-end, the HOL as well as Z

spe
i�
ation and proof development system and, �nally, the DAZ tool supporting

re�nement from Z to the SPARK subset of Ada. ProofPower is available free

for a
ademi
 and personal, non-
ommer
ial use from Lemma One (http://www.

lemma-one.
om/ProofPower/).

CADiZ is a set of integrated tools for preparing, type
he
king and analysing Z

spe
i�
ations, whi
h is available free of
harge from the University of York (UK).

It gives dire
t support for the (ISO/IEC 13568, 2002) Standard Z notation and

evolves a

ordingly. A Z spe
i�
ation is prepared using L

A

T

E

X or tro� mark-up

and imported into CADiZ. The CADiZ toolset then provides syntax, s
ope and

type
he
king, type-setting and spe
i�
ation browsing. It allows to prove
onje
-

tures intera
tively. It provides di�erent de
ision pro
edures, like model
he
king

and resolution. Furthermore, the expansion of s
hemas and an elementary re-

�nement editor are supported. CADiZ re
eived a BCS Award for outstanding

te
hnologi
al a
hievement in the
omputing �eld.

Z/EVES supports the analysis of Z spe
i�
ations by providing syntax and type

he
king, s
hema expansion, pre
ondition
al
ulation, domain
he
king and gen-

eral theorem proving. It supports almost the entire Z notation and in
ludes the

mathemati
al toolkit as given by (Spivey, 1992). The Z/EVES theorem prover

provides powerful automated reasoning as well as intera
tive proof development.

Users with little experien
e in theorem proving
an use the tool, too. Syntax

and type
he
king, s
hema expansion and pre
ondition
al
ulation require little

intera
tion.

In the
urrent version (2.1) Z/EVES also in
ludes a graphi
al user interfa
e that

allows Z spe
i�
ations to be entered, edited, and analysed in their typeset form.

It supports the in
remental analysis of spe
i�
ations and it manages the syn-

hronisation of the analysis with modi�
ations to the spe
i�
ation. Z/EVES
an

be obtain from ORA Canada (http://www.ora.on.
a/z-eves/) free of
harge

2.7. Formal Methods and Notations related to Z 36

for edu
ational use. It runs under the Linux, Windows and Solaris operating

systems.

Z/EVES, as de
ribed by (Saaltink, 1997), is the tool we used to analyse the spe
-

i�
ations given in this thesis. We used the tool to type-
he
k all spe
i�
ations as

well as to
al
ulate pre
onditions, to
he
k properties and to validate re�nement

onditions.

Re
ently a new Community Z Tools Initiative (CZT) has been proposed to join

the e�ort of developing a
oherent and extensive set of Z tools and as su
h to

support further appli
ation of Z in industry.

2.7 Formal Methods and Notations related to Z

Z has some relatives in the world of formal methods and formal notations. As

su
h, we assume that some of the work presented in this thesis may also apply

to the notations presented below. The
hosen relatives are
losely related to Z.

The development of Z has bene�ted from and
ontributed to the development of

these notations. For example, Jean-Raymond Abrial developed Z while being in

Oxford together with Cli� Jones, who was largely involved in the development of

the Vienna Development Method (VDM). Later, Abrial developed the B-Method,

most
ertainly building upon his experien
es gained earlier.

2.7.1 The B-Method

The B-Method has been developed by Jean-Raymond Abrial, also the originator

of the Z notation, and others. The B-Method is des
ribed in The B-Book by

(Abrial, 1996). It is a method be
ause it is aimed at the development of program

ode from a spe
i�
ation whi
h is given in B's own Abstra
t Ma
hine Notation.

The B-Method in
ludes extensive tool support, notably the B-Toolkit by B-Core

Ltd and Atelier B. The B-Method has been applied in many signi�
ant industrial

proje
ts.

The basi
 building blo
k of a B spe
i�
ation is an abstra
t ma
hine. The B-

Method supports the development of large spe
i�
ations from small ones by pro-

viding a number of stru
turing me
hanisms. B and Z are both based on the same

underlying logi
 and set theory. The B
al
ulus, however, is based on Dijkstra's

guarded
ommand language. In B, pre
onditions are stated expli
itly and so is

non-determinism. The post
ondition in B looks like an assignment in program-

ming languages but its semanti
s is based on substitution on the state, like in

VDM and Z. B provides also a guard
onstru
t, thus fa
ilitating both guarded

and pre
ondition interpretation. Note, too, that the B-Method in
orporates a

parti
ular notion of re�nement within its language de�nition.

2.7. Formal Methods and Notations related to Z 37

(S
hneider, 2001) provides a textbook introdu
tion to the B-Method. He
overs

the B approa
h to software development from spe
i�
ation through re�nement,

to implementation and
ode generation,
onsidering veri�
ation at ea
h step.

In
omparison to (Abrial, 1996), he also
overs tool support, in parti
ular the

B-Toolkit.

2.7.2 The Vienna Development Method

The Vienna Development Method is a set of te
hniques for modelling
omputing

systems, analysing those models and progressing to detailed design and
oding.

It originated at the IBM Vienna Laboratory in the mid-1970s. The notation

and tools have been
ontinuously developed sin
e and are applied on a wide

range of systems. VDM is a method be
ause it emphasises the development of

program
ode and provides the ne
essary me
hanisms. (Jones, 1990) provided

one of the standard referen
es, introdu
ing the reader to the systemati
 software

development using VDM and (Jones and Shaw, 1990) present a
olle
tion of
ase

studies in VDM.

VDM is based on a three-valued logi
, whi
h allows treatment of unde�nedness

of partial fun
tions not expli
itly
ared for in Z or B. Furthermore, in VDM,

pre
onditions and post
onditions are given expli
itly, whi
h does not apply to Z.

The advantage is an additional
onsisten
y
he
k whether the real pre
ondition

of the operation
orresponds to the stated one. Invariants in VDM, however, are

assumed to be an impli
it part of every pre- and post
ondition.

B, VDM and Z were
ompared in the literature by (Bi
arregui and Rit
hie,

1995), providing a
omparison of the VDM and B notations, (Hayes et al.,

1993), emphasising on understanding the di�eren
es between VDM and Z, and

http://www.b-
ore.
om/ZVdmB.html
omparing all three notations. There

are also a VDM+B proje
t at Imperial College and a Z+VDM proje
t at

SVRC aimed at
ombining these notations. More information on VDM, like

tools, bibliography and appli
ation database
an be found on its home page:

http://www.
sr.n
l.a
.uk/vdm/.

2.7.3 Obje
t-Z

Obje
t-Z is an extension of the formal spe
i�
ation language Z, retaining existing

syntax and semanti
s, to a

ommodate obje
t orientation. The main reason for

this extension is to improve the
larity of large spe
i�
ations through enhan
ed

stru
turing. It also fa
ilitates modular veri�
ation and re�nement.

A Z spe
i�
ation, as presented above, de�nes a number of state and operation

s
hemas. A state s
hema introdu
es the variables and de�nes the relationship

2.8. Summary 38

between their values. An operation s
hema de�nes the relationship between the

before and after states
orresponding to one or more state s
hemas. One of

the disadvantages of Z is that one is required to examine the signature of all

operations to inferring those operation s
hemas that may a�e
t a parti
ular state

s
hema. In large spe
i�
ations this is rather impra
ti
able.

Obje
t-Z over
omes this problem by introdu
ing a new
lass stru
ture whi
h

en
apsulates a single state s
hema with all the operations whi
h may a�e
t that

state. Ea
h
lass
an be examined and understood in isolation. An Obje
t-Z

spe
i�
ation of a system
omprises a number of
lass de�nitions possibly related

by inheritan
e, a me
hanism for
lass adaptation by modi�
ation or extension,

and instantiation.

Di�eren
es of Z and Obje
t-Z in
lude that the s
ope of global type and
onstant

de�nitions in Obje
t-Z is limited to the
lass in whi
h they are de�ned. Fur-

thermore, an operation s
hema extends the notion of a s
hema in Z by adding

to it a �-list. The �-list holds the primary variables whi
h the operation may

hange when it is applied to an obje
t of the
lass. All other primary variables

remain un
hanged. This results also in a di�erent treatment of the pre
ondition

of operations. In Z, being outside the pre
ondition leads to divergen
e, i.e. the

operation
an perform anything. In Obje
t-Z, however, operations are blo
ked

outside the pre
ondition and thus
annot
hange the environment, unless they

have been expli
itly de
lared in a so
alled Delta-list. Note, too, that Obje
t-Z

has an operational semanti
s, unlike Z.

For an introdu
tion to Obje
t-Z the work by (Duke et al., 1994) is re
ommended.

(Stepney et al., 1992) provide a
olle
tion of papers des
ribing various approa
hes

of obje
t orientation in Z, in
luding Obje
t-Z. (Smith, 2000) published a referen
e

manual in the style of (Spivey, 1992).

2.8 Summary

Z is a formal spe
i�
ation notation useful for des
ribing
omputing systems. Z

is a model-based notation. A system is modeled by representing its state, i.e.

its
omponents and
onstraints upon them, and operations that
an
hange the

state, thus modelling the behaviour of a system. Note, Z is not intended to spe
ify

non-fun
tional requirements, like usability, performan
e, program
ode size and

reliability. It is also not intended for the des
ription of timed or
on
urrent

behaviour.

In this
hapter we introdu
ed some basi
s of the Z spe
i�
ation notation. We

overed the logi
 of Z and the underlying set theory. We went on to introdu
e

the
on
ept of types and their usage in Z. Furthermore, we presented the main

features of Z, its s
hemas notation and the s
hema
al
ulus, used to modify

2.8. Summary 39

and
ombine s
hemas. Next, we gave some insight into re�nement in Z, the

development of a more
on
rete spe
i�
ation from an abstra
t one. Finally, we

introdu
ed some Z tools and other spe
i�
ation notations related to Z.

Details related to the Z notation in
luding information on publi
ations, the Z

standardisation pro
ess, Z
ourses, tool support, and other material
an be found

on the Z home page: http://www.
omlab.ox.a
.uk/ar
hive/z.html.

Chapter 3

In
onsisten
y and

Underde�nedness in Z

We are fa
ed on an almost daily basis with in
onsistent and in
omplete knowl-

edge. We have learnt to live with it and to manage it. This does not imply that

we a

ept the status quo and stagnate. Both kinds of de�
ien
ies provide a tool

for development and guide resear
h. Most importantly, however, we are able to

tolerate both problems until they
an be solved. Meanwhile we make use of them

to derive as mu
h possible and useful information as we
an.

The Z notation is a spe
i�
ation language based on
lassi
al logi
. Classi
al logi
,

however, is not well-designed to handle in
onsistent and in
omplete knowledge.

In
onsisten
y, for example, leads to the problem of triviality, i.e. that everything

an be inferred from a single in
onsisten
y. Z spe
i�
ations
an also be trivialised

by in
onsisten
ies. So far, resear
h on handling in
onsisten
y in Z fo
used mainly

on dete
ting and eradi
ating them.

Software development, however, requires a more lightweight approa
h to in
on-

sisten
ies. On the one hand, they frequently appear in large proje
ts and
on-

stant fo
us on dete
ting and eradi
ating in
onsisten
ies is expensive. On the

other hand, removing one in
onsisten
y might introdu
e another one and thus,

it is
laimed,
omplete
onsistent spe
i�
ations might not be rea
hed in pra
ti
e.

Consequently, in
onsisten
ies need to be managed as we do it on a regular basis

too. Thus, Z needs to be extended to fa
ilitate su
h in
onsisten
y management.

In Z operations are, in general, partial relations. In the traditional interpretation,

an operation applied outside its domain
an result in any behaviour, thus for any

omponent in the s
ope of the operation a de�nite value
annot be known. Al-

ternatively, in the guarded interpretation, no
hange of the
omponents o

ur. It

has been observed that a
ombination of both interpretations is sometimes
on-

venient to allow both modelling of refusals and under-spe
i�
ation. We propose

an extension to Z to in
orporate both interpretations.

40

3.1. Introdu
tion 41

3.1 Introdu
tion

In
onsisten
ies are a matter of every day life. We are
onstantly
hallenged by

ontradi
ting information. Sometimes we are able to resolve the in
onsisten
y

right away; sometimes, however, we have to live with in
onsisten
ies. In su
h

a
ase we tend not to derive any useless results from it. Often it is quite the

ontrary and in
onsisten
ies lead to new dis
overies. This pro
ess suggests that

the logi
 we use to reason in everyday life is able to deal with in
onsisten
ies in

a useful manner.

(Valentine, 1998), however, states:

Consisten
y is essential for a Z spe
i�
ation to have any useful mean-

ing.

Thus, in
onsistent Z spe
i�
ations are meaningless or useless. This is, however,

ontrary to pra
ti
al situations be
ause, as (Ghezzi and Nuseibeh, 1998) found,

In
onsisten
ies are inevitable in large proje
ts. [...℄ A
ompletely

onsistent state may never be rea
hed in pra
ti
e

This leads to the
on
lusion that Z should not be used to spe
ify large proje
ts in

pra
ti
e be
ause they would potentially be in
onsistent and thus the spe
i�
ation

is meaningless. The problem is, that the Z notation
annot deal appropriately

with in
onsistent situations.

This impra
ti
ality is
ertainly not desired by the Z
ommunity. Resear
h on

in
onsistent spe
i�
ations has been an issue for some time. However,
ommon

to all approa
hes is to prevent or eradi
ate in
onsisten
ies. For example, the Z

type system is well designed to prevent many in
onsisten
ies and type
he
kers

omplement this task. Furthermore, the work by (Valentine, 1998) is aimed at

providing guidelines to the development of
onsistent spe
i�
ations.

Another resear
h dire
tion is to divide in
onsistent spe
i�
ations into viewpoints

where ea
h viewpoint should be internally
onsistent. We think, however, that the

problem of
onsisten
y does not disappear with this approa
h. On the one hand,

a viewpoint
ould in
lude an unresolvable in
onsisten
y and thus approa
hes

to �nd and manage this in
onsisten
y are required. One
an argue that the

viewpoint is further divided thus forming a hierar
hy of viewpoints. However, at

the end of the development pro
ess viewpoints need to be
ombined and thus the

problem of in
onsisten
y reappears.

3.2. In
onsisten
y in Z Spe
i�
ations 42

3.1.1 Motivation

The aim of our work is to supplement
urrent resear
h on in
onsisten
ies in Z

spe
i�
ations. We are interested in a me
hanism that
an tolerate in
onsisten
ies

but still derive useful information. Certainly, an in
onsistent spe
i�
ation is never

fully
orre
t but sometimes it is the best we
an get.

In this
hapter we provide some ba
kground on the notion of in
onsisten
y in Z

spe
i�
ations and the impa
t in
onsisten
ies
an have on the pro
ess of reason-

ing about Z spe
i�
ations. We argue that the e�e
t of in
onsisten
ies in Z is not

ompliant with the per
eived e�e
t of in
onsisten
ies in s
ien
e or in software de-

velopment pra
ti
e. We illustrate with some examples what kind of reasoning we

intent to fa
ilitate. The aim of our envisioned reasoning system are more useful

and reliable inferen
es in the presen
e of in
onsisten
y. Additionally, we
onsider

the re�nement pro
ess of in
onsistent operation whi
h is
urrently rather arbi-

trary be
ause information present in the spe
i�
ation are not used appropriately.

Consequently, we propose to investigate the use of para
onsistent logi
s for Z.

Contradi
ting information often needs to be tolerated due to some la
k of knowl-

edge. Thus, in
onsisten
y and underde�nedness are
losely related topi
s. Un-

derde�nedness o

urs in Z spe
i�
ations in form of partial operations. There are

two opposing interpretations of applying an operation outside its domain. We

introdu
e the two interpretations and we demonstrate that one interpretation

alone is not always suÆ
ient to model, in parti
ular, rea
tive behaviour. Thus,

we propose a
ombination of both.

3.1.2 Outline

This
hapter is stru
tured as follows. In Se
tion 3.2 we present some sorts of

in
onsisten
ies in Z and how they
an arise. Next, in Se
tion 3.3, we dis
uss

that in
onsisten
ies
an be a tool to guide development and we look at desired

inferen
es despite in
onsisten
ies in Z spe
i�
ation. Underde�nedness
an be

onsidered to be
losely related to in
onsisten
y. In Se
tion 3.4 we introdu
e

the
on
ept of underde�nedness in Z spe
i�
ations and propose a way to handle

them. Finally, we provide a short summary in Se
tion 3.5.

3.2 In
onsisten
y in Z Spe
i�
ations

A spe
i�
ation is supposed to be a model of some possible system. A spe
i�
ation

is in
onsistent if it has no models. The notion of in
onsisten
y is
entral to this

thesis. Therefore, we dis
uss in this se
tion the meaning of in
onsisten
y in Z

spe
i�
ations. (Boiten et al., 1999) refer to the
onsisten
y of a single spe
i�
ation

3.2. In
onsisten
y in Z Spe
i�
ations 43

as unary
onsisten
y. We also
onsider brie
y the problem between spe
i�
ations,

as it o

urs in the area of viewpoint spe
i�
ations.

3.2.1 Global In
onsisten
y

(Saaltink, 1997) distinguishes basi
ally two di�erent types of in
onsisten
y in Z

spe
i�
ations,
alled global and lo
al in
onsisten
y. Global in
onsisten
y is more

serious be
ause it makes an entire spe
i�
ation unsatis�able. This o

urs if some

axiomati
 s
hema, generi
 s
hema, or predi
ate is too strong.

In
onsistent Axiomati
 De�nitions

Axiomati
 de�nitions are
ommonly used in Z. They provide de�nitions that

range over the entire spe
i�
ation. Thus, if they are in
onsistent they e�e
t

the whole spe
i�
ation. For example, any spe
i�
ation
ontaining the axiomati

s
hema

n : Z

n 6= n

annot be satis�ed be
ause there is no possible value for n. In
onsisten
ies are

not always as obvious as above. For example, there is no fun
tion f satisfying

the following des
ription:

f : N ! N

8 x ; x

0

: N � (x < x

0

) f (x) > f (x

0

))

Although the strong type system of Z prevents quite a few errors, it is still possible

to write some kind of
ontradi
tion, like postulating that an empty set has an

element

x : ?[N ℄

or using the fa
t that a fun
tion is a set of pairs, for example

f : N ! N

f = f(1; 2); (1; 3)g

In all these
ases, it is possible to
he
k whether su
h an axiomati
 de�nition is

meaningful. As (Saaltink, 1997) shows, to
he
k an axiomati
 de�nition

3.2. In
onsisten
y in Z Spe
i�
ations 44

De
l

pred

for
onsisten
y it
an be pre
eded with the
onje
ture 9De
l � pred . For example,

proving 9 f : N ! N � f = f(1; 2); (1; 3)g results in false and thus this axiomati

de�nition is not meaningful.

All the given examples of axiomati
 de�nitions are in
onsistent in themselves,

thus it is possible to apply the aforementioned
onje
ture. However, it is not

always as simple. It is possible to
onstru
t a number of axioms, ea
h
onsis-

tent but together they are in
onsistent. (Valentine, 1998) provides the following

example of two axiomati
 de�nitions and an enumerated type.

x : N

x = 2 + 2

y : N

y = x

y = 5

Person ::= SamValentine j thePope

Then it is possible to show, using
lassi
al logi
, that ` SamValentine = thePope

holds be
ause of the in
onsisten
y between the two axiomati
 de�nitions. Basi-

ally, the proof pro
eeds over the
ardinality of the set fSamValentine; thePopeg,

whi
h is 2. However, due to the in
onsisten
y it is possible to show that 2 = 1,

thus the
ardinality of the set is one, whi
h means the elements must be the

same.

In
onsistent Free Types

(Spivey, 1992, p. 84) points out that free types
an be in
onsistent, too, be
ause

of
ardinality problems. For example, the data type de�nition

T ::= atomhhNii j funhhT ! T ii

is in
onsistent. Basi
ally, no su
h set T
an exist be
ause there are many more

fun
tions from T to T than there are members of T . An even simpler example

is given by the de�nition

BigSet ::= makeSethhPBigSetii

whi
h has no model be
ause it spe
i�es that BigSet is isomorphi
 to its power

set. This is impossible, as the power set of a set always has more elements than

the set itself. Although we introdu
ed the problem of in
onsisten
ies through free

3.2. In
onsisten
y in Z Spe
i�
ations 45

types in Z, we will not
onsider it any further. (Arthan, 1992), (Smith, 1992), and

(Spivey, 1992, p. 84) des
ribe restri
tions on free type de�nitions that guarantee

onsisten
y.

In the standard theory of Z, no theorem that has been proved in a globally

in
onsistent spe
i�
ation
an be trusted be
ause its proof is potentially based on

impossible assumptions. Our general aim, however, is to investigate possibilities

to redu
e the impa
t of in
onsisten
ies su
h that there will be proofs of theorems

that
an be trusted.

3.2.2 Lo
al In
onsisten
y

Set de
larations, abbreviations and s
hema de�nitions do not introdu
e global

in
onsisten
y. However, s
hema de�nitions
an be lo
ally in
onsistent, i.e. they

ontain an unsatis�able predi
ate. This kind of error is lo
al in the sense that

the spe
i�
ation of other
omponents of the system may still be meaningful.

In
onsistent Operation S
hema

A s
hema
an have an in
onsistent, i.e. unsatis�able, predi
ate. If su
h a s
hema

is an operation s
hema, then the operation may not guarantee any out
ome

or only parts of the operation
an be determined. For example,
onsider the

following in
onsistent operation

Op

i

x?; y ! : N

x? = 1) y ! = 2

x? = 1) y ! = 3

The above s
hema in
ludes the
ontradi
tion that y !
annot be 2 and 3 at the

same time. The pre
ondition for this operation is [x? 2 N j x? 6= 1℄, i.e. it

should not be applied when x? = 1. Thus, the operation is not \
ompletely"

in
onsistent.

In
onsistent State S
hema

If a s
hema des
ribing the state of a system is in
onsistent then it is impossible

to build that parti
ular system. For example, in the state s
hema

S1

i

x : N

3 � x � 2

3.2. In
onsisten
y in Z Spe
i�
ations 46

the state
onstraints
annot be satis�ed. This error
an be shown easily be
ause

9 x : N � S1

i

fails as there is no x that
an satisfy the state s
hema. However,

state in
onsisten
ies are not always as simple. For example, the state s
hema

S2

i

x ; y : Z

x mod 2 = 0) y < x

x mod 2 6= 0) y = x + 1 ^ y mod 2 6= 0

is meant to ensure that two numbers are always in a parti
ular relation to ea
h

other. However, S2

i

is partially over-
onstrained. It is possible to �nd even

numbers x su
h that S2

i

is satis�ed but no odd numbers. Thus, it is possible to

build a system based on S2

i

but, possibly, not the intended one.

The Initialisation Theorem

The initialisation theorem plays an important role in
he
king spe
i�
ations for

onsisten
y. (Saaltink, 1997), for example, states: \many spe
i�
ations give an

initialization s
hema of the form Init S b= [S j P ℄, where the predi
ate P further

onstrains the state. In su
h a
ase, showing 9 S

0

� Init S not only shows that S

is satis�able, it also shows that initial states are possible."

Unfortunately, the initialisation theorem does not prevent spe
i�
ation of par-

tially in
onsistent state des
riptions, like in S2

i

. For example,

Init S2

i

b= [S2

i

0

j x

0

= 2 ^ y

0

= 1℄

is a valid initialisation whi
h
an be proved using the above
onje
ture.

3.2.3 In
onsisten
y between Viewpoint Spe
i�
ations

It is generally agreed that a system of realisti
 size
annot be modelled in a

single spe
i�
ation. It rather has to be de
omposed into several spe
i�
ations

of reasonable size where ea
h su
h spe
i�
ation will have to be developed sep-

arately. (Ja
kson and Ja
kson, 1996) argue that unlike in programming, where

hierar
hi
al or fun
tional de
omposition is often used, systems should be de
om-

posed into di�erent aspe
ts,
alled viewpoints. Ea
h viewpoint forms a partial

des
riptions of the system, the
ombination of all viewpoints form the model of

the whole system. The viewpoints
an, however, overlap and thus
onsisten
y

between viewpoints be
omes an issue.

Uni�
ation is a method to
ombine viewpoint spe
i�
ations in Z proposed by

(Derri
k et al., 1995). It has been subsequently developed by (Boiten et al.,

3.2. In
onsisten
y in Z Spe
i�
ations 47

1995), (Bowman et al., 1996) and (Boiten et al., 1999). Two spe
i�
ations are

said to be
onsistent if it is possible for at least one implementation to exist

that
onforms to both spe
i�
ations. Re�nement is used to
he
k whether an

implementation meets the requirements of a spe
i�
ation. The least
ommon

re�nement of two spe
i�
ations is their uni�
ation. Thus, two spe
i�
ations are

onsistent if their uni�
ation exists. If they are in
onsistent then it is not possible

to
onstru
t the uni�
ation and, therefore, their implementation.

A Digital Clo
k Example

We give a small, simpli�ed example of an engineering task. Given is a timer

devi
e, i.e. a
lo
k. Two engineers are ea
h asked to give a model of a devi
e that

an initiate events within intervals of maximal 12 hours.

State. Both engineers rely on the same given
lo
k, named Digi12 with �elds

for minutes and hours, denoted m and h respe
tively. We model both as restri
ted

integers. Thus, the state s
hema is already normalized.

Digi12

m; h : Z

0 � m � 59

0 � h � 23

Initialisation. Initially, the
lo
k starts at noon, thus

InitDigi12 b= [Digi12

0

j m

0

= 0 ^ h

0

= 12℄

The initialisation
ondition holds for the given
lo
k, i.e. the initial state exists,

whi
h
an easily be veri�ed.

Operations. The two engineers, however, de
ide to model the Ti
k operation

di�erently. The operation spe
i�es the state
hange of the given
lo
k and thus it

is
on
erned with the behaviour of the
lo
k when one minute has passed. This

in
ludes to update the values of the minutes m and hours h a

ordingly.

Ti
k1

�Digi12

m < 59)

m

0

= m + 1 ^ h

0

= h

m = 59)

m

0

= 0 ^

(h < 23) h

0

= h + 1) ^

(h = 23) h

0

= 0)

Ti
k2

�Digi12

m < 59)

m

0

= m + 1 ^ h

0

= h

m = 59)

m

0

= 0 ^

(h < 12) h

0

= h + 1) ^

(h = 12) h

0

= 1)

3.3. In
onsisten
y and Information 48

Minutes range from 0 to 59 and are in
remented with ea
h Ti
k . On
e 59 is

rea
hed they go ba
k to 0 and the hour is in
remented, too. In viewpoint one,

the
lo
k
ounts the hours from 0 to 23. When it has rea
hed 23:59, another Ti
k

sets it to 0:00. In viewpoint two, hours range from 1 to 12. At 12:59 a Ti
k sets

it to 1:00.

We developed two di�erent viewpoints of a parti
ular problem. Consider that

these viewpoints des
ribe only one part of a larger system in whi
h they need to

be integrated. Thus, we are required to
he
k whether both viewpoints
an be

satis�ed. Uni�
ation is the method to apply.

The uni�
ation of both viewpoints, however, fails. To hold, state
onsisten
y,

initialisation
onsisten
y and operation
onsisten
y for both viewpoints must be

satis�ed. We omit the state and initialisation
onditions be
ause they are trivially

satis�ed for this example. However, operation
onsisten
y fails.

Two operations Op

1

and Op

2

both operating over the same state S with input

x? : X and output y ! : Y are operation
onsistent if and only if the following

holds

8 S ; x? : X � preOp

1

^ preOp

2

) 9 S

0

; y ! : Y � Op

1

^ Op

2

Applying this to both operations Ti
k1 and Ti
k2 it is easy to see that they are

in
onsistent in the
ase of m = 59 and h = 12 and another Ti
k . Thus uni�
ation

fails for these two viewpoints.

3.3 In
onsisten
y and Information

(Valentine, 1998) states the
ommon assumption that \Consisten
y is essential

for a Z spe
i�
ation to have any useful meaning." In this se
tion we
hallenge

this
ommonly a

epted view. We start by providing some analogy to other

s
ien
es dealing with
omplex des
riptions. Then, we present some in
onsistent

spe
i�
ations in Z whi
h, as we argue, do have a meaning.

3.3.1 In
onsisten
ies in S
ien
e

A Z spe
i�
ation is a formal des
ription of a possibly
omplex system. In pra
ti
e,

large spe
i�
ations are likely to
ontain in
onsisten
ies. This problem is not

limited spe
i�
ally to formal spe
i�
ation. There are other areas dealing with

des
ribing
omplex phenomena formally. For example, the natural s
ien
es are

mostly
on
erned with des
ribing, i.e. spe
ifying, phenomena o

urring in the

real world. They, too, have to fa
e in
onsisten
ies on a regular basis. These

s
ien
es, however, have somehow learnt to live with in
onsisten
ies, to manage

and to utilise them.

3.3. In
onsisten
y and Information 49

Bohr's Theory of the Atom

The s
ien
es of Physi
s and Chemistry are
on
erned with the formal des
ription

of mostly
omplex systems. It is here, in the history of s
ien
e, that we �nd many

in
onsistent but non-trivial theories. (Priest and Tanaka, 1996) present as one

example the well-known theory of the atom by Niels Bohr. A

ording to this the-

ory, an ele
tron orbits the nu
leus of the atom without radiating energy. However,

a

ording to Maxwell's equations, whi
h were an integral part of Bohr's theory,

an ele
tron whi
h is a

elerating in orbit must radiate energy. Hen
e, Bohr's

des
ription of the behaviour of the atom was in
onsistent. However, it was still

possible to infer useful results from this theory, while other non-useful
on
lusions

were reje
ted. In s
ien
e, in
onsisten
ies are often a

epted to simplify a model

as long as these in
onsisten
ies do not lead to wrong
on
lusion.

Clausius's Proof of Carnot's Theorem

(Meheus, 2002) presents an example of reasoning in the presen
e of in
onsisten
y.

The problem
onsidered is Clausius's proof of Carnot's theorem: \no engine is

more eÆ
ient than a reversible engine." At the time, two in
ompatible approa
hes

to thermodynami
 phenomena existed. On the one hand, the theory by Carnot

stated that the produ
tion of work in a heat engine results from the mere transfer

of heat from a hot to a
old reservoir. On the other hand, Joule advo
ated that the

produ
tion of work in a heat engine results from the
onversion of heat into work.

Both approa
hes
ombined lead to several
ontradi
tions, e.g. the produ
tion of

work results from the mere transfer of heat and from the
onversion of heat.

Carnot's proof of his theorem is based on Redu
tio ad Absurdum, i.e. he sup-

posed that the negation of his theorem holds and shows that this would lead

to a
ontradi
tion. Thus, the hypothesis must be reje
ted on the basis of this

ontradi
tion and the opposite must hold. This pattern of proof is well a

epted

and often applied in mathemati
al reasoning. Clausius developed two proofs of

Carnot's theorem both based on this
on
ept and both are very similar. How-

ever, he reje
ted the �rst of his proofs. Both proofs are based on Carnot's and

Joule's premises, however, the �rst proof does need the hypothesis to derive the

ontradi
tion, while his se
ond proof does. Thus, he found a useful and valid way

of reasoning in the presen
e of in
onsisten
y.

A Little Experiment

The following is a little experiment to demonstrate how easily in
onsisten
ies

an appear in life. Consider three water tanks, �lled with hot, medium and
old

water respe
tively. Put one of your hands in the hot water tank, the other in

the
old one. Leave your hands in there for a while, until you do not feel any

3.3. In
onsisten
y and Information 50

di�eren
e in temperature anymore. Now, put both hands at the same time in

the third water tank with the water of medium temperature. You will per
eive

on the one hand that the water is hot and on the other hand that the water is

old. This is
ertainly in
onsistent with your knowledge of the water being of the

same temperature.

Psy
hology, in parti
ular, uses su
h phenomena regularly to investigate the mind.

Often in
onsistent phenomena are presented to a person and it is investigated how

humans solve these problems. The example above is one su
h phenomena, Es
her

pi
tures are another. It has, however, not been reported that the subje
ts derived

unrelated or useless information despite the in
onsisten
ies.

In
onsisten
y implies A
tion

We presented some examples of in
onsistent but useful theories as well as the

human ability to derive useful
on
lusions from in
onsistent premises. We do

not
laim that in
onsisten
ies are desirable but they are not as useless as often

thought. In
onsisten
ies are an important tool in s
ien
e. They guide resear
hers

to develop better theories and they instigate the natural pro
ess of learning.

In
onsisten
ies
annot always be resolved, however, they
an be managed. This

is, what (Gabbay and Hunter, 1991) mean when they state:

In
onsisten
y implies A
tion

3.3.2 In
onsisten
ies in Software Development

In
onsisten
ies are a fa
t of life. They o

ur frequently in the software devel-

opment pro
ess. The need for managing in
onsisten
y in software development

has been a
knowledge by many resear
hers. (Ghezzi and Nuseibeh, 1998) and

(Ghezzi and Nuseibeh, 1999), for example, present two spe
ial issues in IEEE

Transa
tions on Software Engineering
overing this topi
 and there have been two

international workshops on \Living with In
onsisten
y" as presented in (IWLWI,

1997) and (Easterbrook and Che
hik, 2001a).

Making In
onsisten
y Respe
table

(Nuseibeh et al., 2001) argue that maintaining
onsisten
y at all times is
oun-

terprodu
tive. It is usually
omputationally expensive, des
riptions evolve and

thus in
onsisten
ies re-appear, individual des
riptions
an be ill-formed and var-

ious degrees of formality make in
onsisten
y
he
king diÆ
ult. \In many
ases,

it may be desirable to tolerate or even en
ourage in
onsisten
y to fa
ilitate dis-

tributed teamwork and to prevent premature
ommitment to design de
isions,

3.3. In
onsisten
y and Information 51

and to ensure all stakeholder views are taken into a

ount." In
onsisten
ies
an

also be used as a tool for learning and guiding the development pro
ess.

(Nuseibeh et al., 1994)
onsider in
onsisten
y as any situation in whi
h two de-

s
riptions do not obey some relationship that is pres
ribed to hold between them.

(van Lamsweerde et al., 1998), for example,
onsider divergent goals in require-

ment engineering. Note, this notion of in
onsisten
y embra
es the logi
al de�ni-

tion of in
onsisten
y. The relation that should hold is the impossibility to derive

a
ontradi
tion from a set of formulae.

The proposed framework for in
onsisten
y management
onsists of
onsisten
y

he
king, monitoring and diagnosing in
onsisten
y, handling in
onsisten
y, and

measuring in
onsisten
y. Consisten
y
he
king is based on a set of
onsisten
y

rules whi
h need to be obeyed. Monitoring is the pro
ess of dete
ting the violation

of the
onsisten
y rules. On
e an in
onsisten
y is dis
overed, it is diagnosed.

This in
ludes to lo
alise the in
onsisten
y, to identify the
ause for it and its

lassi�
ation. The
hoi
e of handling strategies in
ludes to ignore, to defer, to

ir
umvent or to ameliorate an in
onsisten
y. The latter means that it may

be more
ost-e�e
tive to improve an in
onsistent des
ription without a
tually

resolving all of the in
onsisten
ies. Finally, measuring in
onsisten
y is important

to determine the impa
t of an in
onsisten
y.

In a number of
ase studies they found that some in
onsisten
ies never get �xed.

However, \the de
ision to repair an in
onsisten
y is risk-based. If the
ost of �xing

it outweighs the risk of ignoring it, then it makes no sense to �x it." Tolerating

in
onsisten
ies in su
h
ir
umstan
es means to re-evaluate the risk
ontinuously.

They found too that some in
onsisten
ies are deniable. For example, in their

experien
e developers often debated whether a reported in
onsisten
y really was

an issue or that it was already �xed.

Viewpoints for Managing In
onsisten
ies

Some resear
hers de
ided to split
ontradi
ting information into viewpoints to

manage the in
onsisten
y. For example, (Easterbrook, 1993) suggests to use

hierar
hies of viewpoints to represent alternative,
on
i
ting views of information.

A viewpoint is a self-
ontained
onsistent des
ription of an area of knowledge

with an identi�able originator. Viewpoints do not
orrespond to people but to

a des
ription of the world from a parti
ular angle. Viewpoints in this
ase are

merely seen as an organisational tool.

Later, (Easterbrook and Nuseibeh, 1996) are more
on
erned with in
onsisten
y

management using viewpoints. The paper demonstrates how in
onsisten
y man-

agement is used as a tool for requirements eli
itation and how viewpoints provide

help. First, there is no requirement for
hanges to one viewpoint to be
onsistent

3.3. In
onsisten
y and Information 52

with other viewpoints. Therefore in
onsisten
y
an be tolerated throughout the

development pro
ess.

However,
onsisten
y
he
king and resolution is still required but
onsisten
y

he
king
an be separated from resolution. To manage in
onsisten
y, relation-

ships between viewpoints have to be de�ned. Basi
ally, rules are used to de�ne

partial
onsisten
y relationships between the di�erent representations and
onsis-

ten
y
he
king is performed by applying these rules. This allows
onsisten
y to

be
he
ked in
rementally between viewpoints at parti
ular stages of development.

(Easterbrook and Che
hik, 2001b) extend their resear
h to multi-valued reasoning

over in
onsistent viewpoints. Ea
h viewpoint is des
ribed using an underlying

multi-valued logi
. Many-valued logi
s use additional truth values to represent

intermediate values between true and false. These di�erent logi
al values
an then

be used to represent di�erent levels of agreement. Their framework is intended

as a means of exploring in
onsisten
ies. The analyst is not restri
ted in any

way when
on
erned with the problem of merging information from di�erent

viewpoints.

Analysing In
onsistent Spe
i�
ations

(Hunter and Nuseibeh, 1997) and (Hunter and Nuseibeh, 1998) present another

logi
-based approa
h to managing in
onsistent spe
i�
ations. Classi
al logi
 is

ommonly used to
onstru
t formal spe
i�
ations. Classi
al logi
, however, is

trivialised in the presen
e of in
onsisten
y, i.e. any inferen
e follows from an

in
onsistent information. Therefore, the authors propose to use quasi-
lassi
al

logi
, developed by (Besnard and Hunter, 1995) to avoid su
h trivialisation.

The aim of their work is to demonstrate the usefulness of using alternative logi
al

approa
hes to the problem of reasoning in the presen
e of in
onsisten
y in the

software development pro
ess. It provides a formal foundation for supporting

a software spe
i�
ation pro
ess in whi
h in
onsisten
ies are analysed to deter-

mine appropriate a
tions for further development. Su
h a
tions also in
lude the

possibility of tolerating in
onsisten
ies.

3.3.3 The Meaning of In
onsistent Z Spe
i�
ations

We
laim that in
onsistent spe
i�
ations do have an intended meaning. Otherwise

it is rather pointless to make the e�ort of writing an in
onsistent spe
i�
ation.

Classi
al predi
ate logi
, on whi
h Z is based on, is unfortunately not very suitable

to investigate the meaning of in
onsistent spe
i�
ations.

Classi
al predi
ate logi
, for example, does not distinguish between falsehood and

in
onsisten
y. This problem is also
arried over to the Z notation. An in
onsistent

3.3. In
onsisten
y and Information 53

operation, for example, behaves like an operation whi
h has not been spe
i�ed,

i.e. it is set to false. This in turn makes it mu
h harder to analyse the sour
e of

failure of an operation. Furthermore, re�nements of in
onsistent operations
an

be rather arbitrary.

Operation s
hemas, the standard pre
ondition interpretation and in
onsisten
y

form an interesting
ombination in Z. An operation applied outside its pre
ondi-

tion
an result in any behaviour. This is, however, triviality and thus results in

the same behaviour as applying an operation in the in
onsistent situation. For ex-

ample, the pre
ondition of the operationOp

i

is [x? 2 N j x? 6= 1℄. Thus, applying

this operation outside its pre
ondition means to apply it when x? < 0 _ x? = 1.

Note, the way the pre
ondition
omputation in Z works seems to indi
ate an

ordering of belief, assuming, for example, state s
hemas to be
orre
t while an

operation
an be faulty. This leads to operations not being permitted if they are

violating the state
ondition. However, this is not ne
essarily
orre
t. It
ould

be that the operation is
orre
tly spe
i�ed but the state spe
i�
ation is
awed.

Su
h a
ase is, for example, presented in the next subse
tion.

3.3.4 Examples

Next, we present some examples of in
onsistent spe
i�
ations. As we
laimed,

we do not think that they are meaningless. Thus, we provide some indi
ation of

the kind of inferen
es we are interested in. Essentially, we want to infer less but

more useful information in the presen
e of in
onsisten
y. Thus, we tend to show

what we do not want to infer in
omparison with
lassi
al logi
, rather than what

should be inferred.

Tweety the Penguin

The following example appears frequently in the literature on para
onsistent and

non-monotoni
 reasoning. It is about Tweety, the bird who is a penguin that

an but
annot
y. We de
ided not to provide a Z en
oding of the problem be-

ause this would add some synta
ti
al overhead not ne
essary for our illustration.

Thus
onsider this example as an introdu
tion to the topi
 of reasoning about

in
onsistent spe
i�
ations.

Classi
ally, the Tweety example is given as a universal theory in �rst-order pred-

i
ate logi
 by the �rst four rules:

(1) bird(X)!
ies(X)

(2) penguin(X)! :
ies(X)

3.3. In
onsisten
y and Information 54

(3) penguin(X)! bird(X)

(4) penguin(Tweety)

(5) hungry(Tweety)

Clause (1) states that all birds
an
y. Penguins, however, a

ording to Clause(2)

annot
y although, as Clause (3) states, they are birds. These three
lauses are

not in
onsistent, as long as no penguins would exist. Therefore, in Clause (4)

we give a parti
ular penguin, named Tweety. These four
lauses together
ause

an in
onsisten
y to arise. Tweety is a penguin and therefore
annot
y but

be
ause Tweety is a penguin he is also a bird and therefore
an
y. This results

in the
ontradi
tion, that Tweety
an and
annot
y. However, we think this

ontradi
tion should not in
uen
e any knowledge about Tweety being hungry, as

stated in Clause (5).

We denote the above set of rules, i.e. the theory about Tweety, with T . In

lassi
al logi
 it would be possible to show

T ` : hungry(Tweety)

or even

T ` : penguin(Tweety)

This seems, however, rather
ounter-intuitive. On the one hand whether Tweety

is hungry is a
tually not dependent on the issue whether he
an
y or not. On the

other hand, reje
ting that Tweety is a penguin would not lead to the problem of

in
onsisten
y. This little spe
i�
ation provides some useful information, namely

Tweety is hungry and he is a penguin. However the in
onsisten
y is resolved it

should respe
t this information.

A Flat Tyre

In (Miarka et al., 2002), we present a simpli�ed example from the life of a mo-

torist. The motorist is the owner of a
ar. To be allowed to drive the
ar on publi

roads, the
ar needs to pass a safety test, part of whi
h is a tyre inspe
tion. The

law (in Germany) says that the
ar must have the same kind of tyre �tted to

both the front and rear wheels. We use the set

[CAR℄

as our basi
 type. The Boolean type is not part of standard Z, hen
e we de�ne

the enumerated type

3.3. In
onsisten
y and Information 55

B ::= True j False

In the state s
hema, Car , the Boolean
at denotes whether any of the tyres are

at. If not the motorist is permitted to drive the
ar. The Law states that the

same tyres should be used on front and ba
k. A single operation is spe
i�ed,

that of
hanging a tyre. Unfortunately, the spare tyre is of a di�erent type, thus

we will break the law as a result of a Change.

Car

at : B

drive : B

wheels : N

at = False) drive = True

wheels = 4

Law

same : B

same = True

Change

�Car

�Law

x ! : N

at = True ^
at

0

= False

same

0

= False

x ! = wheels

The Change operation is
learly in
onsistent in an intuitive sense. On
e the tyre

has been
hanged, the
ar is not allowed on the road by the law be
ause the type

of tyre on at least one wheel is now di�erent. We might, however, wish to reason

about aspe
ts of this spe
i�
ation, for example, that the
ar is still driveable,

sin
e this only depends on the fa
t that no tyre is
at. Also, the number of tyres

on the
ar, as reported by x ! should be exa
tly four.

Although this example is small and rather arti�
ial, it illustrates the type of

reasoning one might wish to perform. It provides some eviden
e that reasoning in

the presen
e of in
onsisten
y
ould be useful. Note, pra
ti
ally the in
onsisten
y

is not resolved by dropping the law but by providing a range of ex
eptions to the

law. Nevertheless, any development of the above spe
i�
ation should take into

a

ount those aspe
ts that are not dire
tly related to the in
onsisten
y.

Refuel A Car

Another operation often performed by a motorist is to refuel their
ar. We

distinguish three kinds of
ars: ele
tri

ars,
ars with diesel engines and
ars

3.3. In
onsisten
y and Information 56

running on petrol. The ele
tri

ar needs a power supply to re-
harge, whereas

the other
ars need fuel whi
h
an be divided into unleaded, four star and diesel.

Thus we give the following two type de�nitions.

CAR TYPE ::= ele
tri
 j diesel j petrol

FUEL TYPE ::= unleaded j four star j diesel type

We are interested in the state of a
ar. It
an be
harged, or it needs a parti
ular

amount of some sort of fuel. Given a petrol
ar we assume by default that

unleaded petrol is to be used. This is
ompliant with
urrent environmental

issues.

State

harged : B

fuel : FUEL TYPE

amount : FUEL TYPE ! N

Choose

�State

ar? : CAR TYPE

ar? = petrol)

fuel

0

= unleaded

Refueling a
ar results in a full energy status. This means, an ele
tri

ar is to

be re-
harged and a petrol
ar has sixty liters of fuel in the tank.

Refuel

Choose

(
ar? = ele
tri
 ^
harged

0

= True) _

(
ar? = petrol ^ amount

0

(fuel

0

) = 60 ^ fuel

0

= four star)

This refuel operation is partly in
onsistent be
ause we assign two di�erent types

of fuel to be taken when the
ar requires petrol. It is
onsistent when applied to

ele
tri

ars; no refuel operation has been spe
i�ed for diesel
ars. Clearly, this

looks like a simple spe
i�
ation error, but in a large spe
i�
ation su
h errors
an

be hidden.

Despite the in
onsisten
y we are interested in useful inferen
es. Su
h inferen
es

in
lude that the amount of fuel should be exa
tly sixty liters, no matter what

fuel type was used. We also need to show that diesel is not an option to be taken

as fuel for petrol
ars.

3.3.5 Uni�
ation of Viewpoint Spe
i�
ations

Consider the small
lo
k example from before. We noted that the uni�
ation of

the two viewpoints failed be
ause both engineers
ould not agree what to do next

when the
lo
k rea
hed 12 : 59. We are, however, interested in the information

3.3. In
onsisten
y and Information 57

this spe
i�
ation provides. For example, we �nd that no matter whi
h viewpoint

we
onsider the minutes m will be set to zero and nothing else. Thus, reasoning

from this in
onsistent set of viewpoints should validate this information.

In general, reasoning about viewpoints should fa
ilitate the dis
overy of the
om-

monalities between the spe
i�
ations even in the presen
e of in
onsisten
y. It

should provide a me
hanism to improve the system. We think, it would even be

advantageous to �rst
ombine the in
onsistent viewpoints and then to develop

the resulting spe
i�
ation. Otherwise, separate developments might lead to the

introdu
tion of new problems while trying to resolve the old ones.

The uni�
ation of viewpoints is supposed to be their
ommon re�nement. Thus,

investigating uni�
ation in the presen
e of in
onsisten
y leads to the problem of

re�nement of in
onsistent operations. However, this problem
an of
ourse be

onsidered independently from uni�
ation.

3.3.6 Re�nement of In
onsistent Spe
i�
ations

A

ording to (Wood
o
k and Davies, 1996), re�nement is all about improving

spe
i�
ations. However, we indi
ated that re�nements of in
onsistent spe
i�
a-

tions and in parti
ular of in
onsistent operations
an be rather arbitrary. Thus,

we
laim, not all re�nements from in
onsistent operations a
tually do improve

the spe
i�
ation. This is mainly due to the la
k of formal support to
onsider

the information given in an in
onsistent operation.

Consider the following two operation s
hemas

Op2

i

x?; y? : Z

X ;X

0

: Z$ Z

X

0

= X � fx? 7! y?g

#X

0

= #X

x? 62 domX

ROp2

i

x?; y? : Z

X ;X

0

: Z$ Z

x? 2 domX

X

0

= fx?g

�

C X

Op2

i

is meant to repla
e a new pair of numbers (x?; y?) within a set of pairs X

resulting in the new set X

0

. Unfortunately, in this large operation an in
onsis-

ten
y o

urred. On the one hand, it is desired that the �rst
omponent x? of the

new pair is not in the set X already whi
h leads to the a
tual addition of one

extra pair to X . One the other hand, it is required that the number of elements

in the set remain
onstant. Both requirements, however,
annot be supported at

the same time.

The problem we �nd is, that this operation
an be re�ned by one whi
h attempts

the
omplete opposite e�e
t. ROp2

i

removes those pairs from X where x? is the

3.3. In
onsisten
y and Information 58

�rst
omponent. Even in the presen
e of in
onsisten
y there should be a way to

prevent su
h unreasonable re�nements and thus to support an improvement of

the spe
i�
ation that is in line with the intended meaning.

In general, resolving in
onsisten
ies
an be an expensive and sometimes impossi-

ble task. Many parti
ipants
an be involved ea
h having a di�erent view on the

problem. Therefore, it might be diÆ
ult to rea
h an agreement on how to resolve

the in
onsisten
y. For the spe
i�er it might thus be helpful to
ontinue analysis

and development of the spe
i�
ation despite the presen
e of in
onsisten
y. An

approa
h to living with in
onsisten
y is required.

3.3.7 Proposal

(Valentine, 1998) states: \Consisten
y is essential for a Z spe
i�
ation to have

any meaning." However, we believe this
laim is too strong and undesirable.

Even if a Z spe
i�
ation is in
onsistent, it still has an intended meaning. The

problem we need to solve is to dis
over the meaning and to make it expli
it.

Note, our work is not related to that by (Henson, 1998) where he shows that

the standard logi
 of Z is in
onsistent. However, his work supports our
laim

that in
onsisten
ies do not ne
essarily lead to trivial results in pra
ti
e. The

standard logi
 of Z, although in
onsistent, has been used su

essfully to analyse

many spe
i�
ations.

We propose to investigate what formal support
an be given to the pro
ess of

analysing in
onsistent spe
i�
ations written in the Z notation. Su
h work forms a

part in the wider area of resear
h on managing in
onsisten
ies without ne
essarily

eradi
ating them. Formal support is based on logi
al reasoning. Thus, we are

interested in logi
s that support reasoning in the presen
e of in
onsisten
y.

Logi
ians have developed a range of logi
s to
ontinue to reason in the presen
e of

in
onsisten
ies. These so
alled para
onsistent logi
s allow us to derive less but

more useful information despite in
onsisten
ies. It is our intention to investigate

the
onsequen
es of using a para
onsistent logi
 to analyse Z spe
i�
ations. We

envision that in
onsistent Z spe
i�
ations
an be analysed in more depth than at

present and that re�nement of in
onsistent spe
i�
ations
an be more
ontrolled.

Some of the more interesting
andidates of para
onsistent logi
s have four truth

values. The logi
al truth values represent the four epistemologi
al situations:

`told True', `told False', `told True and False', and `told neither True nor False'.

Thus, four-valued logi
s not only
apture the notion of in
onsisten
y but also

some form of underde�nedness. It is also our aim to make use of this extra

truth-value as dis
ussed below.

3.4. Underde�nedness in Z Spe
i�
ations 59

3.4 Underde�nedness in Z Spe
i�
ations

In the
ommon Z spe
i�
ation style operations are, in general, partial relations.

The domains of these partial operations are traditionally
alled pre
onditions.

There are, however, two di�erent interpretations of the pre
ondition a

ording

to the behaviour of the operation if applied outside its domain.

The \design by
ontra
t" meaning is the standard interpretation of a pre
ondition

of an operation in Z. This asserts that if the pre
ondition holds and an attempt

is made to exe
ute the operation, then the exe
ution will be a

epted and it will

terminate in a state as spe
i�ed by the post
ondition. If the pre
ondition does

not hold, however, and the operation is attempted to be exe
uted then it will

be exe
uted but it may not terminate or it
an terminate in an arbitrary state.

This behaviour is also
alled \divergen
e". We usually refer to this standard

interpretation by the term pre
ondition.

The alternative meaning is the so
alled guarded or �ring
ondition interpreta-

tion. If the operation is exe
uted within its pre
ondition it will terminate in a

state a

ording to the post
ondition. However, if it is
alled outside the given

pre
ondition, then the operation will not be exe
uted at all, i.e. it is blo
ked, and

no state
hange o

urs. This is the standard interpretation in Obje
t-Z.

It has been observed that it is
onvenient to use a
ombination of both the

guarded and pre
ondition interpretation to allow both modelling of refusals and

under-spe
i�
ation. (Josephs, 1991), for example, reports on spe
ifying rea
tive

systems in Z and (Lano et al., 1997)
onsider non-determinism di�erent from

under-spe
i�
ation.

3.4.1 Underde�nedness

Formal spe
i�
ations are abstra
t des
riptions of the behaviour of a system.

They are supposed to leave as mu
h implementation freedom as possible. Non-

determinism is a parti
ular tool to a
hieve this obje
tive. During the re�nement

pro
ess of a spe
i�
ation, however, non-determinism is usually eliminated. Thus,

non-determinism relates to the view of under-spe
i�
ation or, as we
all it, un-

derde�nedness.

Unde�nedness versus Underde�nedness

There might o

ur a little
onfusion between the terms unde�ned and underde-

�ned. Thus we provide some
lari�
ation of what unde�ned stands for. Unde-

�nedness as, for example,
onsidered by (Valentine, 1998) is related to the appli-

ation of partial fun
tions outside their domain. Valentine presents the following

example of an axiomati
 de�nition

3.4. Underde�nedness in Z Spe
i�
ations 60

total ;
ount ; average : N

:
ount = 0) average = total div
ount

whi
h looks rather reasonable. The problem of division by zero seems to be

overed due to the
ondition. Unfortunately, this is not the
ase be
ause Z is not

operational. The above axiomati
 s
hema is equivalent to the following

total ;
ount ; average : N

average = total div
ount _
ount = 0

Thus, the problem with dividing by zero
an still o

ur. There are many more ex-

amples of unde�ned expressions in (Valentine, 1998), as well as (Stoddart et al.,

1999). In the wider s
ope unde�nedness and underde�nedness are related be-

ause underde�nedness is
on
erned with the problem of applying an operation

outside its domain, whi
h is rather similar to the issue of unde�nedness. However,

unde�nedness is not the problem we are interested in here.

3.4.2 Normalisation and Underde�nedness

We introdu
ed normalisation as the pro
ess of rewriting a s
hema su
h that all the

onstraint information appear in the predi
ate part. We presented the following

two s
hema S1 and S2, where S2 is the normalisation s
hema of S1.

S1

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

S2

a; a

0

: Z

a 2 N ^ a

0

2 N

(a

0

)

2

� a < (a

0

+ 1)

2

Natural numbers are not a basi
 type of Z but
onstrained integers. Therefore,

a s
hema de
laration referring to naturals
an be normalised to use integers and

a
onstraint on the predi
ate.

However, somehow the interpretation of the s
hemas may
hange through that

pro
ess. As the operation S1 is de�ned on natural numbers, it appears unrea-

sonable to even
onsider applying it on negative integers, so the blo
king inter-

pretation appears quite sensible for this area. However, the normalised s
hema

is formally equivalent to S1 but is interpreted in the pre
ondition approa
h as

being fully unde�ned on negative integers. This means, that the spe
i�er needs to

know about normalisation, i.e. whi
h sets are proper types and whi
h are proper

subsets of a type, whi
h might not always be the
ase and somehow should not

be ne
essary in the �rst pla
e. This example shows that normalisation is more

guard, rather than pre
ondition, related and that we might want to deal with it

a

ordingly.

3.4. Underde�nedness in Z Spe
i�
ations 61

3.4.3 Guards and Pre
onditions in a Bu�er Example

The following example is designed to demonstrate the di�erent meanings of a

pre
ondition. We model a little bu�er of messages. We use a new type MSG to

represent a message be
ause we are not interested in their parti
ular form.

[MSG ℄

The state s
hema Bu�er holds the type de�nitions for the bu�er whi
h we model

as a sequen
e of messages. Furthermore, we use a
ag r to indi
ate whether the

bu�er has been read. The bu�er is initially empty and the
ag r is set to True

to enable the Write operation.

Bu�er

bu�er : seqMSG

r : B

InitBu�er

Bu�er

0

bu�er

0

= hi

r

0

= True

There are two operations possible. On the one hand, messages
an be stored

in the bu�er. This is, however, restri
ted to the fa
t that a previous message

has been read before. On the other hand, messages
an be read. The result

of the Read operation is a
hange in the
ag. The
ontent of the bu�er after

the operation is not relevant. The Read operation
an only be invoked on a

non-empty bu�er and if there is a new message waiting.

Write

�Bu�er

x? : MSG

r = True

bu�er

0

= bu�er � f1 7! x?g

r

0

= False

Read

�Bu�er

x ! : MSG

bu�er 6= hi ^ r = False

x ! = head bu�er

r

0

= True

In parti
ular in the Read operation the two pre
onditions have di�erent meanings.

The
ondition bu�er 6= hi is like a guard. No state
hange is permitted if the

bu�er is empty. The
ondition r = False, however, is not as stri
t. If the

operation is applied outside this
ondition but within the guard then it
ould be

possible to read the
ontent of the bu�er again. No harm would o

ur. Note, the

ondition r = True in the Write operation determines a syn
hronous behaviour

of the bu�er be
ause a message is not overridden before the old one was read.

Again, whether this is a guard or a pre
ondition is important for the behaviour

outside the
ondition as well as for future re�nements.

3.4. Underde�nedness in Z Spe
i�
ations 62

3.4.4 Re�nement of Underde�ned Spe
i�
ations

The two interpretations of the pre
ondition of an operation lead to two di�erent

notions of re�nement, too. In the standard interpretation, the pre
ondition
an be

weakened and thus the domain of the operation
an be enlarged. In the guarded

interpretation, however, the pre
ondition
annot be weakened but possibly be

strengthened. Thus, the domain of the operation is redu
ed.

Both instantiation of the appli
ability rule of re�nement have, however, one inten-

tion, namely to redu
e non-determinism. Obviously, both interpretations
annot

be used at the same time for one operation s
hema. (Strulo, 1995), for example,

suggests to label the operation s
hema a

ording to the pre
ondition interpreta-

tion that should be used with them.

Example
ont.

The pre
ondition interpretation of r = True in theWrite operation
an determine

the future behaviour of the Bu�er . In the standard interpretation it is possible

to weaken this
ondition, thus

RWrite

�Bu�er

x? : MSG

bu�er

0

= bu�er � f1 7! x?g

r

0

= False

is a valid re�nement. However, this makes the Bu�er asyn
hronous. The guarded

interpretation would have forbidden su
h re�nement. On the other hand, the

guarded interpretation does not permit the less problemati
 and possibly de-

sired re�nement RRead1. The standard interpretation, unfortunately allows the

dangerous re�nement RRead2 whi
h suddenly permits to read an empty bu�er.

RRead1

�Bu�er

x ! : MSG

bu�er 6= hi

x ! = head bu�er

r

0

= True

RRead2

�Bu�er

x ! : MSG

x ! = head bu�er

r

0

= True

Using just the guarded or the pre
ondition interpretation is not always suitable

for pra
ti
al tasks. Like in the Read operation where two
onditions have di�erent

statuses it is diÆ
ult to determine whi
h interpretation to
hoose. After
hoosing

3.5. Summary 63

one interpretation, however, re�nement
an behave in an unwanted fashion not

treating the meaning of all given
onditions
orre
tly. Spe
i�
ations should be

foremost intuitive, thus we propose to
ombine guards and pre
onditions in a

single notation.

3.4.5 Proposal

Guards blo
k an operation thus rendering it impossible outside its guard and

impli
itly do not allow a state
hange to o

ur. Pre
onditions permit operations

and guarantee its out
ome. Having both, enables the spe
i�
ation of under-

de�nedness as those situations where the guard permits the operation but the

pre
ondition fails, thus no expli
it out
ome is de�ned. These three situations

give rise to an intuitive semanti
s based on three logi
al truth values. Thus, we

propose a non-standard semanti
s of operations, based on a three-valued logi
.

However, su
h an interpretation of operations requires a more expressive notation

than normal operations with expli
it guards. Thus, we propose to develop a

syntax whi
h is suÆ
iently expressive for this semanti
s. Using a three-valued

logi
 will also lead to a simple and intuitive notion of operation re�nement, where

re�nement is redu
tion of underde�nedness. We will de�ne operation re�nement

rules for this whi
h generalise the traditional ones. Furthermore, we propose an

adaption of the s
hema
al
ulus, based on three-valued logi
, to a

ount for the

extended syntax.

3.5 Summary

Our aim is to investigate the formal support that
an be given to analyse in
on-

sistent spe
i�
ations written in the Z notation. This in
ludes also the pro
ess

of re�nement in the presen
e of in
onsisten
ies. We propose to adopt one of

the logi
s that fa
ilitate the pro
ess of reasoning in the presen
e of in
onsisten
y

without leading to triviality, the so
alled para
onsistent logi
s.

Some of the investigated logi
s also provide a truth value for handling underde-

�nedness. Operations in Z are, in general, partial des
riptions. If the pre
ondition

of an operation holds, the spe
i�ed results are guaranteed. However, if the pre-

ondition is not satis�ed there are two interpretations possible. On the one hand,

in the standard interpretation everything
an happen. Note, this notion also re-

lates to triviality. On the other hand, the operation
an be blo
ked and thus no

state
hange o

urs.

We propose to use the extra truth value to represent underde�nedness. This

enables us to
onstru
t an intuitive semanti
s for operations
ontaining both

guards and pre
onditions. Underde�nedness is then
hara
terised as the region

between the guard and the pre
ondition of an operation.

Chapter 4

Para
onsisten
y and First-Order

Quasi-Classi
al Logi

The Z notation is based on
lassi
al �rst-order predi
ate logi
. The problems

arising from in
onsisten
ies in Z spe
i�
ations
an be attributed to the way
las-

si
al logi
 handles
ontradi
tions. In parti
ular, given a single
ontradi
tion in a

lassi
al theory, it is possible to derive any formula from that theory. Thus, to

formally manage in
onsisten
ies in Z spe
i�
ations we
an look at some general

approa
hes of managing in
onsisten
y in logi
al formulae.

The group of logi
s whi
h support the pro
ess of useful reasoning despite the

presen
e of in
onsisten
ies are
alled para
onsistent logi
s. This group
an be

further subdivided a

ording to the kind of weakening of the logi
 used. For

example, some logi
s use a di�erent negation operator, some
hange the meaning

of impli
ation, sometimes new truth values are introdu
ed, and sometimes the

proof theory of the logi
 is altered. However, the
ommon aim is to develop a

para
onsistent logi
 as
lose as possible to
lassi
al logi
.

One su
h para
onsistent logi
 is
alled quasi-
lassi
al logi
 (QCL). QCL has been

introdu
ed by (Besnard and Hunter, 1995) and fully developed in (Hunter, 2000)

and (Hunter, 2001). In QCL the meaning of all the logi
al operators remains

un
hanged. Furthermore, the dedu
tion rules within the proof theory of QCL are

lassi
al, too. These properties suggest that QCL is a prime
andidate for a logi

to support reasoning in the presen
e of in
onsisten
ies in formal spe
i�
ation.

In this
hapter we review some of the approa
hes of reasoning with in
onsistent

and in
omplete knowledge. We fo
us on the presentation of para
onsistent logi
s,

in parti
ular quasi-
lassi
al logi
, as they o�er a novel approa
h to reasoning

about in
onsisten
ies in Z. Some of these logi
s are also meant to deal with

in
omplete knowledge. This is relevant for our work on underde�nedness in Z.

64

4.1. Introdu
tion 65

4.1 Introdu
tion

In the last
hapter we found that software development requires a new approa
h

to handling in
onsisten
ies whi
h is not only based on dete
ting and eradi
ating

them but on managing the information provided. This is required be
ause in
on-

sisten
ies frequently appear in large proje
ts and sometimes it might not even be

possible in pra
ti
e to rea
h a
ompletely
onsistent spe
i�
ation.

In fa
t, in
onsisten
ies are a matter of every day life. We are
onstantly
hal-

lenged by
ontradi
ting information. Sometimes we are able to resolve the in
on-

sisten
y right away; sometimes, however, we have to live with in
onsisten
ies. In

su
h a
ase we tend not to derive any useless results from it. Often it is quite

the
ontrary and in
onsisten
ies lead to new dis
overies. This pro
ess suggests

that the logi
 we use to reason in everyday life is able to deal with in
onsisten
ies

in a useful manner. Su
h pra
ti
al reasoning from in
onsistent information is,

however, not well supported by
lassi
al logi
.

The Z notation is a spe
i�
ation language whi
h is based on
lassi
al logi
. Thus,

Z is limited by its logi
 to deal with in
onsisten
ies usefully and not to derive

arbitrary
on
lusions. This problem has been re
ognised by resear
hers on formal

logi
s and they developed so
alled para
onsistent logi
s. These logi
s reje
t the

lassi
al prin
iple of explosion, often referred to as Ex
ontradi
tione quodlibet,

i.e. from a
ontradi
tion follows everything.

Para
onsistent logi
s provide an interesting alternative to
lassi
al logi
 for rea-

soning about in
onsistent theories. However, all para
onsistent logi
s are weaker

than
lassi
al logi
 in either their logi
al
onne
tives or in the derivation rules.

Thus, it is not possible to simply repla
e the standard logi
 of Z with a para
on-

sistent one but it is required to investigate the impa
t of su
h a
hange
arefully.

4.1.1 Motivation

The aim of this
hapter is to introdu
e the notion of para
onsistent reasoning and

some para
onsistent logi
s. Thus we provide the formal ba
kground for the follow-

ing
hapters. Para
onsisten
y emphasizes a shift of
on
ern from
ontradi
tory

to trivial theories. It is triviality that we most dislike in formal reasoning be
ause

it has no restri
tions and does not distinguish between di�erent
ontradi
tions.

Para
onsisten
y, however, allows to di�erentiate between
ontradi
tions. As a

result, one in
onsisten
y does not
orrupt all information. Hen
e, it fa
ilitates

more useful
on
lusions in the presen
e of in
onsisten
y than
lassi
al logi
.

There are many di�erent ways to
onstru
t a para
onsistent logi
. We present

some of the approa
hes to give some insight into the development of para
onsis-

tent logi
s and into the limitations they
an possess. Thus, we build a foundation

4.1. Introdu
tion 66

for an informed de
ision on whi
h para
onsistent logi
 to sele
t for our appli
a-

tion towards analysing in
onsistent spe
i�
ations. It is out of the s
ope of this

work to present a full overview of all the di�erent para
onsistent logi
s. We re
-

ommend, for example, the
olle
tions by (Priest et al., 1989) and (Batens et al.,

2000) for further information on this subje
t.

It is our aim to support both reasoning about overde�ned and underde�ned spe
i-

�
ations. Many-valued logi
s, in parti
ular four-valued ones, provide an intuitive

semanti
s to
apture the notions of over- and underde�nedness. Thus, we in-

vestigate two representatives of these group of logi
s further. We �nd them,

unfortunately, unsuitable for our needs to reason about in
onsisten
y but they

do prove useful for our work on underde�nedness.

We present Hunter's quasi-
lassi
al logi
 in detail be
ause we de
ided to apply

it to reasoning about in
onsistent spe
i�
ations. One of the main advantages of

QCL over other para
onsistent logi
s is that all
onne
tives are interpreted
las-

si
ally as Boolean
onne
tives and that the QC dedu
tion rules hold in
lassi
al

logi
, too. The logi
 is, however, weaker than
lassi
al logi
 in the way it is used.

We believe that QCL's advantage is vital for its a

eptan
e as a new logi
 in su
h

an established �eld as formal methods, be
ause the spe
i�ers need not
hange

their way of writing spe
i�
ations. Therefore, QCL is our prime
andidate for a

logi
 to support reasoning in the presen
e of in
onsisten
ies.

4.1.2 Outline

This
hapter is stru
tured as follows. In Se
tion 4.2 we
over some ba
kground

on the notion of para
onsisten
y, in
luding the di�erent motivations for para-

onsisten
y, two de�nitions of para
onsisten
y and the approa
hes to
onstru
t

a para
onsistent logi
. In Se
tion 4.3 we present two four-valued para
onsis-

tent logi
s, namely the logi
 FOUR by (Belnap, 1977b) and the logi
 FOUR

by (Dam�asio and Pereira, 1998). The main part of this
hapter
onsists of Se
-

tion 4.4 introdu
ing quasi-
lassi
al logi
 by (Hunter, 2000). We
ontribute to the

development of QCL by providing an extended dis
ussion on logi
al equivalen
e

presented in Se
tion 4.4.5. We brie
y summarize this
hapter and dis
uss our

hoi
e for QCL in Se
tion 4.5.

Note, we extend the work on QCL in Chapter 5 by introdu
ing equality and we

apply QCL to reason about in
onsistent Z spe
i�
ation in Chapter 6. Further-

more, a three-valued subset of the logi
 FOUR is used in Chapters 7 and 8 to

provide the semanti
s for our work on underde�nedness.

4.2. In
onsisten
y, Triviality and Para
onsisten
y 67

4.2 In
onsisten
y, Triviality and

Para
onsisten
y

Before venturing into the presentation of some para
onsistent logi
s we need to

establish some ba
kground on the notion of para
onsisten
y. There is �rst the is-

sue of the motivation for para
onsisten
y. A

ording to the di�erent motivations

there are several de�nitions of the term para
onsisten
y. Fortunately, there is at

least one basi
 obje
tive all para
onsistent logi
ians agree on, namely to avoid

triviality. A brief investigation into the sour
e of triviality leads to a
ategorisa-

tion of the di�erent para
onsistent logi
s and provides also a motivation for the

logi
s we present.

4.2.1 Motivations for Para
onsistent Logi
s

Para
onsistent logi
s are suitable for reasoning from in
onsistent theories without

ollapsing into triviality. There are several motivations why su
h a logi
 is ne
-

essary. We provide a brief
lassi�
ation following (Urbas, 1990) of the di�erent

positions.

Dialetheism. A

ording to (Priest, 1998): \A dialethia is a true
ontradi
tion,

a statement, A, su
h that both it and its negation, : A, are true." Dialethe-

ism is thus the position that some
ontradi
tions are true. This view reje
ts

also the
lassi
ally validated inferen
e from in
onsistent premises to an arbitrary

on
lusion.

The most
ommon example of a dialethia is the \liar's paradox". Consider the

senten
e: \This senten
e is not true." A

ording to standard logi
 there are

two possibilities, either the senten
e is true or it is not. If the senten
e is true,

however, then what it says is
orre
t, i.e. it is not true. Suppose the senten
e is

not true. But this is what the senten
e says, i.e. it is true. Thus, in either
ase,

the senten
e is both true and not true.

Relevantism. The main interest for relevantist logi
ians is with the inferen
e

relation. They insist on a
onne
tion of relevan
e or
ommonality of
ontent

between the premises and
on
lusions. Though this is not dire
tly related to the

question of in
onsisten
y it too restri
ts inferen
es from
ontradi
tory premises.

The most notable representatives of relevantism are (Anderson and Belnap, 1975).

Pragmatism. This position re
ognises that there are many interesting systems

that are in
onsistent but non-trivial. This in
ludes our beliefs and judgements,

a range of s
ienti�
 theories and legal
odes. In fa
t, the likelihood of in
onsis-

ten
ies seems to in
rease with the expressiveness of the theories. Nevertheless,

some me
hanism prevents the dedu
tion from arbitrary
on
lusions from su
h

in
onsistent theories. The pragmati
 approa
h is not to abandon theories on
e

4.2. In
onsisten
y, Triviality and Para
onsisten
y 68

they are dis
overed to be in
onsistent but to a

ommodate them until a better

alternative is found by means of a logi
 that fun
tions plausibly in the presen
e

of in
onsisten
y. An important advo
ate of this motivation for para
onsisten
y

is (da Costa, 1974). From the dis
ussion in the last
hapter it follows that we

too subs
ribe to this pragmati
 position.

4.2.2 De�nition of Para
onsisten
y

The di�erent motivations for para
onsisten
y lead almost naturally to di�erent

de�nitions of the terms para
onsisten
y and para
onsistent logi
. (B�eziau, 2000),

for example, analyses some of the o

urring de�nitions.

A theory T is a set of formulae expressed in some, normally formal, language

whi
h is
losed under the
onsequen
e relation ` of the underlying logi
, i.e. if

the formulae A

1

; : : : ;A

n

are in T and B is a
onsequen
e of A

1

; : : : ;A

n

, denoted

fA

1

; : : : ;A

n

g ` B , then B is also in T .

The following is an intuitive de�nition of para
onsisten
y often presented in the

literature. A theory is in
onsistent if it
ontains some formula A together with

its negation : A, i.e. there is an A su
h that T ` A and T ` : A, where : is

a negation
onne
tive whi
h is intended as a \
ontradi
tion-forming operator".

A theory is trivial if it
ontains every formula of its language, i.e. for every A it

holds T ` A, otherwise T is said to be non-trivial. A theory T is para
onsistent

if it is in
onsistent and non-trivial. A logi
 is para
onsistent if it supports the

study of para
onsistent theories.

This de�nition, however, has been generalised be
ause it requires the
onsequen
e

relation to be transitive to ensure non-triviality. Thus, the minimal and most

widely a

epted de�nition amongst the para
onsistent logi
ians is now based on

the reje
tion of the prin
iple know as

ex
ontradi
tione quodlibet (ECQ)

i.e. from a
ontradi
tion follows everything. Based on the equivalen
e of falsehood

and
ontradi
tion in
lassi
al logi
 this prin
iple is also
ommonly referred to as:

\ex falso quodlibet".

The formalisation of the prin
iple of ECQ is that for any theory T and formulae

A and B it follows T [fA;: Ag ` B . The same prin
iple without mentioning the

theory T is just a spe
ial
ase of it. A logi
 is para
onsistent if it reje
ts ECQ, i.e.

if not every formula B follows from an in
onsistent premise (T [fA;: Ag 0 B).

Otherwise the logi
 is said to be explosive or trivialising.

4.2. In
onsisten
y, Triviality and Para
onsisten
y 69

4.2.3 Approa
hes to Para
onsisten
y

One
an imagine that there are many di�erent ways to avoid ECQ. All proposed

solutions are based on some kind of weakening of
lassi
al logi
.

Lewis's Proof of Ex Contradi
tione Quodlibet

The prin
iple of ECQ is
entral to the notion of para
onsisten
y, thus a de-

tailed analysis on how it arises is appropriate. The proof of ECQ by (Lewis and

Langford, 1932) provides some insight. It pro
eeds by deploying various
lassi
al

reasoning rules:

(1) p ^ :p Assumption

(2) p by 1, ^-Elimination

(3) :p by 1, ^-Elimination

(4) p _ q by 2, _-Introdu
tion

(5) q by 3,4, _-Elimination

This derivation
an be prevented, by blo
king any of the rules in line (2), (3), (4)

or (5). Thus various strategies are open to weaken
lassi
al logi
.

The most
ommon proposal is to reje
t (5), i.e. _-Elimination whi
h is also

alled disjun
tive syllogism. Consequently, if impli
ation A) B is de�ned in

the usual way as : A _ B then modus ponens fails, too. For example, the

logi
s by (da Costa, 1974) and (Belnap, 1977a) both reje
t disjun
tive syllogism.

However, modus ponens is valid in (da Costa, 1974) be
ause impli
ation
annot

be expressed in terms of disjun
tion and negation.

The other two options are to blo
k _-Introdu
tion, favoured by logi
ians inter-

ested in analyti
 impli
ation, and to blo
k ^-Elimination, as investigated by so

alled
onnexive logi
ians. Note, for example, that the logi
 by (Belnap, 1977a)

does not support ^-Elimination either. Thus, a
ombination of these options
an

also o

ur.

Another approa
h is not to generally blo
k any of the rules but to restri
t the

ordering in whi
h these rules
an be applied. The derivation above requires _-

Introdu
tion to be applied before _-Elimination. The logi
 by (Besnard and

Hunter, 1995), for example, is based upon the restri
tion that de
ompositional

rules like _-Elimination must not be applied after _-Introdu
tion. The advantage

is to keep all
lassi
ally valid reasoning rules in
luding disjun
tive syllogism and

the
lassi
al de�nitions of the logi
al operators.

4.3. Four-Valued Para
onsistent Logi
s 70

Weakly Negative Systems

In
lassi
al logi
, the
on
i
t A ^ : A is equivalent to falsity, often denoted ?.

More generally, if A and B are two formulae, then A) (B) ?) expresses that

A and B are in
on
i
t, i.e. they are in
onsistent. Con
i
t
an be represented in

lassi
al logi
 by using a negation symbol. Then fAg ` : B represents the same

in
onsisten
y as above. Thus, negation and in
onsisten
y are
losely related in

lassi
al logi
.

This type of reasoning lead to mu
h resear
h into the nature of negation. (Gabbay

and Hunter, 1999), for example, explore the relationship between negation and

ontradi
tion to develop better te
hniques for handling in
onsistent information.

(B�eziau, 2000) is also mainly
on
erned with the negation operator with respe
t

to para
onsisten
y. Thus, it is not surprising that a number of para
onsistent

logi
s are based on a weaker notion of negation than
lassi
al logi
.

One important representative is the logi
 C

!

proposed by (da Costa, 1974). The

main idea is to use the positive part of some logi
, say
lassi
al or intuitionisti
,

but to allow negation in an interpretation to behave non-truth-fun
tionally, i.e.

the truth value of : A is independent of that of A. This, in parti
ular, allows both

to take the value 1, i.e. both
an be \true". Negation is rather weak under su
h an

interpretation. Many
lassi
al equivalen
es, like the de�nition law for impli
ation,

double negation and the
ontraposition law do not hold in C

!

. Furthermore, rules

like modus tollens and disjun
tive syllogism fail. However, modus pones is valid

and therefore weakly-negative logi
s are
onsidered useful for rule-based reasoning

with information.

Many-Valued Systems

Problably one of the simplest and intuitive ways to produ
e para
onsistent sys-

tems is to use a many-valued logi
, i.e. a logi
 with more than two truth values.

The formulae that hold in a many-valued interpretation are those whi
h have a

truth value that is said to be \designated". A para
onsistent many-valued logi

is thus one whi
h allows both a formula and its negation to be designated. The

simplest form is to use three truth values, namely \true" and \false", whi
h fun
-

tion in a
lassi
al way, and \both". One
an also add a fourth value, \neither",

to
apture the problem of in
omplete knowledge. We present two representatives

of su
h four-valued logi
s next.

4.3 Four-Valued Para
onsistent Logi
s

Many-valued systems are rather intuitive. They provide a natural way of dealing

with over-determined and under-determined knowledge. It is mainly the estab-

4.3. Four-Valued Para
onsistent Logi
s 71

lished Western philosophy that reje
ts extra truth values. Eastern philosophy, on

the
ontrary, is founded on four truth values.

(deCharms, 1997, p. 26), for example, dis
usses the Tibetan view of mind. \For

many Westerners [and
lassi
al logi
ians℄ these [following℄ two statements would

seem to
over all of the relevant possibilities, with one or the other (but not both)

being ne
essarily
orre
t."

(1) A phenomenon exists (has individual existen
e).

(2) The phenomenon does not exist.

\From the Tibetan viewpoint, there are two additional possible (and philosophi-

ally important) viewpoints"

(3) The phenomenon both exists and does not exist.

(4) The phenomenon neither exists nor does not exist.

Thus, the Tibetan view
orresponds to a four-valued approa
h as presented below.

4.3.1 Belnap's Logi
 FOUR

(Belnap, 1977b; Belnap, 1977a) introdu
es \A Useful Four-Valued Logi
" to
ap-

ture the idea of \How A Computer Should Think". Belnap
onsiders the following

situation. First, the reasoner is a
omputer and, therefore, need not to rely on

familiarity with
lassi
al logi
. Se
ond, the
omputer answers questions based on

given fa
ts and dedu
tions. Third, the fa
ts the
omputer has, were given to it,

whi
h means, the
omputer
an only reason about what it was told, i.e. about

epistemi
 information.

The latter is surely the
ase in requirements engineering be
ause the spe
i�er

usually has to a

ept what was told to him. This
omputer, however, is not a

omplete reasoner in the sense that it will not do anything else but report an

in
onsisten
y. This means, no automated belief revision will take pla
e. Consid-

ering its appli
ation in requirements engineering, this is not a problem be
ause

it for
es the spe
i�er to go ba
k and to dis
uss
ertain issues further with the

appli
ant.

Truth Values

First, we �x the truth values of the logi
al system. Based on the epistemi

information a
omputer is given, we have four situations: `told True', `told False',

`told True and False', and `told neither True nor False'. Note, this
orresponds to

4.3. Four-Valued Para
onsistent Logi
s 72

the subsets obtained by forming the powerset of the
lassi
al truth values. The

truth values are given by the set ft ; f ;>;?g respe
tively.

These truth values
an be ordered a

ording to the amount of knowledge or

information that ea
h truth value exhibits. This ordering is denoted �

k

and it

holds: ? �

k

f �

k

>, and ? �

k

t �

k

>. It
an be observed that the four truth

values form a
omplete latti
e under the knowledge (or information) ordering.

A
omplete latti
e is a set, for example A, on whi
h a partial ordering � exists

and for arbitrary subsets X of A there always exists least upper bounds tX 2 A

and greatest lower bounds uX 2 A. A fun
tion f from one
omplete latti
e

into another is monotoni
 if it preserves the latti
e ordering, i.e. a � b implies

f (a) � f (b). We need this property to explain how the truth tables for this logi

arise.

Truth Tables

Table 4.1 presents the truth tables for Belnap's logi
. In
ase there is no
on-

tradi
tion or in
ompleteness present, everything should be as in
lassi
al logi
.

Furthermore, all these truth fun
tions shall be monotoni
 on the latti
e over the

knowledge ordering. This, however, does not determine all resulting truth values.

It turns out that a minimal relationship between
onjun
tion and disjun
tion is

needed to uniquely determine every value in the truth tables. The natural relation

is the following,
lassi
al, equivalen
e:

a ^ b = a , a _ b = b

a ^ b = b , a _ b = a

i.e. having ^ as greatest lower bound and _ as least upper bound of the latti
e.

The truth values for the negation of > and ? are for
ed by monotoni
ity of nega-

tion over the knowledge ordering and > and ? in the truth tables for
onjun
tion

and disjun
tion are also for
ed by monotoni
ity. Furthermore, t is an identity

element with respe
t to
onjun
tion, i.e. a ^ t = a. Thus a _ t = t must hold by

the above obligation. Similar
onsiderations �ll in the rest of the tables ex
ept

the
orners. They are, again, for
ed by monotoni
ity. Sin
e f �

k

> it follows

by monotoni
ity that (f ^ ? �

k

> ^ ?) and hen
e f �

k

(> ^ ?). Similarly,

? �

k

f leads to (> ^ ?) �

k

(> ^ f), i.e. (> ^ ?) �

k

f , and by antisymmetry

(> ^ ?) = f .

Therefore, we derive the following truth tables for negation,
onjun
tion and

disjun
tion:

4.3. Four-Valued Para
onsistent Logi
s 73

A :A

> >

t f

f t

? ?

^ > t f ?

> > > f f

t > t f ?

f f f f f

? f ? f ?

_ > t f ?

> > t > t

t t t t t

f > t f ?

? t t ? ?

Table 4.1: Negation, Conjun
tion, and Disjun
tion of the Logi
 FOUR

These tables
onstitute the so
alled logi
al latti
e, denoted L4, with the follow-

ing, related truth ordering: f �

t

> �

t

t , and f �

t

? �

t

t . The truth ordering

re
e
ts the di�eren
e in the \measure of truth" that every value represents. A

double Hasse diagram of both knowledge and truth ordering of the logi
 FOUR

is given in Figure 4.1.

T

T

f t

truth-ordering

k
n
o
w

le
d
g
e-

o
rd

er
in

g

Figure 4.1: The Truth and Knowledge Ordering of FOUR

The propositional language of Belnap's logi
 is
omposed of a
ountable set of

propositional letters and the logi
al
onne
tives : , ^ and _. Formulae in this

logi
 are
onstru
ted in the standard way. A Belnap theory is a set of formulae in

this logi
. For the �nite
ase, a Belnap theory
an be seen as a single formula given

by the
onjun
tion of all the formulae in that parti
ular theory. For example, the

formula p ^ (: p _ q) ^ (r ^ : q) is a �nite theory in this logi
.

4.3. Four-Valued Para
onsistent Logi
s 74

Semanti
s

We de�ne the semanti
s of this logi
 in the normal way by using the notion of

an interpretation mapping from the propositional symbols into the set of truth

values as well as truth-valuation for a generalisation to arbitrary formulae. Inter-

pretations are ordered by the usual extension to sets of literals of the knowledge

ordering among literals. Furthermore, we use the notion of designated truth

values from many-valued logi
.

Let I be an interpretation in the logi
 FOUR and val

I

the
orresponding truth-

valuation (Belnap uses the term set-up for I). Let F be an arbitrary propositional

formula
ontaining : , _, ^. We say that I satis�es F , denoted by I �

4

F , i�

val

I

(F) 2 ft ;>g, where ft ;>g forms the set of designated truth-values. An

interpretation I is a model of a theory i� it satis�es all the formulae in the

theory. I 2

4

F denotes that I does not satisfy F .

I �

4

A ^ B i� I �

4

A and I �

4

B

I �

4

A _ B i� I �

4

A or I �

4

B

I �

4

: A i� I 2

4

A

The notion of entailment is based on the partial ordering asso
iated with the

logi
al latti
e. In L4 entailment goes up hill. That means, a senten
e A entails

or implies a senten
e B i� for ea
h assignment of one of the truth-values to

variables, the value of A does not ex
eed the value of B , in symbols:

A entails B i� val

I

(A) �

t

val

I

(B) for every interpretation I

Proof Theory

Proof theoreti
ally, Belnap's logi
 is
hara
terised by a �nite axiomatization.

Given are the formulae A, B and C
onsisting of ^, _, and : . The expression

A ! B denotes that A entails B , i.e. that the inferen
e from A to B is valid.

The expression A $ B denotes that A and B are semanti
ally equivalent. The

following axiomatization is known to be sound and
omplete with respe
t to the

semanti
s of the logi
 presented earlier.

A

1

^ : : : ^ A

m

! B

1

_ : : :B

n

provided some A

i

is some B

j

(sharing)

A! B and B ! C implies A! C

A$ B and B $ C implies A$ C

A! B i� : B ! : A

4.3. Four-Valued Para
onsistent Logi
s 75

: : A$ A

: (A ^ B)$: A _ : B : (A _ B)$: A ^ : B

A _ B $ B _ A A ^ B $ B ^ A

A _ (B _ C)$ (A _ B) _ C A ^ (B ^ C)$ (A ^ B) ^ C

A ^ (B _ C)$ (A ^ B) _ (A ^ C) A _ (B ^ C)$ (A _ B) ^ (A _ C)

(A _ B)! C i� A! C and B ! C

A! (B ^ C) i� A! B and A! C

A! B i� A$ (A ^ B) i� B $ (A _ B)

The �rst blo
k of expressions
aptures the re
exivity, transitivity and
ontrapos-

itive properties of the
onsequen
e relation. The se
ond blo
k of expressions
or-

responds to standard
lassi
al properties of negation, disjun
tion and
onjun
tion

(e.g.,
ommutativity, asso
iativity, de Morgan laws). Finally, the last expressions

orrespond to standard
lassi
al rules for introdu
tion and elimination of _ and

^ respe
tively.

The similarity between the above rules and
lassi
al rules shows that this four-

valued logi
 is very
lose to standard
lassi
al logi
. However, the following

`paradoxes of impli
ation' are not derivable, nor semanti
ally valid, from the set

of entailment rules: A ^ : A ! B and A ! B _ : B . This means that the

problem of triviality was resolved and, thus, Belnap's logi
 is para
onsistent.

Belnap's logi
 is stri
tly weaker than
lassi
al logi
 as it does not in
orporate

modus ponens nor ^-Elimination. Furthermore, impli
ation
annot be de�ned

in terms of the other logi
al operators, nor does the dedu
tion theorem hold.

This logi
 is, however, \normal" be
ause the Tarskian properties of re
exivity,

monotoni
ity and transitivity hold.

Beyond Belnap

Belnap's four-valued logi
 had a great impa
t on the resear
h of para
onsistent

logi
s and it had been a
onstant sour
e for further investigations. (Rodrigues

and Russo, 1998), for example, present a translation method for Belnap's logi

into �rst-order predi
ate logi
 based on two prin
iple predi
ates holds(A; tt) and

holds(A;�) for any formula A. (Arieli and Avron, 1998) use Belnap's logi
 as

a basis for a dis
ussion on the general usefulness of four truth values. They

�nd that four values are just right. They are stri
tly more expressive than three

truth values but in
orporate the investigated three-valued logi
s. There are also

a number of related approa
hes to Belnap's logi
, one of whi
h is presented next.

4.3. Four-Valued Para
onsistent Logi
s 76

4.3.2 Damasio's Logi
 FOUR

Belnap's logi
 does not validate the use of modus ponens. However, this is an

often applied reasoning rule. Thus, Belnap's logi
 is not suited for some appli
a-

tions, for example, in logi
 programming. To over
ome this de�
ien
y (Dam�asio

and Pereira, 1998) present in their survey of para
onsistent semanti
s for logi

programs a variation of Belnap's logi
.

Truth Table for Impli
ation

The interpretation of the logi
al
onne
tives ^, _ and : is the same as in

Belnap's logi
 as given in Table 4.1. The logi
 FOUR by (Dam�asio and Pereira,

1998) then di�ers primarily in the de�nition of the
onsequen
e relation and the

in
lusion of the impli
ation
onne
tive whi
h is presented in Table 4.2.

! > t f ?

> t t f f

t t t f f

f t t t t

? t t t t

Table 4.2: Truth Table for Impli
ation in the Logi
 FOUR

Let I be a FOUR interpretation, val

I

the
orresponding truth-valuation and

F an arbitrary formula. Then I satis�es F , denoted I �

4

F , if and only if

val

I

(F) 2 ft ;>g, where ft ;>g forms the set of designated truth values. As

usual, an interpretation I is a model of a theory T if and only if it satis�es all

the formulae in T . Furthermore, I 2

4

F denotes that I does not satisfy F .

Note that the impli
ation operator above always evaluates to either t or f . It

is de�ned in su
h a way that the following equivalen
es plus modus ponens are

valid:

I �

4

A ^ B i� I �

4

A and I �

4

B

I �

4

A _ B i� I �

4

A or I �

4

B

I �

4

A! B i� I 2

4

A or I �

4

B

Note the similarities to (Herre and Pear
e, 1992) and (Herre, 1998). Ea
h of the

two papers
onsider one half of this work. The �rst is
on
erned with partial

logi
al programs and the latter with in
onsistent logi
 programs. Both papers

together
an be used to extend the work by (Dam�asio and Pereira, 1998) to the

�rst-order
ase.

4.3. Four-Valued Para
onsistent Logi
s 77

Logi
al Equivalen
e

To
hara
terise this logi
 further, we introdu
e the notion of equivalen
e. A
tu-

ally, in multi-valued logi
s one
an de�ne at least two notions of equivalen
e, one

based on the truth-valuation fun
tion (
alled strong equivalen
e and denoted �

4

)

and another based on the
onsequen
e relation (referred to as weak equivalen
e,

j=j

4

). Given two formulae A and B of the language FOUR, we say A �

4

B i�

val

I

(A) = val

I

(B) for every interpretation I . Furthermore, we say A j=j

4

B i� for

every interpretation I it holds I �

4

A i� I �

4

B . Otherwise A j=j

4

B is false.

Note, for an arbitrary many-valued logi
 it holds that if A � B then A j=j B ,

whenever � is de�ned as truth-value equality and j= is expressed by means of a

set of designated truth values. In the remainder of this subse
tion we mean weak

equivalen
e when we just say equivalen
e.

The equivalen
es holding in FOUR are similar to the ones holding in
lassi
al

logi
. (Dam�asio and Pereira, 1998) present a list of valid equivalen
es. However,

a number of laws do not hold, like the law of the ex
luded middle (A _ : A j=j t),

the law of
ontradi
tion (A ^ : A j=j f), the de�nition law (A! B j=j : A _ B),

i.e. the possibility to de�ne impli
ation in terms of the other
onne
tives, and

the
ontraposition law (A ! B j=j : B ! : A). Furthermore, modus tollens

((: B ^ A! B) ! : A) and disjun
tive syllogism (A ^ (: A _ B) ! B) fail.

Interestingly, all axioms of propositional logi
 hold but

(A! B)! ((A! (: B))! (: A))

whi
h
orresponds to the introdu
tion rule for negation of the natural dedu
tion

al
ulus. Finally, we note that the logi
 presented is neither daCosta's C

!

system,

be
ause the law of the ex
luded middle is not satis�ed, nor Belnap's logi
, be
ause

modus ponens is a sound rule now.

Logi
al Consequen
e

Given the above, we present the
orresponden
e between the
onsequen
e relation

(also
alled satisfa
tion relation) and the truth-valuation fun
tion of propositional

symbols, as well as between the truth-valuation fun
tion and models in FOUR.

Let A be a propositional symbol and I an interpretation in a language
ontaining

A, then:

I �

4

A and I �

4

: A i� val

I

(A) = >

I �

4

A and I 2

4

: A i� val

I

(A) = t

I 2

4

A and I �

4

: A i� val

I

(A) = f

I 2

4

A and I 2

4

: A i� val

I

(A) = ?

4.4. Quasi-Classi
al Logi
 78

This means, a literal L is entailed by an interpretation I i� val

I

(L) maps to t or

>. The
omplement of L, i.e. : L, holds i� val

I

(L) maps to f or >.

To �nd the value of the truth-valuation fun
tion applied to the propositional

symbol A, we
onstru
t the set of all possible FOUR models of a given theory

T , i.e. Mod

�

4

(T). Then, we take the least FOUR model M of Mod

�

4

(T) with

respe
t to the knowledge ordering, i.e.M 2 Mod

�

4

(T) ^ 8N � N 2 Mod

�

4

(T))

M �

k

N . The value of the truth-valuation of a propositional symbol A is then:

val

I

(A) = > i� A 2 M and : A 2 M

val

I

(A) = t i� A 2 M and : A 62 M

val

I

(A) = f i� A 62 M and : A 2 M

val

I

(A) = ? i� A 62 M and : A 62 M

The Tweety Example

Consider the rules (1)-(4) of the Tweety example whi
h we presented in Chapter

3. By applying the equivalen
e rules of FOUR and modus ponens we
an infer

only one and thus least model:

M = fpenguin(Tweety); bird(Tweety);
ies(Tweety);:
ies(Tweety)g

This, in turn, leads to the following assignments of truth values:

val

I

(
ies(Tweety)) = >

val

I

(penguin(Tweety)) = t

val

I

(bird(Tweety)) = t

whi
h
orresponds to our introdu
tion of Tweety as a penguin and bird that
an

and
annot
y.

4.4 Quasi-Classi
al Logi

The development of quasi-
lassi
al logi
 (QCL) was in
uen
ed by the need to

handle beliefs rather than the truth. As su
h, it seems parti
ularly suitable for

reasoning about spe
i�
ations be
ause spe
i�
ations are artifa
ts of belief. In

general, a spe
i�
ation is a
olle
tion of information, often provided by multiple

sour
es, on how a system whi
h has yet to be developed should work. Therefore,

belief in the information is
ru
ial as there does not exist anything providing

the ultimate truth about the future system. In su
h a
ontext, the sour
es of

information may possibly
ontradi
t on some issues and it may well be that su
h

4.4. Quasi-Classi
al Logi
 79

ontradi
tions
annot be resolved immediately. Hen
e, there is a need for a logi

dealing with in
onsistent information.

The logi
s FOUR and FOUR were also designed to handle beliefs. Two extra

truth values were introdu
ed to
apture in
onsisten
y and in
ompleteness. We

found, however, that pra
ti
al reasoning rules, like modus pones and disjun
tive

syllogism, do not hold in these logi
s. Furthermore, the de�nition law, relat-

ing impli
ation with negation and disjun
tion is not valid either. We think that

spe
i�
ation developers would like to rely on
lassi
al
orresponden
es and spe
i-

�
ation analysts prefer to rely on standard inferen
e rules. Therefore, we require

a para
onsistent logi
 that is more pra
ti
al in su
h respe
ts.

(Hunter, 2000) states that QCL has been developed for appli
ations, in parti
ular

for reasoning about requirements spe
i�
ations that might be in
onsistent. For

example, (Hunter and Nuseibeh, 1997) advo
ate and illustrate the use of QCL to

handle and manage in
onsistent spe
i�
ations. The spe
i�
ations presented as

examples in the work on QCL are written in �rst-order predi
ate logi
. Our aim

in this thesis is to utilise QCL to reason about in
onsistent spe
i�
ations written

in a ri
her language, spe
i�
ally the Z notation.

4.4.1 Syntax of Quasi-Classi
al Logi

To the reader familiar with �rst-order predi
ate logi
 (FOPL) only little will be

new in this se
tion. For those who like to re
apitulate FOPL we re
ommend (Fit-

ting, 1996) or (Ben-Ari, 2001) for a short introdu
tion. Both text books present

an introdu
tion to predi
ate logi
 and, in parti
ular, to the tableau method whi
h

we use later, too.

The language of quasi-
lassi
al logi
 is that of �rst-order predi
ate logi
. It is

de�ned in the usual way. We start by presenting the alphabet of the language.

Based on the alphabet, we de�ne the notions of a term, an atomi
 formula and,

�nally, formulae belonging to the language of QCL.

Alphabet. The alphabet of the language of quasi-
lassi
al logi

onsists of: the

ommon logi
al
onne
tives, like ^;_;);, and : , in
luding the two quanti�ers

8 and 9; a set of variables; a set of predi
ate symbols; a set of fun
tion symbols;

and, �nally, some pun
tuation symbols, like `(' and `)', used to form formulae.

Ea
h relation and fun
tion symbol is asso
iate with a positive integer, its arity.

Fun
tion symbols with arity zero are also
alled
onstant symbols. We assume

that there is at least one
onstant symbol in the set of fun
tion symbols. Note,

the Boolean
onstants true and false are not given in the QC language.

Term. The basi
 building blo
k for a formula is a term. First, any variable is

a term and, se
ond, if f is an n-ary fun
tion symbol with n � 0 and t

1

; : : : ; t

n

are terms then f (t

1

; : : : ; t

n

) is a term, too. Note, that it follows from the se
ond

4.4. Quasi-Classi
al Logi
 80

ase that
onstant symbols are terms as well. For example, if + is a two-pla
e

fun
tion symbol,

2

is a one-pla
e fun
tion symbol, x and y are variables, and 0

and 1 are
onstants, then x + y ; x

2

+ 1; (1 + 0)

2

; ((x + y)

2

+ (1 + y)

2

)

2

; : : : are

terms. Sometimes we may use the in�x notation for writing terms, like in the

example above. For instan
e, we write x + y rather than +(x ; y).

Atom. Having de�ned terms we move on to de�ne formulae. The simplest of its

kind is an atomi
 formula, also
alled an atom. If P is an n-ary predi
ate symbol

with n � 0 and t

1

; : : : ; t

n

are terms, then P(t

1

; : : : ; t

n

) is an atomi
 formula.

Formulae. Given atomi
 formulae we use the logi
al operators available to

onstru
t more
ompli
ated formulae. Formulae are well-formed if they meet the

following
onditions. First, any atom is a formula and, se
ond, if � and are

formulae and x is a variable then the following are also formulae: (:�), (� ^),

(� _), (�)), (�,), (8 x :�(x)), (9 x :�(x)).

We let L denote a set of formulae formed in su
h an indu
tive way. For later ref-

eren
e we introdu
e some more vo
abulary. Any atomi
 formula or any negation

of an atomi
 formula is
alled a literal. A disjun
tion of literals is
alled a
lause.

A term or an atomi
 formula is ground if and only if it
ontains no variables and

a senten
e is a formula with no free-variable o

uren
es. Furthermore, we omit

bra
kets a

ording to the general
onventions.

The notion of a fo
us is possibly new to those a
quainted with FOPL. The fo
us

is a synta
ti
al rule to remove a parti
ular disjun
t from a
lause. We use the

fo
us later as a means to introdu
e a parti
ular form of disjun
tion with a built-in

resolution rule.

Fo
us. Let �

1

_ : : : _ �

n

be a
lause that in
ludes a literal �

i

. The fo
us of

�

1

_ : : : _ �

n

by �

i

, denoted
(�

1

_ : : : _ �

n

; �

i

), is de�ned as the
lause

obtained by removing the disjun
t �

i

from the
lause �

1

_ : : : _ �

n

. In the
ase

of a
lause with just one disjun
t we
onsider the fo
us to be unde�ned.

Basi
ally, the fo
us of a
lause is just the original formula without a parti
ular

disjun
t. For example,
onsider the
lause � _ � _
, then the fo
us of this
lause

by �, denoted
(� _ � _
; �), is � _
. The fo
us
(� _ �; �) is unde�ned,

be
ause � _ �
ontra
ts to �.

4.4.2 Semanti
s of Quasi-Classi
al Logi

One of the main ideas behind some para
onsistent logi
s is to separate the truth

and falsehood of a formula from ea
h other, i.e. knowing the formula ' is true

does not ne
essarily imply that ' is not false. Quasi-
lassi
al logi
 follows the

same approa
h. Basi
ally, we
onstru
t a set of all possible atomi
 formulae

that
an be built using the symbols in the set of assumptions. Any su
h set

is a possible model. Then, we de�ne two semanti
 relations,
alled strong and

4.4. Quasi-Classi
al Logi
 81

weak satisfa
tion to interpret QC formulae. Finally, we de�ne the quasi-
lassi
al

satisfa
tion relation based on strong and weak satisfa
tion.

Quasi-Classi
al Model

The notion of a model in �rst-order quasi-
lassi
al logi
 is based on a form of

Herbrand models. Herbrand models are spe
ial in the sense that they asso
iate

ea
h ground term with its name. Every model has a domain, whi
h in this
ase

is
alled the Herbrand universe.

De�nition 4.4.1 (Herbrand Universe)

The Herbrand universe U (L) for a set of formulae L is the set of ground terms

that
an be formed using the fun
tion and
onstant symbols in L. As mentioned

before, we
an always assume that there exists a
onstant symbol. If there is

none we add one, say
.

For example,
onsider the set of formulae L = fQ(a);P(a; f (x); g(y ; b))g with

predi
ate symbols P ;Q , fun
tion symbols f ; g ,
onstants a; b, and variables x ; y .

Then U (L) = fa; b; f (a); f (b); f (f (: : : (f (a)) : : :)); g(a; a); g(a; b); : : :g is the Her-

brand universe of L. Note, if L
ontains a fun
tion symbol with arity greater

than zero then the Herbrand universe is in�nite. The Herbrand universe of the set

of ground formulae � = f: P(a);P(a) _ P(b);P(a) _ : P(b)g with predi
ate

symbol P and
onstants a and b is U (�) = fa; bg.

De�nition 4.4.2 (Herbrand Base)

Given is the Herbrand universe U (L) for a set of formulae L. The Herbrand base

B(L) is the set of ground atoms that
an be formed using the predi
ate symbols

in L and the terms in U (L).

For example, the Herbrand base for the set of formulae L from above B(L) =

fQ(a);Q(f (a));P(a; f (a); g(b; b));P(f (a); b; a); :::g. The Herbrand base B(�)

of the set of formulae � is B(�) = fP(a);P(b)g.

In standard predi
ate logi
, every Herbrand model over L
an be des
ribed as

a subset of the Herbrand base B(L). Be
ause we deal with a para
onsistent

logi
, we need to go a step further. The idea in many para
onsistent logi
s is

to separate formulae and their negation. To do so, we use a set of positive and

negative obje
ts
onstru
ted from the Herbrand base.

De�nition 4.4.3 (Obje
t)

Given is the Herbrand base B(L) for a set of formulae L. O(L) is a set of obje
ts

de�ned as follows, where +� is a positive obje
t, and �� is a negative obje
t.

O(L) = f+� j � 2 B(L)g [f�� j � 2 B(L)g

4.4. Quasi-Classi
al Logi
 82

Consider the set of formulae � from above. The set of obje
ts is given by O(�) =

f+P(a);�P(a);+P(b);�P(b)g. Any set of su
h positive and negative obje
ts

an be a quasi-
lassi
al model.

De�nition 4.4.4 (Model)

Given a set of obje
ts O(L), then any E � O(L) is
alled a model.

This means that a model E
an
ontain both positive and negative obje
ts. We

onsider the following meaning for positive obje
ts +� and negative obje
ts ��

being in some model E or not:

+� 2 E means � is \satis�able" in the model

�� 2 E means : � is \satis�able" in the model

+� 62 E means � is not \satis�able" in the model

�� 62 E means : � is not \satis�able" in the model

This semanti
s
an also be regarded as giving one of the four truth values Both,

True, False and Neither to the elements of the Herbrand base, i.e. to the ground

atoms, as in the four-valued logi
 by (Belnap, 1977b). For an atom �

� is Both if both � and : � are \satis�ed"

� is True if � is \satis�ed" and : � is not \satis�ed"

� is False if � is not \satis�ed" and : � is \satis�ed"

� is Neither if neither � nor : � is \satis�ed"

Hunter, however, introdu
es a di�erent semanti
s based on a two-valued inter-

pretation. To
ontinue, we formalise the notion of satis�ability and extend it to

formulae of the language using the following de�nitions.

Quasi-Classi
al Herbrand Interpretation

As usual, an assignment A is a fun
tion from the set of variables in L to the

universe U (L). Given an assignment A, an x -variant assignment B is the same

assignment as A ex
ept perhaps in the assignment for x .

De�nition 4.4.5

For an assignment A, terms in L are interpreted as follows, where [:℄

A

is a fun
tion

from the terms in L to U (L).

4.4. Quasi-Classi
al Logi
 83

[
℄

A

=
, where
 is a
onstant symbol.

[x ℄

A

= x

A

, where x is a variable symbol.

[f (t

1

; : : : ; t

n

)℄

A

= f ([t

1

℄

A

; : : : ; [t

n

℄

A

), where f is a fun
tion symbol and

t

1

; : : : ; t

n

are terms.

Thus, ea
h ground term in L is interpreted as the equivalent term in U (L), hen
e

a model with su
h an interpretation is a Herbrand model. A subset of the set of

obje
ts is a model of a parti
ular literal, if the
orresponding positive or negative

obje
t is a member of the model itself.

De�nition 4.4.6 (Herbrand satisfa
tion)

Let �

h

be a satis�ability relation
alled Herbrand satisfa
tion. For a model E and

an assignment A, an atom �(t

1

; : : : ; t

n

) in L over terms t

1

; : : : ; t

n

is interpreted

as follows:

(E ;A) �

h

�(t

1

; : : : ; t

n

) i� +�([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E

(E ;A) �

h

: �(t

1

; : : : ; t

n

) i� ��([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E

This de�nition of Herbrand satisfa
tion is the base
ase for the two satisfa
tion

relations QCL is built upon. We
ontinue by de�ning strong satisfa
tion �rst.

Strong Satisfa
tion Relation

The main idea behind QCL is that proofs in QCL are a two-stage a�air. A

proof is separated into de
ompositional steps, in
luding resolution, followed by

ompositional steps. To
apture this idea we need to establish the semanti
s for

both stages. Here we present the notion of strong satisfa
tion whi
h
orresponds

to the de
ompositional phase.

De�nition 4.4.7 (Strong satisfa
tion)

Let �

s

be a satis�ability relation
alled strong satisfa
tion. For a model E , and

an assignment A, we de�ne �

s

as follows, where �

1

; : : : ; �

n

are literals in L, and

� is a literal in L.

(E ;A) �

s

� i� (E ;A) �

h

�

(E ;A) �

s

�

1

_ : : : _ �

n

i�

[(E ;A) �

s

�

1

or : : : or (E ;A) �

s

�

n

℄ and

8 i s.t. 1 � i � n [(E ;A) �

s

: �

i

implies

(E ;A) �

s

(�

1

_ : : : _ �

n

; �

i

)℄

4.4. Quasi-Classi
al Logi
 84

We
larify the meaning of this disjun
tion rule with an example. If � _ � is the

given
lause, then the above de�nition redu
es to

(E ;A) �

s

� _ � i� [(E ;A) �

s

� or (E ;A) �

s

�℄

and [(E ;A) �

s

: � implies (E ;A) �

s

�℄

and [(E ;A) �

s

: � implies (E ;A) �

s

�℄

Strong satisfa
tion is more restri
ted than
lassi
al satisfa
tion be
ause the link

between a formula and its negation has been de
oupled. To provide a meaning

for resolution, this link is put into the semanti
s of strong satisfa
tion via the

treatment of disjun
tion.

(Hunter, 2000) provides a slightly di�erent view on disjun
tion, too. Given a

model E and literals �

1

; : : : ; �

n

, then

E �

s

�

1

_ : : : _ �

n

i�

(1) for some �

i

2 f�

1

; : : : ; �

n

g;+�

i

2 E and ��

i

62 E

or (2) for all �

i

2 f�

1

; : : : ; �

n

g;+�

i

2 E and ��

i

2 E

Hunter proves that both de�nitions are equivalent by expanding the above de�-

nition. In essen
e, the disjun
tion rule of strong satisfa
tion provides a semanti

a

ount for para
onsistent reasoning using resolution. We now
ontinue de�ning

strong satisfa
tion,
onsidering arbitrary formulae.

De�nition 4.4.7 (
ontinued)

For formulae �; �;
 2 L, we extend the de�nition of strong satisfa
tion as follows:

(E ;A) �

s

� ^ � i� (E ;A) �

s

� and (E ;A) �

s

�

(E ;A) �

s

: : � _
 i� (E ;A) �

s

� _

(E ;A) �

s

: (� ^ �) _
 i� (E ;A) �

s

: � _ : � _

(E ;A) �

s

: (� _ �) _
 i� (E ;A) �

s

(: � ^ : �) _

(E ;A) �

s

� _ (� ^
) i� (E ;A) �

s

(� _ �) ^ (� _
)

(E ;A) �

s

� ^ (� _
) i� (E ;A) �

s

(� ^ �) _ (� ^
)

(E ;A) �

s

(�) �) _
 i� (E ;A) �

s

(: � _ �) _

Let B be an x -variant assignment of A, then

(E ;A) �

s

(9 x :�(x)) _ � i� for some B ; (E ;B) �

s

� _ �

(E ;A) �

s

(8 x :�(x)) _ � i� for all B ; (E ;B) �

s

� _ �

(E ;A) �

s

(: 9 x :�(x)) _ � i� for all B ; (E ;B) �

s

: � _ �

(E ;A) �

s

(: 8 x :�(x)) _ � i� for some B ; (E ;B) �

s

: � _ �

For a model E we polymorphi
ally extend strong satisfa
tion as follows

E �

s

' i� for all assignments A, (E ;A) �

s

'

4.4. Quasi-Classi
al Logi
 85

Su
h an E is said to be a strong model of '.

For example, f�a;+a;�b;+bg is the only strong model of the set of ground

formulae � = f: a; a _ b; a _ : bg. Note, every formula ' has a strong model

even if it is
lassi
ally in
onsistent.

In the de�nition of strong satisfa
tion, the disjun
tion rule applies only to
lauses.

We show that this restri
tion is ne
essary. We demonstrate on an example that

a weakening of this rule to arbitrary formulae leads to a
ontradi
tion. Consider,

for example, the propositional model E = f+�;��;+
g for the obje
ts +�, ��

and +
. Using a weakened disjun
tion rule we establish that E �

s

� _ (� ^
),

be
ause E �

s

� ^
 and E 2

s

: (� ^
). A

ording to the disjun
tion rule we

do not need E �

s

� whi
h would not hold. However, E 2

s

(� _ �) ^ (� _
),

be
ause E 2

s

� _ �, whi
h is due to E �

s

: � but E 2

s

�. Together, this

ontradi
ts distributivity of disjun
tion, if we would allow a weakening of the

disjun
tion rule.

Note, the equivalen
es in strong satisfa
tion allow for any formula in L to be

rewritten into
onjun
tive normal form and then into
lauses whi
h
an be eval-

uated with respe
t to the obje
ts in the model.

Weak Satisfa
tion Relation

Strong satisfa
tion
orresponds to the de
ompositional rules. Now we need to

apture the
ompositional rules. The de�nition of weak satisfa
tion is similar

to strong satisfa
tion. The main di�eren
e is that disjun
tion is less restri
ted,

be
ause it does not in
orporate fo
using. Indeed, weak satisfa
tion seems
loser

to a
lassi
al notion of satisfa
tion.

De�nition 4.4.8 (Weak satisfa
tion)

Let �

w

be a satis�ability relation
alled weak satisfa
tion. For a model E , an

assignment A, and a literal � in L, we de�ne �

w

as follows.

(E ;A) �

w

� i� (E ;A) �

h

�

For formulae �; � 2 L, we extend the de�nition as follows:

(E ;A) �

w

� _ � i� (E ;A) �

w

� or (E ;A) �

w

�

(E ;A) �

w

� ^ � i� (E ;A) �

w

� and (E ;A) �

w

�

(E ;A) �

w

: : � i� (E ;A) �

w

�

(E ;A) �

w

: (� ^ �) i� (E ;A) �

w

: � _ : �

(E ;A) �

w

: (� _ �) i� (E ;A) �

w

: � ^ : �

(E ;A) �

w

�) � i� (E ;A) �

w

: � _ �

Let B be an x -variant assignment of A, then

4.4. Quasi-Classi
al Logi
 86

(E ;A) �

w

9 x :�(x) i� for some B ; (E ;B) �

w

�

(E ;A) �

w

8 x :�(x) i� for all B ; (E ;B) �

w

�

(E ;A) �

w

: 9 x :�(x) i� for all B ; (E ;B) �

w

: �

(E ;A) �

w

: 8 x :�(x) i� for some B ; (E ;B) �

w

: �

For a model E we polymorphi
ally extend weak satisfa
tion as follows

E �

w

' i� for all assignments A, (E ;A) �

w

'

Su
h an E is said to be a weak model of '.

For example, the set of ground formulae � = f: a; a _ b; a _ : bg has the fol-

lowing weak models: f�a;+ag, f�a;+b;�bg, f�a;+a;+bg, f�a;+a;�bg and

f�a;+a;+b;�bg. Note, every strong model of a formula ' is a weak model of

' but the
onverse does not hold in the general
ase.

Observe that the de�nition of weak satisfa
tion di�ers slightly from the one given

by (Hunter, 2000; Hunter, 2001). Disjun
tion is here appli
able for formulae and

not only for literals. This
hange is ne
essary for the following property proved

in (Hunter, 2000). This property justi�es Hunter's use of the rules above rather

than his more restri
ted de�nition.

Lemma 4.4.1

Distributivity is implied by the de�nition of weak satisfa
tion, i.e. for any formu-

lae �; �;
 2 L, and any model E , the following distribution properties hold:

(E ;A) �

w

� _ (� ^
) i� (E ;A) �

w

(� _ �) ^ (� _
)

(E ;A) �

w

� ^ (� _
) i� (E ;A) �

w

(� ^ �) _ (� ^
)

Proof

Assume (E ;A) �

w

� _ (� ^
). So (E ;A) �

w

� or ((E ;A) �

w

� and (E ;A) �

w

). By distributivity of the
lassi
al
onne
tives \or" and \and", we have

((E ;A) �

w

� or (E ;A) �

w

�) and ((E ;A) �

w

� or (E ;A) �

w

). Hen
e,

(E ;A) �

w

(� _ �) ^ (� _
). The other
ase follows similarly. 2

Quasi-Classi
al Entailment

Now we have established all the building blo
ks for the de�nition of quasi-
lassi
al

entailment. Basi
ally, QC entailment is of the same form as
lassi
al entailment

ex
ept that strong satisfa
tion is used for the assumptions and weak satisfa
tion

is used for the
on
lusion.

4.4. Quasi-Classi
al Logi
 87

De�nition 4.4.9 (QC entailment)

Given a set of formulae '

1

; : : : ; '

n

and a formula �. Let �

Q

be an entailment

relation,
alled quasi-
lassi
al entailment, su
h that �

Q

� P(L)� L, and de�ned

as follows:

f'

1

; : : : ; '

n

g �

Q

�

i� for all models E ; if E �

s

'

1

and : : : and E �

s

'

n

then E �

w

�

Consider the set of ground formulae � = f: a; a _ b; a _ : bg and re
all that

its only strong model is E = f+a;�a;+b;�bg. The model E is also a weak

model of a, hen
e � quasi-
lassi
ally entails a, i.e. f: a; a _ b; a _ : bg �

Q

a.

Similarly, we
an show f: a; a _ b; a _ : bg �

Q

: a _
 as well as f: a; a _

b; a _ : bg �

Q

a ^ b. However, we
annot establish f: a; a _ b; a _ : bg �

Q

d ,

be
ause the model E from above is still a strong model of � but it is not a weak

model of d .

An alternative way of de�ning entailment
orresponds to model set in
lusion. The

advantage is that we
an make use of the standard properties of set in
lusion when

reasoning about QC entailment.

For a set of formulae '

1

; : : : ; '

n

, its
lass of strong models Mod

s

is de�ned as the

set of all its strong models E , i.e.

Mod

s

('

1

; : : : ; '

n

) = fE j E �

s

'

1

and : : : and E �

s

'

n

g

and the
lass of weak models Mod

w

for a formula � is the set of its weak models

E , i.e.

Mod

w

(�) = fE j E �

w

�g

Then QC entailment �

Q

is de�ned as in
lusion of the
lass of strong models in

the
lass of weak models, i.e.

f'

1

; : : : ; '

n

g �

Q

� i� Mod

s

('

1

; : : : ; '

n

) � Mod

w

(�)

4.4.3 The Semanti
 Tableau Method for First-Order QCL

A proof in QCL is a two stage a�air. First, a set of assumptions is transformed

into
lauses and de
omposed into literals. Then, the
ompositional stage fol-

lows, forming
lauses from the assumptions and derived literals using disjun
tion

or
onjun
tion introdu
tion, possibly followed by some rewrite steps to form

equivalent formulae. Any su
h obtained formula is a non-trivial inferen
e from

the assumptions. We
onsider the strong satisfa
tion relation to
apture the

de
omposition of the set of assumptions and weak satisfa
tion to
apture the

omposition of the
on
lusion.

4.4. Quasi-Classi
al Logi
 88

The Semanti
 Tableau Method

The proof theory of �rst-order quasi-
lassi
al logi
 is based on the notion of

semanti
 tableau. A semanti
 tableau is a tree-like stru
ture where nodes are

labeled with formulae. The idea is that ea
h bran
h represents the
onjun
tion

of the formulae appearing in it and that the tree itself represents the disjun
tion

of its bran
hes. We refer to (Smullyan, 1968) and (Fitting, 1996) who present a

thorough overview of the te
hniques of the semanti
 tableau method.

The semanti
 tableau proof pro
edure is based on refutation, i.e. to prove a

formula ' is satis�able, we begin with : ' and produ
e a
ontradi
tion. This

is done by expanding : ' su
h that inessential details of its logi
al stru
ture

are removed until a
ontradi
tion appears or no expansion rule
an be applied.

Su
h expansion results in a tableau tree. For example, to prove the tautology

q) (p) q) we
onstru
t the following tree:

: (q) (p) q))

q ;: (p) q)

q ; p;: q

and observe the
ontradi
tion between the literals q and : q . The tableau is

losed and thus the tautology is proven.

However, this approa
h does not work dire
tly for QCL sin
e the truth and false-

hood of a predi
ate are de
oupled. Therefore, the atom q being satis�able does

not mean that : q is not satis�able, i.e. it is not possible to
onstru
t a
ontra-

di
tion in the same way as above. To over
ome this obsta
le Hunter introdu
es

signed formulae denoted by

�

, representing that a formula is unsatis�able. Then

showing q and q

�

yields a refutation, as well as : q and (: q)

�

, be
ause a formula

annot be satis�able and unsatis�able at the same time.

The idea to use signed formulae is not new. They have often been used in the

onstru
tion of semanti
 tableau, for example by (H�ahnle et al., 1994). New is

that the link between a signed formula and its
onjugate has been removed. If

this link were put ba
k into the proof theory, QCL would
ollapse to
lassi
al

predi
ate logi
.

We formalise the introdu
ed notions. The
onjugate of a formula ' is denoted

'

�

. Furthermore, the set of signed formulae of L is denoted L

�

and is de�ned as

L[f'

�

j ' 2 Lg. Given these notions we
an de�ne what it means to satisfy the

onjugate of a formula.

De�nition 4.4.10

For any formula ' 2 L we further extend the weak satisfa
tion and strong satis-

fa
tion relations as follows:

E �

s

'

�

i� E 2

s

'

E �

w

'

�

i� E 2

w

'

4.4. Quasi-Classi
al Logi
 89

This means, the formula '

�

is weakly or strongly satis�able whenever ' is not.

The Tableau S-Rules

In the de�nition of the quasi-
lassi
al (QC) semanti
 tableau, there are two types

of tableau expansion rules, the S-rules and the U-rules. These expansion rules

orrespond roughly to the two satisfa
tion relations presented in the last se
tion.

First, we introdu
e the tableau S-rules.

De�nition 4.4.11 (S-Rules)

The following are the S-rules for a QC semanti
 tableau. The j symbol denotes

the introdu
tion of a bran
h point in the QC semanti
 tableau.

The
onjun
tion S-rule:

� ^ �

�; �

The disjun
tion S-rules:

�

1

_ : : : _ �

n

(: �

i

)

�

j
(�

1

_ : : : _ �

n

; �

i

)

[where �

1

; : : : ; �

n

are literals℄

�

1

_ : : : _ �

n

�

1

j : : : j �

n

[where �

1

; : : : ; �

n

are literals℄

The rewrite S-rules:

: : � _

� _

: (� ^ �) _

: � _ : � _

: (� _ �) _

(: � ^ : �) _

� _ (� ^
)

(� _ �) ^ (� _
)

� ^ (� _
)

(� ^ �) _ (� ^
)

(�) �) _

(: � _ �) _

The quanti�
ation S-rules:

(8 x :�(x)) _

�(t) _

(: 9 x :�(x)) _

: �(t) _

(9 x :�(x)) _

�(t

0

) _

(: 8 x :�(x)) _

: �(t

0

) _

where t is a term in U (L) and t

0

is a term in U (L) but not o

urring in

the tableau
onstru
ted so far.

All the tableau S-rules assume the formula above the line to be satis�able. Basi-

ally, the S-rules
orrespond to the de
ompositional rules of a QC proof.

4.4. Quasi-Classi
al Logi
 90

The Tableau U-Rules

The tableau U-rules are a variant of the
ompositional rules of a QC proof.

They
orrespond roughly to the negation of the weak satisfa
tion relation. In

essen
e, rather than
omposing literals to form the
on
lusion we de
ompose the

on
lusion to its literals. As su
h, all the U-rules assume a formula above the

line to be unsatis�able.

De�nition 4.4.12 (U-Rules)

The following are the U-rules for a QC semanti
 tableau. The j symbol denotes

the introdu
tion of a bran
h point in the QC semanti
 tableau.

The
onjun
tion U-rule:

(� ^ �)

�

�

�

j �

�

The disjun
tion U-rule:

(� _ �)

�

�

�

; �

�

The rewrite U-rules:

(: : �)

�

�

�

(: (� ^ �))

�

(: � _ : �)

�

(: (� _ �))

�

(: � ^ : �)

�

(�) �)

�

(: � _ �)

�

The quanti�
ation U-rules:

(8 x :�(x))

�

(�(t

0

))

�

(: 9 x :�(x))

�

(: �(t

0

))

�

(9 x :�(x))

�

(�(t))

�

(: 8 x :�(x))

�

(: �(t))

�

where t is a term in U (L) and t

0

is a term in U (L) but not o

urring in

the tableau
onstru
ted so far.

The QC Semanti
 Tableau

The S- and U-rules are both de
omposition rules for signed formulae. They

are applied to
onstru
t the semanti
 tableau for a set of assumptions and a

on
lusion a

ording to the following de�nition.

De�nition 4.4.13 (Semanti
 Tableau)

A QC semanti
 tableau for a set of assumptions � and a
on
lusion ' is a tree

su
h that:

1. the formulae in � [f'

�

g are at the root of the tree;

2. ea
h node of the tree has a set of signed formulae; and

4.4. Quasi-Classi
al Logi
 91

3. the formulae at ea
h node are generated by an appli
ation of one of the

de
omposition rules on a signed formula at an
estors of that node.

This de�nition is similar to the one for the
lassi
al semanti
 tableau. The major

di�eren
e is that the root of the
lassi
al tableau
ontains � [f: 'g. The QC

tableau does not use this be
ause the link between a formula and its
omplement

has been de
oupled.

De�nition 4.4.14 (Closed Tableau)

A QC tableau is
losed i� every bran
h is
losed. A bran
h is
losed i� there is

a formula ' for whi
h ' and '

�

belong to that bran
h, i.e. both ' and '

�

are

on the same path from the root of the tree to the leaf of that bran
h. A bran
h

is open if there are no more rules that
an be applied, and it is not
losed. A

tableau is open if there is at least one open bran
h.

For example, to establish f: a; a _ b; a _ : bg `

Q

a we take as root the set of

formulae : a; a _ b; a _ : b; a

�

and
onstru
t the following tableau.

: a; a _ b; a _ : b; a

�

a

losed

b

a

losed

b

�

losed

We applied the disjun
tion S-rule and the disjun
tion S-rule with fo
us to
on-

stru
t this tree. Ea
h bran
h of the tree is
losed, hen
e the tableau is
losed

and, therefore, f: a; a _ b; a _ : bg `

Q

a is valid.

We say � `

Q

', i.e. a set of assumptions � implies a
on
lusion ' by QCL, if

and only if a QC tableau for � and ' is
losed. (Hunter, 2001) shows that this

QC proof method is sound and
omplete with respe
t to the earlier introdu
ed

semanti
s of QCL. We do not prove this statement here, but a generalized version

of it after introdu
ing equality into QCL.

Note, all the de�nitions above are rather similar to the
lassi
al form for se-

manti
 tableau. In fa
t, as (Hunter, 2000) points out, the QC semanti
 tableau

ollapses to a
lassi
al semanti
 tableau if the following rules are added to the

de
omposition rules,

�

(: �)

�

: �

�

�

�

�

: �

(: �)

�

�

Then we
an use the
lassi
al de�nition for
losure of a bran
h, i.e. a bran
h is

losed if it
ontains both � and : � for some ground atom.

4.4. Quasi-Classi
al Logi
 92

4.4.4 Properties of Quasi-Classi
al Logi

We now
onsider some properties of quasi-
lassi
al logi
. These properties have

been presented and proved by (Hunter, 2000) before. However, we re
apitulate

the arguments to give further insights into QCL. We present the arguments using

either QC entailment or QC inferen
e. The de
ision for one or the other depends

on whi
h of the two is more
onvenient for our purpose.

Para
onsisten
y

Quasi-
lassi
al logi
 is para
onsistent be
ause it does not allow trivial inferen
es.

That is, given a
lassi
al in
onsistent set of assumptions �, it is not the
ase that

every formula in the language L is entailed by �. For example, let �;: � and �

be ground literals in L. Then it is not the
ase that f�;: �g �

Q

� holds be
ause

E = f+�;��g is a possible model su
h that E �

Q

� ^ : � but E 2

Q

�.

The only inferen
e rule that allows a new literal, like �, to be introdu
ed is

_-Introdu
tion. QCL is designed su
h that no de
omposition rules
an follow

_-Introdu
tion. Therefore, it is not possible to derive the new literal without any

ontext. Hen
e, QCL does not allow trivial inferen
es.

Inferen
es from the Empty Set of Assumptions

In QCL it is not possible to derive any
on
lusion from the empty set of assump-

tions, in parti
ular no
lassi
al tautologies hold without a given assumption. For

example, the tautology q) (p) q) as given in Se
tion 4.4.3
annot be veri�ed

using QCL, i.e. the following tableau is not
losed:

(q) (p) q))

�

(: q _ (p) q))

�

(: q)

�

; (p) q)

�

(: q)

�

; (: p _ q)

�

(: q)

�

; (: p)

�

; q

�

It is not possible to
onstru
t a refutation, be
ause an unsatis�able formula
an

only be de
omposed into unsatis�able formulae, hen
e, no
ontradi
tion with a

satis�able formula
an be derived. Model theoreti
ally this is also easy to see. The

empty set is the only strong model satisfying an empty assumption. However, the

empty set is not a weak model of any
on
lusion but the empty one. Therefore,

no formula and, in parti
ular, no tautology
an be shown from the empty set of

assumptions.

4.4. Quasi-Classi
al Logi
 93

It is not
lear whether this issue is a drawba
k for the appli
ation of QCL in the

ontext of formal spe
i�
ation, be
ause any pra
ti
al derivation is likely to be

based on a non-empty set of assumptions. Furthermore, when trying to prove

a tautology the attempt of performing the proof will indi
ate a set of ne
essary

assumptions. For example, to
lose the above tableau, we would need either q ,

: q or : p in the set of assumptions, in parti
ular the
lassi
al tautology q _ : q

is a realisti

andidate.

Re
exivity, Monotoni
ity and Transitivity

Re
exivity, monotoni
ity and transitivity are often regarded as desired properties

of a logi
. However, it is well known that there exists a wide range of non-

monotoni
 logi
s to reason about un
ertainty. This indi
ates that it is possible

to give up one or more of these properties if it is pra
ti
al. Here, we investigate

QCL with respe
t to those three properties.

Quasi-
lassi
al logi
 is re
exive, i.e. for a set of formulae � and a formula ',

� [f'g `

Q

' holds. This is easy to see from the root of the
orresponding

tableau, whi
h is �; '; '

�

. The tableau is
losed immediately, hen
e the inferen
e

holds.

QCL is monotoni
, too, i.e. for a set of assumptions � and formulae ' and �

it holds that � `

Q

' implies � [f�g `

Q

'. This follows simply from set

theory, be
ause the set of strong models of � [f�g is in
luded in the set of

strong models of � whi
h, in turn, are in
luded in the set of weak models of ',

i.e. Mod

s

(� [f�g) � Mod

s

(�) � Mod

w

('). Monotoni
ity is desired be
ause it

allows to add assumptions without retra
ting
on
lusions.

The property of transitivity, also
alled
ut, fails in QCL, i.e. for sets of assump-

tions � and � and formulae ' and � it holds that � [f'g `

Q

� and � `

Q

'

does not imply � [� `

Q

�. For example,
onsider f: �g [f� _ �g `

Q

� and

f�g `

Q

� _ �, but f�;: �g 0

Q

�.

The failure of transitivity
an be regarded as disadvantageous, in parti
ular, with

our appli
ation in mind. However, (Tennant, 1984) introdu
ed a para
onsistent

logi
, where transitivity fails, too. In his logi
, \transitivity of Proofs fails upon

a

umulation of Proofs only when the newly
ombined premises are in
onsistent

anyway, or the
on
lusion is a logi
al truth. In either
ase, Proofs that show

this
an be e�e
tively determined from the Proofs given. Thus, transitivity fails

where it least matters { arguably, where they ought to fail!" Consequently, we

need to investigate the failure of transitivity in QCL with respe
t to the property

of Tennant's logi
. If this holds for QCL, too, then the failure of transitivity may

not be a disadvantage anymore.

4.4. Quasi-Classi
al Logi
 94

Consisten
y Preservation

We dis
uss the relation of quasi-
lassi
al logi
 to
lassi
al logi
. First, everything

that is derivable in QCL is also derivable in
lassi
al logi
, i.e. � `

Q

� implies

� ` �. For example, � `

Q

� ^ : � implies � ` � ^ : �. However, the other

dire
tion does not hold, i.e. � ` � does not imply � `

Q

�. For example,
onsider

� to be empty, then it is possible to show in
lassi
al logi
 ` � _ : � but this

does not hold in QCL.

Even if we restri
t
onsiderations to a non-tautologi
al inferen
e of a formula '

that follows
lassi
ally from a
onsistent set of formulae, we are not guaranteed

that ' also follows in QCL. For example, let � = f�g, then � ` �) (� ^ �) is

a
lassi
al inferen
e but it is not a QC inferen
e. We
onsider the strong models

of � and the weak models of �) (� ^ �). One su
h strong model is f+�g but

this is not a weak model of the
on
lusion, hen
e QC entailment fails.

Further Properties

(Hunter, 2000) presents some more properties, whi
h have been dis
ussed in the

ontext of non-monotoni
 logi
s and relevan
e logi
s before. It seems interesting

to look at these properties to enhan
e our understanding of QCL. Below, we

onsider � to be a set of formulae and ', � and are formulae in our language.

And-introdu
tion. The property of and-introdu
tion, i.e. � `

Q

' and � `

Q

�

implies � `

Q

' ^ �, holds in QCL.

Or-elimination. The property of or-elimination, i.e. � [f'g `

Q

 and � [

f�g `

Q

 implies � [f' _ �g `

Q

 , holds in quasi-
lassi
al logi
.

Furthermore, due to QCL being a weakening of
lassi
al logi
, some of the laws of

lassi
al logi
 do not hold in QCL. (Hunter, 2000) presents the following
lassi
al

properties whi
h are not feasible in QCL. Below, we in
lude some
ounterexam-

ples to give the reader a better understanding of QCL. We
onsider �, �, and

to be atomi
 formulae in our language.

Right modus ponens. The property of right modus ponens, de�ned as follows,

fails in QCL: � `

Q

' and � `

Q

') � does not imply � `

Q

�. Consider

� = f�;: �g, then � `

Q

�, and � `

Q

�) �, but � 0

Q

�.

Dedu
tion Theorem. The property of dedu
tion, de�ned as follows, fails in

QCL: � `

Q

') � does not imply � [f'g `

Q

�. Consider � = f: �g, then

� `

Q

�) � but � [f�g 0

Q

�.

The failure of the dedu
tion theorem has a parti
ular
onsequen
e: in formulating

properties and theorems the de
ision whether to use impli
ation or dedu
tion may

be
ru
ial. Like other features of QCL, this requires the user of QCL to make

4.4. Quasi-Classi
al Logi
 95

its intensions expli
it. In general, however, we
an
onsider the main impli
ative

onne
tive of a
lassi
al formula as the intended dedu
tion operator.

Conditionalization. The property of
onditionalization, de�ned as follows, fails

in QCL: � [f'g `

Q

� does not imply � `

Q

') �. Consider � = fg. Then

� [f�g `

Q

�, but � 0

Q

�) �.

We introdu
e two further properties. To des
ribe these properties we need to

make use of
lassi
al predi
ate logi
, be
ause, as mentioned before, QCL does

not allow any inferen
es from the empty set of assumptions.

Right weakening. The property of right weakening, de�ned as follows, fails

in QCL: � `

Q

' and ` ') � does not imply � `

Q

�. Let � = f�g, then

f�g `

Q

�. Furthermore,
onsider ` �) � _ : �. However, f�g 0

Q

� _ : �.

Left logi
al equivalen
e. The property of left logi
al equivalen
e, de�ned as

follows, fails in QCL: �[f'g `

Q

 and ` ', � does not imply �[f�g `

Q

 .

Let � = fg. f� _ : �g `

Q

� _ : � and ` (� _ : �) , (� _ : �), but

f� _ : �g 0

Q

� _ : �.

4.4.5 Logi
al Equivalen
e in Quasi-Classi
al Logi

Logi
al equivalen
es play an important role in simplifying logi
al formulae. In

Chapter 6, for example, we use equivalen
es to simplify the pre
ondition of an

operation given in the Z notation. Despite its importan
e logi
al equivalen
e has

not been thoroughly investigated in QCL. For example, the term \equivalent"

is used but not de�ned within QCL. It is referred to
lassi
al logi
 to give it a

meaning.

Equivalen
es and Normal Form

(Hunter, 2000) de�nes, a formula is in
onjun
tive normal form (CNF) if and

only if it is a
onjun
tion of
lauses, i.e. a
onjun
tion of disjun
ts of literals.

For example, given the literals �; � and
 then (� _ �) ^
 is in CNF, whereas

� _ (� ^
) is not.

It is known that any propositional formula in QCL
an be transformed into CNF

by appli
ation of the following equivalen
es, in parti
ular distributivity, arrow

elimination, double negation elimination and de Morgan laws. We denote this

equivalen
e relation by �

Q

.

4.4. Quasi-Classi
al Logi
 96

' ^ ' �

Q

' ' _ ' �

Q

'

' ^ � �

Q

� ^ ' ' _ � �

Q

� _ '

' ^ (� ^) �

Q

(' ^ �) ^ ' _ (� _) �

Q

(' _ �) _

: (' ^ �) �

Q

: ' _ : � : (' _ �) �

Q

: ' ^ : �

' _ (� ^) �

Q

(' _ �) ^ (' _) ' ^ (� _) �

Q

(' ^ �) ^ (' ^)

: : ' �

Q

'

') � �

Q

: ' _ �

', � �

Q

(') �) ^ (�) ')

(Hunter, 2000) points out that a formula ' is a CNF of a formula � if and only if

' is
lassi
ally equivalent to � and ' is in CNF. Note, this form of a CNF is often

alled
onjun
tive negation normal form (CNNF) be
ause the negation symbol

does not apply to formulae but to literals only.

(Hunter, 2001) extends his work to �rst-order QCL. We follow from his de�nitions

of the strong and weak satisfa
tion relation that the following two equivalen
es

hold as well.

: 8 x :'(x) �

Q

9 x :: '(x)

: 9 x :'(x) �

Q

8 x :: '(x)

Thus, the negation symbol
an be pushed inside quanti�ed formulae.

Weak Logi
al Equivalen
e

In (Miarka et al., 2002) we de�ned, two formulae ' and � are equivalent, denoted

' à

Q

�, if and only if f'g `

Q

� and f�g `

Q

'. We
all this weak equivalen
e,

although this notion is a
tually not des
ribing an equivalen
e relation. Consider

the following three formulae:

1. A = : � ^ � ^ : �

2. B = : � ^ : � ^ (� _ �)

3. C = : � ^ : � ^ �

Then it holds that A à

Q

B and B à

Q

C but A 6 à

Q

C . This is obvious if

we
onsider the strong and weak model
lasses of these formulae. Re
all, that

f'g `

Q

� i� Mod

s

(') � Mod

w

(�).

1. Mod

s

(A) = Mod

w

(A) = ff��;+�;��g; f��;+�;��;+�gg

2. Mod

s

(B) = ff��;+�;��;+�gg

Mod

w

(B) = ff��;+�;��g; f��;��;+�g; f��;+�;��;+�gg

3. Mod

s

(C) = Mod

w

(C) = ff��;��;+�g; f��;+�;��;+�gg

4.4. Quasi-Classi
al Logi
 97

Now we see that Mod

s

(A) � Mod

w

(B) and Mod

s

(B) � Mod

w

(A), Mod

s

(B) �

Mod

w

(C) and Mod

s

(C) � Mod

w

(B), but neither Mod

s

(A) � Mod

w

(C) nor

Mod

s

(C) � Mod

w

(A). Hen
e, the relation à

Q

is not transitive and, therefore,

it is not an equivalen
e relation. Consequently, logi
al equivalen
e in QCL
an-

not be de�ned in the most straightforward way in terms of the QC
onsequen
e

relation.

The Absorption Laws

Be
ause the logi
al equivalen
e relation in QCL
annot be de�ned dire
tly in

terms of the QC
onsequen
e relation, we look at the strong and weak models

separately. To gain more understanding we investigate the often applied absorp-

tion laws. For the formulae ' and �, the two absorption laws in
lassi
al logi

are de�ned as

E � ' _ (' ^ �) i� E � ' and E � ' ^ (' _ �) i� E � '

The absorption laws do not hold for the strong satisfa
tion relation �

s

. Consider

the formulae � _ (� ^ �) and �, then Mod

s

(�) 6= Mod

s

(� _ (� ^ �)) be
ause

f+�;��g 2 Mod

s

(�) but f+�;��g 62 Mod

s

(� _ (� ^ �)). The same applies to

the other
ase.

However, the absorption laws do hold for the weak satisfa
tion relation. This

follows basi
ally from the de�nition of �

w

, in parti
ular from
onjun
tion and

disjun
tion. The proof pro
eeds by showing the equivalen
e of the weak model

lasses, e.g. Mod

w

(�) = Mod

w

(� _ (� ^ �)), whi
h uses standard set theory.

Equivalen
e, Weak and Strong Model Classes

To de�ne an appropriate equivalen
e relation we investigate two equivalen
e rela-

tions based on strong and weak satisfa
tion. We are interested in �nding whether

the equivalen
e relation
an be de�ned in terms of the
lassi
al equivalen
e of the

model
lasses.

For example, we �nd that if either the strong or the weak models of two formulae

are equivalent then they are weakly equivalent. Given two formulae ' and �. If

Mod

s

(') = Mod

s

(�) then ' à

Q

� and if Mod

w

(') = Mod

w

(�) then ' à

Q

�.

Proof

(!): Mod

s

(') = Mod

s

(�) � Mod

w

(�), hen
e ' `

Q

�.

(): Mod

s

(�) = Mod

s

(') � Mod

w

('), hen
e � `

Q

'.

(!): Mod

s

(') � Mod

w

(') = Mod

w

(�), hen
e ' `

Q

�.

(): Mod

s

(�) � Mod

w

(�) = Mod

w

('), hen
e � `

Q

'.

In either
ase it follows ' à

Q

�. 2

4.4. Quasi-Classi
al Logi
 98

The standard equality relation = is re
exive, symmetri
, and transitive. Thus,

a notion of equivalen
e built upon Mod

s

(') = Mod

s

(�) or Mod

w

(') = Mod

w

(�)

would be an equivalen
e relation. We �nd, however, that Mod

s

(') = Mod

s

(�)

does not imply Mod

w

(') = Mod

w

(�). That Mod

w

(') = Mod

w

(�) does not im-

ply Mod

s

(') = Mod

s

(�) has already been established when we investigated the

absorption laws.

Proof

Consider the formulae ' = : � ^ : � ^ (� _ �) and � = : � ^ : � ^ � ^ �.

Then Mod

s

(') = ff��;+�;��;+�gg = Mod

s

(�) = Mod

w

(�) but Mod

w

(') =

ff��;+�;��g; f��;��;+�g; f��;+�;��;+�gg 6= Mod

w

(�) 2

Thus, we
annot de�ne a generally appli
able equivalen
e relation for QCL based

only on the strong satisfa
tion relation.

Strong Logi
al Equivalen
e

We have to opt for a stronger de�nition
onsidering both equivalen
es over the

weak and strong model
lasses. Thus, if the model
lasses of two formulae are

the same, then these formulae are equivalent, i.e. given two formulae ' and �,

then ' �

Q

� i� Mod

s

(') = Mod

s

(�) and Mod

w

(') = Mod

w

(�).

Lemma 4.4.2

Strong equivalen
e in QCL, i.e. �

Q

, is an equivalen
e relation.

Proof

To be an equivalen
e relation, �

Q

needs to be re
exive, symmetri
 and transitive.

� Re
exivity: ' �

Q

' i� Mod

s

(') = Mod

s

(') and Mod

w

(') = Mod

w

(') by

de�nition of �

Q

. This holds by re
exivity of equality.

� Symmetry: ' �

Q

� implies � �

Q

' i� (by de�nition of �

Q

) Mod

s

(') =

Mod

s

(�) and Mod

w

(') = Mod

w

(�) implies Mod

s

(�) = Mod

s

(') and

Mod

w

(�) = Mod

w

(') This holds by symmetry of equality.

� Transitivity: ' �

Q

� and � �

Q

 implies ' �

Q

 i� Mod

s

(') = Mod

s

(�)

andMod

w

(') = Mod

w

(�) andMod

s

(�) = Mod

s

() andMod

w

(�) = Mod

w

()

implies Mod

s

(') = Mod

s

() and Mod

w

(') = Mod

w

(). This holds by tran-

sitivity of equality.

Hen
e, the relation �

Q

is an equivalen
e relation. 2

4.4. Quasi-Classi
al Logi
 99

Note, this result is
ompliant with Lemma 5.12 by (Hunter, 2000): For models X

and formulae ' and �, if ' is a CNF of �, then the following equivalen
es hold:

X �

s

' i� X �

s

�;

X �

w

' i� X �

w

�

Furthermore, it follows from the above investigations that if two formulae ' and

� are equivalent, i.e. ' �

Q

� then they are QC
onsequen
es of ea
h other, i.e.

' à

Q

�. Thus, the relation à

Q

is ne
essary but not suÆ
ient for QC equivalen
e.

Further Quasi-Classi
al Equivalen
es

There are many useful equivalen
es in
lassi
al logi
 to simplify quanti�ed formu-

lae. For example, the existential quanti�er distributes over disjun
tion in
lassi
al

logi
. We are interested in investigating whether su
h laws hold in QCL, too.

First, we establish that the universal quanti�er distributes over
onjun
tion, i.e.

8 x :('(x) ^ �(x)) �

Q

8 x :'(x) ^ 8 x :�(x)

Proof

To show this, we need to establish that

E �

s

8 x :('(x) ^ �(x)) i� E �

s

8 x :'(x) ^ 8 x :�(x) and

E �

w

8 x :('(x) ^ �(x)) i� E �

w

8 x :'(x) ^ 8 x :�(x)

E �

s

8 x :('(x) ^ �(x))

i� ffor all assignments Ag

(E ;A) �

s

8 x :('(x) ^ �(x))

i� ffor all x -variant assignments Bg

(E ;B) �

s

' ^ �

i�

(E ;B) �

s

' and (E ;B) �

s

�

i�

(E ;A) �

s

8 x :'(x) and (E ;A) �

s

8 x :�(x)

i�

(E ;A) �

s

8 x :'(x) ^ 8 x :�(x)

i�

E �

s

8 x :'(x) ^ 8 x :�(x)

The same holds for �

w

. 2

4.4. Quasi-Classi
al Logi
 100

The next rule is parti
ularly useful when simplifying pre
onditions in Z. We

establish, the existential quanti�er distributes over disjun
tion, i.e.

9 x :('(x) _ �(x)) �

Q

9 x :'(x) _ 9 x :�(x)

Proof

We need to show that

E �

s

9 x :('(x) _ �(x)) i� E �

s

9 x :'(x) _ 9 x :�(x) and

E �

w

9 x :('(x) _ �(x)) i� E �

w

9 x :'(x) _ 9 x :�(x)

E �

s

9 x :('(x) _ �(x))

i� ffor all assignments Ag

(E ;A) �

s

9 x :('(x) _ �(x))

i� ffor some x -variant assignment Cg

(E ;C) �

s

' _ �

E �

s

9 x :'(x) _ 9 x :�(x)

i� ffor all assignments Ag

(E ;A) �

s

9 x :'(x) _ 9 x :�(x)

i� ffor some x -variant assignment Bg

(E ;B) �

s

' _ 9 x :�(x)

i�

(E ;B) �

s

9 x :�(x) _ '

i� ffor some x -variant assignment C g

(E ;C) �

s

� _ '

i�

(E ;C) �

s

' _ �

The proof of the weak satisfa
tion relation is slightly simpler be
ause disjun
tion

is appli
able for formulae. 2

Other logi
al equivalen
es that hold are

9 x :('(x) ^ �) �

Q

9 x :'(x) ^ �, provided x not in �

8 x :('(x) _ �) �

Q

8 x :'(x) _ �, provided x not in �

9 x :('(x)) �) �

Q

8 x :'(x)) �, provided x not in �

8 x :(') �(x)) �

Q

') 8 x :�(x), provided x not in '

9 x :(') �(x)) �

Q

') 9 x :�(x), provided x not in '

4.5. Summary 101

4.5 Summary

In this
hapter we introdu
ed the notion of para
onsisten
y as a means to derive

non-trivial
on
lusions from in
onsistent information. We presented brie
y dif-

ferent ways of weakening
lassi
al logi
 to develop a para
onsistent logi
. Then

we introdu
ed the para
onsistent logi
s FOUR, FOUR and QCL, ea
h allowing

a slightly di�erent set of
on
lusions to be derived from in
onsistent information.

All para
onsistent logi
s weaken
lassi
al logi
 in some way. Basi
ally, the ap-

pli
ation area determines the usefulness of any of the para
onsistent logi
s, i.e.

whi
h weakening least e�e
ts the usefulness of the
hosen logi
. For example,

QCL allows too many
on
lusions for the parti
ular appli
ation
onsidered by

(da Costa et al., 1995):

John Smith is si
k. Dr. Bouvard tells him he has
an
er (
). Dr. Pe
u
het,

however tells him he has not
an
er (:
). Both
olleagues agree that If John

has got
an
er he will die in the next three months (
) d). (da Costa et al.,

1995) show that using the logi
 C

+

1

it is not possible to infer If John has not got

an
er he will not die in the next three months (:
) : d). This would be an

invalid inferen
e be
ause he
ould have a
ar a

ident. Using QCL, however, it

is possible to establish this result:

;:
;
) d ; (:
) : d)

�

(
 _ : d)

�

�

; (: d)

�

losed

QCL is a relevan
e logi
 whi
h is also demonstrated by this example. Be
ause no

further information is given about other
ir
umstan
es that might
ause death it

is safe to
on
lude that If John has not got
an
er he will not die in the next three

months from
an
er. This example demonstrates the importan
e of
hoosing the

\right" para
onsistent logi
 for the envisioned appli
ation area.

The four-valued logi
s provide an intuitive semanti
s to
ope with under- and

over-determined information. Thus, we strongly
onsider their appli
ation to

handling in
onsisten
y or underde�nedness. Unfortunately, many useful equiv-

alen
es and derivation rules do not hold in these logi
s. The former is rather

serious for our appli
ation in mind be
ause spe
i�ers would need to
hange their

style of writing spe
i�
ations. The latter in
uen
es how spe
i�
ations are anal-

ysed. This might be a smaller problem in
omparison to the former. The main

appli
ation areas of these logi
s are information systems and logi
 programming.

We favour Hunter's quasi-
lassi
al logi
 to reason about in
onsistent spe
i�
a-

tions. QCL allows inferen
es from in
onsistent information without resulting in

4.5. Summary 102

triviality. It has been designed su
h that all logi
al
onne
tives behave
lassi
ally,

whi
h enables an easy grasp of the meaning of a formula. It also preserves the

derivation rules known from
lassi
al logi
, however, in QCL the order of appli-

ation is restri
ted. The role of resolution in QCL is to de
ompose
lauses into

literals to identify those that are involved in an in
onsisten
y. QCL enables the

reasoner to distinguish between in
onsistent theories, unlike in
lassi
al logi
.

We not only presented quasi-
lassi
al logi
 but also
ontributed to its develop-

ment by dis
ussing the notion of logi
al equivalen
e. It turned out that the logi
al

equivalen
e relation in QCL
annot be de�ned dire
tly in terms of the QC
onse-

quen
e relation. Thus, we de�ned a notion of strong logi
al equivalen
e for QCL

based on strong and weak model
lasses. We showed that several standard equiv-

alen
es hold in QCL under strong logi
al equivalen
e. We found, however, that

the absorption laws known from standard logi
 do not hold in QCL. In the next

hapter we further develop QCL by in
orporating a theory of equality between

expressions.

Chapter 5

Quasi-Classi
al Logi
 with

Equality

In the previous
hapter we introdu
ed �rst-order quasi-
lassi
al logi
 to enable

useful, non-trivial, reasoning in the presen
e of in
onsisten
y. Many pra
ti
al

reasoning pro
esses involve the notion of equality. QCL, however, has no expli
it

way of reasoning about equality. Therefore, we extend the language of QCL by

in
orporating a theory of equality between expressions in this
hapter.

Many relations only make sense when applied to obje
ts of parti
ular types.

For example, \taller than" does not apply to
olours and \brighter than" not

to numbers. The equality relation, however, is universal in the sense that it

is meaningful in any domain, like the logi
al
onne
tives. Thus, the study of

equality is generally
onsidered to be part of logi
. Therefore, this
hapter is of

general interest to the studies of QCL.

We have, however, also a more spe
i�
 reason to study equality in QCL. Our aim

is to use QCL to reason about formal spe
i�
ations written in the Z notation

whi
h we brie
y introdu
ed in Chapter 2. In Z, equality plays an important

role in developing spe
i�
ations. It is
ommonly used to relate before- and after-

state variables and expressions denoting their values in a spe
i�
ation. Thus,

to formally investigate Z spe
i�
ations using QCL we need to be able to reason

about equality.

Based on the notion of equality we
an state a useful and often applied rule for

reasoning with quanti�
ations. In its most
ommon use it says that if we have

an existentially quanti�ed statement, part of whi
h gives a value for the bound

variable, then the quanti�
ation
an be removed and the variable is repla
ed by

its known value wherever it appears. This rule is
alled the one-point rule and

it is often used in the simpli�
ation of pre
onditions in Z. Due to its importan
e

we dis
uss this rule in the
ontext of QCL towards the end of this
hapter.

103

5.1. Introdu
tion 104

5.1 Introdu
tion

Equality has often been re
ognised to be a fundamental logi
al predi
ate be
ause

it is meaningful no matter what domain of dis
ourse is
onsidered. This distin-

guishes equality from most other relations that are only appli
able in restri
ted

ir
umstan
es. For example, the predi
ate \is red" makes no sense on numbers or

the predi
ate \to the right of" is not meaningful when applied to
olours. Equal-

ity shares a universality with the logi
al
onne
tives that makes it generally part

of the study of logi
.

Equality represents identity, i.e. two things are equal if they denote the same

obje
t. For example, \3+3" equals \6" and \the letter o

urring in the English

alphabet after B" equals \C". Some term t is identi
al to some other term s,

often denoted t = s, if we
annot distinguish between them (with respe
t to all

properties). This is known as the Prin
iple of the Indis
ernibility of Identi
als,

or Leibniz's Law. If two things
annot be distinguished then it follows the re-

pla
ement prin
iple whi
h states that we
an repla
e any o

urren
e of a term t

in a statement by its equal s.

Equality is a two-pla
e relation and it has some basi
 properties. First, everything

is equal to itself, i.e. the equality relation is re
exive. Se
ond, the order of the

terms in the equality relation does not matter, i.e. it is symmetri
. Third, the

property of transitivity: given two things a and b are equal and two things b and

 are equal then a and
 are equal, too. Finally, if we apply a fun
tion to two

equal obje
ts then the result will also be equal. All the latter properties
an be

derived using re
exivity and the repla
ement prin
iple.

5.1.1 Motivation

Our motivation for studying equality arises from the aim to reason about formal

spe
i�
ations written in the Z notation using QCL. In Z, equalities are
ommonly

used to express the relation between before- and after-states variables and expres-

sions denoting their values. Formal reasoning about Z spe
i�
ations involves, in

parti
ular, reasoning about su
h equalities. An important
onsequen
e of having

a notion of equality is the ability to eliminate universal and existential quanti�-

ation. The latter is know as the one-point rule and it is a frequently used to

analyse Z spe
i�
ations, in parti
ular when simplifying pre
onditions.

In the
ontext of an in
onsisten
y tolerant logi
 handling equality
ould be
ome

umbersome. For example, what does it mean to say that two numbers \1" and

\2" are equal, even though we know from mathemati
s that they are not? How

mu
h does su
h in
onsisten
y in
uen
e the reasoning about the given theory?

We address these questions at the end of this
hapter leading to future work on

equality and QCL.

5.2. Equality 105

5.1.2 Outline

This
hapter is stru
tured as follows. In Se
tion 5.2 we introdu
e the syntax and

semanti
s for equality, in
luding the equality axioms and some investigation of

using these axioms as extra assumptions in the reasoning pro
ess using QCL.

Se
tion 5.3 provides the basi
 notations to show that we are dealing in fa
t with

equality. We present extra tableau rules for handling equality in QCL in Se
tion

5.4 and prove their soundness and
ompleteness in Se
tion 5.5. The one-point

rule for QCL is dis
ussed in Se
tion 5.6. This
hapter
on
ludes with a short

dis
ussion and summary in Se
tion 5.7.

5.2 Equality

In this se
tion we present some initial thoughts on equality. This in
ludes the

extension of the syntax with a spe
ial predi
ate symbol to denote equality and

some initial
onsiderations of the semanti
s. These are made more
on
rete by

presenting a set of axioms
lassi
ally required for reasoning about equality. We

investigate the e�e
t of these axioms in the
ontext of QCL by
onsidering them as

extra assumptions in the set of formulae given as the premise of a QC derivation.

5.2.1 Syntax and Semanti
s

The syntax of quasi-
lassi
al logi
 with equality is the same as that of QCL but

with the addition of the designated two-pla
e relation symbol � for denoting the

equality relation. Note, we do not use the symbol = to avoid
onfusion between

obje
t language and meta-language. Generally, we use the � symbol in in�x

notation, following the standard
onvention. For example, given two terms t and

u we write t � u instead of � (t ; u).

Giving the extra symbol � does not yet enable us to reason about equality. For

example, given two
onstant symbols a and b and a predi
ate symbol P , then

the following
onsequen
e fa � b;P(a)g �

Q

P(b)
annot be dire
tly established

in QCL. First, we need to ensure that the symbol � really denotes equality. We

introdu
ed the notion of a quasi-
lassi
al model. Now we are interested in those

models only in whi
h the � symbol is treated as the equality relation.

De�nition 5.2.1 (Normal model)

A model E is
alled normal provided the relation symbol � is interpreted as the

equality relation over the domain of E .

The aim is to �nd a
onsequen
e relation �

Q

�

where � �

Q

�

' is like � �

Q

',

ex
ept it takes equality into a

ount, i.e. normal models. This implies, that if

5.2. Equality 106

� �

Q

' then � �

Q

�

'. The
onverse, however, is not true. For example, let

� = fa � b;P(a)g, then we want � �

Q

�

P(b), but not � �

Q

P(b).

5.2.2 Equality Axioms

One of the features of QCL is that assumptions
ontributing to the reasoning

pro
ess need to be made expli
it. For example, fa � b;P(a)g �

Q

P(b) fails

be
ause an important assumption is missing. If we add the predi
ate 8 x ; y :(x �

y) (P(x)) P(y))) to the set of assumptions then we
an infer P(b) using

QCL. The set of assumptions we need to reason about equality are
alled the

equality axioms.

The basi
 equality axioms are re
exivity and repla
ement. Given those, we are

able to show that equality is an equivalen
e relation, i.e. it is re
exive, symmetri

and transitive. Basi
ally, we follow in our presentation (Fitting, 1996, p. 276 �).

De�nition 5.2.2 (Re
exivity)

ref is the senten
e 8 x :x � x .

The senten
e ref
aptures the re
exivity property of equality. Next, we de�ne

the repla
ement property. Note, we de�ne two sets of repla
ement axioms, one

for fun
tion symbols and one for predi
ate symbols.

De�nition 5.2.3 (Fun
tion repla
ement axiom)

Let f be an n-pla
e fun
tion symbol. The following senten
e is a repla
ement

axiom for f : 8 v

1

: : : v

n

8w

1

: : :w

n

:(v

1

� w

1

^ : : : ^ v

n

� w

n

)) f (v

1

; : : : ; v

n

) �

f (w

1

; : : : ;w

n

).

For example, if � is a two-pla
e fun
tion symbol of the language then

8w ; x ; y ; z :(x � z ^ y � w)) (x � y � z � w) is a parti
ular fun
tion repla
e-

ment axiom, say A. Assuming
 is a
onstant symbol, we show fA; ref g �

Q

8 x ; z :(x � z)) (x �
 � z �
):

5.2. Equality 107

8w ; x ; y ; z :((x � z ^ y � w)) x � y � z � w),

8 x :x � x ,

(8 x ; z :(x � z) x �
 � z �
))

�

(a � b) a �
 � b �
)

�

(: (a � b))

�

,(a �
 � b �
)

�

(a � b ^
 �
)) a �
 � b �
,
 �

: (a � b) _ : (
 �
) _ a �
 � b �

: (a � b) _ : (
 �
)

: (a � b)

losed

(
 �
)

�

losed

a �
 � b �

losed

In a �rst-order language we are not able to quantify over fun
tion symbols nor

predi
ate symbols. Thus, we do it indire
tly by de�ning the set of all fun
tion

repla
ement axioms.

De�nition 5.2.4

For a language L, fun(L) is the set of repla
ement axioms for all fun
tion symbols

of L. Members of fun(L) are
alled fun
tion repla
ement axioms.

Note, there is one fun
tion repla
ement axiom for ea
h fun
tion symbol of the

language. Therefore, if the language has in�nitely many fun
tion symbols, the set

of fun
tion repla
ement axioms is also in�nite. We de�ned repla
ement only for

the simplest kind of terms but repla
ement for more
ompli
ated terms follows.

For example,

8 x ; y :(x � y) f (x) � f (y)),

8 x ; y :(x � y) g(x) � g(y)),

(8 x ; y :(x � y) f (g(x)) � f (g(y))))

�

(a � b) f (g(a)) � f (g(b)))

�

(: (a � b))

�

,(f (g(a)) � f (g(b)))

�

g(a) � g(b)) f (g(a)) � f (g(b))

: (g(a) � g(b)) _ f (g(a)) � f (g(b))

(g(a) � g(b))

�

8 x ; y :(x � y) g(x) � g(y))

a � b) g(a) � g(b)

: (a � b)

losed

g(a) � g(b)

losed

f (g(a)) � f (g(b))

losed

5.2. Equality 108

After we have
onsidered fun
tion symbols, we turn to the repla
ement property

of relation symbols.

De�nition 5.2.5 (Relation repla
ement axiom)

Let R be an n-pla
e relation symbol. The following senten
e is a repla
ement ax-

iom for R: 8 v

1

: : : v

n

8w

1

: : :w

n

:((v

1

� w

1

^ : : : ^ v

n

� w

n

)) (R(v

1

; : : : ; v

n

))

R(w

1

; : : : ;w

n

))).

We de�ned � to be a two-pla
e relation symbol. Its repla
ement axiom is

8 v

1

; v

2

;w

1

;w

2

:((v

1

� w

1

^ v

2

� w

2

)) (v

1

� v

2

) w

1

� w

2

)) whi
h we denote by

B for now. It follows the symmetry property for �, i.e. fB ; ref g �

Q

8 x ; y :(x �

y) y � x) We
an also show that transitivity is a
onsequen
e of B and ref ,

i.e. fB ; ref g �

Q

8 x ; y ; z :((x � y ^ y � z)) x � z).

Again, be
ause we
annot quantify over the relation symbols in a �rst-order

language we
olle
t all relation repla
ement axioms in an appropriate set.

De�nition 5.2.6

For a language L, rel(L) is the set of repla
ement axioms for all relation symbols

of L. Members of rel(L) are
alled relation repla
ement axioms.

Re
exivity and the repla
ement axioms form together the set of all the equality

axioms.

De�nition 5.2.7 (Equality axioms)

For a language L, by eq(L) we mean the set fref g [fun(L) [rel(L). Members

of this set are
alled equality axioms for L.

In standard �rst-order predi
ate logi
 the equality axioms are exa
tly what is re-

quired to redu
e the problems about logi
 with equality to more general questions

about �rst-order logi
. This relation is expressed by the following theorem:

Let L be a �rst-order language and � a set of senten
es over L. Then

� �

�

' if and only if � [eq(L) � '

where �

�

is the
lassi
al
onsequen
e relation that takes equality into a

ount,

i.e. X �

�

S provided X holds in every normal model in whi
h S holds. The

question that arises is whether this also
arries over to quasi-
lassi
al logi
, i.e.

whether we
an establish:

� �

Q

�

' if and only if � [eq(L) �

Q

'

5.2. Equality 109

5.2.3 Equality and Strong Satis�ability

We developed a set of equality axioms to support reasoning about equality. To

gain some more insight into reasoning with equality we investigate the e�e
t of

adding these axioms to the set of assumptions. QCL is monotoni
, thus adding

these axioms to the set of assumptions would not a�e
t previous inferen
es.

Re
all the de�nition of QC
onsequen
e: given a set of assumptions � and a

formula ', then ' is a
onsequen
e of �, denoted � �

Q

', if and only if for all

models E , if E strongly satis�es every formula in � then E must weakly satisfy

'. Now we add the equality axioms, i.e. we are interested in � [eq(L) �

Q

'.

A

ording to the de�nition of QC
onsequen
e the model E must now strongly

satisfy the equality axioms. Thus, for any fun
tion symbol f and relation symbol

� we have

E �

s

eq(L)

� fDe�nition of the Equality Axioms, Consider any assignment Ag

(E ;A) �

s

8 x :(x � x) and

(E ;A) �

s

8 x ; y :(x � y) f (x) � f (y)) and

(E ;A) �

s

8 x ; y :(x � y) (�(x)) �(y)))

� fQuanti�
ation and Impli
ation, B is x - and y-variant of Ag

(E ;B) �

s

s � s and

(E ;B) �

s

: (s � t) _ f (s) � f (t) and

(E ;B) �

s

: (s � t) _ : �(s) _ �(t)

Using the de�nition of strong satis�ability for disjun
tion and
onjun
tion we

break these three
onditions further down. Then, be
ause � is an atomi
 relation,

we
an move on to set membership of relations in the model. Using several laws

of formal logi
 we derive

+s � s 2 E

and

�s � t 2 E or +f (s) � f (t) 2 E and

if +s � t 2 E then +f (s) � f (t) 2 E and

if �f (s) � f (t) 2 E then �s � t 2 E

and

�s � t 2 E or ��(s) 2 E or +�(t) 2 E and

if +s � t 2 E then

��(s) 2 E or +�(t) 2 E and

if��(t) 2 E then ��(s) 2 E and

5.3. Equality and Normal Models 110

if +�(s) 2 E then

�s � t or +�(t) 2 E and

if +s � t 2 E then +�(t) 2 E and

if ��(t) 2 E then

�s � t 2 E or ��(s) 2 E and

if +�(s) 2 E then �s � t 2 E

The equality axioms restri
t the set of possible models to those that ful�ll the

above
onditions. For example, ea
h model E must
ontain the re
exivity axiom

for every term s. Consider the atomi
 formula �(
), where
 is some
onstant,

then the
lass of all strong models satisfying �(
) and the equality axioms is

Mod

s

(eq(L) [f�(
)g) = ff+
 �
;+�(
)g; f+
 �
;+�(
);�
 �
g; f+
 �

;+�(
);��(
)g; f+
 �
;+�(
);�
 �
;��(
)gg

Furthermore,
onditions like if +s � t 2 E then +f (s) � f (t) 2 E are similar

to those used by (Fitting, 1996, p. 280f) to
onstru
t the �rst-order Hintikka sets

with equality. Note, the
onditions for handling inequality are made expli
it.

This was expe
ted be
ause a formula is de
oupled from its negation in QCL

and thus equality should be de
oupled from inequality. These derived
onditions

guide the further development of our theory of equality for QCL.

5.3 Equality and Normal Models

Quasi-
lassi
al logi
 has two satis�ability relations,
alled strong and weak sat-

isfa
tion. To add equality to QCL we restri
t both satis�ability relations. We

show that these restri
tions are suÆ
ient su
h that any model satisfying a formula

strongly or weakly is a normal model.

De�nition 5.3.1 (Strong satisfa
tion with equality)

Given de�nition 4.4.7 of the strong satisfa
tion relation. For any literal �, terms

s and t and fun
tion symbol f we require the following properties to hold for

every pair (E ;A):

(E ;A) �

s

t � t

(E ;A) �

s

s � t and (E ;A) �

s

�(s) implies (E ;A) �

s

�(t)

(E ;A) �

s

: (f (s) � f (t)) implies (E ;A) �

s

: (s � t)

(E ;A) �

s

�(s) and (E ;A) �

s

: �(t) implies (E ;A) �

s

: (s � t)

Similar, we extend the notion of weak satisfa
tion to handle equality.

5.3. Equality and Normal Models 111

De�nition 5.3.2 (Weak satisfa
tion with equality)

Given de�nition 4.4.8 of the weak satisfa
tion relation. For any literal �, terms s

and t and fun
tion symbol f we require the following properties to hold for every

pair (E ;A):

(E ;A) �

w

t � t

(E ;A) �

w

s � t and (E ;A) �

w

�(s) implies (E ;A) �

s

�(t)

(E ;A) �

w

: (f (s) � f (t)) implies (E ;A) �

w

: (s � t)

(E ;A) �

w

�(s) and (E ;A) �

w

: �(t) implies (E ;A) �

w

: (s � t)

We have to
onvin
e ourselves that these
onditions are suÆ
ient, i.e. we need to

show that they sele
t only models that are normal. Sin
e the de�nitions above

use only literals we
an unfold them to
onsider the models dire
tly. Then we

have

De�nition 5.3.3 (�-
losed)

Any model E whi
h satis�es the following
onditions is said to be �-
losed.

1. for any term t in L;+t � t 2 E

2. if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E and +�(s

1

; : : : ; s

n

) 2 E

then +�(t

1

; : : : ; t

n

) 2 E

3. if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E and ��(s

1

; : : : ; s

n

) 2 E

then ��(t

1

; : : : ; t

n

) 2 E

4. if �f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

then �s

1

� t

1

2 E or : : : or �s

n

� t

n

2 E

5. if +�(s

1

; : : : ; s

n

) 2 E and ��(t

1

; : : : ; t

n

) 2 E

then �s

1

� t

1

2 E or : : : or �s

n

� t

n

2 E

for any literal �, fun
tion symbols f and terms s

1

; : : : ; s

n

and t

1

; : : : ; t

n

in L :

The literal �
an be the two-pla
e �-relation as well. In that
ase the se
ond

ondition, for example, instantiates to:

if +s

1

� t

1

2 E and +s

2

� t

2

2 E and +� (s

1

; s

2

) 2 E then + � (t

1

; t

2

) 2 E .

Note the ways of writing the �-relation symbol in in�x and pre�x notation to

indi
ate the di�erent intention in usage.

Lemma 5.3.1

The relation � is an equivalen
e relation in an �-
losed model.

Proof

We show that � is re
exive, transitive, and symmetri
, i.e. for every �-
losed

model E it holds

+t � t 2 E

+s � t 2 E i� +t � s 2 E

+s � t 2 E and +t � u 2 E implies +s � u 2 E

5.3. Equality and Normal Models 112

Re
exivity: Holds by de�nition.

Symmetry: We have +s � s 2 E , i.e. +� (s; s) 2 E , and by assumption of

symmetry +s � t 2 E . Thus we have +s � t 2 E and +� (s; s) 2 E and

therefore by de�nition it follows +� (t ; s) 2 E , i.e. +t � s 2 E . The other

dire
tion is similar.

Transitivity: By assumption of transitivity we have +s � t 2 E and +t � u 2 E ,

i.e. we have +s � t 2 E and +� (t ; u) 2 E . Then by symmetry and de�nition

it follows +� (s; u) 2 E , i.e. +s � u 2 E . 2

The given repla
ement
ondition in the de�nition is suÆ
ient to reason about

equality and fun
tion symbols as well, i.e. it holds the following
ongruen
e for

any model E , terms s

1

; : : : ; s

n

and t

1

; : : : ; t

n

and fun
tion symbol f in L:

if +s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E

then +f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

We have +f (s

1

; : : : ; s

n

) � f (s

1

; : : : ; s

n

) 2 E by re
exivity, i.e. in pre�x nota-

tion that is +� (f (s

1

; : : : ; s

n

); f (s

1

; : : : ; s

n

)) 2 E and by assumption we have

+s

1

� t

1

2 E and : : : and +s

n

� t

n

2 E . Thus it follows by de�nition

+� (f (s

1

; : : : ; s

n

); f (t

1

; : : : ; t

n

)) 2 E , whi
h is +f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

) 2 E

in in�x notation.

Be
ause � is an equivalen
e relation on the domain U (L) of the model E that

is �-
losed, it partitions its domain into disjoint equivalen
e
lasses. We denote

the equivalen
e
lass
ontaining the
losed term t with hhtii. Formally,

hhtii = fu 2 U (L) j +t � u 2 Eg

Lemma 5.3.2

For terms t and u and a model E , hhtii = hhuii if and only if +t � u 2 E .

Proof

(!) +t � t 2 E by re
exivity, thus t 2 hhtii; by assumption hhtii = hhuii it

follows that t 2 hhuii; thus +u � t 2 E and by symmetry +t � u 2 E .

() Let v 2 hhtii then +t � v 2 E and by symmetry +v � t 2 E ; it follows

by assumption +t � u 2 E and transitivity that +v � u 2 E and by

symmetry +u � v 2 E , i.e. v 2 hhuii; thus hhtii � hhuii. It follows

similarly that hhuii � hhtii; hen
e hhtii = hhuii.

2

Let U

0

(L) be the set of all equivalen
e
lasses over �, i.e.

U

0

(L) = fhhuii j u 2 U (L)g

5.3. Equality and Normal Models 113

We take U

0

(L) to be the domain of a new model E

0

. Next, we de�ne a new

interpretation for the model E

0

by relating the new interpretation [[:℄℄ to the

already established interpretation [:℄. First, we
onsider
onstant and fun
tion

symbols.

De�nition 5.3.4

Ground terms in L are interpreted as follows, where [[:℄℄ is the new interpretation

relation.

[[
℄℄ = hh
ii, for any
onstant symbol
.

[[f ℄℄(hht

1

ii; :::; hht

n

ii) = hhf (t

1

; : : : ; t

n

)ii for some fun
tion symbol f and

terms t

1

; : : : ; t

n

.

Re
all that for any interpretation I it holds (f (t

1

; : : : ; t

n

))

I

= f

I

((t

1

)

I

; :::; (t

n

)

I

)

and, in parti
ular, [[f (t

1

; : : : ; t

n

)℄℄ = [[f ℄℄([[t

1

℄℄; :::; [[t

n

℄℄).

We need to
he
k whether these de�nitions are well-
hosen be
ause the behaviour

of [[f ℄℄ on the
lass hht

i

ii of ground terms depends on t

i

, a member of the
lass.

We show: For ground terms t

1

; : : : ; t

n

and u

1

; : : : ; u

n

, if hht

1

ii = hhu

1

ii and

... and hht

n

ii = hhu

n

ii then hhf (t

1

; : : : ; t

n

)ii = hhf (u

1

; : : : ; u

n

)ii. This follows

be
ause hhf (t

1

; : : : ; t

n

)ii = [[f ℄℄(hht

1

ii; :::; hht

n

ii); using the assumptions we get

[[f ℄℄(hhu

1

ii; :::; hhu

n

ii) whi
h is equal to hhf (u

1

; : : : ; u

n

)ii.

Lemma 5.3.3

For a
losed term t of L it holds that [[t ℄℄ = hh[t ℄ii.

Proof

We use indu
tion over the stru
ture of t to show this.

Base
ase.

Consider the term t is a
onstant, i.e. t =
: [[t ℄℄ = [[
℄℄ = hh
ii = hh[
℄ii = hh[t ℄ii

Indu
tion step. Assume it holds for ground terms t

1

; : : : ; t

n

. We show it also

holds for terms t = f (t

1

; : : : ; t

n

): [[t ℄℄ = [[f (t

1

; : : : ; t

n

)℄℄ = [[f ℄℄([[t

1

℄℄; : : : ; [[t

n

℄℄) =

[[f ℄℄(hht

1

ii; : : : ; hht

n

ii) = hhf (t

1

; : : : ; t

n

)ii = hhtii 2

This implies that the model we
onstru
t is
anoni
al, i.e. that the member hhtii

of the domain U

0

(L) will have the
losed term t as a name.

Next, we
onsider relation symbols. We de�ne

De�nition 5.3.5

For a relation symbol � and terms t

1

; : : : ; t

n

it holds

+�(hht

1

ii; :::; hht

n

ii) 2 E

0

i� +�(t

1

; : : : ; t

n

) 2 E

��(hht

1

ii; :::; hht

n

ii) 2 E

0

i� ��(t

1

; : : : ; t

n

) 2 E

5.3. Equality and Normal Models 114

In parti
ular, it holds +hht

1

ii � hht

2

ii 2 E

0

i� +t

1

� t

2

2 E . Thus, the model E

0

we
onstru
t is normal be
ause +t

1

� t

2

2 E i� hht

1

ii = hht

2

ii, i.e. the symbol �

is interpreted as equality.

Again, we need to demonstrate that the de�nition is well-
hosen be
ause the

satisfa
tion of a relation � over equivalen
e
lasses depends on its satisfa
tion over

parti
ular members. Thus, for ground terms t

1

; : : : ; t

n

and u

1

; : : : ; u

n

, if hht

1

ii =

hhu

1

ii and ... and hht

n

ii = hhu

n

ii then +�(t

1

; : : : ; t

n

) 2 E i� +�(u

1

; : : : ; u

n

) 2 E .

This holds be
ause +�(t

1

; : : : ; t

n

) 2 E i� +�(hht

1

ii; :::; hht

n

ii) 2 E

0

by de�nition;

using the assumptions it follows +�(hhu

1

ii; :::; hhu

n

ii) 2 E

0

and by de�nition

+�(u

1

; : : : ; u

n

) 2 E . A similar property
an be established for negative obje
ts,

too.

Given is A : Var ! U (L), the assignment in a model E . We introdu
e A

0

: Var !

U

0

(L) the assignment in E

0

su
h that for a variable x it holds x

A

0

= hhx

A

ii. Then

it follows

Lemma 5.3.4

For a term t of L, not ne
essarily
losed, it holds that [[t ℄℄

A

0

= hh[t ℄

A

ii.

Proof

We use indu
tion over the stru
ture of t to show this.

Base
ases. Consider the term t is a
onstant, i.e. t =
: [[t ℄℄

A

0

= [[
℄℄

A

0

= [[
℄℄ =

hh
ii = hh[
℄

A

ii = hh[t ℄

A

ii, or a variable, i.e. t = x : [[t ℄℄

A

0

= [[x ℄℄

A

0

= x

A

0

=

hhx

A

ii = hh[t ℄

A

ii

Indu
tion step. Assume it holds for terms t

1

; : : : ; t

n

. We show it also holds

for terms t = f (t

1

; : : : ; t

n

): [[t ℄℄

A

0

= [[f (t

1

; : : : ; t

n

)℄℄

A

0

= [[f ℄℄([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) =

[[f ℄℄(hh[t

1

℄

A

ii; : : : ; hh[t

n

℄

A

ii) = hhf ([t

1

℄

A

; : : : ; [t

n

℄

A

)ii = hh[f (t

1

; : : : ; t

n

)℄

A

ii = hh[t ℄

A

ii

2

Finally, we need to de�ne the variants of the weak and strong satisfa
tion rela-

tions. Basi
ally, they are similar to the standard de�nitions. The major di�eren
e

o

urs in the atomi

ase:

(E

0

;A

0

) �

s

�(t

1

; : : : ; t

n

) i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

s

: �(t

1

; : : : ; t

n

) i� ��([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

w

�(t

1

; : : : ; t

n

) i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

(E

0

;A

0

) �

w

: �(t

1

; : : : ; t

n

) i� ��([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

Lemma 5.3.5

For any formula ' and any assignment A in an �-
losed model E it holds

(E ;A) �

s

' i� (E

0

;A

0

) �

s

'

(E ;A) �

w

' i� (E

0

;A

0

) �

w

'

i.e. it holds for every formula that it is satis�able in a model E if and only if it

is also satis�able in a normal model E

0

.

5.3. Equality and Normal Models 115

Proof

We use indu
tion over the stru
ture of ' to show this.

� Base
ases.

(a) Let ' = �(t

1

; : : : ; t

n

), t

1

; : : : ; t

n

terms. Then (E

0

;A

0

) �

s

�(t

1

; : : : ; t

n

)

i� +�([[t

1

℄℄

A

0

; : : : ; [[t

n

℄℄

A

0

) 2 E

0

i� +�(hh[t

1

℄

A

ii; : : : ; hh[t

n

℄

A

ii) 2 E

0

i�

+�([t

1

℄

A

; : : : ; [t

n

℄

A

) 2 E i� (E ;A) �

s

�(t

1

; : : : ; t

n

). The
ase for the

weak satisfa
tion relation follows similarly.

(b) Let ' = : �(t

1

; : : : ; t

n

). Then it follows similarly as for ' = �(t

1

; : : : ; t

n

)

but using negative obje
ts �� instead of positive obje
ts +�.

� Indu
tion step.

Suppose it holds for formulae �, and �. We show that it also holds for

more
ompli
ated formulae.

The propositional
ases are straightforward.

(^) For example: (E

0

;A

0

) �

s

� ^ i� (E

0

;A

0

) �

s

� and (E

0

;A

0

) �

s

 , it

follows by the indu
tion hypothesis (E ;A) �

s

� and (E ;A) �

s

 i�

(E ;A) �

s

� ^ . The
ase for weak satisfa
tion follows similarly.

(_

w

) The disjun
tive
ase needs to be treated separately, be
ause strong

and weak satisfa
tion are de�ned di�erently for disjun
tive formulae.

First, the weak satisfa
tion relation: (E

0

;A

0

) �

w

� _ i� (E

0

;A

0

) �

w

� or (E

0

;A

0

) �

w

 , by hypothesis (E ;A) �

w

� or (E ;A) �

w

 i�

(E ;A) �

w

� _ .

(_

s

) Strong satisfa
tion for disjun
tion is de�ned for literals only. Hen
e,

for literals �

1

; : : : ; �

n

, (E

0

;A

0

) �

s

�

1

_ : : : _ �

n

i� [[(E

0

;A

0

) �

s

�

1

or : : : or (E

0

;A

0

) �

s

�

n

℄ and 8 i s.t. 1 � i � n [(E

0

;A

0

) �

s

: �

i

implies (E

0

;A

0

) �

s

(�

1

_ : : : _ �

n

; �

i

)℄℄.

By base
ase [[(E ;A) �

s

�

1

or : : : or (E ;A) �

s

�

n

℄ and 8 i s.t. 1 �

i � n [(E ;A) �

s

: �

i

implies (E ;A) �

s

(�

1

_ : : : _ �

n

; �

i

)℄℄ and by

de�nition of strong satisfa
tion (E ;A) �

s

�

1

_ : : : _ �

n

.

The other propositional
ases follow similarly.

We
onsider one of the quanti�er
ases (the others follow similarly).

(9

!

) Suppose (E ;A) �

s

(9 x :�) _ . Then for some x -variant B of A,

(E ;B) �

s

� _ . By the indu
tion hypothesis, (E

0

;B

0

) �

s

� _ .

But B

0

is an x -variant of A

0

, and so (E

0

;A

0

) �

s

(9 x :�) _ . Similar for

weak satisfa
tion.

(9

) Suppose (E

0

;A

0

) �

s

(9 x :�) _ . Then for some x -variant V of A

0

,

(E

0

;V) �

s

� _ . De�ne an assignment B in E as follows: On variables

other than x , B agrees with A, and on x , x

A

is some arbitrary member

of x

V

(x

V

is a member of U

0

(L), hen
e it is an equivalen
e
lass and

thus we
an
hoose any member). Then B is an x -variant of A, and it

5.4. Equality Tableau Rules 116

also easy to see that B

0

= V . Then (E

0

;B

0

) �

s

� _ . so by indu
tion

hypothesis (E ;B) �

s

� _ , and therefore (E ;A) �

s

(9 x :�) _ .

Similarly for weak satisfa
tion.

2

5.4 Equality Tableau Rules

The aim of this
hapter is to develop a proof pro
edure in
orporating reasoning

about equalities. Basi
ally, it is suÆ
ient to add the equality rules to the set

of assumptions. However, we
an also in
orporate equality rules expli
itly into

the tableau method. Adding equality to the semanti
 tableau for
lassi
al logi

has been dis
ussed, for example, by (Reeves, 1987), (Fitting, 1996) and (Be
kert,

1997).

De�nition 5.4.1 (Tableau Equality Rules)

The following are the EQ-rules for QC semanti
 tableau, where s and t are terms,

f is a fun
tion symbol and � is a literal.

Re
exivity:

t � t

Repla
ement:

�(s)

s � t

�(t)

Inequality rules:

: (f (s

1

; : : : ; s

n

) � f (t

1

; : : : ; t

n

))

: (s

1

� t

1

) j : : : j : (s

n

� t

n

)

�(s

1

; : : : ; s

n

)

: �(t

1

; : : : ; t

n

)

: (s

1

� t

1

) j : : : j : (s

n

� t

n

)

Note, the tableau rule

s � t

f (s) � f (t)

is impli
itly given due to the re
exivity and

repla
ement rules, i.e. by re
exivity we have f (s) � f (s) and by assumption s � t

thus it follows by repla
ement f (s) � f (t).

In a simpli�ed notation, the tableau U-Rules are given by

(t � t)

�

losed

(�(t))

�

(�(s))

�

j (s � t)

�

(f (s) � f (t))

�

(s � t)

�

(: (s � t))

�

(�(s))

�

j (: �(t))

�

but they are dismissable be
ause ea
h
an be simulated by the EQ-rules for the

QC semanti
 tableau as introdu
ed above. First, if we derived (t � t)

�

in some

bran
h then we
an
lose that bran
h by using the re
exivity rule to add t � t to

5.4. Equality Tableau Rules 117

the end of it. After applying the se
ond rule we need to establish �(s) and s � t

to
lose ea
h bran
h. However, given both we
an apply the repla
ement rule

to derive �(t) whi
h
loses the bran
h with (�(t))

�

in it. Applying the fun
tion

U-rule results in showing s � t to
lose it. However, given this and re
exivity we

obtain f (s) � f (t) whi
h would
lose the bran
h, too. Finally, the last rule
an

be simulated using the inequality rule for relation symbols. Consequently we do

not require the use of the equality U-rules.

We illustrate the use of the tableau rules with a
ouple of examples. The following

reasoning tree shows an example of how to use equality and fun
tion symbols.

We show f8 x ; y :(x � y ^ f (y) � g(y))g `

Q

�

8 x ; y :(h(f (x)) � h(g(y))).

8 x ; y :(x � y ^ f (y) � g(y)); (8 x ; y :(h(f (x)) � h(g(y))))

�

a � b; f (b) � g(b)

f (a) � g(b)

h(f (a)) � h(f (a))

h(f (a)) � h(g(b))

(h(f (a) � h(g(b)))

�

losed

Next, we use equality, fun
tion symbols and predi
ates. To
onstru
t the tree

below we apply symmetry and transitivity. We already established the validity

of these rules on the semanti
 level but will not repeat this argument here. How-

ever, using both properties of equality shortens the proof
onsiderably. We show

f8 x ; y :(f (x) � g(y)) p(x ; y)); f (a) �
; g(b) �
g `

Q

�

p(a; b).

8 x ; y :(f (x) � g(y)) p(x ; y)); f (a) �
; g(b) �
; (p(a; b))

�

f (a) � g(b)) p(a; b)

: (f (a) � g(b)) _ p(a; b)

(f (a) � g(b))

�

f (a) �
; g(b) �

f (a) � g(b)

losed

p(a; b)

losed

5.5. Soundness and Completeness 118

5.5 Soundness and Completeness

We need to establish the link between the QC tableau method and the QCL

semanti
s. We need to show that we
an only prove with the QC semanti

tableau method what is satis�able by QCL, i.e. soundness, and that we
an

prove everything that is satis�able, i.e.
ompleteness. Hunter showed that a set

of assumptions � implies a
on
lusion ' by QCL (� �

Q

'), if and only if a QC

tableau for � and
on
lusion ' is
losed (� `

Q

'). We extend this proof to QCL

with equality.

Theorem 5.5.1

For any set of formulae � � L and any formula ' 2 L, a quasi-
lassi
al tableau

with equality for � and ' is
losed if and only if � �

Q

�

'.

The basi
 idea of the proof relies on the fa
t that a tableau method is sound and

omplete if ea
h tableau rule is sound and
omplete. Hunter already uses this

prin
iple thus we have little to
hange from the
ase without equality to the
ase

with equality.

Soundness of the Tableau Rules

Basi
ally, we need to show that the appli
ation of a tableau rule or equality rule

to a tableau that is satis�able in a normal model will produ
e another tableau

that is satis�able in the same normal model.

Lemma 5.5.1 (Soundness S-rules)

Ea
h tableau rule given in de�nition 4.4.11 and de�nition 5.4.1 is sound in the

following sense: If � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula

below the line, and E

0

is a normal model su
h that E

0

�

s

�, then E

0

�

s

'.

Proof

A

ording to (Hunter, 2001), the tableau rules in de�nition 4.4.11 are sound in

the sense that if � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula

below the line, and E is a model su
h that E �

s

�, then E �

s

'. Be
ause E

0

�

s

�

i� E �

s

� and E �

s

' i� E

0

�

s

' it follows that the tableau rules in de�nition

4.4.11 are sound in the above sense.

The EQ re
exivity rule is sound be
ause t � t is the formula below the line and

a

ording to de�nition 5.3.1 we
onsider only those models su
h that for all E ;A,

(E ;A) �

s

t � t , i.e. (E

0

;A

0

) �

s

t � t . The EQ repla
ement rule is sound be
ause

a

ording to de�nition 5.3.1 for all E ;A, if (E ;A) �

s

�(s) and (E ;A) �

s

s � t

then (E ;A) �

s

�(t) and using lemma 5.3.5 it follows if (E

0

;A

0

) �

s

�(s) and

(E

0

;A

0

) �

s

s � t then (E

0

;A

0

) �

s

�(t) for all E

0

;A

0

. Similarly for the inequality

rules. 2

5.5. Soundness and Completeness 119

Lemma 5.5.2 (Soundness U-rules)

Ea
h tableau rule given in de�nition 4.4.12 is sound in the following sense: If

� 2 L

�

is a formula above the line, and ' 2 L

�

is a formula below the line, and

E

0

is a normal model su
h that E

0

�

w

�, then E

0

�

w

'.

Proof

This follows from (Hunter, 2001), i.e. ea
h tableau rule given in de�nition 4.4.12

is sound in the following sense: If � 2 L

�

is a formula above the line, and ' 2 L

�

is a formula below the line, and E is a model su
h that E �

w

�, then E �

w

';

and from E

0

�

w

� i� E �

w

� and E �

w

' i� E

0

�

w

'. There are no equality

U-rules thus we are done. 2

Completeness of the Tableau Rules

Lemma 5.5.3 (Completeness S-rules)

The set of tableau rules given in de�nitions 4.4.11 and 5.4.1 is
omplete in the

following sense: If � 2 L

�

is a formula in a bran
h of a QC semanti
 tableau, and

there is a pair (E

0

;A

0

) su
h that (E

0

;A

0

) �

s

�, and a

ording to de�nitions 4.4.7

and 5.3.1 there is a derivation of the form (E

0

;A

0

) �

s

� implies (E

0

;A

0

) �

s

', then

'
an be obtained as a formula in the bran
h by using the S-rules in de�nition

4.4.11 or the equality rules in de�nition 5.4.1.

Proof

The
ompleteness of the S-rules follows from (Hunter, 2001) and lemma 5.3.5.

It remains to be shown the
ompleteness of the EQ-rules. The EQ rules for the

stong satisfa
tion relation are
aptured in de�nition 5.3.1. A

ording to de�nition

5.3.1 always (E ;A) �

s

t � t , i.e. (E

0

;A

0

) �

s

t � t whi
h
an be obtained by the

re
exivity rule. Given �(s) and s � t in a bran
h, a

ording to de�nition 5.3.1

there is a derivation (E ;A) �

s

�(s) and (E ;A) �

s

s � t implies (E

0

;A

0

) �

s

�(t)

whi
h
an be obtained using the repla
ement rule. Similarly for the inequality

rules. 2

Lemma 5.5.4 (Completeness U-rules)

The set of tableau rules given in de�nition 4.4.12 and 5.4.1 is
omplete in the

following sense: If � 2 L

�

is a formula in a bran
h of a QC semanti
 tableau, and

there is a pair (E

0

;A

0

) su
h that (E

0

;A

0

) �

w

�, and a

ording to de�nitions 4.4.8

and 5.3.2 there is a derivation of the form (E

0

;A

0

) �

w

� implies (E

0

;A

0

) �

w

', then

'
an be obtained as a formula in the bran
h by using the U-rules in de�nition

4.4.12 or the equality rules in de�nition 5.4.1.

Proof

The
ompleteness of the U-rules follows from (Hunter, 2001) and lemma 5.3.5. It

remains to be shown the
ompleteness of the EQ-rules. This follows basi
ally from

the earlier dis
ussion that ea
h EQ U-rule
an be modelled using the EQ-rules.

2

5.6. The One-Point Rule 120

Given the soundness and
ompleteness of ea
h of the tableau rules it is easy to

show that the tableau method is sound and
omplete, i.e. for any set of formulae

� and any formula ' there is a QC semanti
 tableau with equality for � and '

that is
losed if and only if there is no model E su
h that E �

s

� and E �

w

'

�

.

This, however, has essentially been proved by (Hunter, 2001). A

ording to the

above lemmata ea
h appli
ation of the S-rules, U-rules and EQ-rules is sound and

omplete. Consider a parti
ular � and '. There is a QC tableau with equality

for � and ' that is
losed i� every bran
h of the tableau with root � [f'

�

g is

losed i� every bran
h of the tableau with root � [f'

�

g
ontains � and �

�

for

some ground literal � i� there is no model for ea
h bran
h of the tableau with

root � [f'

�

g i� there is no model E su
h that E �

s

� and E �

w

'

�

.

5.6 The One-Point Rule

The notion of equality allows us to introdu
e or eliminate the existential quan-

ti�er. If a variable is found to be bound by an existential quanti�er and it

is identi
al to some given term, then we
an repla
e all instan
es of the vari-

able by that term and remove the existential quanti�er. Consider the predi
ate

9 x :(p(x) ^ x � t). This states that there is a value for x for whi
h the predi
ate

p(x) ^ x � t holds. Obviously, t itself is a reasonable
andidate for repla
ing x .

The one-point rule in standard predi
ate logi
 expresses the following equivalen
e:

9 x :(p(x) ^ x � t) � p(t) [provided x is not free in t ℄

We are interested in preserving this rule in QCL, i.e. we want

9 x :(p(x) ^ x � t) �

Q

p(t)

under the same provision. This means, that the
lass of the strong models and the

lass of the weak models of the left and right hand side of this equivalen
e must

be equal. We found that bi-dire
tional QC derivability is a ne
essary
ondition to

hold. It is, however, easy to see that for any formula p it is the
ase: 9 x :(p(x) ^

x � t) à

Q

p(t)

9 x :(p(x) ^ x � t); (p(t))

�

p(t) ^ t � t ; (p(t))

�

p(t); t � t ; (p(t))

�

losed

p(t); (9 x :(p(x) ^ x � t))

�

p(t); (p(t) ^ t � t)

�

(p(t))

�

losed

(t � t)

�

t � t

losed

5.7. Dis
ussion and Summary 121

The strong model
lasses of both sides are equal if for every strong model of

9 x :(p(x) ^ x � t) there is an equivalent strong model for p(t), i.e. if for every

model E it holds E �

s

9 x :(p(x) ^ x � t) i� E �

s

p(t). The
ase for the weak

satisfa
tion relation follows similarly.

E �

s

p(t)

i� ffor all assignments Ag

(E ;A) �

s

p(t)

i� fConsider normal modelsg

(E

0

;A

0

) �

s

p(t)

i� fBy Re
exivityg

(E

0

;A

0

) �

s

p(t) and (E

0

;A

0

) �

s

t � t

i� fDe�nitiong

(E

0

;A

0

) �

s

p(t) ^ t � t

i� fB

0

is x-variant assignment of A

0

g

(E

0

;B

0

) �

s

9 x :(p(x) ^ x � t)

i�

(E ;B) �

s

9 x :(p(x) ^ x � t)

i� ffor all assignments Bg

E �

s

9 x :(p(x) ^ x � t)

5.7 Dis
ussion and Summary

Adding equality to a para
onsistent logi
 has previously been
onsidered by

(Batens and De Cler
q, 1999) and (da Costa, 2000). Basi
ally, both approa
hes

are similar to ours by being based on adding re
exivity and the repla
ement

prin
iple.

We �nd, however, that equivalen
e
lasses
an be trivialised in the presen
e of

in
onsisten
y. For example, under the assumption 1 � 2 all numbers
ollapse

into one equivalen
e
lass, i.e. all numbers are provably equal. This problem

an be
ontributed to the ri
hness of reasoning with equality, in parti
ular to

fun
tionality. (Mortensen, 1995, p. 12f) notes:

Fortunately or unfortunately, the methods and results in this book

[(Mortensen, 1995)℄ indi
ate that the `essen
e' of mathemati
s is

deeper than para
onsistentists have thought [...℄.

[...℄
lassi
al mathemati
s, interested in fun
tionality,
on
entrated

on the
onsistent subtheory [...℄

5.7. Dis
ussion and Summary 122

[...℄ it is not true that there are no intera
tions between fun
tionality

and in
onsisten
y or in
ompleteness. [...℄ this
an lead to interesting

insights about fun
tionality;

(Mortensen, 1995) suggests a
ontrolled relaxation of fun
tionality to avoid su
h

trivialities and (Vermeir, 2001) investigates a new axiomatisation of in
onsis-

tent arithmeti
 by means of in
onsisten
y-adaptive logi
s (see (Batens, 1999)

and (Batens, 2000), for example). The latter approa
h, however, abandons the

property of monotoni
ity whi
h we identi�ed as desirable.

Surely, this issue of in
onsisten
y and arithmeti
 needs to be further investigated.

Note, however, given su
h in
onsisten
y between numbers does not ne
essarily

mean that the given theory is trivialised too. For example, 1 � 2 ^ �, for some

formula �, does not imply that we
an infer : � using QCL with equality.

In this
hapter we introdu
ed the notion of equality to the semanti
s of QCL. We

showed that extra tableau rules to reason about equality are sound and
omplete

with respe
t to the given semanti
s. Given equality we established the validity

of the one-point rule, a
ommonly used rule to introdu
e and remove existential

quanti�
ation. We will use QCL with equality in the next
hapter to reason

about formal spe
i�
ations written in the Z notation.

Chapter 6

Formal Reasoning about

In
onsistent Z Spe
i�
ations

using Quasi-Classi
al Logi

The aim of this
hapter is to dis
uss what formal support
an be given to the

pro
ess of analysing and re�ning Z spe
i�
ations in a
ontext that expli
itly allows

and re
ognises in
onsisten
ies. This work is part of the wider area of resear
h

on living with in
onsisten
ies, rather than eradi
ating them. We dis
ussed in

Chapter 4 that logi
ians have developed a range of logi
s to
ontinue to reason in

the presen
e of in
onsisten
ies and we introdu
ed in parti
ular one representative

of su
h para
onsistent logi
s, namely Hunter's quasi-
lassi
al logi
 (QCL). Here

we apply QCL to analyse in
onsistent Z s
hemas. Quasi-
lassi
al logi
 allows us

to derive less, but more \useful", information, in the presen
e of in
onsisten
y.

Consequently, in
onsistent Z spe
i�
ations
an be analysed in more depth than

at present.

Part of the analysis of a Z operation is the
al
ulation of the pre
ondition. In

the presen
e of an in
onsisten
y, however, information about the intended ap-

pli
ation of the operation may be lost. It is our aim to regain this information.

We introdu
e a new
lassi�
ation of pre
ondition areas, based on the notions of

de�nedness, overde�nedness and unde�nedness. We dis
uss an option for deter-

mining these areas whi
h is based on quasi-
lassi
al reasoning.

Re�nement is the pro
ess of developing abstra
t spe
i�
ations into more
on-

rete ones. This is a major development tool for formal spe
i�
ations. Here, we

onsider the re�nement of in
onsistent operation s
hemas. Given an in
onsistent

predi
ate in an operation, any other predi
ate repla
ing it is a valid re�nement.

This, however, allows a wide range of non-intuitive re�nements. We
laim that

in
onsistent operations
arry information that should be preserved during re�ne-

ment, like
onsistent operations do. We develop a re�nement method based on

quasi-
lassi
al reasoning to a

ount for this.

123

6.1. Introdu
tion 124

6.1 Introdu
tion

The purpose of this
hapter is to dis
uss how to reason in the presen
e of in-

onsisten
ies in a formal setting. Although this might sound strange, spe
i�
a-

tions, espe
ially large ones, are often in
onsistent at some level. In
onsisten
ies

range from
ontradi
tory des
riptions of the system at hand to
ontradi
tions

spe
i�ed in the operations. A signi�
ant proportion of the spe
i�
ation analysis

pro
ess is then devoted to dete
ting and eliminating su
h in
onsisten
ies, be-

ause,
lassi
ally (and intuitively), in
onsisten
ies in spe
i�
ations are regarded

as undesirable.

6.1.1 Motivation

Those involved in large s
ale software engineering in pra
ti
e treat in
onsisten
ies

as a fa
t of life. They o

ur frequently in large proje
ts and need to be tolerated

(possibly for some time) and managed, rather than eradi
ated immediately. This

has led to a
onsiderable amount of resear
h on the development of tools and

te
hniques for living with in
onsisten
ies (Ghezzi and Nuseibeh, 1998; Ghezzi

and Nuseibeh, 1999), (Balzer, 1991), (S
hwanke and Kaiser, 1988), and handling

in
onsisten
ies (Finkelstein et al., 1994), (Hunter and Nuseibeh, 1998). The

general aim of su
h work is to provide pra
ti
al support for de
iding if, when,

and how to remove in
onsisten
ies, and to possibly reason in the presen
e of

in
onsisten
ies.

Although the te
hniques and tools developed for this approa
h have had a
ertain

amount of su

ess they have, however, mainly fo
used on informal and semi-

formal spe
i�
ation te
hniques. There has been re
ent work on more formal

approa
hes (Hunter and Nuseibeh, 1997) but these have largely
on
entrated on

purely logi
al issues, not
onne
ting them to
urrent spe
i�
ation languages. We

are interested in seeing what support we
an give for the pro
ess of living with

in
onsisten
ies in a spe
i�
ation notation, namely Z.

Our purpose here is to explore the issue of handling in
onsisten
ies in Z, espe
ially

those present in operations. The general aim is, in the presen
e of in
onsisten
y,

not to immediately derive falsehood, but to rather allow further, intermediate,

reasoning on other aspe
ts of the state, operation, or spe
i�
ation. This should

enable us to infer more useful
on
lusions from in
onsistent Z s
hemas or spe
i-

�
ations. One parti
ular aspe
t is how tolerating in
onsisten
ies
an bene�t the

development pro
ess from abstra
t to
on
rete spe
i�
ations.

6.1.2 The Use of Quasi-Classi
al Logi

In
lassi
al predi
ate logi
, on whi
h Z is based, in
onsistent information results

in triviality, be
ause everything
an be inferred from it. This, in turn, renders the

6.1. Introdu
tion 125

information useless, when, in fa
t, there may be further valid inferen
es we wish to

make. However, there are several ways of handling in
onsistent information. One

is to divide the pie
es of information into (possibly maximal)
onsistent subsets

(Res
her andManor, 1970), another is para
onsistent reasoning. The latter allows

the derivation of only non-trivial inferen
es from in
onsistent information, i.e. not

everything
an be inferred.

One representative of para
onsistent logi
s is quasi-
lassi
al logi
, developed by

(Besnard and Hunter, 1995). We introdu
ed the semanti
s and proof theory of

QCL with Equality in the previous
hapter. The key to QCL is that it allows only

the derivation of information already present in a given theory, even though that

theory might be in
onsistent. This feature is what we need to analyse in
onsistent

Z operations. QCL is not so mu
h aimed at reasoning about the truth in the real

world but about handling beliefs. This seems to be
ompliant with the idea of

formal spe
i�
ation where we gather requirements of a system yet to be built.

The main advantage of QCL, in
omparison with many other para
onsistent

logi
s, is that the logi
al
onne
tives behave
lassi
ally. Therefore, we believe

that QCL is more suitable for our appli
ation to Z, be
ause spe
i�ers and analysts

will already be familiar with the notation and meaning of the
onne
tives.

6.1.3 Hypothesis

In this
hapter we show that quasi-
lassi
al logi
 enables us to analyse in
onsistent

operations spe
i�ed in the formal notation Z. QCL allows us to infer less but

more useful information in the presen
e of in
onsisten
ies. We understand the

term \useful" with respe
t to the problem of triviality arising from in
onsisten
y,

i.e. everything is derivable. In
omparison to standard predi
ate logi
, QCL

restri
ts the amount of information inferable from in
onsistent premises.

Furthermore, quasi-
lassi
al logi
 is a tool to dire
t the pro
ess of re�nement

of in
onsistent operation s
hemas su
h that fewer but more useful re�nements

remain. In standard Z, an in
onsistent predi
ate in an operation
an be re�ned

by any other predi
ate. For example, we present an in
onsistent operation to add

a user to a library but re�ne it by an operation removing a user. QCL allows us to

distinguish between some forms of unwanted re�nements and desired re�nements.

Quasi-
lassi
al logi
 proves helpful for both tasks. However, we found that QCL

itself needs to be further developed to suit this parti
ular appli
ation within the

notation Z. We already reported some of the ne
essary extensions, like equality

and logi
al equivalen
e, in the previous
hapter. Here, we identify further areas

to guide the development of QCL. In parti
ular, QCL and its appli
ation to set

theory
ome to mind.

6.1. Introdu
tion 126

6.1.4 S
ope

In this work, we only
onsider the issue of lo
al in
onsisten
y. A s
hema
an

have an in
onsistent, i.e. unsatis�able, predi
ate. If su
h a s
hema is an opera-

tion s
hema, then the operation may not be appli
able at all, or only parts of the

operation are appli
able. This is due to the fa
t that
ontradi
tions in an opera-

tion only restri
t the pre
ondition of that operation whi
h
hara
terises where the

operation is feasible. In the
ase of the s
hema des
ribing the state of the system,

the entire part of the system governed by that state is not implementable. These

kinds of errors are lo
al in the sense that the spe
i�
ation of other
omponents

of the system may still be meaningful (although it is usually assumed impli
itly,

in a state and operation spe
i�
ation that at least one possible (initial) value of

the state should exist).

In
ontrast, global in
onsisten
ies are more serious, be
ause they make an entire

spe
i�
ation unsatis�able. They o

ur if some axiom s
hema, generi
 s
hema,

or
onstraint is unsatis�able. Furthermore, they
an arise due to a
ombina-

tion of di�erent paragraphs of a spe
i�
ation, ea
h being
onsistent. However,

set de
larations, abbreviations, and s
hema de�nitions
annot introdu
e global

in
onsisten
y. In this work we do not
onsider global in
onsisten
ies though

we believe that our work
ould
ontribute to the resear
h on analysing globally

in
onsistent spe
i�
ations, too.

There is another issue related to in
onsisten
y. (Henson and Reeves, 2000) inves-

tigate the logi
 of Z. Their intent is to de�ne Z based on proof theory. As part of

their resear
h, (Henson, 1998) reported that a previous development of the logi

of Z, as published by (Ni
holls, 1995), was in
onsistent. We do not investigate

the
onsisten
y of Z but the
onsisten
y of spe
i�
ations written in Z, and in

parti
ular of their operations.

6.1.5 Outline

This
hapter is stru
tured as follows. First, we present a small example of a

library system spe
i�ed using the Z notation. We introdu
e an in
onsisten
y to

use it as an illustration throughout this
hapter. Next, we use quasi-
lassi
al

logi
 to infer some properties of a part of this spe
i�
ation. We also show, that

QCL allows fewer inferen
es than standard predi
ate logi
. In Se
tion 6.4, we

apply QCL to the pro
ess of
al
ulating the pre
ondition of in
onsistent operation

s
hemas. It was here, that we found that we need QCL to possess a notion of

logi
al equivalen
e as introdu
ed in Chapter 4. Given the notion of a quasi-

lassi
al pre
ondition, we turn to the re�nement pro
ess of in
onsistent operations

in Se
tion 6.5. Following the notions of standard re�nement, we establish the

prin
iples of quasi-
lassi
al appli
ability and QC
orre
tness. We summarize this

hapter in Se
tion 6.6.

6.2. An In
onsistent Library Spe
i�
ation in Z 127

6.2 An In
onsistent Library Spe
i�
ation in Z

The following example presents a spe
i�
ation of a simple library system. We

have been inspired by some of our students who developed a similar system

(in
luding the in
onsisten
y) in their 2002 exam on Software Engineering.

Our library
onsists of users who are allowed to borrow books. The sets NAME

of user's names, and BOOK , of books, are taken as given; their stru
ture is of

no
on
ern for this detail of spe
i�
ation.

[NAME ;BOOK ℄

The state of the library is modelled by the s
hema Library . The Library s
hema

uses a partial fun
tion borrowed to re
ord the books borrowed by a user. The set

users
ontains the names of the people who joined the library.

Library

users : PNAME

borrowed : NAME 7! PBOOK

users = dom borrowed

Initially, there are no members of the library and, therefore, no books are bor-

rowed.

InitLibrary

Library

0

borrowed

0

= ?

users

0

= ?

A sensible
ondition to impose on the state s
hema Library is that it allows at

least one initial state. We spe
i�ed su
h an initial state by the s
hema InitLibrary .

We use Z/EVES to show that InitLibrary is indeed an initial state of Library .

=> try \exists Library' � InitLibrary;

=> prove by redu
e;

Proving gives ...

true

6.2. An In
onsistent Library Spe
i�
ation in Z 128

Next, we spe
ify the operation AddUser to register a new user, given a name.

To register, the user must not be a member of the library. The re
ord of books

borrowed remains un
hanged.

AddUser

�Library

name? : NAME

name? 62 users

users

0

= users [fname?g

borrowed

0

= borrowed

Operation s
hemas
an be analysed in di�erent ways. It is
ommon to determine

the pre
ondition of the operation to �nd those states where the operation is

appli
able. We use Z/EVES as a starting point for this
al
ulation.

=> try \pre AddUser;

=> prove by redu
e;

Proving gives ...

borrowed 2 P(NAME � PBOOK)

^ borrowed 2 NAME 7! PBOOK

^ users = dom borrowed

^ name? 2 NAME

^ : name? 2 dom borrowed

^ dom borrowed = fname?g [dom borrowed

whi
h, in turn, simpli�es to

preAddUser = [Library ; name? : NAME j false℄

We �nd, the operation AddUser is never appli
able. This suggests an in
onsis-

ten
y in the spe
i�
ation. Therefore, we
an use AddUser as one example for the

work we present in the next se
tions.

Furthermore, we spe
ify the operation of removing a user from the library system.

The user to be removed must be registered but is not allowed to have any books

on loan. We report the out
ome of the operation in
ase the operation does not

su

eed. Therefore, we introdu
e the type

Report ::= su

ess j failure

before turning to the a
tual operation

6.2. An In
onsistent Library Spe
i�
ation in Z 129

RemoveUser

�Library

name? : NAME

out ! : Report

(name? 62 users ^ borrowed

0

= borrowed ^ out ! = failure) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ borrowed

0

= borrowed ^

out ! = su

ess)

Using Z/EVES, we also determine the pre
ondition of the operation RemoveUser ,

to identify those states where the operation is appli
able.

=> try \pre RemoveUser;

=> prove by redu
e;

Proving gives ...

borrowed 2 P(NAME � PBOOK)

^ borrowed 2 NAME 7! PBOOK

^ users = dom borrowed

^ name? 2 NAME

^ : name? 2 dom borrowed

i.e.

preRemoveUser = [Library ; name? : NAME j name? 62 dom borrowed ℄

We know, the operation RemoveUser is not
orre
tly spe
i�ed be
ause we ex-

pe
ted to
over all
ases. However, the
al
ulated pre
ondition of RemoveUser

may a
tually distra
t from �nding the real problem, be
ause the given pre
ondi-

tion is designed to restri
t the remove operation to those users who returned all

books. A
tually, the
ondition arose from the predi
ate in
luding out ! = failure

and not from the predi
ate out ! = su

ess whi
h one might have assumed.

This spe
i�
ation is small enough to look for the mistakes by inspe
ting all the

s
hemas involved. However,
onsider a larger system with several s
hemas in-

luded. Inspe
tion be
omes a laborious task. Below we introdu
e me
hanisms

to support the analysis of su
h in
onsistent spe
i�
ations. Also, we introdu
e an

approa
h to re�ning su
h in
onsistent s
hema preserving the intended appli
a-

tion. The given spe
i�
ation is used as an example to guide our development and

to demonstrate and validate our results.

6.3. Investigating In
onsistent Z Spe
i�
ations 130

6.3 Investigating In
onsistent Z Spe
i�
ations

One of the distinguishing features of formal methods is the ability to formally

investigate spe
i�
ations. Formal reasoning enables us to infer new properties

or to
he
k whether a set of properties holds for a given spe
i�
ation. Su
h

properties may be demanded in the informal requirements for the spe
i�
ation,

or they may be identi�ed as key points about the spe
i�
ation.

Investigating an in
onsistent spe
i�
ation is a
hallenge, be
ause, in
lassi
al

predi
ate logi
, a
ontradi
tion enables the reasoner to infer any property. We

laim, that this is not very helpful in the pro
ess of analysing in
onsistent spe
i�-

ations. We introdu
ed quasi-
lassi
al logi
 as a logi
 that deals with this problem

of triviality di�erently. In QCL not every property
an be inferred from an in-

onsisten
y. Therefore, QCL is more suitable to derive more useful information

about an in
onsistent spe
i�
ation.

For example, we introdu
ed the operation AddUser to des
ribe the task of adding

a new member to the library. This operation should result in an in
rease of the

number of members, i.e.

AddUser `

Q

�

name? 62 users) #users

0

> #users

and indeed we
an show this

name? 62 users) #(users \ fname?g) = 0;#fname?g = 1;

users = dom borrowed ; user

0

= dom borrowed

0

;

name? 62 users; users

0

= users [fname?g; borrowed

0

= borrowed ;

(name? 62 users) #users

0

> #users)

�

(: (name? 62 users))

�

; (#users

0

> #users)

�

#users

0

= #(users [fname?g)

#users

0

= #users +#fname?g �#(users \ fname?g)

: (name? 62 users)

losed

#(users \ fname?g) = 0

#users

0

= #users +#fname?g � 0

#users

0

= #users + 1

#users

0

> #users

losed

We introdu
ed the predi
ates name? 62 users) #(users \ fname?g = 0) and

#fname?g = 1 as extra assumptions. Both predi
ates are derived from the

mathemati
al toolkit of Z. Often, su
h assumptions are not made expli
it and

6.3. Investigating In
onsistent Z Spe
i�
ations 131

proofs in Z are, therefore, semi-formal. A
tually, our proof is only semi-formal,

too. For example, we did not introdu
e the laws about the length of sets nor

that the value of a number in
reases through addition. As su
h, we follow the Z

\tradition" and apply obvious repla
ements without introdu
ing them expli
itly.

Due to the information provided in AddUser we are also able to show that the

amount of users of this library system remains un
hanged, i.e.

AddUser `

Q

�

#users

0

= #users

whi
h is validated by the following proof tree

users = dom borrowed ; user

0

= dom borrowed

0

;

name? 62 users; users

0

= users [fname?g; borrowed

0

= borrowed ;

(#users

0

= #users)

�

dom borrowed

0

= dom borrowed

users

0

= users

#users

0

= #users

The advantage of quasi-
lassi
al logi
 over
lassi
al predi
ate logi
 be
omes ap-

parent when we try to prove that adding a new member
ould a
tually redu
e

the number of users of the library. Using standard logi
 we would be able to infer

this statement but not when we use quasi-
lassi
al logi
, i.e.

AddUser 0

Q

�

#users

0

< #users

Apart from the operation AddUser we introdu
ed the operation RemoveUser .

Using QCL and its proof theory we also establish the following properties.

1. RemoveUser `

Q

�

name? 62 users) users

0

= users

2. RemoveUser `

Q

�

name? 62 users) borrowed

0

= borrowed

3. RemoveUser `

Q

�

name? 62 users) out ! = failure

4. RemoveUser `

Q

�

name? 62 users) #users

0

< #users

5. RemoveUser `

Q

�

name? 2 users) #users

0

< #users

6. RemoveUser 0

Q

�

name? 2 users) #users

0

> #users

7. RemoveUser 0

Q

�

name? 2 users) out ! = failure

6.4. Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations 132

Examples (1)-(3) establish some fa
ts about the
lassi
ally appli
able
ase. Ex-

ample (4) shows, the in
onsisten
y in the operation also allows to infer that

the number of users
an be redu
ed even if the user is not a member of the li-

brary. The same holds if the user is a member of the library, whi
h we intended.

The examples (6) and (7), however, demonstrate that not everything is inferable

from an in
onsisten
y. Using QCL we
annot establish those \undesired" fa
ts.

Standard predi
ate logi
, however, veri�es those inferen
es. We use Z/EVES to

demonstrate this.

=> try RemoveUser \implies

(name? \in users \implies \# users' > \# users);

=> prove by redu
e;

Proving gives ...

true

=> try RemoveUser \implies

(name?\in users\implies out!=failure);

=> prove by redu
e;

Proving gives ...

true

We promised that QCL will help us to infer less but more useful information. The

above examples demonstrates the value of this approa
h. Using QCL enables the

reasoner to validate only information whi
h is present in a spe
i�
ation, even

if it is in
onsistent, but no more. Next, we look at further issues of reasoning

about formal spe
i�
ations. First, we investigate quasi-
lassi
al pre
onditions of

in
onsistent spe
i�
ations. Afterwards, we turn to the problem of re�nement.

6.4 Quasi-Classi
al Pre
onditions of In
onsis-

tent Z Spe
i�
ations

(Wood
o
k and Davies, 1996) write: \The pre
ondition of an operation s
hema

des
ribes the set of states for whi
h the out
ome of the operation is properly

de�ned." In standard Z, this means that the out
ome of the operation needs to

be de�ned and must not be overde�ned, i.e. in
onsistent. Overde�nedness and

unde�nedness are, in standard Z, inseparable. However, when using alternative

forms of reasoning, unde�nedness and overde�nedness
an be distinguished.

6.4. Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations 133

We believe that from the developer's point of view unde�nedness and overde-

�nedness should be treated di�erently. In the one
ase, the developer had no

intention to spe
ify the e�e
t of an operation, therefore it was left unde�ned.

In the other
ase, a spe
i�
ation mistake or an unforeseen intera
tion of parts

of the spe
i�
ation rendered the operation inappli
able. Being able to formally

separate these situations will help to analyse the spe
i�
ation more deeply and

to develop it further in a more dire
ted way.

The aim of this se
tion is to investigate the e�e
t of
al
ulating the pre
onditions

of possible in
onsistent operation s
hemas using quasi-
lassi
al logi
. We demon-

strate that QCL is able to separate the unde�ned part of an operation from the

overde�ned. We also investigate QCL itself by applying it to su
h tasks. We �nd

that QCL needs to be further developed to be fully suitable for our needs.

6.4.1 The Quasi-Classi
al Pre
ondition

The pre
ondition of an operation des
ribes all the initial states in whi
h the

operation is de�ned. To us, an operation is de�ned if it is
onsistently de�ned or

possibly overde�ned. Given an operation s
hema Op we write

pre

Q

Op

to denote the quasi-
lassi
al pre
ondition of Op. This is another s
hema obtained

by hiding all the
omponents from Op that
orrespond to the after state of the

operation in
luding any outputs. If the state of the system is modelled by a

s
hema S , and outs! is the list of outputs asso
iated with the operation, then the

QC pre
ondition of Op on a state s
hema S is de�ned by

pre

Q

Op = 9 S

0

; outs! � Op

At �rst, this de�nition seems identi
al to the standard de�nition of the pre
on-

dition. However, we now
onsider QCL as the ba
kground logi
. Therefore,

in
onsisten
ies do not evaluate to false and the notion of logi
al equivalen
e is

hanged, too. Thus, the
lassi
al and quasi-
lassi
al pre
ondition of an operation

are di�erent in their e�e
t.

The QC pre
ondition of the operation s
hema AddUser , whi
h des
ribes the e�e
t

of adding a new member to the library, is given by

pre

Q

AddUser = 9Library

0

� AddUser

Using the standard rules of quanti�
ation and s
hema expansion this results in

6.4. Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations 134

PreAddUser

Library

name? : NAME

9Library

0

�

name? 62 users ^

users

0

= users [fname?g ^

borrowed

0

= borrowed

This s
hema des
ribes the QC pre
ondition of AddUser . However, this s
hema

is over-
ompli
ated to simply identify the
onditions under whi
h AddUser is

appli
able. Next, we investigate how QCL
an be used to simplify this s
hema

to give a neater but logi
ally equivalent statement.

6.4.2 Simplifying Quasi-Classi
al Pre
onditions

To simplify a pre
ondition s
hema we need to perform a series of equivalen
e

preserving steps to redu
e the
omplexity of the given predi
ate. However, not

only do we need ea
h step to preserve equivalen
e but we need transitivity of this

pro
ess, too. Otherwise, the resulting formula might not be logi
ally equivalent

to the starting one.

The problem of simplifying quasi-
lassi
al pre
onditions made us aware of the

fa
t, that the issue of logi
al equivalen
e has not been
overed by the published

resear
h on quasi-
lassi
al logi
. One reason
ould be that logi
al equivalen
e

is a simple property in QCL. We do not think so. Logi
al equivalen
e in QCL

is more
ompli
ated due to the two satisfa
tion relations involved. Therefore,

for example, bi-dire
tional inferen
e is not a valid notion of equivalen
e, be
ause

transitivity fails. In Chapter 4, we summarised our work on logi
al equivalen
e

in QCL. Given �

Q

to denote equivalen
e preserving steps in a proof, we simplify

the pre
ondition of AddUser .

pre

Q

AddUser

�

Q

fDe�nition of pre

Q

g

9Library

0

� AddUser

�

Q

fS
hema Expansion and Quanti�
ationg

[Library ; name? : NAME j

9 users

0

: PNAME ; borrowed

0

: NAME 7! PBOOK j

users

0

= dom borrowed

0

� name? 62 users ^

users

0

= users [fname?g ^ borrowed

0

= borrowed ℄

6.4. Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations 135

The One-Point Rule

A

ording to the semanti
s of QCL we
an eliminate an existential quanti�er

if there is an assignment of a �xed value to the bound variable. This step
an

formally be expressed by a derivation law, the so
alled one-point rule:

9 x � p(x) ^ x = t �

Q

p(t) [provided x is not free in t ℄

In the
ontext of Z spe
i�
ations we need to
onsider the typing information as

well. Therefore, the pre
ise one-point rule is slightly more
ompli
ated:

9 x : T � p(x) ^ x = t �

Q

t 2 T ^ p(t)

Given the one-point rule, we further simplify the QC pre
ondition of AddUser .

[Library ; name? : NAME j

9 users

0

: PNAME ; borrowed

0

: NAME 7! PBOOK j

users

0

= dom borrowed

0

� name? 62 users ^

users

0

= users [fname?g ^ borrowed

0

= borrowed ℄

�

Q

fOne-point rule on borrowed

0

g

[Library ; name? : NAME j

9 users

0

: PNAME � borrowed 2 NAME 7! PBOOK ^

users

0

= dom borrowed ^ name? 62 users ^

users

0

= users [fname?g℄

�

Q

fOne-point rule on users

0

g

[Library ; name? : NAME j

users 2 PNAME ^ borrowed 2 NAME 7! PBOOK ^

users [fname?g = dom borrowed ^ name? 62 users℄

�

Q

fType information provided in Libraryg

[Library ; name? : NAME j

users [fname?g = dom borrowed ^ name? 62 users℄

�

Q

fRepla
ement of Equals, Symmetryg

[Library ; name? : NAME j

users = users [fname?g ^ name? 62 users℄

�

Q

fRepla
ement of Equalsg

[Library ; name? : NAME j

users = users [fname?g ^ name? 62 users [fname?g℄

�

Q

fSet theoryg

[Library ; name? : NAME j

users = users [fname?g ^ name? 62 users ^ name? 62 fname?g℄

6.4. Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations 136

We
ould
ontinue substituting the de�nition of users a

ordingly but we do

not derive anything new. Therefore, the quasi-
lassi
al pre
ondition s
hema of

AddUser is

Pre

Q

AddUser

Library

name? : NAME

name? 62 users

name? 62 fname?g

users = users [fname?g

We interpret this QC pre
ondition in the following way. The operation AddUser

was designed to perform a task when a user name? is not a member of the set of

users. However, there is an in
onsisten
y present, whi
h for
es the
onstraint that

the set of users must not
hange after adding a new user name?. This, however,

is only possible, if name? is not a member of the set
ontaining name?, whi
h is

learly violating a basi
 set theoreti
 axiom. We believe that this quasi-
lassi
al

pre
ondition is more insightful than the
lassi
al pre
ondition

preAddUser = [Library ; name? : NAME j false℄

The operation AddUser is de�ned for the
ase that name? 62 users. Unfortu-

nately, it is also overde�ned. We dis
uss below some advantages of
al
ulating

both the
lassi
al and quasi-
lassi
al pre
ondition. Later, when
onsidering re-

�nement, we extend this work even further.

6.4.3 Using Classi
al and Quasi-Classi
al Pre
onditions

With the introdu
tion of the quasi-
lassi
al pre
ondition of an operation we have

established a se
ond notion of a pre
ondition besides the standard notion as

introdu
ed in Chapter 2. We now investigate whether using both notions together

gives some advantages to the pro
ess of analysing formal spe
i�
ations.

Overde�nedness

Earlier we introdu
ed the s
hema RemoveUser to spe
ify the operation of re-

moving a user from the library. We intended that an error message o

urs if

we try to remove a user who is not a member of the library. Furthermore, the

operation of removing a user is only guaranteed if the user has no books on loan.

We established the standard pre
ondition as

preRemoveUser = [Library ; name? : NAME j name? 62 dom borrowed ℄

6.4. Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations 137

We also established the notion of a quasi-
lassi
al pre
ondition whi
h we now

apply to the s
hema RemoveUser . We present the simpli�
ation steps in detail

to demonstrate the approa
h on a se
ond example.

pre

Q

RemoveUser

�

Q

fDe�nition of pre

Q

g

9 users

0

; borrowed

0

; out ! � Library ; name? : NAME ; out ! : Report j

users

0

= dom borrowed

0

^

((name? 62 users ^ out ! = failure ^ borrowed

0

= borrowed) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ borrowed

0

= borrowed ^

out ! = su

ess))

�

Q

fOPR on borrowed

0

g

9 users

0

; out ! � Library ; name? : NAME ; out ! : Report j

users

0

= dom borrowed ^

((name? 62 users ^ out ! = failure) _

(name? 2 users ^ name? 62 dom borrowed ^

users

0

= users n fname?g ^ out ! = su

ess))

�

Q

fDistribution of Conjun
tiong

9 users

0

; out ! � Library ; name? : NAME ; out ! : Report j

(users

0

= dom borrowed ^ name? 62 users ^ out ! = failure) _

(users

0

= dom borrowed ^ name? 2 users ^

name? 62 dom borrowed ^ users

0

= users n fname?g ^

out ! = su

ess)

�

Q

fDistribution of Existential Quanti�
ationg

Library ; name? : NAME j

9 users

0

; out ! � out ! : Report ^

(users

0

= dom borrowed ^ name? 62 users ^ out ! = failure) _

9 users

0

; out ! � out ! : Report ^

(users

0

= dom borrowed ^ name? 2 users ^

name? 62 dom borrowed ^ users

0

= users n fname?g ^

out ! = su

ess)

�

Q

fOPR on out ! (2x)g

Library ; name? : NAME j

9 users

0

� (users

0

= dom borrowed ^ name? 62 users) _

9 users

0

� (users

0

= dom borrowed ^ name? 2 users ^

6.4. Quasi-Classi
al Pre
onditions of In
onsistent Z Spe
i�
ations 138

name? 62 dom borrowed ^ users

0

= users n fname?g)

�

Q

fOPR on users

0

(2x)g

Library ; name? : NAME j (name? 62 users) _

(name? 2 users ^ name? 62 dom borrowed ^

dom borrowed = users n fname?g)

�

Q

fRepla
ement of Equalsg

Library ; name? : NAME j (name? 62 users) _

(name? 2 users ^ name? 62 users ^ users = users n fname?g)

The absorption laws do not hold in QCL. Therefore, we
annot simplify the

predi
ate to name 62 users. We
ould apply repla
ement to yield name? 2

users n fname?g ^ name? 62 users ^ users = users n fname?g. This, however,

does not deliver any new insight, nor is it an intuitive simpli�
ation of the above

predi
ate. Therefore, we de
ided to stop the simpli�
ation pro
ess.

The quasi-
lassi
al pre
ondition identi�es both the de�ned and the overde�ned

area of appli
ability of an operation. The
lassi
al pre
ondition shows only the

de�ned area. Both together
ould help us to separate the overde�ned area. For

example, the operation RemoveUser is de�ned for the
ase that name? 62 users

and overde�ned for name? 2 users ^ name? 62 users ^ users = users n fname?g.

The overde�ned area is of parti
ular interest, be
ause it
ontains the in
onsis-

ten
y. However, we have not formally determined the overde�ned area yet.

Given both the standard and QC pre
ondition we should be able to derive the
on-

dition where the operation is overde�ned. Unfortunately, the following problems

arise. On the one hand we
annot use
lassi
al logi
, otherwise the in
onsisten
y

in the overde�ned predi
ate would allow us to derive the predi
ate false. On the

other hand, QCL does not have a notion of true or false, both of whi
h
ould

be the
lassi
al pre
ondition. Therefore, separating the overde�ned predi
ate

formally remains an open problem for now.

Operation Consisten
y

In standard Z, we
annot formally distinguish between the operation RemoveUser

and the following s
hema

RemoveUser

x

�Library

name? : NAME

out ! : Report

name? 62 users ^ borrowed

0

= borrowed ^ out ! = failure

i.e.

6.5. Re�nement of In
onsistent Z Spe
i�
ations 139

=> try RemoveUser \iff RemoveUser_x;

=> prove by redu
e;

Proving gives ...

true

The pre
onditions of both s
hemas RemoveUser and RemoveUser

x

are equivalent

and so are their post
onditions. How do we know that RemoveUser is a
tually

in
onsistent, apart from the fa
t that it does not perform the task it was designed

for? How does an analyst know what the operation was meant for, apart from the

informal text that should des
ribe the meaning of the formal s
hemas? Standard

predi
ate logi
 does not help to solve this problem satisfa
torily but
ombining

it with quasi-
lassi
al logi
 we hope to provide an answer.

Cal
ulating both types of pre
ondition of an operation
ould enables us to de-

ide formally whether an operation is
onsistent. Given the
lassi
al and QC

pre
ondition of an operation Op we de�ne operation
onsisten
y
ons(Op) as

Operation
onsisten
y:
ons(Op) i� preOp �

?

pre

Q

Op

i.e. an operation is
onsistent if both its
lassi
al and QC pre
ondition are equiva-

lent. Informally, we �nd that the operations AddUser and RemoveUser are both

in
onsistent but the operation RemoveUser

x

, for example, is
onsistent.

There is, however, a major problem. We have not spe
i�ed the equivalen
e

relation and, therefore, we
annot
ompare the
lassi
al and the QC pre
ondition.

For example, the
lassi
al pre
ondition might
ontain the predi
ates true or false

whi
h are not
omparable to any predi
ate from QCL. Furthermore, QCL uses

two di�erent satisfa
tion relations. However, whi
h of the two
ould be used

to de�ne an appropriate equivalen
e relation? This issue remains for further

resear
h.

6.5 Re�nement of In
onsistent Z Spe
i�
ations

So far we investigated how quasi-
lassi
al logi

an support the pro
ess of rea-

soning about formal spe
i�
ations, in parti
ular about in
onsistent spe
i�
ations.

The aim of a spe
i�
ation is to
apture the essentials of a system as abstra
tly

as possible in order to fo
us on the essential properties of the system. Su
h

an abstra
t spe
i�
ation is not dire
tly implementable, be
ause it is not
lose

enough to a
omputer program. However, we
an develop a su

ession of more

on
rete spe
i�
ations leading us towards an implementation. This pro
ess of

development is
alled re�nement.

(Derri
k and Boiten, 2001) des
ribe the intuition behind re�nement as the

6.5. Re�nement of In
onsistent Z Spe
i�
ations 140

Prin
iple of Substitutivity: it is a

eptable to repla
e one program

by another, provided it is impossible for a user of the programs to

observe that the substitution has taken pla
e. If a program
an be

a

eptably substituted by another, then the se
ond program is said

to be a re�nement of the �rst.

To (Wood
o
k and Davies, 1996), re�nement is all about improving spe
i�
ations.

It involves the removal of non-determinism, or un
ertainty. In
onsisten
y is a

form of un
ertainty. Hen
e, re�nement is also about removing in
onsisten
y. In

standard Z, the pro
ess of removing in
onsisten
ies as a re�nement step is rather

unrestri
ted leading to some possible re�nements whi
h we intuitively reje
t. In

this se
tion we investigate how quasi-
lassi
al logi

an be applied to the pro
ess

of re�ning formal spe
i�
ations written in the Z notation.

6.5.1 Two Re�nement Examples

Earlier in this
hapter we introdu
ed a simple library spe
i�
ation. One of the

spe
i�ed operations is AddUser aimed at admitting a new member to the library.

Unfortunately, the operation AddUser is in
onsistent. This leaves us with a wide

hoi
e of possible re�nements. For example, the following two s
hemas are both

standard re�nements of AddUser . We believe, however, that at least one of these

two should intuitively be reje
ted.

AddUser R1

�Library

name? : NAME

name? 2 users

users

0

= users n fname?g

borrowed

0

=

fname?g

�

C borrowed

AddUser R2

�Library

name? : NAME

name? 62 users

users

0

= users [fname?g

borrowed

0

=

borrowed [fname? 7! ?g

The s
hema AddUser R1 des
ribes the operation of removing a member from

the library. This
ertainly was not the intention when spe
ifying the operation

AddUser . Therefore, we
laim, that AddUser R1 should not be a valid re�ne-

ment of AddUser . The operation s
hema AddUser R2 des
ribes the operation of

adding a new member to the library. It removes the in
onsisten
y by assigning

an empty set of books to the user. To us, this operation looks more like a valid

re�nement of AddUser . Below, we �nd out whether AddUser R2
an be shown

to be a quasi-
lassi
al re�nement of AddUser .

6.5. Re�nement of In
onsistent Z Spe
i�
ations 141

6.5.2 Classi
al Re�nement Conditions

Before we go into detail of quasi-
lassi
al re�nement, i.e. re�nement using quasi-

lassi
al logi
, we brie
y re-
ap the formal notion of standard re�nement. To keep

our illustration simple we
hoose to
on
entrate on the re�nement of operations

on the same state.

A re�nement has to ensure that a more
on
rete operation is still appli
able

when the abstra
t operation was. Appli
ability relates to the pre
onditions of

the operation. In re�nement, we
an weaken the pre
ondition but not strengthen

it. Furthermore, re�nement needs to ensure that all the properties of the abstra
t

spe
i�
ation are preserved. This means, that whenever the abstra
t operation

was appli
able in state S but the
on
rete operation was applied, relating the

state S to an after state S

0

, then the abstra
t operation also relates S to S

0

.

Formally, we say that an operation COp re�nes an operation AOp, denoted

AOp v COp, when it ful�lls the following two
onditions:

1. Appli
ability: preAOp ` preCOp

2. Corre
tness: preAOp ^ COp ` AOp

The s
hemas AddUser R1 as well as AddUser R2 are both standard re�ne-

ments of the s
hema AddUser , i.e. AddUser v AddUser R1 and AddUser v

AddUser R2. It is easy to see that the left-hand side of the
onsequen
e

evaluates to false be
ause, as we re
all from the last se
tion, preAddUser =

[Library ; name? : NAME j false℄. Next, we investigate a notion of quasi-
lassi
al

re�nement.

6.5.3 Quasi-Classi
al Appli
ability

We saw earlier that the quasi-
lassi
al pre
ondition of an operation determines

those states for whi
h an operation is de�ned or overde�ned. Consider the idea

that overde�ned is a spe
ial
ase of being de�ned. Then we
an use the standard

notion of appli
ability, i.e. that the
on
rete operation must be de�ned or overde-

�ned on those states where the abstra
t operation was de�ned or overde�ned on.

We express this notion formally by

Quasi-Classi
al Appli
ability: pre

Q

AOp `

Q

pre

Q

COp

This notion of quasi-
lassi
al appli
ability allows weakening of QC pre
onditions

but not strengthening.

6.5. Re�nement of In
onsistent Z Spe
i�
ations 142

Example

Given quasi-
lassi
al appli
ability, we are now able to show that the operation

s
hema AddUser R1 is not a valid re�nement of the s
hema AddUser . First, we

need the quasi-
lassi
al pre
ondition of AddUser R1. This is the same as the

lassi
al pre
ondition, i.e.

pre

Q

AddUser R1 = [Library ; name? : NAME j name? 2 users℄

Then, we show that the proof tree for pre

Q

AddUser `

Q

pre

Q

AddUser R1 does

not
lose:

users = dom borrowed ; name? 62 users;

name? 62 fname?g; users = users [fname?g;

(users = dom borrowed ^ name? 2 users)

�

(users = dom borrowed)

�

losed

(name? 2 users)

�

not possible to
lose

Hen
e, pre

Q

AddUser 0

Q

pre

Q

AddUser R1 and, therefore, AddUser R1 is not

a valid re�nement. The operation s
hema AddUser R2, however, is quasi-

lassi
ally appli
able. The quasi-
lassi
al pre
ondition of AddUser R2 is

pre

Q

AddUser R2 = [Library ; name? : NAME j name? 62 users℄

and the proof for pre

Q

AddUser `

Q

pre

Q

AddUser R2 su

eeds:

users = dom borrowed ; name? 62 users;

name? 62 fname?g; users = users [fname?g;

(users = dom borrowed ^ name? 62 users)

�

(users = dom borrowed)

�

losed

(name? 62 users)

�

losed

Properties of QC Appli
ability

QC appli
ability extends the standard notion of appli
ability. It is sound with

respe
t to standard appli
ability be
ause whenever QC appli
ability holds, stan-

dard appli
ability must hold, too. This follows dire
tly from the properties of

QCL. Consequently, QC appli
ability fails if a
onsistent operation was made

in
onsistent, as this is not permitted by standard appli
ability either.

The
onverse, however, is not true. For example,
onsider the operations

AddUser R1 and AddUser R2 both standard re�nements of AddUser . There-

fore, standard appli
ability holds for both operations but we showed that QC

6.5. Re�nement of In
onsistent Z Spe
i�
ations 143

appli
ability failed for AddUser R1. The question is when does QC appli
ability

reje
t a re�nement that is valid a

ording to the standard notion, i.e.
ould QC

appli
ability be too restri
tive?

We do not think that QC appli
ability is too restri
tive, i.e. it does not reje
t

any re�nement of
onsistent operations that standard appli
ability would a
-

ept. Unfortunately, we la
k meta-theoreti
al results about QCL to verify this

formally. QC appli
ability does not validate all re�nements of in
onsistent op-

erations, be
ause in
onsisten
y arises from overde�nedness, i.e. an in
onsistent

predi
ate provides too mu
h information. As in standard re�nement this infor-

mation needs to be in
orporated into the
on
rete operation.

6.5.4 Quasi-Classi
al Corre
tness

On
e we established appli
ability we need to verify the
orre
tness of an oper-

ation. A
on
rete operation behaves
orre
tly with respe
t to an abstra
t op-

eration if an observer
annot distinguish the out
ome of the
on
rete operation

and abstra
t operation, provided they are both applied on the same domain. We

introdu
ed the formal de�nition of standard
orre
tness earlier.

Establishing QC Corre
tness using the Classi
al Law and QC Inferen
e

QC appli
ability is very similar to standard appli
ability. Basi
ally, we
hanged

the inferen
e relation to use QC entailment rather than standard entailment.

This e�e
ts also the notion of a pre
ondition whi
h we dis
ussed separately. It

seems natural to investigate the impa
t of using a similar method for deriving

QC
orre
tness, i.e. to
hange the inferen
e system. We de�ne

Quasi-Classi
al Corre
tness: pre

Q

AOp ^ COp `

Q

AOp

Unfortunately, it is not as simple as that. We introdu
e the following two oper-

ation s
hemas AbsExample and ConExample for illustrative purpose.

AbsExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 0

ConExample

n? : Z

x ! : Z

(n? = 1 ^ x ! = 0) _

(n? = 2 ^ x ! = 1)

The s
hema ConExample is intuitively, and a

ording to the standard re�nement

rules, a valid re�nement of AbsExample, be
ause the operation has not been

hanged if the given number is one. Only the pre
ondition has been weakened to

6.5. Re�nement of In
onsistent Z Spe
i�
ations 144

onsider also the
ase of the number two. We are interested in QC
orre
tness to

hold for
onsistent operations if standard
orre
tness holds. Therefore, we should

be able to establish the QC
orre
tness
ondition, i.e. we need to show

pre

Q

AbsExample ^ ConExample `

Q

AbsExample

with pre

Q

AbsExample = [n? : Z j n? = 1℄. Using the tableau method we

onstru
t the following proof tree

n? = 1;

(n? = 1 ^ x ! = 0) _ (n? = 2 ^ x ! = 1);

(n? = 1 ^ x ! = 0)

�

n? = 1 _ n? = 2; n? = 1 _ x ! = 1; x ! = 0 _ n? = 2; x ! = 0 _ x ! = 1

(n? = 1)

�

losed

(x ! = 0)

�

x ! = 0

losed

n? = 2

.

.

.

This tree remains open and the proof fails, be
ause the bran
h
ontaining n? = 2

annot be
losed. Alternatively, we
ould have
hosen x ! = 0 _ x ! = 1 but,

equally, the tree
ould not be
losed.

The Problem of the Classi
al Approa
h with respe
t to QCL

In
lassi
al logi
, preAOp restri
ts the appli
ability of COp to those
ases where

AOp was appli
able, too. This restri
tion is a
hieved by
ontrolled use of in
on-

sisten
ies, i.e. the part of the pre
ondition of COp that is not the pre
ondition of

AOp is redu
ed to false. For example,

preAbsExample ^ ConExample

� fg

n? = 1 ^ ((n? = 1 ^ x ! = 1) _ (n? = 2 ^ x ! = 2))

� fg

(n? = 1 ^ n? = 1 ^ x ! = 1) _ (n? = 1 ^ n? = 2 ^ x ! = 2)

� fg

(n? = 1 ^ x ! = 1) _ false

� fg

(n? = 1 ^ x ! = 1)

The result is the part of ConExample that is appli
able if the pre
ondition of

AbsExample holds. This derivation used the information that n? = 1 ^ n? =

2 is in
onsistent. In QCL, however, we
annot use su
h restri
tions be
ause

in
onsisten
ies are tolerated.

6.5. Re�nement of In
onsistent Z Spe
i�
ations 145

Three Possible Solutions

One solution is to in
orporate expli
itly the information about su
h in
onsisten-

ies. For example, in
luding the assumption n? = 2) : (n? = 1) would enable

us to
omplete the
orre
tness proof.

n? = 2) : (n? = 1);

n? = 1;

(n? = 1 ^ x ! = 0) _ (n? = 2 ^ x ! = 1);

(n? = 1 ^ x ! = 0)

�

: (n? = 2) _ : (n? = 1);

n? = 1 _ n? = 2; n? = 1 _ x ! = 1; x ! = 0 _ n? = 2; x ! = 0 _ x ! = 1

(n? = 1)

�

losed

(x ! = 0)

�

x ! = 0

losed

: (n? = 2)

�

: (n? = 2)

losed

(n? = 1)

�

losed

Somehow it seems not satisfa
tory to expli
itly add side
onditions to the
orre
t-

ness proof ea
h time. For example, the use of automated theorem provers would

be restri
ted. Therefore, we would prefer a more general approa
h to over
ome

the problem. We
ould imagine to
ombine the pre
onditions of the abstra
t and

on
rete operation su
h that they always provide the ne
essary proof
onditions.

We observe, for example, that the predi
ate n? = 2 is the part of the pre
ondition

of the
on
rete operation that has been introdu
ed by weakening the pre
ondi-

tion of the abstra
t operation. Basi
ally, weakening of the pre
ondition
an be

expressed as a disjun
tion of the abstra
t pre
ondition and some predi
ate p, i.e.

pre

Q

COp � pre

Q

AOp _ p . Then, we would need to isolate the predi
ate p

and we
ould add (p)

�

to the tree by a disjun
tion of p with the
on
lusion AOp,

i.e. we derive the following
orre
tness
ondition

pre

Q

AOp ^ COp `

Q

AOp _ p

This
ondition expresses that we
an either show AOp or the weakening of the

pre
ondition. Su
h an approa
h seems not to violate the
lassi
al
orre
tness
on-

dition but to extend it. The problem, however, remains to extra
t the weakening

pre
ondition predi
ate p.

We
ould also try to generalise the idea of adding the in
onsisten
y assumption

expli
itly. For example, the predi
ate n? = 2) : (n? = 1) is an impli
it

onjun
t in the more general statement

6.5. Re�nement of In
onsistent Z Spe
i�
ations 146

pre

Q

ConExample) : pre

Q

AbsExample

� fg

(n? = 1 _ n? = 2)) : (n? = 1)

� fg

(: (n? = 1) ^ : (n? = 2)) _ : (n? = 1)

� fg

: (n? = 1) ^ (: (n? = 1) _ : (n? = 2))

� fg

: (n? = 1) ^ ((n? = 2)) : (n? = 1))

Using that pre

Q

COp � pre

Q

AOp _ p, this generalises to : pre

Q

AOp ^ (p)

: pre

Q

AOp). The question now is whether : pre

Q

AOp
an interfere with the

ompleteness or soundness of the proof. Assuming our reasoning above is valid,

the
orre
tness proof
ondition for re�nement would be
ome

(pre

Q

COp) : pre

Q

AOp) ^ pre

Q

AOp ^ COp `

Q

AOp

It is
umbersome and, furthermore, in terms of
lassi
al logi
 not possible to val-

idate. The ante
edent evaluates, using
lassi
al logi
, to false. In QCL, however,

preAOp and : preAOp are two di�erent entities. We admit that this solution

seems not entirely satisfa
tory either. Therefore, resear
h on the
orre
tness

ondition needs to be
ontinued.

Properties of QC Corre
tness

Despite the problems above we try to investigate QC
orre
tness further. We

established that it is not possible to introdu
e in
onsisten
ies during re�nement,

be
ause appli
ability would fail. Removing in
onsisten
ies by
hoosing one of

the possible
ases is, however, allowed by appli
ability. Now we want to �nd out

whether this is also valid with respe
t to
orre
tness.

We introdu
e the following simple example of two operations. The abstra
t op-

eration is
learly in
onsistent and the
on
rete one is not. Furthermore, the

on
rete operation is meant to return one of the possible two results from the

abstra
t operation. We would assume that su
h re�nement fails, be
ause we

weakened the post
ondition.

PrimAbsExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 1 ^ x ! = 2

PrimConExample

n? : Z

x ! : Z

n? = 1 ^ x ! = 1

6.5. Re�nement of In
onsistent Z Spe
i�
ations 147

The pre
ondition of PrimAbsExample is n? = 1 ^ 1 = 2 and it is easy to show

that QC appli
ability of PrimConExample holds. We also �nd that we su

eed

in
losing the proof tree for the
orre
tness
ondition of this example.

(n? = 1 ^ 1 = 2); (n? = 1 ^ x ! = 1);

(n? = 1 ^ x ! = 1 ^ x ! = 2)

�

(n? = 1)

�

losed

(x ! = 1)

�

losed

(x ! = 2)

�

x ! = 1,1 = 2

x ! = 2

losed

The example demonstrates that QC
orre
tness is not enough to prevent removing

in
onsisten
ies from an operation s
hema. Some might
onsider this result as

positive, although it is against the idea of re�nement. Removing in
onsisten
ies

an be regarded as desired but a little alteration of the above example would show

that this also allows \trivial" re�nements, e.g. the operation PrimConExample

ould return x ! = 3, whi
h is not what we intended.

The next question is whether the removal of in
onsisten
ies
an always be veri-

�ed. Unfortunately, this is not the
ase. In the last se
tion, we established the

appli
ability of the operation s
hema AddUser R2 with respe
t to the abstra
t

operation AddUser . We are left to verify the
orre
tness of this s
hema. We use

the
orre
tness
ondition

pre

Q

AddUser ^ AddUser R2 `

Q

AddUser

whi
h results in the following proof tree

name? 62 users ^ name? 62 fname?g ^ users = users [fname?g;

name? 62 users ^ users

0

= users [fname?g ^

borrowed

0

= borrowed [fname? 7! ?g ^

users = dom borrowed ^ users

0

= dom borrowed

0

;

(name? 62 users ^ users

0

= users [fname?g ^ borrowed

0

= borrowed ^

users = dom borrowed ^ users

0

= dom borrowed

0

)

�

(name? 62 users)

�

losed

(users = dom borrowed)

�

losed

(users

0

= dom borrowed)

�

losed

(users

0

= users [fname?g)

�

losed (borrowed

0

= borrowed)

�

.

.

.

6.5. Re�nement of In
onsistent Z Spe
i�
ations 148

This tree
annot be
losed and, therefore, the proof fails. Here, the result is as

expe
ted, be
ause we weakened the post
ondition of AddUser by removing the

in
onsisten
y. A

ording to the standard rules of re�nement, a post
ondition
an

only be strengthened. In this
ase, QC re�nement followed the idea of \living

with in
onsisten
ies" rather than eradi
ating them.

Both examples share the
ommon property that an in
onsisten
y was removed

from the post
ondition of the operation. However, for one example, su
h a re-

�nement step is
orre
t, for the other not. Both examples did not relate to the

earlier problem of restri
ting the appli
ability of the
on
rete operation to those

states where the abstra
t operation is appli
able. Therefore, we have dis
overed

another problem of QC
orre
tness that needs to be added to the list of future

work.

Corre
tness with respe
t to Invariant Properties

(Ja
ky, 1997, p. 247) writes: \An abstra
t model has some properties of the thing

it models, but not all of them. A design is more
on
rete than a spe
i�
ation.

A design is
orre
t if it has all the properties of the spe
i�
ation; it usually has

some additional properties as well."

We need to relax this
laim slightly in the presen
e of in
onsisten
y. An operation

is in
onsistent if it
ontains properties that
ontradi
t ea
h other. Insisting on

the fa
t that a
on
rete spe
i�
ation possesses all the properties of the abstra
t

spe
i�
ation would prevent us from removing in
onsisten
ies. Therefore we re-

phrase the above statement: A design is
orre
t if it has all the desired properties

of the spe
i�
ation.

This approa
h involves identifying all the required properties of the operation

and then to verify that the
on
rete operation possesses all those properties.

This assumes that these sele
ted properties have been validated with respe
t to

the abstra
t operation. As su
h, we do not prove the
orre
tness of re�nement

but the
orre
tness of the new spe
i�
ation.

6.5.5 Quasi-Classi
al Operation Re�nement

The aim of quasi-
lassi
al operation re�nement is to extend the standard re�ne-

ment notation by restri
ting the possible re�nements of in
onsistent operations.

We introdu
ed two examples to
larify this idea. We also introdu
ed QC appli-

ability and QC
orre
tness. Now we
ombine all re�nement rules to propose an

extended notion of re�nement.

We showed that QC appli
ability implies standard appli
ability. Therefore, the

�rst re�nement
ondition is

6.6. Summary 149

1. QC Appli
ability: pre

Q

AOp `

Q

pre

Q

COp

QC appli
ability, in parti
ular, restri
ts the re�nements to those that respe
t the

intended appli
ation domain. Next, we need to verify that the
on
rete operation

does at least what the abstra
t operation was designed for. We were not able

to develop a suitable QC
orre
tness
ondition. Therefore we use the standard

ondition whi
h is

2. Corre
tness: preAOp ^ COp ` AOp

The standard
orre
tness
ondition still allows re�nements whi
h we would intu-

itively reje
t. As we showed earlier, it allows one to repla
e in
onsistent out
omes

of an operation by one whi
h is not related to the
ontradi
tion. Therefore, we

suggest to
he
k those properties that the re�ned system should obey again, using

QCL to deal with in
onsisten
ies appropriately.

These re�nement
onditions extend the standard approa
h be
ause QC appli
a-

bility extends standard appli
ability. However, in QCL the transitivity of infer-

en
es fails, in parti
ular, in the presen
e of in
onsisten
ies. This implies that the

above
onditions do not fa
ilitate stepwise re�nement, at least with respe
t to

appli
ability.

6.6 Summary

In this
hapter we applied quasi-
lassi
al logi
 to analyse, espe
ially in
onsistent,

operations spe
i�ed using the Z notation. QCL proved valuable to infer properties

of in
onsistent operations, in parti
ular not to infer \useless" properties.

Then we
al
ulated the quasi-
lassi
al pre
ondition of an operation, de�ned as

existential quanti�
ation over the after state's variables and outputs. To simplify

the pre
ondition we had to adapt QCL and to develop a notion of logi
al equiv-

alen
e whi
h we presented in Chapter 4. Like in standard Z, the one-point rule

plays a
entral role in the simpli�
ation pro
ess. It also provided a ben
hmark

for the development of QCL with equality.

Next, we turned to QC re�nement. We presented the notions of QC appli
ability

and QC
orre
tness. However, only QC appli
ability proved valuable for now,

be
ause we
ould not fully establish a notion of QC
orre
tness. Therefore,

QC re�nement has been de�ned using the QC appli
ability and the standard

orre
tness
ondition.

We have not only investigated in
onsisten
y handling in Z using quasi-
lassi
al

logi
 but QCL itself. QCL has only been re
ently developed and, therefore, only a

limited amount of appli
ations of QCL exist. Furthermore, as far as we are aware,

6.6. Summary 150

QCL has only been used to reason about spe
i�
ations written in predi
ate logi
.

The appli
ation of QCL to the pro
ess of reasoning about formal spe
i�
ations

written in a language ri
her than �rst-order predi
ate logi
 is new. As su
h,

we dis
overed several problems that need to be addressed while developing QCL

further.

Chapter 7

Un(der)de�nedness in Z: Guards,

Pre
onditions and Re�nement

In the
ommon Z spe
i�
ation style operations are, in general, partial relations.

The domains of these partial operations are traditionally
alled pre
onditions,

and there are two interpretations of the result of applying an operation outside

its domain. In the traditional interpretation anything may result whereas in the

alternative, guarded, interpretation the operation is blo
ked outside its pre
on-

dition.

In fa
t these two interpretations
an be
ombined, and this allows representation

of both refusals and underspe
i�
ation in the same model. In this
hapter, we

explore this issue and we extend existing work in this area. To do so we adopt a

non-standard three-valued interpretation of an operation by introdu
ing a third

truth value. This value
orresponds to a situation where we don't
are what e�e
t

the operation has, i.e. the guard holds but we may be outside the pre
ondition.

In this
hapter, we develop a s
hema representation based on su
h a three-valued

interpretation. We extend in parti
ular the work by (Fis
her, 1998) by allowing

arbitrary predi
ates in the guard. We demonstrate the advantage of this approa
h

by means of a small example. Furthermore, we
lassify regions of before states

based on the familiar
on
epts of pre
ondition and guard. We extend these

notions to the \impossible" and the \unde�ned" region.

Using the three-valued interpretation leads to a simple and intuitive semanti
s

for operation re�nement, where re�nement means redu
tion of unde�nedness or

redu
tion of non-determinism. In this approa
h, both weakening of the pre
on-

dition as well as strengthening of the guard is possible. We also show that this

notion of re�nement extends the standard Z re�nement for both the pre
ondition

and the guarded interpretation.

151

7.1. Introdu
tion 152

7.1 Introdu
tion

In the states-and-operations (abstra
t data type) spe
i�
ation style in Z, oper-

ations are, in general, partial relations. The domains of these partial relations

are traditionally
alled pre
onditions. Depending on whi
h
ontext the abstra
t

data types are used in, there are two interpretations of the result of applying an

operation outside its domain.

In the traditional interpretation, presented, for example, by (Spivey, 1992), any-

thing may happen outside the pre
ondition, in
luding divergen
e; in the blo
king,

also
alled guarded, interpretation the operation is not possible. The latter in-

terpretation is the
ommon one when modelling rea
tive systems or
ombining

Z with pro
ess algebra, and also in Obje
t-Z. (Strulo, 1995)
alls it the '�ring

ondition' and (Josephs, 1991)
alls it the 'enabling
ondition' interpretation.

It has been observed that it is often
onvenient to use a
ombination of the

guarded and pre
ondition interpretation to allow both modelling of refusals and

underspe
i�
ation. One way of doing this is by having expli
it guards as intro-

du
ed by (Abrial, 1996) in the B-Method or by (Fis
her, 1998) for CSP-OZ.

7.1.1 Hypothesis

In this
hapter, we generalise existing work on
ombining the guarded and the

pre
ondition interpretation by allowing arbitrary predi
ates in the guards. Fur-

thermore, we give a model of re�nement, re�ning both guard and pre
ondition.

We previously presented the main
on
epts of this work in (Miarka et al., 2000).

Our inspiration
omes from a non-standard semanti
s of operations, viz. an inter-

pretation in three-valued logi
. The third logi
al truth value, denoted ?, stands

for the idea that we \don't
are" about the out
ome of an operation. We do

o

asionally refer to \unde�nedness", although this should be distinguished from

the kind of unde�nedness dis
ussed by (Valentine, 1998) and solved by VDM's

third logi
 value. Using a three-valued logi
 leads to a simple and intuitive no-

tion of (operation) re�nement, where re�nement is redu
tion of unde�nedness

or redu
tion of non-determinism (or both). It would even allow an alternative

de�nition of re�nement whi
h preserves \required non-determinism"as dis
ussed

by (Lano et al., 1997) and (Steen et al., 1997).

However, su
h an interpretation of operations requires a more expressive nota-

tion than normal operations with expli
it guards. In su
h notation, we take the

operation to be false (impossible) outside its guard, and unde�ned where the

guard holds but not the pre
ondition. This allows us to state that, for
ertain

before states, any after state \is unde�ned", but not that some after states are

unde�ned, and others possible or impossible. We will de�ne a syntax whi
h is

suÆ
iently expressive for this semanti
s, and de�ne operation re�nement rules

for this whi
h generalise the traditional ones.

7.2. Guards and Pre
onditions in Z 153

7.1.2 Outline

The remainder of this
hapter is stru
tured as follows. In Se
tion 7.2, we demon-

strate by means of two examples, normalisation and a simple money transa
tion

system, that a
ombination of the traditional and blo
king interpretations is

sometimes required. Then, in Se
tion 7.3, we de�ne a s
hema notation in
luding

both guards and e�e
t s
hemas. Based on that we de�ne regions of operation

behaviour, i.e. whether an operation is inside or outside the guard, or inside or

outside the pre
ondition. These regions
an also be related to a three-valued

interpretation, whi
h we present in Se
tion 7.4. Using su
h a three-valued in-

terpretation leads to a simple and intuitive notion of re�nement that generalises

standard operation re�nement. We introdu
e the rules in Se
tion 7.5 and show

their
ompatibility to the standard ones. We dis
uss some related work in Se
tion

7.6 and
on
lude with a short summary in Se
tion 7.7. In Chapter 8 we develop

a s
hema
al
ulus for the guarded pre
ondition s
hema notation we present here.

7.2 Guards and Pre
onditions in Z

The pre
ondition of an operation
hara
terises all the states and inputs to whi
h

the operation
an be applied su
h that there is an after state and output whi
h

are related to the states and inputs by the operation, i.e. it
hara
terises \before"

states. However, there are two di�erent points of view on how to interpret su
h a

pre
ondition. On the one hand, it
an be read to be a guard, i.e. the operation will

not be exe
uted if the pre
ondition is false. On the other hand, the interpretation

may be that the operation
an be exe
uted at any time but the result of it is only

guaranteed if the pre
ondition is true. In our opinion both interpretations
an

oexist and sometimes should. We illustrate our point of view with the following

two examples.

7.2.1 Normalisation in Z

Normalisation is the pro
ess of rewriting a s
hema su
h that all the
onstraint

information appears in the predi
ate part. For example, the natural numbers are

not a basi
 type of Z but
onstrained integers

1

. Therefore, a s
hema de
laration

referring to naturals
an be normalised to use integers and a
onstraint on the

predi
ate, e.g.

1

This is the
ase in Spivey's de fa
to standard (Spivey, 1992); in the
urrent draft standard

(ISO/IEC 13568, 2002) even Z is a true subset of another type A (\arithmos").

7.2. Guards and Pre
onditions in Z 154

S
hema

a; a

0

: N

(a

0

)

2

� a < (a

0

+ 1)

2

Normalised S
hema

a; a

0

: Z

a 2 N ^ a

0

2 N ^

(a

0

)

2

� a < (a

0

+ 1)

2

However, somehow the interpretation may
hange through that pro
ess. As the

operation S
hema is de�ned on natural numbers, it appears unreasonable to even

onsider applying it on negative integers, so the blo
king interpretation appears

quite reasonable for this area. However, the normalised s
hema is formally equiv-

alent to S
hema but is interpreted in the pre
ondition approa
h as being fully

unde�ned on integers. This means, that the spe
i�er needs to know about nor-

malisation, i.e. whi
h sets are proper types and whi
h are proper subsets of a type,

whi
h might not always be the
ase and somehow should not be ne
essary in the

�rst pla
e. This example also shows that normalisation is more guard, rather

than pre
ondition, related and that we might want to deal with it a

ordingly.

7.2.2 A Money Transfer System

Consider the following example of a simple money transa
tion system. It allows

to transfer a positive amount of money to a person's bank a

ount. Therefore,

we need a set of bank a

ount holders

[PID ℄

Ea
h bank a

ount is
hara
terised by its holder and the amount of money in

it. Of
ourse, we allow negative amounts in the a

ount as well. On the other

hand, not every person in the above set has to have a bank a

ount, therefore, a

olle
tion of a

ounts is a partial fun
tion. Furthermore, total is a derived state

omponent whi
h
al
ulates the amount of money in our bank by taking the sum

of the money in all a

ounts.

Bank

a

ount : PID 7! Z

total : Z

total = makesum a

ount

with the fun
tion

7.2. Guards and Pre
onditions in Z 155

[X ℄

makesum : (X $ Z)! Z

8 x : X ; y : Z; z : (X $ Z) �

makesum ? = 0 ^

makesum f(x ; y)g = y ^

makesum (f(x ; y)g [z) = y +makesum (z n f(x ; y)g)

to
al
ulate the total sum of all the a

ounts.

We des
ribe a transa
tion that will transfer a given amount of money to someone's

bank a

ount. Clearly the amount transfered has to be positive, be
ause we do

not want to be able to de
rease someone else's a

ount.

Transfer

�Bank

a? : Z

p? : PID

a? � 0

p? 2 dom(a

ount)

a

ount

0

= a

ount � fp? 7! a

ount(p?) + a?g

Below we analyse this small example and point out weaknesses in both the

guarded and pre
ondition interpretation.

7.2.3 Classi
al Pre
ondition and Guarded Interpretation

We determine the
lassi
al pre
ondition of the operation s
hema Transfer using

Z/EVES. We �nd that in the above example two
onditions have to be ful�lled

for a transfer to be su

essful. On the one hand, the amount must be positive

and on the other hand the re
eiving person must have an a

ount.

=> try \pre Transfer;

=> prove by redu
e;

Proving gives ...

a

ount 2 PID 7! Z

^ total = makesum a

ount

^ a? 2 Z

^ p? 2 PID

^ p? 2 dom a

ount

^ a? � 0

7.2. Guards and Pre
onditions in Z 156

whi
h is equal to the following s
hema:

PreTransfer

Bank

a? : Z

p? : PID

p? 2 doma

ount ^ a? � 0

But what happens if we try to apply the operation outside of these
onditions?

There are two possible interpretations: the pre
ondition interpretation, allowing

the operation, and the guarded interpretation, preventing it. A related issue is

re�nement, the development from a spe
i�
ation towards a more
on
rete repre-

sentation. How do both interpretations deal with it?

In the standard Z interpretation a pre
ondition represents the set of states where

the operation is de�ned, i.e. guaranteed to produ
e the spe
i�ed result. Outside

the pre
ondition the operation is
onsidered to be unde�ned whi
h means that the

operation
an do anything in
luding non-termination (\divergen
e"). Therefore,

re�nement
an, apart from redu
tion of non-determinism, weaken a pre
ondition,

allowing one to widen the s
ope of the operation and thereby redu
e the area of

unde�nedness.

Other spe
i�
ation languages, like Obje
t-Z (Smith, 2000) treat the pre
ondition

di�erently. There the pre
ondition is
onsidered as a guard, blo
king the oper-

ation if the pre
ondition is not ful�lled. Su
h an interpretation is o

asionally

used in Z as well, for example, when modelling rea
tive systems, as reported by

(Josephs, 1991) and (Strulo, 1995). Re�nement of guards is treated di�erently.

In Obje
t-Z, for example, one is not allowed to
hange the guard. Other ap-

proa
hes, notably the one presented by (Lano et al., 1997), where pre
onditions

and guards are
ombined, allow strengthening of guards, i.e. the redu
tion of

the appli
ability of the operation. They also allow to weaken any pre
ondition.

However, the pre
ondition is the upper bound for strengthening the guard and

the guard is the lower bound for weakening the pre
onditions.

7.2.4 Re�nement

In the pre
ondition interpretation, the following two re�nements of the operation

s
hema Transfer would be possible, ea
h of them weakening one of the
onstraints

of the pre
ondition of Transfer . First, we
ould allow the
reation of an a

ount

if the re
ipient of the transfer does not have one:

7.2. Guards and Pre
onditions in Z 157

Transfer R1

�Bank

a? : Z

p? : PID

a? � 0

p? 62 dom(a

ount)) a

ount

0

= a

ount � fp? 7! a?g

p? 2 dom(a

ount)) a

ount

0

= a

ount � fp? 7! a

ount(p?) + a?g

The given amount will be put into the newly
reated a

ount. This appears a

sensible re�nement, however, in the guarded interpretation it would be forbidden.

The guarded interpretation rightly forbids the more dangerous re�nement

Transfer R2

�Bank

a? : Z

p? : PID

p? 2 dom(a

ount)

a

ount

0

= a

ount � fp? 7! a

ount(p?) + a?g

whi
h, by removing the requirement that a? � 0, suddenly allows withdrawal

of someone else's money. In the pre
ondition interpretation this is still a valid

re�nement, though. We verify the appli
ability and
orre
tness
onditions by

using Z/EVES

=> try \pre Transfer \implies \pre Transfer_R2;

=> prove by redu
e;

Proving gives ...

true

=> try \pre Transfer \land Transfer_R2 \implies Transfer;

=> prove by redu
e;

Proving gives ...

true

Apparently, the two predi
ates in PreTransfer have a di�erent status: a? � 0 is

more like a guard, whereas p? 2 dom(a

ount) is more like a pre
ondition. This

example shows that ea
h interpretation alone is not always suÆ
ient. Therefore,

we propose to have both guards and pre
onditions in the same spe
i�
ation.

7.2. Guards and Pre
onditions in Z 158

7.2.5 Combining Guards and Pre
onditions

The idea to
ombine guards and pre
onditions is not new. For example, (Fis
her,

1997; Fis
her, 1998) provides a solution to this problem by using an \enabled"

s
hema to denote the guard and an \e�e
t" s
hema for the standard operation

s
hema with its pre
ondition interpretation. Using this approa
h the Transfer

operation in our example evolves to

F Transfer

enable Transfer

a? : Z

a? � 0

effe
t Transfer

�Bank

a? : Z

p? : PID

p? 2 dom(a

ount)

a

ount

0

= a

ount �

fp? 7! a

ount(p?) + a?g

where enable refers to the guard of the operation and effe
t to the e�e
t of the

operation. Now the operation F Transfer is blo
ked whenever a? is negative.

However, the update of someone's a

ount is only guaranteed if the a

ount

already exists. In
ase it does not, divergen
e may o

ur.

With this notation we are able to develop re�nement rules whi
h deal with the

guards and pre
onditions in an appropriate fashion. Su
h re�nement rules would

allow one to weaken the pre
ondition of F Transfer (i.e. effe
t Transfer), re-

du
e any non-determinism in the spe
i�
ation, and potentially strengthen the

guard (i.e. enable Transfer). With these rules in pla
e we are able to weaken

the pre
ondition p? 2 dom(a

ount) provided we do preserve the guard a? � 0.

However, a

ording to (Fis
her, 1998) the guard \must
ontain unprimed state

variables only". Unfortunately, this would still allow undesired re�nements, as

the after state is
ompletely un
onstrained for before states satisfying the guard

but not the pre
ondition. Sensible restri
tions like

fp?g

�

C a

ount

0

= fp?g

�

C a

ount

and total

0

= total + a?

whi
h express that no one else's a

ount
hanges and that the total amount of

money
annot ex
eed the previous amount plus the newly added,
annot be im-

posed. Adding this restri
tion to effe
t Transfer would have no e�e
t, be
ause

it
an be derived from effe
t Transfer already. However, for states
urrently

outside the pre
ondition but within the guard, we have no way of imposing this

as a post
ondition.

7.3. The En
oding of Un(der)de�nedness in Z 159

7.3 The En
oding of Un(der)de�nedness in Z

In
orporating both guards and pre
onditions for operations enables a parti
ular

way of spe
ifying un(der)de�nedness in Z. Basi
ally, an operation
an be blo
ked

by the guard. However, if not blo
ked it leaves two possibilities, either its result

is guaranteed, i.e. applied within its pre
ondition, or its result is un(der)de�ned.

In this se
tion we introdu
e the syntax to des
ribe an operation in terms of guards

and pre
onditions. We then use this
hara
terisation to de�ne the di�erent re-

gions of de�nition that an operation
an have. The operation syntax we introdu
e

splits an operation into two parts
onsisting of its guard and its e�e
t in a way

similar to that des
ribed in Se
tion 7.2.5.

7.3.1 A S
hema Representation of Un(der)de�nedness

An operation is de�ned as a triple (De
l Op; gd Op; do Op), where De
l denotes

the de
laration part of the operation, gd the guard of the operation and do the

e�e
t of the operation itself. It is depi
ted by the following s
hema:

Op

De
l Op

De
l

gd Op

pred

gd

do Op

pred

do

where De
l Op is impli
itly in
luded in gd Op and do Op. Note, that this is

di�erent to (Miarka et al., 2000) where we put the de
laration in the gd - and

do-part separately. However, this way should ease the writing of s
hemas by

not dupli
ating information. Often, we use the abbreviation (gd Op; do Op)

assuming the de
laration to be in
luded where ne
essary.

The following axiom ensures that the only relevant part of the do-part of the

operation is that whi
h lies within the guard, i.e. that it
an only be applied if

the guard is ful�lled.

Axiom 1 8P ;Q � (P ;Q) � (P ;P ^ Q)

In any formal interpretation we should ensure that this Axiom holds. Hen
e,

we
an, where ne
essary, restri
t our
onsiderations to spe
i�
ations where the

guard is in
luded in the de�nition of the e�e
t.

7.3. The En
oding of Un(der)de�nedness in Z 160

Theorem 7.3.1

For every s
hema, there is an equivalent one, su
h that the e�e
t implies the

guard, i.e. that the guard is embedded within the e�e
t.

8P ;Q 9P

0

;Q

0

� (P ;Q) � (P

0

;Q

0

) ^ Q

0

) P

0

Proof

The required P

0

and Q

0

are given by P and P ^ Q , respe
tively:

8P ;Q 9P

0

;Q

0

� (P ;Q) � (P

0

;Q

0

) ^ Q

0

) P

0

^

P

0

= P ^ Q

0

= P ^ Q

� fOne-point rule (twi
e)g

8P ;Q � (P ;Q) � (P ;P ^ Q) ^ (P ^ Q)) P

� fPredi
ate Cal
ulusg

8P ;Q � (P ;Q) � (P ;P ^ Q)

whi
h is valid by Axiom 1. 2

Theorem 7.3.2

A formally weaker version of (P ;Q) is obtained by repla
ing Q with P) Q , i.e.

8P ;Q � (P ;Q) � (P ;P) Q)

Proof

(P ;Q)

� fAxiom 1g

(P ;P ^ Q)

� fPredi
ate Cal
ulusg

(P ;P ^ (P) Q))

� fAxiom 1g

(P ;P) Q)

2

7.3.2 Normalisation revisited

Given the above s
hema notation for expressing guards and pre
onditions we
an

express normalisation di�erently.

Normalised S
hema

De
l Normalised S
hema

a; a

0

: Z

gd Normalised S
hema

a 2 N ^ a

0

2 N

do Normalised S
hema

(a

0

)

2

� a < (a

0

+ 1)

2

7.3. The En
oding of Un(der)de�nedness in Z 161

Now the operation is blo
ked, if a is not a natural number, whi
h is probably

more like the intended interpretation of a : N . Following this intuition, we de�ne

normalisation of guarded pre
ondition s
hemas su
h that any type
onstraints

whi
h are impli
it have to be made expli
it and will be
ome part of the guard.

7.3.3 The Money Transfer System revisited

The previously dis
ussed operation Transfer with the desired extension of the

guard
an now be expressed as

Transfer2

De
l Transfer2

�Bank

a? : Z

p? : PID

gd Transfer2

a? � 0

total

0

= total + a?

fp?g

�

C a

ount

0

=

fp?g

�

C a

ount

do Transfer2

p? 2 dom(a

ount)

a

ount

0

= a

ount�

fp? 7! a

ount(p?) + a?g

Having primed state variables in the guard
auses the guard not to be exe
utable,

be
ause we
annot test the after state beforehand. However, we may
onsider

spe
i�
ations that
ontain unde�ned areas as not implementable anyway, be
ause

some re�nement is still missing. For re�nement rules whi
h remove unde�nedness

see Se
tion 7.5. Primed state variables in the guard do not limit implementations

in general, they just give us more expressiveness.

7.3.4 Regions of Before States

Using su
h a notation of guarded pre
ondition s
hema, we
an des
ribe (at least)

three di�erent possibilities for a parti
ular pair of before/after states:

1. gd Op holds and do Op holds: the states belong to the operation.

2. gd Op holds but do Op does not hold: the states may or may not belong

to the operation, we don't
are.

3. gd Op does not hold: we do not wish the states to belong to the operation.

(Note, that this makes do Op for this pair of states redundant information.)

7.3. The En
oding of Un(der)de�nedness in Z 162

Based on this des
ription, we
an de�ne a number of regions of before states that

are of interest.

Impossible. The impossible region is the set of states where the operation is

blo
ked, i.e. it is always going to fail.

impo(Op) b= [S ; ins? j : 9 S

0

; outs! � gd Op℄

Analysing our example, we identify that the operation Transfer2 is always re-

je
ted when the amount a? is negative, i.e.

impo(Transfer2) = [Bank ; a? : Z; p? : PID j a? < 0℄:

Pre
ondition. The pre
ondition region is the area where the operation is pos-

sible and well de�ned. It is de�ned by

pre(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op ^ do Op℄

Observe that this is
onsistent with our
onvention of Op denoting gd Op ^

do Op. Then this results in the following pre
ondition for our example:

pre(Transfer2) = [Bank ; a? : Z; p? : PID j p? 2 dom(a

ount) ^ a? � 0℄:

Guard. The guarded region is simply the
omplement to the impossible region,

i.e. it is the area where the blo
king predi
ate holds.

guard(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op℄

This, however, is the same as
al
ulating the pre
ondition of the guarded part of

the operation, i.e. guard(Op) = pre(gd Op). Then it holds for our example

guard(Transfer2) = pre(gd Transfer2) = [Bank ; a? : Z; p? : PID j a? � 0℄:

Here it is
lear that our approa
h is stri
tly more expressive than Fis
her's:

guard(Op)
ontains an abstra
tion of the information in our approa
h, whereas

in his pre(enable) = enable. In Transfer2 the guard is a? � 0, loosing the infor-

mation that any widening of the pre
ondition should respe
t fp?g

�

C a

ount

0

=

fp?g

�

C a

ount and total

0

= total + a?.

Unde�ned. Given the regions de�ned by guard and pre
ondition we
ould

de�ne the \
ompletely unde�ned" region as the di�eren
e between guard and

pre
ondition. This would be

undef(Op) b= [S ; ins? j 9 S

0

; outs! � gd Op ^ (: 9 S

0

� gd Op ^ do Op)℄

In the initial Transfer operation it is

undef(Transfer) = [Bank ; a? : Z; p? : PID j a? � 0 ^ p? 62 dom(a

ount)℄

whereas in Transfer2 this region is empty.

In the next
hapter, we develop formally a s
hema
al
ulus for guarded pre
on-

dition s
hemas. We introdu
e existential quanti�
ation and review our work on

al
ulating the pre
ondition, the guard, and the other regions.

7.4. Three Valued Interpretation 163

7.4 Three Valued Interpretation

In the last se
tion we de�ned several regions a

ording to pairs of before/after

states. We distinguished three di�erent possibilities: First, the region where

gd Op does not hold, i.e. where the operation should be impossible. Se
ond, the

region where both gd Op and do Op hold, i.e. where after states belong to the

operation. Third, the remaining region where gd Op holds but do Op does not

hold. In that
ase the out
ome of the operation is unde�ned. These three regions

are depi
ted in Figure 7.1 and
an be naturally des
ribed using a set of three

truth values ff ; t;?g respe
tively.

UndefinedImpossible

(gd_Op and do_Op)

Defined

(gd_Op and not do_Op)
(not gd_Op)

Figure 7.1: Combining Guard and Pre
ondition

7.4.1 Semanti
al Des
ription of the Regions

Formally, we de�ne the transition from pairs of s
hemas to a three-valued logi

via a mapping fun
tion val that returns the appropriate truth value related to

the s
hema. Given a boolean-like type

bool3 ::= t j f j ?

we de�ne the three-valued interpretation of an operation Op = (P ;Q) on state

S as follows:

val(Op)= fx ; y j (x ; y) 2 rel(P ^ Q) � (x ; y) 7! tg

[fx ; y j (x ; y) 62 rel(P) � (x ; y) 7! fg

[fx ; y j (x ; y) 2 rel(P ^ :Q) � (x ; y) 7! ?g

where rel(Op) is a binary relation between bindings of type S and bindings of

type S

0

, i.e. rel(Op) = fOp � �S 7! �S

0

g.

We show that the given Axiom 1 also holds in this three-valued interpretation.

This is the
ase, if and only if it maps to the same truth values in either
ase of

using pairs (P ;Q) or (P ;P ^ Q).

7.4. Three Valued Interpretation 164

Proof sket
h:

val(P ;Q) =

8

>

<

>

:

t i� P ^ Q = P ^ (P ^ Q) i� t

f i� : P = : P i� f

? i� P ^ : Q = P ^ : (P ^ Q) i�?

9

>

=

>

;

= val(P ;P ^ Q)

7.4.2 Depi
ting Before and After States

We use a table style notation to depi
t the relation of before states and after

states of an operation by means of the possible out
ome, i.e. by val(Op). For

example, given an operation

Filter

De
l Filter

a? : Z

b! : Z

gd Filter

a? > 0

do Filter

isEven(a?) ^ b! � a?

whi
h takes only a positive number as input and returns any number less or equal

to it if the given number is even. Then the table representation is

a?

b!

: : : -1 0 1 2 3 4 5 : : :

.

.

.

-1 f f f f f f f

0 f f f f f f f

1 ? ? ? ? ? ? ?

2 t t t t f f f

3 ? ? ? ? ? ? ?

4 t t t t t t f

5 ? ? ? ? ? ? ?

.

.

.

Table 7.1: Before and After States Relations

7.4.3 Meaning of Re�nement

Operation re�nement is de�ned as removal of unde�nedness as well as non-

determinism. Taking our three-valued interpretation and the above represen-

tation, we
an explain re�nement intuitively as repla
ing multiple ? in a row by

7.4. Three Valued Interpretation 165

t provided it enlarges the pre
ondition region or by repla
ing any ? by f whi
h

in turn may redu
e the guarded region. Furthermore, we
an repla
e multiple t

in a line by f (as long as one t remains) to redu
e non-determinism. Note, the

latter step does not
hange either the pre
ondition nor the guarded region.

We
onsider the Filter operation from above to
larify the presented notion of

re�nement. Therefore, we introdu
e a possible re�nement C Filter .

C Filter

De
l C Filter

a? : Z

b! : Z

gd C Filter

a? > 0

b! < a?

do C Filter

isEven(a?)

b! = a?=2

The following re�nement took pla
e. First, we ensure that b! is always less than

a?. This is done by strengthening the guard and
orresponds to
hanging ? to f

for all
ases where b! � a?. Note, that this re�nement step also strengthens the

post
ondition of Filter in some
ases. Se
ond, we remove non-determinism by

providing a more
on
rete representation of the output in
ase that a? is even.

This is done by repla
ing multiple t by f . Weakening of the pre
ondition did not

take pla
e but we may de�ne an output for the
ase that a? is an odd number

in another re�nement step. However, the result will always be bound by the

newly introdu
ed predi
ate in the guard. The out
ome of this re�nement step is

illustrated in the following table.

a?

b!

: : : -1 0 1 2 3 4 5 : : :

.

.

.

-1 f f f f f f f

0 f f f f f f f

1 ? ? f f f f f

2 f f t f f f f

3 ? ? ? ? f f f

4 f f f t f f f

5 ? ? ? ? ? ? f

.

.

.

Table 7.2: Before and After States Relations after Re�nement

7.5. Operation Re�nement 166

7.5 Operation Re�nement

In this work, we restri
t ourselves to operation re�nement. Our work is intended

to generalise the standard approa
h of re�nement. In this se
tion, we �rst present

our generalised rules of re�nement whi
h we then apply to the Transfer example.

Finally, we show that our new re�nement
onditions indeed generalise both the

guarded and the pre
onditioned approa
h.

7.5.1 Rules for Operation Re�nement

Given an abstra
t operation AOp = (gd AOp; do AOp) and a
on
rete operation

COp = (gd COp; do COp) both over the same state State with input x? : X and

output y ! : Y , then COp re�nes AOp, denoted AOp v COp, if and only if

appli
ability (1) and
orre
tness (2) hold:

(1) 8 State; x? : X � preAOp ` preCOp

(2) 8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ` AOp

The �rst
ondition allows to weaken the pre
ondition and the se
ond
ondition

ensures that the re�ned operation does at least what the abstra
t operation did.

Additionally, we allow strengthening of guards but not weakening:

(3) 8 State; State

0

; x? : X ; y ! : Y � gd COp ` gd AOp

Conditions (1) and (3) together ensure that the pre
ondition is the upper bound

for strengthening the guard and that the guard is the lower bound for weakening

the pre
ondition.

We observe that the
orre
tness rule
an be formally weakened using (3):

preAOp ^ COp) AOp

� fDe�nition of Opg

pre(gd AOp ^ do AOp) ^ gd COp ^ do COp) gd AOp ^ do AOp

� fUsing gd COp) gd AOpg

pre(gd AOp ^ do AOp) ^ gd COp ^ do COp) do AOp

� fDe�nition of Opg

preAOp ^ COp) do AOp

However, it turns out ni
ely that the shape of the standard re�nement rules is

preserved when we use the introdu
ed abbreviation.

7.5. Operation Re�nement 167

7.5.2 Re�nement of the Money Transfer System

We introdu
ed in Se
tion 7.2.2 a simple money transa
tion system that allows to

put money into the a

ount of an existing
ustomer. We showed via an example

that using only the guarded or pre
ondition interpretation limits the expressive-

ness, and also perhaps allows unintended re�nement. In our
ombined approa
h

we solved these problems. Therefore, we are now able to express the following

re�nement of the Transfer2 operation:

C Transfer2

De
l C Transfer2

�Bank

a? : Z

p? : Z

gd C Transfer2

a? � 0

total

0

= total + a?

fp?g

�

C a

ount

0

=

fp?g

�

C a

ount

do C Transfer2

p? 62 dom(a

ount))

a

ount

0

=

a

ount � fp? 7! a?g

p? 2 dom(a

ount))

a

ount

0

= a

ount �

fp? 7! a

ount(p?) + a?g

First, we strengthened the guard gd Transfer2. Now, the money to be transfered

has to be positive and we are not permitted to
hange another person's bank

a

ount, no matter what future re�nement will do to the pre
ondition. Se
ond,

we also re�ned the do Transfer2 operation. We weakened the pre
ondition of

Transfer2 to handle the
ase that the re
eiving user does not have an a

ount.

In this
ase we allow the
reation of a new bank a

ount whi
h will have the

amount a? as initial input.

7.5.3 Generalisation of Traditional Re�nement Rules

Our
on
ept of re�nement is a valid generalisation of the traditional operation

re�nement rules in both the guarded and the pre
onditioned approa
h. Taking

gd Op = preOp and do Op = Op or gd Op = true and do Op = Op, respe
-

tively, we show that our re�nement rules redu
e to the traditional ones.

Guarded Approa
h

In the guarded interpretation the guard is the pre
ondition of the operation.

Therefore, we use gd Op = preOp and do Op = Op.

7.5. Operation Re�nement 168

Let Op

1

= (gd Op

1

; do Op

1

) = (preAOp;AOp) and Op

2

= (gd Op

2

; do Op

2

) =

(preCOp;COp). We show that for this
hoi
e of Op

1

, Op

2

it holds Op

1

v Op

2

�

AOp v COp in the guarded approa
h.

(1) Appli
ability.

preOp

1

` preOp

2

� fOp = (gd Op ^ do Op)g

pre(gd AOp ^ do AOp) ` pre(gd COp ^ do COp)

� fgd Op = preOp and do Op = Opg

pre(preAOp ^ AOp) ` pre(preCOp ^ COp)

� fSimpli�
ation: preOp ^ Op � Opg

preAOp ` preCOp

(2) Corre
tness.

preOp

1

^ Op

2

` Op

1

� fOp = (gd Op ^ do Op)g

pre(gd AOp ^ do AOp) ^ (gd COp ^ do COp)

` (gd AOp ^ do AOp)

� fgd Op = preOp and do Op = Opg

pre(preAOp ^ AOp) ^ (preCOp ^ COp) ` (preAOp ^ AOp)

� fSimpli�
ation: preOp ^ Op � Opg

preAOp ^ COp ` AOp

(3) Strengthening.

gd Op

2

` gd Op

1

� fgd Op

1

= preAOp, gd Op

2

= preCOpg

preCOp ` preAOp

Appli
ability and strengthening together result in the fa
t that preCOp =

preAOp, i.e. the standard
ondition in Obje
t-Z that a guard
annot be strength-

ened nor weakened. The
orre
tness rule is as in standard re�nement as well.

Pre
ondition Approa
h

To show that our approa
h is a generalisation of the pre
ondition approa
h, we

onsider that the guard of the operation is the weakest possible, i.e. gd Op = true.

7.5. Operation Re�nement 169

Then our notation
oin
ides with the standard Z notation, where do Op = Op.

Using the fa
t that we
onsider Op = gd Op ^ do Op it is easy to show that

appli
ability (1) and
orre
tness (2) hold. The rule for strengthening (3) evaluates

to 8 State; State

0

; x? : X ; y ! : Y � true whi
h means there is no strengthening

at all. Therefore, in the
ase of no guards our re�nement rules are equivalent to

the standard ones.

7.5.4 Re�nement Rules for Required Non-Determinism

A di�erent interpretation is possible for the operations in three-valued logi
 that

we have des
ribed. Various authors, like (Lano et al., 1997) and (Steen et al.,

1997) have argued that for behavioural spe
i�
ations, the traditional identi�
a-

tion of non-determinism with implementation freedom is unsatisfa
tory. They

would like the opportunity to spe
ify required non-determinism, whi
h implies

a need for additional spe
i�
ation operators to express implementation free-

dom. Re�nement rules should then remove implementation freedom but not non-

determinism. (Steen et al., 1997) des
ribe su
h a
al
ulus, obtained by adding a

disjun
tion operator to LOTOS.

We
ould introdu
e a similar
al
ulus for Z by reinterpreting the three-valued

operations des
ribed above. As before, when the operation evaluates to f for

a parti
ular before and after state, it denotes an impossibility. However, the

olle
tion of after states that are related by t to a parti
ular before state represents

required non-determinism. As a
onsequen
e, none of these t values may be

removed in re�nement. Finally, the
olle
tion of after states that are related by

? to a parti
ular before state represent an implementation
hoi
e, i.e. at least

one of those after states will need to be related by t in a �nal re�nement.

As a
onsequen
e, expressed in terms of the tabular representation used before,

re�nement rules for required non-determinism and disjun
tive spe
i�
ation are:

� if a line
ontains a single ?, it is equivalent to t (required
hoi
e from a

singleton set);

� if a line
ontains multiple o

urren
es of ?, some but not all of them may

be
hanged to f (redu
ing possibility of
hoi
e);

� any ? may be
hanged to t (in parti
ular, an implementation
hoi
e be-

tween several after states may be re�ned to a non-deterministi

hoi
e be-

tween some of them).

This approa
h generalises only the guarded approa
h { the pre
ondition just

hara
terises those before states for whi
h possible after states have been deter-

mined already. It also prevents some undesired intera
tion between removing

unde�nedness and in
reasing determinism.

7.6. Related Work 170

7.6 Related Work

Dealing with un(der)de�nedness in Z expli
itly has been an issue for a while.

It
ame up when resear
hers, like (Josephs, 1991), tried to use Z for spe
ifying

on
urrent systems and it be
ame apparent that one might need guards and

pre
onditions together.

7.6.1 Strulo's Work on Firing Conditions

(Strulo, 1995) attempts to unify both the pre
ondition and the guarded interpre-

tation to model passive and a
tive behaviour in Z a

ordingly. He developed the

idea of
lassifying a s
hema a

ording to its fun
tion and to use at one time the

guarded interpretation and another time the pre
ondition interpretation. Note,

that Strulo uses the term �ring
ondition rather than guard.

An operation is des
ribed by a single state s
hema, plus a label indi
ating whether

the operation is either a
tive or passive. A distin
tion is made between a
tive

operations being impossible or divergent, by interpreting before states whi
h allow

all possible after states as divergent. This en
oding extends the guarded approa
h

to pre
onditions in Z. Re�nement in Strulo's work is subtle as \the
onditions

for re�nement depend on the identi�
ation of a
tive and passive behaviours".

The
hara
terisation of an \un
onstrained" operation, whose predi
ate interpre-

tation is universally true, as divergent is somewhat arti�
ial. For example, given

an operation over a singleton state, the
lassi�
ation into un
onstrained and in-

teresting region
ontradi
t. An operation over a singleton state is either true or

false, but not one or the other at some time, i.e. there is no interesting region

but only an empty or an un
onstrained. However, su
h an operation is
learly

not divergent, so it should not be in the un
onstrained area but in the interesting

region. This is a
ontradi
tion, showing that Strulo's
lassi�
ation is not always

suÆ
ient.

7.6.2 The (R;A)-Cal
ulus by Doornbos

The (R;A)-
al
ulus by (Doornbos, 1994) separates well-de�nedness of an oper-

ation from its e�e
t, in an abstra
t setting of binary relations and sets. An

operation (R;A)
onsists of a set A essentially representing its pre
ondition, and

a relation R spe
ifying its e�e
t. This is substantially di�erent from having a

relation with an expli
it guard, in parti
ular it allows the spe
i�
ation of \mira-

les". The fragment of the
al
ulus satisfying A � domR (i.e., the \law"of the ex-

luded mira
le), is generalised by our
al
ulus, viz. (gd Op; do Op) b= (R;ACR).

Doornbos also draws a parallel between the (R;A)
al
ulus and weakest (liberal)

pre
onditions whi
h suggests a similar exer
ise would be possible for our
al
ulus.

7.7. Summary 171

7.6.3 Hehner and Hoare's Predi
ative Approa
h to Pro-

gramming

In (Hehner, 1993; Hehner, 1999; Hoare and He Jifeng, 1998) the authors
onsider

a spe
i�
ation to be a predi
ate of the form P) Q meaning that if P is satis�ed,

then the
omputation terminates and satis�es Q . A spe
i�
ation S is re�ned by

a spe
i�
ation T if all
omputations satisfying T also satisfy S , i.e. the reverse

impli
ation S (T (T v S). This allows weakening of the pre
ondition P as

well as strenghtening of the post
ondition Q .

Within this approa
h, the predi
ate guard ^ (pre) post) in a s
hema body

would express nearly the desired e�e
t under the guarding interpretation of Z

s
hemas. In this interpretation, a false guard
auses the spe
i�
ation to be false,

i.e. impossible, and a false pre
ondition pre leads to the spe
i�
ation being true,

whi
h in turn allows any output.

However, the advantage of our approa
h with two s
hemas gd and do is a
ertain

independen
e of the guard and pre
ondition. Even when the pre
ondition is false,

not every output is permitted: it is still restri
ted by the guard.

7.7 Summary

In this
hapter we presented the idea of using a three-valued interpretation of op-

erations to
ombine and extend the guarded and pre
ondition approa
hes. Using

this non-standard interpretation we were able to present a simple and intuitive

notion of operation re�nement, whi
h generalizes the traditional re�nement rela-

tions.

A full theory of re�nement would also in
lude a notion of data re�nement. How-

ever, when the retrieve relation is a two-valued predi
ate the extension be
omes

obvious. It remains, however, un
lear what might be represented by a three-

valued retrieve relation.

In our interpretation of pairs of s
hemas (gd Op; do Op) we identi�ed only three

regions. Clearly, we
ould further distinguish the areas : gd Op ^ : do Op and

: gd Op ^ do Op. The latter area might be regarded as representing \mira
les"

or in
onsisten
y. Dete
ting and managing in
onsisten
y between the guarded and

the pre
onditioned region is another of our topi
s for future resear
h, possibly

based on the work presented in Chapter 6.

Chapter 8

A S
hema Cal
ulus for

Un(der)de�nedness in Z

In the states-and-operations style in the spe
i�
ation language Z, un(der)de-

�nedness is not normally made expli
it. However, in the last
hapter we showed

that it is possible to adapt Z s
hemas su
h that both guards and pre
ondi-

tions are represented at the same time, and thus enabling the spe
i�
ation of

un(der)de�nedness. We
all su
h s
hemas guarded pre
ondition s
hemas.

S
hemas are
entral building blo
ks in standard Z and it is possible to perform

a variety of operations with and on them. In the last
hapter, we presented the

semanti
s for guarded pre
ondition s
hemas based on a non-standard three-valued

interpretation of an operation. We introdu
ed a third truth value to
orrespond

to a situation where we don't
are what e�e
t the operation has. In this
hapter,

we use this three-valued interpretation to develop a s
hema
al
ulus for guarded

pre
ondition s
hemas.

Our approa
h is based on three-valued truth tables for the
ommon logi
al op-

erators, i.e. negation,
onjun
tion, disjun
tion, and entailment. These truth ta-

bles guide the development pro
ess of the
orresponding s
hema operators. We

demonstrate the validity of the de�nitions by proving several laws from standard

predi
ate logi
. However, we also �nd that some laws do not hold. This is not

surprising as we do not deal with two- but three-valued logi
. Furthermore, we

�nd that entailment and impli
ation are de
oupled but s
hema entailment
an

be de�ned using standard impli
ation.

S
hema quanti�
ation is also an important part of standard Z. We, too, present

a notion of s
hema quanti�
ation for guarded pre
ondition s
hema and apply it

to s
hema hiding, proje
tion,
omposition and pre
ondition
al
ulation. Given

this
al
ulus we revise the regions of operation appli
ability, as introdu
ed in the

last
hapter. We also revise operation re�nement using the new s
hema
al
ulus.

172

8.1. Introdu
tion 173

8.1 Introdu
tion

S
hemas are
entral building blo
ks in standard Z and it is possible to perform

a variety of operations with and on them. In the last
hapter, we presented the

semanti
s for guarded pre
ondition s
hemas based on a non-standard three-valued

interpretation of an operation. We introdu
ed a third truth value to
orrespond

to a situation where we don't
are what e�e
t the operation has. In this
hapter,

we use this three-valued interpretation to develop a s
hema
al
ulus for guarded

pre
ondition s
hemas.

8.1.1 Motivation

In Chapter 7 we introdu
ed a new s
hema representation to
ombine both guarded

and pre
ondition interpretation of Z s
hemas. We demonstrated the use of our

notation by means of an example. We introdu
ed the
on
epts of the regions

of appli
ability of an operation and operation re�nement rules for su
h guarded

pre
ondition s
hemas. However, we did not present me
hanisms to
ombine su
h

s
hemas.

The s
hema
al
ulus is used to stru
ture and
ompose des
riptions. This allows

to divide up the information
ontent of a spe
i�
ation into manageable pie
es.

In parti
ular, this enables re-usability of
ommon
omponents. Of
ourse, while

developing a new s
hema representation we do not want to loose the advantages of

the standard Z notation, i.e. we need a s
hema
al
ulus for guarded pre
ondition

s
hemas as well.

In standard Z, the existential quanti�
ation over the after states and output

variables of an operation s
hema enables the
al
ulation of the pre
ondition of

that operation. The result is a s
hema
ontaining the predi
ate that needs to

hold to guarantee the out
ome of an operation. Furthermore, quanti�
ation,

s
hema impli
ation and s
hema
onjun
tion are used in standard Z to formalise

the notion of re�nement. Surely, we want to be able to perform pre
ondition

al
ulation and re�nement, too.

(Fis
her, 1998) introdu
ed a s
hema notation based on enable and effe
t

s
hemas to
apture guards and pre
onditions. His resear
h was aimed at
om-

bining Obje
t-Z and CSP spe
i�
ations. While it inspired our work in guarded

pre
ondition s
hemas it did not provide a s
hema
al
ulus.

(Strulo, 1995), too, works on unifying both the pre
ondition and the guarded

interpretation. His aim is to model passive and a
tive behaviour in Z a

ordingly.

Strulo de
ided to
lassify a s
hema a

ording to its fun
tion and to use at one time

the guarded interpretation and another time the pre
ondition interpretation. To

ombine and to reason about s
hemas he uses the s
hema
al
ulus from standard

Z. Obviously this is not possible in our approa
h as we develop a new s
hema

representation whi
h is more expressive than Strulo's.

8.2. Un(der)de�nedness in Z: Guarded Pre
ondition S
hemas 174

8.1.2 Hypothesis

In the last this
hapter, we developed our new s
hema representation based on a

three-valued interpretation. We propose to extend this work by using the same

interpretation to develop a s
hema
al
ulus for guarded pre
ondition s
hemas.

We show that it is possible to de�ne the s
hema operators based on the given

valuation fun
tion, mapping the s
hema representation to three distin
t truth

values, and three-valued truth tables. We then extend the
al
ulus to enable

quanti�
ation of s
hemas variables.

By developing this
al
ulus we demonstrate that our guarded pre
ondition

s
hemas
an be used to
onstru
t
omplex spe
i�
ations. We already introdu
ed

the regions of appli
ability of an operation. The s
hema operators
an be used

to formally determine these regions. Also, the s
hema
al
ulus is suÆ
ient to en-

able the spe
i�er to verify the re�nement of an abstra
t operation by a
on
rete

operation.

8.1.3 Outline

Here, we develop a s
hema
al
ulus for guarded pre
ondition s
hemas. We brie
y

re-
ap the notion of a guarded pre
ondition s
hema in Se
tion 8.2 and we illustrate

its use by presenting an example of a heat
ontrol system. We present the main

part of this
hapter in Se
tion 8.3 whi
h
onsists of the development of the s
hema

al
ulus itself. Based on the standard s
hema operators, we introdu
e the s
hema

operators for the guarded pre
ondition s
hemas. We also prove several laws for

the s
hema operators, to validate the
orre
tness of our de�nitions. Furthermore,

we show that some laws of two-valued predi
ate logi
 do not hold within our

al
ulus. Next, in Se
tion 8.5, we revise the notions of s
hema appli
ability and,

�nally, in Se
tion 8.6 we look at operation re�nement again, using the newly

developed s
hema
al
ulus.

8.2 Un(der)de�nedness in Z: Guarded Pre
on-

dition S
hemas

In
orporating both guards and pre
onditions for operations enables a parti
ular

way of spe
ifying un(der)de�nedness in Z. Basi
ally, an operation
an be blo
ked

by the guard. However, if not blo
ked it leaves two possibilities, either its result

is guaranteed, i.e. applied within its pre
ondition, or its result is un(der)de�ned.

8.2. Un(der)de�nedness in Z: Guarded Pre
ondition S
hemas 175

8.2.1 A S
hema Representation of Un(der)de�nedness

An operation is de�ned as a triple (De
l Op; gd Op; do Op), where De
l denotes

the de
laration part of the operation, gd the guard of the operation and do the

e�e
t of the operation itself. It is depi
ted by the following s
hema:

Op

De
l Op

De
l

gd Op

pred

gd

do Op

pred

do

where De
l Op is impli
itly in
luded in gd Op and do Op. Often, we will use

the abbreviation (gd Op; do Op) assuming the de
laration to be in
luded where

ne
essary.

8.2.2 Example: A Heat Control System

Here we give an example spe
i�
ation using guarded pre
ondition s
hemas to

illustrate the
on
ept and use of guarded pre
ondition s
hemas. We develop a

heat
ontrol system whi
h turns a fan on or o� a

ording to a given temperature.

The fan has to run when the temperature is above a maximum and it is o�

when the temperature is below a given minimum. However, between these two

boundaries it
an be on or o�. We de�ne a boolean like type FanType to
apture

the two possible operation modes of a fan.

FanType ::= On j O�

The state of our system is only
on
erned about the status of the fan.

System

fan : FanType

We use an axiomati
 de�nition for the temperature range su
h that both values

onstrain the entire spe
i�
ation.

heat max ; heat min : Z

heat max = 65

heat min = 45

8.2. Un(der)de�nedness in Z: Guarded Pre
ondition S
hemas 176

The maximum temperature is set to be 65 degrees Celsius and the minimum

temperature to be 45 degrees. These are average values for the operation of some

omputer pro
essor fans. Initially, the fan will be on, for safety reasons.

InitFan

System

0

fan

0

= On

The fan
an be turned on if the
urrent temperature, given by the input heat?, is

above the minimum temperature and if the fan is not running. However, it must

be turned on if the temperature is above the maximum allowed temperature.

On

De
l

�System

heat? : Z

gd On

heat? > heat min

fan = O�

do On

heat? � heat max

fan

0

= On

The O� operation is spe
i�ed similar to the On operation, being allowed if

the temperature is below maximum but being
ertainly applied if it is below

minimum.

O�

De
l

�System

heat? : Z

gd O�

heat? < heat max

fan = On

do O�

heat? � heat min

fan

0

= O�

8.2.3 S
hemas using true and false.

In this
hapter, we use two spe
ial s
hemas, denoted TRUE and FALSE. The

s
hema TRUE
an always be applied and the out
ome of its appli
ation is un
on-

strained. Therefore, its representation is given by the pair (true; true). Contrary

to TRUE, the s
hema FALSE is never appli
able, i.e. it is always blo
ked, hen
e

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 177

its guard is false. A

ording to Axiom 1, the do-part is irrelevant in su
h
ases.

However, for pra
ti
al use we de�ne it to be false, too, i.e. FALSE = (false; false).

S
hemas using false in the guard are not appli
able, they do not allow any oper-

ation and
annot be weakened in re�nement. However, they may
ome in handy

to add
onstraints to the do-part using s
hema disjun
tion. If the do-part is false

but not the guard then it is possible to perform an operation though no out
ome

is de�ned. However, during re�nement this operation may be
ome de�ned.

The s
hema (gd Op; true) is mostly used to add
onstraints to the guard via

s
hema
onjun
tion. Otherwise, any out
ome is possible as long as the guard

permits the operation. Finally, we turn to the s
hema (true; do Op). Due to the

guard being true, su
h an operation is always appli
able, i.e. it is never blo
ked,

though its result
an be both unde�ned or well-de�ned. However, this is the

same situation that o

urs in standard Z with the pre
ondition interpretation.

Therefore, it is possible to embed standard Z s
hemas into guarded pre
ondition

s
hemas using the following three steps: �rst, move its de
larations into the

de
laration part, se
ond, let the guard be true and, third, let the do-part be

equivalent to the predi
ate of the standard s
hema, i.e.

S b= [De
l j pred ℄ � S = (De
l ; true; pred)

8.3 A S
hema Cal
ulus for Guarded Pre
ondi-

tion S
hemas

In this se
tion, we develop a s
hema
al
ulus for the guarded pre
ondition

s
hemas. We
onsider the main Z s
hema operators: negation,
onjun
tion,

disjun
tion, quanti�
ation, hiding, proje
tion, and sequential
omposition. An

overview of the standard de�nitions of these operators
an be found in Chapter

2 as well as in (Wood
o
k and Davies, 1996) and (Potter et al., 1991).

We also show that this
al
ulus obeys several laws of predi
ate logi
. This is

ne
essary sin
e we are not dealing with standard predi
ate logi
 anymore but

with an en
oding of three-valued logi
 with two two-valued predi
ates. This is

illustrated by the fa
t that some
lassi
al laws, like the law of ex
luded middle,

do not hold. However, we are able to use two-valued predi
ate logi
 and its laws

whenever we are dealing with
lassi
al predi
ates, whi
h are
ontained in both

the gd - and do-part of an operation.

8.3.1 Three-Valued Truth Tables

In the previous se
tion we introdu
ed a s
hema representation that allows the

spe
i�
ation of un(der)de�nedness in Z. We used two predi
ates, one, the guard,

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 178

to des
ribe that the operation is permitted and another one, the do-part to de-

s
ribe that the operation is also de�ned. Both together
apture that the operation

is well-de�ned. We are also able to express that the operation is possible but not

de�ned, i.e. it is unde�ned. Finally, the negated guard is used to express that

the operation is forbidden, i.e. impossible. These three
ases
an be des
ribed

using a set of three truth values ft;?; fg respe
tively, where ? is often
alled

\bottom".

We de�ned the transition from pairs of s
hemas to a three-valued logi
 via a

mapping fun
tion val that returns the appropriate truth value relating to the

s
hema. Given a boolean-like type

bool3 ::= t j f j ?

we also de�ned the three-valued interpretation of an operation Op = (P ;Q) as

follows:

val(Op)= fx ; y j (x ; y) 2 rel(P ^ Q) � (x ; y) 7! tg

[fx ; y j (x ; y) 62 rel(P) � (x ; y) 7! fg

[fx ; y j (x ; y) 2 rel(P ^ :Q) � (x ; y) 7! ?g

where rel(Op) = fOp � �State 7! �State

0

g.

Given the three truth values we introdu
e the following truth tables whi
h are the

three-valued fragment with ? of (Dam�asio and Pereira, 1998), as well as those

derived from (Herre and Pear
e, 1992). These tables de�ne the propositional

fragment of a logi
 we need for this work:

p : p

t f

f t

? ?

p^q t f ?

t t f ?

f f f f

? ? f ?

p_q t f ?

t t t t

f t f ?

? t ? ?

p!q t f ?

t t f f

f t t t

? t t t

Table 8.1: Three-Valued Truth Tables

These truth tables will guide us in the development of the s
hema
al
ulus, i.e. the

s
hema operators will be de�ned with respe
t to these three-valued
onne
tives.

8.3.2 S
hema In
lusion and S
hema De
oration

Both s
hema in
lusion and s
hema de
oration follow the standard Z
onventions.

They allow us to hide some details of a s
hema and to fo
us on the relationship

of the relevant variables, leaving impli
it the invariant properties of a system. Of

ourse, those properties
an be made expli
it again by expanding the s
hemas.

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 179

S
hema In
lusion. S
hema in
lusion is one of the simplest s
hema operations.

It allows to use the name of a s
hema amongst the de
larations of another s
hema.

Like in standard Z, the e�e
t of in
lusion of a s
hema U amongst the de
larations

of a s
hema V is that the de
larations of U are in
luded in those of V , the

predi
ates of the guard of U are in
luded in the guard of V and the predi
ates of

the do-part of U are appended to the do-part of V . Note, that no type
lashed

must o

ur if the s
hemas are fully expanded. For example, the s
hemas On

and O� of the heat
ontrol system that we spe
i�ed earlier in
lude the s
hemas

System and System

0

.

S
hema De
oration. The rules of s
hema de
oration are similar to those in

standard Z. In parti
ular, the use of primed s
hema names follows the standard

onvention, i.e. the e�e
t is that the de
oration is applied to all the variables

in the de
laration of the de
orated s
hema both within the de
laration and the

predi
ate parts of the s
hema. For example, within the s
hema InitFan, the

s
hema System is de
orated with a prime and, therefore, the same applies to the

variable fan.

A further notational
onvention is the use of � and � in front of a s
hema name.

For any s
hema U , �U is de�ned as

�U b= [U ; U

0

℄

i.e. it
ontains all the variables and predi
ates de
lared in the s
hema U to-

gether with another set of primed de
larations and predi
ates
orresponding to

the de�nitions in the s
hema U .

Sometimes, an operation does not
ause any
hange of a parti
ular state U but

the operation requires some information provided by that state. Then we use

�U , as de�ned by

�U b= [�U j �U = �U

0

℄

to express that no
hanges to the variables de
lared in U o

ur.

8.3.3 S
hema Negation

Negation is a fun
tion that
hanges truth but not knowledge. Sin
e we are deal-

ing with unde�nedness the latter is important. An operation
an be forbidden,

unde�ned, or well-de�ned. A

ording to the truth table for negation, the nega-

tion of forbidden is well-de�ned, and vi
e versa, leaving the unde�ned region to

remain unde�ned. Sin
e the guard being false de�nes the forbidden, or impos-

sible, region, it has to de�ne the well-de�ned region after negation. It is just

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 180

the opposite for the de�ned area, i.e. it should be
ome impossible. Therefore,

whenever there was an e�e
t, it will be forbidden after negation. This intuition

leads to the following de�nition of s
hema negation.

We de�ne s
hema negation to preserve the de
laration of the operation but to

swap and to negate its predi
ates, i.e. given the s
hema U

U

De
l U

a : A

b : B

gd U

P

do U

Q

The negation W = : U is:

W

De
l W

a : A

b : B

gd W

: (P ^ Q)

do W

: P

The appearan
e of P in the new guard
an be explained from Axiom 1. However,

if originally Q) P , then the predi
ate in the guard is equivalent to : Q , in

whi
h
ase negation
an be written as : (P ;Q) = (: Q ;: P).

To derive the above de�nition of negation we used the following reasoning pro
ess:

if : P stands for \the operation is not appli
able", i.e. false then it should be

true after negation, i.e. it should be appli
able and de�ned, hen
e : P in the

do-part. Furthermore, an operation is de�ned if P ^ Q holds, whi
h should in

turn be
ome false after negation, i.e. operations inside it should be blo
ked, or

in other words, operations outside it should be allowed, hen
e : (P ^ Q) in the

guard.

However, we need to assume that the given s
hema U is normalised. As in

standard Z, a synta
ti
 form of a s
hema negation
an only be given on the

assumption that the negated s
hema was normalised �rst. Thus, we assume that

s
hemas are normalised whenever s
hema negation is applied in any inferen
e in

the following se
tions and subse
tions.

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 181

The Double Negation Law. The �rst law we show to hold is the double

negation law, i.e. that : : U = U holds:

: : U

� fDe�nition of U g

: : (P ;Q)

� fS
hema Negationg

: (: (P ^ Q);: P)

� fS
hema Negationg

(: (: (P ^ Q) ^ : P);: : (P ^ Q))

� fClassi
al de Morgan Lawg

(: : ((P ^ Q) _ P);: : (P ^ Q))

� fClassi
al Double Negation (twi
e)g

((P ^ Q) _ P ;P ^ Q)

� fClassi
al Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

We
an simplify s
hema negation and subsequently the proof of the double nega-

tion law when Q) P holds:

: : U

� fDe�nition of U g

: : (P ;Q)

� fS
hema Negationg

: (: Q ;: P)

� fS
hema Negationg

(: : P ;: : Q)

� fClassi
al Double Negation Lawg

(P ;Q)

� fDe�nition of U g

U

It may seem trivial but nevertheless, the following law is rather useful in many

proofs: : TRUE = FALSE

: TRUE

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 182

� fDe�nition of TRUEg

: (true; true)

� fS
hema Negationg

(false; false)

� fDe�nition of FALSEg

FALSE

8.3.4 S
hema Conjun
tion

A

ording to the truth table of three-valued logi
,
onjun
tion is true if both

its arguments are true, i.e. the
onjun
tion of two s
hemas should be in the

de�ned region in
ase both s
hemas are in their de�ned region, too. Furthermore,

onjun
tion results in false, i.e. the operation is outside the guard, if either of

the s
hemas involved in the
onjun
tion is outside their guards, i.e. it is true if

both are inside the guard.

For example, given:

U

De
l U

a : A

b : B

gd U

P

do U

Q

V

De
l V

a : A

d : D

gd V

S

do V

T

then their
onjun
tion is given by the s
hema W = U ^ V :

W

De
l W

a : A

b : B

d : D

gd W

P ^ S

do W

P ^ Q ^ S ^ T

Following from the Axiom 1 the following simpli�
ation is always
orre
t:

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 183

W

De
l W

a : A

b : B

d : D

gd W

P ^ S

do W

Q ^ T

Note, for every variable de
lared in both s
hemas we de�ne its
ommon type to

be the interse
tion of both given types. Thus, just like for standard Z s
hema

onjun
tion, names de
lared in both s
hemas from in
ompatible sets will lead to

a type error.

Here, and throughout this
hapter, we prove several laws for working with s
hema

operators. We already showed that the double negation law holds. Now we turn

to some prin
ipal laws for s
hema
onjun
tion.

Idempotent Law for Conjun
tion: U ^ U = U

Applying
onjun
tion to two identi
al s
hemas results in nothing but the s
hema

itself.

U ^ U

� fDe�nition of U g

(P ;Q) ^ (P ;Q)

� fS
hema Conjun
tion, Axiom 1g

(P ^ P ;Q ^ Q)

� fClassi
al Idempoten
y of Conjun
tiong

(P ;Q)

� fDe�nition of U g

U

Zero Law for Conjun
tion: U ^ FALSE = FALSE

Using the s
hema FALSE as an argument for s
hema
onjun
tion results in the

s
hema FALSE.

U ^ FALSE

� fDe�nition of U and FALSEg

(P ;Q) ^ (false; false)

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 184

� fS
hema Conjun
tiong

(P ^ false;P ^ Q ^ false ^ false)

� fClassi
al Zero Law for Conjun
tiong

(false; false)

� fDe�nition of FALSEg

FALSE

One Law for Conjun
tion: U ^ TRUE = U

Complementing the Zero Law is the One Law. A
onjun
tion between a s
hema

U and the s
hema TRUE is the same as the s
hema U itself.

U ^ TRUE

� fDe�nition of U and TRUEg

(P ;Q) ^ (true; true)

� fS
hema Conjun
tion, Axiom 1g

(P ^ true;Q ^ true)

� fClassi
al One Law for Conjun
tiong

(P ;Q)

� fDe�nition of U g

U

All three laws are
ompression laws, in the sense, that given two s
hemas their

appli
ation results in one s
hema. On the other hand, there are also laws that

allow the arguments of s
hema
onjun
tion to be swapped as well as to
hange

bra
keting of
onjun
ts, i.e. the
ommutativity and asso
iativity laws. However,

they also follow from the
ommutativity and asso
iativity of the
lassi
al
on-

jun
tion operator. Therefore, we do not prove them in detail.

8.3.5 S
hema Disjun
tion

Basi
ally, there are two possible ways to de�ne s
hema disjun
tion. Firstly, it
an

be done by applying a similar reasoning pro
ess as in de�ning s
hema
onjun
tion,

i.e. inferring it from the three-valued truth table. Se
ondly, s
hema disjun
tion

ould be
al
ulated using s
hema
onjun
tion and negation. We will follow the

�rst path and show that the same result would be obtained by using the se
ond

method, i.e. we show that the de Morgan laws hold.

For disjun
tion to be true, i.e. de�ned, either of its arguments must be de�ned,

i.e. gd ^ do must hold. Disjun
tion is false, i.e. outside its guard, if both s
hemas

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 185

are outside their guards, hen
e it is inside the guard, if either one s
hema is inside

its guard. Therefore, given the s
hemas U and V from above, their disjun
tion

W = U _ V is given as:

W

De
l W

a : A

b : B

d : D

gd W

P _ S

do W

(P ^ Q) _ (S ^ T)

The type of variables de
lared in both s
hemas is the union of the types given to

that variable in ea
h of the s
hemas.

Like for s
hema
onjun
tion we show idempoten
y, the Zero Law, as well as the

One Law for s
hema disjun
tion to hold. Again, we do not prove
ommutativ-

ity and asso
iativity but their proofs are based on both properties holding for

lassi
al disjun
tion.

Idempotent Law for Disjun
tion: U _ U = U

U _ U

� fDe�nition of U g

(P ;Q) _ (P ;Q)

� fS
hema Disjun
tiong

(P _ P ; (P ^ Q) _ (P ^ Q))

� fIdempoten
y of Classi
al Disjun
tiong

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

Zero Law for Disjun
tion: U _ FALSE = U

U _ FALSE

� fDe�nition of U and FALSEg

(P ;Q) _ (false; false)

� fS
hema Disjun
tiong

(P _ false; (P ^ Q) _ (false ^ false))

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 186

� fClassi
al Zero Law for Conjun
tiong

(P _ false; (P ^ Q) _ false)

� fClassi
al Zero Law for Disjun
tiong

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

One Law for Disjun
tion: U _ TRUE = TRUE

U _ TRUE

� fDe�nition of U and TRUEg

(P ;Q) _ (true; true)

� fS
hema Disjun
tiong

(P _ true; (P ^ Q) _ (true ^ true))

� fClassi
al One Law for Conjun
tion as well as Disjun
tiong

(true; true)

� fDe�nition of TRUEg

TRUE

De Morgan Laws. Classi
ally, disjun
tion
an be de�ned in terms of negation

and
onjun
tion as (U _ V) = : (: U ^ : V). For our de�nition of disjun
tion

to be useful we require it to obey the de Morgan laws, too.

Given the two normalised s
hemas U and V , then

: (: U ^ : V)

� fDe�nition of U and V g

: (: (P ;Q) ^ : (S ;T))

� fS
hema Negationg

: ((: (P ^ Q);: P) ^ (: (S ^ T);: S))

� fS
hema Conjun
tiong

: (: (P ^ Q) ^ : (S ^ T);: P ^ : (P ^ Q) ^ : S ^ : (S ^ T))

� fClassi
al de Morgan Law, Absorption Lawg

: (: ((P ^ Q) _ (S ^ T));: (P _ S))

� fS
hema Negationg

(: (: ((P ^ Q) _ (S ^ T)) ^ : (P _ S));: : ((P ^ Q) _ (S ^ T)))

� fClassi
al de Morgan Law, Classi
al Double Negation (twi
e)g

((P ^ Q) _ (S ^ T) _ P _ S ; (P ^ Q) _ (S ^ T))

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 187

� fClassi
al Commutativity, Classi
al Absorption Lawg

(P _ S ; (P ^ Q) _ (S ^ T))

� fDe�nition of S
hema Disjun
tiong

(P ;Q) _ (S ;T)

� fDe�nition of U and V g

U _ V

Similarly, it
an be shown that
onjun
tion
an be de�ned in terms of disjun
tion

and negation. If the given s
hemas are not normalised then normalisation needs

to be added to the above derivation before applying negation, sin
e, as mentioned

earlier, it is a ne
essary
ondition for s
hema negation.

Distribution Laws: U _ (V ^W) = (U _ V) ^ (U _W)

The �rst of the two distribution laws states that disjun
tion distributes over

onjun
tion:

U _ (V ^W)

� fDe�nition of U , V , and W g

(P ;Q) _ ((S ;T) ^ (X ;Y))

� fS
hema Conjun
tiong

(P ;Q) _ (S ^ X ; (S ^ T) ^ (X ^ Y))

� fS
hema Disjun
tiong

(P _ (S ^ X); (P ^ Q) _ ((S ^ T) ^ (X ^ Y))

� fClassi
al Distribution Law for Disjun
tiong

((P _ S) ^ (P _ X); ((P ^ Q) _ (S ^ T)) ^ ((P ^ Q) _ (X ^ Y)))

� fS
hema Conjun
tiong

(P _ S ; (P ^ Q) _ (S ^ T)) ^ (P _ X ; (P ^ Q) _ (X ^ Y))

� fS
hema Disjun
tiong

((P ;Q) _ (S ;T)) ^ ((P ;Q) _ (X ;Y))

� fDe�nition of U , V , and W g

(U _ V) ^ (U _W)

Similarly,
onjun
tion distributes over disjun
tion:

U ^ (V _W) = (U ^ V) _ (U ^W)

U ^ (V _W)

� fDe�nition of U , V , and W g

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 188

(P ;Q) ^ ((S ;T) _ (X ;Y))

� fS
hema Disjun
tiong

(P ;Q) ^ (S _ X ; (S ^ T) _ (X ^ Y))

� fS
hema Conjun
tiong

(P ^ (S _ X); (P ^ Q) ^ ((S ^ T) _ (X ^ Y)))

� fClassi
al Distribution Law for Conjun
tiong

((P ^ S) _ (P ^ X); ((P ^ Q) ^ (S ^ T)) _ ((P ^ Q) ^ (X ^ Y)))

� fS
hema Disjun
tiong

(P ^ S ; (P ^ Q) ^ (S ^ T)) _ (P ^ X ; (P ^ Q) ^ (X ^ Y))

� fS
hema Conjun
tiong

((P ;Q) ^ (S ;T)) _ ((P ;Q) ^ (X ;Y))

� fDe�nition of U , V , and W g

(U ^ V) _ (U ^W)

Absorption Laws: U _ (U ^ V) = U

Another set of useful laws often used to simplify proofs are the two absorption

laws provided here:

U _ (U ^ V)

� fDe�nition of U and V g

(P ;Q) _ ((P ;Q) ^ (S ;T))

� fS
hema Conjun
tiong

(P ;Q) _ (P ^ S ; (P ^ Q) ^ (S ^ T))

� fS
hema Disjun
tiong

(P _ (P ^ S); (P ^ Q) _ ((P ^ Q) ^ (S ^ T))

� fClassi
al Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

Dual to the above is the following law: U ^ (U _ V) = U

U ^ (U _ V)

� fDe�nition of U and V g

(P ;Q) ^ ((P ;Q) _ (S ;T))

� fS
hema Disjun
tiong

(P ;Q) ^ (P _ S ; (P ^ Q) _ (S ^ T))

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 189

� fS
hema Conjun
tiong

(P ^ (P _ S); (P ^ Q) ^ ((P ^ Q) _ (S ^ T))

� fClassi
al Absorption Lawg

(P ;P ^ Q)

� fAxiom 1, De�nition of U g

U

So far, we proved that many laws related to negation,
onjun
tion and disjun
tion

known from
lassi
al logi
 also hold for the newly developed s
hema representa-

tion and, therefore, that they
an be used in the s
hema
al
ulus. We now turn

to de�ne quanti�
ation and to investigate its laws.

8.3.6 S
hema Quanti�
ation

Both de�nitions of universal and existential quanti�
ation are analogous to stan-

dard Z, i.e. the quanti�ed variable is going to be removed from the s
hema de
-

laration and will be quanti�ed in the predi
ate.

Universal Quanti�
ation. Sin
e the de
laration of the s
hema is impli
itly

in
luded in both the gd - and the do-part of the s
hema, quanti�
ation has to be

applied in both sub-s
hemas as well. Therefore, we de�ne:

8 a : A � U =

W

De
l W

b : B

gd W

8 a : A � P

do W

8 a : A � (P ^ Q)

Existential Quanti�
ation. In a similar fashion we de�ne existential quan-

ti�
ation, by:

9 a : A � U =

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 190

W

De
l W

b : B

gd W

9 a : A � P

do W

9 a : A � (P ^ Q)

Following these de�nitions, we show that idempoten
y of quanti�
ation, as well

as the de Morgan laws hold, too. Later, we apply s
hema quanti�
ation to the

notions of hiding and pre
ondition
al
ulation.

Idempoten
y of Quanti�
ation: Qa : A � Qa : A � U = Qa : A � U

Quantifying over a bound variable with the same quanti�er results in the same

s
hema already provided.

Qa : A � Qa : A � U

� fDe�nition of U g

Qa : A � Qa : A � (P ;Q)

� fS
hema Quanti�
ationg

Qa : A � (Qa : A � P ;Qa : A � (P ^ Q))

� fS
hema Quanti�
ationg

(Qa : A � Qa : A � P ;Qa : A � Qa : A � (P ^ Q))

� fIdempoten
y of Classi
al Quanti�
ationg

(Qa : A � P ;Qa : A � (P ^ Q))

� fDe�nition of S
hema Quanti�
ationg

Qa : A � (P ;Q)

� fDe�nition of U g

Qa : A � U

where Q is either one of the quanti�ers 8 or 9.

De Morgan Laws for Quanti�
ation. Of
ourse, the quanti�
ation opera-

tors should respe
t the de Morgan rules for quanti�
ation known from
lassi
al

logi
, and they do, as we show for two
ases:

Given the normalised s
hema U then we show

9 a : A � U = : 8 a : A � : U

by the following derivation:

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 191

: 8 a : A � : U

� fDe�nition of U g

: 8 a : A � : (P ;Q)

� fS
hema Negationg

: 8 a : A � (: (P ^ Q);: P)

� fS
hema Generalisationg

: (8 a : A � : (P ^ Q); 8 a : A � : P)

� fS
hema Negationg

(: (8 a : A � : (P ^ Q) ^ 8 a : A � : P);: 8 a : A � : (P ^ Q))

� fSimpli�
ation and Classi
al de Morgan Law for Quanti�
ationg

(: 8 a : A � (: (P ^ Q) ^ : P); 9 a : A � (P ^ Q))

� fClassi
al de Morgan Lawg

(: 8 a : A � : ((P ^ Q) _ P); 9 a : A � (P ^ Q))

� fClassi
al de Morgan Law for Quanti�
ationg

(9 a : A � (P ^ Q) _ P ; 9 a : A � (P ^ Q))

� fClassi
al Absorption Lawg

(9 a : A � P ; 9 a : A � (P ^ Q))

� fS
hema Parti
ularisationg

9 a : A � (P ;Q)

� fDe�nition of U g

9 a : A � U

Given the normalised s
hema U , we also show that

9 a : A � : U = : 8 a : A � U

by this short inferen
e:

9 a : A � : U

� fPrevious Proofg

: 8 a : A � : : U

� fDouble Negation Lawg

: 8 a : A � U

The above laws show how existential quanti�
ation and universal quanti�
ation

as well as negation are related. Similarly, it
an be shown that : 9 a : A � U =

8 a : A � : U and : 9 a : A � : U = 8 a : A � U hold, too. In the above

proof, we assumed U to be normalised. If U is not normalised, we will have to

add normalisation to the proofs, sin
e s
hema negation is only well-de�ned for

normalised s
hemas.

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 192

8.3.7 S
hema Hiding and Proje
tion

S
hema hiding and proje
tion are another set of operators. In both
ases, the

purpose is to lo
alise, i.e. to hide,
omponents, either given as a set or through

another s
hema.

S
hema Hiding. Normally, hiding of the variables (x

1

; : : : ; x

n

) from a s
hema

S , S n (x

1

; : : : ; x

n

), is de�ned using existential quanti�
ation, i.e. (9 x

1

:

t

1

; : : : ; x

n

: t

n

� S). Therefore, we use the existential quanti�
ation intro-

du
ed above. For example, hiding a from the s
hema U results in the following:

U n (a) = 9 a : A � U , whi
h is represented by the s
hema W :

W

De
l W

b : B

gd W

9 a : A � P

do W

9 a : A � P ^ Q

S
hema Proje
tion. The s
hema proje
tion operator U � V
ombines two

s
hemas using
onjun
tion but hiding all
omponents of U ex
ept those that are

part of V . Both s
hemas must be type
ompatible, but V might have extra

omponents not shared by U . Therefore, the resulting s
hema has the signature

of V . Formally, U � V = (U ^ V) n (x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are the

omponents of U not shared by V . Therefore, the s
hema W = U � V is

W

De
l W

a : A

d : D

gd W

9
 : C � P ^ S

do W

9
 : C � (P ^ S) ^ (Q ^ T)

8.3.8 S
hema Composition

One way of
ombining s
hemas is to use logi
al s
hema operators as introdu
ed

before, another is to use
omposition, i.e. to state that one operation is to be

applied after another operation. To use sequential
omposition it is ne
essary to

ensure that the s
hema de
larations are
ompatible.

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 193

Renaming. In standard Z, s
hema
omponents
an be renamed. Renaming

is also
alled substitution and allows to introdu
e a di�erent
olle
tion of vari-

ables with the same pattern of de
larations and
onstraints. We, too, provide

a de�nition of renaming for our
al
ulus. Substituting variables is denoted by

[newvar=oldvar ℄ where the old variables will be renamed to new variables. How-

ever, renaming will only be applied if the new name is not already present in

the s
hema and only for any free o

urren
e of the old name. For example,

U [x=a; y=b℄ results in the s
hema W

W

De
l W

x : A

y : B

gd W

P [x=a; y=b℄

do W

Q [x=a; y=b℄

Sequential Composition. Sequential
omposition is an operation that begins

in an initial state of the operation Op

1

and ends in a �nal state of Op

2

. This

makes only sense when the �nal state of Op

1

mat
hes the initial state of Op

2

.

Given two operation s
hemas Op

1

and Op

2

both in
luding primed and unprimed

opies of a state s
hema S , then operation
omposition is the result of applying

operation Op

2

to the result of applying Op

1

. It is de�ned by

Op

1

o

9

Op

2

= 9 S

00

�

(9 S

0

� [Op

1

; S

00

j �S

0

= �S

00

℄) ^ (9 S � [Op

2

; S

00

j �S = �S

00

℄)

where � is the operator to
onstru
t the set of
orresponding bindings. Note, that

�S = �S

0

, x

0

1

= x

1

^ : : : ^ x

0

n

= x

n

.

Sequential
omposition
an be
al
ulated using renaming and hiding, i.e.

Op

1

o

9

Op

2

= (Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄) n (x

00

)

when x is the only state variable, whi
h is equivalent to

Op

1

o

9

Op

2

De
l (Op

1

o

9

Op

2

)

x ; x

0

: X

gd (Op

1

o

9

Op

2

)

9 x

00

� P [x

00

=x

0

℄ ^ S [x

00

=x

0

℄

do (Op

1

o

9

Op

2

)

9 x

00

� (P [x

00

=x

0

℄ ^ S [x

00

=x

0

℄)

^ (Q [x

00

=x ℄ ^ T [x

00

=x ℄)

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 194

Using Op

1

[x

00

=x

0

℄ ^ Op

2

[x

00

=x ℄ = (Op

1

^ Op

2

)[x

00

=x

0

; x

00

=x ℄ the above s
hema
an

be simpli�ed to

Op

1

o

9

Op

2

De
l (Op

1

o

9

Op

2

)

x ; x

0

: X

gd (Op

1

o

9

Op

2

)

9 x

00

� (P ^ S)[x

00

=x

0

℄

do (Op

1

o

9

Op

2

)

9 x

00

� (P ^ S)[x

00

=x

0

℄

^ (Q ^ T)[x

00

=x ℄

8.3.9 Further Classi
al Laws

In this subse
tion we deal with three laws that do not hold over guarded pre
on-

dition s
hemas even though they hold in standard Z. First, the law of ex
luded

middle fails, be
ause we now have a third truth value. Se
ond, the
ontradi
tion

law fails due to similar reasons. Finally, we show that the de�nition law, relating

impli
ation to negation and disjun
tion, does not hold either.

The Law of the Ex
luded Middle: U _ : U = TRUE

The law of the ex
luded middle, adapted to the guarded pre
ondition s
hema

al
ulus does not hold:

U _ : U

� fDe�nition of U g

(P ;Q) _ : (P ;Q)

� fS
hema Negationg

(P ;Q) _ (: (P ^ Q);: P)

� fS
hema Disjun
tiong

(P _ : (P ^ Q); (P ^ Q) _ : P)

� fClassi
al de Morgan and Commutativityg

(P _ : P _ : Q ; (: P _ P) ^ (: P _ Q)

� fClassi
al Ex
luded Middleg

(true; true ^ (: P _ Q)

� fCommutativity and One Lawg

(true;: P _ Q)

This operation
an always be applied but its result is only de�ned if : P holds,

i.e. the out
ome is false, or where Q holds, i.e. the out
ome was spe
i�ed. In

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 195

ase of the unde�ned area nothing
an be said. This
onforms to the standard

point of view in three-valued logi
.

The Contradi
tion Law: U ^ : U = FALSE

The
ontradi
tion law, adapted to the guarded pre
ondition s
hema
al
ulus does

not hold:

U ^ : U

� fde Morgan Law, Double Negation Law, Commutativityg

: (U _ : U)

� fLaw of Ex
luded Middleg

: (true;: P _ Q)

� fS
hema Negationg

(: (: P _ Q);: true)

� fClassi
al Predi
ate Logi
g

(P ^ : Q ; false)

This resulting operation
an be applied exa
tly in the unde�ned area of the given

operation but no post
ondition is spe
i�ed. This result is somehow surprising

be
ause most three-valued logi
s obey the
ontradi
tion law. Para
onsistent log-

i
s are a set of logi
s where the
ontradi
tion law does not hold. This raises

the question whether our s
hema
al
ulus is para
onsistent. After introdu
ing

entailment in Se
tion 8.3.10 we show, however, that this is not the
ase.

De�nition Law: U) V = : U _ V

There are two ways of looking at the de�nition law. On the one hand, it is a

law re
e
ting the relation between negation, disjun
tion and impli
ation. On the

other hand, it is a de�nition, de�ning impli
ation in terms of negation and
on-

jun
tion. We show that : U _ V does not re
e
t the truth table of impli
ation

as given in Se
tion 8.3.1. Using the s
hema
al
ulus we derive:

: U _ V

� fDe�nition of U and V g

: (P ;Q) _ (S ;T)

� fS
hema Negationg

(: (P ^ Q);: P) _ (S ; S ^ T)

� fS
hema Disjun
tiong

(: (P ^ Q) _ S ;: P _ (S ^ T))

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 196

Therefore, s
hema impli
ation results in non-appli
ability if U is true, i.e. within

its de�ned area and V is false, i.e. outside its guard. It is de�ned, if U is forbidden

or V is de�ned. The
orresponding truth table is:

p)q t f ?

t t f ?

f t t t

? t ? ?

Table 8.2: Truth Table for S
hema Impli
ation

However, this is not equivalent to the truth table given in Se
tion 8.3.1. Impli
a-

tion de�ned via the de�nition law is not ne
essarily an entailment operation. In

the next subse
tion we will de�ne entailment a

ording to the earlier given truth

table.

8.3.10 S
hema Entailment

In Table 8.1 a truth table for three-valued impli
ation is given. This impli
ation

operator is a three-valued entailment operator, denoted!, but does not preserve

the de�nition law as shown in Se
tion 8.3.9. While de�ning s
hema negation and

s
hema
onjun
tion we introdu
ed an approa
h to infer s
hema representations

of the operators a

ording to their truth table. We use the same approa
h to

de�ne the entailment operator for guarded pre
ondition s
hema.

Given are two s
hemas (P ;Q) and (S ;T) and the truth table for entailment in

Table 8.1. We en
ode t = P ^ Q , f = : P , and ? = P ^ : Q , as well as

t = S ^ T , f = : S , and ? = S ^ : T . We observe that the result of entailment

is either true or false, i.e. there is no unde�ned area, whi
h in turn means, that

both the gd - and the do-part have to be the same predi
ate. Following the earlier

approa
h, we derive the guard as being the part, where entailment holds, i.e. if

(P ;Q) is true and (S ;T) is false or unde�ned, then (P ;Q) ! (S ;T) should be

false as well. (P ;Q) ! (S ;T) is de�ned if (P ;Q) is false or unde�ned. This

leads to the following s
hema for entailment:

8.3. A S
hema Cal
ulus for Guarded Pre
ondition S
hemas 197

W

De
l W

a : A

b : B

d : D

gd W

: ((P ^ Q) ^

(: S _ (S ^ : T)))

do W

(P ^ Q ^ S ^ T) _

(: P _ (P ^ : Q))

Using the standard predi
ate
al
ulus to simplify both predi
ates results in:

W

De
l W

a : A

b : B

d : D

gd W

(P ^ Q)) (S ^ T)

do W

(P ^ Q)) (S ^ T)

i.e. there is no unde�ned area. Of
ourse, this means that the question whether

one s
hema entails another
an always be answered. It is also worth noting the

relation between entailment and impli
ation, though it does not have the same

properties, as shown in the previous subse
tion.

Self-appli
ation of Entailment: U ! U = TRUE

A guarded pre
ondition s
hema always entails itself:

U ! U

� fDe�nition of U g

(P ;Q)! (P ;Q)

� fDe�nition of !g

((P ^ Q)) (P ^ Q); (P ^ Q)) (P ^ Q))

� fClassi
al Predi
ate Cal
ulusg

(true; true)

� fDe�nition of TRUEg

TRUE

One example of applying the entailment operator is found in re�nement proofs.

We refer to Se
tion 8.6 for more details.

8.4. The Appli
ation of the S
hema Operators: An Example 198

Double Entailment. Like double impli
ation in
lassi
al logi
, we de�ne the

double entailment U $ V as the
onjun
tion of the entailment U ! V and

V ! U . This results in substituting
lassi
al impli
ation with double impli
ation

in the gd - and do-part of the above given de�nition of entailment.

Para
onsisten
y. We
an also determine whether or not our
al
ulus is para-

onsistent by showing whether or not U ! (: U ! V) is a theorem of our

al
ulus.

U ! (: U ! V)

� fDe�nition of U and V g

(P ;Q)! (: (P ;Q)! (R; S))

� fS
hema Negationg

(P ;Q)! ((: (P ^ Q);: Q)! (R; S))

� fS
hema Entailmentg

(P ;Q)!

((: (P ^ Q) ^ : Q)) (R ^ S); (: (P ^ Q) ^ : Q) (R ^ S)))

� fCl. de Morgan Law, Cl. Absorption Law, S
hema Entailmentg

((P ^ Q)) (: Q) (R ^ S)); (P ^ Q)) (: Q) (R ^ S)))

� fClassi
al De�nition Law, Cl. de Morgan Lawg

(: P _ : Q _ Q _ (R ^ S);: P _ : Q _ Q _ (R ^ S))

� fSimpli�
ationg

(true; true)

� fDe�nition of TRUEg

TRUE

This theorem is a parti
ular form of ECQ (ex
ontradi
tione quodlibet) whi
h

has to be reje
ted in a para
onsistent logi
, be
ause it allows an arbitrary s
hema

to be inferred from a set of
ontradi
ting s
hemas. Hen
e, this
al
ulus is not

para
onsistent.

8.4 The Appli
ation of the S
hema Operators:

An Example

In this se
tion, we present a small example to illustrate and validate the in-

trodu
ed s
hema representation as well as the use of the s
hema
al
ulus. We

introdu
e a simple spe
i�
ation involving even and odd numbers. We illustrate

8.4. The Appli
ation of the S
hema Operators: An Example 199

how the s
hema
al
ulus
an be used to
ombine s
hemas to form a larger spe
i-

�
ation.

We de�ne two s
hemas Even and Odd whi
h des
ribe two operations for even

and odd numbers. The operation Even works as follows: Given an even natural

number, the result shall be a number whi
h is less or equal to the given number.

In
ontrast, given an odd natural number, the result shall be a number greater or

equal to the given number. Being a natural number is a ne
essary requirement

for the operation to be performed, therefore it is part of the guard. We assume

the existen
e of the predi
ates isEven and isOdd .

Even

De
l Even

a? : N

b! : Z

gd Even

true

do Even

isEven(a?) ^ b! � a?

Above, we used unders
ores around the s
hema name to denote that it has not

been normalised yet. Normalising the s
hema Even results in:

Even

De
l Even

a? : Z

b! : Z

gd Even

a? � 0

do Even

isEven(a?) ^ b! � a?

The already normalised operation Odd is spe
i�ed as follows:

Odd

De
l Odd

a? : Z

b! : Z

gd Odd

a? � 0

do Odd

isOdd(a?) ^ b! � a?

Note, ea
h operation
an be invoked upon both even and odd natural numbers

but in only one
ase the out
ome is guaranteed. Using the s
hema
al
ulus we

8.4. The Appli
ation of the S
hema Operators: An Example 200

ombine both s
hemas to
reate a single operation where the out
ome is de�ned

for both even and odd numbers.

Numbers == Even _ Odd

i.e.

Numbers

De
l Numbers

a? : Z

b! : Z

gd Numbers

a? � 0

do Numbers

a? � 0

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?))

Further we would like to report whether the operation was performed, i.e. that a

natural number was given. Therefore we introdu
e the REPORT type

REPORT ::= error j no error

We de�ne an operation s
hema that
an always be exe
uted and the only thing

it does is to report its su

essful exe
ution.

Ok

De
l Ok

report ! : REPORT

gd Ok

true

do Ok

report ! = no error

We
an join this s
hema with Numbers to report its su

essful operation:

NumbersOk == Numbers ^ Ok

i.e.

8.4. The Appli
ation of the S
hema Operators: An Example 201

NumbersOk

De
l NumbersOk

a? : Z

b! : Z

report ! : REPORT

gd NumbersOk

a? � 0

do NumbersOk

a? � 0 ^ report ! = no error

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?))

This s
hema will only report no error if the number a? given was a natural. In

ase a? was not a natural number we want to report an error , therefore, we de�ne

Error

De
l Error

a? : Z

report ! : REPORT

gd Error

a? < 0

do Error

report ! = error

Putting everything together we derive the
omplete operation

Complete == NumbersOk _ Error

i.e.

Complete

De
l Complete

a? : Z

b! : Z

report ! : REPORT

gd Complete

true

do Complete

(a? � 0 ^

report ! = no error ^

((isEven(a?) ^ b! � a?) _

(isOdd(a?) ^ b! � a?)))

_

(a? < 0 ^ report ! = error)

8.5. Operation Appli
ability 202

whi
h is now total, i.e. it
an always be invoked and the out
ome is guaranteed.

Given any number it will now report either its failure to be able to perform a

valid operation if the number is less or equal to zero or, if it is a natural number,

it will be applied a

ording to the
ondition set in the do-part.

Furthermore, this s
hema
an now be translated into standard Z, where it is

represented as:

do Complete

a? : Z

b! : Z

report ! : REPORT

(a? � 0 ^ report ! = no error ^

((isEven(a?) ^ b! � a?) _ (isOdd(a?) ^ b! � a?)))

_

(a? < 0 ^ report ! = error)

Note that it does not matter whi
h interpretation is used, either the guarded

or pre
ondition interpretation work
orre
tly, be
ause the operation is total and

normalised.

8.5 Operation Appli
ability

In this se
tion we re-
ap the notions of operation appli
ability as introdu
ed in

Se
tion 7.3.4. We distinguished a number of regions of before states that are of

interest. In parti
ular, we presented the pre
ondition, i.e. the well-de�ned region;

the guard, i.e. the enabled region; the unde�ned region, i.e. the guard permits

the operation but no out
ome is spe
i�ed; �nally, the impossible region where the

operation is blo
ked. Here, we use the newly developed s
hema
al
ulus to revise

and validate our earlier de�nitions. For example, the de�nitions in Se
tion 7.3.4

return s
hemas based on the standard Z notation but here we return guarded

pre
ondition s
hemas. We also present some meta-theoreti
al investigations of

the relation between the di�erent regions.

8.5.1 S
hema Pre
ondition

In standard Z, the pre
ondition of an operation is de�ned as the existential quan-

ti�
ation over the after state and output variables, i.e.

preOp = 9 S

0

; outs! � Op

8.5. Operation Appli
ability 203

We introdu
ed existential quanti�
ation so it seems natural to investigate the

result of
al
ulating the pre
ondition of a guarded pre
ondition s
hema, i.e. the

result of applying existential quanti�
ation to the after states and outputs of a

guarded pre
ondition s
hema. For example, for the s
hema NormalisedS
hema

in Se
tion 7.2.1, the pre
ondition is
al
ulated as follows:

preNormalised S
hema = 9 a

0

: Z � Normalised S
hema

i.e.

PreNormalised S
hema

De
l

a : Z

gd

9 a

0

: Z � a 2 N ^ a

0

2 N

do

9 a

0

: Z � a 2 N ^ a

0

2 N

^ (a

0

)

2

� a < (a

0

+ 1)

2

� fSimpli�
ation and Instantiationg

PreNormalised S
hema

De
l

a : Z

gd

a 2 N

do

a 2 N

The pre
ondition of a guarded pre
ondition s
hema is another s
hema, where the

guard
ontains a predi
ate that permits the operation and the do-part
ontains

the pre
ondition predi
ate, i.e. the pre
ondition is the
ondition su
h that the

out
ome of the operation is well-de�ned.

We brie
y present the pre
onditions of some operations de�ned in this
hapter

for illustrative purpose. First, the pre
onditions of the operations On and O� of

the heat
ontrol system are

preOn = (heat? > heat min ^ fan = O� ;

heat? > heat min ^ fan = O� ^ heat? � heat max)

preO� = (heat? < heat max ^ fan = On;

heat? < heat max ^ fan = On ^ heat? � heat min)

Using Axiom 1 we
an simplify those s
hemas by removing the gd -predi
ate from

the do-part, i.e.

8.5. Operation Appli
ability 204

preOn = (heat? > heat min ^ fan = O� ; heat? � heat max)

preO� = (heat? < heat max ^ fan = On; heat? � heat min)

Finally, the pre
onditions for the number example from the last se
tion are

preEven = (a? � 0; isEven(a?))

preOdd = (a? � 0; isOdd(a?))

preNumbers = (a? � 0; true)

preComplete = (true; true)

8.5.2 S
hema Guard

The guard of an operation is the area that allows the operation to take pla
e.

We de�ne the s
hema guardOp of an operation s
hema (P ;Q) to be the s
hema

9 S

0

; outs! � (P ; true), where (P ; true) is the s
hema obtained from applying

an operator gd, whi
h returns the guard of the operation. Then guard Op =

pre gd Op

GuardNormalised S
hema

De
l

a : Z

gd

a 2 N

do

true

Please note the di�eren
e between gd, gd , and guard. The �rst one is the operator

returning the guarded part of an operation, the se
ond is the guarded part of a

s
hema, and the third is the s
hema that
onsists of the guarded part of a s
hema

where the do-part is set to true.

The operations On and O� are only supposed to be applied if the fan is not

in the mode it will be swit
hed to and if the
urrent temperature is within the

orre
t range. These
onstraints are expressed by the guard of the operation.

guardOn = (heat? > heat min ^ fan = O� ; true)

guardO� = (heat? < heat max ^ fan = On; true)

If the guard is not ful�lled, the operation
an not be applied. Furthermore, if the

operation is not appli
able, the guard must have blo
ked it, i.e.

: Op $: gd Op

whi
h we
an show to hold by

8.5. Operation Appli
ability 205

: Op $: gd Op

� fDe�nition of Op and gd Opg

: (P ;P ^ Q)$: (P ; true)

� fS
hema Negationg

(: (P ^ Q);: P)$ (: P ;: P)

� fS
hema Double Entailmentg

((: (P ^ Q) ^ : P), : P ; (: (P ^ Q) ^ : P), : P)

� f*g

(true; true)

� fDe�nition of TRUEg

TRUE

We perform the step marked * separately by taking only one of the two predi
ates

into a

ount:

: (P ^ Q) ^ : P , : P

� fde Morgan Lawg

: ((P ^ Q) _ P), : P

� fAbsorption Lawg

: P , : P

� fEquivalen
eg

true

We also show that the pre
ondition of an operation entails the guard of an oper-

ation, i.e.

preOp ! guardOp

preOp ! guardOp

� fDe�nitions of Op, pre and guardg

(9 S

0

� P ; 9 S

0

� (P ^ Q))! (9S

0

� P ; true)

� fS
hema Entailmentg

(9 S

0

� P ^ 9 S

0

� (P ^ Q)) 9 S

0

� P ;

9 S

0

� P ^ 9 S

0

� (P ^ Q)) 9 S

0

� P)

� fa ^ b) a � trueg

(true; true)

� fDe�nition of TRUEg

TRUE

8.5. Operation Appli
ability 206

This is not really surprising sin
e the purpose of the Axiom 1 from Se
tion 7.3.1

was to ensure this. However, it gives additional
on�den
e to see that it works

orre
tly on the s
hema level, too.

The idea of the guard is to blo
k the operation under
ertain
onstraints, i.e. to

make the operation impossible, hen
e

impoOp = : (guard Op)

Simplifying this de�nition yields

: (guard Op)

� fDe�nition of Opg

: (guard (P ;Q))

� fDe�nition of guardg

: (9 S

0

; outs! � (P ; true))

i.e. the operation is impossible if there is no state su
h that the operation
an be

applied.

8.5.3 Unde�ned S
hema Appli
ation

The area where the guard holds but the pre
ondition does not is the unde�ned

one, i.e.

undef Op = guardOp ^ : pre Op

Applying the s
hema
al
ulus this simpli�es to

guardOp ^ : pre Op

� fDe�nition of guard Op and pre Opg

9 S

0

; outs! � (P ; true) ^ : 9 S

0

; outs! � (P ;Q)

� fExistential Quanti�
ation, de Morgan Law for Quanti�
ationg

(9 S

0

; outs! � P ; true) ^ 8 S

0

; outs! � : (P ;Q)

� fS
hema Negationg

(9 S

0

; outs! � P ; true) ^ 8 S

0

; outs! � (: (P ^ Q);: P)

� fUniversal Quanti�
ationg

(9 S

0

; outs! � P ; true) ^ (8 S

0

; outs! � : (P ^ Q); 8S

0

; outs! � : P)

� fPredi
ate Cal
ulusg

(9 S

0

; outs! � P ; true) ^ (: 9 S

0

; outs! � (P ^ Q);: 9 S

0

; outs! � P)

8.6. Re�nement Cal
ulations 207

� fS
hema Conjun
tiong

(9 S

0

; outs! � P ^ : 9 S

0

; outs! � (P ^ Q);

9 S

0

; outs! � P ^ true ^ : 9 S

0

; outs! � (P ^ Q) ^ : 9 S

0

; outs! � P)

� fPredi
ate Cal
ulusg

(9 S

0

; outs! � P ^ : 9 S

0

; outs! � (P ^ Q); false)

whi
h
orresponds
losely to the de�nition provided in Se
tion 7.3.4.

Identifying these regions
an help the development pro
ess of an operation. For

example, totalisation means to remove the impossible area and re�nement is

meant to redu
e the unde�ned region. The �nal produ
t is a spe
i�
ation with

no unde�ned nor impossible areas. Su
h a spe
i�
ation
an then be translated

into standard Z under both the guarded and the pre
ondition interpretation.

8.6 Re�nement Cal
ulations

In the last
hapter we developed an intuitive understanding for the re�nement

onditions for guarded pre
ondition s
hemas. We presented three
onditions,

appli
ability,
orre
tness and strengthening of the guard. Here we develop the

notion of re�nement further by using the s
hema entailment operator ! instead

of `, as well as the presented s
hema
al
ulus. We demonstrate the re�nement

onditions by means of an example.

8.6.1 Re�nement Conditions

Given an abstra
t operation AOp = (gd AOp; do AOp) and a
on
rete operation

COp = (gd COp; do COp) both over the same state State with input x? : X and

output y ! : Y , then COp re�nes AOp, denoted AOp v COp, if and only if the

following three
onditions hold:

(1) 8 State; x? : X � preAOp ! preCOp

(2) 8 State; State

0

; x? : X ; y ! : Y � preAOp ^ COp ! AOp

(3) 8 State; State

0

; x? : X ; y ! : Y � gdCOp ! gdAOp

Conditions (1) and (3) together ensure the pre
ondition is the upper bound for

strengthening the guard and the guard is the lower bound for weakening the

pre
ondition.

8.6. Re�nement Cal
ulations 208

8.6.2 Example

Given are the two operation s
hemas Filter and C Filter as introdu
ed in the

last
hapter

Filter

De
l Filter

a? : Z

b! : Z

gd Filter

a? > 0

do Filter

isEven(a?)

b! � a?

C Filter

De
l C Filter

a? : Z

b! : Z

gd C Filter

a? > 0

b! < a?

do C Filter

isEven(a?)

b! = a?=2

Using the s
hema
al
ulus we show now formally, that C Filter re�nes Filter .

First, we
al
ulate the pre
onditions of both operations:

preFilter = (a? > 0; a? > 0 ^ isEven(a?))

preC Filter = (a? > 0; a? > 0 ^ isEven(a?))

8.6.3 Appli
ability

The operation Filter is appli
able if an even natural number is given. The re�ned

operationC Filter must be appli
able under the same
onditions. This properties

follows simply from the pre
onditions.

(1) 8 a? : Z � preFilter ! preC Filter

preFilter ! preC Filter

� fDe�nitions of preFilter , and preC Filterg

(a? > 0; a? > 0 ^ isEven(a?))! (a? > 0; a? > 0 ^ isEven(a?))

� fS
hema Self-Entailmentg

TRUE

8.6.4 Corre
tness

The operation C Filter
an always be applied when Filter
ould. Next, we prove

orre
tness, i.e. whether the result of C Filter is a possible result of Filter if

applied in the same situation.

(2) 8 a? : Z; b! : Z � preFilter ^ C Filter ! Filter

8.6. Re�nement Cal
ulations 209

preFilter ^ C Filter ! Filter

� fDe�nitions of preFilter , C Filter , and Filterg

((a? > 0; a? > 0 ^ isEven(a?))

^ (a? > 0 ^ b! < a?; isEven(a?) ^ b! = a?=2))

! (a? > 0; isEven(a?) ^ b! � a?)

� fS
hema Conjun
tiong

(a? > 0 ^ b! < a?; a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

! (a? > 0; isEven(a?) ^ b! � a?)

� fS
hema Entailmentg

((a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?);

(a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?))

� f*g

(true; true)

� fDe�nition of TRUEg

TRUE

We look at the above reasoning step marked � separately. S
hema entailment

is the impli
ation of the
onjun
tion of the gd - and do-part in both guard and

e�e
t. We
onsider now only one of the two s
hema predi
ates:

(a? > 0 ^ b! < a? ^ isEven(a?) ^ b! = a?=2)

) (a? > 0 ^ isEven(a?) ^ b! � a?)

� fSplitting of b! � a?g

(a? > 0 ^ b! < a? ^ isEven(a?)) ^ b! = a?=2

) (a? > 0 ^ isEven(a?) ^ b! < a?) _ (a? > 0 ^ isEven(a?) ^ b! = a?)

� fx ^ y) x _ z = trueg

true

Hen
e,
orre
tness holds.

8.6.5 Strengthening of the Guard

Finally, the guard of C Filter must not be less restri
tive than the guard of

Filter :

(3) 8 a? : Z; b! : Z � gdC Filter ! gdFilter

8.7. Summary 210

gdC Filter ! gdFilter

� fDe�nition of gdC Filter and gdFilterg

(a? > 0 ^ b! < a?; true)! (a? > 0; true)

� fS
hema Entailmentg

(a? > 0 ^ b! < a?) a? > 0; a? > 0 ^ b! < a?) a? > 0)

� fClassi
al De�nition Law for Impli
ation and de Morgan Lawg

(: (a? > 0) _ : (b! < a?) _ (a? > 0);

: (a? > 0) _ : (b! < a?) _ (a? > 0))

� fClassi
al Law of Ex
luded Middleg

(true; true)

� fDe�nition of TRUEg

TRUE

All three properties hold and, therefore, the s
hema C Filter re�nes the s
hema

Filter , i.e. it
ould repla
e it without a user noti
ing it.

8.7 Summary

The aim of this
hapter was to develop a s
hema
al
ulus for s
hemas that
an

represent un(der)de�nedness in Z more expli
itly than those in standard Z. We

provided a set of rules to enable a spe
i�er to join s
hemas, to
al
ulate
ertain

properties of s
hemas, in
luding its pre
ondition and guard. We also showed,

that this s
hema
al
ulus
an be used in the re�nement pro
ess.

Note, however, that it was ne
essary to distinguish between s
hema impli
ation,

as de�ned via negation and disjun
tion, and entailment. Nevertheless, it turned

out that the de�nition of the entailment operator is based upon
lassi
al impli-

ation itself. Furthermore, we demonstrated that not all reasoning rules from

lassi
al logi
 hold within this work. This even led to the question, whether the

al
ulus possesses the property of being para
onsistent. This had to be reje
ted

due to the fa
t that a variant of EC does hold.

The development of the s
hema
al
ulus has been based on a three-valued se-

manti
s. We have not formally shown that the
al
ulus is sound and
omplete

with respe
t to this semanti
s. This remains future work. However, the proof

theoreti
al properties that we validated in this
hapter give us enough
on�den
e

to believe that the
al
ulus is
orre
t.

Chapter 9

Con
lusion

The aim of this thesis was to investigate the support we
an give to reasoning

about in
onsistent spe
i�
ations written in the Z notation. We de
ided to explore

the usefulness of applying a para
onsistent logi
 to a
hieve our goal. It turned out

that para
onsistent logi
s had not been applied extensively to reasoning about

theories in ri
h languages, like Z. On the other side, some of the logi
s we studied

also provided information on how to handle in
omplete information. This raised

our interest in studying the problem of underde�nedness in Z.

In
onsisten
y is a re-o

urring problem in spe
i�
ation development. Our work

provides some insights on how in
onsistent spe
i�
ations
an be better managed.

We used quasi-
lassi
al logi
 to reason about Z spe
i�
ations. This, however,

required several improvements of QCL. Our work is therefore not only relevant

to the Z
ommunity. We provide the logi
ians interested in para
onsisten
y with

a
omplex appli
ation area leading to new
hallenges for their resear
h. In the

ontext of this work it in
luded to add a theory of equality to QCL.

Spe
ifying and handling underde�nedness in Z has been a topi
 of resear
h for

some time. Our work
ontributes to the development in this area by provid-

ing a modi�ed s
hema representation, by presenting re�nement rules and by

introdu
ing a s
hema
al
ulus. We de
ided to base our work on a three-valued

interpretation be
ause it provides an intuitive a

ount for operation appli
abil-

ity. Furthermore, we were able to use previous resear
h on three-valued logi
s to

guide our work.

The main results of this thesis relate to our work on quasi-
lassi
al logi
, on

applying QCL to reasoning about Z spe
i�
ations and re�nement of in
onsistent

Z spe
i�
ations, as well as to our resear
h on handling underde�nedness in Z.

We present a summary of our �ndings, followed by a dis
ussion on the value of

our work, in
luding suggestions for improvements, followed by a more general

a

ount of possible future work.

211

9.1. Results 212

9.1 Results

Our work
ontributes both to the development of quasi-
lassi
al logi
 and to the

resear
h on the Z notation. This work
onsists mainly of three parts: the in-

trodu
tion and development of QCL, the appli
ation of QCL to reasoning about

in
onsistent Z spe
i�
ations and the presentation of a s
hema notation for un-

derde�nedness, in
luding re�nement rules and a s
hema
al
ulus.

9.1.1 Quasi-Classi
al Logi

In Chapter 4 we introdu
ed quasi-
lassi
al logi
 and we investigated some no-

tions of logi
al equivalen
e for QCL. First, it turned out that a notion of logi
al

equivalen
e based only on the QC
onsequen
e relation is not suÆ
ient be
ause

it is not transitive. However, it is a ne
essary
ondition for equivalen
e to hold.

Then we investigated other possibilities to de�ne an appropriate notion of equiv-

alen
e. As a part of this investigation we found that the absorption laws do not

generally hold in QCL. We �nally de�ned a strong notion of equivalen
e based

on the equivalen
e of weak and strong model
lasses.

In Chapter 5 we developed quasi-
lassi
al logi
 with equality. We presented the

semanti
s and proof theory for reasoning about equality. Furthermore, we showed

the validity of the one-point rule in QCL, a rule
ommonly used to eliminate

existential quanti�
ation.

In Appendix A we present an implementation of the QCL tableau method based

on leanT

A

P by (Be
kert and Posegga, 1994). We
onsider this work in progress

be
ause we have not yet veri�ed our implementation. It has been tested though

on available examples. Our implementation
ontributes to the usability of QCL as

a tool to reason about in
onsistent theories. It also raised a small issue regarding

some weakening of fo
using in the disjun
tion S-rule of QCL.

9.1.2 The Appli
ation of Quasi-Classi
al Logi
 in Z

In Chapter 6 we applied QCL to reasoning about in
onsistent Z spe
i�
ations.

The out
ome was that QCL allows fewer but more useful, inferen
es in the pres-

en
e of in
onsisten
y.

In Se
tion 6.4 we developed a notion of quasi-
lassi
al pre
ondition. This en-

ables the analyst to determine the intended appli
ability of the operation. By

omparison with the standard pre
ondition it is possible to
he
k operations for

onsisten
y.

In Se
tion 6.5 we investigated the pro
ess of re�nement of in
onsistent Z spe
i-

�
ations. We established the notion of QC appli
ability extending the standard

9.2. Dis
ussion 213

notion. QC appli
ability is stronger than the standard form with respe
t to in-

onsisten
ies in the sense that it validates fewer re�nements. We also investigated

a notion of QC
orre
tness.

9.1.3 Guarded Pre
ondition S
hemas

In Chapter 7 we developed a s
hema representation that enables the represen-

tation of both guards and pre
onditions in a single notation. We generalised

previous work by allowing arbitrary predi
ates in the guards. This required,

however, a notion of guard
al
ulation, similar to pre
ondition
al
ulation. Op-

erations were given a three-valued semanti
s to
apture the intuition behind their

appli
ability. This led to a rather simple notion of operation re�nement.

In Se
tion 7.5 we developed rules to verify the
orre
tness of the re�nement of

guarded pre
ondition s
hemas. Operation re�nement is seen as removal of un-

derde�nedness and non-determinism. It is a feature of our re�nement
onditions

that they provided boundaries for weakening of the pre
ondition and strength-

ening of the guard. Furthermore, we showed that the given
onditions generalise

the standard operation re�nement rules in both guarded and pre
ondition inter-

pretation.

Finally, in Chapter 8, we developed a s
hema
al
ulus for guarded pre
ondition

s
hemas. We established the validity of our s
hema operators by proving several

onditions that seem useful to hold. It turned out, however, that the law of the

ex
luded middle, the
ontradi
tion law and the de�nition law for impli
ation do

not hold. We de�ned a new s
hema entailment operator to fa
ilitate reasoning

about guarded pre
ondition s
hemas. We showed its validity by re-
onsidering

operation re�nement.

9.2 Dis
ussion

9.2.1 Z and QCL

The goal of our resear
h is to manage in
onsisten
ies in formal spe
i�
ations writ-

ten in the Z notation. The
urrent view is that an in
onsistent Z spe
i�
ation

is meaningless. Previous work on handling in
onsisten
y in Z fo
used, therefore,

on
reating
onsistent spe
i�
ations. This in
ludes to either avoid or eradi
ate

in
onsisten
ies or on separating
ontradi
ting
on
erns into hierar
hies of
onsis-

tent viewpoints. Our work, however, provides a novel view on the problem by

proposing to manage in
onsisten
y by means of using a para
onsistent logi
 to

reason about in
onsistent Z spe
i�
ations.

9.2. Dis
ussion 214

In standard logi
, a single in
onsisten
y in a set of assumptions leads to the

problem of triviality, i.e. any well-formed formula in the given language is a

valid
on
lusion from the assumptions. The formal spe
i�
ation language Z is

based on standard predi
ate logi
. Therefore, it is said that an in
onsisten
y

in a Z spe
i�
ation renders the spe
i�
ation meaningless. Para
onsistent logi
s,

however, avoid triviality in the presen
e of in
onsisten
y. Therefore, they are

suitable to our task of managing in
onsisten
y and we de
ided to investigate the

Z notation being supported by a para
onsistent logi
.

We
hose quasi-
lassi
al logi
 to reason about Z spe
i�
ations be
ause we think

that its properties make it rather suitable for this task. Furthermore, QCL has

been previously applied to reasoning about spe
i�
ations. These spe
i�
ations,

however, were written in standard predi
ate logi
. One
hallenge we fa
ed was

to investigate QCL's usefulness for reasoning about formulae
onstru
ted using a

language mu
h ri
her than predi
ate logi
. This opened some interesting dire
-

tions for resear
h on QCL itself, as dis
ussed below.

We see our work on managing in
onsisten
y in Z only as a starting point. We

provide, however, some interesting insights into the nature of in
onsisten
y in

Z spe
i�
ation and its
onsequen
es, in parti
ular, to re�nement of operations.

We showed that QCL allows fewer but more useful
on
lusions to be drawn

from in
onsistent spe
i�
ations. This should help to analyse even in
onsistent Z

spe
i�
ations in more detail and thus fa
ilitate validation and veri�
ation without

onstant removal of in
onsisten
y.

The pro
ess of developing an abstra
t spe
i�
ation towards an implementation,

i.e. re�nement, is an important task in software engineering. In order for re�ne-

ment to be useful, however, requires the abstra
t spe
i�
ation to be
onsistent.

Managing in
onsisten
y and being able to derive and verify only useful re�ne-

ments seems to redu
e the problem of in
onsisten
y. The theory of re�nement

developed in this work is not yet
omplete. We are missing a QC
orre
tness

ondition to further eliminate non-
orresponding re�nements. However, the idea

of using both standard and QC re�nement rules together
an prove valuable.

Note, the aim is not to build in
onsistent spe
i�
ations, a task not very diÆ
ult,

nor to distra
t from the danger of in
onsisten
y, in parti
ular in later stages of the

development. Our work serves the purpose to understand the intention behind

an in
onsistent spe
i�
ation and, thus, to give it a meaning. Given a meaning,

su
h spe
i�
ations
an be useful to guide further development.

9.2.2 QCL and Z

On the other side, a real-world spe
i�
ation notation like Z provides an inter-

esting �eld of resear
h for logi
ians interested in para
onsistent logi
. Being

9.2. Dis
ussion 215

well-established in the formal methods
ommunity and undergoing standardis-

ation, the Z notation
annot be altered mu
h. For example, the Z standard

determines the meanings of the logi
al operators. Therefore, it is not really pos-

sible to
hange the meaning of negation or impli
ation. This eliminates a wide

range of para
onsistent logi
s from being appli
able with respe
t to Z.

Furthermore, the Z notation is a very expressive language. It is based on �rst-

order predi
ate logi
 with equality and in
orporates an extensive mathemati
al

toolkit. Equality, however, is a property not often
onsidered in para
onsistent

logi
s. In parti
ular, quasi-
lassi
al logi
 did not provide means to reason about

equality. Therefore, we
ontributed to the development of QCL by in
orporating

reasoning about equality.

We note, however, that equality introdu
es a problem of \partial" triviality. Rea-

soning about equality is a
hieved by grouping all equal terms into equivalen
e

lasses. However, in the presen
e of in
onsisten
y two
lassi
ally distin
t equiva-

len
e
lasses
ollapse to form just one
lass. In the
ase of numbers, in parti
ular,

this leads to all numbers belonging to the same equivalen
e
lass if there is one

single in
onsisten
y.

(Mortensen, 1995) links this problem to the property of fun
tionality of equality.

He proposes to weaken fun
tionality to
ontrol the
ollapse of equivalen
e
lasses.

This
ould, for example, in
lude to apply fun
tionality only in the
onsistent
ase.

The
onsequen
es of su
h an approa
h are, however, not
lear yet. Another ap-

proa
h
ould be to follow QCL's idea of using
ompositional and de
ompositional

rules. The equality rules, however, seem not to �t su
h a distin
tion. Both prob-

lems suggest, though, that equality and para
onsisten
y have an interesting link

that needs further investigation.

Reasoning about Z spe
i�
ations in
ludes a variety of tasks. For example, it is

ommon to determine the pre
ondition of an operation to
he
k the appli
ability

of an operation. Investigating su
h a task raised new questions on what the pre-

ondition is of an in
onsistent operation and how to simplify a pre
ondition. In

parti
ular, we needed to look at the notion of logi
al equivalen
e in QCL and of

the validity of the one-point rule. It follows from these examples that the Z nota-

tion provides an interesting ben
hmark for the appli
ability of a para
onsistent

logi
, like QCL.

9.2.3 Underde�nedness in Z

It has been observed that it is sometimes
onvenient to use a
ombination of

the guarded and pre
ondition interpretation to allow both modelling of refusals

and underde�nedness. Our work
ontributes to investigations into this issue by

extending previous work on the representation of both guards and pre
ondition.

It is novel in the sense that we used a non-standard semanti
s of operations viz. an

9.3. Future Work 216

interpretation in three-valued logi
. Furthermore, our notion is more expressive

by allowing after-state variables in the guard.

Re�nement is an important
on
ept in developing spe
i�
ations further. Our

operation re�nement
onditions enable the
ontinuous development of guarded

pre
ondition s
hemas
onsidering guards and pre
onditions at the same time.

This approa
h ensures that pre
onditions
annot be weakened beyond the guard

and that the guard
annot be strengthened further than the pre
ondition. This

is an essential di�eren
e to the work by (Strulo, 1995).

The Z s
hema
al
ulus is used to stru
ture and develop spe
i�
ations. By pro-

viding a s
hema
al
ulus for guarded pre
ondition s
hemas we fa
ilitate stru
-

tural development of spe
i�
ations modelling underde�nedness expli
itly. Fur-

thermore, the entailment operator enables us to analyse spe
i�
ations in mu
h

the same way as in standard Z.

9.3 Future Work

This thesis draws to an end but our resear
h is just at its beginning. During

our investigation many questions were raised and only a few
ould be answered

here. The future work
onsist of further investigations of QCL, of analysing

its appli
ability to Z further, in parti
ular the notion of re�nement, and the

handling of underde�nedness and in
onsisten
y in
ombination. Furthermore,

we are interested in applying our resear
h to more elaborate examples.

9.3.1 Properties of Quasi-Classi
al Logi

For quasi-
lassi
al logi
 the property of transitivity fails in general. (Tennant,

1984) notes that for his logi
 transitivity fails as well, but only where it ought

to, i.e. transitivity fails only in the presen
e of in
onsisten
y. Su
h a property

for QCL would
ertainly be interesting when analysing
onsistent theories. This

would, in general, make QCL more useful when applying it not only to investigate

in
onsistent but also
onsistent theories.

We identi�ed a problem of \partial" triviality when adding equality to QCL.

Analysing the relationship between equality, fun
tionality and in
onsisten
y in

the
ontext of QCL
an provide more insight into reasoning about in
onsisten
ies

in general and about in
onsisten
ies in Z in parti
ular. Further resear
h into

equality also in
ludes extending the theorem prover with equality rules.

The Z standard does not �x a logi
 for Z and it is said that any logi

ompliant

with the standard is suÆ
ient. The question that follows is whether QCL is a

suÆ
ient logi
 with respe
t to the Z standard?

9.3. Future Work 217

9.3.2 Re�nement of In
onsistent Spe
i�
ations

One major motivation for this work is the belief in a theory that allows
ontinued

development of spe
i�
ations despite the presen
e of in
onsisten
ies. Re�nement

is one of the pro
esses of spe
i�
ation development from an abstra
t form to

a more
on
rete representation. Re�nement is also the pro
ess of adding in-

formation. This
an, however, lead to the introdu
tion of in
onsisten
ies. The

idea behind the alternative pre
ondition regions is to support re�nement in the

presen
e of overde�nedness. Current investigations suggest that a
ombination of

lassi
al and quasi-
lassi
al re�nement rules
an support dete
tion and
ontrolled

removal of in
onsisten
ies. However, this relation requires further investigation.

Our work fo
used on operation re�nement. However, data re�nement is fre-

quently used to develop a more
on
rete representation of the system's
ompo-

nents. For example, sets are a mathemati
al notion whi
h are usually not used

in programs. During data re�nement they are turned into sequen
es or arrays

thus providing a more
on
rete representation. In
onsisten
ies
an, for instan
e,

o

ur due to di�erent opinions on the
on
rete representation. Thus, managing

in
onsisten
y in data re�nement and subsequently in operation re�nement is an

important issue to look at.

9.3.3 In
onsisten
y and Underde�nedness

So far, we only
onsidered lo
al in
onsisten
ies. Surely, to develop a pra
ti
ally

useful way of managing in
onsisten
y we need to
onsider global in
onsisten
ies

too. On su
h a s
ale, however, it be
omes even more important to identify an

order of \harmfulness" of in
onsisten
ies.

In our interpretation of pairs of guarded pre
ondition s
hemas (gd Op; do Op)

we identi�ed only three regions. Clearly, we
ould further distinguish the areas

: gd Op ^ : do Op and : gd Op ^ do Op. The latter area might be regarded as

representing \mira
les" or in
onsisten
y. This leads to the problem of dete
ting

and managing in
onsisten
y between the guarded and the pre
onditioned region.

9.3.4 Appli
ations

A theory of re�nement in the presen
e of in
onsisten
y
an
ontribute to work

on viewpoint spe
i�
ations (Boiten et al., 1999), where the uni�
ation of two or

more viewpoints is de�ned as the least
ommon re�nement of the viewpoints. So

far, the veri�
ation of this property also
ontains a
onsisten
y
he
k between

the viewpoint spe
i�
ations. However, this for
es removal of the in
onsisten
y

to unify the viewpoints. Our work
an possibly support viewpoint uni�
ation

9.3. Future Work 218

and the analysis of the resulting spe
i�
ation without ne
essarily removing the

in
onsisten
y.

The usefulness of after-state variables in guards is sometimes doubted. This is

due to the evaluation of the guard before exe
uting the operation. However, there

are at least two appli
ation domains that
ould bene�t from after-state guards.

In geneti
 programming, for example, a range of solutions is
al
ulated provided

some initiation but only a small set of the solutions are sele
ted a

ording to

some given
riteria. These
riteria
an possibly be expressed in terms of after-

state guards.

(Turski, 2001) presents an unorthodox way of spe
ifying behaviour. He uses so

alled doubly guarded a
tions where two guards are asso
iated with ea
h a
tion:

the preguard is spe
ifying the
ondition in whi
h the a
tion is to be started and the

postguard is spe
ifying under whi
h
ondition the result is to be a

epted. Again,

we think that this is expressed within our approa
h of guarded pre
ondition

s
hemas. Thus, it would be interesting to investigate the appli
ability of our

notation with respe
t to these appli
ations.

Finally, some
ase studies on handling in
onsisten
y in large proje
ts using QCL

and the Z notation would be interesting to further validate our approa
h and the

usefulness of in
onsisten
y tolerant methods. Also, a
ase study using guarded

pre
ondition s
hemas to model rea
tive behaviour would further support our

work.

Bibliography

Abrial, J.-R. (1974). Data Semanti
s. In Klimbie, J. W. and Ko�eman, K. L.,

editors, IFIP TC2 Working Conferen
e on Data Base Management, pages

1{59. Elsevier S
ien
e Publishers (North-Holland).

Abrial, J.-R. (1996). The B-Book: Assigning Programs to Meanings. Cambridge

University Press.

Anderson, A. R. and Belnap, N. D. (1975). Entailment: The Logi
 of Relevan
e

and Ne
essity, Volume 1. Prin
eton University Press.

Arieli, O. and Avron, A. (1998). The Value of the Four Values. Arti�
ial Intel-

ligen
e, 102(1):97{141. Online http://www.math.tau.a
.il/~aa/papers.

html (08/02/2001).

Arthan, R. D. (1992). On Free Type De�nitions in Z. In Ni
holls, J. E., ed-

itor, Z User Workshop, York 1991, Workshops in Computing, pages 40{

58. Springer-Verlag. Online: http://www.lemma-one.
om/papers/18.ps

(26/07/2002).

Balzer, R. (1991). Tolerating In
onsisten
y. In Pro
eedings of the 13th Interna-

tional Conferen
e on Software Engineering, pages 158{165. IEEE Computer

So
iety Press / ACM Press.

Barden, R., Stepney, S., and Cooper, D. (1994). Z in Pra
ti
e. Prenti
e Hall.

Barrett, G. (1989). Formal Methods Applied to a Floating-Point Num-

ber System. IEEE Transa
tions on Software Engineering, 15(5):611{

621. Online: http://www.
omlab.ox.a
.uk/ou
l/publi
ations/monos/

PRG-58-IEEETSE.ps.gz (16/09/2002).

Batens, D. (1999). In
onsisten
y-Adaptive Logi
s. In Orlowska, E., editor, Logi

at Work. Essays Dedi
ated to the Memory of Helena Rasiowa, Studies in

fuzziness and soft
omputing, Volume 24, pages 445{472, Heidelberg, New

York. Physi
a-Verlag.

219

Bibliography 220

Batens, D. (2000). A Survey of In
onsisten
y-Adaptive Logi
s. In (Batens et al.,

2000), pages 49{73.

Batens, D. and De Cler
q, K. (1999). A Ri
h Para
onsistent Extension of Full

Positive Logi
. Online: http://logi
a.rug.a
.be/
entral/writings/

index.html (24/04/2001).

Batens, D., Mortensen, C., Priest, G., and Bendegem, J.-P. V., editors (2000).

Frontiers of Para
onsistent Logi
. Resear
h Studies Press Ltd., Baldo
k,

Hertfordshire, England.

Be
kert, B. (1997). Semanti
 Tableaux with Equality. Journal of Logi
 and

Computation, 7(1):39{58.

Be
kert, B. and Posegga, J. (1994). leanT

A

P : Lean, Tableau-based Theorem

Proving. In Bundy, A., editor, Pro
. CADE-12, Le
ture Notes in Arti�
ial

Intelligen
e 814, Nan
y, Fran
e. Springer Verlag. Online: http://i12www.

ira.uka.de/leantap/ (23/06/2001).

Belnap, N. D. (1977a). How a Computer Should Think. In Ryle, G., editor,

Contemporary Aspe
ts of Philosophy, pages 30{56. Oriel Press, Sto
ks�eld.

Belnap, N. D. (1977b). A Useful Four-Valued Logi
. In Dunn, M. J. and Ep-

stein, G., editors, Modern Uses of Multiple-Valued Logi
, Volume 2 of Epis-

teme, Chapter 1, pages 8{37. D. Reidel Publishing Company, Dordre
ht, The

Netherlands.

Ben-Ari, M. (2001). Mathemati
al Logi
 for Computer S
ien
e. Springer-Verlag,

London, 2nd edition. (First published 1993).

Bert, D., Bowen, J. P., Henson, M. C., and Robinson, K., editors (2002). ZB2002:

Formal Spe
i�
ation and Development in Z and B / Se
ond International

Conferen
e of B and Z Users. Le
ture Notes in Computer S
ien
e 2272.

Springer-Verlag Berlin, Grenoble, Fran
e.

Besnard, P. and Hunter, A. (1995). Quasi-Classi
al Logi
: Non-Trivializable Clas-

si
al Reasoning from In
onsistent Information. In Froidevaux, C. and Kohlas,

J., editors, Pro
eedings of the ECSQARU European Conferen
e on Symboli

and Quantitive Approa
hes to Reasoning and Un
ertainty, Le
ture Notes

in Arti�
ial Intelligen
e 946, pages 44{51, Berlin. Springer Verlag. Online:

http://www.
s.u
l.a
.uk/staff/A.Hunter/papers.html (08/02/2001).

B�eziau, J.-Y. (2000). What is para
onsistent logi
? In (Batens et al., 2000), pages

95{112. Online: http://www.
s.bham.a
.uk/~esslli/notes/beziau/

wplb.ps (08/02/2001).

Bibliography 221

Bi
arregui, J. and Rit
hie, B. (1995). Invariants, Frames and Post
onditions: a

Comparision of the VDM and B Notations. IEEE Transa
tions on Software

Engineering, 21(2):79{89. also in: Pro
eedings of FME'93, Wood
o
k and

Larsons (eds.) LNCS 670, Springer-Verlag. Online: http://theory.do
.

i
.a
.uk:80/~j
b1/ieee.ps (24/08/2002).

Boiten, E., Derri
k, J., Bowman, H., and Steen, M. W. A. (1999). Constru
tive

onsisten
y
he
king for partial spe
i�
ation in Z. S
ien
e of Computer

Programming, 35(1):29{75. Online: http://www.elsevier.
om/
as/tree/

store/s
i
o/sub/1999/35/1/567.pdf (15/10/2001).

Boiten, E. A., Derri
k, J., Bowman, H., and Steen, M. W. A. (1995). Uni�
ation

and multiple views of data in Z. In van Vliet, J. C., editor, Computing

S
ien
e in the Netherlands, pages 73{85. Online: http://www.
s.uk
.a
.

uk/pubs/1995/191/ (24/08/2002).

Bowen, J. P., Dunne, S., Galloway, A., and King, S., editors (2000). ZB2000:

Formal Spe
i�
ation and Development in Z and B / First International Con-

feren
e of B and Z Users. Le
ture Notes in Computer S
ien
e 1878. Springer-

Verlag Berlin, York, UK.

Bowen, J. P., Fett, A., and Hin
hey, M. G., editors (1998). ZUM '98: The Z

Formal Spe
i�
ation Notation, Pro
eedings of the 11th International Confer-

en
e of Z Users. Le
ture Notes in Computer S
ien
e 1493. Springer Verlag,

Berlin Heidelberg New York.

Bowman, H., Derri
k, J., Linington, P., and Steen, M. W. A. (1996). Cross

Viewpoint Consisten
y in Open Distributed Pro
essing. Software Engineer-

ing Journal, 11(1):44{57. Spe
ial Issue on Viewpoints, editors: A. Finkelstein

and I. Sommerville.

da Costa, N. C. A. (1974). On the Theory of In
onsistent Formal Systems. Notre

Dame Journal of Formal Logi
, 15(4):497{510.

da Costa, N. C. A. (2000). Para
onsistent Mathemati
s. In (Batens et al., 2000),

pages 165{179.

da Costa, N. C. A., B�eziau, J.-Y., and Bueno, O. A. S. (1995). Aspe
ts of

Para
onsistent Logi
. Bulletin of the IGPL, 3(4):597{614. Online: http:

//www.mpi-sb.mpg.de/igpl/Journal/V3-4/#Da
osta (08/02/2001).

Dam�asio, C. V. and Pereira, L. M. (1998). A Survey of Para
onsistent Seman-

ti
s for Logi
 Programs. In Besnard, P. and Hunter, A., editors, Reasoning

with A
tual and Potential Contradi
tions, Volume II of Handbook of De-

feasable Reasoning and Un
ertainty Management Systems (Gabbay, D. and

Smets, Ph., editors), pages 277{364. Kluwer A
ademi
 Publishers, Dortre
ht,

Bibliography 222

The Netherlands. Online: http://www.univ-ab.pt/~
d/investiga
ao/

artigos/hand97.ps.gz (21/09/1999).

deCharms, C. (1997). Approa
hing the Tibetian View of Mind. In Two Views of

Mind: Abhidharma and Brain S
ien
e, pages 25{28. Snow Lion Publi
ations,

Itha
a NY 14851-6483. See http://www.ke
k.u
sf.edu/~de
harms/.

Derri
k, J. and Boiten, E. (2001). Re�nement in Z and Obje
t-Z: Foundations and

Advan
ed Appli
ations. Formal Approa
hes to Computing and Information

Te
hnology. Springer Verlag.

Derri
k, J., Bowman, H., and Steen, M. W. A. (1995). Maintaining Cross View-

point Consisten
y using Z. In Raymond, K. and Armstrong, L., editors,

IFIP TC6 International Conferen
e on Open Distributed Pro
essing, pages

413{424, Brisbane, Australia. Brisbane, Australia, Chapman & Hall. Online:

http://www.
s.uk
.a
.uk/pubs/1995/187/index.html (13/04/1999).

Doornbos, H. (1994). A relational model of programs without the restri
tion to

Egli-Milner
onstru
ts. In Olderog, E.-R., editor, PROCOMET '94, pages

357{376. IFIP.

Duke, R., Rose, G., and Smith, G. (1994). Obje
t-Z: A Spe
i�
ation Language

Advo
ated for the Des
ription of Standards. Te
hni
al report 94-45, Soft-

ware Veri�
ation Resear
h Centre, S
hool of Information Te
hnology, The

University of Queensland, Brisbane 4072. Australia. Online: http://svr
.

it.uq.edu.au/Bibliography/svr
-tr.html?94-45 (05/08/2002).

Easterbrook, S. (1993). Domain modelling with hierar
hies of alternative view-

points. In Pro
eedings of the IEEE International Symposium on Require-

ments Engineering, pages 65{72. IEEE. Te
hni
al Report Online: http:

//www.
ogs.susx.a
.uk/
gi-bin/html
ogsreps?
srp252 (29/08/2002).

Easterbrook, S. and Che
hik, M. (2001a). 2nd International Workshop on Living

with In
onsisten
y (Part of ICSE 2001). Online: http://www.
s.toronto.

edu/~sme/IWLWI-01/ (29/08/2002).

Easterbrook, S. and Che
hik, M. (2001b). A Framework for Multi-Valued Rea-

soning over In
onsistent Viewpoints. In Pro
eedings of the 23rd International

Conferen
e on Software Engeneering (ICSE-01), pages 411{420, Los Alami-

tos, California. IEEE Computer So
iety. Online: http://www.
s.toronto.

edu/~sme/papers/2001/ICSE01.pdf (03/06/2001).

Easterbrook, S. and Nuseibeh, B. (1996). Using ViewPoints for in
onsisten
y

management. Software Engineering Journal, 11(1):31{43. Online: http:

//www.do
.i
.a
.uk/~ban/pubs.html (13/08/2002).

Bibliography 223

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., and Nuseibeh, B. (1994).

In
onsisten
y Handling in Multi-Perspe
tive Spe
i�
ations. IEEE Trans-

a
tions on Software Engineering, 20(8):569{578. Online: http://www.
s.

u
l.a
.uk/staff/A.Hunter/papers.html (19/09/1999).

Fis
her, C. (1997). CSP-OZ: A Combination of Obje
t-Z and CSP.

Te
hni
al Report TRCF-97-2, Universit�at Oldenburg, Fa
hbere-

i
h Informatik, PO Box 2503, 26111 Oldenburg, Germany. On-

line: http://theoreti
a.Informatik.Uni-Oldenburg.DE/~fis
her/

te
hreports.html (10/01/2000).

Fis
her, C. (1998). How to Combine Z with Pro
ess Algebra. In (Bowen et al.,

1998), pages 5{23.

Fitting, M. C. (1996). First-Order Logi
 and Automated Theorem Proving. Grad-

uate Texts in Computer S
ien
e. Springer-Verlag, Berlin, 2nd edition. 1st

ed., 1990.

Gabbay, D. M. and Hunter, A. (1991). Making in
onsisten
y respe
table 1: A

logi
al framework for in
onsisten
y in reasoning. In Jorrand, P. and Kelemen,

J., editors, Foundations of Arti�
ial Intelligen
e Resear
h, Le
ture Notes

in Computer S
ien
e 535, pages 19{32. Springer Verlag. Online: http:

//www.
s.u
l.a
.uk/staff/A.Hunter/papers.html (08/02/2001).

Gabbay, D. M. and Hunter, A. (1999). Negation and Contradi
tion. In Gabbay,

D. M. and Wansing, H., editors, What is Negation?, Volume 13 of Applied

Logi
 Series. Kluwer A
ademi
 Publishers. Online: http://www.
s.u
l.

a
.uk/staff/A.Hunter/papers.html (01/03/2001).

Ghezzi, C. and Nuseibeh, B. (1998). Guest Editorial: Introdu
tion to the Spe
ial

Se
tion: Managing In
onsisten
y in Software Development. IEEE Transa
-

tions on Software Engineering, 24(11):906{907.

Ghezzi, C. and Nuseibeh, B. (1999). Guest Editorial: Introdu
tion to the Spe
ial

Se
tion: Managing In
onsisten
y in Software Development. IEEE Transa
-

tions on Software Engineering, 26(6):782{783.

H�ahnle, R., Be
kert, B., and Gerberding, S. (1994).

3

T

A

P - The Many-

Valued Theorem-Prover, 3rd edition. Online: http://i12www.ira.uka.de/

~threetap (28/08/2002).

Hayes, I. J., editor (1987). Spe
i�
ation Case Studies. Prenti
e Hall Interna-

tional Series in Computer S
ien
e. Prenti
e Hall International (UK) Ltd.,

1st edition.

Bibliography 224

Hayes, I. J., editor (1993). Spe
i�
ation Case Studies. Prenti
e Hall Interna-

tional Series in Computer S
ien
e. Prenti
e Hall International (UK) Ltd.,

2nd edition.

Hayes, I. J., Jones, C. B., and Ni
holls, J. E. (1993). Understanding the di�er-

en
es between VDM and Z. Te
hni
al Report UMCS-93-8-1, Department of

Computer S
ien
e, University of Man
hester. Online: http://www.
s.man.

a
.uk/
ste
hrep/Abstra
ts/UMCS-93-8-1.html (05/08/2002).

Hehner, E. C. R. (1993). A pra
ti
al theory of programming. Springer Verlag.

Hehner, E. C. R. (1999). Spe
i�
ations, programs, and total
orre
tness. S
ien
e

of Computer Programming, 34(3):191{205. Online http://www.elsevier.

om/
as/tree/store/s
i
o/sub/1999/34/3/563.pdf (09/05/2000).

Henson, M. C. (1998). The standard logi
 of Z is in
onsistent. Journal of Formal

Aspe
ts of Computing, 10:243{247. Online: ftp://ftp.essex.a
.uk/pub/

s
/te
hni
al-reports/z.ps (23/06/2001).

Henson, M. C. and Reeves, S. (2000). Investigating Z. Journal of

Logi
 and Computation, 10. Online: ftp://ftp.essex.a
.uk/pub/
s
/

te
hni
al-reports/jl
.ps (23/06/2001).

Herre, H. (1998). A Para
onsistent Semanti
s for Generalized Logi
 Pro-

grams. Augustusplatz 10-11, 04109 Leipzig, Germany. Preliminary
opy

(para
s.ps.gz).

Herre, H. and Pear
e, D. (1992). Disjun
tive Logi
 Programming, Constru
tivity

and Strong Negation. In Pear
e, D. and Wagner, G., editors, Logi
s in AI -

European Workshop JELIA'92, Berlin, Germany, September 1992, Le
ture

Notes in Arti�
ial Intelligen
e 633, pages 391{410. Springer Verlag, Berlin,

Heidelberg.

Hoare, C. A. R. and He Jifeng (1998). Unifying Theories of Programming. Pren-

ti
e Hall, London.

Hunter, A. (2000). Reasoning with Contradi
tory Information Using Quasi-

Classi
al Logi
. Journal of Logi
 and Computation, 10(5):677{703. Online:

http://www.
s.u
l.a
.uk/staff/A.Hunter/papers.html (08/02/2001).

Hunter, A. (2001). A Semanti
 Tableau Version of First-Order Quasi-Classi
al

Logi
. In Benferhat, S. and Besnard, P., editors, Symboli
 and Quantita-

tive Approa
hes to Reasoning with Un
ertainty, 6th European Conferen
e,

ECSQARU 2001, Toulouse, Fran
e, September 19-21, 2001, Pro
eedings,

Le
ture Notes in Arti�
ial Intelligen
e 2143, pages 544{555. Springer Ver-

lag. Online: http://www.
s.u
l.a
.uk/staff/a.hunter/papers/foq
.

ps (26/08/2002).

Bibliography 225

Hunter, A. and Nuseibeh, B. (1997). Analysing In
onsistent Spe
i�
ations.

In Pro
eedings of the 3rd International Symposium on Requirements En-

gineering (RE'97), pages 78{86. Annapolis, USA, IEEE Computer So
iety

Press. Online: http://www.
s.u
l.a
.uk/staff/a.hunter/papers.html

(14/02/2001).

Hunter, A. and Nuseibeh, B. (1998). Managing In
onsistent Spe
i�
ations: Rea-

soning, Analysis, and A
tion. ACM Transa
tions on Software Engineer-

ing and Methodology, 7(4):335{367. Online: http://www.
s.u
l.a
.uk/

staff/A.Hunter/papers.html (08/02/2001), http://www.do
.i
.a
.uk/

~ban/pubs.html (13/08/2002).

ISO/IEC 13568 (2002). - Information te
hnology - Z formal spe
i�
ation notation

- Syntax, type system and semanti
s. ISO/IEC 13568, 1st edition.

IWLWI (1997). ICSE'97 Workshop on \Living with In
onsisten
y". Online:

http://www.
s.uoregon.edu/~fi
kas/i
se-workshop/ (29/08/2002/).

Ja
kson, D. (1995). Stru
turing Z Spe
i�
ations with Views. ACM

Transa
tions on Software Engineering and Methodology, 4(4):365{389.

Online: http://www.
s.
mu.edu/afs/
s/proje
t/
ompose/www/paper_

abstra
ts/dnj/CMU-CS-94-126.html (22/09/1999).

Ja
kson, D. and Ja
kson, M. (1996). Problem De
omposition for Reuse. IEE/BCS

Software Engineering Journal, 11(1):19{30. Online: http://sdg.l
s.mit.

edu/~dnj/publi
ations.html (18/09/1999).

Ja
ky, J. (1997). The Way of Z: Pra
ti
al Programming with Formal Methods.

Cambridge University Press.

Jones, C. B. (1990). Systemati
 Software Development Using VDM. Pren-

ti
e Hall International Series in Computer S
ien
e. Prenti
e Hall Interna-

tional (UK) Ltd, London, 2nd edition. Online: ftp://ftp.n
l.a
.uk/pub/

users/n
bj/ssdvdm.ps.gz (05/08/2002).

Jones, C. B. and Shaw, R. C. F., editors (1990). Case Studies in Systemati

Software Development. Prenti
e Hall International. Online: ftp://ftp.

n
l.a
.uk/pub/users/n
bj/
ases.ps.gz (05/08/2002).

Josephs, M. B. (1991). Spe
ifying rea
tive systems in Z. Te
hni
al Report PRG-

19-91, Programming Resear
h Group, Oxford University Computing Labo-

ratory.

King, S. (1990). Z and the Re�nement Cal
ulus. In Bj�rner, D., Hoare, C. A. R.,

and Langmaak, H., editors, Pro
eedings of the 3rd International Symposium

of VDM Europe on VDM and Z : Formal Methods in Software Development,

Bibliography 226

Le
ture Notes in Computer S
ien
e 428, pages 164{188, Berlin. Springer

Verlag.

Lano, K., Bi
arregui, J., Fiadeiro, J., and Lopes, A. (1997). Spe
i�
ation of

Required Non-determinism. In Fitzgerald, J., Jones, C. B., and Lu
as,

P., editors, FME'97: Industrial Appli
ations and Strengthened Foundations

of Formal Methods (Pro
. 4th Intl. Symposium of Formal Methods Europe,

Graz, Austria, September 1997), Le
ture Notes in Computer S
ien
e 1313,

pages 298{317. Springer-Verlag. Online: http://theory.do
.i
.a
.uk:

80/~j
b1/fme97.ps (15/10/1999).

Lewis, C. I. and Langford, C. H. (1932). Symboli
 Logi
. Dover Publi
ations,

New York.

Meheus, J. (2002). In
onsisten
ies in s
ienti�
 dis
overy: Clausius's remarkable

derivation of Carnot's theorem. In Kra
h, H., Vanpaemel, G., and Marage,

P., editors, History of Modern Physi
s, pages 143{154. Turnhout, Brepols.

Miarka, R., Boiten, E., and Derri
k, J. (2000). Guards, Pre
onditions, and Re-

�nement in Z. In (Bowen et al., 2000), pages 286{303. Online: http:

//www.
s.uk
.a
.uk/pubs/2000/1130 (17/11/2000).

Miarka, R., Derri
k, J., and Boiten, E. (2002). Handling In
onsisten
ies in Z

using Quasi-Classi
al Logi
. In (Bert et al., 2002), pages 204{225. Online:

http://www.
s.uk
.a
.uk/pubs/2002/ (01/02/2002).

Mortensen, C. (1995). In
onsistent Mathemati
s. Kluwer A
ademi
 Publishers,

Dordre
ht.

Ni
holls, J. (1995). Z Notation: Version 1.2. Z Standards Panel.

Nix, C. J. and Collins, B. P. (1988). The use of Software Engineering, in
luding

the Z Notation, in the Development of CICS. Quality Assuran
e, 14(3):103{

110.

Nuseibeh, B., Easterbrook, S., and Russo, A. (2000). Leveraging In
onsisten
y

in Software Development. IEEE Computer, 33(4):24{29. Online: http:

//www.do
.i
.a
.uk/~ban/pubs.html (13/08/2002).

Nuseibeh, B., Easterbrook, S., and Russo, A. (2001). Making in
onsisten
y re-

spe
table in software development. Journal of Systems and Software, 58:171{

180. This is a revised and expanded version of (Nuseibeh et al., 2000). Online:

http://www-dse.do
.i
.a
.uk/~ban/pubs/jss2001.pdf (13/01/2002).

Bibliography 227

Nuseibeh, B., Kramer, J., and Finkelstein, A. (1994). A Framework for Express-

ing the Relationships Between Multiple Views in Requirements Spe
i�
a-

tion. IEEE Transa
tions on Software Engineering, 20(10):760{773. Online:

ftp://
s.u
l.a
.uk/a
wf/papers/tse94.i
se.ps.gz (11/12/1998).

Potter, B., Sin
lair, J., and Till, D. (1991). An Introdu
tion to Formal Spe
i�
a-

tion and Z. Prenti
e Hall International Series in Computer S
ien
e. Prenti
e

Hall International (UK) Ltd.

Priest, G. (1998). Dialetheism. Stanford En
y
lopedia of Philosophy. Online:

http://plato.stanford.edu/entries/dialetheism/ (11/01/1999).

Priest, G. (2000). Motivations for Para
onsisten
y: The Slippery Slope from

Classi
al Logi
 to Dialetheism. In (Batens et al., 2000), pages 223{232.

Priest, G. et al., editors (1989). Para
onsistent Logi
: Essays in the In
onsisten
y.

Philosophia Verlag.

Priest, G. and Tanaka, K. (1996). Logi
, Para
onsistent. Stanford En
y-

lopedia of Philosophy. Online: http://plato.stanford.edu/entries/

logi
-para
onsistent/ (11/01/1999).

Reeves, S. V. (1987). Adding Equality to Semanti
 Tableaux. Journal of Auto-

mated Reasoning, 3(3):225{246.

Res
her, N. and Manor, R. (1970). On Inferen
e from In
onsistent Premisses.

Theory and De
ision, 1:179{217.

Rodrigues, O. and Russo, A. (1998). A Translation Method for Belnap Logi
.

Te
hni
al Report, Imperial College Resear
h Report DoC 98/7. Online:

http://www.do
.i
.a
.uk/~ar3/belnap-trans.pdf (08/02/2001).

Saaltink, M. (1997). The Z/EVES User's Guide. ORA Canada, Suite 1208,

One Ni
holas Street; Ottawa, Ontario K1N 7B7; Canada. Online: ftp:

//ftp.ora.on.
a/pub/do
/97-5493-06.ps.Z (21/09/1999).

S
hneider, S. (2001). The B-Method { An Introdu
tion. Palgrave Ma
millan

Publishers Ltd, Houndsmills, Basingstoke, Hampshire, RG21 6XS, England.

S
hwanke, R. W. and Kaiser, G. E. (1988). Living with In
onsisten
y in Large

Systems. In Pro
eedings of the International Workshop on Software Version

and Con�guration Control, pages 98{118, Grassau, Germany.

Smith, A. (1992). On Re
ursive Free Types in Z. In Ni
holls, J. E., editor, Z

User Workshop, York 1991, Workshops in Computing, pages 3{39. Springer-

Verlag.

Bibliography 228

Smith, G. (2000). The Obje
t-Z Spe
i�
ation Language. Advan
es in Formal

Methods. Kluwer A
ademi
 Publishers.

Smullyan, R. M. (1968). First-Order Logi
, Volume 43 of Ergebnisse der Mathe-

matik und ihrer Grenzgebiete. Springer-Verlag, New York.

Spivey, J. M. (1992). The Z Notation: A Referen
e Manual. Prenti
e Hall

International Series in Computer S
ien
e. Prenti
e Hall International (UK)

Ltd., 2nd edition. Out-of-print. Online: http://spivey.oriel.ox.a
.uk/

~mike/zrm/index.html (26/07/1998).

Steen, M. W. A., Bowman, H., Derri
k, J., and Boiten, E. A. (1997). Disjun
tion

of LOTOS spe
i�
ations. In Mizuno, T., Shiratori, N., Higashino, T., and

Togashi, A., editors, Formal Des
ription Te
hniques and Proto
ol Spe
i�
a-

tion, Testing and Veri�
ation: FORTE X / PSTV XVII '97, pages 177{192,

Osaka, Japan. Chapman & Hall. Online: http://www.
s.uk
.a
.uk/pubs/

1997/350 (20/01/2000).

Stepney, S., Barden, R., and Cooper, D., editors (1992). Obje
t Orientation in

Z. Workshops in Computing. Springer-Verlag.

Stoddart, B., Dunne, S., and Galloway, A. (1999). Unde�ned expressions and

logi
 in Z and B. Formal Methods in System Design: An International

Journal, 15(3):201{215. Online: http://wheelie.tees.a
.uk/users/w.

j.stoddart/undefzb.ps (12/02/2000).

Strulo, B. (1995). How Firing Conditions Help Inheritan
e. In Bowen, J. P.

and Hin
hey, M. G., editors, ZUM'95: The Formal Spe
i�
ation Notation,

Le
ture Notes in Computer S
ien
e 967, pages 264{275. Springer Verlag.

Tennant, N. (1984). Perfe
t Validity, Entailment and Para
onsisten
y. Studia

Logi
a, 43(1{2):181{200.

Turski, W. M. (2001). Programming for Behaviour. In Hoare, C. A. R., Broy,

M., and Steinbr�uggen, R., editors, Engineering Theories of Software Con-

stru
tion, NATO S
ien
e Series: Computer and Systems S
ien
es Vol. 180,

pages 135{148. IOS Press.

Urbas, I. (1990). Para
onsisten
y. Studies in Soviet Thought, 39(3{4):343{354.

Valentine, S. H. (1998). In
onsisten
y and Unde�nedness in Z { A Pra
ti
al

Guide. In (Bowen et al., 1998), pages 233{249.

van Lamsweerde, A., Darimont, R., and Letier, E. (1998). Managing Con
i
ts

in Goal-Driven Requirements Engineering. IEEE Transa
tions on Software

Engineering, 24(11):908{926. Online: ftp://ftp.info.u
l.a
.be/pub/

publi/98/Confli
ts-TSE.ps.gz (11/01/1999).

Bibliography 229

Vermeir, T. (2001). In
onsisten
y-adaptive arithmeti
. Online: http://logi
a.

rug.a
.be/
entral/writings/index.html (24/04/2001).

Wittgenstein, L. (1964). Philosophis
he Bemerkungen. Basil Bla
kwell, Oxford.

Aus dem Na
hla�, herausgegeben von Rush Rhees.

Wood
o
k, J. and Davies, J. (1996). Using Z - Spe
i�
ation, Re�nement,

and Proof. Prenti
e Hall International Series in Computer S
ien
e. Pren-

ti
e Hall Europe. Online: http://www.
omlab.ox.a
.uk/igdp/usingz/

(18/10/2001).

Appendix A

QC-LeanTaP: A Tableau-Based

Theorem Prover for QCL

We present some work in progress on a tableau-based theorem prover for QCL.

Our theorem prover,
alled QC-LeanTaP, is based on the work by (Be
kert and

Posegga, 1994) on leanT

A

P whi
h we introdu
e �rst. Then we turn to a small

program to
al
ulate the
onjun
tive negation normal form of a �rst order predi-

ate formula. We do not skolemize existential predi
ates, unlike the version used

for leanT

A

P . Finally, we present the tableau-based theorem prover for QCL.

A.1 leanT

A

P

LeanT

A

P is a
omplete and sound theorem prover for
lassi
al �rst-order logi

based on free-variable semanti
 tableau. The unique thing about leanT

A

P is that

it is probably the smallest theorem prover around: The original leanT

A

P program

is only about 12 lines of Prolog.

prove((E,F),A,B,C,D) :- !,prove(E,[F|A℄,B,C,D).

prove((E;F),A,B,C,D) :- !,prove(E,A,B,C,D),prove(F,A,B,C,D).

prove(all(I,J),A,B,C,D) :- !,

\+length(C,D),
opy_term((I,J,C),(G,F,C)),

append(A,[all(I,J)℄,E),prove(F,E,B,[G|C℄,D).

prove(A,_,[C|D℄,_,_) :-

((A= -(B);-(A)=B) -> (unify(B,C);prove(A,[℄,D,_,_))).

prove(A,[E|F℄,B,C,D) :- prove(E,F,[A|B℄,C,D).

(Be
kert and Posegga, 1994) des
ribe the basi
 version of leanT

A

P , whi
h is an

implementation of standard free-variable semanti
 tableau. An extended report

on leanT

A

P and the sour
e
ode
an be anonymously ftp-ed from

230

A.1. leanT

A

P 231

i12ftp.ira.uka.de:pub/posegga/LeanTaP.ps.Z and

i12ftp.ira.uka.de:pub/posegga/LeanTaPsr
.shar.Z

LeanT

A

P is written in Si
stus Prolog but to port it to GProlog was easily done.

The prover lives in leantap.pl and is de�ned as the predi
ates prove/2 and

prove uv/2. See the
omments there for details.

%%

% $Id: leantap.pl,v 2.3 1994/12/14 18:09:13 posegga Exp $

% Si
stus Prolog

% Copyright (C) 1993: Bernhard Be
kert & Joa
him Posegga

% Universitaet Karlsruhe

% Email: {be
kert|posegga}�ira.uka.de

%

% Purpose: \LeanTaP: tableau-based theorem prover for NNF.

%

%%

:- module(leantap,[prove/2,prove_uv/2℄).

:- use_module(library(lists),[append/3℄).

:- use_module(unify,[unify/2℄).

%%%%%%%%%% BEGIN OF TOPLEVEL PREDICATES

% --

% prove(+Fml,?VarLim)

% prove_uv(+Fml,?VarLim)

%

% su

eeds if there is a
losed tableau for Fml with not more

% than VarLim free variables on ea
h bran
h.

% prove_uv uses universal variables, prove does not.

%

% Iterative deepening is used when VarLim is unbound.

% Examples:

%

% | ?- prove((p(a) , -p(f(f(a))) , all(X,(-p(X) ; p(f(X))))), 1).

% no

% | ?- prove((p(a) , -p(f(f(a))) , all(X,(-p(X) ; p(f(X))))), 2).

% yes

%

A.1. leanT

A

P 232

prove(Fml,VarLim) :-

nonvar(VarLim),!,prove(Fml,[℄,[℄,[℄,VarLim).

prove(Fml,Result) :-

iterate(VarLim,1,prove(Fml,[℄,[℄,[℄,VarLim),Result).

prove_uv(Fml,VarLim) :-

nonvar(VarLim),!,prove(Fml,[℄,[℄,[℄,[℄,[℄,VarLim).

prove_uv(Fml,Result) :-

iterate(VarLim,1,prove(Fml,[℄,[℄,[℄,[℄,[℄,VarLim),Result).

iterate(Current,Current,Goal,Current) :- nl,

write('Limit = '),

write(Current),nl,

Goal.

iterate(VarLim,Current,Goal,Result) :-

Current1 is Current + 1,

iterate(VarLim,Current1,Goal,Result).

%%%%%%%%%% END OF TOPLEVEL PREDICATES

% --

% prove(+Fml,+UnExp,+Lits,+FreeV,+VarLim)

%

% su

eeds if there is a
losed tableau for Fml with not more

% than VarLim free variables on ea
h bran
h.

% Fml: in
onsistent formula in skolemized negation normal form.

% syntax: negation: '-', disj: ';',
onj: ','

% quantifiers: 'all(X,<Formula>)',

% where 'X' is a prolog variable.

%

% UnExp: list of formula not yet expanded

% Lits: list of literals on the
urrent bran
h

% FreeV: list of free variables on the
urrent bran
h

% VarLim: max. number of free variables on ea
h bran
h

% (
ontrols when ba
ktra
king starts and alternate

% substitutions for
losing bran
hes are
onsidered)

%

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,[B|UnExp℄,Lits,FreeV,VarLim).

A.1. leanT

A

P 233

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)℄,UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV℄,VarLim).

prove(Lit,_,[L|Lits℄,_,_) :-

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[℄,Lits,_,_)).

prove(Lit,[Next|UnExp℄,Lits,FreeV,VarLim) :-

prove(Next,UnExp,[Lit|Lits℄,FreeV,VarLim).

% --

% prove(+Fml,+UnExp,+Lits,+DisV,+FreeV,+UnivV,+VarLim)

%

% same as prove/5 above, but uses universal variables.

% additional parameters:

% DisV: list of non-universal variables on bran
h

% UnivV: list of universal variables on bran
h

prove((A,B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

prove(A,[(UnivV:B)|UnExp℄,Lits,DisV,FreeV,UnivV,VarLim).

prove((A;B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

opy_term((Lits,DisV),(Lits1,DisV)),

prove(A,UnExp,Lits,(DisV+UnivV),FreeV,[℄,VarLim),

prove(B,UnExp,Lits1,(DisV+UnivV),FreeV,[℄,VarLim).

prove(all(X,Fml),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

\+ length(FreeV,VarLim),

opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[(UnivV:all(X,Fml))℄,UnExp1),

prove(Fml1,UnExp1,Lits,DisV,[X1|FreeV℄,[X1|UnivV℄,VarLim).

prove(Lit,_,[L|Lits℄,_,_,_,_) :-

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[℄,Lits,_,_,_,_)).

A.2. Normal Form Cal
ulation for QC-LeanTaP 234

prove(Lit,[(UnivV:Next)|UnExp℄,Lits,DisV,FreeV,_,VarLim) :-

prove(Next,UnExp,[Lit|Lits℄,DisV,FreeV,UnivV,VarLim).

A.2 Normal Form Cal
ulation for QC-LeanTaP

It follows a small program to
al
ulate the negation
onjun
tive normal form of a

formula in �rst-order predi
ate logi
. The main di�eren
e to the original version

by (Be
kert and Posegga, 1994) is the in
lusion of two rewrite rules (distribution

laws) and the removal of the skolemization. The former prevents the disjun
tion

rule to be applied to non-literals and the latter to skolemize existentially quan-

ti�ed formulae. Both
onditions are required be
ause of the distin
tion between

S- and U-rules.

%%

%
nnf

%

% GProlog

%

% August 2001: Ralph Miarka

% University of Kent, Canterbury, UK

% Email: rm17�uk
.a
.uk

%

% Purpose:

% -
omputes
onjun
tive negation normal form for a

% formula given in first-order predi
ate logi

% - used in
onjun
tion with q
_leantap

%

% based on nnf.pl by

%

% Copyright (C) 1993: Bernhard Be
kert & Joa
him Posegga

% Universitaet Karlsruhe

% Email: {be
kert|posegga}�ira.uka.de

%

%%

%
he
k - xfy means right asso
iative; yfx means left asso
iative

:- op(400,fy,-). % negation

:- op(500,xfy,&). %
onjun
tion

:- op(600,xfy,v). % disjun
tion

:- op(650,xfy,=>). % impli
ation

A.2. Normal Form Cal
ulation for QC-LeanTaP 235

:- op(700,xfy,<=>). % equivalen
e

% --

%
nnf(+Fml,?CNNF)

% Fml is a first-order formula and

% CNNF is its
onjun
tive negation normal form.

%

% Syntax of Fml:

% negation: '-', disj: 'v',
onj: '&', impl: '=>', equiv: '<=>',

%

% Syntax of CNNF: negation: '-', disj: ';',
onj: ','

%

nnf(Fml,CNNF) :-
nnf(Fml,CNNF,_).

% --

%
nnf(+Fml,-CNNF,-Paths)

%

% Fml,CNNF See above.

% Paths: Number of disjun
tive paths in Fml.

nnf(Fml,CNNF,Paths) :-

(Fml = -(-A) -> Fml1 = A;

Fml = -all(X,F) -> Fml1 = ex(X,-F);

Fml = -ex(X,F) -> Fml1 = all(X,-F);

Fml = -(A v B) -> Fml1 = -A & -B;

Fml = -(A & B) -> Fml1 = -A v -B;

Fml = A v (B & C) -> Fml1 = (A v B) & (A v C);

Fml = (A & B) v (A & C) -> Fml1 = A & (B v C);

Fml = (A => B) -> Fml1 = -A v B;

Fml = -(A => B) -> Fml1 = A & -B;

Fml = (A <=> B) -> Fml1 = (A & B) v (-A & -B);

Fml = -(A <=> B) -> Fml1 = (A & -B) v (-A & B)),!,

nnf(Fml1,CNNF,Paths).

nnf(all(X,F),all(X,CNNF),Paths) :- !,

nnf(F,CNNF,Paths).

nnf(ex(X,Fml),ex(X,CNNF),Paths) :- !,

nnf(Fml,CNNF,Paths).

nnf(A & B,CNNF,Paths) :- !,

A.3. QC-LeanTaP 236

nnf(A,CNNF1,Paths1),

nnf(B,CNNF2,Paths2),

Paths is Paths1 * Paths2,

(Paths1 > Paths2 -> CNNF = (CNNF2,CNNF1);

CNNF = (CNNF1,CNNF2)).

nnf(A v B,CNNF,Paths) :- !,

nnf(A,CNNF1,Paths1),

nnf(B,CNNF2,Paths2),

Paths is Paths1 + Paths2,

(Paths1 > Paths2 -> CNNF = (CNNF2;CNNF1);

CNNF = (CNNF1;CNNF2)).

nnf(Lit,Lit,1).

A.3 QC-LeanTaP

QC-LeanTaP is the tableau-based theorem prover for QCL. We almost doubled

the rules in
omparison with leanT

A

P to handle the tableau S- and U-Rules

separately. Skolemization is re-introdu
ed at appropriate stages. The
ru
ial

rule is, however, the disjun
tion S-Rule be
ause it is only appli
able to literals

and it allows fo
using. The appli
ation of the disjun
tion S-Rule to literals is

ensured by its positioning within the rule system. Fo
using is
aptured by a

small rule to sele
t a disjun
tion of literals to fo
us over. This is slightly di�erent

to the original proof theory of QCL. The disjun
tion rule used is

�

1

_ : : : _ �

i

_ : : : _ �

n

(: (�

i

_ : : : _ �

n

))

�

j �

1

_ : : : _ �

i�1

[where �

1

; : : : ; �

n

are literals℄

It
an be shown that this is a short-hand for the multiple appli
ation of the

disjun
tion S-rule. Furthermore, the original disjun
tion S-rule is a spe
ial
ase

of this rule. We have, however, not established the formal proof of soundness

and
orre
tness for this variant of the disjun
tion S-rule yet. Note also that we

in
luded the double negation rule be
ause fo
using does introdu
e negation, thus

double negations
an appear.

We have not established the
orre
tness of this implementation nor any improve-

ments. Thus, we
onsider it as work in progress. The prover has been tested

using range of examples from the publi
ations on QCL.

%%

% q
_leantap

%

A.3. QC-LeanTaP 237

% GProlog

%

% August 2001: Ralph Miarka

% University of Kent, Canterbury, UK

% Email: rm17�uk
.a
.uk

%

% Purpose: Lean tableau based prover for Quasi-
lassi
al logi

% by A.Hunter; used in
onjun
tion with
nnf.pl to get

% the negation normal form

%

% based on \LeanTaP by

%

% Copyright (C) 1993: Bernhard Be
kert & Joa
him Posegga

% Universitaet Karlsruhe

% Email: {be
kert|posegga}�ira.uka.de

% Purpose: \LeanTaP: tableau-based theorem prover for NNF.

%

%%

:- in
lude(
nnf).

:- in
lude(unify).

%%%%%%%%%% BEGIN OF TOPLEVEL PREDICATES

%
onvert a list of formulae into
nnf

% return a list of
nnfs Fml

nnffmls([℄,[℄).

nnffmls([F|Res℄,[(CNNF,s)|Rem℄) :-

nnf(F,CNNF),

write('CNNF = '), write(CNNF),nl,

nnffmls(Res,Rem).

prove(Fml,F,VarLim) :-

nnffmls(Fml,Res),
nnf(F,CNNF),

write('CNNFVarLim = '), write(CNNF),nl,

nonvar(VarLim),!,prove((CNNF,u),Res,[℄,[℄,VarLim).

prove(Fml,F,Result) :-

nnffmls(Fml,Res),
nnf(F,CNNF),

write('CNNFResult = '), write(CNNF),nl,

iterate(VarLim,1,prove((CNNF,u),Res,[℄,[℄,VarLim),Result).

A.3. QC-LeanTaP 238

iterate(Current,Current,Goal,Current) :- nl,

write('Limit = '),

write(Current),nl,

Goal.

iterate(VarLim,Current,Goal,Result) :-

Current1 is Current + 1,

iterate(VarLim,Current1,Goal,Result).

% --

% prove(+(Fml,Sign),+UnExp,+Lits,+FreeV,+VarLim)

%

% su

eeds if there is a
losed tableau for Fml with not more

% than VarLim free variables on ea
h bran
h.

% Fml: list of formulae in negation normal form.

% syntax: negation: '-', disj: ';',
onj: ','

%

% UnExp: list of formula not yet expanded

% Lits: list of literals on the
urrent bran
h

% FreeV: list of free variables on the
urrent bran
h

% VarLim: max. number of free variables on ea
h bran
h

% (
ontrols when ba
ktra
king starts and alternate

% substitutions for
losing bran
hes are
onsidered)

% Sign: whether S- or U-rules should be used.

% Conjun
tion S-Rule

prove(((A,B),s),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,s),[(B,s)|UnExp℄,Lits,FreeV,VarLim).

% U-Double Negation Rule (a
tually it also works for the S-Rules)

% needed, be
ause the fo
us rule
an introdu
e double negation

prove((-(-A),Sign),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,Sign),UnExp,Lits,FreeV,VarLim).

% Disjun
tion U-Rule:

prove(((A;B),u),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,u),[(B,u)|UnExp℄,Lits,FreeV,VarLim).

% Conjun
tion U-Rule

prove(((A,B),u),UnExp,Lits,FreeV,VarLim) :- !,

prove((A,u),UnExp,Lits,FreeV,VarLim),

prove((B,u),UnExp,Lits,FreeV,VarLim).

A.3. QC-LeanTaP 239

% Disjun
tion S-Rules:

prove(((A;B),s),UnExp,Lits,FreeV,VarLim) :-

prove((A,s),UnExp,Lits,FreeV,VarLim),

prove((B,s),UnExp,Lits,FreeV,VarLim).

% fo
us

prove(((A;B),s),UnExp,Lits,FreeV,VarLim) :-

fo
us((A;B),C,D),

prove((-(C),u),UnExp,Lits,FreeV,VarLim),

prove((D,s),UnExp,Lits,FreeV,VarLim).

% Quantifi
ation S-rules

% Existential Quantifi
ation:

% Skolemize first, then prove skolem. fml

prove((ex(X,Fml),s),UnExp,Lits,FreeV,VarLim) :- !,

opy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),

opy_term((X,Fml1,FreeV),(ex,Fml2,FreeV)),

prove((Fml2,s),UnExp,Lits,FreeV,VarLim).

prove((all(X,Fml),s),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,(Fml,s))℄,UnExp1),

prove((Fml1,s),UnExp1,Lits,[X1|FreeV℄,VarLim).

% Quantifi
ation U-rules

% Universal Quantifi
ation:

% Skolemize first, then prove skolem. fml

prove((all(X,Fml),u),UnExp,Lits,FreeV,VarLim) :- !,

opy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),

opy_term((X,Fml1,FreeV),(ex,Fml2,FreeV)),

prove((Fml2,u),UnExp,Lits,FreeV,VarLim).

prove((ex(X,Fml),u),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

opy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[ex(X,(Fml,u))℄,UnExp1),

prove((Fml1,u),UnExp1,Lits,[X1|FreeV℄,VarLim).

%

prove((Lit,Sign),_,[(L,Si)|Lits℄,_,_) :-

A.3. QC-LeanTaP 240

rev(Si,S) ->

(unify((Lit,Sign),(L,S)); prove((Lit,Sign),[℄,Lits,_,_)).

prove((Lit,Sign),[Next|UnExp℄,Lits,FreeV,VarLim) :-

prove(Next,UnExp,[(Lit,Sign)|Lits℄,FreeV,VarLim).

% this fo
us rule is not only for literals

fo
us((A;B),A,B).

fo
us((A;B),B,A).

% needed for unifi
ation

rev(s,u).

rev(u,s).

