
Pfc User Manual

version 1.2

Tim Finin
Computer Science and Electrical Engineering
University of Maryland Baltimore County

1000 Hilltop Circle
Baltimore MD 21250

�nin@umbc.edu
http://umbc.edu/ �nin/

August 1999

Abstract

The Pfc system is a package that provides a forward reasoning capability to be used together with
conventional Prolog programs. The Pfc inference rules are Prolog terms which are asserted as clauses into
the regular Prolog database. When new facts or forward reasoning rules are added to the Prolog database
(via a special predicate add/1, forward reasoning is triggered and additional facts that can be deduced via
the application of the forward chaining rules are also added to the database. A simple justi�cation-based
truth-maintenance system is provided as well as simple predicates to explore the resulting proof trees.

1 Introduction

Prolog, like most logic programming languages, o�ers backward chaining as the only reasoning scheme. It is
well known that sound and complete reasoning systems can be built using either exclusive backward chaining
or exclusive forward chaining [5]. Thus, this is not a theoretical problem. It is also well understood how to
\implement" forward reasoning using an exclusively backward chaining system and vice versa. Thus, this
need not be a practical problem. In fact, many of the logic-based languages developed for AI applications
[3, 1, 6, 2] allow one to build systems with both forward and backward chaining rules.

There are, however, some interesting and important issues which need to be addresses in order to provide
the Prolog programmer with a practical, e�cient, and well integrated facility for forward chaining. This
paper describes such a facility, Pfc , which we have implemented in standard Prolog.

The Pfc system is a package that provides a forward reasoning capability to be used together with conven-
tional Prolog programs. The Pfc inference rules are Prolog terms which are asserted as facts into the regular
Prolog database. For example, Figure 1 shows a �le of Pfc rules and facts which are appropriate for the
ubiquitous kinship domain.

The rest of this manual is structured as follows. The next section provides an informal introduction to the
Pfc language. Section three describes the predicates through which the user calls Pfc _The �nal section gives
several longer examples of the use of Pfc

1

2 AN INFORMAL INTRODUCTION TO THE PFC LANGUAGE 2

Getting and installing Pfc

Look for Pfc on ftp.cs.umbc.edu in /pub/pfc/.

2 An Informal Introduction to the Pfc language

This section describes Pfc . We will start by introducing the language informally through a series of examples
drawn from the domain of kinship relations. This will be followed by an example and a description of some
of the details of its current implementation.

Overview

The Pfc package allows one to de�ne forward chaining rules and to add ordinary Prolog assertions into the
database in such a way as to trigger any of the Pfc rules that are satis�ed. An example of a simple Pfc rule
is:

gender(P,male) => male(P)

This rule states that whenever the fact unifying with gender(P;male) is added to the database, then the
fact male(P) is true. If this fact is not already in the database, it will be added. In any case, a record will
be made that the validity of the fact male(P) depends, in part, on the validity of this forward chaining rule
and the fact which triggered it. To make the example concrete, if we add gender(john;male), then the fact
male(john) will be added to the database unless it was already there.

In order to make this work, it is necessary to use the predicate add/1 rather than assert/1 in order to assert
Pfc rules and any facts which might appear in the lhs of a Pfc rule.

Compound Rules

A slightly more complex rule is one in which the rule's left hand side is a conjunction or disjunction of
conditions:

parent(X,Y),female(X) => mother(X,Y)

mother(X,Y);father(X,Y) => parent(X,Y)

The �rst rule has the e�ect of adding the assertion mother(X;Y) to the database whenever parent(X;Y)
and female(X) are simultaneously true for some X and Y . Again, a record will be kept that indicates that
any fact mother(X;Y) added by the application of this rule is justi�ed by the rule and the two triggering
facts. If any one of these three clauses is removed from the database, then all facts solely dependent on them
will also be removed. Similarly, the second example rule derives the parent relationship whenever either the
mother relationship or the father relationship is known.

In fact, the lhs of a Pfc rule can be an arbitrary conjunction or disjunction of facts. For example, we might
have a rule like:

2 AN INFORMAL INTRODUCTION TO THE PFC LANGUAGE 3

P, (Q;R), S => T

Pfc handles such a rule by putting it into conjunctive normal form. Thus the rule above is the equivalent to
the two rules:

P,Q,S => T

P,R,S => T

Bi-conditionals

Pfc has a limited ability to express bi-conditional rules, such as:

mother(P1,P2) <=> parent(P1,P2), female(P1).

In particular, adding a rule of the form P<=>Q is the equivalent to adding the two rules P=>Q and Q=>P. The
limitations on the use of bi-conditional rules stem from the restrictions that the two derived rules be valid
horn clauses. This is discussed in a later section.

Backward-Chaining Pfc Rules

Pfc includes a special kind of backward chaining rule which is used to generate all possible solutions to a
goal that is sought in the process of forward chaining. Suppose we wished to de�ne the ancestor relationship
as a Pfc rule. This could be done as:

parent(P1,P2) => ancestor(P1,P2).

parent(P1,P2), ancestor(P2,P3) => ancestor(P1,P3).

However, adding these rules will generate a large number of assertions, most of which will never be needed.
An alternative is to de�ne the ancestor relationship by way of backward chaining rules which are invoked
whenever a particular ancestor relationship is needed. In Pfc this need arises whenever facts matching the
relationship are sought while trying a forward chaining rule.

ancestor(P1,P2) <= {\+var(P1)}, parent(P1,X), ancestor(X,P2).

ancestor(P1,P2) <= {var(P1),\+var(P2)}, parent(X,P2), ancestor(P2,X).

Conditioned Rules

It is sometimes necessary to add some further condition on a rule. Consider a de�nition of sibling which
states:

Two people are siblings if they have the same mother and the same father. No one can be his
own sibling.

2 AN INFORMAL INTRODUCTION TO THE PFC LANGUAGE 4

This de�nition could be realized by the following Pfc rule

mother(Ma,P1), mother(Ma,P2), {P1\==P2},

father(Pa,P1), father(Pa,P2)

=> sibling(P1,P2).

Here we must add a condition to the lhs of the rule which states the the variables P1 and P2 must not
unify. This is e�ected by enclosing an arbitrary Prolog goal in braces. When the goals to the left of such
a bracketed condition have been ful�lled, then it will be executed. If it can be satis�ed, then the rule will
remain active, otherwise it will be terminated.

Negation

We sometimes want to draw an inference from the absence of some knowledge. For example, we might wish
to encode the default rule that a person is assumed to be male unless we have evidence to the contrary:

person(P), ~female(P) => male(P).

A lhs term preceded by a � is satis�ed only if no fact in the database uni�es with it. Again, the Pfc system
records a justi�cation for the conclusion which, in this case, states that it depends on the absence of the
contradictory evidence. The behavior of this rule is demonstrated in the following dialogue:

?- add(person(P), ~female(P) => male(P)).

yes

?- add(person(alex)).

yes

?- male(alex).

yes

?- add(female(alex)).

yes

?- male(alex)

no

As a slightly more complicated example, consider a rule which states that we should assume that the parents
of a person are married unless we know otherwise. Knowing otherwise might consist of either knowing that
one of them is married to a yet another person or knowing that they are divorced. We might try to encode
this as follows:

parent(P1,X),

parent(P2,X),

{P1\==P2},

~divorced(P1,P2),

~spouse(P1,P3),

{P3\==P2},

~spouse(P2,P4),

{P4\==P1}

=>

spouse(P1,P2).

2 AN INFORMAL INTRODUCTION TO THE PFC LANGUAGE 5

Unfortunately, this won't work. The problem is that the conjoined condition

~spouse(P1,P3),{P3\==P2}

does not mean what we want it to mean - that there is no P3 distinct from P2 that is the spouse of P1.
Instead, it means that P1 is not married to any P3. We need a way to move the quali�cation {P3\==P2}

inside the scope of the negation. To achieve this, we introduce the notion of a quali�ed goal. A lhs term
P=C, where P is a positive atomic condition, is true only if there is a database fact unifying with P and
condition C is satis�able. Similarly, a lhs term � P=C, where P is a positive atomic condition, is true only if
there is no database fact unifying with P for which condition C is satis�able. Our rule can now be expressed
as follows:

parent(P1,X),

parent(P2,X)/(P1\==P2),

~divorced(P1,P2),

~spouse(P1,P3)/(P3\==P2),

~spouse(P2,P4)/(P4\==P1)

=>

spouse(P1,P2).

Procedural Interpretation

Note that the procedural interpretation of a Pfc rule is that the conditions in the lhs are checked from left
to right. One advantage to this is that the programmer can chose an order to the conditions in a rule to
minimize the number of partial instantiations. Another advantage is that it allows us to write rules like the
following:

at(Obj,Loc1),at(Obj,Loc2)/{Loc1\==Loc2}

=> {remove(at(Obj,Loc1))}.

Although the declarative reading of this rule can be questioned, its procedural interpretation is clear and
useful:

If an object is known to be at location Loc1 and an assertion is added that it is at some
location Loc2, distinct from Loc1, then the assertion that it is at Loc1 should be removed.

The Right Hand Side

The examples seen so far have shown a rules rhs as a single proposition to be \added" to the database. The
rhs of a Pfc rule has some richness as well. The rhs of a rule is a conjunction of facts to be \added" to the
database and terms enclosed in brackets which represent conditions/actions which are executed. As a simple
example, consider the conclusions we might draw upon learning that one person is the mother of another:

mother(X,Y) =>

female(X),

parent(X,Y),

adult(X).

2 AN INFORMAL INTRODUCTION TO THE PFC LANGUAGE 6

As another example, consider a rule which detects bigamists and sends an appropriate warning to the proper
authorities:

spouse(X,Y), spouse(X,Z), {Y\==Z} =>

bigamist(X),

{format("~N~w is a bigamist, married

to both ~w and ~w~n",[X,Y,Z])}.

Each element in the rhs of a rule is processed from left to right | assertions being added to the database
with appropriate support and conditions being satis�ed. If a condition can not be satis�ed, the rest of the
rhs is not processed.

We would like to allow rules to be expressed as bi-conditional in so far a possible. Thus, an element in the
lhs of a rule should have an appropriate meaning on the rhs as well. What meaning should be assigned to
the conditional fact construction (e.g. P=Q) which can occur in a rules lhs? Such a term in the rhs of a rule
is interpreted as a conditioned assertion. Thus the assertion P=Q will match a condition P 0 in the lhs of a
rule only if P and P 0 unify and the condition Q is satis�able. For example, consider the rules that says that
an object being located at one place is reason to believe that it is not at any other place:

at(X,L1) => not(at(X,L2))/L2\==L1

Note that a conditioned assertion is essentially a Horn clause. We would express this fact in Prolog as the
backward chaining rule:

not(at(X,L2)) :- at(X,L1),L1\==L2.

The di�erence is, of course, that the addition of such a conditioned assertion will trigger forward chaining
whereas the assertion of a new backward chaining rule will not.

The Truth Maintenance System

As discussed in the previous section, a forward reasoning system has special needs for some kind of truth
maintenance system. The Pfc system has a rather straightforward TMS system which records justi�cations
for each fact deduced by a Pfc rule. Whenever a fact is removed from the database, any justi�cations in
which it plays a part are also removed. The facts that are justi�ed by a removed justi�cation are checked to
see if they are still supported by some other justi�cations. If they are not, then those facts are also removed.

Such a TMS system can be relatively expensive to use and is not needed for many applications. Consequently,
its use and nature are optional in Pfc and are controlled by the predicate pfcTmsMode=1. The possible
cases are three:

� pfcTmsMode(full) - The fact is removed unless it has well founded support (WFS). A fact has WFS
if it is supported by the user or by God or by a justi�cation all of whose justi�cees have WFS1.

� pfcTmsMode(local) - The fact is removed if it has no supporting justi�cations.

1Determining if a fact has WFS requires detecting local cycles - see [4] for an introduction

2 AN INFORMAL INTRODUCTION TO THE PFC LANGUAGE 7

� pfcTmsMode(none) - The fact is never removed.

A fact is considered to be supported by God if it is found in the database with no visible means of support.
That is, if Pfc discovers an assertion in the database that can take part in a forward reasoning step, and that
assertion is not supported by either the user or a forward deduction, then a note is added that the assertion
is supported by God. This adds additional
exibility in interfacing systems employing Pfc to other Prolog
applications.

For some applications, it is useful to be able to justify actions performed in the rhs of a rule. To allow
this, Pfc supports the idea of declaring certain actions to be undoable and provides the user with a way of
specifying methods to undo those actions. Whenever an action is executed in the rhs of a rule and that
action is undoable, then a record is made of the justi�cation for that action. If that justi�cation is later
invalidated (e.g. through the retraction of one of its justi�cees) then the support is checked for the action
in the same way as it would be for an assertion. If the action does not have support, then Pfc trys each of
the methods it knows to undo the action until one of them succeeds.

In fact, in Pfc , one declares an action as undoable just by de�ning a method to accomplish the undoing. This
is done via the predicate pfcUndo=2. The predicate pfcUndo(A1; A2) is true if executing A2 is a possible
way to undo the execution of A1. For example, we might want to couple an assertional representation of a
set of graph nodes with a graphical display of them through the use of Pfc rules:

at(N,XY) => {displayNode(N,XY)}.

arc(N1,N2) => {displayArc(N1,N2}.

pfcUndo(displayNode(N,XY),eraseNode(N,XY)).

pfcUndo(displayArc(N1,N2),eraseArc(N1,N2)).

Limitations

The Pfc system has several limitations, most of which it inherits from its Prolog roots. One of the more
obvious of these is that Pfc rules must be expressible as a set of horn clauses. The practical e�ect is that
the rhs of a rule must be a conjunction of terms which are either assertions to be added to the database or
actions to be executed. Negated assertions and disjunctions are not permitted, making rules like

parent(X,Y) <=> mother(X,Y);father(X,Y)

male(X) <=> ~female(X)

ill-formed.

Another restrictions is that all variables in a Pfc rule have implicit universal quanti�cation. As a result, any
variables in the rhs of a rule which remain uninstantiated when the lhs has been fully satis�ed retain their
universal quanti�cation. This prevents us from using a rule like

father(X,Y), parent(Y,Z)

<=> grandfather(X,Z).

with the desired results. If we do add this rule and assert grandfather(john,mary), then Pfc will add the
two independent assertions father(john,) (i.e. \John is the father of everyone") and parent(,mary) (i.e.
\Everyone is Mary's parent").

3 PREDICATES 8

Another problem associated with the use of the Prolog database is that assertions containing variables
actually contain \copies" of the variables. Thus, when the conjunction

add(father(adam,X)), X=able

is evaluated, the assertion father(adam,_G032) is added to the database, where G032 is a new variable
which is distinct from X. As a consequence, it is never uni�ed with able.

3 Predicates

3.1 Manipulating the Database

add(+P)

The fact or rule P is added to the database with support coming from the user. If the fact already exists,
an additional entry will not be made (unlike Prolog). If the facts already exists with support from the user,
then a warning will be printed if pfcWarnings is true. Add/1 always succeeds.

pfc(?P)

The predicate pfc=1 is the proper way to access terms in the Pfc database. pfc(P) succeeds if P is a term
in the current pfc database after invoking any backward chaining rules or is provable by Prolog.

rem(+P)

The �rst fact (or rule) unifying with P has its user support removed. rem=1 will fail if no there are no
Pfc added facts or rules in the database which match. If removing the user support from a fact leaves it
unsupported, then it will be removed from the database.

rem2(+P

The �rst fact (or rule) unifying with P will be removed from the database even if it has valid justi�cations.
rem=1 will fail if no there are no Pfc added facts or rules in the database which match. If removing the user
support from the fact leaves it unsupported, then it will be removed from the database. If the fact still has
valid justi�cations, then a Pfc warning message will be printed and the justi�cations removed.

pfcReset

.

Resets the Pfc database by trying to retract all of the prolog clauses which were added by calls to add or
by the forward chaining mechanism.

3 PREDICATES 9

Term expansions

Pfc de�nes term expansion procedures for the operators =>, <= and <=> so that you can have things like
the following in a �le to be consulted

foo(X) => bar(X).

=> foo(1).

The result will be an expansion to:

:- add((foo(X) => bar(X)).

:- add(foo(1)).

3.2 Control Predicates

This section describes predicates to control the forward chaining search strategy and truth maintenance
operations.

pfcSearch(P)

This predicate is used to set the search strategy that Pfc uses in doing forward chaing. The argument should
be one of direct,depth,breadth.

pfcTmsMode(Mode)

This predicate controls the method used for truth maintenaance. The three options are none,local,cycles.
Calling pfcTmsMode with an instantiated argument will set the mode to that argument.

� none means that no truth maintenance will be done.

� local means that limited truth maintenance will be done. Speci�cally, no cycles will be checked.

� cycles means that full truth maintenance will be done, including a check that all facts are well
grounded.

pfcHalt

Immediately stop the forward chainging process.

pfcRun

Continue the forward chainging process.

3 PREDICATES 10

pfcStep

Do one iteration of the forward chainging process.

pfcSelect(P)

Select next fact for forward chaining (user de�ned)

pfcWarnings
pfcNoWarnings

3.3 The TMS

The following predicates are used to access the tms information associated with Pfc facts.

justi�cation(+P,-J)
justi�cation(+P,-Js)

justi�cation(P,J) is true if one of the justi�cations for fact P is J, where J is a list of Pfc facts and rules
which taken together deduce P. Backtracking into this predicate can produce additional justi�cations. If the
fact was added by the user, then one of the justi�cations will be the list [user]. justi�cations(P,Js) is
provided for convenience. It binds Js to a list of all justi�cations returned by (justi�cation/2).

base(+P,-Ps)

assumptions(+P,-Ps)

pfcChild(+P,-Q)
pfcChildren(+P,-Qs)

pfcDescendant(+P,-Q)
pfcDescendants(+P,-Qs)

3.4 Debugging

pfcTrace
pfcTrace(+Term)
pfcTrace(+Term,+Mode)
pfcTrace(+Term,+Mode,+Condition)

This predicate causes the addition and/or removal of Pfc terms to be traced if a speci�ed condition is met.
The arguments are as follows:

3 PREDICATES 11

� term - Speci�es which terms will be traced. Defaults to (i.e. all terms).

� mode - Speci�es whether the tracing will be done on the addition (i.e. add, removal (i.e. rem) or
both (i.e.) of the term. Defaults to .

� condition - Speci�es an additional condition which must be met in order for the term to be traced. For
example, in order to trace both the addition and removal of assertions of the age of people just when
the age is greater than 100, you can do pfcTrace(age(,N), ,N>100).

Thus, callingpfcTrace will cause all terms to be traced when they are added and removed from the database.
When a fact is added or removed from the database, the lines

1

2

are displayed, respectively.

pfcUntrace
pfcUntrace(+Term)
pfcUntrace(+Term,+Mode)
pfcUntrace(+Term,+Mode,+Condition)

The pfcUntrace predicate is used to stop tracing Pfc facts. Calling pfcUntrace(P,M,C) will stop all
tracing speci�cations which match. The arguments default as described above.

pfcSpy(+Term)
pfcSpy(+Term,+Mode)
pfcSpy(+Term,+Mode,+Condition)

These predicates set spypoints, of a sort.

pfcQueue

Displays the current queue of facts in the Pfc queue.

showState

Displays the state of Pfc, including the queue, all triggers, etc.

pfcFact(+P)
pfcFacts(+L)

pfcFact(P) uni�es P with a fact that has been added to the database via Pfc _You can backtrac into it to �nd
more facts. pfcFacts(L) uni�ed L with a list of all of the facts asserted by add.

4 EXAMPLES 12

pfcPrintDb
pfcPrintFacts
pfcPrintRules

These predicates diaply the the entire Pfc database (facts and rules) or just the facts or just the rules.

4 Examples

4.1 Factorial and Fibonacci

These examples show that the Pfc backward chaining facility can do such standard examples as the factorial
and Fibonacci functions.

Here is a simple example of a Pfc backward chaining rule to compute the Fibonacci series.

fib(0,1).

fib(1,1).

fib(N,M) <=

N1 is N-1,

N2 is N-2,

fib(N1,M1),

fib(N2,M2),

M is M1+M2.

Here is a simple example of a Pfc backward chaining rule to compute the factorial function.

=> fact(0,1).

fact(N,M) <=

N1 is N-1,

fact(N1,M1),

M is N*M1.

4.2 Default Reasoning

This example shows how to de�ne a default rule. Suppose we would like to have a default rule that holds in
the absence of contradictory evidence. We might like to state, for example, that an we should assume that
a bird can
y unless we know otherwise. This could be done as:

bird(X), ~not(fly(X)) => fly(X).

We can, for our convenience, de�ne a default operator which takes a Pfc rule and quali�es it to make it a
default rule. This can be done as follows:

default((P => Q)),{pfcAtom(Q)} => (P, ~not(Q) => Q).

4 EXAMPLES 13

where pfcAtom(X) holds if X is a \logical atom" with respect to Pfc (i.e . not a conjunction, disjunction,
negation, etc).

One we have de�ned this, we can use it to state that birds
y by default, but penguins do not.

% birds fly by default.

=> default((bird(X) => fly(X))).

isa(C1,C2) =>

% here's one way to do an isa hierarchy.

{P1 =.. [C1,X],

P2 =.. [C2,X]},

(P1 => P2).

=> isa(canary,bird).

=> isa(penguin,bird).

% penguins do not fly.

penguin(X) => not(fly(X)).

% chilly is a penguin.

=> penguin(chilly).

% tweety is a canary.

=> canary(tweety).

4.3 KR example

isa hierarchy. roles. types. classi�cation. etc.

4.4 Maintaining Functional Dependencies

One useful thing that Pfc can be used for is to automatically maintain function Dependencies in the light
of a dynamic database of fact. The builtin truth maintenance system does much of this. However, it is
often useful to do more. For example, suppose we want to maintain the constraint that a particular object
can only be located in one place at a given time. We might record an objects location with an assertion
at(Obj,Loc) which states that the current location of the object Obj is the location Loc.

Suppose we want to de�ne a Pfc rule which will be triggered whenever an at/2 assertion is made and will
remove any previous assertion about the same object's location. Thus to re
ect that an object has moved
from location A to location B, we need merely add the new information that it is at location B. If we try to
do this with the Pfc rule:

at(Obj,Loc1),

at(Obj,Loc2),

{Loc1\==Loc2}

=>

~at(Obj,Loc1).

we may or may not get the desired result. This rule will in fact maintain the constraint that the database
have at most one at/2 assertion for a given object, but whether the one kept is the old or the new depends on

4 EXAMPLES 14

the particular search strategy being used by Pfc _In fact, under the current default strategy, the new assertion
will be the one retracted.

We can achieve the desired result with the following rule:

at(Obj,NewLoc),

{at(Obj,OldLoc), OldLoc\==NewLoc}

=>

~at(Obj,OldLoc).

This rule causes the following behavior. Whenever a new assertion at(O,L) is made, a Prolog search is
made for an assertion that object O is located at some other location. If one is found, then it is removed.

We can generalize on this rule to de�ne a meta-predicate function(P)which states that the predicate whose
name is P represents a function. That is, P names a relation of arity two whose �rst argument is the domain
of the function and whose second argument is the function's range. Whenever an assertion P(X,Y) is made,
any old assertions matching P(X,) are removed. Here is the Pfc rule:

function(P) =>

{P1 =.. [P,X,Y],

P2 =.. [P,X,Z]},

(P1,{P2,Y\==Z} => ~P2).

We can try this with the following results:

| ?- add(function(age)).

Adding (u) function(age)

Adding age(A,B),{age(A,C),B\==C}=> ~age(A,C)

yes

| ?- add(age(john,30)).

Adding (u) age(john,30)

yes

| ?- add(age(john,31)).

Adding (u) age(john,31)

Removing age(john,30).

yes

Of course, this will only work for functions of exactly one argument, which in Prolog are represented as
relations of arity two. We can further generalize to functions of any number of arguments (including zero),
with the following rule:

function(Name,Arity) =>

{functor(P1,Name,Arity),

functor(P2,Name,Arity),

arg(Arity,P1,PV1),

arg(Arity,P2,PV2),

N is Arity-1,

4 EXAMPLES 15

merge(P1,P2,N)},

(P1,{P2,PV1\==PV2} => ~P2).

merge(_,_,N) :- N<1.

merge(T1,T2,N) :-

N>0,

arg(N,T1,X),

arg(N,T2,X),

N1 is N-1,

merge(T1,T2,N1).

The result is that adding the fact function(P,N) declares P to be the name of a relation of arity N
such that only the most recent assertion of the form P (a1; a2; : : : ; an�1; an) for a given set of constants
a1; : : : ; an�1 will be in the database. The following examples show how we might use this to de�ne a
predicate current president/1 that identi�es the current U.S. president and governor/3 that relates
state, a year and the name of its governor.

% current_president(Name)

| ?- add(function(current_president,1)).

Adding (u) function(current_president,1)

Adding current_president(A),

{current_president(B),A\==B}

=>

~current_president(B)

yes

| ?- add(current_president(reagan)).

Adding (u) current_president(reagan)

yes

| ?- add(current_president(bush)).

Adding (u) current_president(bush)

Removing current_president(reagan).

yes

% governor(State,Year,Governor)

| ?- add(function(governor,3)).

Adding (u) function(governor,3)

Adding governor(A,B,C),{governor(A,B,D),C\==D}=> ~governor(A,B,D)

yes

| ?- add(governor(pennsylvania,1986,thornburg)).

Adding (u) governor(pennsylvania,1986,thornburg)

yes

| ?- add(governor(pennsylvania,1987,casey)).

Adding (u) governor(pennsylvania,1987,casey)

yes

% oops, we misspelled thornburgh!

| ?- add(governor(pennsylvania,1986,thornburgh)).

Adding (u) governor(pennsylvania,1986,thornburgh)

Removing governor(pennsylvania,1986,thornburg).

yes

4 EXAMPLES 16

4.5 Spreadsheets

One common kind of constraints is often found in spreadsheets in which one value is determined from a set
of other values in which the size of the set can vary. This is typically found in spread sheets where one
cell can be de�ned as the sum of a column of cells. This example shows how this kind of constraint can be
de�ned in Pfc as well. Suppose we have a relation income/4 which records a person's income for a year by
source. For example, we might have assertions like:

income(smith,salary,1989,50000).

income(smith,interest,1989,500).

income(smith,dividends,1989,1200).

income(smith,consulting,1989,2000).

We might also with to have a relation total income/3 which records a person's total income for each year.
Given the database above, this should be:

total_income(smith,1989,53700).

One way to do this in Pfc is as follows:

income(Person,Source,Year,Dollars) => {increment_income(Person,Year,Dollars)}.

=> pfcUndoMethod(increment_income(P,Y,D),decrement_income(P,Y,D)).

increment_income(P,Y,D) :-

(retract(total_income(P,Y,Old)) -> New is Old+D ; New = D),

assert(total_income(P,Y,New)).

decrement_income(P,Y,D) :-

retract(total_income(P,Y,Old)),

New is Old-D,

assert(total_income(P,Y,New)).

We would probably want to use the Pfc rule for maintaining functional Dependencies described in Section 4.4
as well, adding the rule:

=> function(income,4).

4.6 Extended Reasoning Capability

The truth maintenance system in Pfc makes it possible to do some reasoning that Prolog does not allow.
From the facts

p _ q
p! r
q! r

4 EXAMPLES 17

it follows that r is true. However, it is not possible to directly encode this in Prolog so that it can be proven.
We can encode these facts in Pfc and use a simple proof by contradiction strategy embodied in the following
Prolog predicate:

prove_by_contradiction(P) :- P.

prove_by_contradiction(P) :-

\+ (not(P) ; P)

add(not(P)),

P -> rem(not(P))

otherwise -> (rem(not(P)),fail).

This procedure works as follows. In trying to prove P, succeed immediately if P is a know fact. Otherwise,
providing that not(P) is not a know fact, add it as a fact and see if this gives rise to a proof for (P). if it
did, then we have derived a contradiction from assuming that not(P) is true and P must be true. In any
case, remove the temporary assertion not(P).

In order to do the example above, we need to add the following rule or or and a rule for general implication
(encoded using the in�x operator==>) which generates a regular forward chaining rule and its counterfactual
rule.

:- op(1050,xfx,('==>')).

(P ==> Q) =>

(P => Q),

(not(Q) => not(P)).

or(P,Q) =>

(not(P) => Q),

(not(Q) => P).

With this, we can encode the problem as:

=> or(p,q).

=> (p ==> x).

=> (q ==> x).

When these facts are added, the following trace ensues:

Adding (u) (A==>B)=>(A=>B), (not(B)=>not(A))

Adding (u) or(A,B)=>(not(A)=>B), (not(B)=>A)

Adding (u) or(p,q)

Adding not(p)=>q

Adding not(q)=>p

Adding (u) p==>x

Adding p=>x

Adding not(x)=>not(p)

Adding (u) q==>x

Adding q=>x

Adding not(x)=>not(q)

Then, we can call prove by contradiction/1 to show that p must be true:

REFERENCES 18

| ?- prove_by_contradiction(x).

Adding (u) not(x)

Adding not(p)

Adding q

Adding x

Adding not(q)

Adding p

Removing not(x).

Removing not(p).

Removing q.

Removing not(q).

Removing p.

Removing x.

yes

References

[1] M. Genesereth et. al. MRS Manual. Technical Report, Stanford University, 1983.

[2] Rich Fritzson and Tim Finin. Protem - An Integrated Expert SystemsTool. Technical Report LBS
Technical Memo Number 84, Unisys Paoli Research Center, May 1988.

[3] Drew McDermott. DUCK: A Lisp-Based Deductive System. Technical Report, Computer Science, Yale
University, 1983.

[4] Drew McDermott and Eugene Charniak. Introduction to Arti�cial Intelligence. Addison Wesley, 1985.

[5] Nils Nilsson. Principles of Arti�cial Intelligence. Tioga Publishing Co., Palo Alto, California, 1980.

[6] Charles J. Petrie and Michael N. Huhns. Controlling Forward Rule Inferences. Technical Report ACA-
AI-012-88, MCC, January 1988.

REFERENCES 19

spouse(X,Y) <=> spouse(Y,X).

spouse(X,Y),gender(X,G1),{otherGender(G1,G2)}

=>gender(Y,G2).

gender(P,male) <=> male(P).

gender(P,female) <=> female(P).

parent(X,Y),female(X) <=> mother(X,Y).

parent(X,Y),parent(Y,Z) => grandparent(X,Z).

grandparent(X,Y),male(X) <=> grandfather(X,Y).

grandparent(X,Y),female(X) <=> grandmother(X,Y).

mother(Ma,Kid),parent(Kid,GrandKid)

=>grandmother(Ma,GrandKid).

grandparent(X,Y),female(X) <=> grandmother(X,Y).

parent(X,Y),male(X) <=> father(X,Y).

mother(Ma,X),mother(Ma,Y),{X\==Y}

=>sibling(X,Y).

Figure 1: Examples of Pfc rules which represent common kinship relations

