/* Model checking of a Markov chain: we want to know what is the likelihood that on an execution of the chain from a start state s, a final state t will be reached? From Gorlin, Andrey, C. R. Ramakrishnan, and Scott A. Smolka. "Model checking with probabilistic tabled logic programming." Theory and Practice of Logic Programming 12.4-5 (2012): 681-700. */ :- use_module(library(pita)). :- if(current_predicate(use_rendering/1)). :- use_rendering(c3). :- use_rendering(graphviz). :- endif. :- pita. :- set_pita(depth_bound,true). :- set_pita(depth,5). :- begin_lpad. % reach(S, I, T) starting at state S at instance I, % state T is reachable. reach(S, I, T) :- trans(S, I, U), reach(U, next(I), T). reach(S, _, S). % trans(S,I,T) transition from S at instance I goes to T trans(s0,S,s0):0.5; trans(s0,S,s1):0.3; trans(s0,S,s2):0.2. trans(s1,S,s1):0.4; trans(s1,S,s3):0.1; trans(s1,S,s4):0.5. trans(s4,_,s3). :- end_lpad. markov_chain(digraph(G)):- findall(edge(A -> B,[label=P]), (clause(trans(A,_,B,_,_,_), (get_var_n(_,_,_,_,Probs,_),equalityc(_,_,N,_))), nth0(N,Probs,P)), G0), findall(edge(A -> B,[label=1.0]), clause(trans(A,_,B,_,_,_),onec(_,_)), G1), append(G0,G1,G). /** ?- prob(reach(s0,0,s0),P). % expecte result ~ 1. ?- prob(reach(s0,0,s1),P). % expecte result ~ 0.5984054054054054. ?- prob(reach(s0,0,s2),P). % expecte result ~ 0.4025135135135135. ?- prob(reach(s0,0,s3),P). % expecte result ~ 0.5998378378378378. ?- prob(reach(s0,0,s4),P). % expecte result ~ 0.49948717948717947. ?- prob(reach(s1,0,s0),P). % expecte result ~ 0. ?- markov_chain(G). % draw the Markov chain */