/* A three-sided die is repeatedly thrown until the outcome is three. on(T,F) means that on the Tth throw the face F came out. From J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated disjunctions. In International Conference on Logic Programming, volume 3131 of LNCS, pages 195-209. Springer, 2004. */ :- use_module(library(mcintyre)). :- if(current_predicate(use_rendering/1)). :- use_rendering(c3). :- endif. :- mc. :- begin_lpad. % on(T,F) means that the die landed on face F at time T on(0,1):1/3;on(0,2):1/3;on(0,3):1/3. % at time 0 the dice lands on one of its faces with equal probability on(X,1):1/3;on(X,2):1/3;on(X,3):1/3:- X1 is X-1,X1>=0, on(X1,_), \+ on(X1,3). % at time T the die lands on one of its faces with equal probability if % at the previous time point it was thrown and it did not land on face 6 evidence:- on(0,1), on(1,1). int(0). int(X1):-int(X),X1 is X+1. at_least_once_1:- int(X),((on(X,3),!,fail);on(X,1)). never_1:- \+ at_least_once_1. :- end_lpad. /** ?- mc_sample(at_least_once_1,1000,Prob,[successes(S),failures(F)]). % what is the probability that the die lands on face 1 at least once? % expected result 0.5 ?- mc_sample(never_1,1000,Prob,[successes(S),failures(F)]). % what is the probability that the die never lands on face 1? % expected result 0.5 ?- mc_prob(on(0,1),Prob),bar(Prob,C). % what is the probability that the die lands on face 1 at time 0? % expected result 0.333333333333333 ?- mc_prob(on(1,1),Prob),bar(Prob,C). % what is the probability that the die lands on face 1 at time 1? % expected result 0.222222222222222 ?- mc_prob(on(2,1),Prob),bar(Prob,C). % what is the probability that the die lands on face 1 at time 2? % expected result 0.148148147703704 ?- mc_mh_sample(on(2,1),on(1,1),1000,P,[mix(1000),successes(T),failures(F)]). % expected result 0.333333333333333 ?- mc_mh_sample(on(2,1),on(0,1),1000,P,[mix(1000),successes(T),failures(F)]). % expected result 0.222222222222222 ?- mc_gibbs_sample(on(0,1),1000,P). % expected result 0.333333333333333 ?- mc_gibbs_sample(on(1,1),1000,P). % expected result 0.222222222222222 ?- mc_gibbs_sample(on(2,1),1000,P). % expected result 0.148148147703704 ?- mc_gibbs_sample(on(2,1),on(1,1),1000,P,[mix(1000),successes(T),failures(F)]). % expected result 0.333333333333333 ?- mc_gibbs_sample(on(2,1),on(0,1),1000,P,[mix(1000),successes(T),failures(F)]). % expected result 0.222222222222222 */