:- module(scasp_solve, [ solve/4 % :Goals, +StackIn, -StackOut, -Model ]). :- use_module(clp/call_stack). :- use_module(predicates). :- use_module(clp/disequality). :- use_module(clp/clpq). :- use_module(verbose). :- autoload(library(apply), [maplist/2, include/3]). :- autoload(library(assoc), [get_assoc/3, empty_assoc/1, get_assoc/5, put_assoc/4]). :- autoload(library(lists), [append/3, member/2]). :- autoload(library(terms), [variant/2]). :- meta_predicate solve(:, +, -, -). /** The sCASP solver */ :- create_prolog_flag(scasp_no_fail_loop, false, [keep(true)]). :- create_prolog_flag(scasp_assume, false, [keep(true)]). :- create_prolog_flag(scasp_forall, all_c, [keep(true)]). :- create_prolog_flag(scasp_dcc, false, [keep(true)]). :- create_prolog_flag(scasp_trace_dcc, false, [keep(true)]). %! solve(:Goals, +StackIn, -StackOut, -Model) % % Solve the list of sub-goals `Goal` where StackIn is the list of % goals already visited and returns in StackOut the list of goals % visited to prove the sub-goals and in Model the model that supports % the sub-goals. solve(M:Goals, StackIn, StackOut, Model) :- stack_parents(StackIn, Parents), stack_proved(StackIn, ProvedIn), solve(Goals, M, Parents, ProvedIn, _ProvedOut, StackIn, StackOut, Model). solve([], _, _, Proved, Proved, StackIn, [[]|StackIn], []). solve([Goal|Goals], M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) :- verbose(print_check_calls_calling(Goal, StackIn)), check_goal(Goal, M, Parents, ProvedIn, ProvedMid, StackIn, StackMid, Modelx), verbose(format('Check ~@\n', [print_goal(Goal)])), Modelx = [AddGoal|JGoal], verbose(format('Success ~@\n', [print_goal(Goal)])), solve(Goals, M, Parents, ProvedMid, ProvedOut, StackMid, StackOut, Modelxs), Modelxs = JGoals, ( shown_predicate(M:Goal) -> Model = [AddGoal, JGoal|JGoals] ; Model = [JGoal|JGoals] ). proved_relatives(not(Goal), Proved, Relatives) => proved_relatives(Goal, Proved, Relatives). proved_relatives(Goal, Proved, Relatives) => functor(Goal, Name, Arity), get_assoc(Name/Arity, Proved, Relatives). %! check_goal(+Goal, +Module, +Parents, +ProvedIn, -ProvedOut, %! +StackIn, -StackOut, -Model) % % Call check_CHS/3 to check the sub-goal Goal against the list of % goals already visited StackIn to determine if it is a coinductive % success, a coinductive failure, an already proved sub-goal, or if it % has to be evaluated. % % @arg StackOut is updated by prepending one or more elements to % StackIn. % % - [], chs(Goal) Proved by co-induction % - [], proved(Goal) Proved in a completed subtree % - From solve_goal/5 Continued execution check_goal(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) :- check_CHS(Goal, M, Parents, ProvedIn, StackIn, Check), check_goal_(Check, Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model), ( current_prolog_flag(scasp_dcc, true), ( Check == co_success ; Check == cont ) -> dynamic_consistency_check(Goal, M, StackIn) ; true ). % coinduction success <- cycles containing even loops may succeed check_goal_(co_success, Goal, _M, _Parents, ProvedIn, ProvedOut, StackIn, StackOut, [AddGoal]) :- AddGoal = chs(Goal), add_proved(AddGoal, ProvedIn, ProvedOut), ( current_prolog_flag(scasp_assume, true) -> mark_prev_goal(Goal, StackIn, StackMark), StackOut = [[],AddGoal|StackMark] ; StackOut = [[],AddGoal|StackIn] ). % already proved in the stack check_goal_(proved, Goal, _M, _Parents, ProvedIn, ProvedOut, StackIn, StackOut, [AddGoal]) :- AddGoal = proved(Goal), add_proved(AddGoal, ProvedIn, ProvedOut), StackOut = [[], proved(Goal)|StackIn]. % coinduction does neither success nor fails <- the execution continues inductively check_goal_(cont, Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) :- solve_goal(Goal, M, [Goal|Parents], ProvedIn, ProvedOut, StackIn, StackOut, Model). % coinduction fails <- the negation of a call unifies with a call in the call stack check_goal_(co_failure, _Goal, _M, _Parents, _ProvedIn, _ProvedOut, _StackIn, _StackOut, _Model) :- fail. mark_prev_goal(Goal, [I|In], [assume(Goal)|In]) :- Goal == I, !. mark_prev_goal(Goal, [I|In], [I|Mk]) :- mark_prev_goal(Goal,In,Mk). mark_prev_goal(_Goal,[],[]). %! dynamic_consistency_check(+Goal, +Module, +StackIn) is semidet. % % Check that the resulting literal is consistent with the nmr. dynamic_consistency_check(Goal, M, StackIn) :- user_predicate(M:Goal), ground(Goal), M:pr_dcc_predicate(dcc(Goal), Body), % scasp_trace(scasp_trace_dcc, dcc_call(Goal, StackIn)), dynamic_consistency_eval(Body, M, StackIn), !, scasp_trace(scasp_trace_dcc, dcc_discard(Goal, Body)), fail. dynamic_consistency_check(_, _, _). dynamic_consistency_eval([], _, _). dynamic_consistency_eval([SubGoal|Bs], M, StackIn) :- dynamic_consistency_eval_(SubGoal, M, StackIn), dynamic_consistency_eval(Bs, M, StackIn). dynamic_consistency_eval_(not(SubGoal), M, StackIn) :- user_predicate(M:SubGoal), !, member_stack(not(SubGoal), StackIn). dynamic_consistency_eval_(SubGoal, M, StackIn) :- user_predicate(M:SubGoal), !, member_stack(SubGoal, StackIn). dynamic_consistency_eval_(SubGoal, _, _) :- solve_goal_builtin(SubGoal, _). %! solve_goal(+Goal, +Module, %! +Parents, +ProvedIn, -ProvedOut, +StackIn, -StackOut, %! -Model) % % Solve a simple sub-goal Goal where StackIn is the list of goals % already visited and returns in StackOut the list of goals visited to % prove the sub-goals and in `Model` the model with support the % sub-goals solve_goal(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, GoalModel) :- Goal = forall(_, _), !, ( current_prolog_flag(scasp_forall, prev) -> solve_goal_forall(Goal, M, Parents, ProvedIn, ProvedOut, [Goal|StackIn], StackOut, Model) ; solve_c_forall(Goal, M, Parents, ProvedIn, ProvedOut, [Goal|StackIn], StackOut, Model) ), GoalModel = [Goal|Model]. solve_goal(Goal, _M, _Parents, ProvedIn, ProvedOut, StackIn, [[], Goal|StackIn], GoalModel) :- Goal = not(is(V, Expresion)), add_proved(Goal, ProvedIn, ProvedOut), !, NV is Expresion, V .\=. NV, GoalModel = [Goal]. solve_goal(Goal, _, _, _, _, _, _, _) :- Goal = not(true), !, fail. solve_goal(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) :- table_predicate(M:Goal), !, verbose(format('Solve the tabled goal ~p\n', [Goal])), AttStackIn <~ stack([Goal|StackIn]), solve_goal_table_predicate(Goal, M, Parents, ProvedIn, ProvedOut, AttStackIn, AttStackOut, AttModel), AttStackOut ~> stack(StackOut), AttModel ~> model(Model). solve_goal(call(Goal), M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, [call(Goal)|Model]) :- !, solve_goal(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model). solve_goal(not(call(Goal)), M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, [not(call(Goal))|Model]) :- !, solve_goal(not(Goal), M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model). solve_goal(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, [Goal|Model]) :- Goal = findall(_, _, _), !, exec_findall(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model). solve_goal(not(Goal), M, Parents, ProvedIn, ProvedIn, StackIn, StackIn, [not(Goal)]) :- Goal = findall(_, _, _), !, exec_neg_findall(Goal, M, Parents, ProvedIn, StackIn). solve_goal(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) :- user_predicate(M:Goal), !, ( solve_goal_predicate(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) *-> true ; verbose(format(' FAIL~n')), shown_predicate(M:Goal), scasp_trace(scasp_trace_failures, trace_failure(Goal, [Goal|StackIn])), fail ). solve_goal(Goal, _M, _Parents, ProvedIn, ProvedIn, StackIn, [[], Goal|StackIn], Model) :- solve_goal_builtin(Goal, Model). mkgoal(Goal, generated(_), Goal ) :- !. mkgoal(Goal, Origin , goal_origin(Goal, Origin)). %! solve_goal_forall(+Forall, +Module, %! +Parents, +ProvedIn, -ProvedOut, +StackIn, -StackOut, %! -Model) % % Solve a sub-goal of the form `forall(Var,Goal)` and success if Var % success in all its domain for the goal Goal. It calls solve/4 % % @arg Forall is a term forall(?Var, ?Goal) solve_goal_forall(forall(Var, Goal), M, Parents, ProvedIn, ProvedOut, StackIn, [[]|StackOut], Model) :- my_copy_term(Var, Goal, NewVar, NewGoal), my_copy_term(Var, Goal, NewVar2, NewGoal2), solve([NewGoal], M, Parents, ProvedIn, ProvedMid, StackIn, [[]|StackMid], ModelMid), verbose(format('\tSuccess solve ~@\n\t\t for the ~@\n', [print_goal(NewGoal), print_goal(forall(Var, Goal))])), check_unbound(NewVar, List), ( List == ground -> verbose(format('The var ~p is grounded so try with other clause\n', [NewVar])), fail ; List == [] -> ProvedOut = ProvedMid, StackOut = StackMid, Model = ModelMid ; List = clpq(NewVar3, Constraints) -> findall(dual(NewVar3, ConDual), dual_clpq(Constraints, ConDual), DualList), verbose(format('Executing ~@ with clpq ConstraintList = ~p\n', [print_goal(Goal), DualList])), exec_with_clpq_constraints(NewVar2, NewGoal2, M, entry(NewVar3, []), DualList, Parents, ProvedMid, ProvedOut, StackMid, StackOut, ModelList), !, append(ModelMid, ModelList, Model) ; !, %% Position of the cut in s(CASP) - remove answers in max.lp verbose(format('Executing ~@ with clp_disequality list = ~p\n', [print_goal(Goal), List])), exec_with_neg_list(NewVar2, NewGoal2, M, List, Parents, ProvedMid, ProvedOut, StackMid, StackOut, ModelList), % !, %% Position of the cut in s(ASP) - remove answers in hamcycle_two.lp %% Without cuts the evaluation may loop - e.g. queens.lp append(ModelMid, ModelList, Model) ). check_unbound(Var, ground) :- ground(Var), !. check_unbound(Var, List) :- get_neg_var(Var, List), !. check_unbound(Var, 'clpq'(NewVar, Constraints)) :- dump_clpq_var([Var], [NewVar], Constraints), Constraints \== [], !. check_unbound(Var, []) :- var(Var), !. exec_with_clpq_constraints(_Var, _Goal, _M, _, [], _Parents, ProvedIn, ProvedIn, StackIn, StackIn, []). exec_with_clpq_constraints(Var, Goal, M, entry(ConVar, ConEntry), [dual(ConVar, ConDual)|Duals], Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) :- my_copy_term(Var, [Goal, Parents, StackIn, ProvedIn], Var01, [Goal01, Parents01, StackIn01, ProvedIn01]), append(ConEntry, ConDual, Con), my_copy_term(ConVar, Con, ConVar01, Con01), my_copy_term(Var, Goal, Var02, Goal02), my_copy_term(ConVar, ConEntry, ConVar02, ConEntry02), Var01 = ConVar, ( apply_clpq_constraints(Con) -> verbose(format('Executing ~p with clpq_constrains ~p\n', [Goal01, Con])), solve([Goal01], M, Parents01, ProvedIn01, ProvedOut01, StackIn01, [[]|StackOut01], Model01), verbose(format('Success executing ~p with constrains ~p\n', [Goal01, Con])), verbose(format('Check entails Var = ~p with const ~p and ~p\n', [Var01, ConVar01, Con01])), ( entails([Var01], ([ConVar01], Con01)) -> verbose(format('\tOK\n', [])), StackOut02 = StackOut01, Model03 = Model01 ; verbose(format('\tFail\n', [])), dump_clpq_var([Var01], [ConVar01], ExitCon), findall(dual(ConVar01, ConDual01), dual_clpq(ExitCon, ConDual01), DualList), verbose(format('Executing ~p with clpq ConstraintList = ~p\n', [Goal, DualList])), exec_with_clpq_constraints(Var, Goal, M, entry(ConVar01, Con01), DualList, Parents01, ProvedOut01, ProvedOut02, StackOut01, StackOut02, Model02), append(Model01, Model02, Model03) ) ; verbose(format('Skip execution of an already checked \c constraint ~p (it is inconsitent with ~p)\n', [ConDual, ConEntry])), StackOut02 = StackIn01, Model03 = [] ), verbose(format('Executing ~p with clpq ConstraintList = ~p\n', [Goal, Duals])), exec_with_clpq_constraints(Var02, Goal02, M, entry(ConVar02, ConEntry02), Duals, Parents, ProvedOut02, ProvedOut, StackOut02, StackOut, Model04), append(Model03, Model04, Model). exec_with_neg_list(_, _, _, [], _, ProvedIn, ProvedIn, StackIn, StackIn, []). exec_with_neg_list(Var, Goal, M, [Value|Vs], Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) :- my_copy_term(Var, [Goal, StackIn], NewVar, [NewGoal, NewStackIn]), NewVar = Value, verbose(format('Executing ~p with value ~p\n', [NewGoal, Value])), solve([NewGoal], M, Parents, ProvedIn, ProvedMid, NewStackIn, [[]|NewStackMid], ModelMid), verbose(format('Success executing ~p with value ~p\n', [NewGoal, Value])), exec_with_neg_list(Var, Goal, M, Vs, Parents, ProvedMid, ProvedOut, NewStackMid, StackOut, Models), append(ModelMid, Models, Model). %! solve_goal_table_predicate(+Goal, +Module, +Parents, +ProvedIn, -ProvedOut, %! +AttStackIn, -AttStackOut, -AttModel) % % Used to evaluate predicates under tabling. This predicates should be % defined in the program using the directive _#table pred/n._ solve_goal_table_predicate(Goal, M, Parents, ProvedIn, ProvedOut, AttStackIn, AttStackOut, AttModel) :- M:pr_rule(Goal, Body, _Origin), AttStackIn ~> stack(StackIn), solve(Body, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model), AttStackOut <~ stack(StackOut), AttModel <~ model([Goal|Model]). %! solve_goal_predicate(+Goal, +Module, %! +Parents, +ProvedIn, -ProvedOut, +StackIn, -StackOut, %! -Model) % % Used to evaluate a user predicate solve_goal_predicate(Goal, M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, GoalModel) :- M:pr_rule(Goal, Body, Origin), mkgoal(Goal, Origin, StackGoal), solve(Body, M, Parents, ProvedIn, ProvedMid, [StackGoal|StackIn], StackOut, BodyModel), add_proved(Goal, ProvedMid, ProvedOut), GoalModel = [Goal|BodyModel]. %! solve_goal_builtin(+Goal, -Model) % % Used to evaluate builtin predicates predicate solve_goal_builtin(is(X, Exp), Model) :- exec_goal(is(X, Exp)), Model = [is(X, Exp)]. %% the Model should 'Start' with the Goal solve_goal_builtin(builtin(Goal), Model) :- !, exec_goal(Goal), Model = [builtin(Goal)]. solve_goal_builtin(Goal, Model) :- clp_builtin(Goal), !, exec_goal(apply_clpq_constraints(Goal)), Model = [Goal]. solve_goal_builtin(Goal, Model) :- clp_interval(Goal), !, exec_goal(Goal), Model = [Goal]. solve_goal_builtin(not(Goal), _Model) :- clp_interval(Goal), !, scasp_warning(scasp(failure_calling_negation(Goal))), fail. solve_goal_builtin(Goal, Model) :- clp_builtin(Goal), !, exec_goal(apply_clpq_constraints(Goal)), Model = [Goal]. solve_goal_builtin(Goal, Model) :- prolog_builtin(Goal), !, exec_goal(Goal), Model = [Goal]. % The predicate is not defined as user_predicates neither builtin solve_goal_builtin(Goal, Model) :- verbose(format('The predicate ~p is not user_defined / builtin\n', [Goal])), ( Goal = not(_) -> Model = [Goal] %% the negation of a not defined predicate success. ; fail %% a not defined predicate allways fails. ). exec_goal(A \= B) :- !, verbose(format('exec ~@\n', [print_goal(A \= B)])), A .\=. B, verbose(format('ok ~@\n', [print_goal(A \= B)])). exec_goal(Goal) :- ( current_prolog_flag(scasp_verbose, true) -> E = error(_,_), verbose(format('exec goal ~@ \n', [print_goal(Goal)])), catch(call(Goal), E, (print_message(warning, E), fail)), verbose(format('ok goal ~@ \n', [print_goal(Goal)])) ; catch(call(Goal), error(_,_), fail) ). % TODO: Pending StackOut to carry the literal involved in the findall % (if needed) % TODO: Handling of ProvedIn/ProvedOut exec_findall(findall(Var, Call, List), M, Parents, ProvedIn, ProvedOut, StackIn, StackOut, Model) :- verbose(format('execution of findall(~p, ~p, _) \n', [Var, Call])), findall(t(Var, S, M), ( solve([Call], M, Parents, ProvedIn, ProvedOut, StackIn, S0, M), append(S, StackIn, S0) ), VSMList), process_vsmlist(VSMList, List, SOut, Model), append(SOut, [findall(Var, Call, List)|StackIn], StackOut), verbose(format('Result execution = ~p \n', [List])). process_vsmlist(VSMList, List, [[]|StackOut], Model) :- process_vsmlist_(VSMList, List, StackOut, Model). process_vsmlist_([], [], [], []). process_vsmlist_([t(V, [[]|S], M)|Rs], [V|Vs], S1, M1) :- process_vsmlist_(Rs, Vs, S0, M0), append(S0, S, S1), append(M, M0, M1). % TODO: What to do with the negation of findall/3 (if required) exec_neg_findall(Goal, _, _, _, _) :- verbose(format('PENDING: execution of not ~p \n', [Goal])), fail. %! check_CHS(+Goal, +Module, +Parents, +ProvedIn, +StackIn, -Result) is det. % % Checks the StackIn and returns in Result if the goal Goal is a % coinductive success, a coinductive failure or an already proved % goal. Otherwise it is constraint against its negation atoms already % visited. :- det(check_CHS/6). check_CHS(Goal, M, Parents, Proved, I, Result) :- ( user_predicate(M:Goal) -> check_CHS_(Goal, M, Parents, Proved, I, Result) ; Result = cont ). % inmediate success if the goal has already been proved. check_CHS_(Goal, _M, _Parents, Proved, _Stack, proved) :- ground(Goal), proved_in_stack(Goal, Proved), !. % coinduction success <- cycles containing even loops may succeed check_CHS_(Goal, _M, Parents, _Proved, _I, co_success) :- check_parents(Goal, Parents, even), !. % coinduction fails <- the goal is entailed by its negation in the % call stack check_CHS_(Goal, _M, Parents, Proved, _Stack, co_failure) :- neg_in_stack(Goal, Parents, Proved), !, verbose(format('Negation of the goal in the stack, failling (Goal = ~w)\n', [Goal])). % coinduction fails <- cycles containing positive loops can be solved % using tabling check_CHS_(Goal, M, Parents, _Proved, _Stask, co_failure) :- \+ table_predicate(M:Goal), \+ current_prolog_flag(scasp_no_fail_loop, true), \+ \+ ( check_parents(Goal, Parents, fail_pos(S)), verbose(format('Positive loop, failing (Goal == ~w)\n', [Goal])), scasp_warning(scasp_warn_pos_loops, pos_loop(fail, Goal, S)) ), !. check_CHS_(Goal, M, Parents, _Proved, _Stack, _Cont) :- \+ table_predicate(M:Goal), \+ \+ ( check_parents(Goal, Parents, pos(S)), verbose(format('Positive loop, continuing (Goal = ~w)\n', [Goal])), scasp_info(scasp_warn_pos_loops, pos_loop(continue, Goal, S)) ), fail. % coinduction does not succeed or fail <- the execution continues inductively check_CHS_(Goal, _M, Parents, Proved, _Stack, cont) :- ( ground(Goal) -> constrained_neg_in_stack(Goal, Parents, Proved) ; ground_neg_in_stack(Goal, Parents, Proved) ). %! neg_in_stack(+Goal, +Parents, +Proved) is semidet. % % True when the nagation of Goal is in Stack. If so we have a % coinductive failure. Check on variants which requires tabling for % proper results. neg_in_stack(Goal, _Parents, Proved) :- proved_relatives(Goal, Proved, Relatives), member(Relative, Relatives), is_negated_goal(Goal, Relative), !. neg_in_stack(Goal, Parents, _) :- member(Relative, Parents), is_negated_goal(Goal, Relative), !. is_negated_goal(Goal, Head) :- ( Goal = not(G) -> ( G == Head -> true ; G =@= Head -> scasp_warning(co_failing_in_negated_loop(G, Head)) ) ; Head = not(NegGoal) -> ( Goal == NegGoal -> true ; Goal =@= NegGoal -> scasp_warning(co_failing_in_negated_loop(Goal, NegGoal)) ) ). %! ground_neg_in_stack(++Goal, +Parents, +Proved) is det. % % Propagate disequality constraints of Goal through matching goals on % the stack. :- det(ground_neg_in_stack/3). ground_neg_in_stack(Goal, Parents, Proved) :- ( proved_relatives(Goal, Proved, Relatives) -> maplist(ground_neg_in_stack(Goal), Relatives) ; true ), maplist(ground_neg_in_stack(Goal), Parents). ground_neg_in_stack(TGoal, SGoal) :- gn_match(TGoal, SGoal, Goal, NegGoal), \+ Goal \= NegGoal, verbose(format('\t\tCheck disequality of ~@ and ~@\n', [print_goal(TGoal), print_goal(SGoal)])), loop_term(Goal, NegGoal), !. ground_neg_in_stack(_, _). gn_match(Goal, chs(not(NegGoal)), Goal, NegGoal) :- !. gn_match(not(Goal), chs(NegGoal), Goal, NegGoal) :- !. gn_match(not(Goal), NegGoal, Goal, NegGoal) :- !. %! constrained_neg_in_stack(+Goal, +Parents, +Proved) is det. % % Propagate the fact that we accept Goal into all other accepted goals % in the stack. :- det(constrained_neg_in_stack/3). constrained_neg_in_stack(Goal, Parents, Proved) :- ( proved_relatives(Goal, Proved, Relatives) -> maplist(contrained_neg(Goal), Relatives) ; true ), maplist(contrained_neg(Goal), Parents). contrained_neg(not(Goal), NegGoal) :- is_same_functor(Goal, NegGoal), verbose(format('\t\tCheck if not(~@) is consistent with ~@\n', [print_goal(Goal), print_goal(NegGoal)])), !, loop_term(Goal, NegGoal), !, verbose(format('\t\tOK\n', [])). contrained_neg(Goal, not(NegGoal)) :- is_same_functor(Goal, NegGoal), verbose(format('\t\tCheck if not(~@) is consistent with ~@\n', [print_goal(Goal), print_goal(NegGoal)])), !, loop_term(Goal, NegGoal), !, verbose(format('\t\tOK\n', [])). contrained_neg(_,_). is_same_functor(Term1, Term2) :- functor(Term1, Name, Arity, Type), functor(Term2, Name, Arity, Type). %! proved_in_stack(+Goal, +Proved) is semidet. % % True when Goal appears in one of the finished branches of the proof % tree, i.e., it appears in Stack, but not as direct parent. proved_in_stack(Goal, Proved) :- proved_relatives(Goal, Proved, Relatives), member(Relative, Relatives), ( Goal == Relative ; Goal == chs(Relative) ), !. %! check_parents(+Goal, +Parents, -Type) is semidet. % % Type is the coinductive result. This is `even` if we have an even % loop through negation or a simple positive match. check_parents(not(Goal), Parents, Type) :- !, check_parents(not(Goal), 1, Parents, Type). check_parents(Goal, Parents, Type) :- check_parents(Goal, 0, Parents, Type). check_parents(Goal, 0, [Parent|_Parents], Type) :- ( \+ \+ type_loop_fail_pos(Goal, Parent) -> Type = fail_pos(Parent) ; \+ Goal \= Parent -> Type = pos(Parent) ), !. check_parents(Goal, N, [Parent|Parents], Type) :- ( even_loop(Goal, Parent, N) -> Type = even ; Goal \== Parent -> ( Parent = not(_) -> NewN is N + 1, check_parents(Goal, NewN, Parents, Type) ; check_parents(Goal, N, Parents, Type) ) ). even_loop(not(Goal), not(Parent), _) :- Goal =@= Parent, !, Goal = Parent. even_loop(Goal, Parent, N) :- Goal \= not(_), Goal == Parent, N > 0, 0 =:= mod(N, 2). type_loop_fail_pos(Goal, S) :- Goal == S, !. type_loop_fail_pos(Goal, S) :- variant(Goal, S), !, scasp_warning(variant_loop(Goal, S)). type_loop_fail_pos(Goal, S) :- entail_terms(Goal, S), scasp_warning(subsumed_loop(Goal, S)). %! stack_parents(+Stack, -Parents) is det. % % Get the direct callers from Stack. Stack contains both previous % proved stacks as well as the current list of parents. :- det(stack_parents/2). stack_parents(Stack, Parents) :- stack_parents(Stack, 0, Parents). stack_parents([], _, []). stack_parents([[]|T], N, Parents) :- !, N1 is N-1, stack_parents(T, N1, Parents). stack_parents([_|T], N, Parents) :- N < 0, !, N1 is N+1, stack_parents(T, N1, Parents). stack_parents([goal_origin(H, _)|T], N, [H|TP]) :- !, stack_parents(T, N, TP). stack_parents([H|T], N, [H|TP]) :- stack_parents(T, N, TP). %! stack_proved(Stack, Proved:assoc) is det. % % True when Proved is an assoc holding all goals that have already % been proved in Stack. This excludes the direct parents of in the % stack, i.e. only adds goals from already completed branches. % % The code is based on the old proved_in_stack/2. Effectively this % extracts the other half than stack_parents/2, so possibly we should % sync the code with that. :- det(stack_proved/2). stack_proved(Stack, Proved) :- empty_assoc(Proved0), stack_proved(Stack, 0, -1, Proved0, Proved). stack_proved([], _, _, Proved, Proved). stack_proved([Top|Ss], Intervening, MaxInter, Proved0, Proved) :- ( Top == [] -> NewInter is Intervening - 1, stack_proved(Ss, NewInter, MaxInter, Proved0, Proved) ; Intervening > MaxInter -> NewMaxInter is max(MaxInter, Intervening), NewInter is Intervening + 1, stack_proved(Ss, NewInter, NewMaxInter, Proved0, Proved) ; add_proved(Top, Proved0, Proved1), stack_proved(Ss, Intervening, MaxInter, Proved1, Proved) ). add_proved(goal_origin(Goal, _), Assoc0, Assoc) :- add_proved(Goal, Goal, Assoc0, Assoc). add_proved(Goal, Assoc0, Assoc) :- add_proved(Goal, Goal, Assoc0, Assoc). add_proved(not(Term), Goal, Assoc0, Assoc) => add_proved(Term, Goal, Assoc0, Assoc). add_proved(chs(Term), Goal, Assoc0, Assoc) => add_proved(Term, Goal, Assoc0, Assoc). add_proved(forall(_,_), _Goal, Assoc0, Assoc) => Assoc = Assoc0. add_proved(Term, Goal, Assoc0, Assoc) => functor(Term, Name, Arity), ( get_assoc(Name/Arity, Assoc0, List, Assoc, [Goal|List]) -> true ; put_assoc(Name/Arity, Assoc0, [Goal], Assoc) ). %! solve_c_forall(+Forall, +Module, %! +Parents, +ProvedIn, -ProvedOut, +StackIn, -StackOut, %! -Model) % % Solve a sub-goal of the form c_forall(Vars,Goal) and succeeds if the % goal `Goal` succeeds covering the domain of all the vars in the list % of vars `Vars. It calls solve/4 % % @arg Forall is a term forall(Var, Goal). % @tbd Improve the efficiency by removing redundant justifications w.o. % losing solutions. solve_c_forall(Forall, M, Parents, ProvedIn, ProvedOut, StackIn, [[]|StackOut], Model) :- collect_vars(Forall, c_forall(Vars0, Goal0)), % c_forall([F,G], not q_1(F,G)) verbose(format('\nc_forall(~p,\t~p)\n\n',[Vars0, Goal0])), my_copy_vars(Vars0, Goal0, Vars1, Goal1), % Vars should remain free my_diff_term(Goal1, Vars1, OtherVars), Initial_Const = [], % Constraint store = top ( current_prolog_flag(scasp_forall, all) -> solve_var_forall_(Goal1, M, Parents, ProvedIn, ProvedOut, entry(Vars1, Initial_Const), dual(Vars1, [Initial_Const]), OtherVars, StackIn, StackOut, Model) ; solve_other_forall(Goal1, M, Parents, ProvedIn, ProvedOut, entry(Vars1, Initial_Const), dual(Vars1, [Initial_Const]), OtherVars, StackIn, StackOut, Model) ). solve_other_forall(Goal, M, Parents, ProvedIn, ProvedOutExit, entry(Vars, Initial_Const), dual(Vars, [Initial_Const]), OtherVars, StackIn, StackOutExit, ModelExit) :- append(Vars,OtherVars,AllVars), my_copy_vars(AllVars, [Goal, Parents, ProvedIn, StackIn, OtherVars, Vars], _AllVars1, [Goal1, Parents1, ProvedIn1, StackIn1, OtherVars1, Vars1]), my_copy_vars(AllVars, [Goal, Parents, ProvedIn, StackIn, OtherVars, Vars], _AllVars2, [Goal2, Parents2, ProvedIn2, StackIn2, OtherVars2, Vars2]), verbose(format("solve other forall:\n\c \t Goal \t~p\n\c \t Vars1 \t~p\n\c \t OtherVars \t~p\n\c \t StackIn \t~p\n\n", [Goal,Vars1,OtherVars,StackIn])), % disequality and clp for numbers dump_constraint(OtherVars, OtherVars1, Dump, []-[], Pending-Pending1), !, clpqr_dump_constraints(Pending, Pending1, CLP), append(CLP, Dump, Constraints1), my_copy_vars(OtherVars1, Constraints1, OtherVars2, Constraints2), verbose(format("solve other forall:\n\c \t OtherVars1 \t~p\n\c \t OtherVars2 \t~p\n\c \t Constraints1 \t~p\n\c \t Constraints2 \t~p\n\n", [OtherVars, OtherVars1, Constraints1, Constraints2])), apply_const_store(Constraints1), !, solve_var_forall_(Goal1, M, Parents1, ProvedIn1, ProvedOut, entry(Vars1, Initial_Const), dual(Vars1, [Initial_Const]), OtherVars1, StackIn1, StackOut, Model), !, ( OtherVars = OtherVars1, StackOutExit = StackOut, ModelExit = Model, ProvedOutExit = ProvedOut ; \+ ground(OtherVars), apply_const_store(Constraints2), % disequality and clp for numbers dump_constraint(OtherVars1, OtherVars2, Dump1, []-[], Pend-Pend1), !, clpqr_dump_constraints(Pend, Pend1, CLP1), append(CLP1, Dump1, AnsConstraints2), make_duals(AnsConstraints2, Duals), member(Dual, Duals), apply_const_store(Dual), solve_other_forall(Goal2, M, Parents2, ProvedIn2, ProvedOutExit, entry(Vars2, Initial_Const), dual(Vars2, [Initial_Const]), OtherVars2, StackIn2, StackOutExit, ModelExit), !, OtherVars = OtherVars2 ). %! solve_var_forall_(+Goal, +Module, +Parents, +ProvedIn, -ProvedOut, %! +Entry, +Duals, +OtherVars, %! +StackIn, -StackOut, -Model) is nondet. % % Implements the _forall_ algorithm as described in section 2.3 from % "Constraint Answer Set Programming without Grounding" by Joaquin % Arias et all. It works different though. % % - For each step we copy the Goal, solve it and compute the % instantiations created by Goal. From these instantiations we % compute the _duals_. % - Continue until all duals are proved. % % Note that the constraints on the _forall variables_ are maintained % explicitly. solve_var_forall_(_Goal, _M, _Parents, Proved, Proved, _, dual(_, []), _OtherVars, StackIn, StackIn, []) :- !. solve_var_forall_(Goal, M, Parents, ProvedIn, ProvedOut, entry(C_Vars, Prev_Store), dual(C_Vars, [C_St|C_Stores]), OtherVars, StackIn, StackOut, Model) :- verbose(format("solve forall:\n\c \tPrev_Store \t~p\n\c \tC_St \t~p\n\c \tC_Stores \t~p\n\c \tStackIn \t~p\n\n", [Prev_Store,C_St,C_Stores,StackIn])), my_copy_vars(C_Vars, [Goal, Prev_Store, C_St], C_Vars1, [Goal1, Prev_Store1, C_St1]), my_copy_vars(C_Vars, [Goal, Prev_Store, C_Stores], C_Vars2, [Goal2, Prev_Store2, C_Stores2]), apply_const_store(Prev_Store), ( %verbose(format('apply_const_store ~@\n',[print_goal(C_St)])), apply_const_store(C_St) % apply a Dual -> solve([Goal], M, Parents, ProvedIn, ProvedOut1, StackIn, [[]|StackOut1], Model1), find_duals(C_Vars, C_Vars1, OtherVars, Duals), %% New Duals verbose(format('Duals = \t ~p\n',[Duals])), append_set(Prev_Store1, C_St1, Current_Store1), solve_var_forall_(Goal1, M, Parents, ProvedOut1, ProvedOut2, entry(C_Vars1, Current_Store1), dual(C_Vars1, Duals), OtherVars, StackOut1, StackOut2, Model2), append(Model1,Model2,Model3) ; verbose(format('Entail: Fail applying \t ~@\n', [print_goal(C_St)])), %% The dual C_St is not consistent with Prev_Store -> already checked (entails) ProvedOut2 = ProvedIn, StackOut2 = StackIn, Model3 = [] ), solve_var_forall_(Goal2, M, Parents, ProvedOut2, ProvedOut, entry(C_Vars2, Prev_Store2), dual(C_Vars2, C_Stores2), OtherVars, StackOut2, StackOut, Model4), append(Model3, Model4, Model). append_set([],X,X):- !. append_set([A|As],Bs,Cs) :- \+ \+ memberchk_oc(A, Bs), !, append_set(As,Bs,Cs). append_set([A|As],Bs,[A|Cs]) :- append_set(As,Bs,Cs). memberchk_oc(Term, [H|T]) :- ( unify_with_occurs_check(Term, H) -> true ; memberchk_oc(Term, T) ). apply_const_store([]) :- !. apply_const_store([C|Cs]) :- apply_constraint(C), apply_const_store(Cs). apply_constraint(A \= B) => A .\=. B. apply_constraint(A = B) => A = B. apply_constraint(CLPConstraint) => apply_clpq_constraints(CLPConstraint). %! find_duals(+C_Vars, +C_Vars1, +OtherVars, -Duals) % % C_Vars is the list of forall variables after solve/4. C_Vars1 is a % copy of this list before calling solve/4. Our task is to create a % _dual_ model from the instantiation. If subsequently we can prove % the dual model to be true then we proved the forall is true. For % example, if solve succeeded with [X] --> [q], it created the % instantiation X=q. It we now can prove X\=q, we proved solve is true % for all X. % % @see Section 2.3 from "Constraint Answer Set Programming without % Grounding" by Joaquin Arias et all. % @tbd JW: it is not clear to me why OtherVars is needed and why it is % not copied. find_duals(C_Vars, C_Vars1, OtherVars, Duals) :- % disequality and clp for numbers dump_constraint(C_Vars, C_Vars1, Dump, []-[], Pending-Pending1), !, clp_vars_in(OtherVars, OtherCLPVars), % clp(Q) vars append(Pending, OtherCLPVars, CLPVars), append(Pending1, OtherCLPVars, CLPVars1), clpqr_dump_constraints(CLPVars, CLPVars1, CLP), append(CLP, Dump, Constraints), make_duals(Constraints,Duals), !. make_duals(Ls,Ds) :- make_duals_([],Ls,[],Ds). make_duals_(_,[],Ds,Ds). make_duals_(Prev,[A|As],D0,Ds) :- append(Prev,[A],Prev1), make_duals_(Prev1,As,D0,D1), dual(A,Duals_A), combine(Duals_A,Prev,As,Ls), append(Ls,D1,Ds). combine([A],Prev,Post,[Rs]) :- append(Prev,[A|Post],Rs). combine([A,B|As],Prev,Post,[RA|RAs]) :- append(Prev,[A|Post],RA), combine([B|As],Prev,Post,RAs). :- det(dual/2). dual(#=(A,B), [#<(A,B), #>(A,B)]). dual(#<(A,B), [#>=(A,B)]). dual(#>(A,B), [#=<(A,B)]). dual(#=<(A,B), [#>(A,B)]). dual(#>=(A,B), [#<(A,B)]). dual(=(A,B), [\=(A,B)]). dual(\=(A,B), [=(A,B)]). %! dump_constraint(+C_Vars, +C_Vars1, -Dump, +Pending0, -Pending) is det % % @arg Dump is a list of V1=B and V1\=B, where V1 is a variable from % C_Vars1. % @arg Pending is a pair of lists with variables from C_Vars and % C_Vars1 that are not processed (in reverse order, why?) :- det(dump_constraint/5). dump_constraint([], [], [], Pending, Pending). dump_constraint([V|Vs], [V1|V1s], [V1 = V | Vs_Dump], P0, P1) :- ground(V), !, dump_constraint(Vs, V1s, Vs_Dump, P0, P1). dump_constraint([V|Vs], [V1|V1s], Rs_Dump, P0, P1) :- get_neg_var(V, List), List \== [], !, dump_neg_list(V1, List, V_Dump), dump_constraint(Vs, V1s, Vs_Dump, P0, P1), append(V_Dump, Vs_Dump, Rs_Dump). dump_constraint([V|Vs], [V1|V1s], Vs_Dump, PV-PV1, P1) :- dump_constraint(Vs, V1s, Vs_Dump, [V|PV]-[V1|PV1], P1). dump_neg_list(_,[],[]) :- !. dump_neg_list(V,[L|Ls],[V \= L|Rs]) :- dump_neg_list(V,Ls,Rs). clp_vars_in(Vars, ClpVars) :- include(is_clpq_var, Vars, ClpVars). %! collect_vars(?Forall, ?CollectForall) % % Forall Vars in a list collect_vars(Forall, c_forall(Vars, Goal)) :- collect_vars_(Forall, [], Vars, Goal). collect_vars_(forall(Var, Goal), Vars, [Var|Vars], Goal) :- Goal \= forall(_, _), !. collect_vars_(forall(Var, Forall), V0, V1, Goal) :- collect_vars_(Forall, [Var|V0], V1, Goal). /******************************* * AUXILIAR PREDICATES * *******************************/ %! my_copy_term(+Var, +Term, -NewVar, -NewTerm) is det. % % Its behaviour is similar to copy_term/2. It returns in NewTerm a % copy of the term Term but it only replaces with a fresh variable % NewVar the occurrences of Var :- if(current_predicate(copy_term_nat/4)). my_copy_term(Var0, Term0, Var, Term) :- copy_term_nat(Var0, Term0, Var, Term). my_copy_vars(Vars0, Term0, Vars, Term) :- copy_term_nat(Vars0, Term0, Vars, Term). :- else. my_copy_term(Var0, Term0, Var, Term) :- term_variables(Term0, AllVars), delete_var(AllVars, Var0, Share0), copy_term_nat(t(Var0,Share0,Term0), t(Var,Share,Term)), Share = Share0. delete_var([], _, []). delete_var([H|T0], V, List) :- ( H == V -> List = T0 ; List = [H|T], delete_var(T0, V, T) ). my_copy_vars(Vars0, Term0, Vars, Term) :- term_variables(Term0, AllVars), sort(AllVars, AllVarsSorted), sort(Vars0, Vars0Sorted), ord_subtract(AllVarsSorted, Vars0Sorted, Share0), copy_term_nat(t(Vars0,Share0,Term0), t(Vars,Share,Term)), Share = Share0. :- endif. %! my_diff_term(+Term, +Vars, -Others) is det. % % Others are variables in Term that do not appear in Vars. my_diff_term(Term, Vars, Others) :- term_variables(Term, Set), diff_vars(Set, Vars, Others). diff_vars([], _, []). diff_vars([H|T0], Vars, List) :- ( member_var(Vars, H) -> diff_vars(T0, Vars, List) ; List = [H|T], diff_vars(T0, Vars, T) ). member_var(Vars, Var) :- member(V, Vars), Var == V, !. member_stack(Goal, Stack) :- member(goal_origin(Goal, _), Stack). member_stack(Goal, Stack) :- member(Goal, Stack).