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1. Syntax

Description Logics (DLs) are knowledge representation formalisms that are at the basis
of the Semantic Web [1, 2] and are used for modelling ontologies. They are represented
using a syntax based on concepts, basically sets of individuals of the domain, and roles,
sets of pairs of individuals of the domain. A more formal description can be found in
the Appendix A.

TRILL allows the use of two different syntaxes used together or individually:

• RDF/XML

• Prolog syntax

RDF/XML syntax can be used by exploiting the predicate owl_rdf/1. For example:

owl_rdf(’

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://here.the.IRI.of.your.ontology#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="http://here.the.IRI.of.your.ontology"/>

<!--

Axioms

-->
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</rdf:RDF>

’).

For a brief introduction on RDF/XML syntax see RDF/XML syntax and tools sec-
tion below (Sec. 1.2).

Note that each single owl_rdf/1 must be self contained and well formatted, it must
start and end with rdf:RDF tag and contain all necessary declarations (namespaces,
entities, ...).

An example of the combination of both syntaxes is shown the example johnEmployee.pl.
It models that john is an employee and that employees are workers, which are in turn
people (modeled by the concept person).

owl_rdf(’<?xml version="1.0"?>

<rdf:RDF xmlns="http://example.foo#"

xml:base="http://example.foo"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="http://example.foo"/>

<!-- Classes -->

<owl:Class rdf:about="http://example.foo#worker">

<rdfs:subClassOf rdf:resource="http://example.foo#person"/>

</owl:Class>

</rdf:RDF>’).

subClassOf(’employee’,’worker’).

owl_rdf(’<?xml version="1.0"?>

<rdf:RDF xmlns="http://example.foo#"

xml:base="http://example.foo"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="http://example.foo"/>

<!-- Individuals -->

<owl:NamedIndividual rdf:about="http://example.foo#john">

<rdf:type rdf:resource="http://example.foo#employee"/>

</owl:NamedIndividual>

</rdf:RDF>’).
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1.1. Prolog Syntax

1.1.1. Declarations

Prolog syntax allows, as in standard OWL, the declaration of classes, properties, etc.

class("classIRI").

datatype("datatypeIRI").

objectProperty("objectPropertyIRI").

dataProperty("dataPropertyIRI").

annotationProperty("annotationPropertyIRI").

namedIndividual("individualIRI").

However, TRILL properly works also in their absence.
Prolog syntax allows also the declaration of aliases for namespaces by using the

kb_prefix/2 predicate.

kb_prefix("foo","http://example.foo#").

After this declaration, the prefix foo is available, thus, instead of http://example.foo#john,
one can write foo:john. It is possible to define also an empty prefix as

kb_prefix("","http://example.foo#").

or as

kb_prefix([],"http://example.foo#").

In this way http://example.foo#john can be written only as john.
Note: Only one prefix per alias is allowed. Aliases defined in OWL/RDF part have

the precedence, in case more than one prefix was assigned to the same alias, TRILL
keeps only the first assignment.

1.1.2. Axioms

Axioms are modeled using the following predicates

subClassOf("subClass","superClass").

equivalentClasses([list,of,classes]).

disjointClasses([list,of,classes]).

disjointUnion([list,of,classes]).

subPropertyOf("subPropertyIRI","superPropertyIRI").

equivalentProperties([list,of,properties,IRI]).

propertyDomain("propertyIRI","domainIRI").

propertyRange("propertyIRI","rangeIRI").

transitiveProperty("propertyIRI").

inverseProperties("propertyIRI","inversePropertyIRI").

symmetricProperty("propertyIRI").

3



sameIndividual([list,of,individuals]).

differentIndividuals([list,of,individuals]).

classAssertion("classIRI","individualIRI").

propertyAssertion("propertyIRI","subjectIRI","objectIRI").

annotationAssertion("annotationIRI",axiom,literal(’value’)).

For example, for asserting that employee is subclass of worker one can use

subClassOf(employee,worker).

while the assertion worker is equal to the intersection of person and not unemployed

equivalentClasses([worker,

intersectionOf([person,complementOf(unemployed)])]).

Annotation assertions can be defined, for example, as

annotationAssertion(foo:myAnnotation,

subClassOf(employee,worker),’myValue’).

In particular, an axiom can be annotated with a probability which defines the degree
of belief in the truth of the axiom. See Section 2 for details.

Below, an example of an probabilistic axiom, following the Prolog syntax.

annotationAssertion(’disponte:probability’,

subClassOf(employee,worker),literal(’0.6’)).

1.1.3. Concepts descriptions

Complex concepts can be defined using different operators:
Existential and universal quantifiers

someValuesFrom("propertyIRI","classIRI").

allValuesFrom("propertyIRI","classIRI").

Union and intersection of concepts

unionOf([list,of,classes]).

intersectionOf([list,of,classes]).

Cardinality descriptions

exactCardinality(cardinality,"propertyIRI").

exactCardinality(cardinality,"propertyIRI","classIRI").

maxCardinality(cardinality,"propertyIRI").

maxCardinality(cardinality,"propertyIRI","classIRI").

minCardinality(cardinality,"propertyIRI").

minCardinality(cardinality,"propertyIRI","classIRI").
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Complement of a concept

complementOf("classIRI").

Nominal concept

oneOf([list,of,classes]).

For example, the class workingman is the intersection of worker with the union of
man and woman. It can be defined as:

equivalentClasses([workingman,

intersectionOf([worker,unionOf([man,woman])])]).

1.2. RDF/XML syntax and tools

As said before, TRILL is able to automatically translate RDF/XML knowledge bases
when passed as a string using the preticate owl_rdf/1.

Consider the following axioms

classAssertion(Cat,fluffy)

subClassOf(Cat,Pet)

propertyAssertion(hasAnimal,kevin,fluffy)

The first axiom states that fluffy is a Cat. The second states that every Cat is also
a Pet. The third states that the role hasAnimal links together kevin and fluffy.

RDF (Resource Descritpion Framework) is a standard W3C. See the syntax specifi-
cation for more details. RDF is a standard XML-based used for representing knowledge
by means of triples. A representations of the three axioms seen above is shown below.

<owl:NamedIndividual rdf:about="fluffy">

<rdf:type rdf:resource="Cat"/>

</owl:NamedIndividual>

<owl:Class rdf:about="Cat">

<rdfs:subClassOf rdf:resource="Pet"/>

</owl:Class>

<owl:ObjectProperty rdf:about="hasAnimal"/>

<owl:NamedIndividual rdf:about="kevin">

<hasAnimal rdf:resource="fluffy"/>

</owl:NamedIndividual>

Annotations are assertable using an extension of RDF/XML. For example the an-
notated axiom below, defined using the Prolog sintax

annotationAssertion(’disponte:probability’,

subClassOf(’Cat’,’Pet’),literal(’0.6’)).
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is modeled using RDF/XML syntax as

<owl:Class rdf:about="Cat">

<rdfs:subClassOf rdf:resource="Pet"/>

</owl:Class>

<owl:Axiom>

<disponte:probability rdf:datatype="&amp;xsd;decimal">

0.6

</disponte:probability>

<owl:annotatedSource rdf:resource="Cat"/>

<owl:annotatedTarget rdf:resource="Pet"/>

<owl:annotatedProperty rdf:resource="&amp;rdfs;subClassOf"/>

</owl:Axiom>

If you define the annotated axiom in the RDF/XML part, the annotation must be
declared in the knowledge base as follow

<!DOCTYPE rdf:RDF [

...

<!ENTITY disponte "https://sites.google.com/a/unife.it/ml/disponte#" >

]>

<rdf:RDF

...

xmlns:disponte="https://sites.google.com/a/unife.it/ml/disponte#"

...>

...

<owl:AnnotationProperty rdf:about="&amp;disponte;probability"/>

...

</rdf:RDF>

There are many editors for developing knowledge bases.

2. Semantics

Finding the explanations for a query is important for probabilistic inference. In the
following we briefly describe the DISPONTE semantics [13], which requires the set of
all the justifications to compute the probability of the queries.

DISPONTE [13, 21] applies the distribution semantics [15] to Probabilistic Descrip-
tion Logic KBs. In DISPONTE, a probabilistic knowledge base K contains a set of
probabilistic axioms which take the form

p :: E (1)

6

http://www.w3.org/2001/sw/wiki/Category:Editor


where p is a real number in [0, 1] and E is a DL axiom. The probability p can be
interpreted as the degree of our belief in the truth of axiom E. For example, a proba-
bilistic concept membership axiom p :: a : C means that we have degree of belief p in
C(a). A probabilistic concept inclusion axiom of the form p :: C v D represents the
fact that we believe in the truth of C v D with probability p.

For more detail about probabilistic inference with the TRILL framework, we refer
the interested reader to Appendix B and to [22].

The following example illustrates inference under the DISPONTE semantics.

(E1) 0.5 :: ∃hasAnimal.Pet v PetOwner
fluffy : Cat

tom : Cat

(E2) 0.6 :: Cat v Pet
(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

It indicates that the individuals that own an animal which is a pet are pet owners with
a 50% probability and that kevin owns the animals fluffy and tom, which are cats.
Moreover, cats are pets with a 60% probability.

The query axiom Q = kevin : PetOwner is true with probability P (Q) = 0.5 ·0.6 =
0.3.

the translation of this KB into the TRILL syntax is:

subClassOf(someValuesFrom(hasAnimal, pet), petOwner).

annotationAssertion(disponte:probability,

subClassOf(someValuesFrom(hasAnimal, pet), petOwner),

literal(’0.5’))

classAssertion(cat, fluffy).

classAssertion(cat, tom).

subClassOf(cat, pet).

annotationAssertion(disponte:probability, subClassOf(cat, pet), literal(’0.6’))

propertyAssertion(hasAnimal, kevin, fluffy).

propertyAssertion(hasAnimal, kevin, tom).

Optionally, the KB can also contain the following axioms

namedIndividual(fluffy).

namedIndividual(kevin).

namedIndividual(tom).

objectProperty(hasAnimal).

annotationProperty(’http://ml.unife.it/disponte#probability’).

class(petOwner).

class(pet).
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3. Inference

TRILL systems can answer many different queries. To do so, it exploits an algorithm
called tableau algorithm, which is able to collect explanations. In the following you
can find an example that shows how the tableau works. In section ?? we will see how
queries can be asked with TRILL systems.

Consider a simple knowledge base inspired by the film “The Godfather” containing
the following axioms:

tom : Cat (2)

(donV ito, tom) : hasPet (3)

Cat v Pet (4)

∃hasAnimal.Pet v NatureLover (5)

NatureLover v GoodPerson (6)

hasPet v hasAnimal (7)

The axioms are telling what is known about the domain: (1) Tom is an individual
of the domain, and he is a Cat; (2) donVito (Vito Corleone) has tom as his pet; (3) all
cats are also pets; (4) everyone having at least one animal which is a pet is a nature
lover; (5) nature lovers are good people; and (6) if one has a pet, she/he also has an
animal.

This KB can be defined by the following TRILL syntax axioms:

classAssertion(cat, tom).

propertyAssertion(hasPet, donVito, tom).

subClassOf(cat, pet).

subClassOf(someValuesFrom(hasAnimal, pet), natureLover).

subClassOf(natureLover,goodPerson).

subPropertyOf(hasPet,hasAnimal).

You can run this example here.
The first two axioms are assertional axioms (hence they constitute the ABox), the

other four axioms define the TBox. Axiom 1 is called class assertion, 2 is called
property assertion, 3,4,5 are called class subsumption axioms, and axiom 6 is called
property subsumption axiom.

To check, for example, whether don Vito Corleone is a good person, the tableau
algorithm builds a graph, called the tableau. The initial tableau contains information
from the ABox plus the negation of the query, as depicted in Figure1. This last axiom
is added since the underlying proof mechanism uses refutation. In logic, working by
refutation means assuming the opposite of the query one wants to prove. Then, if this
assumption leads to a contradiction, this means that the axioms of the ontology allows
to prove that the query is true, and thus that its opposite is false. In practice, working
by refutation means that the graph must assume that the posed query be false, the
tableau algorithm expands all the known axioms (including the negation of the query)
and looks for contradictions present in the final graph. The presence of a contradiction
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Figure 1: Initial tableau

in a node proves that the query is true because the graph depicts at least one way to
contradict the negation of that query, and thus it depicts at least one way to prove
that the opposite of the query contradicts what is defined by the ontology.

This means that if the opposite of the query is (artificially) added to the knowledge
base as a new axiom, this ontology will contain at least two pieces of information one
contradicting the other.

The tableau has one node for each individual: tom is labelled as cat, donV ito is
labelled as not a good person (the negation of the query), and the edge between them
is labelled as hasPet because the individuals are connected by this property (Figure 1).

At this point, the graph of Figure 1 is expanded using the axioms of the ontology
to check the truth of the query and to build the justifications. Therefore, the tableau
algorithm takes e.g. the axiom 3, “cats are pets”, and adds to the node for tom also
the label pet since he is a cat. This new information is true and its justification is given
directly by the set of axioms 1,3: axiom 3 because since tom is a cat (axiom 1) he is
also a pet. The same operation can be done for the edge (relationship) between tom
and donV ito, which can be labelled also as hasAnimal because of axioms 2 and 6.

At this point, the calculus can deduce that donV ito belongs to the class
∃hasAnimal.Pet because donV ito is connected with tom, which is a pet (axioms 1,3),
via property hasAnimal (axioms 2,6). Therefore, donV ito’s node is labelled also as
∃hasAnimal.Pet with a justification given by the union of the axioms associated with
the used axioms, therefore its justification is given by the set of the involved axioms
1,2,3,6. Then, the tableau graph is further expanded by adding the class NatureLover
to donV ito’s node using axiom 4 and finally, by adding also the class GoodPerson us-
ing label NatureLover (axioms 1,2,3,4,6) and axiom 5, creating as justification the set
of axioms 1,2,3,4,5,6.

The final graph is shown in Figure 2. The expanded graph contains now a con-
tradiction, i.e., donV ito is labelled as GoodPerson and as not a GoodPerson (i.e.,
¬GoodPerson), therefore, by refutation, the query “Is don Vito Corleone a good per-
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Figure 2: Final tableau

son?” is true, with justification given by the axioms 1,2,3,4,5,6, that are the axioms
of the KB necessary to deduce this information.

From this example, it would be clear why the use of probabilistic information is
useful. Indeed, don Vito Corleone is hardly classifiable as a good person. This is
because not all people who are nature lovers are also good, and therefore, one could
say that axiom 5 is true with probability 0.4. It would also be arguable that everyone
who has animals is also a nature lover, making probabilistic also this axiom. For a
formal description of how the probability of the query is computed see the Appendix C.

3.1. Possible Queries

TRILL can compute the probability or find an explanation of the following queries:

• Concept membership queries.

• Property assertion queries.

• Subsumption queries.

• Unsatifiability of a concept.

• Inconsistency of the knowledge base.

All the input arguments must be atoms or ground terms.

3.1.1. Probabilistic Queries

TRILL can be queried for computing the probability of queries. A resulting 0 probaility
means that the query is false w.r.t. the knowledge base, while a probability value 1
that the query is certainly true.
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The probability of an individual to belong to a concept can be asked using TRILL
with the predicate

prob_instanceOf(+Concept:term,+Individual:atom,-Prob:double)

as in (peoplePets.pl)

?- prob_instanceOf(cat,’Tom’,Prob).

The probability of two individuals to be related by a role can be computed with

prob_property_value(+Prop:atom,+Individual1:atom,

+Individual2:atom,-Prob:double)

as in (peoplePets.pl)

?- prob_property_value(has_animal,’Kevin’,’Tom’,Prob).

If you want to know the probability with which a class is a subclass of another you
have to use

prob_sub_class(+Concept:term,+SupConcept:term,-Prob:double)

as in (peoplePets.pl)

?- prob_sub_class(cat,pet,Prob).

The probability of the unsatisfiability of a concept can be asked with the predicate

prob_unsat(+Concept:term,-Prob:double)

as in (peoplePets.pl)

?- prob_unsat(intersectionOf([cat,complementOf(pet)]),P).

This query for example corresponds with a subsumption query, which is represented
as the intersection of the subclass and the complement of the superclass.

Finally, you can ask the probability of the inconsistency of the knowledge base with

prob_inconsistent_theory(-Prob:double)

3.1.2. Non Probabilistic Queries

In TRILL you can also ask whether a query is true or false w.r.t. the knowledge
base and in case of a succesful query an explanation can be returned as well. Query
predicates in this case differs in the number of arguments, in the second case, when we
want also an explanation, an extra argument is added to unify with the list of axioms
build to explain the query.

The query if an individual belongs to a concept can be used the predicates

instanceOf(+Concept:term,+Individual:atom)

instanceOf(+Concept:term,+Individual:atom,-Expl:list)
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as in (peoplePets.pl)

?- instanceOf(pet,’Tom’).

?- instanceOf(pet,’Tom’,Expl).

In the first query the result is true because Tom belongs to cat, in the second case
TRILL returns the explanation

[classAssertion(cat,’Tom’), subClassOf(cat,pet)]

Similarly, to ask whether two individuals are related by a role you have to use the
queries

property_value(+Prop:atom,+Individual1:atom,+Individual2:atom)

property_value(+Prop:atom,+Individual1:atom,

+Individual2:atom,-Expl:list)

as in (peoplePets.pl)

?- property_value(has_animal,’Kevin’,’Tom’).

?- property_value(has_animal,’Kevin’,’Tom’,Expl).

If you want to know if a class is a subclass of another you have to use

sub_class(+Concept:term,+SupConcept:term)

sub_class(+Concept:term,+SupConcept:term,-Expl:list)

as in (peoplePets.pl)

?- sub_class(cat,pet).

?- sub_class(cat,pet,Expl).

The unsatisfiability of a concept can be asked with the predicate

unsat(+Concept:term)

unsat(+Concept:term,-Expl:list)

as in (peoplePets.pl)

?- unsat(intersectionOf([cat,complementOf(pet)])).

?- unsat(intersectionOf([cat,complementOf(pet)]),Expl).

In this case, the returned explanation is the same obtained by querying if cat is subclass
of pet with the sub_class/3 predicate, i.e., [subClassOf(cat,pet)]

Finally, you can ask about the inconsistency of the knowledge base with

inconsistent_theory

inconsistent_theory(-Expl:list)

The predicate above returns explanations one at a time. To collect all the explana-
tions with a single goal you can use the predicates:
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all_instanceOf(+Concept:term,+Individual:atom,-Expl:list)

all_property_value(+Prop:atom,+Individual1:atom,

+Individual2:atom,-Expl:list)

all_sub_class(+Concept:term,+SupConcept:term,-Expl:list)

all_unsat(+Concept:term,-Expl:list)

all_inconsistent_theory(-Expl:list)

3.2. Query Options

The behaviour of the queries can be fine tuned using the query options. To use them
you need to use the predicates:

instanceOf(+Concept:term,+Individual:atom,-Expl:list,-QueryOptions:list)

property_value(+Prop:atom,+Individual1:atom,

+Individual2:atom,-Expl:list,-QueryOptions:list)

sub_class(+Concept:term,+SupConcept:term,-Expl:list,-QueryOptions:list)

unsat(+Concept:term,-Expl:list,-QueryOptions:list)

inconsistent_theory(-Expl:list,-QueryOptions:list)

Options can be:

• assert_abox(Boolean) if Boolean is set to true the list of ABoxes is asserted
with the predicate final_abox/1;

• return_prob(Prob) if present the probability of the query is computed and
unified with Prob;

• max_expl(Value) to limit the maximum number of explanations to find. Value
must be an integer. The predicate will return a list containing at most Value

different explanations;

• time_limit(Value) to limit the time for the inference. The predicate will return
the explanations found in the time allowed. Value is the number of seconds
allowed for the search of explanations .

For example, if you want to find the probability of the query Q = kevin : PetOwner
computed on at most 2 explanations allowing at most 1 second for the explanations
search you can use the goal

instanceOf(’natureLover’,’Kevin’,Expl,

[time_limit(1),return_prob(Prob),max_expl(2)]).

3.3. TRILL Useful Predicates

There are other predicates defined in TRILL which helps manage and load the KB.

add_kb_prefix(++ShortPref:string,++LongPref:string)

add_kb_prefixes(++Prefixes:list)
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They register the alias for prefixes. The firs registers ShortPref for the prefix LongPref,
while the second register all the alias prefixes contained in Prefixes. The input list must
contain pairs alias=prefix, i.e., [(’foo’=’http://example.foo#’)]. In both cases,
the empty string ’’ can be defined as alias. The predicates

remove_kb_prefix(++ShortPref:string,++LongPref:string)

remove_kb_prefix(++Name:string)

remove from the registered aliases the one given in input. In particular, remove_kb_prefix/1
takes as input a string that can be an alias or a prefix and removes the pair containing
the string from the registered aliases.

add_axiom(++Axiom:axiom)

add_axioms(++Axioms:list)

These predicates add (all) the given axiom to the knowledge base. While, to remove
axioms can be similarly used the predicates

remove_axiom(++Axiom:axiom)

remove_axioms(++Axioms:list)

All the axioms must be defined following the TRILL syntax.
We can interrogate TRILL to return the loaded axioms with

axiom(?Axiom:axiom)

This predicate searches in the loaded knowledge base axioms that unify with Axiom.

4. Using TRILL on your Machine

To use TRILL without the need of an Internet connection, you must install it on your
machine. Please, read the TRILL manual for detailed information.

5. Download Query Results through an API

The results of queries can also be downloaded programmatically by directly approach-
ing the Pengine API. Example client code is available. For example, the swish-ask.sh
client can be used with bash to download the results for a query in CSV. The call below
downloads a CSV file for the coin example.

$ bash swish-ask.sh --server=http://trill-sw.eu \

example/trill/peoplePets.pl \

Prob "prob_instanceOf(’natureLover’,’Kevin’,Prob)"

The script can ask queries against Prolog scripts stored in http://trill-sw.eu by
specifying the script on the command line. User defined files stored in TRILL on
SWISH (locations of type http://trill-sw.eu/p/johnEmployee_user.pl) can be
directly used, for example:

14

https://github.com/rzese/trill/blob/master/doc/manual.pdf
https://github.com/friguzzi/trill-on-swish/tree/master/client
http://trill-sw.eu
http://trill-sw.eu/p/johnEmployee_user.pl


$ bash swish-ask.sh --server=http://trill-sw.eu \

johnEmployee_user.pl Expl "instanceOf(person,john,Expl)"

Example programs can be used by specifying the folder portion of the url of the
example, as in the first johnEmployee example above where the url for the program is
http://trill-sw.eu/example/trill/johnEmployee.pl.

You can also use an url for the program as in

$ bash swish-ask.sh --server=http://trill-sw.eu \

https://raw.githubusercontent.com/friguzzi/trill-on-swish/

master/examples/trill/peoplePets.pl \

Prob "prob_instanceOf(’natureLover’,’Kevin’,Prob)"

Results can be downloaded in JSON using the option --json-s or --json-html.
With the first the output is in a simple string format where Prolog terms are sent
using quoted write, the latter serialize responses as HTML strings. E.g.

$ bash swish-ask.sh --json-s --server=http://trill-sw.eu \

johnEmployee_user.pl Expl "instanceOf(person,john,Expl)"

The JSON format can also be modified. See http://www.swi-prolog.org/pldoc/

doc_for?object=pengines%3Aevent_to_json/4.
Prolog can exploit the Pengine API directly. For example, the above can be called

as:

?- [library(pengines)].

?- pengine_rpc(’http://trill-sw.eu’,

prob_instanceOf(’natureLover’,’Kevin’,Prob),

[ src_url(’https://raw.githubusercontent.com/friguzzi/trill-on-swish/\

master/example/trill/peoplePets.pl’),

application(swish)

]).

Prob = 0.51.

?-

6. Manual in PDF

A PDF version of this help in PDF is available at https://github.com/rzese/trill/
blob/master/doc/help-trill.pdf. A manual for the standalone version of TRILL
is available at https://github.com/rzese/trill/blob/master/doc/manual.pdf
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[4] F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 20(1):5–34, 2010.

[5] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog and
its application in link discovery. In IJCAI, pages 2462–2467, 2007.

[6] C. Halaschek-Wiener, A. Kalyanpur, and B. Parsia. Extending tableau tracing
for ABox updates. Technical report, University of Maryland, 2006.

[7] A. Kalyanpur. Debugging and Repair of OWL Ontologies. PhD thesis, The Grad-
uate School of the University of Maryland, 2006.

[8] A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In ISWC, volume 4825 of LNCS, pages 267–280. Springer,
2007.

[9] A. Kalyanpur, B. Parsia, E. Sirin, and J. A. Hendler. Debugging unsatisfiable
classes in OWL ontologies. J. Web Sem., 3(4):268–293, 2005.

[10] T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in descrip-
tion logics for the semantic web. J. Web Sem., 6(4):291–308, 2008.

[11] F. Patel-Schneider, P, I. Horrocks, and S. Bechhofer. Tutorial on OWL, 2003.

[12] D. Poole. The Independent Choice Logic for modelling multiple agents under
uncertainty. Artif. Intell., 94(1-2):7–56, 1997.

[13] Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese. Probabilistic
description logics under the distribution semantics. 6(5):447–501, 2015.

[14] Fabrizio Riguzzi, Evelina Lamma, Elena Bellodi, and Riccardo Zese. Epistemic
and statistical probabilistic ontologies. In URSW, volume 900 of CEUR Workshop
Proceedings, pages 3–14. Sun SITE Central Europe, 2012.

[15] T. Sato. A statistical learning method for logic programs with distribution se-
mantics. In ICLP, pages 715–729. MIT Press, 1995.

[16] Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs for
symbolic-statistical modeling. J. Artif. Intell. Res., 15:391–454, 2001.

[17] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the
debugging of description logic terminologies. In IJCAI, pages 355–362. Morgan
Kaufmann, 2003.

16



[18] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
complements. Artif. Intell., 48(1):1–26, 1991.

[19] Umberto Straccia. Managing uncertainty and vagueness in description logics,
logic programs and description logic programs. In International Summer School
on Reasoning Web, volume 5224 of LNCS, pages 54–103. Springer, 2008.

[20] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated
disjunctions. In ICLP, volume 3131 of LNCS, pages 195–209. Springer, 2004.

[21] Riccardo Zese. Probabilistic Semantic Web, volume 28 of Studies on the Semantic
Web. IOS Press, 2017.

[22] Riccardo Zese, Elena Bellodi, Giuseppe Cota, Fabrizio Riguzzi, and Evelina
Lamma. Probabilistic DL reasoning with pinpointing formulas: A Prolog-based
approach. pages 1–28, 2018.

[23] Riccardo Zese, Elena Bellodi, Fabrizio Riguzzi, Giuseppe Cota, and Evelina
Lamma. Tableau reasoning for description logics and its extension to proba-
bilities. Ann. Math. Artif. Intel., pages 1–30, 2016.

A. Description Logics

In this section, we recall the expressive description logic ALC [18]. We refer to [10] for
a detailed description of SHOIN (D) DL, that is at the basis of OWL DL.

Let A, R and I be sets of atomic concepts, roles and individuals. A role is an atomic
role R ∈ R. Concepts are defined by induction as follows. Each C ∈ A, ⊥ and > are
concepts. If C, C1 and C2 are concepts and R ∈ R, then (C1 u C2), (C1 t C2), ¬C,
∃R.C, and ∀R.C are concepts. Let C, D be concepts, R ∈ R and a, b ∈ I. An ABox
A is a finite set of concept membership axioms a : C and role membership axioms
(a, b) : R, while a TBox T is a finite set of concept inclusion axioms C v D. C ≡ D
abbreviates C v D and D v C.

A knowledge base K = (T ,A) consists of a TBox T and an ABox A. A KB K is
assigned a semantics in terms of set-theoretic interpretations I = (∆I , ·I), where ∆I

is a non-empty domain and ·I is the interpretation function that assigns an element
in ∆I to each a ∈ I, a subset of ∆I to each C ∈ A and a subset of ∆I ×∆I to each
R ∈ R.

B. DISPONTE

In the field of Probabilistic Logic Programming (PLP for short) many proposals have
been presented. An effective and popular approach is the Distribution Semantics [15],
which underlies many PLP languages such as PRISM [15, 16], Independent Choice
Logic [12], Logic Programs with Annotated Disjunctions [20] and ProbLog [5]. Along
this line, many reserchers proposed to combine probability theory with Description
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Logics (DLs for short) [10, 19]. DLs are at the basis of the Web Ontology Language
(OWL for short), a family of knowledge representation formalisms used for modeling
information of the Semantic Web

TRILL follows the DISPONTE [14, 21] semantics to compute the probability of
queries. DISPONTE applies the distribution semantics [15] of probabilistic logic pro-
gramming to DLs. A program following this semantics defines a probability distribu-
tion over normal logic programs called worlds. Then the distribution is extended to
queries and the probability of a query is obtained by marginalizing the joint distribu-
tion of the query and the programs.

In DISPONTE, a probabilistic knowledge base K is a set of certain axioms or prob-
abilistic axioms in which each axiom is independent evidence. Certain axioms take
the form of regular DL axioms while probabilistic axioms are p :: E where p is a real
number in [0, 1] and E is a DL axiom.

The idea of DISPONTE is to associate independent Boolean random variables to
the probabilistic axioms. To obtain a world, we include every formula obtained from
a certain axiom. For each probabilistic axiom, we decide whether to include it or not
in w. A world therefore is a non probabilistic KB that can be assigned a semantics in
the usual way. A query is entailed by a world if it is true in every model of the world.

The probability p can be interpreted as an epistemic probability, i.e., as the degree
of our belief in axiom E. For example, a probabilistic concept membership axiom
p :: a : C means that we have degree of belief p in C(a). A probabilistic concept
inclusion axiom of the form p :: C v D represents our belief in the truth of C v D
with probability p.

Formally, an atomic choice is a couple (Ei, k) where Ei is the ith probabilistic
axiom and k ∈ {0, 1}. k indicates whether Ei is chosen to be included in a world (k
= 1) or not (k = 0). A composite choice κ is a consistent set of atomic choices, i.e.,
(Ei, k) ∈ κ, (Ei,m) ∈ κ implies k = m (only one decision is taken for each formula).
The probability of a composite choice κ is P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1−pi), where

pi is the probability associated with axiom Ei. A selection σ is a total composite
choice, i.e., it contains an atomic choice (Ei, k) for every probabilistic axiom of the
probabilistic KB. A selection σ identifies a theory wσ called a world in this way:
wσ = C ∪ {Ei|(Ei, 1) ∈ σ} where C is the set of certain axioms. Let us indicate with
SK the set of all selections and with WK the set of all worlds. The probability of a
world wσ is P (wσ) = P (σ) =

∏
(Ei,1)∈σ pi

∏
(Ei,0)∈σ(1 − pi). P (wσ) is a probability

distribution over worlds, i.e.,
∑
w∈WK

P (w) = 1.
We can now assign probabilities to queries. Given a world w, the probability of

a query Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability of
a query can be defined by marginalizing the joint probability of the query and the
worlds, i.e. P (Q) =

∑
w∈WK

P (Q,w) =
∑
w∈WK

P (Q|w)p(w) =
∑
w∈WK:w|=Q P (w).

Consider the following KB, inspired by the people+pets ontology [11]:

0.5 :: ∃hasAnimal.Pet v NatureLover 0.6 :: Cat v Pet
(kevin, tom) : hasAnimal (kevin,fluffy) : hasAnimal tom : Cat fluffy : Cat

The KB indicates that the individuals that own an animal which is a pet are nature lovers
with a 50% probability and that kevin has the animals fluffy and tom. Fluffy and tom
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are cats and cats are pets with probability 60%. We associate a Boolean variable to each
axiom as follow F1 = ∃hasAnimal.Pet v NatureLover, F2 = (kevin,fluffy) : hasAnimal,
F3 = (kevin, tom) : hasAnimal, F4 = fluffy : Cat, F5 = tom : Cat and F6 = Cat v Pet.

The KB has four worlds and the query axiom Q = kevin : NatureLover is true in one of

them, the one corresponding to the selection {(F1, 1), (F2, 1)}. The probability of the query

is P (Q) = 0.5 · 0.6 = 0.3.
Sometimes we have to combine knowledge from multiple, untrusted sources, each one with

a different reliability. Consider a KB similar to the one of Example B but where we have a
single cat, fluffy .

∃hasAnimal.Pet v NatureLover (kevin,fluffy) : hasAnimal Cat v Pet
and there are two sources of information with different reliability that provide the information
that fluffy is a cat. On one source the user has a degree of belief of 0.4, i.e., he thinks it is
correct with a 40% probability, while on the other source he has a degree of belief 0.3. The
user can reason on this knowledge by adding the following statements to his KB:

0.4 :: fluffy : Cat 0.3 :: fluffy : Cat
The two statements represent independent evidence on fluffy being a cat. We associate F1

(F2) to the first (second) probabilistic axiom.

The query axiom Q = kevin : NatureLover is true in 3 out of the 4 worlds, those corre-

sponding to the selections {{(F1, 1), (F2, 1)}, {(F1, 1), (F2, 0)}, {(F1, 0), (F2, 1)}}. So P (Q) =

0.4 · 0.3 + 0.4 · 0.7 + 0.6 · 0.3 = 0.58. This is reasonable if the two sources can be consid-

ered as independent. In fact, the probability comes from the disjunction of two independent

Boolean random variables with probabilities respectively 0.4 and 0.3: P (Q) = P (X1 ∨X2) =

P (X1)+P (X2)−P (X1∧X2) = P (X1)+P (X2)−P (X1)P (X2) = 0.4+0.3−0.4 ·0.3 = 0.58

C. Inference

Traditionally, a reasoning algorithm decides whether an axiom is entailed or not by
a KB by refutation: the axiom E is entailed if ¬E has no model in the KB. Besides
deciding whether an axiom is entailed by a KB, we want to find also explanations for
the axiom, in order to compute the probability of the axiom.

C.1. Computing Queries Probability

The problem of finding explanations for a query has been investigated by various
authors [17, 9, 8, 7, 6, 21]. It was called axiom pinpointing in [17] and considered as a
non-standard reasoning service useful for tracing derivations and debugging ontologies.
In particular, in [17] the authors define minimal axiom sets (MinAs for short). [MinA]
Let K be a knowledge base and Q an axiom that follows from it, i.e., K |= Q. We call
a set M ⊆ K a minimal axiom set or MinA for Q in K if M |= Q and it is minimal
w.r.t. set inclusion. The problem of enumerating all MinAs is called min-a-enum.
All-MinAs(Q,K) is the set of all MinAs for query Q in knowledge base K.

A tableau is a graph where each node represents an individual a and is labeled with
the set of concepts L(a) it belongs to. Each edge 〈a, b〉 in the graph is labeled with the
set of roles to which the couple (a, b) belongs. Then, a set of consistency preserving
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tableau expansion rules are repeatedly applied until a clash (i.e., a contradiction) is
detected or a clash-free graph is found to which no more rules are applicable. A clash
is for example a couple (C, a) where C and ¬C are present in the label of a node, i.e.
C,¬C ⊆ L(a).

Some expansion rules are non-deterministic, i.e., they generate a finite set of tableaux.
Thus the algorithm keeps a set of tableaux that is consistent if there is any tableau in
it that is consistent, i.e., that is clash-free. Each time a clash is detected in a tableau
G, the algorithm stops applying rules to G. Once every tableau in T contains a clash
or no more expansion rules can be applied to it, the algorithm terminates. If all the
tableaux in the final set T contain a clash, the algorithm returns unsatisfiable as no
model can be found. Otherwise, any one clash-free completion graph in T represents
a possible model for the concept and the algorithm returns satisfiable.

To compute the probability of a query, the explanations must be made mutually
exclusive, so that the probability of each individual explanation is computed and
summed with the others. To do that we assign independent Boolean random vari-
ables to the axioms contained in the explanations and defining the Disjunctive Nor-
mal Form (DNF) Boolean formula fK which models the set of explanations. Thus
fK(X) =

∨
κ∈K

∧
(Ei,1)

Xi

∧
(Ei,0)

Xi where X = {Xi|(Ei, k) ∈ κ, κ ∈ K} is the set
of Boolean random variables. We can now translate fK to a Binary Decision Dia-
gram (BDD), from which we can compute the probability of the query with a dynamic
programming algorithm that is linear in the size of the BDD.

In [3, 4] the authors consider the problem of finding a pinpointing formula instead
of All-MinAs(Q,K). The pinpointing formula is a monotone Boolean formula in
which each Boolean variable corresponds to an axiom of the KB. This formula is built
using the variables and the conjunction and disjunction connectives. It compactly
encodes the set of all MinAs. Let’s assume that each axiom E of a KB K is associated
with a propositional variable, indicated with var(E). The set of all propositional
variables is indicated with var(K). A valuation ν of a monotone Boolean formula
is the set of propositional variables that are true. For a valuation ν ⊆ var(K), let
Kν := {t ∈ K|var(t) ∈ ν}. [Pinpointing formula] Given a query Q and a KB K, a
monotone Boolean formula φ over var(K) is called a pinpointing formula for Q if for
every valuation ν ⊆ var(K) it holds that Kν |= Q iff ν satisfies φ.

In Lemma 2.4 of [4] the authors proved that the set of all MinAs can be obtained
by transforming the pinpointing formula into a Disjunctive Normal Form Boolean
formula (DNF) and removing disjuncts implying other disjuncts.

Irrespective of which representation of the explanations we choose, a DNF or a
general pinpointing formula, we can apply knowledge compilation and transform it
into a Binary Decision Diagram (BDD), from which we can compute the probability
of the query with a dynamic programming algorithm that is linear in the size of the
BDD.

We refer to [21, 23] for a detailed description of the two methods.
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