\section{Semantics} \label{semantics} Finding the explanations for a query is important for probabilistic inference. In the following we briefly describe the DISPONTE semantics~\cite{RigBelLamZes15-SW-IJ}, which requires the set of all the justifications to compute the probability of the queries. DISPONTE \cite{RigBelLamZes15-SW-IJ,Zese17-SSW-BK} applies the distribution semantics \cite{DBLP:conf/iclp/Sato95} to Probabilistic Description Logic KBs. In DISPONTE, a \emph{probabilistic knowledge base} $\cK$ contains a set of \emph{probabilistic axioms} which take the form \begin{align} & p::E\label{pax} & \end{align} where $p$ is a real number in $[0,1]$ and $E$ is a DL axiom. The probability $p$ can be interpreted as the degree of our belief in the truth of axiom $E$. For example, a probabilistic concept membership axiom $ p::a:C $ means that we have degree of belief $p$ in $C(a)$. A probabilistic concept inclusion axiom of the form $ p::C\sqsubseteq D $ represents the fact that we believe in the truth of $C \sqsubseteq D$ with probability $p$. For more detail about probabilistic inference with the TRILL framework, we refer the interested reader to Appendix~\ref{app:disponte} and to~\cite{ZesBelCot18-TPLP-IJ}. The following example illustrates inference under the DISPONTE semantics. \begin{example} \begin{align*} && (E_1)\ 0.5 ::\ & \exists hasAnimal.Pet \sqsubseteq PetOwner\\ && & \fluffy: Cat \\ && & tom: Cat \\ && (E_2)\ 0.6 ::\ & Cat\sqsubseteq Pet\\ && & (kevin,\fluffy):hasAnimal \\ && & (kevin,tom):hasAnimal \end{align*} It indicates that the individuals that own an animal which is a pet are pet owners with a 50\% probability and that $kevin$ owns the animals $\fluffy$ and $tom$, which are cats. Moreover, cats are pets with a 60\% probability. The query axiom $Q=kevin:PetOwner$ is true with probability $P(Q)=0.5\cdot 0.6=0.3$. \end{example} the translation of this KB into the TRILL syntax is: \begin{verbatim} subClassOf(someValuesFrom(hasAnimal, pet), petOwner). annotationAssertion(disponte:probability, subClassOf(someValuesFrom(hasAnimal, pet), petOwner), literal('0.5')) classAssertion(cat, fluffy). classAssertion(cat, tom). subClassOf(cat, pet). annotationAssertion(disponte:probability, subClassOf(cat, pet), literal('0.6')) propertyAssertion(hasAnimal, kevin, fluffy). propertyAssertion(hasAnimal, kevin, tom). \end{verbatim} Optionally, the KB can also contain the following axioms \begin{verbatim} namedIndividual(fluffy). namedIndividual(kevin). namedIndividual(tom). objectProperty(hasAnimal). annotationProperty('http://ml.unife.it/disponte#probability'). class(petOwner). class(pet). \end{verbatim}