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Abstract. We apply case based reasoning techniques to build an intelligent 
authoring tool that can assist nontechnical users with authoring their own digital 
movies. In this paper, we focus on generating dialogue lines between two 
characters in a movie story. We use Darmok2, a case based planner, extended 
with a hierarchical plan adaptation module to generate movie characters’ 
dialogue acts with regard to their emotion changes. Then, we use an 
information state update approach to generate the actual content of each 
dialogue utterance. Our preliminary study shows that the extended planner can 
generate coherent dialogue lines which are consistent with user designed movie 
stories using a small case base authored by novice users. A preliminary user 
study shows that users like the overall quality of our system generated movie 
dialogue lines. 
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1   Introduction 

Recent advances in artificial intelligence (AI) techniques radically change the way 
users interact with computer entertainment systems. Users are no longer passive 
consumers of built content, but have become involved in adding value to computer 
entertainment systems by providing their own content. User generated AI has been 
deployed in computer games to integrate user-designed strategies into real-time 
strategy games [17, 28], as well as to train virtual avatars to play in user-defined 
styles in virtual reality games [14]. Although game designers define the games, user 
generated game behaviors can tailor character specificities while taking advantage of 
professionally crafted game space. Moreover, a new trend in the computer 
entertainment industry is to assist users in creating entertaining contents themselves. 
Users can now create their own plots in games using intelligent authoring tools [7]. 
Furthermore, intelligent systems with AI techniques are designed to assist users to 
build highly dynamic game plots [13]. It is generally believed that users are more 
engaged in games partially or fully created by themselves or their peers.  
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Fig. 1. A screen shot of a movie scene generated by Cambot. 

 
Besides generating game plots, we are also witnessing new interests in user-generated 
digital media, which serves as the sole content source for popular social websites such 
as YouTubeTM, FlickrTM, and many others. YouTube recently launched a new portal 
where users can design their own video clips using animation tools such as 
GoAnimateTM or XtranormalTM to build custom videos featuring their own story plots, 
dialogues, and virtual avatars1.  
     While such tools make it possible for non-technical users to design their own 
media contents, it is still hard for novice users to manage story writing and animation 
design at the same time. In this paper, we describe our recent effort in using AI 
techniques, i.e., planning and conversation generation, to build an intelligent system 
for non-technical users to design their own digital media contents in the format of 
animated digital movies. We identify two key challenges in this task. One is to design 
a compelling and interesting story plot, and the other is to render animation. We use 
Cambot [18] (see Fig. 1.), a virtual movie director for 3D worlds to shoot and edit 
animation scenes into a movie. In this paper, we describe our work on applying case 
based planning to assist users in generating story plots that are expressed through 
dialogue lines between two movie characters. More specifically, we have designed 
and implemented a case based planning system to fill in gaps in user-generated story 
contents. We assume that when a user wants to design her own movie, she has a 
general idea about what story she wants to deliver, e.g., several key movie scenes. 
However, the user may find it tedious to author the full details in the story or 
alternatively, novice users would find it difficult to author stories from scratch. Our 
system is designed as an intelligent authoring tool, which can automatically fill in 
story contents to free users from the authoring burden, or suggest story content so that 
users can revise and edit them as per their will.  
    We consider applying Case Based Planning techniques in story generation because 
such techniques can utilize interesting story contents generated by previous users to 
enrich new users’ stories. Case Based Planning has been applied to a variety of tasks, 
including computer game AI design, robotics and story generation [6, 9, 22]. It is 
planning as remembering [8], which involves reusing previous plans and adapting 
them to suit new situations. However, applying case based reasoning for story 
generation is different from the well-studied applications in the game domain [9]. In a 
game, there is a finite set of actions that a user or an avatar can take. But in story 
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generation, there is not a defined set of actions that can happen in the story. Instead, 
the characters in the story can perform any actions that are suitable given a certain 
story context. There have been query based approaches to restrict the content for 
using Case Based Reasoning in story generation [6]. Another case based reasoning 
solution is used for story representation and adaptation in the fairy tale domain where 
the CBR uses cases extracted from a multi-move story scripts given by Propp [19]. In 
this study, we code character behaviors at an abstract level in order to utilize 
similarities among different action sequences in case based planning. We define 
character behaviors in regards to the behaviors’ effects on characters’ emotion 
changes because we believe emotion expression is an important factor in movie story 
generation.  
    The rest of the paper is organized as follows. Section 2 surveys different 
applications of case based planning as well as story and dialogue generation. Section 
3 defines our task domain. Section 4 introduces our case based planning system. 
Section 5 describes a preliminary evaluation. We conclude in Section 6 and point out 
future directions. 

2   Related Work 

Case-based reasoning (CBR) is a known problem solving technique based on 
reutilizing specific knowledge of previously experienced problems stored as cases [1], 
[11]. The CBR cycle consists of four major stages: Retrieve, Reuse, Revise and 
Retain [1] (See Fig. 2). In the Retrieve stage, the system selects a subset of cases from 
the case base that are relevant to the current problem. The Reuse stage adapts the 
solution of the cases selected in the retrieve stage to the current problem. In the 
Revise stage, the obtained solution is verified (either by testing it in the real world or 
by examination by an expert), which provides feedback about the correctness of the 
predicted solution. Finally, in the Retain stage, the system decides whether or not to 
store the new solved case into the case base [16]. 

 
Fig. 2. The CBR cycle 

 
We further explore varied case-base reasoning and case-base planning applications 

based on different underlying domains and purposes. Case-base reasoning and 



planning are generally used when generating plans from scratch can be 
computationally expensive or when many new problems can be solved using solutions 
from previous experiences. There have been numerous such case-based planning 
techniques that adhere to the above philosophy [9]. 

Prodigy/Analogy [27] is such an architecture which stores the reasoning trace 
while planning instead of storing the plans. Thus, when planning for a new problem, 
the system just replays the stored decision traces. While Prodigy/Analogy is an 
example of the derivational plan adaptation approach, CHEF is an example of the 
transformational plan adaptation approach [15]. PRIAR is yet another planner system 
that focuses on reusing previously annotated plans with a validation structure that 
contains an explanation [10]. This system requires annotated plans to ensure 
appropriate reusing of the stored plans. The MAYOR [5] system contains a concept 
net of all the factors in the game domain and how they are related to each other. These 
factors include money, crime, pollution etc. Each plan in the plan library has some 
expectations on the aforementioned factors. While planning, if the expectations on the 
factors are not complete, the concept net allows the system to manipulate the 
expectation failure. The above CBR systems are domain dependent and function on 
different domains from dialogues or conversations. HICAP [2] is a general-purpose 
planner that integrates hierarchical plan base structure with constraint satisfaction 
based on domain-dependent doctrines.  

Story Generation can be viewed as a planning problem. It is a problem of crafting a 
structured sequence of events that can be told to a recipient [23]. A particular 
planning problem can be thought of as follows: Given an initial state, an underlying 
domain and a goal state, find a sequence of operations that transform the world from 
the initial state to the goal state where the operators adhere to the requirements in the 
domain. Such a planning problem can be solved by different types of planners. One 
particular class of planners that can be used to solve the above problem is called 
partial-order planners (POP) [20]. A partially-ordered plan consists of a set of actions 
that are ordered according to a set of temporal constraints forming a partial ordering 
such that some actions may be unordered relative to each other. Moreover, there 
exists causal links between two actions which imply that the first action creates 
changes in the world that enable the second action to be performed. POP planners 
encapsulate many features that appear in the cognitive models of narrative [29] and 
hence prove useful in narrative generation. As we mentioned in Section 1, case based 
planning systems have also been used in story generation [6]. Moreover, there have 
been attempts to combine case-base reasoning and planning algorithms to develop a 
better system. MEXICA uses elements of both previous story retrieval and means-
ends planning [21]. Here, we perform a similar task by extending a case based 
planning system with hierarchical planning strategies.  

In this study, we handle a subtask of story generation, which is to generate 
dialogue lines for the characters in a narrative story. This is a very important part in 
generating stories for movies. Research on dialogue generation has been mainly on 
information providing dialogue systems [24, 25], which are used to provide 
information to users in order to complete user defined tasks, such as booking flight 
tickets, or querying weather conditions. In these task-oriented dialogues, dialogue 
contents can be represented by a set of information slots. For example, in a flight 
booking conversation, the dialogue system needs to know information about departure 



and arrival cities to recommend flight options. Dialogue generation in this case is 
centered on updating states of these two basic information slots. The information state 
update approach is a simple way to keep track of conversation history [26]. We use a 
similar approach in managing dialogue content in our system. However, this simple 
approach alone is not enough to generate interesting and entertaining dialogues 
required in our task. Therefore, we deploy a case based planning system that decides 
how the dialogue content will be delivered with different emotions. More details are 
described in Section 4.  

3   Task Domain 

Our ultimate goal is to build an intelligent system which can help users generate 
narrative movie stories by filling in gaps between user generated contents. In this 
study, we focus on generating dialogues between two movie characters, because 
dialogues are an important way to create engaging experience in movies. Dialogue 
can not only deliver movie plots, but also represent the personalities of movie 
characters and their emotions.  
    In this study, our task is to generate dialogues between two main characters namely 
Great Goblin and Thorin, given the background story: 

When crossing the Misty Mountains, Thorin and his company run in to a 
storm and take shelter in a cave.  The cave actually serves as an entrance to 
the lair of the Goblins of the Misty Mountains who sneak into the cave while 
the company is sleeping and capture them.  The captives are brought before 
the Great Goblin, who queries about why they were in his cave. Thorin 
speaks for his party and tries to negotiate with the Great Goblin and get 
released.  

    When a user specifies the emotion states for the two characters, our system can 
generate a dialogue based on character emotions and the background story. We 
currently support 3 emotion states: calm, fear and anger.  

4   Case-based Reasoning for Dialogue Generation 

We choose to use a case-based reasoning approach for dialogue generation because 
we want to make use of user generated dialogues. However, since user generated 
dialogues may happen in different background contexts, we cannot directly store 
these dialogues in the case base and retrieve them for another story. Therefore, we 
represent the dialogues in their abstract format using dialogue acts (Section 4.1). Then 
we generate dialogues in two steps.  First, we use a case-based planner to generate a 
dialogue act sequence (4.2). Then, we apply an information state update approach for 
content generation (4.3). Finally, we use a simple natural language generator to 
deliver the full dialogue in natural language (4.4).      



4.1   Dialogue Act representation 

Dialogue acts are generally used to model and automatically detect discourse structure 
in dialogue systems. A dialogue act represents the meaning of an utterance at the level 
of illocutionary force [3]. Thus, a dialogue act is approximately the equivalent of the 
actions in computer games. Dialogue acts are usually defined to be relevant to a 
particular application, although there have been efforts to develop a domain-
independent dialogue act labeling systems [4].  
    In our task, we define a set of dialogue acts for a negotiation scene. Table 1 shows 
the dialogue acts and their definitions. We can see that some dialogue acts are likely 
to trigger the change of emotions. For example, when one character decline to answer 
a question, the asker is likely be angry. Similarly, threatening is likely to trigger fear. 
In Section 4.2, we use a case based reasoning system to generate traces of dialogue 
acts based on user defined character emotion states.  

Table 1.  List of Dialogue Acts used by the Natural Language Generation module 

Dialogue Acts Definitions 

Question Ask a question 
Answer Directly answer a question 
Dodge Give an indirect answer to a question 
Decline Refuse to answer a question 
Follow-up Ask a question based on the previous answer/question 
Validate Ask a question to further verify the previous answer  
Propose Propose a solution 
Agree Agree to a proposal 
Reject Reject a proposal 
Counter Follow-up on a rejection with a new proposal 
Inform Provide new information 
Provoke Provide new information intended to anger the listener 
Persuade Statement intended to persuade the listener of something 
Threaten 
Warn 

Issue a threat 
Issue a warning 

Decide End of conversation 

4.2   Case Based Reasoning System 

We use Darmok2 [16] for case-based planning to generate dialogue act traces. In our 
system, since the case base consists of different plans learned from user generated 
cases, we also refer to it as the plan base. A plan consists of a start state of the 
characters in the dialogue, a sequence of dialogue actions that occurred between the 
two characters and an end state of the characters. A state in this dialogue generation 
domain consists of the characters involved in the dialogue and their emotional 
conditions. Currently, the domain supports three main emotional conditions namely 
Calm, Angry, and Fear, but the system is generic to incorporate more emotional 
conditions. An action comes from the list of 15 actions in the domain.  



    In order to use Darmok2, we need to provide the system with a case base to support 
the system’s planning mechanisms. In Section 4.2.1, we show how cases are authored 
and represented in Darmok2. In Section 4.2.2, we describe how Darmok2 can be used 
to learn plan cases from the traces authored using our authoring interface. In Section 
4.2.3, we describe how Darmok2 uses these cases for planning.  
 
4.2.1 Case Base Authoring  
The system acts as an intelligent tool to assist story authors. An author can choose to 
use the system for intelligent recommendations or author the entire story from scratch. 
When asking for recommendations, the case based planning system is called to fill in 
story scenes based on the current story. However, before the case based planning 
system can function, we need to build a case base to support its planning. Therefore, 
when users are authoring their own stories, story traces are stored in the system and 
represented as cases to be used in planning later. Fig. 3. shows the story authoring 
interface. 
 

 
Fig. 3. Authoring interface for generating stories. 

 
    The top left of the interface contains Great Goblin’s state information (which 
includes initial mood, dialogue actions and utterances corresponding to the dialogue 
act and final mood). Similarly, the top right Section contains information about 
Thorin’s state information. The bottom part contains a log of the dialogues so far, 
which includes both dialogue acts and the actual utterances between Great Goblin and 
Thorin. To add new dialogues, a user must pick a dialogue action from the list in 
Table 1. Then, the author can enter the dialogue in the utterance field. Once an action 
is picked and the utterance written, author can press the add button to include the 
newly created dialogue in the log. 
 
4.2.2 Case Base Learning 
Once stories are generated after the authoring phase, we can enrich our plan base by 
learning from these traces. Learning from a given trace involves three major steps: (i) 
detecting goals (ii) building plans (iii) updating the plan base. The learning algorithm 
detects changes in the consequent states based on the changes in the character’s 
behavior or emotional condition. Once the changes are detected, the learning 
algorithm must build appropriate plans. There are two main types of plans in the plan 
base: (i) Goal plan – a plan that satisfies a particular emotional goal. A goal plan is 



created by directly calling the planner in Darmok2
makes use of the hierarchical goal structure to make new plans 
combined plan is created by first decompo
intermediate goal states which can eventually lead to the final state, and then calling 
the Darmok2 planning on each intermediate goal states. 
plans from the changes, the learning algorithm 
created plans.  
Consider a simple example:
 State: 

Great Goblin: Calm
 Thorin: Calm 
 Dialogue Acts: 
 Great Goblin [Threaten]: Tell me your name or die!
 Thorin [Answer]: I am Thorin.
 State:  
 Great Goblin: Calm
 Thorin: Fear 
 Dialogue Acts: 
 Great Goblin [Question]: Are you sure? I think you are lying.
 Thorin [Answer]: I am not.
 State:  
 Great Goblin: Angry
 Thorin: Fear 
The above trace generates the plan structure 

 

    Note that the size of a goal plan is not restricted to 
in the example in Fig. 4. Similarly, a combination plan can have more than two goal 

created by directly calling the planner in Darmok2; (ii) Combined plan – a plan which 
makes use of the hierarchical goal structure to make new plans from goal plans. 
combined plan is created by first decomposing the final goal state into several 
intermediate goal states which can eventually lead to the final state, and then calling 
the Darmok2 planning on each intermediate goal states. After building appropriate 
plans from the changes, the learning algorithm enriches the plan base with the newly 

Consider a simple example: 

Calm 

Great Goblin [Threaten]: Tell me your name or die! 
Thorin [Answer]: I am Thorin. 

Calm 

Great Goblin [Question]: Are you sure? I think you are lying. 
Thorin [Answer]: I am not. 

Angry 

The above trace generates the plan structure shown in Fig. 4. 

 
Fig. 4. A sample plan structure. 
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plans encapsulated within it. We use the above learning procedure to improve our 
plan base with both goal plans and combination plans.  
 
4.2.3 Case Based Planning  
When an author needs suggestions from the system to fill certain parts of a dialogue, 
Darmok2 is called to retrieve reasonable plans. The plan retrieval phase ranks the 
plans in the plan base based on the current state in the dialogue and the target state. 
Two scores are calculated to retrieve the best plan: (i) goal match score – this 
heuristic calculates the similarity between the goal state of a plan in the case base and 
the targeted goal state; (ii) initial state match score – this heuristic calculates the 
similarity between the initial state of a plan in the case base and the retrieval query’s 
initial state. In our current system, the retrieval phase returns up to 10 different plans 
and provides the Plan Adaptation phase with more options to choose the right plan.  
    The Plan Adaptation uses the plans obtained in the retrieval phase to perform 
dialogue generation. This scenario can be visualized as a gap-filling problem because 
a typical plan retrieval query would have a start state and end state and the system 
attempts to generate dialogue for the start and end states. Thus, the system attempts to 
come up with the most appropriate dialogue to narrate the gap between the start and 
the end state. The Plan Adaptation module picks the best plan from the list of 
retrieved plans to fit this gap. There are 4 possible events that could occur in this case: 
(i) the retrieved plan would completely fit the gap (ii) the retrieved plan would be a 
complete fit for the start state but not for the end state (iii) the retrieved plan would be 
a complete fit for the end state but not the start state (iv) the retrieved plan would not 
fit either the start or the end state. If the gap is completely filled, then the adaptation 
phase does not have to perform further checking. In events 2-4, the plan adaptation 
tries to invoke a planner to find the missing pieces. The planner in the plan adaptation 
phase recognizes gaps (like in events 2-4) and recursively calls the retrieval phase 
until all the gaps are filled satisfactorily. Thus, the planner in plan adaptation can be 
thought of as an example of recursive case-base planning. Consider the query with the 
following initial and final states to the plan-base: 
 Initial    Final 

Great Goblin: Calm  Great Goblin: Angry 
 Thorin: Angry   Thorin: Fear 
Now, in adaptation phase if the best plan so far is from 
 Initial    Final 

Great Goblin: Angry  Great Goblin: Angry 
 Thorin: Angry   Thorin: Fear 
then the planner recognizes the gap and recursively queries the plan-base with 
 Initial    Final 

Great Goblin: Calm  Great Goblin: Angry 
 Thorin: Angry   Thorin: Angry 
such that the gap in the beginning of the retrieved plan is filled satisfactorily. 
    Moreover the adaptation phase also looks for substitutable plans if the recursive 
plan adaptation fails. In our current domain, we define approximation rules for 
emotional changes. For instance, for Thorin’s character, an emotional change from 
Calm to Angry can be approximated by emotional change from Angry to Fear, 
assuming unpleasant information or actions can make a character’s emotion becomes 



worse. In our story domain, being angry is a worse emotional state than being calm 
because it shows the character feels unhappy and dislikes the current situation. Being 
“fear” is worse than being angry because the character feels the threats and may start 
to react instead of only expressing the emotion. By adding approximation rules, the 
plan adaptation module ensures that the retrieval query gap gets filled completely. For 
our application, it is more important for our system to respond to every user query 
than to always provide a response of good logical sense. Since our system is used to 
generate movie dialogues, using approximation rules may not always help the system 
to generate a sensible dialogue, but can possibly produce interesting and funny effects 
that are also favorable in movie dialogue generation.  

4.3   Dialogue Content Generation 

Once we have the sequence of actions that will make up the story, we must then 
assign each dialogue action an utterance, which is a single-sentence string that 
represents what the character will say.  As mentioned earlier, the issue here is that we 
cannot merely have a one-to-one mapping from action to utterance – a set of 
utterances that matches one sequence of dialogue actions may not match the same 
dialogue actions in a different sequence.  The reason for this is that different 
sequences of actions will result in different contexts, and since the sequence of 
dialogue actions is user generated (though aided by this system), we must be able to 
support any context that is created.  Users will not want to use this system if it cannot 
generate dialogue that makes sense in the story they create. 

To solve this problem, we use an information state update approach to track 
dialogue content. An utterance library is pre-authored with sets of utterances for each 
possible dialogue act.  Each utterance is tagged with a pre-context and a post-context, 
which are both represented by a set of topics. The pre-context indicates which topics 
have already been mentioned in the conversation in order for that particular utterance 
to make sense.  The post-context indicates which new topics the utterance introduces 
to the conversation and occasionally which topics, if any, the utterance can settle.  
These topics indicate which information has or has not been disclosed in the dialogue. 
By updating these information states, we keep track of which topics should be in the 
dialogue content. Settled topics do not need to be discussed further.   

Take the following exchange as an example: 
 
 Great Goblin:  How do I know you are not here to spy on us? 
 Thorin:  We are not spies. 
 

It does not make sense for Thorin to mention that he is not a spy until he is first 
accused of being a spy.  Therefore, Thorin’s utterance would have a pre-context of 
“spies”, since he cannot say that utterance until the topic of “spies” is introduced.  The 
Great Goblin’s utterance would have a post-context of “spies” to indicate that once 
that utterance is selected to be part of the conversation the topic of “spies” has been 
introduced. 

Internally, the dialogue generation system keeps track of which topics are 
currently active in the context as part of the information states.  When given an action, 



it determines which of the utterances in the library match both the given action and 
the current information state.  If there is more than one possible utterance that 
matches, the system looks at the last utterance in the conversation to determine which 
possible utterance most closely matches the current context.  This is done by checking 
which of the possible utterances’ pre-contexts most closely matches the post-context 
of the previous utterance in the conversation.  The system then selects that utterance, 
sets the utterance as the output of the action, updates the information state according 
to the post-context of the utterance, and returns the updated action.   
    Emotion is considered to be part of the context.  People speak differently when they 
are angry than when they are calm or afraid, and our utterance library needs to reflect 
that.  So, some utterances have an emotion as part of the pre-context or post-context.  
When given an action tagged with a desired emotional outcome, in addition to the 
procedure outlined above, the system will also check the post-context of each 
utterance to determine if it will produce the desired emotional outcome.  Any 
utterance that will not produce that emotional outcome is ignored, even if it matches 
the current conversation state. 

4.4   Natural Language Dialogue Generation 

In the experiments reported in this paper, the dialogue generation module uses canned 
dialogue lines rather than generating utterances programmatically.  We feared that 
introducing a natural language generation system could negatively bias the results if 
we ended up with a sequence of actions for which the natural language generation 
system did not perform well.  We have done some work with the NLG system 
Personage [12], which adjusts how an utterance is generated based on the personality 
of the speaker, to see if we could possibly apply it in this domain and cause it to 
generate an utterance differently based on the emotional state of the speaker in 
addition to their personality.  That work, however, is beyond the scope of this paper. 

5   Experiments & Results 

We perform a two-phase preliminary experiment to evaluate our system. In the first 
phase, we invite three users (2 males and 1 female) to write stories using our system. 
These stories are used to construct the plan base for Darmok2. We choose to use user-
generated stories instead of expert-authored stories because we want to evaluate our 
system in a realistic scenario, in which the planning system uses user-generated 
stories to provide recommendations upon user requests. In addition, if knowledge is 
engineered by expert authors, it conflates the creative abilities of the system and those 
of the authors’. Therefore, we do not use expert-authored stories to bias our system 
evaluation. 

The three subjects were given the background story shown in Section 3. They were 
asked to generate 3 dialogues between the two characters in the story. None of the 
users have difficulties writing the stories although only one of them is familiar with 
English fantasy fictions like our background story. The average length of user 
generated dialogues is 5.67 turns. The average number of emotion changes per 



dialogue is 2.5 times. In total, the plan base constructed by user-generated dialogues 
has 53 cases.  

These subjects were then asked to each create 2 cases in which they would want to 
get story recommendations from our system, i.e., to ask the system to generate the 
dialogue for them. In each case, they need to specify the start and end emotion states 
of both characters in the dialogue. The subjects were given enough prior background 
information about the domain story so that they could make an informed choice for 
the start-end pairs.  

Once we obtained all 6 start-end pairs, we generated dialogues for each pair using 
three different versions of the plan base. The first version of the plan bases contained 
33% of the user generated plans (17 plans) for the plan base to start off with, the 
second version contained 66% (34 plans) of the user generated plans and the third 
version contained 100% of the user generated plans (53 plans). Each subset of the 
plan base was randomly chosen. We want to test the impact of the size of the plan 
base on story quality. In total, we generated 18 (6*3) dialogues. We recruited a 
different set of judges to evaluate these dialogues because we did not want the judges 
to be biased when seeing portions of their own dialogues being used in new ways. We 
also decrease a judge’s bias by assigning one dialogue to two judges and use the 
average ratings by the two judges as the final ratings of that dialogue. Our hypothesis 
is that by extending the CBR with a hierarchical planning strategy, the quality of 
generated dialogues would not be impacted by the different sizes of the plan bases. 

We recruited 4 judges (3 males and 1 female) to assess the quality of generated 
dialogues. The judges were assigned 3 stories each. Each judge was also provided 
with dialogues generated by all the three versions of the plan base so they would be 
capable of providing a good comparison. We asked the judges to rate the dialogues on 
four evaluation measures, i.e., logic coherence, interestingness, fitness with 
background story, and fluency. We also asked the judges to give an overall rating of 
how well they like a dialogue. Ratings are on a 4-point Likert scale. We did not use a 
5-point likert scale because we wanted our judges to clearly indicate whether our 
system’s performance is good (a rating of 3 or 4) or bad (a rating of 1 or 2). We did 
not want the judges to give neutral answers.   
 

Table 2. Summary of average ratings across all dialogues and all judges 

Logical 
Coherence 

Interestingness Fitness with  
background 

Dialogue 
Fluency 

Overall 

3.03 (±0.56) 2.78 (±0.84) 3.14 (±0.68) 3.22 (±0.52) 2.69 (±0.73) 

 
Table 2 summarizes the average ratings across all dialogues and all judges. The 

numbers in the parenthesis show the standard deviations. The average overall rating 
indicates that the judges’ overall feedback on our system’s performance is positive 
(2.69). It is not surprising to see that dialogue fluency gets a high rating because the 
natural language generation module uses pre-authored utterances. Logical coherence 
(3.03) and fitness with background (3.14) scores show that the performance of our 
planning module is also positive. The interestingness of the dialogues (2.78) gets the 
lowest rating among all the measures. Using Pearson’s correlation, we observe that 
there is a strong correlation between the length of the generated dialogues and its 
interestingness (R = 0.71, p ! 0.05). In other words, judges tend to rate longer 



dialogues to be more interesting. When controlling for dialogue length, each of our 
four measures strongly correlate with judge’s overall ratings, which shows that all our 
measures are important aspects that judges consider when rating a dialogue. When we 
use the four measures to build a regression model to predict the overall rating, fluency 
and interestingness have the highest coefficients, which show that these two measures 
have the highest weights in impacting the judge’s overall ratings. Since our system 
generates relatively short dialogues (on average 5 turns) and therefore gets a lower 
interestingness score, the overall dialogue ratings are not very high. Here is an 
example of generated dialogues (4 turns) for the following conditions. In the 
beginning of this dialogue, Great Goblin is calm and Thorin is angry and at the end of 
the dialogue Great Goblin is angry while Thorin is scared. 

Great Goblin: Who are you?  
Thorin: I'm not answering your questions. 
Great Goblin: Answer me truthfully, and I'll consider letting you live.  
Thorin: No.  I demand you let us go. 
When comparing dialogues generated from the three different sizes of plan bases, 

we do not observe any statistical significance among any of the evaluation measures 
or the overall scores (p values larger than 0.05). This supports our hypothesis by 
showing that our system can work with a small plan base generated by naïve users. 
Although this result is based on our simple domain, we are encouraged by this result 
because being able to work with a small plan base makes it possible for users to 
switch our system to a new story domain quickly.  

6   Conclusions  

In this paper, we report our recent work on using a case based planning system for 
narrative story and dialogue generation. Our system acts as an intelligent tool to assist 
users to write their own movie scripts. When users use our system to write their 
movie lines, their scripts will be stored in the system. Later, when a user lacks the 
idea to write certain scenes, she can use our system to fill in the gap in the movie. Our 
system uses user-generated story to construct its plan base, and then uses the plan 
base to generate new stories to fill in gaps in new stories. Our task of applying a case 
based planning system on dialogue generation distinguishes from previous 
applications in the game domain because system actions in one dialogue need to be 
represented at a higher level in order to be reused in other dialogues. Therefore, in our 
system, we code each utterance in dialogues with a dialogue act to represent its 
conversational strategy and its effect on conversational partners’ emotions. Also, we 
build a content planner using an information state update approach in supplement to 
the case based planner in order to generate the dialogue content. 

Our results show that our system can generate logically coherent stories that reflect 
background contexts. The generated stories get positive user ratings in terms of their 
overall quality. Moreover, our system can work with a small case base contributed by 
naïve users. This feature enables our system to be used by users in new domains. 

However, our stories have relatively lower ratings on their interestingness, which is 
found to be directly correlated with dialogue length. In the current system, we do not 



have a drama management module that shapes the generated dialogues in terms of its 
interestingness. In the future, we plan to add heuristic rules which can generate more 
interesting dialogues, but not the most direct dialogues.  
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