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Abstract

Counterfactual conditional sentences can be useful in artificial

intelligence as they are in human affairs. In particular, they

allow reasoners to learn from experiences that they did not quite

have.

Our tools for making inferences from counterfactuals permit

inferring sentences that are not themselves counterfactual. This

is what makes them useful.

A simple class of useful counterfactuals involves a change

of one component of a point in a space provided with a carte-

sian product structure. We call these cartesian counterfactuals.

Cartesian counterfactuals can be modeled by assignment and

contents functions as in program semantics. We also consider

the more general tree-structured counterfactuals.
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1 Introduction

(1): “If another car had come over the hill when you
passed that car, there would have been a head-on colli-
sion.”

is a useful counterfactual conditional sentence. The driver will esti-
mate how long passing took and how much time he would have had if
another car had come over the hill. In this he uses his observation of
the distance to the top of the hill when he got back in the right hand
lane and his estimate of how long it would have taken a car suddenly
coming over the hill to cover that distance.

If he regards the counterfactual (1) as true, he will be more cau-
tious about passing in the future. If he regards it as false, it will be
because he thinks he had plenty of time to complete the maneuver
and get back in the right lane. If he regards it merely as a material
implication with a false antecedent, he’ll believe it but won’t take it
as a reason to change his driving habits.

We discuss such useful counterfactuals for two reasons. (1) We
expect them to be useful in AI systems. (2) We have found counter-
factuals inferred from experience and having behavioral consequences
to admit a richer theory than counterfactuals cooked up to serve as
examples of the semantics.

In general, a counterfactual conditional sentence ( counterfactual
for short ) is a sentence

p implies q,

in which the antecedent p is false. If implies is taken to be the ordi-
nary mathematical logical implication ⊃, then all counterfactuals are
true. However, in ordinary life, it is often useful to consider certain
counterfactuals, as in the above example (1), as being possibly false.
Also (1) may be a useful counterfactual because it permits the driver
to learn from an experience he didn’t quite have.

We will use � to represent counterfactual implication, so that (1)
may be written

Another car was coming when you passed � there was
a head-on collision.

Q. What can the driver learn if he believes (1)?
A. Whatever he could learn from “Another car came when you

passed, and there was a head-on collision.”
Three points.
1. We ignore the possibility that the collision might interfere with

the driver’s ability to learn.
2. What can be learned depends on the driver’s mechanisms for

learning. However, we propose that he applies the same learning
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mechanism to the almost experience as he would apply to the real
experience.

3. The hypothetical experience is not a full possible world, e.g.
the name of the driver of the car that came over the hill isn’t deter-
mined. It is a theoretical entity in an approximate theory. [McCarthy, 2000]
treats approximate theories in some detail, but the simplest approxi-
mate theories for discussing counterfactuals are the theories of carte-
sian counterfactuals of the present article.

One straightforward inference from (1) is (2)

Another car comes when you pass under sufficiently
similar circumstances ⊃ there is a head-on collision.

Thus a counterfactual conditional is used to infer a correspond-
ing ordinary conditional, univerally quantified over “similar circum-
stances”. Believing the counterfactual (1) lets us make the same gen-
eralization from the counterfactual conditional that we would make
had the collision occurred.

There is some resemblance between this inference and those used
to infer a scientific law, but there are two important differences. (1)
“similar circumstances” is often not spelled out in language. It can
be just circumstances that look the same. (2) The inference is from
a single experience; more is needed to infer a scientific law.

While counterfactuals are used in daily life, they have been most
studied in philosophy. The main philosophical goal has been to assign
meaning to these sentences. The Lewis/Stalnaker [Stalnaker, 1968]
[Stalnaker and Thomason, 1970] approach is the leading one. David
Lewis [Lewis, 1973] defines the truth of a counterfactual using the
notion of possible worlds. He posits that possible worlds are ordered
by comparative possibility. He then regards p � q as true provided
q is true in the nearest possible worlds where p is true. He gives no
way of judging the closeness of worlds save that of considering the
counterfactuals. Thus it seems difficult to evaluate the truth of any
particular counterfactual based on other evidence.

Moreover, he Lewis/Stalnaker approach offers no way of inferring
non-counterfactual sentences from counterfactuals.

The truth of a counterfactual does not just depend on the state
of the world the way a direct observation does. There is always a
theory—in the above example, an implicit theory of driving shared by
the passenger and the driver. The theory is based on their experience
and what they have learned and been taught about driving.

2 Uses of Counterfactuals

For AI purposes we ask what kinds of counterfactuals are useful to
humans, as they are also likely to be the kinds useful to computer
programs. Concentrating on counterfactuals that are useful in that
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believing them usefully affects behavior may also have some philo-
sophical benefits, because the reasoning leading to a useful counter-
factual and the useful conclusions drawn from it provide some guid-
ance about the best kind of theory.

We begin with some examples of the uses of particular counter-
factuals.

1. The counterfactual head-on collision of the introduction.

2. Two ski instructors see a pupil fall on a hill. One says “If
he had bent his knees more, he would not have fallen”. The
other disagrees and claims “If he had put his weight on his
downhill ski, he would not have fallen”. This example is from
[McCarthy, 1979]. Each one suggests a specific kind of lesson.

3. Our ski instructors could view the world in a different way, and
both assent to the counterfactual, “if he had two more lessons
he would not have fallen”.

4. If Caesar had been in charge in Korea, he would have used
nuclear weapons. If Caesar had been in charge in Korea, he
would have used catapults. Different theoretical structures give
different counterfactuals. Maybe the first suggests that if we
are serious about winning, we should be more like Caesar. The
second doesn’t suggest anything.

5. If there had been one more book in that box you would not
have been able to lift it. The lesson is not to put too many
books in a box.

6. If wishes were horses, beggars would ride. We are far from
proposing a way of drawing conclusions from metaphors. This
very abstract counter-factual would have a very approximate
theory

Each of these counterfactuals tells us something about how the
world works. We can use this advice in future, if we find ourselves in
a similar situation. The notion that the counterfactual is applicable
on similar occasions is important. If we are to use a counterfactual to
predict in a new occasion s, there must be some kind of test, whether
or not the new occasion s is sufficiently similar to the situation that
gave rise to the counterfactual. This test is given by an approximate
theory.

The kind of approximate theories that are relevant to counterfac-
tuals are those covering only some aspects of the world. The theory
used in the car example does not include facts that determine whether
or not another car can come over the hill. Likewise the skier theory
does not determine if a skier bends his knees. The theories allowing
inferences about Caesar in Korea respectively relate to his character
as a general and the weapons he had. “If wishes were horses . . .
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”, takes only advantage of the semantic parallel between having a
wish and having a material object. Approximate theories are more
thoroughly discussed in [McCarthy, 2000].

2.1 Learning

A skier might conclude that had he bent his knees on a certain slope
he would not have fallen. The skier can learn from this. It is im-
portant, if we are to use counterfactuals for learning that we can
recognize that they are sometimes false. In our first example we can
imagine the response that “If there were another car it would have
been visible in time for me to avoid it”. This new counterfactual can
also be true or false.

The performance of learning algorithms improves when they have
more examples. Counterfactuals are one way to collect more examples
than can be found by direct experience. Often it is better to imagine
a data point than to experience it.

2.2 Prediction in similar circumstances

In so far as our knowledge of the world is incomplete, new sentences
can tell us more about the world. Every counterfactual we are told
gives us more information about how the world would be, if things
were only slightly different, relative to some unstated approximate
theory. This information can later be used if we find ourselves in a
situation with only a small number of differences between it and the
present, so that the approximate theory is applicable to both. The
counterfactual

“If there had been one more book in that box you
would not have been able to lift it.”

tell us that in future situations, that satisfy the unstated theory the
speaker considers, boxes with more books in them will be too heavy
to lift. This differs from the learning we considered earlier, as this
is inferring a universal from a counterfactual, rather than using the
counterfactual as an instance in a learning algorithm.

If the approximate theory is unstated, to use this counterfactual
we need to infer what theory was used. A natural default to use here
is to assume that the speaker is using the same theory that you find
appropriate to describe the situation.

We can apply counterfactuals in other situations because the the-
ories on which they are based are approximate. The truth of the
counterfactual only depends on certain features of the situation, and
when these features re-occur, the same inference may be made. In a
later section we give an example of where we can derive new facts,
that do not mention counterfactuals, from a counterfactual. In our
skiing domain, we show that we can derive a fact about the world
(that a certain slope is a turn), from the truth of a counterfactual,
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(“if he had put his weight on his downhill ski, he would not have
fallen”).

Counterfactuals are useful for other purposes in AI. Ginsberg
[Ginsberg, 1986] suggests that they are useful for planning. They
also are closely related to the notion of causality, as discussed in
[Pearl, 1988] [Geffner, 1992],[Pearl, 2000].

3 Detailed Examples

Cartesian counterfactuals involve a counterfactual sentence, a theory,
a frame, and a world/point in the frame. The sentence is interpreted
by the theory, relative to the frame. We move through the frame,
from the current world, to a new point in the frame.

3.1 Rectangular co-ordinates

Example: 1 We consider a cartesian space of three components, x,
y, z. The theory provides a co-ordinate system for the space. We are
interested in the distance from a point to the origin:

s =
√

x2 + y2 + z2

This sentence is our approximate theory.
Now consider the point (1, 2, 1). This will act as our current world.

We ask whether,

y = 3 � s =
√

19. (2)

Our cartesian structure implies that x and z hold their particular
values 1, 1. Therefore we have

s =
√

1 + 9 + 1, s =
√

11, s 6=
√

19.

Therefore (2) is an example of an untrue counterfactual. The coun-
terfactual “if y were 3 then s would be

√
11” is true, i.e. y = 3 � s =√

11.

This example has all the essential elements of a cartesian coun-
terfactual. We have a cartesian space, whose points are the models
of the approximate theory and whose structure is given by the co-
ordinates. Each of these co-ordinates in this example is the value of
a variable. To find the truth value of a counterfactual we change the
co-ordinate as specified by the left hand side and evaluate the right
hand side.

The co-ordinate frame we chose here, using the variables x, y, z,
is not the only possible frame. A transformation of those variables
would give a similar theory but with different counterfactuals.. One
possibility is,

x′ = x+ y, y, z,
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Our initial state has the following values.

x′ = 3, y = 2, z = 1,

Given this co-ordinate system, the counterfactual y = 3 � s =
√

19
is true, whereas it was false in the previous frame.

In this example, s was uniquely determined by the values of the
co-ordinates. We can imagine that another value r, is not uniquely
determined—we only know that it is smaller than s. Thus we have,

r ≤
√

x2 + y2 + z2.

Again, let us choose x, y, z to have the values (1, 2, 1). In this case
y = 3 � r ≤

√
11 is true, as we know that r ≤ s and s =

√
11.

Furthermore, we know that y = 3 � r ≥ 10 is false. However,
when we cannot uniquely determine all other components in terms
of the co-ordinates, some counterfactuals are indeterminate. For in-
stance, we do not know the truth value of y = 3 � r =

√
6.

Thus different co-ordinate frame make different counterfactuals
true. Thus three factors influence the truth of a counterfactual:

1. The space of possible states.

2. The co-ordinate frame on the space of possible states.

3. The current state.

The above rectangular co-ordinate system example hasn’t enough
structure to prefer one theory over another. However, suppose it were
specified that x, y and z were the co-ordinates along the walls and
the height of a point starting from the corner of a room. Then there
would be some reason for preferring the x-y-z theory and its asso-
ciated counterfactuals to the x′-y-z theory and its associated coun-
terfactuals. When there is a clear reason to prefer one theory, its
counterfactuals can have a somewhat objective character. These are
the most useful. Even so, this would be a useful counterfactual only
imbedded in a larger theory that includes some goal.

3.2 The Almost Crash—Elaborated

We elaborate the almost-crash example slightly to say “might have
been a head-on collision” instead of “would have been a head-on
collision”. In this uncertain world, it is more realistic.

Suppose the driver estimates (triggered by the passenger’s state-
ment) that it will take 7 ± 2 seconds to complete the pass and get
back in the right lane. He also estimates that it will take 9 ± 3 sec-
onds to drop back and get in line and that if he stays in the left lane
and a car comes over the hill at that instant, he collision will occur
in 9 ± 5 seconds. He concludes that if a car comes over the hill at
that embarrassing moment the probability of a collision is 0.2. He
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estimates the probability of a car coming over the hill at that instant
is between 0.001 and 0.0001. He concludes that the odds, while small,
are unacceptable.

We have expressed this example numerically, as might be appro-
priate for a robot. Formalizing this aspect of human behavior might
not be so numerical.

We can suppose that his estimate of the required passing time is
not an a priori estimate based on a theory of driving but is based
on how rapidly he was overtaking the other car, i.e. is based on
this experience. Thus he learns to change his driving rules from
an experience of collision that he didn’t quite have. Much case-based
reasoning in real life is based on counterfactuals, although the theories
described in [Lenz et al., 1998, Leake and Plaza, 1997] do not include
counterfactual cases.

3.3 Formalization of the Skiing Examples

We now look at an axiomatization that formalizes some examples
of counterfactuals in a skiing domain. We sketch a formalization
of skiing, which includes both some facts about lessons, and some
facts about what happens when you ski. The formalization uses the
situation calculus discussed in [McCarthy and Hayes, 1969].

The analysis is designed to highlight several points.

1. Co-ordinate frames give a simple way of defining semantics for
counterfactuals.

2. Different frames are appropriate for different points of view.

3. Different frames can lead to different counterfactuals.

We consider four counterfactuals. The first two are from our
previously mentioned two ski instructors. Before we consider the
counterfactuals, we consider the following story.

Junior had 25 dollars. He went to a ski slope and
spent his money on one cheap lesson, that cost 25 dol-
lars. Cheap lessons teach you one skill each lesson, either
bending your knees on bumps, or if you have learned that,
then placing your weight on your downhill ski on turns.
Expensive lessons cost twice as much, but teach two skills
per lesson, in the same order. Thus, Junior learns to bend
his knees. He then goes skiing, at a time picked out by
situation 1, but when he comes to Slope4 he falls.

Slope4 is a turn, and according to our theory, unless
you place your weight on your downhill ski on turns you
fall. We also believe that unless you bend your knees on
a bump you fall, and that these behaviors happen only if
you have learned these skills.
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Our first counterfactual states that ‘ ‘if he had actually bent his
knees in situation 1 then he would not have fallen in the next situa-
tion”. This will be represented by the following counterfactual.

Actual(result(Bend, S1)) � ¬holds(Fallen,Next(S1)) (3)

The other states that ‘ ‘if he had actually put his weight on the down-
hill ski in situation 1 then he would not have fallen in the next situ-
ation”. In our logical formalization this will be written.

Actual(result(Down, S1)) � ¬holds(Fallen,Next(S1)) (4)

The difference can be resolved by finding out whether Slope4 has a
bump or is a turn. As Slope4 is a turn, the first is false and the second
is true. Here, the counterfactuals are evaluated in a frame where what
Actually happens is a component. Thus, we can change the fact that
he bent his knees, without changing any other co-ordinate, and thus
infer that he does not fall.

Both our instructors can agree that ‘ ‘if he had chosen more ex-
pensive lessons, then he would not have fallen”.

Choice = Expensive � ¬holds(Fallen,Next(S1)) (5)

Here they choose to keep the number of lessons fixed, but make the
lessons better.

Our hero does not assent to the above conditional. He knows
that “if he chose the expensive lessons, he would not have had any
lessons”, as he cannot afford it. Thus he believes that he would fall
if he chose expensive lessons,

Choice = Expensive � holds(Fallen,Next(S1)). (6)

Thus he still would not have learned the requisite skills. Expensive
lessons cost more, so he would not have been able to take as many
lessons.

The reason that the ski instructors differ from our hero on this
conditional is that they allow the amount of money to vary, while our
hero allows the number of lessons to vary. They use different frames
and thus get different results.

We give an axiomatization of part of this domain in Section 5,
and now present a set of frames that gives the results for the first two
counterfactuals.

3.4 Co-ordinate frames for Skiing

With the axiomatization of the above story given below we can now
consider the first two counterfactuals. In each case we take an ap-
proximate theory, which will be some subset of the consequences of
the axioms in Section 5 , and a co-ordinate frame. From the theory
and the frame we judge the truth of the counterfactual. We show that
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choosing different approximate theories, or choosing different frames
can lead to different choices.

We give the co-ordinate frame that the two instructors use. They
choose what situations were actual, and what fluents held at the
situation S1, and the type of Slope4 as their frame. Here tr is a truth
value. The co-ordinates in the frame are the following terms, (two of
these are propositions, and so take on the values true or false).

Next(S1), Typeslope4,
holds(Fallen, S1), holds(Skiing4, S1).

As their core approximate theory they take the axioms about the
effects of various ski moves, 15, the axiom relating Next and Actual,
16, and the unique names and domain closure axioms and the frame
axioms 18. As the current world, they choose the values,

Next(S1) = result(Falls, S1) Typeslope4 = Turn
¬holds(Fallen, S1) holds(Skiing4, S1)

as they agree that Junior did fall on a slope with a bump, while skiing
Slope4.

With this frame the following counterfactuals are false and true,
respectively.

Actual(result(Bend, S1)) � ¬holds(Fallen,Next(S1))
Actual(result(Down, S1)) � ¬holds(Fallen,Next(S1))

(7)

In contrast the counterfactual

Actual(result(Bend, S1)) ∧ Typeslope4 = Bump �
¬holds(Fallen,Next(S1))

(8)

is true. We prove the first two claims formally after introducing the
necessary machinery in the next section.

4 Cartesian Counterfactuals via State Vec-

tors

In the previous section we claimed that certain counterfactuals were
true, given some co-ordinate frames. We now give a preliminary
axiomatization in terms of state vectors that allows us to formally
prove these statements.

We can define cartesian counterfactuals in terms of state vectors
[McCarthy, 1962]. The value of a variable x in a state vector ξ is
c(x, ξ), while the state vector that is like ξ, save that x has been
assigned the value v, is a(x, v, ξ). We can axiomatize a and c as
follows.

∀x, v.ξ.c(x, a(x, v, ξ)) = v,
∀x, y, v, ξ.x 6= y → c(y, a(x, v, ξ)) = c(y, ξ)

(9)
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The numerical example of subsection 3.1 is expressed as follows.
Let ξ0 represent the actual state of the world. We have

c(x, ξ0) = 1
c(y, ξ0) = 2
c(z, ξ0) = 1

(10)

We are interested in the function

s(ξ) =
√

c(x, ξ)2 + c(y, ξ)2 + c(z, ξ)2. (11)

The counterfactual

y = 3 � s = 7 (12)

takes the form

s(a(y, 3, ξ0)) = 7. (13)

It is obviously false.
Notice that while cartesian counterfactuals give a meaning to “if

x were 7”, they do not give a meaning to “if x + y were 7. This
is a feature, not a bug, because in ordinary common sense, counter-
factuals easily constructed from meaningful counterfactuals are often
without meaning.

In the above the “variables” x, y, and z are logically constants.
When we need to quantify over such variables, we need new variables
with an appropriate typographical distinction.

4.1 Relating State vectors to Propositions

The above way of rephrasing a counterfactual as a statement about
state-vectors is insufficient in general. It does not specify how each
step is to be done in other cases. There are three steps.

1. The first is to describe the current world as the contents of a
state vector. This is equation 10 above.

2. We now relativize all the other terms, those that are not co-
ordinates, in the theory, making them functions of a state vector
ξ. We replace the terms t that are co-ordinates by their the
contents functions applied to the term, i.e. c(t, xi). This gives
the equation 11 above.

3. The third and final step is to interpret left hand side as a mod-
ification of the state vector. This step yields equation 13 in the
above example. We then judge the relativized right hand side
applied to the new state vector. That is we ask if the relativized
right hand side follows from the values of the co-ordinates ini-
tially, and the relativized theory.
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Our state vector does not have values for all terms, just those in
our co-ordinate frame. Thus, for our numerical example, the set of
co-ordinates is,

x,y, z

We need to distinguish between the value of a constant x and its
name x. Here x in bold font refers to the name x, while x in plain
font denotes the value of x.

Let the state vector ξ assign these the terms1 nx,ny,nz. The
propositions that the state vector ξ encodes are thus the three propo-
sitions,

x = nx, y = ny, z = nz

Here we have used x, in plain font, as the proposition states that
the value of x is the value of the term nx.

We assign a co-ordinate a value using the a assignment function.
We can determine the value of a co-ordinate in a state vector using
c, the contents function.

We call the set of co-ordinates our frame, and we assume that
they are exactly the names of terms that are true of the predicate f .
Rather than assume that there is only a single frame, we can make
the frame an argument of c and a. This gives the axioms,

∀x, v, ξ, f.f(x) → c(x, a(x, v, ξ, f), f) = v
∀x, y, v, ξ, f.f(x) ∧ f(y) ∧ x 6= y →
c(y, a(x, v, ξ, f), f) = c(y, ξ, f)

However, for notational convenience we assume that the frame is
recoverable from the state vector, so we keep the ternary a and the
binary c whenever what frame we are using is clear from the context.

Our state vector thus uniquely determines the values of the co-
ordinates in the frame. From these values, we can determine a theory,
the set of sentences implied by the statements that the co-ordinates
have the values in the state vector.

The propositions that our state vector gives us may not be all the
facts about the world. In our numerical example, the extra fact,

s =
√

x2 + y2 + z2

was also the case.
We usually insist that our approximate theory is consistent with

our frame. That is, the propositions true at every point in our frame
are consistent with the approximate theory.

1We alternately suppose that the state vector assigns values to the names of
constants, but for reasons of generality is is sometimes useful to be able to specify
that a constant is equal to a term, rather than to a value.
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To reiterate, a co-ordinate frame, f , is a tuple of names of terms.
In the simplest case these are constants. A point p in a co-ordinate
frame f is a tuple of terms, equal in number to the co-ordinates of
f , and having the type/sort of the corresponding term in f . In the
simplest case, this is a tuple of values, the denotation of the terms.
The state vector that assigns the co-ordinates f the terms p is denoted
ξ(f, p).

The relativization of a theory A to a state vector variable ξ, writ-
ten A(ξ) and a set of co-ordinates X is the theory resulting from
replacing each co-ordinate x by c(x, ξ), and replacing each func-
tion, predicate and constant k not in X by a function from ξ to
the type/sort of k.

Definition: 1 Let fi be a term in a co-ordinate frame f , and let n
be a term, and let p = p1, . . . , pn be a point in f , the current world,
and let A be an approximate theory.

A counterfactual sentence fi = n � ψ, is true in 〈A, f, p〉, if and
only if,

∧

j≤m

c(fj , ξ0) = pj , A(ξ0) |= ψ(a(fi,n, ξ0)).

We now consider our first example. We define our frame as fol-
lows.

∀var.f0(var) ≡ (var = x) ∨ (var = y)
∨(var = z)

It is important to note that x,y, z are names of constants, not vari-
ables themselves.

We now define our initial state vector ξ0.

c(x, ξ0, f0) = 1, c(y, ξ0, f0) = 2,
c(z, ξ0, f0) = 1

We need unique names axioms for the names of terms. We use natural
numbers as their own names, for simplicity.

We then have that

c(x, a(y, 3, ξ0, f0), f0) = 1.

We can derive this from the second property of a and c, and the fact
that x 6= y.

We have x = 1, y = 3, z = 1 s =
√

x2 + y2 + z2 |= s =
√

11.
We have this set of sentences as our theory, as these are the for-

mulas that result from the terms x, y etc. to their values, 1, etc. in
the state vector.

We now prove that the first two counterfactuals that we consid-
ered in our skiing story are true and false respectively. To show this
we need to introduce an axiomatization of skiing, which we do in the
nest section. The axiomatization is only needed for proving the later
theorems, and may be skipped by the un-interested reader.
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5 Axiomatization

This section presents a formalization of a skiing domain in the situa-
tion calculus. The major novelty of this domain is that it allows some
reasoning about the actions of an agent. Normally, in the situation
calculus all sequences of actions are considered. Here we look at what
sequences would happen given some facts about our agent’s beliefs
and some rules about how he acts.

We include the notion of an actual time line picked out of the
possible time lines in the situation calculus. This follows Reiter and
Pinto [Pinto and Reiter, 1993]. We enrich this with a Next partial
function, that picks out the next actual situation.

We have five sorts, the usual situation, fluent and action sorts,
plus sorts for terrain types and skills.

We have five actions Skislope4, Falls and Bend, Down, and Wait.
We have fluents, Fallen, Skiing4, Learned(sk) for every skill sk. Our
two skills are Bendknees and Downhillski.

We have that after his one lesson our hero knows how to bend his
knees.

holds(Learned(Bendknees), S0)
¬holds(Learned(Downhillski), S0)
¬holds(Fallen, S0)
¬holds(Skiing4, S0)

(14)

We now have some facts about what the actual time line is, given the
state of the world, and the knowledge of our hero. If our hero sees
a bump, and has learned to bend his knees, he will actually do so,
otherwise he will actually fall. If he sees a turn, then he will put his
weight on his downhill ski if he has learned to do that, otherwise he
will actually fall. We also add that if he does the wrong thing, then
he will fall, and add the results of falling etc.

∀s.Typeslope4 = Bump
∧holds(Learned(Bendknees), s) →

Actual(result(Bend, result(Skislope4, s)))
(15)

∀s.Typeslope4 = Bump
∧¬holds(Learned(Bendknees), s) →

Actual(result(Falls, result(Skislope4, s)))

∀s.Typeslope4 = Turn
∧holds(Learned(Downhillski), s) →

Actual(result(Down, result(Skislope4, s)))

∀s.Typeslope4 = Turn∧
¬holds(Learned(Downhillski), s) →

Actual(result(Falls, result(Skislope4, s)))
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∀s.Typeslope4 = Turn ∧ holds(Skiing4, s) →
holds(Fallen, result(Bend, s))

∀s.Typeslope4 = Bump ∧ holds(Skiing4, s) →
holds(Fallen, result(Down, s))

∀s.holds(Fallen, result(Falls, s))
S1 = result(Skislope4, S0)
Actual(S0)
Actual(result(Skislope4, S0))
∀as.s 6= S0 ∧ s 6= S1 ∧ ¬∃a.s = r(a, S1) →
Actual(s) ≡ Actual(result(Wait, s))

These axioms are enough to pick out an actual timeline, of skiing
Slope4, then carrying out an action that depends on the terrain of
Slope4 and Junior’s knowledge, and then waiting for ever.

We now state that after every actual situation there is a unique
actual situation, that picked out by Next. We take this to be the
definition of a partial function Next, so that sentences containing
Next are notations for sentences containing Actual.

∀s.result(a, s) = Next(s)
def≡ Actual(result(a, s)) (16)

We also add that Slope4 is a turn.

Typeslope4 = Turn (17)

We also need to add unique names, domain closure, and frame
axioms.

We have as our unique names axioms, fully unique names, except
for the function Actual, the situation constant S1 and the constant
Typeslope4.

We now add our frame axioms for each fluent.

∀a, s.holds(Skiing4, result(a, s)) ≡ a = Skislope4

∀s, a.a 6= Falls ∧ (a = Bend →
Typeslope4 6= Turn ∨ ¬holds(Skiing4, s))∧

(a = Down → Typeslope4 6= Bump∨
¬holds(Skiing4, s))
→ (holds(Fallen, s) ≡ holds(Fallen, result(a, s)))

∀s, f.f 6= Skiing4 →
holds(f, s) ≡ holds(f, result(Wait, s))

∀a, s, sk.holds(Learned(sk), s) ≡
holds(Learned(sk), result(a, s))

(18)

These are enough frame axioms to generate explanation closure ax-
ioms for every fluent.
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6 Deriving Counterfactuals

Theorem: 1 The counterfactual

Actual(result(Bend, S1)) � holds(Fallen,Next(S1))

is true, in the theory A axiomatized by the axioms about the effects of
various ski moves, 15, the axiom relating Next and Actual, 16, and
the unique names axioms and the frame axioms 18, with the following
frame,

Next(S1), Typeslope4,
holds(Skiing4,S1),holds(Fallen,S1),

and the following current world,

Next(S1) = result(Falls, S1) Typeslope4 = Turn
¬holds(Fallen, S1) holds(Skiing4, S1)

Proof: We use the first property of our assignment functions to
derive that, in our new world, Actual(result(Bend, S1)).

Actual(result(Bend, S1)) is a shorthand for the result of equating
a term in the frame, Next(S1), to the term result(Bend,S1).

We use the second property of our assignment function a to derive
that holds(Skiing4, S1). This follows as holds(Skiing4,S1) is in the
frame, and holds(Skiing4, S1) is true in our current world, so we have
that its value persists. We also show that Typeslope4 = Turn in the
same way.

We now use the effect axiom to derive that

holds(Fallen, result(Bend, S1)).

Finally the definition of Next, which is in the core theory gives us

holds(Fallen,Next(S1)).

Theorem: 2 The counterfactual

Actual(result(Down, S1)) � ¬holds(Fallen,Next(S1))

is true, in the theory A axiomatized above, with the frame and current
world specified above.

Proof: We use the first property of our assignment functions to
derive that in our new world, Actual(result(Down, S1)) as above.

We use the second property of our assignment functions to derive
that holds(Skiing4, S1) and Typeslope4 = Turn as we did previously.

We now use the frame axiom 18 to derive that

¬holds(Fallen, result(Down, S1)),

using the given fact that holds(Skiing4, S1) and Typeslope4 = Turn.
Finally the definition of Next gives us

¬holds(Fallen,Next(S1)).
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7 Deriving Facts from Counterfactuals

In this section we show that we can derive facts that do not contain
counterfactual implications from counterfactuals.

We take as our theory, the axioms in Section 5, save for the last
axiom Typeslope4 = Turn. From the counterfactual,

Actual(result(Down, S1)) � ¬holds(Fallen,Next(S1))

we derive that, Typeslope4 = Turn.

Theorem: 3 Let the theory A be axiomatized by the axioms in Sec-
tion 5 save 17 and the counterfactual

Actual(result(Down, S1)) � ¬holds(Fallen,Next(S1)),

judged relative to the approximate theory B axiomatized by the axioms
about the effects of various ski moves, 15, the axiom relating Next and
Actual 16, and the unique names axioms and the frame axioms 18.
Let f(var) be defined as follows:

∀var.f(var) ≡
var = Next(S1)∨
var = holds(Fallen,S1)
var = holds(Skiing4,S1)

Then, A |= Typeslope4 = Turn.

Proof: We first note that in A, the co-ordinates have the values,
Falls, t, t. We expand the definition of a counterfactual being true,
namely,

c(Next(S1), ξ0) = result(Falls, S1),
c(holds(Fallen,S1), ξ0) = t,
c(holds(Skiing4,S1), ξ0) = t,
B(ξ0) |=
¬holds(Fallen, c(Next(S1), a(Next(S1), result(Down, S1), ξ0))).

to get, by replacing the function c everywhere its value at that argu-
ment,

Next(S1) = result(Down, S1),¬holds(Fallen, S1),
holds(Skiing4, S1), B |=

¬holds(Fallen, result(Down, S1))

This is a meta-theoretic statement, so we translate this into second
order logic, by quantifying over predicates, functions and objects in
the standard way2.

∀Z̄.Next′(S1′) = result′(Down′, S1′)∧
¬holds′(Fallen′, S1′)∧

holds′(Skiing4′, S1′) ∧B[Z̄/Z̄ ′] →
¬holds′(Fallen′,Next′(S1′)),

2We do not need to quantify over the domain, as in this case we have enough
axioms to ensure that the domains of each of our sorts are fixed.
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where Z̄ is the tuple of all constant symbols in the language, and Z̄ ′

is a tuple of variables, equal in type and arity to the constants in Z̄,
we write variables in Z ′ as Next′ etc.

This second order sentence captures the truth of the counterfac-
tual. We can conjoin this with the other axioms in the theory A, and
ask whether it implies, Typeslope4 = Turn in second order logic.

It does, as can be seen from instantiating the universally quanti-
fied variables, with their corresponding constants, except for Actual′

and Next′ which are instantiated by the predicate P true of the small-
est set of situations satisfying the formulas below, and the partial
function, Next′′(s) = result(a, s) ≡ P (result(a, s)), defined from P ,

P (S0) ∧ P (result(Skislope4, S0))∧
P (result(Down, result(Skislope4, S0)))
∧∀s.s 6= S0 ∧ s 6= result(Skislope4, S0)∧
s 6= (result(Down, result(Skislope4, S0)) ∧ P (s) →

P (result(Wait, s))

The result of instantiating these terms, and noting that the left hand
side is derivable from the theory A gives the sentence.

¬holds(Fallen, result(Down, S1))

However, we also have holds(Skiing4, s1), and the axiom,

∀s.Typeslope4 = Bump ∧ holds(Skiing4, s) →
holds(Fallen, result(Down, s))

Instantiating this with S1 and simplifying gives Typeslope4 6= Bump.
As we know by domain closure that

Typeslope4 = Bump ∨ Typeslope4 = Turn,

we have

Typeslope4 = Turn,

as required.

8 Bayesian Networks

This approach can be seen to be similar to modeling systems with
structured equations [Simon, 1953] [Druzdel and Simon, 1994], or
Bayesian networks [Balke and Pearl, 1994b] [Balke and Pearl, 1994a]
[Pearl, 1995]. Rather than have equations that give the value of a
variable, we have arbitrary propositions. The dependency relation-
ships are captured by the frame, rather than links. In our model,
exogenous variables are in the frame, as are the functions that give
the value of the other variables. Updating the Bayes net can then be
seen to be updating the frame.



18

One major difference between our approach and structural equa-
tion models or Bayesian networks is that we consider arbitrary propo-
sitions, and consider these relative to a background approximate the-
ory. This approximate theory can be rich, that is, not completely
describable. The other major difference is that Bayesian networks
focus on the probability distribution of certain variables, rather than
on facts in general.

We now briefly sketch Galles’s and Pearl’s formalization of causal
models, their generalization of structural equations.

Definition: 2 A causal model is a triple M = 〈U, V, F 〉, where U is
a set of variables, called exogenous variables, V is a set of variables,
disjoint from U , called endogenous variables, and F is a set of func-
tions fi, from U ∪ (V/vi) to vi for each vi in V . We shall sometimes
represent a function fi by a defining equation for vi.

If X is a tuple of variables in V , and x a tuple of values for the
elements of X, we write X = x, for the set of equations that result
in equating the elements of x with the corresponding value in x.

A sub-model MX of M is the causal model,

Mx = 〈U, V, FX〉

where

FX = {fi : Vi /∈ X} ∪ {X = x}

If Y is a variable in V , the potential response of Y to equating X
to x is the solution for Y of the equations FX .

The counterfactual X = x � Y = y is true if y is the potential
response of Y to equating X to x.

We now show how to represent causal model as a cartesian frame.

Definition: 3 Let M = 〈U, V, F 〉, be a causal model where U =
{u1, . . . , um}, V = 〈v1, . . . , vn〉, and

F = {vi = fi(u1, . . . , um, v1, . . . , vi−1, vi+1, . . . , vn)|i ≤ n}.

The cartesian frame for M is in the equational language, with
variables, ui|i ≤ m and functions, vi of n + m − 1 arguments, and
functions.

The cartesian frame MF is the set of function terms vi, and the
current world MW is the tuple,

f1(u1, . . . , um, v2, . . . , vn),
. . . , fi(u1, . . . , um, v1, . . . , vi−1, vi+1, . . . , vn),
. . . f1(u1, . . . , um, v1, . . . , vn−1).

We now show that X = x � Y = y is true in a causal model M if
and only if X = x � Y = y is true in the cartesian frame MF , with
current world MW .
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Theorem: 4 X = x � Y = y is true in a causal model M if and
only if

∧

X = x � Y = y is true in the cartesian frame MF , with
current world MW .

Proof: We prove this by showing that the equations in sub-model
MX are exactly the formulas encoded by the result of updating the
state vector ξ(MF ,MW ) by each element of X = x.

The sub-model MX is the causal model,

Mx = 〈U, V, FX〉

where

FX = {fi : vi /∈ X} ∪ {X = x}

The formulas encoded by a(vi, z, ξ(M
F ,MW )) are

{fi : vi 6= z} ∪ {vi = z}.

The formulas encoded by the sequence of assignments is

{fi : vi /∈ X} ∪ {X = x}.

To show this, it is enough to realize that no vi can appear twice in
X, and thus every distinct update updates a distinct variable.

Thus the equations in sub-model MX is exactly the formulas en-
coded. Finally, the conditions for y being a potential response of Y
to equating X to x are exactly the conditions for Y = y following
from the equations,

{fi : vi /∈ X} ∪ {X = x}.

9 An Application of Cartesian Counterfactu-

als

Cartesian counterfactuals have been used to answer challenge ques-
tions in the U.S. DARPA (Defense Advanced Projects Agency) High
Performance Knowledge Bases (HPKB) program. In this section
briefly explain what this project does, and then we some examples of
how cartesian counterfactuals are used.

The HPKB program is developing technology to build large (10
to 100 thousand axioms), reusable knowledge bases that can answer
questions on a specific topic. One branch of the project considers
Crisis Analysis. That is, it attempts to answer the kinds of questions
intelligence analysts would ask when a crisis erupted somewhere in
the world.

The HPKB project is competitive. The research groups are divid-
ing into two groups, and build competing systems, which are tested
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yearly on their ability to answer newly posed questions about a cho-
sen topic. These questions range from the (seemingly) simple, “What
is the difference between sarin and anthrax?”, to quite involved coun-
terfactuals.

In order to even meaningfully state the counterfactuals, we need
to give some background information. Here we give an extract from
a scenario, modified by string substitution to be set in the world of
the Lord of the Rings.

Mordor supplies a hobbit terrorist group, the Hobbit
Liberation Army (HLA), with money, explosives, small
arms, and advisors and offers the use of a training facil-
ity near Gondor. Mordor arranges to acquire weapons-
grade anthrax from a Ranger Mafia cell. Mordor con-
tacts an Elvish biological weapons expert, known only as
Feanor, who agrees to supply Mordor with equipment and
weapons-engineering skills to complete the weaponization
of several small biological devices.
...
The orcs of Mordor, aided by the nefarious Elvish biolog-
ical weapons expert, successfully build a small, hobbit-
portable anthrax sprayer. Separately, arrangements are
made with the HLA to begin training exercises in Mordor
at the western terrorist training camp.
...

Although entirely hypothetical, the scenario is very detailed, running
to 15 pages.

Given this scenario, (called the Y1 Phase II LOTR Scenario) the
following counterfactual was posed.

How would the Y1 Phase II Lord of the Rings Sce-
nario be affected if BW experts of Mordor did not pro-
vide advanced technology and scientific expertise aid to a
terrorist group?

This question can be stated in KIF (knowledge interchange for-
mat) as follows.

(and

(not (occurs-in ?event (scenario-minus

?event1 Y2-scenario)))

(occurs-in ?event (day ?n Y2-Scenario ))

(supply ?event1)

(object-acted-on ?event1 ?aid)

(indirect-object-to ?event1 ?group)

(terrorist-group ?group)

(expertise ?aid)

(actor ?event1 ?experts)
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(citizens-of ?expert Mordor)

(expert ?experts)

(information-about ?aid advanced-technology)

(actor ?event ?actor)

)

In the system built by the one team, to which the Formal Reason-
ing Group is associated, this query is sent to a theorem prover (ATP),
which extracts binding from a knowledge base for the variables (the
names preceded by a question mark). The binding are then trans-
lated into a natural language answer, and the proof into a natural
language explanation of the answer. We will not discuss these parts
further, as they do not bear on the use of cartesian counterfactuals.

The system find the correct answer, namely Mordor would not
have been able to weaponize the anthrax, by reasoning that had they
not received the elvish aid, then they would not have been able to
weaponize the material, as biological weapon engineering skills are
necessary for this task. The reasoning is about 40 resolution steps,
and involves 7 rules and 30 ground facts.

In the case of this counterfactual, the frame is the facts true at
the beginning of the scenario, and the events that occur before the
elvish aid arrives. The events that occur later are not in the frame,
as they are not independent of the earlier events.

Counterfactuals are included in the HPKB project as they are a
very natural way to explore an evolving situation. When thinking
about the present, past cases, and counterfactual variants of them
are often employed.

10 Theories admitting counterfactuals

As stated earlier, different theories admit different counterfactuals.
Our goal is to make this more definite for common sense theories, but
theories involving differential equations (and difference equations) ad-
mit particular kinds of counterfactuals in informative ways. We dis-
cuss them first and then move on to common sense theories for which
counterfactuals are more important.

10.1 Theories given by differential equations

Theories given by differential equations give some clearcut examples.
The solutions are determined by boundary conditions. If the the-

ory includes both the differential equations and the boundary con-
ditions, the most obvious counterfactual is to keep the differential
equations and change the boundary conditions to a different set of
admissible boundary conditions.

A simple example is provided by the equations of celestial mechan-
ics regarding the planets as point masses. We can use the equations
to predict the future of the system from the present but with Mars
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having a different position and velocity than it has at present. We
can also solve the equations supposing a sudden change in the mass
of Mars in this theory.

A more complex theory in which Mars has a distribution of mass,
which might be necessary to predict the future positions of Deimos
and Phobos (the moons of Mars), would not consider a sudden change
of the mass of Mars that didn’t specify how the new mass was dis-
tributed as a definite alternate initial state.

Other counterfactuals are not meaningful in celestial mechanics,
e.g. what if Mars had a circular orbit. This isn’t meaningful, because
even if Mars started along a circle, you would have to make arbitrary
assumptions in order to keep it there and might end up violating the
law of conservation of momentum.

However, the differential equations don’t need to involve time
to admit counterfactuals. A theory that gives the distribution of
potential in a region as a function of the distribution on the boundary
can also consider altered values on the boundary.

The same considerations that apply to differential equations apply
to difference equations.

What if the deuteron had a mass one percent larger than it does?
For chemistry and the theory of atomic spectra this is a reasonable
counterfactual. For example, its effect on spectra and the rate of
chemical reactions could be predicted. However, this is a meaningless
counterfactual for nuclear physics, because it doesn’t say whether
the extra mass is in the proton or the neutron or somewhere else.
Quantum mechanics doesn’t tolerate giving a proton or neutron a
different mass in a particular atom, because it violates the notion of
identical particles required to apply the anti-symmetry rule for wave
functions.

Thus we see that counterfactuals reasonable at one level of theory
may be unreasonable at a more fundamental level.

Such counterfactuals in physics are appropriately handled infor-
mally — as long as the physicists are people. Robotic common sense
reasoning requires a formal treatment.

10.2 Common sense theories

Situation calculus theories are somewhat similar to celestial mechan-
ics in the kinds of counterfactuals they admit. However, different
situation calculus formalizations of the same phenomenon may ad-
mit different counterfactuals.

Consider two similar theories, the Yale Shooting Problem with
the additional statement what walking implies being alive, and the
Yale Shooting Problem with the additional rule that shooting causes
someone to stop walking (when the gun is loaded). These theories
are equivalent when we add induction, as the domain constraint can
be derived by an induction.

We now consider what might happen if the gun was a pellet gun.
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Pellet guns wounds, though painful are not fatal. Thus, we remove
the effect axiom that states shooting kills. In one case, we are left with
the effect axiom that shooting stops someone walking, even though
it does not kill them—a reasonable conclusion. In the other, we are
left with no effects, as the second effect axiom was a consequence of
the domain constraint and the axiom that shooting kills.

Thus how we axiomatize our theory can alter the truth of coun-
terfactuals.

11 Non-cartesian counterfactuals

So far we have considered cartesian counterfactuals. In this section
we consider how we can go beyond this basic case. The essential
restriction that characterizes cartesian counterfactuals is that every
point in the product space is a meaningful state of affairs. Thus,
if we have a frame with co-ordinates x,y and z, we can choose any
values for x,y and z, say nx, ny, and nz, and the theory that we
get when we add x = nx,y = ny, z = nz to our approximate theory
correctly predicts the truth of counterfactuals with premises asserting
the values of x, etc.

Sometimes there are assignments of co-ordinates that are not
meaningful. This can be because the co-ordinates having those values
breaks some rule, or is impossible. In other cases, though those val-
ues of the co-ordinates are not excluded by our approximate theory,
it may be that our approximate theory does not correctly predict the
outcome for those values. Finally, so co-ordinates are not meaningful
given when other co-ordinates have certain values. For instance, a
choice of whether to bend ones knees or not does not make sense
unless you are skiing.

This is made clearer by some examples.
The first example shows a case where some values of the co-

ordinates are excluded by the approximate theory. In this theory
x is the height of the bottom of a spring, and y the height of the
top of the spring, s is then the height of the spring, and f the force
outwards on each endpoint. l is the length of the spring at rest, and
e the elasticity. In this case, Hooke’s Law tells us “ut tensio sic vis”,
i.e. the force is proportional to the extension of the spring, where e
is the proportion, and further, it is in the opposite direction.

Consider the following approximate theory,

x > y
s = x− y
f = −e ∗ (s− l)
l = 2
e = 1

In the current world x = 3, y = 5, so the spring is at its nominal
length.
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Then, if we have x,y as our co-ordinate frame, we have that if
x = 1 � s = 4, further we have that x = 1 � f = −2, that is, the
force on the bottom of the string is 2 units upwards.

What would happen if we moved the bottom of the string to
position 6. In the real world, this would be either impossible, (as we
would try to push something through itself), or possibly we might
end up with a reversed situation. In either case, the approximate
theory is no longer the case. We can tell this because the theory
makes the following counterfactual true x = 6 � ⊥.

However, sometimes we will go outside the range of meaning-
fulness of our approximate theory without reaching a contradiction
inside it. Consider our spring theory above. Suppose that the spring
breaks3 when it is stretched to length 6.

Our theory tells us that y = 10 > f = −10. This is incorrect,
but we cannot tell this from our approximate theory alone. In the
previous case we could detect a problem because of inconsistency. In
this case, we cannot detect the problem in that way.

In both these cases, out theory was cartesian in a certain region,
but outside that region, that simple structure broke down, and the
cartesian structure no longer provided meaningful answers.

12 Tree Structures of Possibilities

To go beyond cartesian counterfactuals, it is useful to consider trees
of possibilities. A node in the tree corresponds to fixing some of the
aspects of the entity being considered and regarding the others as
variable.

To fix the ideas, let the entity be the world and its history—but
there are others.

We consider trees with finite branching and finite depth. We may
regard the leaves as possible worlds.

A theory of counterfactuals based on the trees can have more
structure than theories based solely on the possible worlds.

Returning to the adventures of Junior, we consider the node A
from which the possibilities branch according to whether Junior went
surfing, went skiing or stayed home. If Junior went skiing, it makes
sense to ask whether he took cheap skiing lessons, expensive skiing
lessons or none. These are edges leading from the node leading from
the edge in which he went skiing. If he went surfing, there are no
edges leading from that node corresponding to the different skiing
lessons. [Therefore, we don’t have a cartesian product structure, but
we could force one by putting edges for the kinds of ski lessons leading
from the node in which he went surfing. We don’t do that.]

3Steel springs will tend to stretch permanently when stretched or deformed
beyond a certain point, but other materials, such as glass will break almost im-
mediately outside their elastic region, especially if pulled quickly.
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Now let us suppose that Junior had lunch on the given day, re-
gardless of whether he skied or surfed. If he went skiing or surfing, we
suppose that at lunch that he may have had either a hamburger or a
hot dog or a pizza. If he stayed home he had chicken soup. In fact
suppose that he had a hamburger. Now consider the counterfactual,
“If Junior had had a hot dog, he would have had indigestion.” This
counterfactual may be stated either about the skiing node or about
the surfing node. Let’s put in another branch on whether Junior
telephoned Deborah or Sheila or neither.

We can imagine the tree of possibilities to have been constructed
in two ways. in one the split on what Junior had for lunch precedes
in the tree the split on whom he telephoned. We say “precedes in the
tree”, because we are not concerned with the temporal order of these
events, ignoring the fact that if he telephoned Deborah he had to
do it before lunch whereas telephoning Sheila would have been done
after lunch.

Let the variable x have the value 1, 2 or 3 according to whether
Junior went skiing, surfing or stayed home. Let y have one of these
values according to whether he had expensive lessons, cheap lessons
or none. Let z have values according to what he had for lunch and
w have values according to whom he telephoned.

We can label the edges of the tree. The edges from node A
are labeled, x = 1, x = 2, and x = 3. We can use a notation
for this reminiscent of the notation used for state vectors and write
a(x, 1, A) or more explicitly a(“Junior went skiing”, A). However, in
the tree case, we don’t have all the nice properties of the state vector
case. The edges leading from the node a(x, 1, A) are labelled y = 1,
y = 2 and y = 3. However, the edges leading from a(x, 2, A) and
a(x, 3, A) have no y-labels nor do any of their successors in the tree,
i.e. a(y, 1, a(x, 2, A)) is undefined. If Junior didn’t go skiing, there is
no branch according to what kind of lessons he took.

Here are the trees. Tree 1 puts skiing, surfing and home on the
edges leading from A, and Tree 2 puts whom he telephoned on these
edges.

The z and w situations are simpler. Provided the value of x is 1
or 2, the tree may be arranged to put the edges labelled with z before
or after the edges labelled with w. We can write, for example,

(∀αβγ)(γ 6= 1
→ a(w, β, a(z, α, a(x, γ,A))) = a(w, β, a(z, α, a(x, γ,A))))

(19)

This is a local cartesian product case. We can say that the variables
z and w commute. The relation between z and x is more complex,
because telephoning and having hot dogs for lunch arise only when x
is 1 or 2. Also when x = 1, z and w may jointly commute with y.

We say that a pair of co-ordinates x1, x2 is locally cartesian under
a condition φ, when

φ→ ∀v1, v2.a(x1, v1, a(x2, v2, A)) = a(x1, v1, a(x2, v2, A))
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This notion make sense for sets of co-ordinates. A set of co-ordinates
are locally cartesian under a condition φ, when all orders of assign-
ment agree.

We can now write

(∀α)(α = 1 ∨ α = 2) →
Eats(HotDog, a(x, α,A))
� Holds(Indigestion, Next(a(x, α,A)))

(20)

The branching tree of propositional possibilities is isomorphic
to the structure of compound conditional expressions discussed in
[McCarthy, 1963].

13 Conclusions

We have shown the usefulness of counterfactuals in theories with a
cartesian product structure, showing how to infer such counterfactu-
als and how to make inferences from them. We also consider more
general tree-structured counterfactuals.

We do not claim there is a single set of true counterfactuals.
Rather, a counterfactual can only be judged relative to a background
theory. In the cartesian case, the theory involves a choice of a “co-
ordinate frame”.

These counterfactuals give information about how the world be-
haves, so that in future situations the reasoner can better predict
what will happen.

To be useful, a counterfactual needs to be imbedded in a theory
that includes goals or a notion of utility.

The theories inhabited by counterfactuals are usually approxi-
mate theories of the world and sometimes involve concepts and ob-
jects that are not fully defined. Approximate theories and approxi-
mate objects and their relationships are discussed in [McCarthy, 2000].
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