

Creative Gadget Design in Fictions: Generalized
Planning in Analogical Spaces

Boyang Li and Mark O. Riedl
School of Interactive Computing
Georgia Institute of Technology
{boyangli, riedl}@gatech.edu

ABSTRACT
Science-fiction and fantasy stories often contain objects
never envisioned previously. Inventing gadgets like
lightsabers or mythical creatures like griffins is a creative
task. Traditional computational storytelling systems are
limited in their expressivity because they cannot create new
types of objects or gadgets. The Japanese manga series
Doraemon exemplifies the role of new and creative gadgets
in creating fun and successful stories. We surveyed five
volumes of Doraemon and identified 9 cognitive strategies
of gadget creation, unified in a 5-step process. We present
an algorithm to create new types of gadgets in the context
of story generation. The algorithm is a combination of
partial-order planning and analogical reasoning. Although
Doraemon is our motivating example, we can also generate
gadgets commonly seen in other science fictions and fairy
tales.

Author Keywords
Story generation, fictional gadget, computational creativity

ACM Classification Keywords
H.4.m [Information Systems Applications]: Miscellaneous;
J.5 [Arts and Humanities]: Literature

General Terms
Algorithms, Design.

INTRODUCTION
This paper attempts to investigate and simulate a major
creative capability exhibited by human storytellers: the
ability to create imaginary objects. Many science fictions,
fantasies, and fairy tales contain imaginary objects that do
not exist in our world. These objects usually have special
powers, supposedly due to futuristic technologies or magic,
which allow them to accomplish impossible deeds.
Lightsabers in Star Wars and the magic mirror in Snow
White are two famous examples. These objects contribute
significantly to the fun of reading and sometimes dictate
story development. The “gadget story” is proposed as one
of the four subgenres of science fiction [10]. The cognitive

construction of such objects, which we call gadgets, is a
creative act that we attempt to imitate with an Artificial
Intelligence (AI).

Simulating the human ability to write stories has long been
an objective of AI, and some storytelling systems are
considered as creative [5, 11]. However, almost all
storytelling systems require a pre-specified micro-world
which defines all characters, objects, places, and their inter-
relationships. A few systems can modify this configuration
to a limited extent [14, 19, 24]. We are not aware of
storytelling systems that can create new types of objects
previously unknown. In contrast, human authors’ ability to
perform this imaginative task is well-known, as we can see
from examples as disparate as Star Wars, Snow White, and
Doraemon.

The hugely successful, 45-volume Japanese manga
Doraemon is often considered as a Japanese cultural icon
and one of the most prominent illustrations of the human
ability to imagine new objects. Doraemon is a cat-like robot
coming from the future to accompany and help a primary
school student, Nobita. The repeated theme of the series is
that Doraemon helps Nobita to cope with problems such as
exams and bullies by using high-tech gadgets
indistinguishable from magic. However, in the end they
usually backfire and cause unexpected consequences,
emphasizing the importance of self-reliance. Dream-
fulfilling gadgets that solve intractable problem are the
highlights of Doraemon [18]. In this paper, we focus on
Doraemon as an example of creative use of gadgets in
fiction.

In an attempt to reverse engineer the creative processes of
Doraemon’s creator, we surveyed five volumes of the
manga. From an information-processing viewpoint, we
identified 9 techniques that appear to be used by the
Doraemon authors to create gadgets. These techniques are
unified into a 5-step process. We then present an algorithm
for generating gadgets based on our taxonomy, utilizing a
combination of planning, analogical reasoning, and
knowledge of everyday objects and tools to create gadgets
serving narrative purposes. The algorithm extends partial-
order planning to systematically explore in space of
analogies. We show our algorithm can reproduce gadgets in
Doraemon. To our best knowledge, this is the first attempt
at the generation of novel gadgets as part of AI storytelling.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
C&C’11, November 3–6, 2011, Atlanta, Georgia, USA.
Copyright 2011 ACM 978-1-4503-0820-5/11/11...$10.00.

For an artifact to be considered creative, Boden [1] asserts
it must be (a) valuable, useful or entertaining, (b)
significantly different from artifacts known or created
previously, and (c) not easily predicted by consumers of the
artifact. Our algorithm generates gadgets that are different
from any known objects and achieve narrative goals other
objects cannot ordinarily achieve. Hence, we believe the
process is creative. Our algorithm combines aspects of
combinational and transformational creativity since it can
combine multiple objects and transforms rules of the
fictional world in which the story happens.

BACKGROUND AND RELATED WORK
Following cognitive research on narrative comprehension,
we model a story as a sequence of events that happen in
and transform a fictional world. Cognitive science reveals
that readers build mental models of narratives, which
capture events described by stories. It is found that people
naturally segment continuous narratives such as texts and
movies into discrete event structures [27]. Furthermore,
people can perceive events of different granularities
organized in hierarchies, where a large event can include
several small events [28]. Causality and temporality
between events are also important constituents of mental
models of narratives, directly affecting comprehension (cf.
[27, 29]). Causal relationships between events allow
readers to make inferences about narratives and missing
causal links can hinder comprehension [20].

A corresponding AI formalism that captures a sequence of
events as well as temporal and causal relationships between
them is a partial-order plan. In story generation, a plan may
be used to imitate mental models of stories and make
inferences about readers’ perception of stories. This leads
to the development of story planners [9, 12, 14, 15, 26].
Story planners require both an initial state and a goal
situation to be specified as inputs before generation takes
place. The initial state describes the world before the story
happens, and the goal situation describes changes the
events caused when the story ends. The planning algorithm
generates a plan as a feasible path linking the beginning
and the end of the story. Traditional story planners have
limited expressivity because they have to accept both a
given beginning and a given outcome.

From a narratological perspective, Ryan [16] considers
comprehension of stories as reconstruction of fictional
worlds. Ryan makes two observations. First, readers learn
about the fictional world bit by bit throughout the story,
rather than everything at the beginning. Second, readers
generally assume aspects not mentioned in the story to
depart minimally from our world.

One implication of readers learning bit by bit throughout
the story is that they are usually happy to believe that facts
learned later existed all along. For example, when the story
describes a lightsaber for the first time, readers can easily
accept that this apparently novel technology existed in the
fictional world the entire time. This implies that, with

proper justification, we can introduce facts and novel
objects later in the story without complete loss of
believability. This observation motivates story planners that
dynamically assert facts in the story world. Riedl and
Young [14] proposed a story generation technique that
starts out with a pre-defined micro-world, but allows some
of the details of the world to be retroactively modified to
suite the narrative arc. From a narratological perspective,
their system can be considered to start from a set of
possible worlds and later settle on one where the best story
can be developed. The idea is later generalized [19, 24].
Our work on gadget generation complements these
techniques for world-altering during storytelling. The
world-altering story planning techniques described above
can adjust relationships between objects and attributes of
objects, and instantiate new objects of known types. These
techniques, however, cannot create new types of objects.
The work presented in this paper directly addresses the
problem of creating an object of previously unknown type.

The second of Ryan’s observations, the theory of minimal
departure, suggests that readers re-use existing knowledge
to interpret newly encountered fictional worlds. For
example, we are willing to assume most characters in
movies and novels pay at restaurants, even when such
details are often omitted. In AI terminology, when the
reader learns that a person eats at a restaurant , they bring
into the fictional world the knowledge frame of restaurant
visits, which includes paying. Based on this observation,
we believe the connection between a common object that
people are familiar with and the unfamiliar gadget is crucial
for the understanding of a gadget. When the gadget is
analogous to a common object, old knowledge can shed
light on the new, which allows the new gadget to be easily
understood and accepted. For instance, since we understand
a lightsaber is analogous to a sword, we can accept that a
lightsaber deflects upon hitting another lightsaber blade,
even though physics indicates two beams of laser would
actually pass through each other. Take another example
from the Doraemon manga, a piece of toast bestowing the
power of memorization on its user (Volume 2 Story 1,
abbreviated as D2.1 thereafter). Although the analogy
between the gadget and a toast cannot completely explain
how to use the gadget, it provides some hints; readers can
easily understand using the toast gadget involves eating it.
We believe that for imaginary gadgets, such analogies are
crucial for its comprehension and intuitive appeal. A good
analogy can enhance the intuitive appeal of the gadget.
Gadget generation in this paper focuses on finding the
correct common object and modifies it to make a gadget
while preserving the analogy between the two.

To reason about analogies between the common object and
the gadget, we draw from the research on analogical
reasoning. Several AI programs, such as SME [2], ACME
[8], and Sapper [22, 23] attempted to simulate the human
ability to recognize analogies. An analogy maps between
two conceptual spaces including entities with attributes and

interrelationships. SME distinguishes between the mapping
between surface properties (such as color and size) and
relations (such as causality or inequality). Mappings of
only relations are considered as true analogies, whereas
mappings of only surface properties are superficial and
mappings of both are literal similarities. Nonetheless, other
researchers [8, 22, 23] utilize both properties and relations
in analogical mapping. Since most mappings are not
perfect, we consider both surface and relational features
contribute to intuitive appeal of analogies. Most relevant to
our work, Sapper utilizes both types of features, and allows
analogies to be built incrementally via the incremental rule.
This well fits into the refinement search paradigm of
partial-order planning.

STRATEGIES OF NOVEL GADGET DESIGN
As fictional gadgets exist only in the imagination of the
author and the reader, it is often impossible to provide a
detailed scientific account for their mechanisms. No one
ever read HAL's code or understood how a time machine
works, but it does not make them less happy reading those
stories. This differentiates design of fictional gadgets from
design in the real world, where a working mechanism must
be designed for any product. Computational systems that
automate the design task have been investigated (cf. [6]).
The most similar to our work are systems that utilize
analogy in design, such as [13] and [7].

For a gadget to be accepted by readers, it must be
comprehensible. In our opinion, to comprehend a gadget is
to be able to recognize it and to make predictions about it;
the understanding consists of its appearance and behavior.
We consider anyone who knows how to use a phone to
transmit voice as "understanding" a phone, even though
they may not understand the underlying physics. Hence, we
propose that to generate a gadget is to generate a reasonable
behavior for it and its corresponding appearance. The
appearance should intuitively match the behavior. For
example, a gadget that can fly is likely to have wings or
propellers. However, the coupling between the appearance
and the behavior is not the focus of this paper.

Across all 45 volumes, it is estimated that Doraemon
contains about a thousand gadgets [18]. We closely
analyzed the first five volumes of Doraemon for a total of
87 stories and attempted to deconstruct the process of
gadget creation. Consequently, we identified 9 concrete
strategies of gadget design. Several exclusion criteria are
applied in our study. We disregard gadgets that interact
with time (e.g. time machines) since such interactions may
result in logical inconsistencies problematic for AI systems.
We ignore stories where multiple gadgets are used in
combination and none is described well enough for our
analysis. We further exclude gadgets creating scientific
simulations and virtual reality (e.g. the virtual reality skiing
field in D2.15), or directly taken from fairytales and
obviously existing ideas, such as Aladdin’s lamp (D1.15)
and Cupid's bow and arrows (D3.12). After these
exclusions, we identified 60 gadgets from the five volumes,

and found that the 9 strategies proposed here can explain 55
or 91.6% of these gadgets.

Next, we describe specific strategies with examples from
the manga. However, as with many cognitive phenomena,
gadget creation is a fluid and organic process. Strategies
may have fuzzy boundaries and can be used in
combination. The main aim here is to illustrate different
techniques rather than providing a strict taxonomy.

Strategy I: Default Form Factors
The simplest strategy is to use default form factors for
certain types of functions. Robots (D2.2), hand puppets
(D3.9) and dolls (D2.6) are used when the gadget is
supposed to exhibit human behaviors, for example, to love
our protagonist, to be a life guide, or to tell hidden desires.
Gadgets that alter mental states, such as temperament
(D5.1), are sometimes portrayed as pills. When other
strategies fail to generate gadgets, a default form like a
micro-computer may be used. Examples include gadgets
that perform facial plastic surgeries (D4.7) and make dim
sum (D2.13). The appearances and behaviors of the gadgets
do not deviate much from the original objects. Robots can
be turned on or off, and pills are directly swallowed.

Strategy II: Symbolized Abilities
Some characters are exemplars of their unique abilities.
Sherlock Holmes's ability to reason and Superman's ability
to fly are very well known. In addition, these characters are
also typically associated with and identified by some
personal items, such as Holmes’s cap and pipe and
Superman’s red and blue suit. Hence, a conceptual slippage
(cf. [23]) may associate iconic personal items with special
abilities. Such associations are employed to create gadgets.
D3.7 features a Superman Costume Set that allows the
wearer to fly at a low altitude. D3.4 features a Holmes
Mystery Solver Set, including a cap, a pipe, a magnifying
glass and a walking stick, which helps the user to explain
seemingly mysterious events and find culprits. D5.15
features a black belt, a symbol of Judo masters. The wearer
of the belt gets the ability to throw away anyone touching
her. This strategy relies crucially on finding the conceptual
association between the personal item, its owner, and a
special ability.

Strategy III: Typical Components of Typical Scenes
Sometimes a particular ability can be conceptually
associated with a typical scene. For example, ghost stories
often contain an image of flickering lights, or will-o'-the-
wisps in darkness. Thus, a gadget that makes ghost story
come true (D2.3) can adopt the form of a lamp that looks
like a will-o'-the-wisp. As another example, a garden-
under-moonlight scene may involve fragrant flowers,
singing crickets and bright moonlight. Not surprisingly, a
gadget that simulates the sound of crickets appears as a
flower (D4.6). This strategy seems to work by first
imagining a typical scene associated with the function, and
extract a component from the typical scene.

Strategy IV: Decoraters and Decoratees
Another association employed by the author of Doraemon
is between an object and the one it decorates. Examples
include personal accessories or clothes and corresponding
body parts. In the Holmes Mystery Solver Set (D3.4), the
cap enhances the ability to reason since the cap sits upon
the head where reasoning happens. D1.10 features a lipstick
that grants its wearer the ability to say extremely pleasant
compliments. A slightly different example is Gravity Paint
(D5.2). Walls painted with it generate gravity and work like
floors, i.e. allowing people to stay on them without falling.
This strategy requires little additional transformation after
the initial prototype is retrieved. The intuitive appeal of
gadgets generated relies on the “decorating” relationship.

Strategy V: Reversed Use of Models
When a model represents a certain aspect of the real world,
modifying the model can be imagined to affect the real
world. The practice of inserting needles into voodoo dolls
suggests a long historic trace behind this thought. D4.1
features a camera producing dolls very much the same as
voodoo dolls. D3.2 contains a wrist watch that, when
tweaked, changes the actual date. D3.11 features a camera
that reverses the ordinary picture taking procedure. You
can change someone's dress by putting a picture of the
desired dress in the camera and pressing the shutter towards
her. When the camera is not loaded with a picture,
however, all her clothes will disappear.

A similar example of causality reversal appears in D4.17.
The gadget is a revolver used to play Russian roulette. In
the original Russian roulette, one needs good luck to
survive. In the story, the revolver contains bullets of good
and bad luck. She who takes a bullet will become
extremely luck or unlucky for a short period.

Strategy VI: Substituting Operands
Strategy VI allows a known tool to operate on things it
cannot ordinarily operate on. The flu-transmitting phone
(D2.14) transmits flu instead of voice. The friend remote
control (D4.9) controls people, not home appliances. D1.9
features a pair of scissors that can cut one’s shadow off,
which can then work as a slave. Other than the operand,
behaviors of these gadgets (e.g. cutting, transmitting,
controlling) usually do not change significantly from the
prototype object. It seems to us that the new operand
should bear resemblance to the old, which would justify the
substitution. Both flu virus and voice are invisible to the
naked eye and can spread in space. A shadow may look as
thin as paper.

Strategy VII: Combining Multiple Tools
From flying cars to lightsabers, combining different things
is a great source of inspiration for gadgets. Many mythical
creatures are also combinations of common animals. The
Pegasus is a horse combined with wings of a bird. A griffin
is an eagle plus a lion. The memory toast (D2.1) is an
exemplar from the Doraemon manga. The gadget helps
people to memorize things on a book page. First, put a
memory toast on that page, and the printings will be

transferred from the page onto the toast. After that, eat the
toast, and you will have precise memory of anything on
that page. This gadget seems to be a combination of silly
putty, which provides the printing transfer, and a toast,
which provides the edibility. The alarm clock in D3.5 is a
robot whose body and head are replaced by a clock.

Strategy VIII: Relaxing Preconditions or Constraints
Tools in the real world have constraints we may wish to
remove or relax. A telescope cannot see through a wall. A
pencil cannot write by itself but needs someone to write
with it. This strategy modifies or removes these constraints
from the original object. If we remove the precondition that
two rooms connected by a door must be adjacent in space,
we create one of the most well-known gadgets in
Doraemon: the Anywhere Door, walking across which can
bring the user anywhere within a 10-lightyear radius. The
smart pencil (D1.11) writes right answers to exam
questions by itself. A mailbox in D2.17 predicts the reply to
your letter before it is sent, thereby removing a constraint
of time. Telescopes can see through walls in D4.11 and into
the future in D4.10.

Strategy IX: Extending or Reversing Effects
Sometimes a gadget looks like an ordinary object and is
also used in a similar manner, but it can create
extraordinary effects. Though the effects are extraordinary,
they are usually not arbitrary. In Doraemon, effects of
ordinary objects are often replaced by something similar to
the original effects but better. Body cream is usually used
to alleviate the harsh feeling of winter. D1.14 enhances this
ability to create a cream gadget that reverses the feeling of
temperature. When one wears the cream, winter feels like
summer. Ringing a bell is often a signal for gathering. The
bell in D2.4 can summon people to play with you while in
dreams. Sometimes the new effects are reversals of the old.
A mirror tells the truth in Snow White, but in D2.8 it tells
lies.

The Generalized Process
A general gadget generation process unifying these
strategies is shown in Figure 1, with each step numbered.
Real-world design usually starts with a desired function and
seeks a structure to realize it [4]. Similarly, in the first step
our process starts with a given function, and retrieves an
object from all known objects as a gadget prototype. Steps
2 and 3 generate a behavior and an appearance for the
gadget respectively. Our approach to generating the
behavior and appearance of the gadget is to reuse
corresponding components of the prototype object directly
and/or adapt aspects of the prototype to suit the function.
The fourth step indicates mutual influences between the
usage and appearance, reflecting the fact that the gadget
can be iteratively refined. The fifth step indicates that the
appearance or behavior may prompt a retrieval of
additional prototype objects. For example, if during the
generation of the behavior we realize the gadget should be
able to fly, we can decide to retrieve an airplane and
transplant its wings onto our gadget. Steps 1-3 are major

steps, which are performed each time a gadget is produced.
In contrast, steps 4-5 are “maintenance” steps, reflecting
that gadget generation often can go back-and-forth or
circuitously rather than always straightforward. In
summary, gadget generation is the generation of an
appearance and a behavior for the gadget, mediated by one
or more analogies with known objects and tools.

Gabora [3] notes that creative problem solving often
involves alternation between an associative phase, where
possible or similar solutions are retrieved, and an analytic
phase, where products of the first phase is amended to meet
quality and realistic constraints. Here, the prototype
retrieval step corresponds to the associative phase. The
subsequent goal-driven analytic phase attempts to fill any
causal gaps and minimize unnatural human behavior during
interaction with the gadget. If any problems arise during the
analytic phase, the associate phase can be restarted.

The gadget generation process generalizes strategies I-IX
presented before. Strategy I makes use of default prototype
objects, which supply default appearance and behavior for
certain functions. Strategies II-V focus on the association
between the desired function and the prototype object and
often perform little subsequent adaptation. These strategies
utilize focused retrieval. Strategy IV, for instance, retrieves
only those prototype objects that decorate another object or
organ related to the function. Strategies VI-IX perform
substantial adaptation after the retrieval and may be
applicable to a wider type of prototype objects. Strategy V,
for example, modifies the prototype object by reversing
causes and effects.

The gadget generation process includes different tasks,
each relying on different types of computation and
knowledge. The retrieval of prototype objects relies
crucially on efficient memory organization. Once an object
is retrieved for strategies II-V, little to no subsequent
transformation is needed. Strategies VI-IX require careful
analysis and transformation of a series of causes and effects
in the prototype to produce a coherent description of how
the gadgets interact with the world. Generating the
appearance of gadgets is different from the previous two
tasks and concerns the relationship between behaviors and
structures that enable them. The generation of visual
appearance of novel gadgets is left for future work.

In this paper, we focus on the functional aspect of gadgets
and implement mainly Step 2, with some consideration for

Step 1. In the next section, we propose an algorithm that
first retrieves a prototype object and then transforms it to
produce gadgets similar to those generated by Strategies VI
and VII. Strategies VI is supported by the ability to
transform known actions analogically to create new action.
Strategy VII is supported by iterative merging of multiple
prototype frames. Analogical transformation can also
handle special cases of Strategy IX when the new effect is
analogous, but not opposite, to the old effect. Efficient
memory organization and appearance generation are left for
future work. Although the efficiency of the algorithm can
be negatively affected without efficient retrievals of known
objects, we believe in a divide-and-conquer approach and
currently use a simple retrieval method as a surrogate.

GADGET STORY GENERATION
We formulate the gadget generation problem as follows:
find a new type of object that, when used by a character in
the story, causes the desired change in the story world. We
should be able to describe the object, or gadget, in
sufficient details that it can be appreicated and believed by
readers. In order to maintain the believability of gadgets,
our system use common objects as prototypes for gadgets
and prefers to minimize modifications to prototypes. Our
algorithm creates a new object type through a combination
of analogical mapping of elements from the prototype to
the gadget and planning to fill in additional details.

Following Young [26], there has been a growing trend of
modeling a story as a partial-order plan (e.g. [9, 12, 14,
15]), where generating a story is equivalent to solving a
planning problem with aesthetic constraints. In our work
gadget generation is a computational process that augments
story planning by automatically producing a new type of
device that can be incorporated into the story. The story
planner provides a narrative goal and the gadget generation
process produces a plausible gadget that, when used,
changes the world to achieve the goal. In the next sections,
we provide a general background on AI planning and then
describe our representation for gadgets and the algorithm
for producing them using a combination of planning and
analogical mapping.

AI Planning Background
Planning produces a sound plan, or a sequence of actions
that guarantees to achieve a goal situation from an initial
world. The goal situation and the initial world are two sets
of first-order logic expressions or predicates. An action has
preconditions and effects, also expressed as predicates.
Before an action can occur, its preconditions must be true.
After the action occurred, its effects become true. A sound
plan properly links a series of actions so that the goal
conditions are achieved by effects of some actions – whose
preconditions are in turn achieved by earlier actions – and
preconditions of the earliest actions are in the initial state.
Actions take objects and/or characters as parameters.
Objects belong to hierarchically organized types. For
example, the object my‐car belongs to the type Car, which
is a subtype of Vehicle.

F = desired function O = prototype object
A = appearance of gadget B = behavior of gadget
→ = transformation / derivation

Figure 1. The process for gadget generation.

Partial-order planning (POP) is primarily concerned with
selecting correct actions from an action library, giving them
correct parameters and inserting them into the plan to
achieve open conditions. An open condition (OC) is a
precondition of an action or a goal predicate not yet
achieved. An OC can be achieved (or in POP terms,
repaired) with an identical effect from an action. The
action may be an existent action in the plan or newly
inserted into the plan for the purpose. In addition, an OC
can be achieved with an identical predicate in the initial
state. A repair operation produces a refined plan, where a
matching predicate (either from the initial state or an effect)
is linked to the OC with a causal link. Note that if an action
is inserted during the repair, it may bring in new
preconditions which become new OCs. When there are
multiple possible ways to repair an OC (e.g., different
actions with the same effect), each will yield a refined plan,
which are put into the search frontier. A heuristic function
estimates the quality of a plan and number of further
refinements it needs to reach a sound plan. From the search
frontier, the plan with the best heuristic value is selected as
the candidate for the next iteration of OC repairs. The
process continues until a sound plan containing no open
conditions is found on the frontier. See Weld [25] for more
details of partial-order planning, such as causal threats. The
POP algorithm is outlined in Figure 2 as a flowchart. In
gadget generation, we extend POP by employing analogical
reasoning to repair OCs, as indicated by the dotted box in
Figure 2.

Usage Frames
We represent the gadget's behavior as a plan describing
how the gadget interacts with its user and the world during
a typical use. This plan is called a usage frame. It portrays a
typical scenario of the gadget being used, including actions
that typically happen right before and after its use. In the
story plan, a usage frame is summarized as a single meta-

action, forming an action hierarchy. Such a hierarchy
supports flexible description of gadgets in different media.

As an example, Figure 3 shows the usage frame for a
garbage truck. The truck is first driven to the dumpster to
collect bagged trash, and then to the landfill to unload it,
and finally returned to the car park. Solid arrows denote
causal links. Dashed arrows denote temporal links, which
indicate orderings of actions. Dotted arrows in the frame
denote closure actions, which restore the world to a normal
or routine state after other actions change it. Closure
actions are not necessary for a gadget's intended purpose,
but they complete the frame and may improve story
coherence. Here, the action where the truck unloads
garbage is a closure action, which "closes" the actions
where garbage is loaded so that the truck is usable again.

Usage frames deviate slightly from the general plan data
structure in that we use a set of variables, called frame
variables, instead of objects. All actions in usage frame
take frame variables as parameters. This allows us to
identify parameters of different actions to co-resolve (i.e.
bind to the same object) without committing until the
gadget is used in the story. Values of frame variables
depend on how the gadget is used in the story. We also find
it convenient to distinguish between actions performed by a
human and those performed by machines, tools, or natural
occurrences.

Computing Analogies
An key aspect of gadget's believability and appeal is the
resemblance between the gadget's usage frame and an
usage frame of an ordinary object. Analogy is critical in
both retrieving the ordinary object and in subsequent
transformation. We employ Sapper [22, 23] as the analogy
making engine. Representing knowledge in a semantic
network, Sapper lays dormant bridges between concepts
that share enough properties or participate in same
relations. When we determine if two concepts are
analogous, dormant bridges may be activated to support the
analogies. We can make analogies between object types,
predicates, and actions, but not across categories. All
known object types, predicates and actions are stored in the

Frame-level variable/type: person/Person,
truck/Truck garbage-bags/Bagged-Trash
landfill/Landfill car-park/ Land-Location
dumpster/Land-Location

Figure 3. The usage frame of a garbage truck.

Figure 2. A brief outline of partial-order planning.

semantic network. Objects types are considered analogous
if they share properties or are involved in relations of the
same type. Analogies between predicates and actions are
supported by analogies or matches between corresponding
parameters. Semantic roles, such as subject, object, etc., of
each parameter in predicates and actions are annotated to
facilitate mapping. Furthermore, we utilize the notion of
spatial signatures [21] to capture similarities between
predicates and actions. Spatial signatures capture the
embodied understanding of verbs as movement patterns,
which can reveal hidden connections between actions. For
instance, climbing a staircase and a rise in social status both
imply upward movements. Thus, a metaphor can be created
between them. Two predicates or actions with matching
spatial signatures and analogous corresponding parameters
will be considered highly analogous. All these comparisons
are incorporated in Sapper's activation spreading process.
The basic idea in transformation is that if two object types,
predicates, or actions are analogous enough then they can
stand in place for one another in a creative domain.

Initiating Gadget Generation
As a partial-order planning story generator iteratively
establishes open conditions, it may invoke gadget
generation when a gadget is deemed the best option to
achieve an open condition p in the story, which becomes
the narrative goal of the gadget. There are three reasons to
generate a gadget to achieve a goal. First, the goal may be
impossible or too difficult to achieve without assistance of
a gadget (e.g. stopping the rain). Second, the goal may
require unpleasant actions or significant time commitments
from the protagonist, such as housework, that the character
in question generally wants to avoid. The third reason is the
lack of reliable means to achieve an improbable goal, such
as winning a lottery. Admittedly, a story planner can create
coincidences without considering probabilities. However,
two many coincidences can damage the believability of a
story. A gadget which makes the improbable happen can
believably justify an unlikely outcome and rescue the story.

After the gadget usage frame is completed, it is
summarized into a single “use gadget” meta-action and put
in the story. At this time, frame variables will be assigned
to objects and characters in the story in a way that is
consistent with the usage of the gadget and the larger story
context. If a new narrative goal needs to be achieved by
gadgets when one gadget already exists in the story, the
existing gadget can be adapted to satisfy a new narrative
goal, or a new gadget can be generated. As a special case,
when a precondition of a "use gadget" meta-action initiates
gadget generation, an additional prototype will be retrieved
to merge with the existing gadget. This paper omits details
and assumes a story generation system capable of selecting
the open conditions to be achieved by gadgets.

Retrieving a Prototype
Prototypes are a priori known object types from our
ontological hierarchy. Prototypes become the basis from
which we create new gadgets. Usage frames of these

objects are stored and indexed by predicates they are
typically employed to achieve. When gadget generation is
initiated to achieve a narrative goal p, the system searches
for known tools that achieve a predicate analogous to p.
Saunders and Gero [17] propose that an artifact is usually
considered the most creative when it is neither too similar
nor too dissimilar to what we already know. Following that,
an object whose effect is optimally moderately analogous
to p is first attempted as the prototype for the new gadget.
The algorithm may backtrack and try a different tool.

Constructing the Gadget Frame
To construct a usage frame for a new gadget, we extend
POP with new methods, informed by the usage frame of the
retrieved prototype object, to achieve open conditions. The
gadget usage frame starts as an empty usage frame – an
empty plan – with an empty initial state and the narrative
goal p being the only open condition. Gadget generation
incrementally repairs open conditions by trying each of the
methods, putting the resulted usage frames into the search
frontier, and starting the next round of repairs with the
usage frame having the best heuristic value. In the next few
sections, we introduce the newly proposed methods to
repair open conditions during gadget generation.

Analogical reasoning and partial-order planning are unified
in the idea called projection. Projection provides a tactic to
achieve open conditions by copying an element from the
prototype usage frame – either an action or a predicate in
the initial state – and inserting it into the new gadget usage
frame either literally or through analogical transformations.
A literal projection simply copies an element over. An
analogous projection transforms the projected element
based on analogies between the two frames before copying
it over. In order to keep the resemblance between the
gadget and the prototype, we prefer literal projections to
analogous projections. When an action or a predicate is
projected, all referenced frame arguments are also copied
over into the gadget frame. Each element can only be
projected once. Table 1 lists all projection methods
alongside traditional methods gadget generation takes from
POP [25] and the Initial State Revision story planner [14].

Projection allows the gadget usage frame to imitate the
prototype usage frame and achieves its own goals at the
same time. Given an open condition in the gadget frame,
we first attempt to find the same condition or an analogous
condition in the prototype frame. If such a condition is
found, the gadget frame tries to imitate the way the
prototype frame achieves the original open condition. As
mentioned previously, the condition could have been
achieved by an action's effect or a predicate in the initial
state. In the former case, we attempt to project the action.
In the latter, we attempt to project the predicate into the
initial state of the gadget frame. In both cases, literal
projections are attempted before analogous projections as
literal projections provide closer imitation of the prototype.

Projecting and Inserting Actions
In order to achieve an open condition c, a literal projection
copies an action with the effect c from the prototype frame
into the gadget frame. However, often we cannot find such
an action in the prototype frame, and we will attempt an
analogous projection. Analogous projection empowers
partial-order planning to systematically explore in the space
of analogies.

The first method of analogous projection is to transform an
action in the prototype frame based on analogies in order to
produce a new action that achieves c. We call this
analogical transformation. As mentioned earlier, an action
takes parameters of predefined types. Take, for example, an
action from a telephone usage frame: Transmit(voice?,
person1?, person2?), which transmits voice between two
people. A question mark denotes a parameter. Paratermized
actions can be applied in different situations (e.g.
transmitting voices between different people). This action
has one effect close‐by(voice?, person2?). voice? is
of type Voice and person1? and person2? are of the type
Person. Suppose the stories requires us to create a gadget
that transmits flu viruses, and one open condition in the
gadget frame is close‐by(virus?, person2?) where
virus? is of type Virus. Normally, the transmit action
cannot take parameters of the type Virus. Analogical
transformation creates a new action that can do so based on
the analogy between flu viruses and voice. Hence, after the
transformation we are able to achieve the desired open
condition. In order to keep intuitive appeal of the gadget
and prevent nonsensical actions, analogical transformation
is only allowed when the actor of the action is not human.
Even though a stone may look like a cookie, a person
cannot eat the stone like a cookie. On the other hand, it is
reasonable if a high-tech or magical gadget interacts with
this stone as if it is a cookie. The heuristic value, or the
desirability of an analogical transformation is positively
correlated to the analogies used during the transformation.

If analogical transformation is not applicable due to our
restriction on actors, we can apply the third analogous
projection. Suppose an action Ap in the gadget frame has an
effect cp, which is analogous to our open condition c. To
keep the resemblance between the gadget and the
prototype, we look for another action Ag from the action
library that is analogous to Ap and has the effect c.

If any of the above three projection methods succeeds, an
action with the effect c will be inserted into the gadget
frame, achieving the desired open condition. However, if
none is applicable, we can still use the conventional POP
method that inserts any action from the action library that
achieves c into the gadget frame. This final method does
not imitate the prototype and has lower preference.

Projecting and Inserting Predicates into Initial States
An open condition c in the gadget frame can also be
achieved by a predicate in the initial state. Similar to
actions, we first try to perform a literal projection, i.e. copy
the same predicate c which exists in the initial state of the
prototype frame directly into the gadget frame. If such a
predicate does not exist, we then try to perform an
analogous projection. If a predicate cp in the prototype
frame is analogous to c, we can insert c into the gadget
frame. This is possible because we consider c as resulted
from a analogical transformation of cp. Finally, we may
directly insert c into the initial state of the gadget frame
directly. This is similar to the functionality in the Initial
State Revision story planner [14]. In fact, all three methods
produce the same refined usage frame where c is inserted
into the initial state. However, frames produced by the
three methods have decreasing heuristic values because
they differ in degree of imitation. The first method
preserves the most of the prototype frame, while the last
method does not imitate the prototype frame at all.

Other Methods to Repair Open Conditions
Besides the projection methods introduced above, our
algorithm is also capable for reusing effects of actions and
predicates in the initial state, just like traditional POP. In
addition, we may also assume an open condition is resolved
by the "power of the gadget". For example, the requirement
that direct line of sight can be removed from a telescope,
resulting in a gadget that can see through walls. Whether
this method is used is controlled by rules capturing the
human author's intuition about when this should be allowed
and what gadget powers can accomplish. We reckon that
overusing this method may remove too many open
conditions, break analogy between gadgets and common
objects and hurt believability. Its use may be domain-
specific. Currently, we only use it to remove any
knowledge requirement of gadgets because gadgets in
Doraemon rarely need complex skills or knowledge.

Projection
Traditional

Literal Analogous

Insert an
New

Action

Copy an action from
prototype frame to
gadget frame

A. Analogically transform an action from the prototype
frame
B. Select an analogous action from the action library

Insert an action directly (same
as POP [25])

Modifying
the Initial

State

Copy an predicate from
prototype frame to
gadget frame

Analogically transform a predicate from the prototype
frame

Insert a predicate to gadget
frame directly (similar to ISR
[14])

Table 1. Traditional and project methods that insert actions and modify the initial state.

Closing and Summarizing the Gadget
When all open conditions in the gadget frame are
established, we add closure actions and summarize the
frame. If a corresponding initiating action has been
projected, the closure action is projected into the gadget
frame with the same projection method. This may create
new flaws in the gadget frame. However, since the
narrative goal will be achieved before the closure actions
take effect, adding closure actions is optional. If the cost
becomes too high, the algorithm can choose to ignore
closure actions.

The summarization generates a “use gadget” meta-action
from the gadget frame to insert into the story plan. Its
preconditions include all predicates from the gadget
frame’s initial state, and effects are accumulated from the
effects of all actions in the gadget frame. Frame arguments
become parameter variables of the meta-action. The meta-
action can then be used to achieve narrative goals of the
same type as the usage frame.

EXAMPLES
Our algorithm can generate some highly complex gadgets,
including some from the Doraemon manga, such as a truck
collecting rain clouds and the flu-transmitting phone
(D2.14). Due to limited space, we show how these gadgets
can be created schematically with major decisions during
their generation.

The first example is a truck that collects rain cloud to stop
the rain. The initiating narrative goal in the story is
not(at(rain‐cloud, sky)). The system compares this
condition with all known tools, and finds that a garbage
truck can achieve an analogous effect: not(at(garbage‐
bags, dumpster)). The usage frame of garbage truck
(shown in Figure 3) is retrieved as the prototype. The
analogies between rain cloud and bagged garbage and
between sky and dumpster are made at this time. Based on
the analogies, we analogously project the action
Load(truck, garbage‐bags) from the truck frame to
create a new action Load(truck, rain‐cloud).The
algorithm choose not to project Drive(person, truck,
dumpster) to the gadget frame. Although dumpster is
considered analogous to sky, the analogy is rather
stretched, so the analogical transformation yields a low
heuristic value and we prefer not to project. After we repair
remaining open conditions of this action by revising the
initial state, gadget planning completes.

Later, the story generator realizes that it cannot find a way
to deliver the cloud-collecting truck to the sky where the
clouds are – that is, at(truck, sky) cannot be achieved.
The cloud-collecting truck is blended with the prototype
frame of an airplane to give it the ability to fly. The final
gadget frame is in Figure 4, showing the result of the
double-blend.

In the next example, a flu-phone gadget is built to achieve
the narrative goal infected‐by(bob, flu). In words, the
flu is transferred from one person to another via phone. A

telephone frame is retrieved based on the analogy between
the flu virus and voice, and the analogy between
understanding voices and being infected by viruses. These
analogies allow us to modify effects of the main
transmission action of the telephone frame. The action
Speak(person?, voice?) is projected from the telephone
prototype frame to Cough(person?, virus?)). As the
actor of Speak is a person, analogical transformation is not
applicable. This projection is done by finding an analogous
action from the action library.

CONCLUSIONS AND FUTURE WORK
Based on our survey of the Doraemon manga, we have
identified a general process for generating novel gadgets in
fictions, which unifies nine different strategies. The process
first retrieves one or more known objects, then adapts and
combines them to generate a typical behavior for the
gadget. After that, an appearance is generated to match the
behavior. In this paper, we implement mainly two strategies
of gadget generation: Strategies VI and VII, with special
cases of Strategy IX. We present an extended planning
algorithm that generates a usage frame of the gadget. The
algorithm is a planning process using analogically
generalized actions and is informed by other known plans.
Analogically generalized actions expand the space of plans
that can be generated. Known plans, when used as
guidance, focus planning on the parts of the expanded
space that are more reasonable and intuitively appealing.
Our algorithm can generate complex gadgets, including
some from Doraemon and other science fictions as well as
mythical creatures. Future work will address performance
issues of the algorithm and other steps and strategies in the
gadget generation process.

Our algorithm can be considered as creative from multiple
perspectives. We generate an unknown gadget, which
serves narrative purposes, satisfying the novel and useful
criteria [1] and the notion of c-creativity [11]. As the need
arises in the story, gadgets are created on the fly and
expand the spaces of stories that can be generated. Boden
[1] classifies this as transformational creativity. Combining
multiple known objects to create a new gadget fits the
category of combinational creativity. Gero [4] defines
innovative design as assigning variables with values

Frame-level variable/type: person/Person,
truck/Truck-Gadget, sky/Air-Location,
rain-cloud/Rain-Cloud

Figure 4. The final usage frame of the flying cloud-collecting
truck.

outside their typical ranges and creative design as
introducing new variables. Binding variables analogously
may be considered as innovative, whereas a combination of
two objects takes variables from both, and is hence creative
design.

Our work suggests that a goal-driven analogy making
process is a viable approach for computational creativity.
Fictional gadgets are vivid illustrations of the importance of
human imagination in writing stories. Any progress in the
field of computational storytelling will require advances in
computational creativity, of which the algorithm in this
paper can be considered one such example.

ACKNOWLEDGMENT
This paper is based upon work supported by the National
Science Foundation under Grant No. IIS-1002748.

REFERENCES
1. Boden, M. A. Computer Models of Creativity. AI

Magazine, 30, 3 (2009), 23-34.

2. Falkenhainer, B., Forbus, K. D. and Gentner, D. The
structure-mapping engine: Algorithm and examples.
Artificial Intelligence, 41, 1 (1989), 1-63.

3. Gabora, L. Revenge of the 'neurds': Characterizing
creative thought in terms of the structure and dynamics
of memory. Creativity Research Journal, 22, 1 (2010),
1-13.

4. Gero, J. S. Design Prototypes: A knowledge
representation schema for design. AI Magazine, 11, 4
(1990), 26-36.

5. Gervás, P. Computational approaches to storytelling and
creativity. AI Magazine, 30, 3 (2009), 49-62.

6. Goel, A. K. Design, analogy, and creativity. IEEE
Expert, 12, 3 (1997), 62-70.

7. Helms, M., Vattam, S. and Goel, A. Compound
analogies, or how to make a surfboard disappear. Proc.
CogSci 2008 (2008).

8. Holyoak, K. J. and Thagard, P. Analogical mapping by
constraint satisfaction. Cognitive Science, 13 (1989).

9. Li, B. and Riedl, M. O. An offline planning approach to
game plotline adaptation. Proc. AIIDE'10 (2010).

10. Malmgren, C. D. Worlds Apart: Narratology of Science
Fiction. Indiana University Press, 1991.

11. Pérez y Pérez, R. and Sharples, M. Three computer-
based models of storytelling: BRUTUS, MINSTREL
and MEXICA. Knowledge-Based Systems, 17, 1 (2004),
15-29.

12. Porteous, P. and Cavazza, M. Controlling narrative
generation with planning trajectories: The role of
constraints. Proc. ICIDS’09 (2009).

13. Qian, L. and Gero, J. S. A design support system using
analogy. Proc. AID ‘92 (1992), 795-813.

14. Riedl, M. O. and Young, R. M. Story planning as
exploratory creativity: Techniques for explanding the
narrative search space. Computational Creativity, 24, 3
(2006), 303-323.

15. Riedl, M. O. and Young, R. M. Narrative planning:
Balancing plot and character. Journal of Artificial
Intelligence Research, 39 (2010), 217-268.

16. Ryan, M.-L. Possible worlds, artificial intelligence, and
narrative theory. Indiana University Press, 1991.

17. Saunders, R. and Gero, J. Curious agents and situated
design evaluations. AI for Engineering, Design,
Analysis, and Manufacturing, 18, 2 (2004), 153-161.

18. Schilling, M. Doraemon: Making dreams come true.
Japan Quarterly, 40, 4 (1993), 405-417.

19. Swartjes, I. M. T. and Theune, M. Late commitment:
virtual story characters that can frame their world.
Technical Report TR-CTIT-09-18, University of
Twente, Enschede, Netherlands, 2009.

20. Trabasso, T. and van den Broek, P. Causal Thinking and
the Representation of Narrative Events. Journal of
Memory and Language, 24, 5 (1985), 612-630.

21. Veale, T. and Keane, M. T. Conceptual Scaffolding: A
spatially founded meaning representation for metaphor
comprehension. Computational Intelligence, 8, 3
(1992).

22. Veale, T. and Keane, M. T. Metaphor and memory:
Symbolic and connectionist. issues in metaphor
comprehension. Proc. ECAI 1994 Workshop on Neural
and Symbolic Integration (1994).

23. Veale, T. and O'Donoghue, D. Computation and
Blending, Cognitive Linguistics, 11, 3/4 (2000), 253-
281.

24. Ware, S. G. and Young, R. M. Rethinking traditional
planning assumptions to facilitate narrative generation.
Proc. INT3 (2010).

25. Weld, D. An Introduction to least commitment
planning. AI Magazine, 15, 4 (1994), 27-61.

26. Young, R. M. Notes on the use of plan structures in the
creation of interactive plot. Proc. INT1 (1999).

27. Zacks, J. M., Speer, N. K. and Reynolds, J. R.
Segmentation in reading and film comprehension.
Journal of Experimental Psychology: General, 138, 2
(2009), 307-327.

28. Zacks, J. M. and Tversky, B. Event structure in
perception and conception. Psychological Bulletin, 127
(2001), 3-21.

29. Zwann, R. A., Magliano, J. P. and Graesser, A. C.
Dimensions of situational model construction in
narrative comprehension. Journal of Experimental
Psychology: General, 21, 2 (1995), 386-397.

