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Abst ract 
EBL can learn justified generalizations from 
only one example when the domain theory is 
perfect. However, it does not work when the 
domain theory is imperfect. Imperfectness of 
the domain theory can be classified into four 
levels, i.e. incomplete, intractable, inconsistent 
and non-operational ones. It is necessary to 
unify EBL and SBL to solve these problems. 
In this paper, we propose a framework of an 
augmented EBL to handle plural examples si­
multaneously. We formalize it on logic pro­
gram, and introduce a concept of least EBG to 
extract similarities from plural examples. We 
discuss on an approach to solve uti l i ty prob­
lem with the augmented EBL. Uti l i ty problem 
is a problem to learn more efficient description 
under complete, tractable, consistent but non-
operational domain theories. 
We define operationality criteria with maximiz­
ing usage degree and minimizing backtracking 
number, and show they increase partial mono-
tonically by generalization. Since this partial 
monotinicity is not preferable to search opera­
tional generalizations, least EBGs are more op-
erational than usual EBGs. We design a simple 
incremental learner based on least EBGs, and 
show its usefulness in recursive domain theo­
ries. We also discuss on other imperfect theory 
problems. 

1 In t roduc t ion 
EBL (Explanation-Based Learning) is a framework of 

deductive learning [Mitchell et a/., 1986]. Given an ex­
ample of the goal concept, it builds an explanation, and 
learns a concept description as its generalization. It 
can learn justified generalizations from only one example 
when the domain theory is perfect, but it does not work 
when the domain theory is imperfect. Several types of 
imperfectness have been pointed out, and they are called 
imperfect theory problems. 

SBL (Similarity-Based Learning) is a framework of in­
ductive learning [Mitchell, 1982]. Given positive and 
negative examples, it extracts similarities, and learns 

a concept description as their generalization. It can 
learn something without any domain theories, but it re­
quires numerous examples, and learned descriptions are 
no more justified. 

EBL and SBL have complemental features, and can be 
placed at both extremes in continuum of imperfectness. 
In real applications, we cannot expect perfect theories 
nor fully imperfect ones. Therefore, it is necessary to 
unify EBL and SBL to resolve their difficulties. 

This paper attempts to solve imperfect theory prob­
lems of EBL by augmenting it to handle plural examples 
simultaneously [Yamamura et a/., 1989a] [Yamamura, 
1990a]. We augment EBL rather than SBL because SBL 
has no explicit domain theories and we want to avoid im­
plicit ones such as inductive bias. 

Mitchell et. al. have pointed out three types of im­
perfectness i.e. incomplete, intractable and inconsistent 
theories [Mitchell et a/., 1986]. We add non-operational 
one into them and look them as levels of imperfectness. 
This seems useful as an index of a class of learning. Up­
per part of figure 1 shows dependencies of these levels. 
SBL is placed at the most imperfect extreme. Tractabil-
ity requires completeness since an incomplete theory is 
useless if it ignores "difficulties" of that domain. Con­
sistency requires tractability since explanations of con­
sistency may not be build if it is intractable. Uti l i ty 
problem of conventional EBLs is placed below them. 

There are many works on unifying EBL and SBL. 
Their domain theory can be placed in some level of im­
perfectness. For example, IOE (Induction On Explana­
tion) of [Flann et a/., 1989] specializes a domain theory 
which is complete, tractable but inconsistent. Chunk­
ing macros for such as 8 puzzle from primitive operators 
which is complete but intractable [Laird et a/., 1986]. 
[Bergadano et a/., 1988] use SBL when an explanation 
can not be constructed from domain theory which is in­
complete. 

Lower part of figure 1 summarizes our works on the 
augmented EBL. In this paper, we forcus on uti l i ty prob­
lem, then also discuss on other problems. 

2 Augmentated E B L 
2.1 Genera l isat ion o f Exp lana t i on St ruc tures 

In this paper, we assume logic program as a descrip­
tion language. A domain theory D is a finite set of defi-
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F igure 1 : imper fect thoery problems and augmented E B L approaches. 

nite clauses. An example Ei, is a finite set of ground unit 
clauses. A goal concept is a predicate, and is given as a 
ground negative clause for each examples. A goal 
concept is explained or proved iff  

In the goal regression method [Mitchell et al, 1986], 
a conclusion of an EBG (Explanation-Based General­
ization) comes from the goal concept, and preconditions 
come from the facts. Constants are generalized into vari­
ables, and resolutions are undone. The following defini­
tion generalizes these operations. 

De f i n i t i on 1 (general izat ion of an exp lanat ion) 
1. For a Horn clause ._, let its 
equivalent copy be Then, 
following expression is an explanation structure. 

C and C are called its internal and external structure 
respectively. 
2. For an explanation structure T, let be its external 
structure and a be a substitution. Then, the expression 
7V, which has the same internal structure as T and has 
the external structure is called an instantiation of 
T. Inversely, T is called an uninstantiation of  
3 . F o r two explanation structures 5 and T, let  

be their external structures respectively. Then, the ex­
pression U connected 5 and T at Bi' is called a (binary) 

resolvent of 5 and T. Inversely, S is called an unresolu-
tion of U, and T is called its remainder. 
4. An explanation structure S is more general than T, 
denoted by S _ T, iff there exists a sequence of unin-
stantiations and unresolutions from T to S. 

For example, consider a domain theory D shown in 
figure 2. In SLD resolution, a negative clause and a def­
inite clause are first unified then binarily resolved upon 
some literal. Figure 3 shows this inference scheme, where 
thick arrows denote rules and double lines denote ":" of 
definition 1. Dotted boxes denote internal structures of 
explanation structures. Internal structures holds the his­
tory of clause applications, and external structures holds 
the actual instantiation. 

In conventional EBL on logic programming [Hirsh, 
1987]lKedar-Cabelli et al., 1987]lPrieditis et al, 1987], 
a generalization is defined as an inverse of one inference, 
i.e a pair of an unresolution and an uninstantiation. We 
consider them separately in order to handle generaliza­
tion of compound terms (or structured objects) because 
instantiations of heads of clauses affects inference effi­
ciency under a pure-Prolog interpretor. Figure 4 shows 
a full explanation structure for E\. 
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Figure 4: the explanation structure for E1. 

Figure 6: the generalization space on {E1 E2} 

Figure 5: EBGs from E1. 

An EBG learned wi th an EBL system must be a the­
orem of that domain theory. For this constraint, we in­
troduce a concept of an obliged generalization. 

De f i n i t i on 2 ( E B G ) 
1. An explanation T is an obliged generalization, iff the 
internal structure of T does not include any facts of a 
certain example and its external structure is a definite 
clause. 
2. Obliged generalizations of an explanation for some 
example are called EBG. For an EBG, its external struc­
ture is called an EBG macro. 

Figure 5 shows some of EBG macros of the explana­
tion of figure 4. m1 to m6 are all unresolved at line 0 to 
be definite clauses, mi is less general than the obliged 
generalization i.e it includes facts of E1, then it is not 
valid in other examples, m2 is the obliged generalization 
(additionally unresolved at line 1). m3 is the most unin-
stantiation of m2. m4 is more unresolved than m2 (line 
2). m5 is the most uninstantiation of m4. m6 is general­
ized unti l the domain theory (line 3). Remark there are 
a number of generalizations from only one explanation. 

2.2 Genera l iza t ion Space 
Since various generalizations are obtained from one 

explanation, various sets of various generalizations are 
obtained from plural examples. We call such a class of 
all sets of generalizations a generalization space. 

De f i n i t i on 3 (genera l izat ion space) 
1. For an explanation T T, let T0 be an unin­
stantiation of T. Then is an 
uninstantiation of T. Similarly, let T0 be an unreso-
lution and T 1 , - - , T n are its remainders. Then T' = 

is an unresolution of T. 
2. An explanation set S is more general than T, denoted 
by S < T, iff there exists a sequence of uninstantiations 
and unresolutions from T to 5. 
3. A class of all generalization of the obliged generaliza-
tion of an example set is called its generalization space. 

For example, E2 of figure 2 is the same as E1 except 
the hero and the instrument. Figure 6 shows a part of 
the generalization space generated from {E1 , E2}. Pred­
icates and constants are simplified in their init ial. 0 is 
the obliged generalization that is only unresolved at the 
goal and facts of examples. 1 and 2 uninstantiate "John" 
and " tom" respectively. 3 uninstantiates both. 4 unre-
solves the weapon, and the same structure is extracted in 
there, "weapon(knife)" and "weapon(gun)'' in 4 are the 
remainder of that unresolution. 5 is the most general, 
i.e the domain theory. 

Thus, a generalization space contains all candidates 
that are learnable from given examples. Learning prob-
lem in the augmented EBL is to search a good general­
ization with some criteria in a generalization space. 

2.3 Least E B G 

A common generalization such as 4 of figure 6 can be 
thought of as "simirality" in SBL. We call the most spe­
cial common generalization the least EBG. It is known 
that least EBG is unique and computable incrementally 
regardless of example orderings. 

De f i n i t i on 4 (least E B G ) 
For EBGs T1 • • •, Tn T is a common EBG iff 

The least generalization in common 
EBGs is called the least EBG. 
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Theorem 1 (features of t he least E B G ) 
1. There is the least EBG for any set of EBGs. 
2. Let T be the least EBG of T1 • • •, Tk and V be the 
least EBG of Then, the least EBG of T 
and T is the least EBG of  

Proofs are given in [Yamamura, 1990a]. To prove 
the uniqueness, we used a lemma that the most gen-
eral unifier and the least uninstantiation commutes each 
other. If there are another minimal common generaliza­
tion, they are equivalent by this lemma. Computability 
is a corollary of uniqueness. Thus, the uniqueness of the 
least EBG closely relates with the uniqueness of the most 
general unifier. m5 of figure 5 is a least EBG. 

From a viewpoint of extracting similarities, a general­
ization subspace that consists of least EBGs is interest­
ing. We call such a subspace a least EBG space. 

De f i n i t i on 5 (least E B G space) 
1 . F o r let T0 be the least EBG of S and 

be its remainder. Then  
} is called a least EBG generalization of T. 

2. S is more general by least EBG than T iff there exists 
a sequence of least EBG generalizations from T to 5. 
3. A class of all least EBG generalizations of the obliged 
generalization of an example set is called its least EBG 
space. 

0 and 4 of figure 6 are a least EBG generalization. 
In general, there are combinatorially many least EBG 
generalizations for more than three examples, and its size 
can much more increase if remainders are generalizable. 
However, the searching space is reduced from the raw 
generalization space. 

3 An Approach to the U t i l i t y Prob lem 
3.1 O p e r a t i o n a l l y C r i t e r i a 
Uti l i ty problem is a problem to learn more efficient pro­
gram under complete, tractable, consistent but non-
operational domain theories. A learner needs to improve 
performance without violating init ial perfectness of the 
domain theory. We assume a pure-Prolog interpretor 
and learned EBGs are merely inserted before the domain 
theory. 

Efficiency of EBGs are maesured with operationally 
criteria. There are several alternative levels to define 
operationally [Keller, 1988]. In many existing EBL, the 
most detailed level of CPU time is used. Here, we define 
them in more abstract level wi th maximizing usage de­
grees and minimizing backtrack numbers. They reflect 
on natural requirements to be an efficient program for 
pure-Prolog. 

De f i n i t i on 6 ( o p e r a t i o n a l l y c r i te r ia ) 
1. For a generalization  
its usage degree is a function s.t. 

where denotes the number of clauses used in Ti In 
general, when the usage degree sums up all usage 
degrees through some generalization path. 

2. For an example set and its generalization T, the 
backtrack number is the minimum of the sum 
of goal failures which occur during a macrotable of T 
reconstructs all explanations of _ 
3. For two generalizations S and T of an example set 
S is more operational than T iff and 

Usage degree measures an applicablity or a storage 
cost. It increases when one macro becomes commonly 
used in more than two examples. Backtrack number 
measures an efficiency or a searching cost. It counts 
backtrackings when a problem solver re-construct expla­
nations for examples. These two measures show opera-
tionality/generality trade-off of [Segre, 1987]. 

In Figure 6, u denotes a usage degree and b denotes 
a backtracking number. The least EBG (4) is the most 
operational macrotable because its usage degree is the 
maximum and its backtracking number is the minimum. 

Two measures of operationally criteria increases ac­
cording to generalization as shown in figure 6 but it is 
not monotonic. Following fact holds in general. 

T h e o r e m 2 (pa r t i a l mono ton i c i t y ) 

Proof was given in [Yamamura, 1990a]. The total 
monotonicity of usage degree is clear. To show the par­
t ial monotonicity of backtracking number, we can con­
struct a macrotable of T that has less or equal back­
tracking number by arranging a macrotable of S. 

The reason why backtrack number incleases partial 
monotonically is for ambiguous macros that have the 
same head but different bodies as shown in figure 6. 
Such ambiguous macros increase according to general­
ization. However, when they are generalized unti l the 
same structure, i.e. when the usage degree increases, 
this ambiguity is often reduced. 

The partial monotonicity is not preferable feature to 
search operational EBGs efficiently. However, since they 
increase monotonically in subspaces of the same usage 
degree, their minimal generalizations seems to be useful. 
The least EBG is such a generalization. Figure 7 shows 
tipical generalization space. 

Theo rem 3 ( o p e r a t i o n a l l y o f the least E B G ) 
A least EBG generalization is minimal in the subspace 

which consists of generalizatins of the same usage degree. 

Proof is given in [Yamamura, 1990a]. To prove this, 
we have shown any generalization between the obliged 
generalization and a least EBG generalization have less 
usage degree. This theorem shows the ut i l i ty of the least 
EBG. 

3.2 Least E B G Learner 

We have constructed a simple incremental learner to 
demonstrate the ut i l i ty of least EBG. Figure 8 shows its 
top-level actions. ( - ) and (+) denotes input and output 
variables of predicates respectively. Examples are given 
incrementally through example/2. Explanations are gen-
erated with solve/3 by learner itself. In that time, cur-
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Figure 7: a typical generalization space. 

Figure 8: the top-level of the learner. 

rent macrotable CurMT is inserted before the domain 
theory and used. 

lebg-space/3 generates whole LEBG space GenSp 
from operational/2 select the most 
operational EBG from GenSp. We assume that back­
tracking number has higher priority than usage degree. 
Learner proceeds to next example with selected NxtMT 
by tai l recursion. 

Least EBG learner simply generates the whole least 
EBG space. Its size exponentially increases with the 
number of explanations of the current least EBG set. 
Remark that it is not the number of examples. Examples 
are summarized into least EBGs and learner can keep its 
efficiency. This is a practice of the theorem 1. 

Least EBG learner is implemented on SICStus Prolog 
on Sun4. In next section, we demonstrate least EBG 
learner in two extreme cases. 

3,3 Learn ing in a Recurs ive Theo ry 
3.3.1 De te rm in i s t i c Recurs ion 

Consider the well known linear recursive predicate 
member/2 shown in Figure 9. The learner is given n 
examples whose target element is at first, at second, 
•*•, at n-th place. In much of existing EBLs, its per­
formance often becomes wrong because it generates the 
same number of macros as examples like L E B G 1 [Priedi-
tis et a/., 1987]. On the other hand, least EBG learner 
learns original domain theory because it has no back-
tracking and maximum usage degree like LEBG*. The 
usage degree of L E B G 2 becomes n(n - l ) / 2 - 2 for n 
examples. Offcourse LEBG\ also has no backtracking, 
but usage degree, which reflects someway matching effi­
ciency, remains minimum. 

It is important for a learner to learn nothing when 
there are nothing to learn. In fact, following theorem 

Figure 9: least EBGs of a deterministic recursive theory. 

holds. 

Theo rem 4 ( learn ing a de termin is t i c recursion) 
If a domain theory solves any examples without back­

tracking, least EBG learner learns least EBG of no back­
tracking and of the maximum usage degree, regardless of 
example orderings. 

P r o o f We show this by induction. It is clear for one ex­
ample. For k example, assume the learner has LEBGk 
of no backtracking and of the maximum usage degree. 
For (k + l ) - th example, we show contradiction if there 
does not exists L E B G k + 1 of no backtracking from the 
union of LEBGk and that example. The clauses that 
causes backtracking must have the same rules in their 
root of their explanation structures, because original do­
main theory have some backtrackings if they have dif­
ferent rules. Then, their least EBG generalization wil l 
reduce this ambiguity because original domain theory 
have no backtrackings and least EBGs are less general 
than i t . Thus least EBG of no backtracking is found, 
and it has the maximum usage degree from theorem 2. 
Q.E.D. 

This theorem is applicable for domain theories that 
contains some redundant non-recursive clauses, such 
as "hate(W,W) :- depressed(W)" in previous section. 
Much of existing speed-up learning pointed out that un­
winding such redundant clauses contribute to improve 
efficiency(Subramanian et a/., 1990]. This theorem ex­
tends this facts into deterministic recursive theories. 

3.3.2 Non- l inear Recurs ion 
We show another extreme. Consider ancestor/2 that 

search transitive relation shown in figure 10. The learner 
is given examples of all of six discendants of a. Original 
domain theory causes infinite branch 
for ancestor(a,f) and "<- ancestor(a,g)". 

Much of existing EBLs learn exhaustive cache of all 
example like LEBG1. It is a kind of rote learning but 
the most operational least EBG because the slightest 
generalization causes backtracking like LEBG*. Espe­
cially, seif-unwindings of transitive rule make situation 
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D = 

E = 

ancestor (a, b). 
ancestor(6,d). 
ancestor(c,f). 
ancestor(X, Z) 

ancestor(X, Y) 

ancestor(a,c). 
ancestor(6,e). 
ancestor(c,g). 

ancestor(y, Z). 

ancestor(a, b). 
ancestor(a, d). 
ancestor(a, / ) . 

L E B G 1 = 

LEBG2 =s 

ancestor(a, 6). 
ancestor (a, <f). 
ancestor(a,/). 

ancestor(a, 6). 
ancestor(b, d). 
ancestor(c, / ) . 
ancestor(a, Z) 
ancestor(a, Z) 

ancestor(a, c). 
ancestor(a, e). 
ancestor(a, g). 

ancestor(a, c). 
ancestor (6, e). 
ancestor(c, g). 

ancestor(6, Z). 
ancestor(c, Z). 

Figure 10: least EBGs of a non-linear recursive theory. 

Figure 12: a negative example and the MSV. 

worse. [Subramanian et al, 1990] have pointed out there 
exists such a situation that the generalization-to-n in 
non-linear recursive theories misleads efficiency. The ex­
ample of ancestor/2 supports this from a viewpoint of 
operationality. 

Unfortunately, since our simple least EBG learner 
does not generate whole least EBG space of given ex­
amples, it is sensitive in example orderings in such a 
domain. However, it does not generate LEBGs that 
cause infinite branch, given such as ancestor(a,f), 

ancestor(a,d)}, and merely caches them. Therefore, 
least EBG learner is sufficiently useful in such a domain. 

4 Approaches to Other Imperfect 
Theory Problems 

4.1 Inconsistent T h e o r y and E B G Vers ion 
Space 

Inconsistent theory is distinctive in analytic problems 
such as classification and diagnosis. It is natural to 
look inconsistency as failures in classification or diag­
nosis. We assume that training examples are given with 
judgements whether they are positive or negative, and 
define a domain theory is inconsistent iff some negative 
examples are provable as positive examples. A learner 
with the inconsistent theory must change its competence 
rather than performance. We assume a learner swaps 
rules which conclude the goal concept wi th EBGs. These 
assumptions are similar to [Flann et al., 1989]. 

A learning task is to find EBGs s.t. prove positive 

examples but never prove negative examples. In SBL, 
such generalizations make a range called a version space. 
We show an EBG space of this paper have the same 
structure as a version space, and that when the number 
of disjunctives, i.e the number of macros, are bounded 
to n, its MSV is a least EBG generalization [Yamamura 
et al, 1990b]. 

For example, consider a domain theory which have a 
tree structured conceptual hierarchy. Figure 11 shows 
such a domain theory as an and-or tree. This is a re­
finement of D of figure 2 where small-w denotes "small 
weapon" and so on. This domain theory is inconsistent. 
Figure 12 shows one of provable negative examples. E3 
says that a king might not kil l himself with a cannon if 
he were depressed. To exclude this example, a learner 
must specialize the domain theory to constrain instru­
ments for self-destructions to small weapons. The MSV 
of the 1-bounded EBG version space is the least EBG 
as shown in figure 12 It includes all small weapons but 
excludes any big weapons. 

IOE of [Flann et al., 1989] is the MSV of 1-bounded 
version space. Thus, the EBG version space is thought 
of as an extention of IOE to n disjunctives. IVSM of 
[Hirsh, 1989] also uses the concept of version space. His 
version space is defined on features output by EBL, and 
is used also for incomplete theory. Our version space is 
defined directory on an EBG space, and we use more 
knowledge intensive method for incomplete theory. 

4.2 In t rac tab le Theo ry and Knowledge 
Comp i l a t i on 

The intractable theory problem is distinctive in synthetic 
problems such as planning and design. For example, op­
erator definitions of 8-puzzle are complete and consistent 
for any state transitions, but it is intractable to build a 
solution only with them. There often exists some strate­
gies to solve any problems without search, such as a con­
cept of serially decomposable subgoals in 8-puzzle [Korf, 
1985]. A learning task for intractable theory problem is 
a knowledge compilation to find such strategies. 

We have developed two kinds of approaches. One is 
to extract correct macros from instructed solution from 
a teacher under domain theory of primitive operators 
for problem solving domain that has serially decompos­
able subgoals such as 8 puzzle [Yamamura et al., 1989b]. 
Least EBG is used to extract correct macros. However, 
it often falls into a difficulty of SBL that a learner re­
quires numerous negative examples unti l convergence. It 
means that the computational load shifts from EBL to 
SBL to resolve the imperfectness of the domain theory. 

Another is to extend the interpretor to consider de­
cision level or control level domain theory like [Minton 
et al., 1987]. By this, intractable theory problem at ob­
ject level can be regarded as another kind of imperfect 
theory problem at decision level. We have developed de­
cision level domain theory for problem solving domain 
that has serially decomposable subgoals [Yamamura et 
al., 1990b]. This approach is a kind of knowledge com­
pilation. 
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Figure 11 : a tree s t ruc tured hierarcy. 

4 .3 I n c o m p l e t e T h e o r y a n d K n o w l e d g e 
T r a n s f e r 

For the incomplete theory prob lem, we have proposed an 
approach in classif ication problems using a background 
theory in add i t ion to the domain theory and examples 
[A rak i et a/., 1990]. A background theory consists of a 
commonsense knowledge such as tex t books or d ic t io­
naries. A learning task is to extend the domain theory 
by t ransfer r ing knowledge f rom the background theory 
based on simi lar i t ies of examples. The least E B G can be 
also used to ext ract s imi lar i t ies. Remark t h a t w i t hou t 
a background theory, the learning task is degenerated 
in to S B L when the domain theory is the most incom­
plete one, i.e. nu l l . We have given a solut ion only for a 
constrained class of domain theories. Otherwise, i t soon 
falls i n to dif f icult ies of SBL . 

I V S M of [H i rsh, 1989] uses pure SBL method when 
the domain theory is incomplete. Ou r approach aims 
more knowledge intensive method since i t seems more 
na tu ra l t h a t there exists somewhat relevant knowledge 
in the background knowledge when the domain theory is 
incomplete. 

5 Conclusion 

In th is paper, we proposed an augmentat ion of E B L 
to handle p lu ra l examples s imultaneously under imper­
fect domain theories for un i fy ing S B L and E B L . We 
presented solut ions to u t i l i t y p rob lem w i t h least E B G s 
which ex t rac t s imi lar i t ies of p lu ra l examples. There re­
ma in many problems in more imper fect theories, and 
the augmentat ion br ings together in t r ins ic dif f icult ies of 
SBL . However, in real app l ica t ion , useful expert ise for 
learn ing seems of ten ignored because they do not f i t w i t h 
ex is t ing f rameworks. Therefore, knowledge intensive ap­
proaches l ike the augmented E B L seems impor tan t . 
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