A Model

Toni

Elimination Calculus for Generalized Clauses

Bollinger

IBM Deiitschland GmbH - Wisseiischaftlichcs Zentrum

Institut fur Wissensbasierte Systeme
SchloBstr.70

D-7000 Stuttgart 1, Germany
e-mail:bollinRe@flsO1iloR.bit.net

Abstract

Generalized clauses differ from (ordinary)
clauses by allowing conjunctions of literals in
the role of (ordinary) literals, i.e. they are dis-
junctions of conjunctions of simple literals. An
advantage of this clausal form is that implica-
tions with conjunctive conclusions or disjunc-
tive premises are not split into multiple clauses.
An extension of Lovelands model elimination
calculus [Loveland, 1969a, Loveland, 1978] is
presented able to deal with such generalized
clauses. Furthermore we describe a method for
generating lemmas that correspond to valid in-
stances of conjunctive conclusions. Using these
lemmas it is possible to avoid multiple proofs
of the premises of implications with conjunctive
conclusions.

1 Introduction

Several extensions of the resolution rule and its refine-
ments have been proposed able to deal with quantifier
free first order logic formulas (e.g. see [Muray, 1982] for
an extension of the resolution rule and [Stiekel, 1982]
for a modification of the connection-graph procedure).
These proof procedures have the advantage that it is
not necessary to build a clausal normal from, i.e., despite
from establishing a prenex normal form and skolemizing
existentially quantified variables no normalization oper-
ations arc necessary. This enhances the readability and
understand ability of proofs and can also lead to shorter
deductions.

However, these modifications do not necessarily ex-
ploit the control structure implicit in logical formulas.
In particular, although an implication a —> b A c¢ is not
broken into two clauses navf» and -a V c, it is not ex-
cluded that a has to be proven twice in a proof of b A c.
This happens when, for instance the proof search per-

forms a kind of backward chaining.

In this paper we present an extension of the model
elimination calculus [Loveland, 1969a, Loveland, 1978]
which overcomes this drawback. It works on so called
generalized clauses which are disjunctions of complex lit-
erals being conjunctions of (simple) literals. For exam-
ple, the implication (aVb) -> (cAd) is equivalent to the

126 Automated Reasoning

generalized clause (-a A ->b) V (r A d) where ->a A -ib and
r A d are complex literals.

This restriction to generalized clauses is mainly moti-
vated by pragmatic considerations, as we use the ex-
tended model elimination calculus for processing the
predicate logic part of the knowledge representation lan-
guage LLILOG [Pletat and v. Luck, 1990, Bollinger and
Pletat, 1991) in the LEU/2' text understanding and
question answering system [Geurts, 199()]. Items of a
knowledge base need to be easily comprehensible. This
is the case for Prolog like rules and facts, but not for
arbitrary logical formulas. Even if they are quite simple
they can be misinterpreted, e.g., for seeing that the for-
mulae a -» (b —> r) and (a —* b) —* ¢ are not equivalent
one needs at least some basic knowledge in logic. On the
other hand by using definite or indefinite clauses, knowl-
edge cannot be expressed in a compact way. Generalized
clauses are therefore a good compromise. Rules with a
conjuntive conclusion or a disjunctive premise are not
torn apart. Equivalences between conjunctions of liter-
als can be represented by two generalized clauses.

In the next section we explain how Lovelands weak
mode] elimination calculus can be adapted to generalized
clauses. Compared to Lovelands calculus, deductions in
this calculus require in general less inference steps as well
as less computations. We then describe a method for
generating lemmas. Using these lemmas, we show that
redundant proofs of the premises of rules with a con-
junctive conclusion can be avoided. We conclude with a
discussion of the calculus.

2 Extending Model Elimination to
Generalized Clauses

2.1 Model Elimination for Ordinary Clauses

Model Elimination® can be considered as a refinement of
linear resolution where resolution steps are restricted to
iInput clauses. Resolution steps with predecessor clauses
in the proof tree are simulated by the reduction rule.
For this it is necessary to mark resolved literals instead
of deleting them.

'LEU is the acronym for "LILOG Experinienticnimgr-
bung" - LILOG experimental environment.

To be more precise it is Loveland's weak model elimi-
nation method [Loveland, 1978] that we will present in the
following.

More preciscly, instead of clauses, we have chains
which are ordered sequences of ordinary literals, called

O-lsterals, and resolved literals, R- hteral.c R- htcra.ls are
enclosed in brackets ([L]) for dmtmgumhmg them from
O-literals. Chains containing only O-literals are elemen-
tary chains. Unit chains consist of only one literal. We
call the universal closure of the disjunction of its O-
literals the clausal tnterpretation of a chain. A chain is
called admsssible if the right-most literal is an O-literal®.
The contraction-operation transforms a chain into an ad-

missible one by removing all R-literals to the right of the
right-most O-literal.

The model ehimination method consists of two infer-
ence operations:

o the extensson rule corresponding to the resolution
rule and

o the reduction rule.

For defining themn we use the notion of complementarity
of literala:

Definition 1 (Complementarity of literals) Two
literals Ly and Lo can be made complementary with a

moat general unificr O sff Ly and the complement of Ly
arc unsfiable with a moast general unifier ©.

The two model ehimination rules are defined as follows:

Deﬂnition 2 (ME extension) Let ¢; = cjL; and ¢,
= eyLacy be two admssmble chasns, Ly and L, be O-
hicrals and a be a renaming of the varsables sn cq such
that ¢y and caax have no variables tn common. If L,
and Lo can be made complementary with a most gen.
eral unifier ©, then the contraction of (cy[Li]coac,a)®
is called the ME extension of ¢y with ¢y,

Definition 8 (ME reduction) Let ¢ = ¢'|Ly]e" L, be
an admisasble chawn. If Ly and Ly can be made com-
plementary with a moat gencral unsfier © then the con-
traction of (c'[Ly]c"")O 12 a result of the ME reduction

of c.

The rationale behind the reduction rule 1s that in a
chain ¢'[L]c" the subchain ¢'L is always an instance of
a chain used for an extension step. Hence the reduction
of a chain corresponds to an extension step eventually
followed by a factorization,

For completing the presentation of model clitnination
we have to mtroduce the notions of model elimination
(ME) dednction and model eimination (ME) refatation:

Definition 4 (ME deduction) Given a set S of ele-

mentary chains, an ME deduction of a chain ¢ from §

15 a finsle aequence of chasna ¢y, ..., ¢, wath
® c; € S,
o for1=2,....n ¢c; 12 obtasned by ME cztension of c;_;
with an (auziliary) chasn from S or by ME reduction
of c;_1,
e ¢ = Cp.

R

'L(weland’n definition in [Loveland, 1978] contains 3 sup-
plementary conditions for the 'admissibility of chains. But
it is easy to sce and has already been stated in [Casanova

et al., 1989] that their removal neither affects soundness nor
completeness of (weak) model elimination.

Definition 5 (ME refutation) A refutation of a act S

of elementary chasns s a deduction from S of the empty
chan O,

Example 1 We will use the following example through-

out this paper for sllustrating our modtfications of the

standard model elimination calculuas.

Given the followsng artoms:

ary: VzG(z)vY(z) = C(x) A S(z),

azy: G(p)VY(p),

where G(z) may stand fo'r "t te a gourmet”, Y{(z) for

"r 18 a vuppy C(z) for "z likes to drink champaign”™,

S(:n) for "z likes to eal smails” and p can be interpreted
s "Peter”, one hikes to prove the goal

g: 3zC(z) A S(z).

After having butlt a clausal normal form of the azsoms

and the negated goal we get the follounng refutation of

the rc.mlting sct of chains:

("-11) (
((112) (
(m3) —~Y(x)
(“14) (
(_(12) (n)Y (p
(1) ﬂC(r)-wS()

(2) -C(z)[-5(z)]~G(x)

(3) ~C(p)[~S(P))[-G(r)]Y (r)
(4) ~C(p)[=-S(P-G(p)IIY (p)] S

negated qoal
ext. with ay,
ext. with a,
ext. with ay4

(5) ~C(p) reduction
(6) -C(p)]-CG(p) cxt. w:.th 1)
(7) -C(p)][-G(p)]Y () ext. with a
(8) [~C(PNI-G(PIY (P]C(r) ext. with a3
(9) O reduction

Extension and reduction are sound inference rules.
Further they form a (refutationally) complete calculus.
The following two theorems state this in a more formal
way:

Theorem 1 (Soundness of ME)
result of an ME deduction from a set S of elementary
chains, then the clausal interpretation of c¢ is a logical
consequence from S.

If a chain ¢ is the

Theorem 2 (Completeness of ME) [f a set S of el-
ementary chains if minimally unsatisfiahle, i.e., if ev-
ery proper subset of S s satisfiable, then for any chain
r e S there is a ME refutation of S starting witth c.

2.2 Resolution for Generalized Clauses

First we formally define the notion of complex literal and
generalized clause.

Definition 6 (Complex literal)
a conjunction of (simple) literals.

A complex literal ts

Definition 7 (Generalized clause)

A generalized clause is a disjunction of complex liter-
als.

When resolving two arbitrary quantifier free formu-
las (see [Muray, 1982]) first the polarities of all atomic
subformulas have to be determined. If they contain
two unifiable atomic subformulas with opposite polar-
ity, the unifying substitution is applied to the two for-
mulas. Then all occurences of the atom with positive

Bollinger 127

polarity are replaced by F, representing false, and all oc-
currences of the negative atom in the other formula by
T, standing for frue. The disjunction of these two mod-
ified formulas represents the resolvent, which is further
simplified by exploiting properties of logical connectives
like oAF<->ForaVF?”" a.

Adapting this resolution rule to generalized clauses is
straightforward. |In generalized clauses the sign of the
simple literals indicates the polarity of their atomic for-
mulas. During the resolution operation the positive lit-
eral is replaced by F, such that the complex literals it
appears in can be reduced to F (complex literals are con-
junctions). Hence they can be removed from the resol-
vent. The same happens with the complex literals where
the negative (simple) literal occurrs in, as its atomic for-
mula is replaced by Twhich is equivalent to replacing the
literal by F. Therefore resolving two generalized clauses
CG; and CG; consists of unifying a simple literal L of
CG; with the complement of a simple literal L2 from
CG2,APPLYING the unifying substitution 0 to cG, V CG,
and discarding from the resulting generalized clause all
complex literals with occurrences of L10 or L, O.

2.3 Model Elimination for Generalized Clauses

The notions introduced in Section 2.1
adapted to generalized clauses. Now we have com-
plex 0- and R-literals and generalized chains consist-
ing of complex O- and R-literals. Complex literals
are noted as conjunctions of simple literals. If a com-
plex O-literal consists of more than one simple literal
it is enclosed in (round) parentheses. As before, R-
literals are marked by (square) brackets. The chain
P(a)[Q(b)][P(b) A R(a)](Q(c) A P(c)), for instance, con-
sists of two complex O- and R-literals.

The definition of admissibility and the contraction op-
eration have to be modified accordingly.

When resolving two generalized clauses only simple
literals are compared. This also holds when two com-
plex literals are made complementary. We can therefore
define the complementarity of complex literals in the fol-
lowing way:

can easily be

Definition 8 (Complementarity of compl.
Let Ly = Ly A...A Ly, and L2 - -"21 A ... A Z2n be two
complex literals. L, and L, can be made complemen-
tary, with a most general unifier 0, iff a simple literal
L; from L; and the complement of a simple literal L,
from L, are unifiable with most general unifier 0.

There may be more than one possible most general
unifier for making two complex literals complementary;
e.g. for P(a)AP(b) and -*P(x) we have two most general
unifiers: 0] = {a/x) and 02 = {fr/*}- But all the most
general unifiers can be computed since the number of all
simple literal pairs from two complex literals is finite.

When resolving two generalized clauses, all complex
literals containing the resolved simple literals are dis-
carded. Deleting or bracketing these literals during an
extension step may lead to complications, for complex
literals standing left of an R-literal may be deleted or
transformed to an R-literal. It is therefore possible that
the left subchain relative to an R-literal is no longer an

128 Automated Reasoning

literals)

instance of a predecessor chain in a deduction. But this
is A condition for the correctness of the reduction rule.

Fortunately, it suffices to bracket resp. delete only the
complex literals that are made complementary. We can
therefore define genecralized model elimination (MGE)
extensson and reduction rule in the following way:

Definition 8 (GME extension) Let C; = CjL; and
C2 = C,L2C) be two admissidble generalized chains, L,
and L4 be compler O-literals and a be a renamang of the
vartables in C; auch that C; and Coa have no variables
in common. If L, and Loa can be made complementary
with a most general untfier @, then the contraction of

(C1{L£1]C20C) x)© 1s called the GME extension of Cy with
C,.

Deflnition 10 (GME reduction) Let

C = C'[L4)C" Ly be an admiassble generalized chasn. If
the complex hterals L, and Ly can be made complemen-
tary wsth a most general unsfier © then the contraction

of (C'[L4]C"")O i a result of the GME reduction of C.

GME deduction and GME refutatsion can be defined
analogously to ME deduction and ME refutation. One

has only to replace in Definition 4 and 5 "chain” by "gen-
eralized chain” and "ME” by "GME".

Example 2 Having buslt generalized chawns for the az-
toms and the negated goal of Ezample 1 we gct the fol-
lowing GME-refutation:

(a1) (~G(z) A-Y(z))(C(z) A S(z))

(az) G(p)Y(p)

(1) -C(z)~S(z) neg. goal
(2) -~C(z)[-S(z)|(-G(z)A ‘WY(:B?) ext. (ay)
(3) ~C(p)[=S(P)[-G(p) A -Y(p)IG(p) ezt (a3)
(4) ~C(p) reduction
(5) [~C(p)(~G(r) A~Y(p)) cet. (a)
(6) [-C(p)l[-G(p) A -Y(p)|G(p) ezt. (az)
(7) O reduclison

GME extension and GME reduction are sound infer-
ence rules. The soundness of GME extension follows
from the soundness of resolution for quantifier free for-
mulas. A GME reduction can be sunulated by an exten-
sion step with a predecessor clause 1n the deduction such
that the clausal interpretations of the resulting chains
arc equivalent. Hence the GME reduction rule is sound
too.

We get therefore the following theorem that can be
proven by indunction on the length of the concerning de-
duction:

Theorem 8 (Soundness of GME) If a generalized
chatn C 12 the result of a GME deduction from a act
S of clementary generalized chains, then the clausal in-
terpretation of C 19 a logical consequence of §.

The proof of the completeness of generalized model
elimination is based on the following lemima, where the
function coc produces a kind of conjunctive normal form
of a generalized chain.

Lemma 1 Let & be a set of generalized elementary
chasns and let coc (“contained ordinary chains”) be a
mapping from generalized chains to sets of ordinary
chains that 1s defined as follows:

COC(C) = {LI;ILQ;Q...L,‘;‘” j,’ = 1,...,mj,j = 1,...,n}
withC = £yL,...L,, where Li = Liy A.. ALjp,, 18 es-
ther a complex O- or an R-literal and L;; inherstes the
hiteral type from L;. Furthermore let § = |J.c 5 coe(C).
If there 32 a ME-deduction of a chasn ¢ from S then there
15 also a GME-deduction of a generalized chain C from
S with c € coc(C).

Given an ME-deduction of a chain ¢ from 5, the proof
of this lemma consists essentially of congtructing from S
an 18omorphic GME-deduction of a generalized chain C
containing ¢. Being technical it is omitted here and can

be fo}und in an extended version of this paper [Bollinger,
1991]).

Theorem 4 (Completeness of GME) If a sct & of
generalized elemeniary chains ss msnimally unsatasfiable,
r.c., tf every proper subsel of S 1s satisfiable, then for any
chasn C € S there ss a refutation of S starting with C.
Proof: As & 1s unsatisfiable, S = {J.cscoc(C) 15 un-
satisfiable too. Let S' C S be a mansmally unsatasfiable
subset of S. For anyC € & we have coc(C)NS' # 0. If
that would not be the case, S\{C} would be unsatisfiable
(due to coc(S\{C}) D S’), which contradscts the assump-
tion that S s minsmally unsatsafiable.

Let ¢ € coc(C) N S'. Due to the completencss of model
elimination there s a ME deductson of O starting with
c. Asc € coc(C) Lemma 1 can be applied and we obtain
that there 18 also a GME deduction of O from & starting
with C. O

3 Generating Lemmas

Although GME-refutations in general are shorter than
the corresponding ME-refutations, we still have the
problem of redundant proofs of premises, whose rules
have conjunctive conclusions. In Example 2 we saw that
the chain a; was apphed twice, whereas one applica-
tion should suffice. In chain (2) the "premise” literal
~G(z) A ~Y (z) of a; stands to the right of the resolved
literal. If this literal is proven one can deduce the con-
clnsion. This 18 done by the two subsequent imference
steps, i.e. at that moment C'(p) A S(p) should have been
deduced as a lemma. How can we achicve this?

We introduce a third type of literals called lemma can-
didates or L-literals. When extending a chamm C with an
auxiliary chain C, the resolved hteral in C, 18 declared as
a lemuna candidate and is put beside the bracketed ht-
eral, the resolved (complex) literal of C in the resulting
chain. Lemma candidates are put into braces, such that
in Example 2 above, the extension step of chain (1) with
chain a; yields:

(2) ~C(2)[~5(2){C(z) A S(2)}(~G(z) A=Y (x))

If it is possible to deduce the empty chain from the
subchain to the right of an L-literal, the corresponding
instantiation of the L-literal becomes a vahd lemma.

More formally we have:

If C! # O or € # O, an extension step of C; = C{ L,
with C, = C1L;C? yields,

C2 = (C1[L1]{L2}C;CH)0.
If there 18 a deduction of O starting with (C1€2)® and
if ® 18 the composition of the most general unifiers in
that deduction, then we also have a deduction of £L,0®
starting with (£,C1C2)0.

The refutation of (C1C2)O has to be performed when
trying to refute C5. Since chains represent disjunctions
of literals, i1t cannot be taken for granted that a refu-
tation of 2 containg also a refutation of (Cf{C‘f)@. For
this no literal of C}[£;] has to be involved in auy ex-
tension or reduction step when, during the refutation
of C3, (C1C2)0O is processed. This is certainly the case if
the Literals in (C2C2)O are eliminated by extension steps.
The situation 18 different for reduction steps. A reduc-
tion performed with an R-literal from C;{£;] during the
refutation of C, can’t be transferred to a refutation of
(C1C2)O. For that the R-literal has to stand to the right

a 1
of [L4] in C; or a chain deduced from C,.

We take mmto account this restriction m the following
way: Let us suppose that a reduction gtep can be apphed
to C = C'[L£;]C* L, by making complementary the literals
Ly and £,. The lemuma candidates in C? are not affected
by this as the involved O- and R-literal arc on the right
of C'. However, for the leruna candidates in C? the R-
literal [L,] stands to the left. Therefore these lemma
candidates become invalid and have to be ehminated.

The modifications of the contraction operation, of the
GME cxtension and the GME reduction rule are clear
now. The contraction operation also deletes rightmost
L-literals, that become valid leminas. The extension rule
may introduce a new L-literal being the "resolved” hiteral
of the auxiliary chamm. L-literals standing between the
R- and O-literal involved i a reduction operation are

deleted.

Example 8 The refutation of Example 2 1s modificd as
follows 1f lemmas are generaled:
(1) (~C(z) A~Y(2))(C(z) A 5(z))
(i) G(p)Y (p)
negated goal:
(1) ~C(z)-5(z)
extension with (ay): _
(2) ~C(z)[~S(2)){C(z) A $(z)}(~G(z) A ~Y (z))
extenston with (az): . .
(8) ~C(p)-S(P){C(p) A S(P)}[~G(p) A -Y (p)]G(p)
reduction and generation of lemma (1) C(p) A S(p):

(4) ~C(p)

cxtenston with (1):
(5) O

Loveland also proposes a method for generating lem-
mns. In [Loveland, 1969b], he introduces the notion of
scope associated with R-hiterals. It 18 matiahized to 0 and
updated when the R-literal is mmvolved m a reduction
step. In that case, 1t 18 set to the maximum of 1its actual
scope and the nunber of R-literals standing to the right
of it. If dnue to subsequent reduction and extension steps
the scope exceeds the number N of R-literals to the right
it 18 set to N. The subchain in the scope of an R-hteral
Lpr with scope N is the subchain from Ly to the N-th
R-literal to the right.

Lemmas can be forined when an R-hiteral Lg 18 re-
moved by the contraction operation. The maximnal sub-

Bollinger 129

cham in the scope of an R-hteral is taken in which Ly
occurs (ag the last literal). The lemma i8 gencrated by
leaving the O-hterals nnchanged and turning the nega-

tion of the R-literals into (O-hterals.

Example 4 We show a part of a deductson where lem-
mas are gencrated. The indices of the R-lhiterals sndicate
their scope.

(1) P(a)[Q(=)|o[P(y)]o~Q(a)[R(2)]o~P(a)

reduction without contraction:

(i+1) P(a)[Q(=)lo[P(a)l:~Q(a)[R(2)ls

contraction and gen. of lemma ~P(a)-Q(a)-R(z):

(i+17) P(a)[Q(=)]o[P(a)})1~Q(a)

reduction without contractson:

(i+2) P(a)[Q(a)1[P(a)ls

contraction and gencration of lemma -~Q(a)-P(a):
(i+2’) P(a)
chain in the scope of an R-literal is taken in which Lp
occurs (as the last literal). The lemma is generated by
leaving the O-litcrals unchanged and turning the nega-
tion of the R-literals into O-literals.
Example 4 We fhow a part of a deduction where Ilem-
ma* are generated. The indices of the R-literals indicate
their scope.

0) . r(")[Q(")]oir(v);o-Q(a){R(z)}o-r(a)

reduction without contraction:

(i+]) P()[Q(x)]o[P(a)}"Q(a)[R(z)}o

contraction and gen. of lemma -iP(a)-*Q(a)-*R(z):
(i+r)_ P(a)[<?(7)]o[P(a)l,-.Q(a)

reduction without contraction:

(1) P(lQ@)],[/>)].

contraction and generation of lemma ~>Q(a)-»P(a):
Specializing our method for lemma generation to or-

dinary chains we see that it corresponds exactly to the
case where Loveland's method is restricted to the gen-
eration of unit lemma chains. Lemma candidates are
not explicitely recorded since for simple literals they are
identical to the negation of the corresponding R-literal.
For complex literals this is necessary, as we do not have
£j0 =: -i£,” in general when they are complementary.

The removal of lemma candidates after a reduction
step has its counterpart in the fact that, according to
Loveland's method, the generation of lemmas is based
on the maximal subchain in the scope of an R-literal
yielding up to the rightmost R-litcral. This has the effect
that lemmas for R-literals within this subchain (except
the leftmost one) are not created.

It is easy to generalize Lovcland's method to general-
ized chains. In this way it is possible to generate lemmas
being the instance of disjunctive conclusions. However,
from a practical point of view, non-unit lemmas are less
useful in general.

4 Discussion
Generalized clauses and chains are interesting extensions
of their standard versions. Any quantifier free logical
formula can be represented by one such clause or chain.
This facilitates especially the processing of disjunctive
goals. In contrast to ordinary chains (and clauses) a
negated goal can always be transformed to exactly one
generalized chain. Moreover, having a set of ordinary
chains representing the negated goal, a refutation may
succeed with only one of them as the starting chain.
Hence for ordinary chains we have the problem of choos-
ing the right chain steming from the negated goal. This
problem does not occur for generalized chains, as we have
,P\-)rby one gﬂmtﬂ}ﬂ&eﬂ"ﬁ{é%\os@& ma 1 we know, that its
refutation succeeds if it succeeds for one of the ordinary
goal chains.

From iImplementational viewpoint,

moldlglllehl%%mﬁ ‘iﬁ IF&I&I gﬁﬁitut

generalized

SRR ‘;=‘

complex literals are made complementary. The only real
difference to ME consists in the fact that several sim-
ple literals are deleted or bracketed during an extension
and reduction operation. Of course, if lemmas should
be generated, additional computations have to be per-
formed concerning the L-literals. But compared with
Loveland's method for lemma generation their complex-
ity is not higher. The computational overhead of GME
with respect to ME is therefore low.

However, as GME refutations are generally shorter
than ME refutations, (cf. Example 1 compared to Ex-
ample 2) the overall amount for computing a refutation
is lower for GME. This effect is enhanced if lemmas are
generated, since the really interesting lemmas are those
generated for rules with conjunctive conclusions.

Looking at the search space, one realizes that the num-
ber of potential extension and reduction steps is greater
for GME than for ME, since complex literals may consist
of several simple literals. We know also from the proof of
Lemma 1 that for every ME-deduction of a chain c¢ there
Is an isomorphic GME-deduction of a generalized chain
containing c¢c. Hence the search space explored for find-
ing GME-refutations contains more redundancies, i.e.,
paths leading to identical solutions. This is not critical,
iIf one solution is looked for, as GME-refutations can be
shorter. In such a case a depth oriented search strat-
egy is appropriate. |If all solutions are looked for, it is
necessary to employ a strategy that avoids exploring re-
dundant paths. The development of such strategies is
one of the points that need to be investigated further.

GME may perform better than ME if the ressources
for the search are restricted. E.g., if the search depth
Is limited, with GME more solutions can be found, as
GME-refutations are shorter.

The generation of lemma should be restricted to the
useful ones, since the addition of every new lemma in-
creases the search space. Certainly, creating a lemma
candidate when performing an extension step with a unit
chain is superfluous, as the deduced lemma is an instance
of the used auxiliary unit chain. Simple L-literals are in
general less interesting than complex L-literals. There-
fore it may be reasonable to generate lemma candidates
only if the resolved literal in the auxiliary chain is a real
complex literal.

However even the most useful lemmas introduce new
redundancies into the search space, i.e., the same solu-
tion can be found by using a lemma and by performing
the extension and reduction steps that led to the de-
duction of the lemma. These new redundancies can be
neglected, when only one solution is looked for, since it
suffices to apply the lemmas first, before trying extension
steps with non-unit chains.

When looking for all solutions, we have again the prob-
lem of avoiding paths leading to identical solutions. The
situation becomes even more complex since the knowl-
edge base changes dynamically with the addition of lem-
mas. It may also happen that for finding all solutions,
lemmas computed at another branch of the proof tree
have to be used. Controling the generation and the use
of lemmas is therefore another point that will be inves-
tigated further.

One pragmatical solution would be to leave it to the
user to decide when to apply a rule that lead to the
introduction of a lemma. Like with the cut in Prolog,
the user would be able to prune a part of the search
space. The user has then the responsability for taking
care that no solutions are lost.

In the LILOG project the knowledge engineers asked
for such a feature. It happens often that a conjunction
of literals should be treated as one literal. Introducing a
new predicate symbol was not possible due to constraints
Imposed by the text understanding application. In such
a case the solutions found by the use of lemmas were
sufficient.

5 Conclusion

GME is a useful extension of ME. We have established
some of its advantages and have pointed out areas of
further investigation. Since GME applied to ordinary
chains behaves exactly like ME, one has the flexibility to
r.witch between GME and ME. The normalization proce-
dure has only to produce ordinary chains, and the com-
putational overhead for processing ME with the gener-
alized method is low.

An order sorted version of this calculus with lemma
generation has been implemented in Quintus Prolog* for
the LEU/2 text understanding system. GME has proven
to be very useful, given the nature of the application
domain, in which a majority of the rules written in the
knowledge representation language LLILOG HAD conjunc-
tive conclusions.

Control issues have to be investigated further. The
major problem is how to avoid investigating paths in
the search space that lead to redundant solutions. The
generation of lemmas can be considered as a kind of rote
learning. One may also think of storing certain lemmas
permanently or of applying machine learning techniques
like "explanation based generalization" for creating more
general lemmas. However, for avoiding the classical ma-
chine learning problem: "the more you know the slower
you go", good strategies need to be developed for control-
ing the generation, the use and eventually the permanent
storage of lemmas.

Acknowledgements

| would like to thank Zuzana Dobes, Karl Hans Blasius
and Udo Pletat for helpful comments on this paper.

References

[Bollinger and Pletat, 1991] Toni Bollinger and Udo
Pletat. Knowledge in operation. IWBS-Report, IBM
Deutschland, Scientific Center, 1991.

[Bollinger, 1991] Toni Bollinger. A model elimination
calculus for generalized clauses. |IWBS-Report, IBM
Deutschland, Scientific Center, 1991.

Quintus Prolog is a trademark of Quintus Computer Sys
terns, Inc.

[Casanova et al., 1989] M.A. Casanova, R. Guerreiro,
and A. Silva. Logic programming with general clauses
and defaults based on model elimination. In Proceed-
ings of the 11th |International Joint Conference on Ar-
tificial Intelligence, pages 395 400, Detroit, MI, 1989.

[Geurts, 1990] Bart Geurts. Natural language un-
derstanding in LILOG: An intermediate overview.
IWBS-Report 137, IBM Deutschland, Scientific Cen-
ter, 1990.

[Loveland, 1969a] D. Loveland. A simplified format
for the model elimination theorem-proving procedure.
Journal of the Association for Commuting Machinery,
16(3):349 363, 1969. Also published in [Siekmann and
Wright son, 1983, pages 233-248].

[Loveland, 1969b] D. Loveland. Theorem-provers com-
bining model elimination and resolution. In
B. Meltzer and D. Michie, editors, Maschine Intel-
ligence 4, pages 73 86. Edinburgh University Press,
Edinburgh, 1969. Also published in [Siekmann and
Wrightson, 1983, pages 249-263].

[Loveland, 1978] D. Loveland. Automated Theorem

Proving: A Logical Basis, volume 6 of Fundamental
Studies in Computer Science. North-Holland, New
York, 1978.

[Muray, 1982] N.V. Muray. Completely non-clausal the-
orem proving. Artificial Intelligence, 18(1):67 85,
1982.

[Pletat and v. Luck, 1990] U. Pletat and K. v. Luck.
Knowledge representation in LILOG. In K. H.

Blasius, U. Hedtstuck, and C.-R. Rollinger, editors,
Sorts and Types for Artificial Intelligence, volume 449
of Lecture Notes Iin Aftificial Intelligence. Springer-
Verlag, Berlin, Germany, 1990.

[Siekmann and Wrightson, 1983] Jorg Siekmann and
Graham Wrightson, editors. Automation of Reasoning
2. Springer-Verlag, Berlin, Germany, 1983.

[Stickel, 1982]
Mark E. Stickel. A nonclausal connection-graph reso-
lution theorem-proving program. In Proceedings of the
2nd National Conference of the American Association
for Artificial Intelligence, pages 229 233, Pittsburgh,
Pa., 1982.

Bollinger 131

