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Review

What Is an Engram?

The question of how memory is represented in our brain 
has fascinated scientists for centuries. The original defini-
tion of the term “engram” dates back to German psychol-
ogist Richard Semon, who outlined the engram as an 
“enduring though primarily latent modification in the irri-
table substance produced by a stimulus” (Semon 1921, p. 
12). Based on his work, four essential features of a mem-
ory engram can be derived (Josselyn and others 2015): 
First, a memory engram is the result of experience and 
reflects the specific content of that experience. Second, a 
memory engram has to engender persistent, long-term 
stable changes, so that, third, later reactivation of the 
engram enables memory recall and thus adaptive behav-
ior. Fourth, a memory engram does not only exist during 
encoding and retrieval while it is activated, but it also 
exists in a functionally inactive, “dormant” state in-
between. Consequently, if detected changes in the brain 
conform to these criteria, they can be regarded as evi-
dence for a memory engram.

Largely influenced by the cellular theory of the ner-
vous system of Ramón y Cajal (1894) and by the concept 
of Hebbian learning (Hebb 1949), our current under-
standing is that information is stored in the connections 
between populations of neurons that were active during 
encoding and that it is the structural modifications to 

these connections that make it last (Dudai 2004). This 
definition already implies that engrams can be found at 
different levels of investigation. In animal models, 
enduring changes in the brain are most often described at 
a molecular level (Lisman 2017; Rossetti and others 
2017), at the level of synaptic contacts (Hübener and 
Bonhoeffer 2010), or at the level of individual engram 
cells (Tonegawa and others 2015). However, information 
is represented in the brain in a hierarchical network of 
locations, each processing specific kinds of information 
(see Box 1). For example, in contextual fear condition-
ing, different regions carry different components of the 
engram, with contextual aspects relying on the hippo-
campus and emotional aspects on the amygdala 
(Zelikowsky and others 2014). The context engram in 
the hippocampus is stored in a number of distinct sub-
ensembles of engram cells that are jointly activated. 
These sub-ensembles seem to represent distinct aspects 
of the total memory (Ghandour and others 2019). In an 
experiment on auditory fear conditioning it was shown 
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Over the decades, different ideas of how widely a memory is distributed across the brain were put forward. Memory 
was assumed to be stored in highly localized, sparsely distributed, or extensively dispersed, interconnected systems, 
depending on the theoretical approach. The extreme form of localized storage is represented by the idea of the 
“grandmother cell,” a cell responding if and only if my grandmother crosses my thoughts. This concept has also been 
discussed in terms of “pontifical cells,” individual cells which have the final authority of defining a specific concept 
(Barlow 1972). Cells with such properties were reported to exist recently (Quiroga and others 2005). These cells 
responded with high specificity to individual concepts (e.g., that of the actress Halle Berry) no matter how they 
were presented (e.g., as different images or as a string of letters). Also, the idea of functional brain mapping relies on 
the proposition that individual aspects of cognition can be precisely pinpointed. The opposite end of the spectrum 
from local to distributed storage has been advocated by Karl Lashley (1950), who by lesioning rat brains came to 
the conclusions that all neocortical regions are functionally equivalent (“equipotentiality”) and only the amount of 
lesioned tissue determines the extent of functional impairment (“mass action”). Within this framework, memories 
are stored in the brain similar to information in a hologram. Cutting a hologram in two pieces does not split the 
scene in two, but gives two full representations, albeit with less sharpness or a restricted viewing angle.

Our current view reconciles both the localist and the connectionist standpoints. We know that there is a functional 
specialization of regions in the brain, beginning from retinotopic, somatotopic or tonotopic representations of the environ-
ment in the primary sensory cortices and leading up to specialized areas for complex concepts such as faces, objects, or 
places in higher-order association regions (Martin 2007). However, information is never stored in a single location alone, 
regardless of the level of inspection. Even low-level sensory stimuli are perceived by a number of neurons with varying tuning 
curves (Butts and Goldman 2006). Complex concepts activate large, distributed networks across the brain, comprising all 
lobes of the neocortex (Wang and others 2010). To integrate both points of view, it seems reasonable to assume that con-
cepts are stored in the brain as a hierarchy of localized, functionally distinct nodes, each consisting in turn of a number of 
other, more basic concepts, possibly descending down to the level of simple perceptual features. For a full understanding of 
engrams, it is therefore vital to combine the primarily cellular and the primarily network perspectives taken by animal and 
human research, respectively.

The representational hierarchy of memory is also reflected in the idea of temporally receptive windows (Lerner and oth-
ers 2011). Analogous to spatially receptive fields in the visual system, it has been shown that along the cortical hierarchy, 
areas are able to accumulate and retain information on increasingly longer timescales, from several tens of milliseconds in 
primary sensory areas up to several minutes in higher-order association areas like the medial posterior parietal cortex 
(mPPC) and the medial prefrontal cortex (mPFC; Hasson and others 2015). In humans, this has been elegantly shown with 
functional neuroimaging of participants that were either listening to a narrated story or viewing a movie (Baldassano and 
others 2017; Lerner and others 2011). Importantly, event segmentation according to the intrinsic timescale of higher-order 
association areas re-occurs during recall and even shows anticipatory reinstatement when reexposed to the same narrative 
again, indicating that temporally receptive windows might constitute an inherent principle not only of stimulus processing, 
but also memory storage (Baldassano and others 2017).

Thus, it becomes clear that the brain is—unlike a computer–not divided into separate processing and storage units. 
Instead, information is stored in the same neural circuits that participate in its initial processing, and also at the same level of 
conceptual abstraction (Fuster 1997; Martin 2007). In fact, it is this processing of stimuli that induces neuronal changes that 
represent memories, for example, in the form of LTP. The same idea is also reflected in the observation that—again unlike a 
computer—the brain does not seem to have a location-independent, general-purpose code for representing information. If, 
accordingly, meaning and location cannot be separated, information cannot be “transferred” between brain regions without 
being processed, transformed, abstracted, or integrated. Thus, it is reasonable to assume that a memory with a specific 
content must be stored where this content is processed during online stimulation. Functional brain activity can therefore be 
conductive in locating the memory engram.

Box 1.  The Organization of Memory in the Brain.

that inducing long-term potentiation (LTP) by optoge-
netically stimulating auditory input pathways to the 
amygdala during foot shock presentation is sufficient to 
engender a conditioned memory, but inducing LTP in the 
amygdala alone is not (Nabavi and others 2014). 
Likewise, the complete artificial induction of odor con-
ditioning by optogenetic stimulation of olfactory neu-
rons and ventral tegmental neurons resulted in a memory 

engram in the amygdala (Vetere and others 2019). In 
sum, these results indicate that the full memory is repre-
sented by a complex circuit. The engram cannot be pin-
pointed to a single place, but rather is encoded in a 
pattern of distributed locations that synchronize to sym-
bolize a certain mneme (Semon 1921). In order to fully 
understand how memories are stored in the brain, we 
therefore need to investigate the engram both on the 
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microstructural level of molecules and cells and on the 
macrostructural level of regions, systems and connectiv-
ity (Asok and others 2019) (Fig. 1).

The Evolution of the Neocortical 
Engram

Local Plasticity

After the initial impulse to encode a new memory, a 
variety of processes is set in motion, which operate on 
different timescales, and which aim to establish an 
enduring physiological modification to the neuronal 
network that represents the new information. Largely, 
these can be grouped into synaptic processes and sys-
tems processes. The first set of mechanisms effects local 
changes at the synapses between those cells that have 
been involved in processing the encoded information. 
They are summarized under the term LTP and its molec-
ular cascades have been described in detail (Lynch 
2004). The general idea is that high-frequency stimula-
tion induces short-lasting modifications of synaptic 
transmission for 30 to 60 minutes (early LTP), for exam-
ple, by phosphorylation of receptors and receptor traf-
ficking (Herring and Nicoll 2016). Subsequently, protein 
synthesis sets in (late LTP), which consolidates initial 
transient modifications in synaptic efficacy through 
morphological changes to the synaptic spines, repre-
senting a first sign of structural plasticity (Lynch 2004). 
Preexisting small spines can start growing within the 
first 5 minutes after stimulation (Matsuzaki and others 
2004) and new spines can form within 30 minutes 
(Engert and Bonhoeffer 1999). For example, during 
optokinetic adaptation, the number of glutamatergic 
AMPA receptors and the corresponding increase in syn-
apses in Purkinje cell connections of the cerebellum 
represent a short-term and a long-term engram, respec-
tively (Wang and others 2014). Eventually, also axon 
collaterals undergo small- and large-scale plastic 
changes in response to learning (Stettler and others 
2006; van Kerkoerle and others 2018). In non-invasive 
human experiments, synaptic plasticity can only be 
observed indirectly. Rapid adaptation of functional 
brain responses during learning within minutes and 
changes in microstructural tissue properties within an 
hour after learning can be seen as indications for early 
and late synaptic plasticity, respectively (Brodt and oth-
ers 2016; Brodt and others 2018; Keller and Just 2016; 
Sagi and others 2012; Tavor and others 2020).

Another exciting set of changes has been discovered 
more recently. These occur at a later timepoint and entail 
a refinement of connectivity by changes in myelination. 
Learning has been shown to induce oligodendrocyte pre-
cursor cell proliferation and differentiation into 

oligodendrocytes, leading to new myelin formation 
within several weeks. Inhibiting proliferation impairs 
remote but not recent memory, speaking for a role of 
myelination in later stages of memory consolidation (Pan 
and others 2020; Steadman and others 2020). In humans, 
there is also evidence that microstructural changes in 
white matter occur after several weeks of motor skill 
training (Scholz and others 2009; Taubert and others 
2010). The regulation of myelin influences axonal con-
duction velocity and might serve to optimize synchroni-
zation of information processing between neurons (Fields 
2015). Besides changes in the myelin-forming oligoden-
drocytes, learning-induced activation of astrocytes might 
also constitute a mechanism for tailoring information 
exchange between different sites by promoting synchro-
nized oscillatory states relevant for memory formation, 
such as slow and gamma band oscillations (Santello and 
others 2019).Together, these findings show that processes 
modulating neuronal efficacy occur everywhere in the 
brain at time scales between seconds and weeks after 
learning. They can not only be directly observed in ani-
mals but can also be inferred from studies using novel 
non-invasive human imaging methods.

Large Scale Reorganization

Apart from cellular and synaptic processes of memory 
consolidation, a second factor is crucial for the evolu-
tion of the neocortical engram. Since the investigations 
on patient H.M., it is clear that information can be stored 
in different locations in the brain, and that the contribu-
tion of these locations can change over time: whereas 
memories of more recent events were lost after removal 
of the hippocampus, more remote ones were kept intact 
(Scoville and Milner 1957). This observation led to the 
development of theories of systems consolidation. 
These theories assume in one form or another that the 
hippocampus is a fast learning system, which is able to 
rapidly encode and temporarily store large amounts of 
information in the form of an index that binds together 
all neocortical ensembles activated during encoding 
(Teyler and DiScenna 1986). On the other hand, the 
neocortex is supposed to be a slow learner, requiring 
many (hippocampus-driven) repetitions of the to-be-
learned information, but eventually providing stable and 
permanent storage (Frankland and Bontempi 2005; 
McClelland and others 1995). It is a robust finding in 
lesion studies that the hippocampus is involved in the 
acquisition of declarative memories, which are the 
memories for facts and events (Spiers and others 2001; 
Tse and others 2007). Human neuroimaging studies also 
have confirmed a role of the hippocampus during encod-
ing (Danker and others 2017; Himmer and others 2019; 
Kim 2011; Spaniol and others 2009). However, there is 
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Figure 1.  Levels of engram study. Engrams can be investigated on different scales ranging from the molecular level to the level 
of whole networks. Molecular level: The synaptic protein CamKII regulates memory storage. Memory retention of conditioned 
place avoidance was impaired when CamKII was inhibited after learning (HSV-K42M) compared with a control condition (HSV-
GFP). From Rossetti and others (2017). Cellular level: Memory engram cells in prefrontal cortex become functionally mature 
over time. Prefrontal engram cells identified with activity-dependent labeling during contextual fear conditioning are preferentially 
reactivated (circled cells) by the conditioned context and show higher spine density on day 12 compared with on day 2 after 
conditioning. From Kitamura and others (2017). Brain region level: The hippocampus and amygdala track different components 
of fear memory. Investigating the time course of expression of the immediate-early gene Arc in rats that received footshocks 
in a specific context either directly (Immediate, no fear conditioning) or after exploration (Delay, fear conditioning) reveals 
distinct cell activation patterns per region. Hippocampal dorsal CA1 cells were activated both during footshock and at a later 
reexposure (Double) regardless of conditioning, indicating that the hippocampus preferentially tracks contextual information. 
In contrast, amygdala cells encode the emotional valence of a context, since cells were activated by both events together only 
in fear-conditioned but not in control animals. From Zelikowsky and others (2014). Network level: Highly connected nodes in 
a memory network have the largest impact on memory retention. Chemogenetic silencing of 21 different brain regions that are 
involved in fear memory after fear conditioning leads to different levels of memory impairment. In line with in silico simulations, 
silencing regions that are highly connected to other involved brain regions like the thalamic nucleus reuniens (Re) produces the 
largest performance deficits (light green). From Vetere and others (2017).
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evidence that new declarative information can be 
learned to a certain degree even in the absence of an 
intact hippocampus. This was first observed in patient 
H.M., who used some words that entered language only 
after his hippocampal lesion and who was able to repro-
duce the layout of a house in which he was living after 
his lesion (Corkin 2002). Likewise, in an experimental 
study, four amnesic patients were able to acquire certain 
terms as descriptions for tangram figures, even at the 
same learning rate as healthy controls (Duff and others 
2006). Rats have also been shown to acquire contextual 
fear in the absence of a hippocampus (Wiltgen and oth-
ers 2006). As contextual fear can be abolished by post-
learning lesions of the hippocampus, these findings 
indicate that the brain’s memory systems have a certain 
redundancy and that similar memories can be acquired 
by different memory systems depending on the initial 
conditions. However, the extent of similarity between 
representations of the same memory within different 
memory systems remains a highly debated topic and is 
one of the main distinctions between different theories 
of systems consolidation. The model of complementary 
learning systems in its original version assumed that 
identical information is transferred from the hippocam-
pus to the neocortex over time (McClelland and others 
1995) with the mPFC taking over the indexing function 
of the hippocampus (Frankland and Bontempi 2005). 
The current version of multiple trace theory, trace trans-
formation theory (Winocur and others 2010), instead 
proposes that the reactivation of detailed, precise hip-
pocampal traces results in an abstracted, semanticized 
version in the neocortex and that these two versions can 
coexist in parallel. It is even conceivable that com-
pletely parallel encoding and storage in neocortical and 
hippocampal systems occurs.

Recent studies on engram formation in the rodent 
brain have revealed that engram cells are established in 
the neocortex rapidly during initial training (Kitamura 
and others 2017) and that they carry enough information 
to enable recall. Specifically, optogenetic reactivation of 
retrosplenial or mPFC engram cells for contextual fear 
sufficed to activate the memory and induce freezing 
behavior even when the hippocampus was inactivated 
(Cowansage and others 2014; Kitamura and others 2017). 
However, memory recall under natural conditions 
required an intact hippocampus for several days after 
learning. Thus, neocortical engram cells must be tagged 
already shortly after encoding although they initially 
remain in a “silent” state. This silent neocortical engram 
requires the hippocampus to become “mature” and able 
to induce natural recall independently. Hippocampal 
engram cells, in contrast, become silent over time 
(Kitamura and others 2017). Together, these findings 
indicate that the interplay of different memory systems is 

much more flexible than previously thought. They fit 
very well with a model in which several engrams start to 
develop in parallel on encoding of new information (Tse 
and others 2011). Still, hippocampal and neocortical 
engrams will generally represent different aspects of a 
memory because of their differing basic computational 
properties. The hippocampus can store individual events 
sparsely by performing pattern separation, whereas the 
neocortex rather learns generalized patterns by extracting 
regularities from overlapping similar instances (Bakker 
and others 2008; Kumaran and others 2016). These sub-
stantially differing network properties imply that the 
strength of the respective engrams will benefit from dif-
ferent factors and that their development will diverge and 
become increasingly independent.

Although the idea of systems memory consolidation 
has been elaborated in greatest detail for declarative 
memory, there is some evidence that other types of mem-
ories make use of similar principles. In the domain of 
motor learning, the contributions of different neocortical 
areas, for example, the primary motor cortex, motor asso-
ciation areas and the posterior parietal cortex, vary con-
siderably between the early, fast and the later, slow 
learning phases (Dayan and Cohen 2011). Also, some 
forms of motor sequence learning can use either hippo-
campus or striatum, and the interaction between these 
regions can evolve during a consolidation period (Albouy 
and others 2008). How this substantial reorganization is 
effected however is still not well understood.

How to Detect Engrams in the 
Human Brain

With the development of new cell labeling techniques 
and optogenetics, animal research is now able to specifi-
cally label engram cells that are active during memory 
acquisition, track them over extended time periods, and 
precisely manipulate them on the millisecond scale. By 
conducting invasive loss-of-function studies that disrupt 
memory by temporarily inactivating or permanently 
lesioning engram cell ensembles, it was possible to show 
that the underlying neuronal circuits are necessary for 
engram formation and expression. On the other hand, 
gain-of-function studies can induce artificial engrams 
and thus indicate processes and structures that are suffi-
cient for engram formation (Josselyn and Tonegawa 
2020; Martin and others 2000). In contrast, most human 
research relies on observational studies that detect the 
co-occurrence of memory with changes in neuronal 
activity and structure that fulfill the engram criteria spec-
ified above.

With methods that allow us to observe task-related 
functional activity, like functional magnetic resonance 
imaging (fMRI), electroencephalography (EEG), or 
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magnetoencephalography (MEG), we can detect brain 
areas that are engaged during memory encoding or 
retrieval. Learning-induced changes in functional 
responses can pinpoint areas that undergo short- or long-
term modifications. For example, in an fMRI study on 
spatial maze learning, increasing activation was induced 
in the posterior neocortex over 60 minutes of learning, 
but not in a similar control condition that precluded mem-
ory formation by constantly changing the maze layout 
outside the participants’ field-of-view. This learning-
induced increase in activity during navigation was stable 
after 12 hours and correlated with memory performance, 
thus fulfilling the first three criteria for an engram by 
Semon’s definition (Brodt and others 2016). Other stud-
ies, using resting-state fMRI, have shown changes in 
functional connectivity after learning that were associ-
ated with later performance, providing an additional 
means to investigate consolidation processes (Guidotti 
and others 2015; Stevens and others 2010; Wagner and 
others 2019).

Recently, multivariate methods were introduced that 
allow decoding the information processed by the brain 
from activity patterns. They enable us to assess whether 
a brain region not only performs processing that supports 
a memory task but also actually holds the memory con-
tent itself (Kunz and others 2018). In a correlational 
approach, learning-related changes in the similarity of 
stimulus-specific activity patterns can be linked to the 
gradual formation of engrams (Schlichting and others 
2015; Tompary and Davachi 2017). Such analyses have, 
for example, shown that the representational similarity 
of events in the anterior hippocampus corresponds to 
their spatial and temporal proximity (Nielson and others 
2015). In another approach, a machine learning classifier 
is trained to distinguish two or more classes of stimuli on 
the basis of their evoked functional activity patterns 
(Kuhl and Chun 2014; Polyn and others 2005). If the 
classifier is able to perform this task in a specific brain 
region, this region must process stimulus-associated 
information. In addition to using functional patterns to 
show online memory processing during learning and 
retrieval, they can also be used to show off-task memory 
processing, for example, during spontaneous reactiva-
tion in sleep or resting wakefulness (Deuker and others 
2013; Schönauer and others 2017).

Is it enough to show that learning leads to an enduring, 
stimulus-specific, recall-enabling change in the func-
tional brain response to also show local memory storage? 
Typically, functional methods measure the online 
response to a given stimulus. In studies of memory this 
represents the activity during encoding or recall. We can 
assume that memory storage occurs in the same neural 
circuits in which stimuli are processed (see Box 1). 
Therefore, functional activity can indicate the activation 

of a memory engram. However, we have to exclude the 
possibility that it represents other, auxiliary processes. 
Attention-regulating regions might show functional 
responses to stimuli without actually processing them. To 
detect an engram, we must therefore show that a func-
tionally active region is indeed processing memory-
related information, which we can do with the 
information-based multivariate methods mentioned 
above. In addition, engram encoding must manifest in a 
change in the functional response over the course of 
memory acquisition, which is an indication of an underly-
ing change in the neuronal substrate. This change must be 
stable over a period during which no active processing 
occurs to exclude active rehearsal, which represents 
(working) memory without an engram, and fatigue, 
which represents a transient neuronal change. It has to be 
kept in mind, however, that fMRI activity reflects the 
input into a cortical region rather than its output 
(Logothetis and Wandell 2004). Especially in the case of 
long-range communication between brain areas, the 
interpretation of the actual location of the engram based 
on functional activity alone is therefore sometimes not 
obvious. Thus, while activity indicates the presence of an 
engram, the location of that engram can only be deter-
mined by finding the related structural changes.

Changes in functional activity provide only indirect 
evidence of a memory engram. To reveal the actual struc-
tural change induced by new memory encoding, other 
methods are needed. Using structural MRI, studies in 
humans in the last two decades have focused on long-
term brain changes induced by extensive training. Usage 
of a brain area over a long period, for example, during the 
acquisition of new knowledge or a new skill, can increase 
the macroscopic extent of brain regions in a way that is 
detectable using voxel-based morphometry. Thus, it has 
been shown that the hippocampal gray matter volume of 
taxi drivers increases during learning of spatial informa-
tion (Woollett and Maguire 2011). Also, training a com-
plex motor skill like juggling increases gray matter 
density in the posterior neocortex (Draganski and others 
2004; Scholz and others 2009).

Another approach allows mapping of more fine-
grained, microstructural changes in the brain using dif-
fusion-weighted MRI (DW-MRI). DW-MRI measures 
the random Brownian motion of water molecules along 
different gradient directions, which is sensitive to tissue 
microstructure. Using DW-MRI, it has been shown that 
several weeks of training lead to noticeable changes in 
white matter tracts (Scholz and others 2009; Taubert and 
others 2010). Only recently, it has been shown that 
DW-MRI is able to also detect rapid, experience-driven 
structural plasticity in human gray matter as early as 90 
minutes after learning (Brodt and others 2018; Keller 
and Just 2016; Sagi and others 2012; Tavor and others 
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2020). These structural changes were assessed via a 
decrease in mean diffusivity (MD), which is a non-
directional measure of the average amount of diffusion 
within a voxel. A decrease in MD over time indicates a 
higher substance density within that voxel. Histological 
findings from animal studies show that sites of learning-
induced MD decrease also display an increase in syn-
apse number, expression of brain-derived neurotrophic 
factor, as well as astrocyte activation (Sagi and others 
2012). Critically, all of these potential underlying mech-
anisms are tightly linked to learning-induced micro-
structural plasticity. Besides neuronal processes like 
expansion of post-synaptic densities and dendritic spine 
formation (Matsuzaki and others 2004), astrocytes also 
play a key role in learning and memory, as astrocytic 
signaling supports BDNF-dependent LTP and induces 
synapse formation (Santello and others 2019; Vignoli 
and others 2016). Therefore, MD is a highly useful 
marker of memory engrams: A learning-induced change 
in MD that remains stable over an extended period and 
that relates to successful memory recall indicates the 
presence of an engram. Generally, while functional 
methods have their strengths in uncovering the spatio-
temporal patterns of mnemonic processing and thus 
enable us to assess stimulus specificity and relation to 
recall performance on a trial-by-trial basis, the advan-
tage of microstructural imaging is that it provides evi-
dence for structural changes and a possibility to observe 
the engram during offline phases. Therefore, both meth-
ods combined provide a comprehensive set of tools to 
detect and study engrams in both their active and their 
dormant states (Fig. 2).

The Location of the Neocortical 
Engram

Studies on memory engrams in rodents have mostly 
investigated contextual fear conditioning (Josselyn and 
Tonegawa 2020). Although many of these studies have 
focused on the hippocampus and the amygdala, engram 
cells have also been found distributed throughout the 
neocortex (de Sousa and others 2019; Tonegawa and oth-
ers 2018; Vetere and others 2017). In humans, studies of 
the engram can be divided into those investigating declar-
ative memory and those studying non-declarative mem-
ory. Whereas studies on non-declarative memory mostly 
investigate the engram in modality-specific association 
areas, studies on declarative memory find evidence for an 
important role of a number of hub regions, which belong 
to a network of higher-order association cortices often 
subsumed as the default mode network (Buckner and 
DiNicola 2019; Fig. 3). Apart from the hippocampus, 
especially two neocortical hubs along the cerebral mid-
line have been identified as central to this network: the 

mPFC and the mPPC, which encompasses the precuneus, 
posterior cingulate cortex and retrosplenial cortex.

One of the main functions traditionally ascribed to the 
prefrontal cortex is executive control (Miller and Cohen 
2001). It plays a central role in top-down modulation and 
behavioral inhibition (Munakata and others 2011), which 
allows it to support goal maintenance and attention 
(Miller and Cohen 2001). The latter two functions have 
also been suggested to be crucial for the role of the pre-
frontal cortex in working memory (Gazzaley and Nobre 
2012), in which the mPFC collaborates with the hippo-
campus for maintenance intervals that are longer than a 
few seconds (Lee and Kesner 2003). As to the role of the 
mPFC in long-term memory, most current theories of sys-
tems consolidation describe it as a region that takes over 
the function of the hippocampus in binding cortical infor-
mation modules into a coherent representation of a mem-
ory after consolidation (Frankland and Bontempi 2005). 
Consequently, there have been many studies investigat-
ing the role of the mPFC for remote memory. Engram 
cells for remote contextual fear memory were found in 
the prefrontal cortex of rats (Kitamura and others 2017) 
and human studies have shown increased mPFC activa-
tion during retrieval of remote versus recent memories 
(Gais and others 2007; Takashima and others 2006). 
Some of these human imaging studies might be inter-
preted in light of an increased need of executive strategy 
during later memory recall instead of direct engram acti-
vation. However, the delayed involvement of the mPFC 
might also be explained by the fact that this region seems 
specialized for processing abstract, schema-like knowl-
edge (Gilboa and Marlatte 2017; van Kesteren and others 
2010). During categorization tasks, the mPFC preferen-
tially represents prototypes of learned categories instead 
of single exemplars (Bowman and Zeithamova 2018); 
and online memory representations of experimentally 
linked objects in mPFC become more similar over time 
(Tompary and Davachi 2017). Also, sudden, insight-like 
encoding of semantic memories has been shown to 
depend on the mPFC in addition to parietal areas 
(Kizilirmak and others 2019). In any case, mPFC activity 
is often observed in synchrony with the hippocampus. 
For example, during overlearning of word-color associa-
tions, both hippocampus and mPFC became less active 
while posterior parietal areas increased activity (Himmer 
and others 2019). This idea is also supported by the strong 
connections between both regions, the bilateral informa-
tion flow, and their electrophysiological oscillatory syn-
chrony in the theta band (Eichenbaum 2017). Thus, it is 
possible that the mPFC is a region that is processing and 
storing new information as more abstract knowledge like 
concepts, schemata, or task rules (Gilboa and Marlatte 
2017; van Kesteren and others 2010). Initial encoding 
might already start in parallel to the hippocampus and full 
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engrams develop through reactivation afterward (Euston 
and others 2012). It must be kept in mind, however, that 
the mPFC is a heterogeneous region that might serve a 
number of different functions in different subregions 
(Ciaramelli and others 2019).

In contrast to the mPFC, the posterior parietal cortex 
received attention in the context of memory only recently, 
and evidence for a genuine memory function not only of 
the mPPC but also of the inferior and superior parietal 
lobules, has only begun to accumulate (Gilmore and others 
2015). Functional neuroimaging studies in humans have 
shown the involvement of this region during encoding and 
retrieval of mnemonic information, in particular denoted 
by an increase in its functional response over learning 
(Brodt and others 2016; Brodt and others 2018; Himmer 
and others 2019; Schott and others 2019). Patterns of 
encoding activity in mPPC are reinstated during retrieval 

and the strength of reinstatement correlates with behav-
ioral performance (Bird and others 2015; Chen and oth-
ers 2017). Several recent fMRI studies using different 
material have demonstrated that changes in memory-
related activity in mPPC are experience-dependent, 
long-term stable and relevant for behavior, thereby 
pointing to an online memory representation (Brodt and 
others 2016; Brodt and others 2018; Himmer and others 
2019). Additionally, using DW-MRI, rapid microstruc-
tural plasticity in the same location as these experience-
induced functional changes in the precuneus has been 
found (Brodt and others 2018). These findings provide 
evidence for a memory engram in the mPPC and show 
its role in neocortical memory storage. Additionally, a 
recent study combining lesion sites of 53 amnesic 
patients with human connectome data has identified the 
retrosplenial cortex as the center of a human memory 

Figure 2.  Detecting human engrams with combined functional magnetic resonance imaging (fMRI) and diffusion-weighted 
MRI (DW-MRI). (A) Participants learned object-place associations in several encoding-recall repetitions over the course of 13 
hours. Task-related activity was recorded with fMRI and tissue microstructure was assessed at three time points, at baseline 
immediately before learning, 90 minutes after learning and again after an offline interval of 10 hours. The control condition 
followed the same protocol without learning. (B) A conjunction analysis of the minimum statistic across functional and 
microstructural data shows that the human precuneus fulfills all criteria for a memory engram. (C-F) fMRI analyses. (C) In an 
anatomical precuneus region of interest (ROI), the category of the presented stimuli could be decoded from functional activity 
during memory encoding, indicating that this region processes the learned content. (D) Increases in precuneus activity over 
the encoding-recall repetitions were (E) stable over an offline period of 12 hours and (F) related to successful memory recall. 
(G-H) DW-MRI analyses. (G) A decrease in mean diffusivity 90 minutes after learning was experience-dependent as it was 
specific to the learning condition, persisted over an offline interval of 10 hours and correlated with memory retention. From 
Brodt and others (2018).
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circuit (Ferguson and others 2019), further corroborating 
the idea that the mPPC constitutes an important neocorti-
cal memory hub. Concerning the nature of memory rep-
resentations in the mPPC, multivariate pattern analyses 
have confirmed the existence of exemplar-level as well 
as category-level memory representations within this 
region (Lee and others 2019). In monkeys, the mPPC 
has also been shown to simultaneously hold the mem-
ory of an abstract task rule as well as spatial sensory 
information (Gail and Andersen 2006). Both findings 
fit well with the idea that it plays a role in memory inte-
gration, linking episodic detail with pre-existing knowl-
edge (Bird and others 2015; Chen and others 2017). 
Similar to the mPFC, the mPPC represents a large area 
of cortex that serves many different functions. We are 
only beginning to understand which subregions sup-
ports which function for what type of memory (Sestieri 
and others 2017).

In accordance with the idea that the neocortex is best 
suited to store generalized knowledge, neocortical areas 
have mostly been associated with the storage of seman-
tic information, in particular those regions (posterior 
parietal cortex, anterior temporal lobe) at the top of the 
multisensory processing hierarchies (Binder and others 
2009; Gilboa and Marlatte 2017). But, evidence for 
memory engrams has also been found further upstream 
in the sensory neocortex, downstream in the motor cor-
tex, and in several other neocortical areas. In the pri-
mary visual cortex of adult monkeys, structural changes 
can be found related to learning a novel contour detec-
tion task. Axons in the cortical region representing the 
trained visual field undergo sprouting and pruning after 
learning (van Kerkoerle and others 2018). In humans, 
during recall of common items, the visual cortex holds 
the information about their color; for example, during 
the presentation of a gray “banana,” the color “yellow” 

Figure 3.  Potential locations of human memory engrams in the neocortex. Medial posterior parietal cortex (mPPC): When 
comparing functional activity recorded during watching movie scenes and during later verbal recall within the same subject, 
the mPPC was one of the regions displaying the highest pattern similarity. A similar pattern also emerged for between subject 
analyses (not shown), indicating that the mPPC stores modality-free abstract information that is similarly structured over 
individuals. From Chen and others (2017). Medial prefrontal cortex (mPFC): The mPFC exhibits greater pattern similarity of 
objects that were encoded on separate trials but within the same scene (overlapping) than of objects that were encoded in 
different scenes specifically during memory retrieval after 1 week (remote), but not during immediate retrieval (recent). Thus, 
memory representations in the mPFC seem to change with consolidation toward stronger representation of commonalities 
between stimuli. From Tompary and Davachi (2017). Visual cortex: It is possible to decode the color from functional brain 
activity while seeing a grayscale image of a well-known colorful object from V1, like, for example, the color “yellow” from a gray 
banana. These results show that memory recall involves the reactivation of sensory features in early sensory areas and might hint 
at a memory engram in the visual cortex. From Bannert and Bartels (2013).
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can be decoded from the primary visual cortex (V1) 
(Bannert and Bartels 2013). As there is no bottom-up 
color stimulation, the color information must be coming 
via top-down feed-back connections. It can be argued 
that the concept of a “yellow banana” is located upstream 
of the primary visual cortex, for example, in V4, which 
has strong similarity in representational structure to V1 
(Bannert and Bartels 2013), and V1 is activated as a 
result of memory retrieval in V4. However, it can also 
be argued that the concept is located in the whole net-
work of neurons and that activation of V1 is integral to 
its retrieval. There are a number of other studies that 
relate retrieval of visual features from memory and V1 
activity, not only showing participation of these early 
areas in the engram but also indicating that processing 
and storage happen in the same neuronal circuits (Harris 
and others 2001). Even adaptation-induced plasticity of 
tuning-curves found in the visual cortex of rats can be 
seen as a (very basic) engram of visual properties 
(Dragoi and others 2000). On the other hand, V1 has 
also been shown to be able to learn complex information 
like visually presented sequences in humans (Rosenthal 
and others 2016). Complex visual stimuli like imagined 
spatial landmarks can be decoded with fMRI from neo-
cortical regions higher up in the ventral processing 
stream (Boccia and others 2017).

For other modalities, most evidence comes from ani-
mal studies. The auditory cortex, analogous to the visual 
cortex, also seems able to hold specific engrams; for 
example, fear conditioning of complex tones requires 
auditory cortex plasticity in rats (Dalmay and others 
2019). For olfactory fear conditioning, chemogenetic 
inactivation and activation shows that olfactory cortex 
activity is both necessary and sufficient to elicit a condi-
tioned response, thus it holds the engram for this type of 
memory (Meissner-Bernard and others 2019). In human 
cross-modal episodic memory with visual and olfactory 
stimulation, a visual recall cue elicits fMRI activity in 
the olfactory cortex (Gottfried and others 2004). 
Interestingly, the modality-specific sensory cortices 
seem to be required especially for late-stage memory of 
fear conditioning in rats, indicating that systems consoli-
dation does not only manifest in an interaction between 
the hippocampus and the hub regions mentioned above 
but can also involve other neocortical regions (Sacco and 
Sacchetti 2010). Regarding motor engrams, intracranial 
recordings in monkeys show that the primary motor cor-
tex is able to learn a stable movement mapping, which 
can later be used to decode imagined movements and 
control a neuroprosthetic device, thus fulfilling all crite-
ria for a motor memory engram (Ganguly and Carmena 
2009). Targeting and optogenetically shrinking an esti-
mated 400,000 synapses in the rat motor cortex that were 
previously potentiated during motor skill learning can 

erase a corresponding engram (Hayashi-Takagi and oth-
ers 2015). Motor engrams have also been found in the 
cerebellum (Wang and others 2014), and even cortico-
spinal neurons undergo plasticity after learning, showing 
a very low-level neuronal involvement in the motor 
engram (Peters and others 2017). It remains to be seen 
whether the motor output system has a similar hierarchi-
cal structure of motor concepts as the semantic system 
has for sensory concepts.

Taken together, these findings support the idea that 
neocortical memory traces are distributed broadly 
throughout task-relevant regions (Eichenbaum 2016) 
and that engram ensembles in different regions are 
specialized to store different aspects of an engram 
(Josselyn and Tonegawa 2020; Zelikowsky and others 
2014). They also fit very well with accounts proposing 
the same distributed neural circuits for processing and 
storage of information (Fuster 1997; Hasson and oth-
ers 2015; Martin 2007) (see Box 1). Certainly, one of 
the most interesting open issues in this context is the 
question how memory is implemented on the network 
level. Both the mPFC and the mPPC constitute hubs 
which are located at the top of the cortical processing 
hierarchy (Binder and others 2009; Gilboa and 
Marlatte 2017; Margulies and others 2016). Their 
dense connections to cortical and subcortical circuits 
make them most suited on the one hand to communi-
cate with other memory systems and on the other hand 
to orchestrate engram ensembles in downstream corti-
cal areas. For example, for schema-related informa-
tion, the (ventral) mPFC is assumed to activate 
relevant neocortically stored information and to 
inhibit hippocampal encoding while enabling the 
establishment of intracortical connections for direct 
integration of the new schema memory into the neo-
cortical network (Ciaramelli and others 2019; van 
Kesteren and others 2012). Likewise, for spatial infor-
mation, it has been shown that the mPPC displays 
increased functional connectivity with occipitotempo-
ral cortices during memory encoding (Cohen and oth-
ers 2019; Schott and others 2019) as well as modified 
connectivity patterns with the hippocampus across 
memory formation (Brodt and others 2016).

Factors Supporting Neocortical 
Memory Formation

Reactivation

During systems consolidation, the contribution of indi-
vidual memory systems to an engram undergoes a 
change. The main proposed mechanism underlying this 
gradual shift is an off-line reactivation of the neuronal 
ensembles that were activated during initial encoding 
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(Frankland and Bontempi 2005), which allows separate 
memory systems to interact (Helfrich and others 2019; 
Ji and Wilson 2007). Spontaneous reactivation of previ-
ous experience has been shown in many neocortical 
regions, from higher association cortices down to sen-
sory and motor regions (Klinzing and others 2019). As 
predicted from consolidation theories, neocortical reac-
tivation is often, but not exclusively observed in coordi-
nation with the hippocampus (Girardeau and others 
2017; Ji and Wilson 2007; O’Neill and others 2017; 
Rothschild and others 2017). Artificially enhancing hip-
pocampal-neocortical coupling promotes neocortical 
storage and subsequent memory performance (Maingret 
and others 2016). However, the original idea that there 
is a unidirectional flow of information from hippocam-
pal to neocortical memory stores has recently been 
called into question (Helfrich and others 2019; 
Rothschild and others 2017).

Many studies have shown that there is spontaneous 
reactivation during sleep (Buzsaki 2015). Indeed, sleep 
is known to promote cortical plasticity and benefit sub-
sequent behavior (Aton and others 2013; Kuhn and oth-
ers 2016; Niethard and others 2018; Yang and others 
2014). In animals, it has been shown that sleep stabilizes 
cortical immediate-early gene upregulation and leads to 
subsequent dominance of neocortical memory traces 
(Genzel and others 2017). In humans, sleep leads to a 
reorganization of cortical activity in declarative and 
motor memory systems (Gais and others 2007; 
Sterpenich and others 2009; Vahdat and others 2017). 
Sleep has also been associated with a decrease in 
retrieval-related hippocampal activation (Takashima 
and others 2006) and the stabilization of a repetition-
induced hippocampal deactivation (Himmer and others 
2019). All of these findings indicate less reliance on the 
hippocampus and an increased dependence of memory 
retrieval on neocortical networks after sleep. On a 
behavioral level, sleep-dependent reorganization leads 
to enhanced category learning, rule abstraction and 
memory integration, features typically linked to neocor-
tical representations (Ashton and others 2018; Durrant 
and others 2011; Nieuwenhuis and others 2013). Apart 
from during sleep, a growing amount of literature also 
reports spontaneous reactivation in the neocortex during 
resting wakefulness, with similar beneficial conse-
quences on subsequent memory performance (Tambini 
and Davachi 2019). For example, in a recent human 
fMRI study it has been shown that after participants 
engaged in a decision-making task, the hippocampus 
replays sequences of task states during awake rest. This 
replay correlated with the fidelity of task representa-
tions in the neocortex, specifically the orbitofrontal cor-
tex, which in turn was positively related to task 
performance (Schuck and Niv 2019).

Recent work supports the idea that just like sponta-
neous endogenous reactivation, also stimulated reacti-
vation in the form of repeated learning or repeated 
retrieval, might provide a benefit particularly for neo-
cortical memory (Antony and others 2017; Karpicke 
and Roediger 2008). Accordingly, animal studies show 
that increased training intensity renders fear memories 
independent of the hippocampus within a much shorter 
timeframe than commonly observed (Lehmann and 
others 2009; Pedraza and others 2016), speaking for 
accelerated neocortical memory formation. In line with 
these findings, human neuroimaging studies observe a 
decrease in hippocampal activity and hippocampal-
neocortical connectivity over repeated encounters with 
previously learned information (Brodt and others 2016; 
Himmer and others 2019). At the same time, repetitions 
enhance neocortical activity, particularly in posterior 
parietal areas, and this activity correlates with subse-
quent memory performance (Brodt and others 2016; 
Brodt and others 2018; Himmer and others 2019; 
Kremers and others 2014; Vannini and others 2013). 
Compared with simple passive restudy, especially 
repeated active retrieval of learned content has been 
linked to neocortical memory formation. Repeated 
retrieval sharpens cortical memory representations 
(Karlsson Wirebring and others 2015), benefits associ-
ated memories potentially via co-activation in parietal 
cortex (Jonker and others 2018) and leads to adaptive 
forgetting via cortical pattern suppression of competing 
traces (Wimber and others 2015). At the same time, 
retrieval also promotes neocortical memory integration 
(Ferreira and others 2019; Lee and others 2019).

Thus, repeated memory retrieval as well as spontane-
ous reactivation leads to restructuring of the engram and 
benefits memory performance. Both seem to be able to 
provide the repetitions the neocortex requires to encode 
new information. Systems consolidation therefore seems 
to be a process depending not on passage of time, but on 
reactivation and repetition. A particular advantage that 
both retrieval and endogenous reactivation might have 
over repeated encoding is that they both represent a top-
down flow of information and they might thus close a 
loop with the bottom-up pathway established during 
learning. Together, these findings argue that the neocor-
tex should rather be considered a “multi-trial” instead of 
a “slow” learner.

Prior Knowledge

Integration of new information into prior knowledge is 
a powerful tool to accelerate learning of related infor-
mation and to promote memory retention in experimen-
tal settings as well as in real life. The method of loci for 
example is a mnemonic device that enables rapid 
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encoding of large amounts of novel information by 
mentally linking each item to a specific location along 
a well-known route. Animal studies have shown that 
rats can integrate location information into an existing 
spatial map in a single trial whereas they need training 
over several sessions to learn the same location without 
a pre-existing spatial schema. Moreover, the rat neocor-
tex supports this novel schema-related information 
independent of the hippocampus within 48 hours, which 
can take months without prior knowledge (Tse and oth-
ers 2007). Because this type of fast learning elicits 
upregulation of immediate early genes in neocortical 
structures within 80 minutes and because an intact neo-
cortex at the time of encoding is necessary for long-
term memory retention, this finding speaks for a direct 
parallel encoding into neocortical networks (Tse and 
others 2011). In humans, it was found that the existence 
of a schema increases connectivity between the hippo-
campus and neocortical regions during encoding of 
related information (van Kesteren and others 2010). 
Furthermore, as prior knowledge increases, retention of 
related information depends less and less on hippocam-
pal activity at encoding, indicating increased reliance 
on neocortical networks (Brod and others 2016). Along 
the same lines, brain activity during retrieval of schema-
related novel information shifts much more rapidly 
from the hippocampus to the neocortex than for schema-
unrelated information (Sommer 2017). Finally, schema 
learning has been shown to induce neocortical struc-
tural changes in the form of myelin formation in mPFC 
(Hasan and others 2019).

Another line of evidence on how prior knowledge 
influences memory storage in humans comes from stud-
ies employing the paradigm of fast mapping. Here, the 
name of an unknown item can be inferred through elimi-
nation because it is presented together with a well-known 
item. Subsequent memory for information that is encoded 
with fast mapping can be best predicted from activation 
patterns in the anterior temporal lobe, a neocortical 
region associated with semantic knowledge, whereas the 
hippocampus is the best predictor if the same material 
has been explicitly learned (Atir-Sharon and others 
2015). Similarly, retrieval of fast mapped compared with 
explicitly encoded information preferentially engages 
the anterior temporal lobe (Merhav and others 2015) and 
patients with damage to this area are impaired at fast 
mapping whereas patients with hippocampal lesions are 
impaired at explicit learning (Sharon and others 2011). 
The pattern of associated behavioral performance sug-
gests that memory is successfully integrated into existing 
memory networks within 10 minutes after fast mapping, 
whereas it takes more than a day after explicit learning 

(Coutanche and Thompson-Schill 2014). Together, prior 
knowledge research suggests that novel information can 
rapidly become stored in neocortical memory networks 
when linked to an existing neocortical anchor (Kumaran 
and others 2016).

In sum, reactivation and pre-existing neocortical repre-
sentations benefit neocortical memory formation (Fig. 4). 
Additionally, several findings indicate that these two factors 
interact. For one, post encoding reactivation in neocortex 
contributes to the emergence of schematic representations 
and facilitates subsequent encoding of related information 
(Lewis and Durrant 2011; Tompary and Davachi 2017). 
Prior knowledge, in turn, not only modulates hippocampal-
neocortical interaction during post-encoding rest (van 
Kesteren and others 2010) but also reorganizes the content 
of reactivation (Liu and others 2019).

Conclusion and Future Directions

Thanks to the methodological advancements of the last 
years, our knowledge of how our brain forms and 
retains memories has advanced substantially. With the 
possibility to detect engrams, we have learned that they 
are widely distributed throughout the brain and inher-
ently dynamic. Different sets of engram ensembles can 
switch between silent and active states, supporting 
memory at different time points and under different cir-
cumstances. With this knowledge, our view on how and 
when the neocortex can support declarative memories 
has also changed and calls for an update of existing 
models. We now know that rehearsal through repeated 
learning or endogenous reactivation supports the rapid 
establishment of neocortical memory engrams. What 
remains open is under which circumstances they also 
allow neocortical memory formation independent of 
the hippocampus. However, there is no doubt that in 
humans the search for the engram and the associated 
detection of neuronal plasticity is still in its infancy. In 
the future it will be important to further develop the 
existing detection methods, increasing spatial and tem-
poral resolution, and extending scanning modalities to 
include different aspects of neuronal and astrocytic 
plasticity. With the currently available methods, it is 
already possible to detect a human memory engram if 
an experimental paradigm induces changes in func-
tional as well as structural markers of plasticity, which 
fulfill the defining criteria of an engram. However, it is 
important to remember that to fully understand how 
memories are stored in the brain, all levels of study 
from individual synapses to macrostructural activity 
patterns have to be considered, thus pointing to the 
necessity of integrating findings in animals and humans.
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Figure 4.  Beneficial factors for neocortical engram formation. Spontaneous reactivation: After participants were engaged in 
a decision-making task, sequential replay of the task structure could be observed with functional magnetic resonance imaging 
(fMRI) in the hippocampus during awake rest (left panel). Strong sequential offline replay in the hippocampus (HC) was related 
to higher decodability of task states in the orbitofrontal cortex (OFC, middle panel). Higher decodability in OFC, but not in 
HC, was associated with lower error rates (right panel). This pattern indicates a role of hippocampal replay for neocortical task 
representations that benefit behavior. From Schuck and Niv (2019). Rehearsal: Over multiple encoding-recall repetitions of a 
word list, hippocampal and mPFC activity decreases, whereas activity in the precuneus and the inferior parietal lobe increases 

(continued)
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Figure 4.  (continued)

indicating stable learning-dependent changes in these areas. From Himmer and others (2019). Prior knowledge: In an fMRI 
study on object-location schema learning with multiple sessions over 1 year, different activity patterns for novel but schema-
related paired associates (novel PA) and novel unrelated stimuli (control PA) could be observed. Specifically, novel related PAs 
elicited higher activity than control PAs in neocortical regions like the ventral precuneus (vPC) and retrosplenial cortex (RSC) 
during encoding (not shown) as well as immediate recall (upper right panel) at later timepoints when the schemata were well 
established. In contrast, hippocampal activity during successful retrieval decreased over time for novel related PAs and increased 
for control PAs (lower panel). From Sommer (2017).
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