arXiv:2305.05064v1 [cs.LO] 8 May 2023

Explicit Model Construction for Saturated
Constrained Horn Clauses

Martin Bromberger!, Lorenz Leutgeb!?, and Christoph
Weidenbach®

'Max Planck Institute for Informatics,
Saarland Informatics Campus, Saarbriicken, Germany,
{mbromber,lorenz,weidenb}@mpi-inf .mpg.de
2Graduate School of Computer Science,
Saarland Informatics Campus, Saarbriicken, Germany

2023-05-08

Abstract

Clause sets saturated by hierarchic superposition do not offer an ex-
plicit model representation, rather the guarantee that all non-redundant
inferences have been performed without deriving a contradiction. We
present an approach to explicit model construction for saturated con-
strained Horn clauses. Constraints are in linear arithmetic, the first-order
part is restricted to a function-free language. The model construction is
effective and clauses can be evaluated with respect to the model. Further-
more, we prove that our model construction produces the least model.

1 Introduction

Constrained Horn Clauses (CHCs) combine logical formulas with constraints
over various domains, e.g. linear real arithmetic, linear integer arithmetic, equal-
ities of uninterpreted functions [I3]. This formalism has gained widespread at-
tention in recent years due to its applications in a variety of fields, including
program analysis and verification: safety, liveness, and termination [41}[T6], com-
plexity and resource analysis [37], intermediate representation [22], and software
testing [39]. Technical controls, so called Supervisors, like an engine electronic
control unit, or a lane change assistant in a car [, [7] can be modelled, run,
and proven safe. Thus, CHCs are a powerful tool for reasoning about complex
systems that involve logical constraints, and they have been used to solve a wide
range of problems.

A failed proof attempt of some conjecture or undesired run points either to a
bug in the model, conjecture or in the modelled system. In this case investigation
of the cause of the unexpected result or behavior is crucial. Building an explicit
model of the situation that can then be effectively queried is an important means
towards a repair. This is exactly the contribution of this paper: We show how

http://arxiv.org/abs/2305.05064v1

to build explicit models out of saturated CHC clause sets that can then be
effectively queried, i.e., clauses can be effectively evaluated with respect to the
model.

Reasoning in CHCs, or first-order logic fragments extended with theories,
has a long tradition. There are approaches to clausal, resolution style reasoning
such as superposition [2] 23] BI], sequent style reasoning [40], and reasoning
based on explicit model assumptions [4, [9]. More recently, specific approaches
to CHCs have been developed that can also consider inductive aspects. They
fall into one of two categories [I3], [6]: bottom-up procedures [24] or top-down
procedures [26] B8] [30]. Bottom-up procedures are based on forward inferences.
For instance, hierarchic unit resolution to CHCs would constitute a bottom-up
procedure for CHCs. Bottom-up procedures return “unsatisfiable” as soon as
they derive a clause of the form A || L, where A is a satisfiable constraint, the
first-order part L of the clause is unsatisfiable, and they return “satisfiable” if
no such clause was derived and no more inferences are possible, i.e., the clause
set is saturated. Many bottom-up procedures can construct the least model
based on a saturated clause set this way [13]. For instance, the constraint unit
clauses that are the result of saturating with hierarchic unit resolution describe
together the least model. However, for many interesting cases, bottom up satu-
ration does not terminate and the saturated clause sets are infinite. Top-down
procedures are based on backward inferences, i.e., they start their inferences
from so-called goal clauses (typically purely negative clauses) and continuously
infer new goal clauses. For instance, an extension of SLD resolution [32] 35 [29]
to CHCs would constitute a top-down procedure for CHCs. Chains of backward
inferences can then be pruned early with the help of cyclic induction or inter-
polants [6]. Moreover, over-approximations of the least model can be extracted
from such a pruning and tested for satisfiability. Some contemporary methods
for solving CHCs combine top-down and bottom-up approaches, e.g., via ab-
straction refinement [13]. CHCs can be extended to a full fledged programming
language as done in constraint logic programming [28], [13].

In contrast to most CHC reasoning procedures, superposition is neither
a bottom-up nor a top-down procedure. Instead of restricting itself to for-
ward/backward inferences, superposition restricts its inferences based on an
ordering on the ground literals. The finite saturation concept of superposition
is powerful: there are saturated CHCs with linear arithmetic constraints where
it is undecidable whether a simple ground fact is a consequence of the saturated
set [14, 27]. Superposition is a decision procedure for various first-order logic
fragments, e.g., [2,[23,[25], even if they are extended with theories [34,[20,[9]. The
decision results for SCL (Simple Clause Learning) reasoning [9] are also based
on the completeness of hierarchic superposition. The proof for refutational com-
pleteness of hierarchic superposition even implies the existence of a model if the
clause set is saturated and does not contain the empty clause [33] Bl B]. How-
ever, the definition of the model from the completeness proof is based on an
infinite axiomatization of the background theory. It is therefore not suited for
an effective, explicit model representation.

In this work, we present an automated model building approach that yields
an explicit and finite model representation for finitely saturated Horn clause
sets of linear arithmetic combined with the Bernays-Schonfinkel fragment. This
fragment is equivalent to CHCs with linear arithmetic constraints. Recall that
although satisfiability in this fragment is undecidable [I4] [27], in general, for a

finitely saturated set we can effectively construct such a representation. This
enables effective evaluation of clauses with respect to the model and therefore
supports explanation and bug finding in case of failed refutations. The approach
we present does not exploit features of linear arithmetic beyond equality and
the existence of a well-founded order for the theories’ universe. The results may
therefore be adapted to other constraint domains.

Recursive predicate definitions cannot be finitely saturated, in general. This
is a result of the expressiveness of the language: a single monadic predicate to-
gether with constraints of the form y = cx or y > ¢ for some number ¢ and recur-
sive clauses, already yields undecidability of CHCs modulo linear arithmetic [27].
As a result, it is possible to construct for any CHC reasoning approach small
recursive examples where also our approach does not yield termination. Still,
our model construction approach and CHC reasoning in general are useful in
practice. There are many real world applications that are either non-recursive
or only depend on recursion that reaches a fixed point after a finite number of
recursive steps [9] [8) [7]. Naturally, such applications make saturation possible
and therefore fall into the scope of our method. Moreover, our method is also of
theoretical interest because it is the first explicit model construction approach
for superposition that is based on saturation, goes beyond ground clauses, and
includes theory constraints. In the future, we plan to use this approach as the
basis for a more general model construction approach that also works on more
expressive fragments of first-order logic modulo theories.

There is a tradition in automated model building in first-order logic [19] [I1].
A model should in particular enable effective evaluation of clauses [I1]. This is
fulfilled by our finite model representation to CHCs. In detail, our contributions
are: (i) We propose an approach to automatically build models for clause sets
that are saturated under hierarchical superposition up to redundancy, (ii) the
resulting models are effective, in the sense that they allow clause evaluation,
and (iii) we show that our approach produces the least model.

The paper is organized as follows. In Section [2 we clarify notation and
preliminaries. The main contribution is presented in Section Bl We conclude in
Section [

2 Preliminaries and Notation

We briefly recall the basic logical formalisms and notations we build upon [g].
Our starting point is a standard first-order language with variables (denoted
x,y, z), predicates (denoted P, Q) of some fixed arity, and terms (denoted ¢, s).
An atom (denoted A) is an expression P(t1,...,t,) for a predicate P of arity
n. When the terms ¢1,...,t, in P(¢1,...,t,) are not relevant in some context,
we also write P(x). A positive literal is an atom A and a negative literal is a
negated atom —A. We define comp(4) = —A, comp(—A4) = A, |A] = A and
|~A| = A. Literals are usually denoted L, K. We sometimes write literals as
[-]P(*), meaning that the sign of the literal is arbitrary, often followed by a
case distinction. Formulas are defined in the usual way using quantifiers V, 3
and the boolean connectives -, V, A, —, and =. The logic we consider does not
feature an equality predicate.

A clause (denoted C, D) is a universally closed disjunction of literals 4; V
<+ VA, V=B V---V=aB,,. A clause is Horn if it contains at most one positive

literal, i.e. n < 1. In Section [all clauses considered are Horn clauses. If Y
is a term, formula, or a set thereof, vars(Y) denotes the set of all variables in
Y, and Y is ground if vars(Y) = (. Analogously II(Y) is the set of predicate
symbols occurring in Y.

The Bernays-Schonfinkel Clause Fragment (BS) in first-order logic consists
of first-order clauses where all terms are either variables or constants. The
Horn Bernays-Schonfinkel Clause Fragment (HBS) is further restricted to Horn
clauses.

A substitution o is a function from variables to terms with a finite domain
dom(o) = {z | zo # x} and codomain codom(c) = {zc | z € dom(o)}. We
denote substitutions by o, 7. The application of substitutions is often written
postfix, as in zo, and is homomorphically extended to terms, atoms, literals,
clauses, and quantifier-free formulas. A substitution o is ground if codom(o) is
ground. Let Y denote some term, literal, clause, or clause set. A substitution o
is a grounding for Y if Yo is ground, and Yo is a ground instance of Y in this case.
We denote by gnd(Y") the set of all ground instances of Y. The most general
unifier mgu(Zy, Zs) of two terms/atoms/literals Z; and Zs is defined as usual,
and we assume that it does not introduce fresh variables and is idempotent.

2.1 Horn Bernays-Schonfinkel with Linear Arithmetic

The class HBS(LRA) is the extension of the Horn Bernays-Schonfinkel frag-
ment with linear real arithmetic (LRA). Analogously, the classes HBS(LQA)
and HBS(LIA) are the extensions of the Horn Bernays-Schénfinkel fragment
with linear rational arithmetic (LQA) and linear integer arithmetic (LIA), re-
spectively. The only difference between the three classes are the sort LA their
variables and terms range over and the universe I over which their interpreta-
tions range. As the names already imply LA = LRA and & = R for HBS(LRA),
LA =LQA and U = Q for HBS(LQA), and LA = LIA and U/ = Z for HBS(LIA).
The results presented in this paper hold for all three classes and by HBS(LA)
we denote that we are talking about an arbitrary one of them.

Linear arithmetic terms are constructed from a set X of wariables, the set
of constants ¢ € Q (if in HBS(LRA) or HBS(LQA)) or ¢ € Z (if in HBS(LIA)),
and binary function symbols + and — (written infix). Additionally, we allow
multiplication - if one of the factors is a constant. Multiplication only serves us as
syntactic sugar to abbreviate other arithmetic terms, e.g., z+xz+z is abbreviated
to 3 - x. Atoms in HBS(LA) are either first-order atoms (e.g., P(13,x)) or
(linear) arithmetic atoms (e.g., © < 42). Arithmetic atoms are denoted by A
and may use the predicates <, <,#,=,>,>, which are written infix and have
the expected fixed interpretation. First-order literals and related notation is
defined as before. Arithmetic literals coincide with arithmetic atoms, since the
arithmetic predicates are closed under negation, e.g., ~(z > 42) = z < 42.

HBS(LA) clauses are defined as for HBS but using HBS(LA) atoms. We
often write clauses in the form A ||C where C is a clause solely built of free
first-order literals and A is a multiset of LA atoms called the constraint of the
clause. A clause of the form A || C is therefore also called a constrained clause.

The fragment we consider in Section [3]is restricted even further to abstracted
clauses: For any clause A || C, all terms in C' must be variables. Put differently,
we disallow any arithmetic function symbols, including numerical constants, in
C. Abstraction, e.g. rewriting > 3| P(z,1) to « > 3,y = 1| P(x,y), is al-

ways possible. This is not a theoretical limitation, but allows us to formulate
our model construction operator in a more concise way. We assume abstracted
clauses for theory development, but we prefer non-abstracted clauses in exam-
ples for readability, e.g., a unit clause P(3,5) is considered in the development
of the theory as the clause = 3,y =5 || P(z,y).

In contrast to other works, e.g. [10], we do not permit first-order constants,
and consequently also no variables that range over the induced herbrand uni-
verse. All variables are arithmetic in the sense that they are interpreted by U.
In the absence of equality, it is possible to simulate variables over first-order con-
stants, by e.g. numbering them, i.e. defining a bijection between N and constant
symbols.

The semantics of A || C is as follows:

Alc it (AN —C it (\/-3)ve
AEA AEA

For example, the clause z > 1Vy # 5V-Q(z)V R(x,y) is also written z < 1,y =
5] =Q(z) V R(x,y). The negation —(A || C) of a constrained clause A || C' where
C=A1V---VA, VB V--- VB, is thus equivalent to (Ayc, A) A 241 A

-+A=A, ABy A--- A B,,. Note that since the neutral element of conjunction is
T, an empty constraint is thus valid, i.e. equivalent to true. In analogy to the
empty clause in settings without constraints, we write [J to mean any and all
clauses A || L where A is satisfiable, which are all unsatisfiable.

An assignment for a constraint A is a substitution (denoted () that maps
all variables in vars(A) to numbers ¢ € Y. An assignment is a solution for a
constraint A if all atoms A € (AJ) evaluate to true. A constraint A is satisfiable
if there exists a solution for A. Otherwise it is unsatisfiable.

We assume pure input clause sets, which means the only constants of our
sort LA are concrete rational numbers. Irrational numbers are not allowed by
the standard definition of the theory. Fractions are not allowed if LA = LIA.
Satisfiability of pure HBS(LA) clause sets is semi-decidable, e.g., using hierarchic
superposition [3] or SCL(T) [9]. Impure HBS(LA) is no longer compact and
satisfiability becomes undecidable, but its restriction to ground clause sets is
decidable [21]. Note that pure HBS(LA) clauses correspond to constrained Horn
clauses (CHCs) with LA as background theory.

All arithmetic predicates and functions are interpreted in the usual way. An
interpretation of HBS(LA) coincides with A" on arithmetic predicates and
functions, and freely interprets free predicates. For pure clause sets this is well-
defined [3]. Logical satisfaction and entailment is defined as usual, and uses
similar notation as for HBS.

Example 1. The clause y > 5,2’ = =+ 1| So(x,y) — S1(z’,0) is part of a
timed automaton with two clocks x and y modeled in HBS(LA). It represents
a transition from state So to state S1 that can be traversed only if clock y is at
least 5 and that resets y to 0 and increases x by 1.

2.2 Ordering Literals and Clauses

In order to define redundancy for constrained clauses, we need an order: Let
<1 be a total, well-founded, strict ordering on predicate symbols and let <;; be
a total, well-founded, strict ordering on the universe Y. (Note that < cannot

be the standard ordering < because it is not well-founded for Z, Q, or R. In
the case of R, the existence of such an order is even dependent on whether we
assume the axiom of choice [I7].) We extend these orders step by step. First,
to atoms, i.e., P(@) < Q(l_;) if P<q Qor P=Q, &',g e Ul and @ <jex l;,
where <cx is the lexicographic extension of <. Next, to literals with a strict
precedence on the predicate and the polarity, i.e.,

P(t) < -P(3) < Q@) ifP=<Q

independent of the arguments of the literals. Then, take the multiset extension
to order clauses. To handle constrained clauses extend the relation such that
constraint literals (in our case arithmetic literals) are always smaller than first-
order literals. We conflate the notation of all extensions into the symbol < and
define < as the reflexive closure of <. Note that < is only total for ground
atoms/literals/clauses. However, this is sufficient for a hierarchic-superposition
order [5].

Definition 1 (<-maximal Literal). A literal L is called <-maximal in a clause
C if there exists a grounding substitution o for C, such that there is no different
L' € C for which Lo < L'c. The literal L is called strictly <-maximal if there
is no different L' € C for which Lo X L'o.

Proposition 1. If < is a predicate-based ordering and C' is a Horn clause,
and C has a positive literal L, and L is <-maximal in C, then L is strictly
<-mazimal in C.

Definition 2 (<-maximal Predicate in Clause). A predicate symbol P is called
(strictly) <-maximal in a clause C if there is a literal [|P(x) € C that is
(strictly) <-mazimal in C.

Definition 3. Let N be a set of clauses and < a clause ordering. Then N=¢ =
{C"eN|C' < C}.

Definition 4. Let N be a set of clauses, < a clause ordering, and P a predicate
symbol. Then N=F :={C € N |C = [1]Q(x) v C',C" < [H]Q(x),Q < P}.

2.3 Hierarchical Superposition, Redundancy and Satura-
tion

For pure HBS(LA) most rules of the (hierarchic) superposition calculus become

obsolete or can be simplified. In fact, in the HBS(LA) case (hierarchic) super-

position boils down to (hierarchic) ordered resolution. For a full definition of

(hierarchic) superposition calculus in the context of linear arithmetic, consider

SUP(LA)[I]. Here, we will only define its simplified version in the form of the
hierarchic resolution rule.

Definition 5 (Hierarchical <-Resolution). Let < be an order on literals and
A || L1V C1, As|| Ly VvV Cy be constrained clauses. The inference rule of hierar-
chical <-resolution is:

AM||LivCy Ag||LavVCy o =mgu(Ly,comp(Ls))
(Al,AQ || Ci Vv CQ)(T

where Ly is <-maximal in C1 and Lo is <-mazximal in Cy.

Note that in the resolution rule we do not enforce explicitly that the positive
literal is strictly maximal. This is possible because in the Horn case any positive
literal is strictly maximal if it is maximal in the clause.

For saturation, we need a termination condition that defines when the cal-
culus under consideration cannot make any further progress. In the case of
superposition, this notion is that any new inferences are redundant.

Definition 6 (Ground Clause Redundancy). A ground clause A ||C is redun-
dant with respect to a set N of ground clauses and and order < if N=<MC
A C.

Definition 7 (Non-Ground Clause Redundancy). A clause A || C is redundant
with respect to a clause set N and order < if for all A'||C" € gnd(A || C) the
clause A" || C" is redundant with respect to gnd(N).

If a clause A||C is redundant with respect to a clause set N, then it can
be removed from N without changing its semantics. Determining clause redun-
dancy is an undecidable problem [9, [43]. However, there are special cases of
redundant clauses that can be easily checked, e.g., tautologies and subsumed
clauses.

Redundancy also means that Z £ N=<M ¢ implies 7 E A || C. We will exploit
this fact in the model construction.

Definition 8 (Saturation). A set of clauses N is saturated up to redundancy
with respect to some set of inference rules, if application of any rules to clauses
in N yields a clause that is redundant with respect to N or is contained in N.

2.4 Interpretations

In our context, models are interpretations that satisfy (sets of) clauses. The
standard notion of an interpretation is fairly opaque and interprets a predicate
P as the potentially infinite set of ground arguments that satisfy P.

Definition 9 (Interpretation). Let P be a predicate symbol of arity n. Then,
PT denotes the subset of U™ for which the interpretation Z maps the predicate
symbol P to true.

Since our model construction approach manipulates interpretations directly,
we need a notion of interpretations that always has a finite and explicit repre-
sentation and for which it is possible to decide (in finite time) whether a clause
is satisfied by the interpretation. Therefore, we rely on the notion of symbolic
interpretations which is closely related to A-definable models [6, Definition 7]
and constrained atomic representations [I1), Definition 5.1, pp. 236-237].

Definition 10 (Symbolic Interpretation). Let 1,2, ... be an infinite sequence
of distinct variables, i.e. x; # x; for all 1 < i < j. (We assume the same
sequence for all symbolic interpretations.) A symbolic interpretation S is a
function that associates all predicate symbols P of arity n with a formula P (Z),
constructed using the usual boolean connectives over LA atoms, where the only
free variables appear in & = (x1,...,%).

The interpretation Zs corresponding to S is defined by PTs = {(Z)3 | B F
PS(#)} and maps the predicate symbol P to true for the subset of 4" which

corresponds to the solutions of PS(#). Note that there are some interpretations
for which no corresponding symbolic interpretation exists, for instance the set of
prime numbers is a satisfying interpretation for y = 2 || P(y), but not expressible
as a symbolic interpretation (in LA). As we will later see, at least any saturated
set of HBS(LA) clauses either is unsatisfiable or has a symbolic interpretation
that satisfies it (Section [3)).

The top interpretation, denoted I, is defined as PZT := U™ for all predicate
symbols P of arity n and corresponds to the top symbolic interpretation, denoted
S+, defined as PST := T for all predicate symbols P. The bottom interpretation
(or empty interpretation), denoted 7 , is defined analogously. The interpretation
of P under Z U J is defined as PTY7 := PZ U PY and corresponds to Z U J
defined as PSYR(Z) = PS(%) v PR(&). We write T C J or T is included in J
(resp. T C J or T is strictly included in J) if PZ C P7 (resp. PZ C P7) for all
predicate symbols P.

Definition 11 (Entailment of Ground Literal). Let Z be an interpretation.
Given a ground literal P(aq, ..., ay), where a; € U, we writeZ E P(aq,...,ay,) if
(a,...,an) € PT. Conversely, we write T¥ P(ay,...,a,) if (ay,...,a,) & PT.

Definition 12 (Entailment of Non-Ground Literal). Let Z be an interpretation.
We write T & L, if for all grounding substitutions o for L, we have Z F Lo.

Conversely, we write Z ¥ L, if there exists a grounding substitution o for L,
such that Z ¥ Lo.

We overload F for symbolic interpretations, i.e. we write S F L and mean
Ts E L. The following function encodes a clause as an LA formula for evaluation
under a given symbolic interpretation.

Definition 13 (Clause Evaluation Function). Given a constrained clause A || C
where C = L1V -V Ly, Li = [P;(Yi1,- - - Yin;), and a symbolic interpretation
S, let the free variables of PZ-S be z; and define the following (for 1 <i<m):

b = PZ-S L; is positive
T —-P? L, is negative (otherwise)
oi = {wij =iy |1<j<ni}
(A1) = (AN = (V éion)
AEA i=1

Solving (A || C)¢ is, essentially, the same as evaluating S F A || C.

Proposition 2. Given a constrained clause A || C with grounding 3, we have
F(AIC)°B ifandonlyif SF(A]C)B

We require two functions that manipulate LA-formulas directly to express
our model construction (cf. Definition [I6]), i.e. to map solutions for a clause to
a predicate.

Definition 14 (Projection). Let V be a set of variables and ¢ be an LA-formula.
The projection function w is defined as follows:

7(V,¢) =3z ...3x,. & where {z1,...,x,} = vars(¢) \ V

This function is used when mapping the solution of a predicate w.r.t. non-
maximal literals to the interpretation of the maximal literal (see Definition [I6).
Such projections can be solved for LRA and LQA with Loos-Weispfenning-
elimination and for LIA with Cooper elimination [36], [12].

The following function helps capturing literals of the form P(z,), i.e. where
one variable is shared among two arguments.

Definition 15 (Sharing). Let (y1,...,yn) and (z1,...,2,) be tuples of variables
with the same length. The function Y, which encodes variable sharing across
different arguments, is defined as follows:

Y((y1,...,yn),(:c1,...,xn)) = /\ T = T

1<i<j<n, yi=vy;

Note that the equality between y; and y; is syntactic on variable symbols, while
the equality between x; and x; is from LA.

2.5 Consequence and Least Model

The notion of a least model is common in logic programming. Horn logic pro-
grams admit a least model, which is the intersection of all models of the program
(see [38, § 6, p. 36]). In our context, the least model of a set of clauses N is
the intersection of all models of N. An alternative characterization of the least
model of N through the least fixed point of the one-step consequence operator,
which we define in analogy to T'5 [28, Section 4] where D refers to LA, see [28|
Example 2.1]. For the definition of Tp concerning clauses without constraints
refer to [35 § 6, p. 37] and [I5]. The one-step consequence operator T which
takes set of clauses N and an interpretation Z and returns an interpretation:

P = {78 A =Pi(gi) V-V =Pu(yn) V P(§) € N,
v FAB,and ZFE Py(y;)B for 1<i<n

The least fixed point of this operator exists by Tarski’s Fixed Point Theorem
[42]): Interpretations form a complete lattice under inclusion (supremum given
by union, infimum given by intersection), and T is monotone.

3 Model Construction

In this section we address construction of models for HBS(LA). Throughout
this section, we consider a set of constrained Horn clauses N and an order < as
given. Our aim is to define an interpretation Zy, such that

INEN if N is saturated and 0 ¢ N

Towards that goal, we define the operator (S, A || C'VP(%)). It takes a symbolic
interpretation S, and a horn clause with maximal literal P(g). It results in a
symbolic interpretation that accounts for A ||C” V P(¥).

Definition 16 (4). Given A||C where C = C' Vv P(y), P(y) > C’, and
a symbolic interpretation S, let n = |y, C' = =Pi(y11,-- - ¥Y1n) V-V
“Po(Ym1s-->Ymomn,), the free variables of PS be T (note |&| = n), and the

free variables of Pf be ©; (for 1 < i < m). To canonicalize variables, define
substitutions:

o ={y; —uz; |1<i<n andthereisnoj<i st y; =y}
o ={zi;j—yi,;|1<j<n} for1<i<m

The symbolic interpretation that is the result of the operator §(S,A || C), is de-
fined as follows:

PISAICVP@) () (ﬂ({g}, /\ AN 7\(Pi$)ai))a AY(7,7)

AEA =1
QUSAICVP@) (7)) = | for all Q # P of arity |Z]

The goal of the operator §(S, A || C) is to define an extension of the symbolic
interpretation S such that S U §(S,A|| C) satisfies A||C. Moreover, ¢ only
extends the interpretation over the predicate P of the strictly maximal, positive
literal in C' and only considers the interpretation S for predicates @ with @ <
P. To this end, § defines a linear arithmetic formula P(S:All C'VP(#) that
satisfies two symmetrical properties: On the one hand, it must hold that for
all assignments 3 that satisfy PY(SAICVP@) (i E PISAICVP@A)) there
exists a grounding 7 of A || C’V P(§) where S ¥ A||C’'r, P(Z)8 = P(y)7, and
are the free variables of PS. On the other hand, it must hold that for all
groundings 7 of A||C’" V P(3) with S ¥ A|| C'7, there exists an assignment
that satisfies P*(SAICVP®E) where P(Z)3 = P(#) and & are the free variables
of PS.

Note that in the above statements 8 and 7 are generally not the same because
the variables 7 used to define P° are not necessarily the same as the variables
appearing in the clause A || C and literal P(%). There are three reasons for this
that are handled by three different methods in our model construction: First,
the variables in S and A || C simply do not match, e.g. in PS := (z; = 0) and
A|C = y1 > 0] P(y1). This is handled by the substitution o in § that maps
all variables in P(%) to their appropriate variables in P°, e.g. in the previous
example ¢ = {y; — x1} and P*SAIC) = (31 > 0)o, which is equivalent
to 1 > 0. Second, not all variables in A ||C also appear in P(%), e.g. in
PS:= (1 =0)and A||C = z; =y1 + 1 Ay; = 0] P(x1). This is handled in
d by the projection operator = (Def. [[4]) that binds all variables that appear in
A || C but not in P(%), e.g. in the previous example PY(SANC) = 7({y;}, 2, =
y1+1Ay1 =0), where r({y1 }, 21 =1+ 1Ay1 =0) = Fyg. (21 =1+ 1Ay =
0), which is equivalent to x; = 1. Third, some arguments in P(g) might be
the same variable, e.g. in A||C = @Q(x1,z1). This is handled in § by the
sharing formula Y (Def. [[H) that expresses which variables in PO(S-A1€) must
be equivalent, e.g. in the previous example Y ((x1,z1), (21, 22)) = (21 = x2)
and PYSAIC) .= v ((x1,21), (x1,72)).

The parts of PY(S:AI1C) that we have not yet discussed are based on the
fact that any constrained horn clause A ||C" V P(%) can also be written as an
implication of the form ¢ — P(¥), where ¢ = [AA Pi(y1,1,-- s Y1,n,) A e A
Po(Yma,---sYmomy,)] and S ¥ A||C'7 if and only if S F ¢7. This means the
groundings 7 of A || C’ not satisfied by S are also the groundings of ¢ satisfied by
S. It is straightforward to express these groundings with a conjunctive formula
based on A and the Pf . The only challenge is the reverse problem from before,

10

i.e. mapping the variables of P{ to the variables in the literals Pi(y1.1, ..., Y1.n,)-
This mapping is done in § by the substitution o;.

Now, based on the operator d(...) for one clause, we can use an inductive
definition over the order < to define an interpretation Sy for all clauses. We
distinguish the following auxiliary symbolic interpretations: S<p which captures
progress up to but excluding the predicate P, Ap which captures how P should
be interpreted considering S.p, and S<p which captures progress up to and
including the predicate P. The symbolic interpretation AJI\DH © is the extension
of S<p w.r.t. the single clause A || C.

Definition 17 (Model Construction). Let N be a finite set of constrained horn
clauses. We define symbolic interpretations S<p, S<p and Ap for all predicates
P € TI(N) by mutual induction over <:

Sjp = S_<p @] Ap S_<p = U AQ Ap = U A/;” CVP()
Q<P Al C'VP(x)EN
AMIC §(S<p, A||C) if P(§) mazimal in C, and S<p ¥ A||C
P S| otherwise

Finally, based on the above inductive definition of S~ p for every predicate
symbol P € TI(N), we arrive at an overall interpretation for N.

Definition 18 (Candidate Interpretation). The candidate interpretation for
N (w.r.t <), denoted Iy, is the interpretation associated with the symbolic
interpretation Sy = UPeH(N) Ap where P ranges over all predicate symbols
occurring in N.

Note that Sy = S<p where P is <-maximal in II(V). Obviously, we in-
tend that Sy E N if N is saturated (Section B]). Otherwise, i.e. Sy ¥ N, we
can use our construction to find a non-redundant inference (Corollary [3). Con-
sider the following two examples, demonstrating how ¢ sits at the core of the
aforementioned inductive definitions of symbolic interpretations.

Example 2 (Dependent Interpretation). Assume P < @ and consider the fol-
lowing set of clauses:

N 0sw<20<y<? | Plz,y) (C1),
" lrzg2zp+liyg>yp+1 || Plrp.yp) = Qzq,yq) (C2)

Mazximal literals are underlined. Since the mazimal literals of C1 and Cy are
both positive, ordered resolution cannot be applied. The set is saturated. Since
P is the <-smallest predicate we have S<p = 81 . Applying the § operator yields
the following interpretation for P:

PS=p = pAS<rC (3) = 0<2<2A0<y <2

Then, Q is interpreted relative to P. Consider the clause Cs: For all solutions
of its constraint tg > xp +1,yg > yp + 1 our model must also satisfy its logical
part P(xp,yp) = Q(xq,yq). The intuition that Q depends on P arises from
the implication in the logical part. Whenever the constraint of Co and P(xp,yp)

11

are satisfied, Q(xq,yq) must be satisfied. These are exactly the points defined
through 6(S<q,C2), based on S<q = S<p = 6(S<p,C1):

Q5(3<Q’C2)(z,y):3xp,yp.zZ:Eerl/\yZprrl/\OSzp§2/\0§yp§2
=x>1Ay>1

Whenever the conjuncts 0 < xp < 2 and 0 < yp < 2 are satisfied, the premise
of the implication is true, thus there must be a solution to the interpretation of
Q, additionally abiding the constraint of the clause. Since Q) is <-maximal in
N, we arrive at Sy = S<xg = S<p U I(S<q,C2) =6(S1,C1) Ud(S<p,Cs). See
Figure[Id for a visual representation of Sy.

Example 3 (Unsaturated Clause Set). Assume P < @ and consider the follow-
ing set of clauses:

]V.{JRGHP@) (C1), z<1]Q(x) (%%}
Sl 2>0]P() (G, v <0[Q) = Plx) (Ca)

Mazimal literals are underlined. Note that a resolution inference is possible,
since the mazimal literals of Cs5 and Cy have opposite polarity, use the same
predicate symbol, and are trivially unifiable. Thus, in this example we consider
the effect of applying our model construction to a clause set that is not saturated.
Since P is <-minimal, we start with the following steps:

S-<P =81
PoS<rC(g) = 2 < 0
P‘S(&P’CZ)(JU) =z>0

PS52r(z) =2 <0Vz>0

Next, we obtain the following results for Q:

S<Q = Sjp
Qe (@) = 1
Q‘S(‘g*Q’CQ)(:c) =xr<l1
Q%=2(zx)=1lVr<l=x<l1
See Figure [IU for a visual representation of Sy = S<¢o. Note that Sy ¥ Cu,
since we have Sy F Q(0) but Sy ¥ P(0). Thus, by using the constructed model,

we can pinpoint clauses that contradict that N is saturated. Adding the resolvent
of C3 and Cy, i.e. the clause x < 0 || P(z) labelled Cs to N, we instead get

PS5sr(z) =2 <0V >0Ve<0=T

In the following, we clarify some properties of the construction. We show
that all points in P% are necessary and justified in some sense, that Zy is indeed
a model of N, and that Zy is also the least model of N if N is saturated.

The notion of whether a clause is productive captures whether it contributes
something to the symbolic interpretation.

Definition 19 (Productive Clause). Let P be a predicate symbol of arity n. We
say that A || C produces P(a1,...,ay) if (ai,...,a,) € PAp

12

3t . .
2 Q P
Q—o
x
il (b) Result of Example Bl

1 2 3
(a) Result of Example

Figure 1: Visual representation of the models resulting from Examples [2 and [3

Next, we want to formally express that every point in the resulting inter-
pretation is justified in some sense. Firstly, we express that the operator §
will produce points such that every clause is satisfied whenever necessary, i.e.
whenever the maximal literal of the clause is P(*) and the maximal literal not
satisfied by S<p.

Proposition 3. Let Ac ||C where C = C'V P(§) and C' < P(y). Let T be
a grounding substitution for Ac||C. If S<p ¥ (Ac | C)r, then E AcT and
Sjp = P(:IJ)T, thus Sjp = (AC || C)T

Proof. Let A¢ ||C where C = C"V P(y) and C’ < P(%). Let T be a grounding
substitution for A¢ || C. Assume S<p ¥ (A¢ || C)7r. This implies S<p ¥ Ac || C,
thus A;c e = 5(S<p,Ac||C). Let By = {z; — yi7 | 1 < i < n} and
¢ = Nxeno /\/\/\;11(]31-8*")01-. It remains to show that Ap F P(§)7, i.e. ()T €
PIS<pAclO) e E (r({F}, 0))o A Y (¥, %))B-. We proceed in two steps, one
per conjunct:

1. To see F (Y(¥,2))Br: Let 1 <i < j <n = |§| = |¥]. By definition of Y, for
each conjunct ; = z; in Y (¥, &), there are two variables y; = y; from §. The
conjunct z; = x; is satisfied by f3,, since 3, and 7 are functions, therefore

(mi)ﬁr = (xj)ﬁr-

2. To see E (n({7}, ¢))oBr: From S<p E (Ac || C)7, we know F AcT, thus E Ar
for all A € A¢, and that Sxp ¥ (L;)7 for all literals L; from C’. Given that
PS=F encodes S~p ¥ L; it follows that F Pf“’aﬂ forall 1 <i<m.

3
Thus, we may construct a potential witness for all existential quantifiers
introduced by the application of © based on 7: ~, = {z; = z7 | z; €

vars(Ac || C) \ {7} }-

By definition of o and S, we have (y;)o8; = (y;)7 for all y; in . Thus
(¢)y-oB; is equivalent to (¢)7. Again, reasoning from S<p ¥ (Ac | C)T we
arrive at E (¢)7, thus E (7({7}, ¢))o B, with witness ;.

Hence F ((7({y}, ¢))o A Y (¥, Z))Br, thus A[;C 1€ e Ac || C, and by definition of
Sjp,alsonphAcHC. O

13

Secondly, we express that for every point in PZ, it is justified in the sense
that there is a clause that produced the point, i.e. this clause would otherwise
not be satisfied by the resulting interpretation.

Proposition 4. If S<p E P(a), then there exists a clause Ac ||C where C' =
C'V P(j) and C' < P(y), and there exists a grounding T for Ac || C, such that
P(d) = P(§)T and S<p ¥ (Ac || C)T.

Proof. Assume S<p F P(a).

Firstly, we argue that @ € P27: For the construction of S<p only predicates
Q s.t. Q < P are considered, thus PS<F = (). By definition of S<p as S<p
as the union of S;p and Ap and thus PSzr = pS<r |y PAP, Together with
PS<P = () we have PS<P = PAP hence @ € PAP.

Secondly, we argue for the existence of A¢ || C: Ap is defined as the union
of AJI\D” VPO where A | D" v P(x) € N. Thus there must be at least one
0(S<p,A||D' v L) with L = P(y), D' < L, Sxp ¥ A| D'V L, st. @ €
P8« MIDVE) e identify A || D'V L with A¢ || C.

Thirdly, we construct 7, and show S<p ¥ (A¢ || C)7 by unfolding the inter-
pretation of P by Sxp: Let 8, = {1 — a1,...,zp — an}. From @ € A/;C e
we know that f3, is a solution for (7({7}, Aycr. AN /\:ll(PiS*P)ai))a AY (7, Z).

Thus, of3; is a solution for ({7}, Ayea AN /\:ll(PiS*P)UZ-). Let
vyi={z—c. |z €vars(C) \ vars(L)}

be a witness for the existential quantifiers introduced by 7, i.e. F (Aycp, AN
/\zzl(PiS)Ji)'yaﬂm. The composition 7 := yo 3, then maps all variables from C
and is a solution for Aycy ., A A AL (PP)oi. Consequently, 7 is a solution for
all conjuncts:

e F A7 for all A € A¢ immediately gives F AcT.

= (PZ-SO’i)T for all 1 <14 < m witnesses S<p ¥ L;T, because the polarity of
PSP is opposite of the polarity of L; by definition of 4.

3

We have PS<F = (), and that L is positive, thus S<p ¥ L. Together with the
two above facts we arrive at S<p ¥ (Ac || C)7.

To see that P(y)T = P(@), consider that (y;)o = x;, (x;)Bz = ai, and ~ has
no effect on ¢ by definition. Thus (y;)o8; = (y;)T = a;. In case there are two
(or more, analoguously) variables y;, y; in § where y; = y; and ¢ < j, a; = q;
is guaranteed: (y;)7 = (2)B; = a; directly by definition of o and 8. y; is
not in the domain of o, however the equalities generated by Y (¥, Z) ensure that

The following proposition relates clauses to the interpretation constructed
up to their respective maximal predicate. Together with the fact that the inter-
pretation of P stays fixed when considering @ < P.

Proposition 5. For every clause Ac ||C € N with mazimal predicate P, if
Sjp ':AcHC, thenIN EN.

Also, observe that once the maximal predicate P of a given clause is inter-
preted by S<p, the interpretation of the clause does not change for S<g where
Q> P.

14

Corollary 1. Let P < Q = R, and P be mazimal in clause C. If S<p F Ac || C
or Sz F Ac || C, then ScrE Ac ||C and S<r F Ac || C.

Proposition 6. Let P < Q < R. PS=P = PS<Q = PSz@ = PS<r = PS=r,

Proof. Generally, for a predicate symbol S, we have PSA = () unless S = P by
definition of Ag.

S~ is defined as the union of all Ag for § < @, thus PAP = pS=r = PS<q,
S<q is defined as the union of S»g and Ag.

By definition of Ag, the only predicate that Ag may interpret as non-empty
is Q. In particular, i.e. since P < Q, we have P22 = () thus PS<Q = PSzq,
To see that PS=@ = PS<r = PSzr_the same reasoning applies, i.e. P2% = ()
unless P = R. |

Corollary 2. Let P < Q =X R. If S<p F [1|P(Z)o or S<xq F [-]|P(Z)o, then
Iip F [1|P(Z)o and I<p F [-]P(Z)o.

Proof. Corollary of Proposition O

Proposition 7. Let Ap || D be a horn clause with D = D'V P(%). If Ap || D pro-
duces P(§)7, then for all grounding substitutions o, such that S<p ¥ (Ap || D)o,
for all Q such that P < Q, we have S<xq ¥ (Ap || D')o.

Proof. Since Ap || D produces P()7, all literals in D’ are strictly <-smaller
than P(g), and S.<p # AD || D.

Let o be a grounding substitution such that S<p ¥ (Ap || D)o.

Assume, towards a contradiction, that the proposition does not hold, i.e.
P <@ and S<g F (Ap || D')o. Then we have F Apo and S<q F ([-]R(x))o for
some literal [-]R(*) in D’.

However, by assumption, all literals in D’ are strictly <-smaller than P(%),
i.e. R < P. Thus their respective interpretation is contained in S<p by con-
struction, i.e. RS<# = RS<P = RS=a. This contradicts S<p F (Ap || D')o. O

Proposition 8. Let < be a clause ordering and N be a finite set of constrained
horn clauses. If (1.) N is saturated w.r.t. <-resolution, and (2.) there is no

A|| L € N where A is satisfiable, then for every clause Ac||C € N, F A¢||C
or P is mazimal in C and S<p F Ac || C.

Proof. Assume Premises [land 2l Let A¢ || C € N. We distinguish two cases:
1. C = L. By Premise[2] A¢ is unsatisfiable, thus F A¢ || C.

2. C = C'V L where L is maximal in C, and P is the predicate symbol associated
with L, i.e. P is maximal in C. In case A¢ is unsatisfiable, F A¢ || C. In the
following, we thus consider A satisfiable. We distinguish two cases:

2.1. L = P(¥). We distinguish two cases:

2.1.1. S<p E Ac || C. Corollary 2l applies.
2.1.2. S<p ¥ Ac || C. Proposition [3 applies.

15

2.2. L =-P(%). Assume, towards a contradiction, that the proposition does not
hold, i.e. S<p ¥ Ac || C. Let o be a grounding substitution such that S<p ¥
(Ac ||C)o. It follows that S<p ¥ (C')o and S<p ¥ Lo, thus S<p E (P(2))o.

Assume, without loss of generality:

o minimality of P: There is no predicate symbol Q < P such that there
is a clause Ap || D € N with maximal predicate @ and S<q ¥ Ap | D,
ie. forall @ < P, S<q F {Ap| D € N | Q maximal in D},

o minimality of (Ac || C)o: There is no clause Ap || D € N with maximal
predicate P and grounding op, s.t. (Ap || D)op < (A¢ ||C)o and S<p ¥
(Ap||D)op,ie S<p Egnd({Ap||D € N | P maximal in C})<(AC 1S)e

o mazimality of Lo: there is no literal L' in C'o s.t. ~P(Z)o < L.

By Proposition @ there is a clause Ap ||D € N where D = D'V P(¥),
D’ < P(¥), and Ap is satisfiable, that produces P(Z)o. Assume, without
loss of generality, that the sets of variables occuring in A¢ ||C and Ap || D
are disjoint, i.e. vars(A¢ || C) Nvars(Ap || D) = 0. Let T be the subsitution
that maps P (%) to P(Z)o. Since P(y)T = P(Z)o, there exists a most general
unifier between P(g) and P(Z), which we call ¢’. Then, since ¢’ is most
general, there is a substitution 7" such that the substitution o’7’ is equivalent
to o when restricted to vars(A¢ || C') and equivalent to 7 when restricted to
vars(Ap || D). We have P(j)o't’ = P(¢)T = P(Z)o. Consider the following
=<-resolution inference:

Ac|[C"V=P(Z) Ap | D'V P(y) o =mgu(=P(2),comp(P(y))
(Ac,Ap ||C" Vv D)o’

Let (Ac,Ap||C" vV D)o’ = Ag||R. Since F Aco and F ApT (by Propo-
sition M), we have F Ag7’. Since Ap || D produces P, we have S<p K
(Ap || D’)7. By Proposition [7, we have that, S<p ¥ (Ap || D’)r and S<p ¥
(AD || D/)OJT’. Thus Sjp ¥ AR || RT’ and Sjp ¥ AR || R.

We distinguish two cases:

2.2.1. R = 1. We distinguish two cases:
2.2.1.1. Ar |l L € N. Contradicts Premise 21
2.2.1.2. Agp||L & N. Then, by Premise[I] we have that Ar || L is redundant, i.e.
N=ArIL &= Ap| L. However, since there is no clause that is <-smaller
than Ag || L, we have N=ArllL = () which contradicts Premise Il
2.2.2. R# L. =P(Z)o occurs less often in R7’ than it occurs in Co. The reason
being that the number of occurences in C’o’ is one less than the number
of occurences in C'o’, while there are no occurences in D’c’ since we know
that P(§)o’ < Do’, and P(§)o’ < —~P(Z)o. By maximality of ~P(%)o,
also =P(%)7" < R7’. Therefore we have Ar || R < A¢ || C. By minimality
of (A¢ || O)o, CaseZT] and Corollary[Il we have S<p F gnd(N)=<Ae 1€,
We distinguish two cases:
2.2.2.1. Ar||R € N. Contradicts minimality of (A¢ || C)o. Contradicts S<p F
gnd(N)=Aell€)e gince (Ag || R)T' < (A¢ || C)o.
2.2.2.2. Ag||R ¢ N. By assumption of Premise [l Ag || R is redundant w.r.t.
N and <, ie. N*ArIE £ Ap||R. S<p F gnd(N)=*Aell®e contra-
dicts gnd(N)<Ar IR = (AR || R)7" and N<Ar IR = Ap || R. Therefore
AR || R is not redundant, which contradicts Premise [Tl

16

O

With the above propositions we show that indeed Zyy F N.
Let < be a clause ordering and N be a set of constrained horn clauses. If
(1.) N is saturated w.r.t. <-resolution, and (2.) O ¢ N, then Zy E N.

Proof. By Proposition 8 and Proposition O

For clauses with positive maximal literal, the fact that they are satisfied
by Zn follows from Proposition Bl For clauses with maximal literal —=P(x), we
prove this theorem by contradiction: If there is a minimal clause A¢ || C such
that Sy # Ac||C. We can then exploit Proposition [to find the smallest
clause Ap || D that produced the respective instance P(@). Applying hierarchic
<-resolution to Ac || C and Ap || D then yields a non-redundant clause. This
idea then leads to the following theorem.

Corollary 3. Let < be a clause ordering and N be a set of constrained horn
clauses. If (1.) Iy ¥ N, and (2.) O & N, then there exist two clauses Ac || C,
Ap||D € N such that: (1.) Ac ||C is the smallest clause not satisfied by Iy,
i.e. there exists a grounding T such that Iy ¥ (Ac || C)7, but there does not
exist a clause Acr ||C" € N with grounding 7', such that Iy ¥ (Ao || C))T’
and (Ac || CHT < (Ac || C)r, (2.) =P(@) is the maximal literal of (Ac || C)T,
(8.) Ap || D is the minimal clause that produces P(@), (4.) <-resolution is
applicable to Ac ||C and Ap || D, and (5.) the resolvent of Ac || C and Ap || D

is not redundant w.r.t. N.
Proof. Similar to Case [2.2] in the proof of Proposition [8 O

Additionally, we show that Zy is the least model of N, establishing a con-
nection between our approach and the literature on constrained horn clauses
(see [28, Section 4] and [I3] Section 2.4.1]) and logic programming (see [35]
§ 6, p. 37]).

Iy is the least model of N.

Proof. Assume, towards a contradiction, that Zy is not the least model of NNV,
i.e. there exists an interpretation Z such that Z C Zy and Z F N. Since Z C Zy,
there is a predicate symbol P and a point @ such that @ € PT¥ | i.e. Iy F P(a)
but @ ¢ PT,ie. Z¥ P(d@). Assume, w.l.o.g., that P is minimal, i.e. Q7% = Q7
for all @ < P. By Proposition @ from Zy E P(d) it follows that there is a
clause A¢ ||C € N such that C = C’ Vv P(y), C' < P(¥), 7 is a grounding for
Ac || C, P(@) = P(y)7, and S<p ¥ (Ac || C)r. From S<p ¥ (Ac || C)7 we know
that S<p ¥ (Ac¢ || C")r and by Proposition [6l we have Zy ¥ (Ac || C’)r. Since
C’ < P(%) and by minimality of P, we know that Zy and Z agree on A¢ || C’, i.e.
T (A C")1. However, T E N, which implies 7 F (A¢ || C)7, requires Z E P(a)
which contradicts the assumption Z ¥ P(a). O

Fermiiller and Leitsch define four postulates (see [18], [11] Section 5.1, p. 234])
regarding automated model building. Within their taxonomy, our approach falls
into the category of constrained atomic representations, thus the first postulate
uniqueness is trivial [T} p. 235]. The second postulate, atom test is fulfilled only
insofar as constraint solving is considered fast. The third and fourth postulate,
formula evaluation and equivalence test are again tied to constraint solving and

fulfilled.

17

4 Conclusion

We have presented the first model construction approach to Horn clauses with
linear arithmetic constraints based on hierarchic superposition, Definition [I8
The linear arithmetic constraints may range over the reals, rationals, or integers.
The computed model is the canonical least model of the saturated Horn clause
set, Section Bl Clauses can be effectively evaluated with respect to the model,
Proposition 2l This offers a way to explore the properties of a saturated clause
set, e.g., if the set represents a failed refutation attempt.

Future Work It is straightforward to see that any symbolic LQA model is
also a symbolic LRA model. (This holds due to convexity of conjunctions of
ground LQA atoms.) So even if the axiom of choice is not assumed, there is
an alternative way to obtain a satisfying interpretation for a HBS(LRA) clause
set: we simply treat it as an HBS(LQA) clause set, saturate it and construct its
model based on HBS(LQA).

In this work, we restrict ourselves to only one sort LA per set of clauses. An
extension to a many-sorted setup, e.g. including first-order variables with sort
F is possible. This can even be simulated, by encoding first-order constants as
concrete natural numbers via a bijection to N, since N C &. By not placing any
arithmetic constraints on the variables used for the encoding, it can be read off
and mapped back from the resulting model.

One obvious challenge is relaxation of the restriction to Horn clauses. With
respect to superposition saturation there is typically no difference in the sense
that if a Horn fragment can always be finitely saturated, so can the non-Horn
fragment be. However, our proposed ordering for the model construction at the
granularity of predicate symbols will not suffice in this general case, and the
key to overcome this challenge seems to be the appropriate treatment of clauses
with maximal literals of the same predicate. Backtracking on the selection of
literals might also be sufficient.

The approach we presented does not exploit features of linear arithmetic
beyond equality and the existence of a well-founded order for the underlying
universe Y. The results may therefore be adapted to other constraint domains
such as non-linear arithmetic.

18

References

1]

Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo lin-
ear arithmetic SUP(LA). In: FroCoS 2009. LNCS, vol. 5749, pp. 84-99.
Springer (2009).|doi:10.1007/978-3-642-04222-5_5

Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simpli-
fication as a desision procedure for the monadic class with equality. In:
Computational Logic and Proof Theory, Third Kurt Gédel Colloquium,
KGC’93, Brno, Czech Republic, August 24-27, 1993, Proceedings. LNCS,
vol. 713, pp. 83-96. Springer (1993).|doi:10.1007/BFb0022557

Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem
proving for hierarchic first-order theories. AAECC 5, 193-212 (1994).
doi:10.1007/BF01190829

Baumgartner, P., Fuchs, A., Tinelli, C.: (LIA) - model evolution with
linear integer arithmetic constraints. In: LPAR 2008. LNCS, vol. 5330, pp.
258-273. Springer (2008)./doi :10.1007/978-3-540-89439-1_19

Baumgartner, P., Waldmann, U.: Hierarchic superposition revisited. In:
Description Logic, Theory Combination, and All That - Essays Dedicated
to Franz Baader on the Occasion of His 60th Birthday. LNCS, vol. 11560,
pp. 15-56. Springer (2019). /doi:10.1007/978-3-030-22102-7_2

Bjgrner, N.S., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn
clause solvers for program verification. In: Fields of Logic and Com-
putation II - Essays Dedicated to Yuri Gurevich on the Occasion
of His 75th Birthday. LNCS, vol. 9300, pp. 24-51. Springer (2015).
doi:10.1007/978-3-319-23534-9 2

Bromberger, M., Dragoste, 1., Fageh, R., Fetzer, C., Gonzélez, L., Krétzsch,
M., Marx, M., Murali, H.K., Weidenbach, C.: A sorted datalog hammer
for supervisor verification conditions modulo simple linear arithmetic. In:
TACAS 2022 as part of ETAPS 2022. LNCS, vol. 13243, pp. 480-501.
Springer (2022).|doi:10.1007/978-3-030-99524-9_27

Bromberger, M., Dragoste, 1., Faqeh, R., Fetzer, C., Krotzsch, M., Weiden-
bach, C.: A datalog hammer for supervisor verification conditions modulo
simple linear arithmetic. In: FroCoS 2021. LNCS, vol. 12941, pp. 3-24.
Springer (2021)./doi:10.1007/978-3-030-86205-3_1

Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the bernays-
schoenfinkel fragment over bounded difference constraints by simple clause
learning over theories. In: VMCAI 2021. LNCS, vol. 12597, pp. 511-533.
Springer (2021)./doi:10.1007/978-3-030-67067-2_23

Bromberger, M., Leutgeb, L., Weidenbach, C.: An efficient subsumption
test pipeline for BS(LRA) clauses. In: IJCAR 2022. LNCS, vol. 13385, pp.
147-168. Springer (2022).|doi:10.1007/978-3-031-10769-6_10

Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building, APLS,
vol. 31. Springer (2004)./doi:10.1007/978-1-4020-2653-9

19

https://doi.org/10.1007/978-3-642-04222-5_5
https://doi.org/10.1007/BFb0022557
https://doi.org/10.1007/BF01190829
https://doi.org/10.1007/978-3-540-89439-1_19
https://doi.org/10.1007/978-3-030-22102-7_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-030-99524-9_27
https://doi.org/10.1007/978-3-030-86205-3_1
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-031-10769-6_10
https://doi.org/10.1007/978-1-4020-2653-9

[12]

[13]

Cooper, D.C.: Theorem proving in arithmetic without multiplication. Ma-
chine Intelligence 7, 91-99 (1972)

De Angelis, E., Fioravanti, F., Gallagher, J.P., Hermenegildo, M.V., Pet-
torossi, A., Proietti, M.: Analysis and transformation of constrained
horn clauses for program verification. TPLP 22(6), 974-1042 (2022).
doi:10.1017/S1471068421000211

Downey, P.J.: Undecidability of presburger arithmetic with a single
monadic predicate letter. Tech. rep., Center for Research in Computer Tech-
nology, Harvard University (1972)

van Emden, M.H., Kowalski, R.A.: The semantics of predicate
logic as a programming language. JACM 23(4), 733-742 (1976).
doi:10.1145/321978.321991

Fedyukovich, G., Zhang, Y., Gupta, A.: Syntax-guided termination anal-
ysis. In: CAV 2018. LNCS, vol. 10981, pp. 124-143. Springer (2018).
doi:10.1007/978-3-319-96145-3_7

Feferman, S.: Some applications of the notions of forcing and
generic sets. Fundamenta Mathematicae 56(3), 325-345 (1964),
http://eudml.org/doc/213821

Fermiiller, C.G., Leitsch, A.: Hyperresolution and automated model build-
ing. LOGCOM 6(2), 173-203 (1996). /doi:10.1093/1logcom/6.2.173

Fermiller, C.G., Leitsch, A.: Decision procedures and model
building in equational clause logic. IGPL 6(1), 17-41 (1998).
doi:10.1093/jigpal/6.1.17

Fietzke, A., Weidenbach, C.: Superposition as a decision
procedure for timed automata. MICS 6(4), 409-425 (2012).
doi:10.1007/s11786-012-0134-5

Fiori, A., Weidenbach, C.: SCL with theory constraints. arXiv (2020),
https://arxiv.org/abs/2003.04627

Gange, G., Navas, J.A., Schachte, P., Segndergaard, H., Stuckey,
P.J. Horn clauses as an intermediate representation for pro-
gram analysis and transformation. TPLP 15(4-5), 526-542 (2015).
d0i:10.1017/S1471068415000204

Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the
guarded fragment with equality. In: 14th LICS, 1999. pp. 295-303. IEEE
Computer Society (1999)./doi:10.1109/LICS.1999.782624

Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Syn-
thesizing software verifiers from proof rules. In: ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
'12, Beijing, China - June 11 - 16, 2012. pp. 405-416. ACM (2012).
doi:10.1145/2254064.2254112

20

https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1145/321978.321991
https://doi.org/10.1007/978-3-319-96145-3_7
http://eudml.org/doc/213821
https://doi.org/10.1093/logcom/6.2.173
https://doi.org/10.1093/jigpal/6.1.17
https://doi.org/10.1007/s11786-012-0134-5
https://arxiv.org/abs/2003.04627
https://doi.org/10.1017/S1471068415000204
https://doi.org/10.1109/LICS.1999.782624
https://doi.org/10.1145/2254064.2254112

[25]

[26]

[27]

[32]

[33]

[38]

Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains.
In: Automated Reasoning and Mathematics - Essays in Memory of
William W. McCune. LNCS, vol. 7788, pp. 68-100. Springer (2013).
doi:10.1007/978-3-642-36675-8_4

Hoder, K., Bjgrner, N.S.. Generalized property directed reachabil-
ity. In: SAT 2012. LNCS, vol. 7317, pp. 157-171. Springer (2012).
doi:10.1007/978-3-642-31612-8_13

Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of
presburger arithmetic with unary uninterpreted predicates is undecidable.
arXiv (2017), http://arxiv.org/abs/1703.01212

Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. JLP
19/20, 503-581 (1994).|doi:10.1016/0743-1066(94)90033-7

Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The se-
mantics of constraint logic programs. JLP 37(1-3), 1-46 (1998).
doi:10.1016/S0743-1066(98)10002-X

Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for
recursive programs. In: CAV 2014 as part of VSL 2014. LNCS, vol. 8559,
pp. 17-34. Springer (2014).|doi:10.1007/978-3-319-08867-9_2

Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition
calculus. In: CSL 2007. LNCS, vol. 4646, pp. 223-237. Springer (2007).
doi:10.1007/978-3-540-74915-8_19

Kowalski, R.A., Kuehner, D.: Linear resolution with selection function. Al
2(3/4), 227-260 (1971). doi:10.1016/0004-3702(71)90012-9

Kruglov, E. Superposition modulo the-
ory. Ph.D. thesis, Saarland University (2013),
http://scidok.sulb.uni-saarland.de/volltexte/2013/5559/

Kruglov, E., Weidenbach, C.: Superposition decides the first-order
logic fragment over ground theories. MICS 6(4), 427-456 (2012).
doi:10.1007/s11786-012-0135-4

Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer
(1987)./doi:10.1007/978-3-642-83189-8

Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The
Computer Journal 36(5), 450-462 (1993)./doi:10.1093/comjnl/36.5.450

Lépez-Garcia, P., Darmawan, L., Klemen, M., Liqgat, U., Bueno, F.,
Hermenegildo, M.V.: Interval-based resource usage verification by trans-
lation into horn clauses and an application to energy consumption. TPLP
18(2), 167-223 (2018)./doi:10.1017/S1471068418000042

McMillan, K.L.: Lazy annotation revisited. In: CAV 2014 as
part of VSL 2014. LNCS, vol. 8559, pp. 243-259. Springer (2014).
doi:10.1007/978-3-319-08867-9_16

21

https://doi.org/10.1007/978-3-642-36675-8_4
https://doi.org/10.1007/978-3-642-31612-8_13
http://arxiv.org/abs/1703.01212
https://doi.org/10.1016/0743-1066(94)90033-7
https://doi.org/10.1016/S0743-1066(98)10002-X
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.1016/0004-3702(71)90012-9
http://scidok.sulb.uni-saarland.de/volltexte/2013/5559/
https://doi.org/10.1007/s11786-012-0135-4
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1093/comjnl/36.5.450
https://doi.org/10.1017/S1471068418000042
https://doi.org/10.1007/978-3-319-08867-9_16

[39]

[40]

[41]

Mesnard, F., Payet, E., Vidal, G.: Concolic testing in CLP. TPLP 20(5),
671-686 (2020).|do1:10.1017/51471068420000216

Rimmer, P.: A constraint sequent calculus for first-order logic with linear
integer arithmetic. In: LPAR 2008. LNCS, vol. 5330, pp. 274-289. Springer
(2008)./doi:10.1007/978-3-540-89439-1_20

Spoto, F., Mesnard, F., Payet, E.: A termination analyzer for
java bytecode based on path-length. TOPLAS 32(3), 8:1-8:70 (2010).
d0i:10.1145/1709093.1709095

Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pa-
cific Journal of Mathematics 5(2), 285 — 309 (1955). doi:pjm/1103044538

Weidenbach, C.: Automated reasoning building blocks. In: Correct
System Design - Symposium in Honor of Ernst-Riidiger Olderog on
the Occasion of His 60th Birthday, Oldenburg, Germany, September 8-
9, 2015. Proceedings. LNCS, vol. 9360, pp. 172-188. Springer (2015).
doi:10.1007/978-3-319-23506-6_12

22

https://doi.org/10.1017/S1471068420000216
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1145/1709093.1709095
https://doi.org/pjm/1103044538
https://doi.org/10.1007/978-3-319-23506-6_12

	1 Introduction
	2 Preliminaries and Notation
	2.1 Horn Bernays-Schönfinkel with Linear Arithmetic
	2.2 Ordering Literals and Clauses
	2.3 Hierarchical Superposition, Redundancy and Saturation
	2.4 Interpretations
	2.5 Consequence and Least Model

	3 Model Construction
	4 Conclusion

