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Abstract

Typical bottom-up. forward-chaining reasoning systoms such as hyperresolution lack goal-
directedness while typical top-down. backward-chaining reasoning systems like Prolog or
model elimination repeatedly solve the same goals. Reasoning systeins that are goal-directed
and avoid repeatedly solving the saaue goals can be constructed by formualating the top-dawn
methods metatheoretically for execution by a hottoni-up reasoning system (hence, we use
the term upside-down meta-interpretation). This formulation alse facilitates the use of
flexible searcele strategies. such as merit-ordered search. that are common to bottom-up
reasoning systems. The model elimination theorem-proving procedure, its extension hy an
assumption rule for abdaction. and ils restriction 1o Horn clauses are adapted here for such
upside-down nreta-interpretation. This work can he regarded as an extension of the magic.
sots or Alexander methad for query evaluation in deduetive databases 1o botlh non-llorn
clanses and abduetive reasoning.

1 Introduction

Bottow-up. lorward-chiaining reasouing systems derive new facts from already established
ones. Fhe implication A3 A ---A 4, D ¢ is interpreted procedurally by such systems 1o
derive the fact ' from the facts Ay, . Ay, Hyperresolution [41. 51] Is a typical bottom-
up reasoning system. Top-down. backward-chaining reasoning systems, on the other hand.
derive new subgoals from existing goals. The implication Ay A---A A, D C is interpreted
procoedurally by such syvstems Lo derive cach of the subgoals A... ... A, Trom the goal (.
Ordered input resolution (for Horn clauses, used by Prolog) and the model elimination
procedure [23. 2] (for arbitrary clauses, used by the Prolog Technology Theorem Prover
{PTTP) [16]) are typical top-down reasoning systems. We assume the reader is already
familiay with these inference procedures.

Both bottom-up and top-down methods have well-known weaknesses. Bottom-up rea-
soning is often not goal-directed. For example, if the initial goal is translated for refutation
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into a negative clause, hyperresolution can use the goal only in the final step of a proofl.
Nevertheless, simply using a bottom-up reasoning niethod is often the vight approach. For
example, group theory or condensed detachment problems henelit little from a top-down
approach. since irrelevan. axioms are absent and top-down reasoning quickly produces very
general goals that fail to constrain the search. On the other hand. in deductive database.
logic programming. and actificial intelligence applications, the lack ol goal-directedness ol
pure hotlom-up reasoning is a crucial defeer. In principle. such reasoning would require
enumoration of all consequences of the axioms until a fact matching the query is derived, a
foolish approach in the presence of many irrelevant axioms.

The major problem with top-down reasoning is that it often results in goals being
derived and proved more than once. which mayv vesult in large. redundant search spaces.
For example. when Prolog tries Lo prove 2 A Q. backtracking search will cause it to try
to prove ) once lor every proof of P it linds. This repeated work can be extraordinarily
costly. Intelligent backtracking (e.g.. see [22]) can reduce but not eliminate the probiem.
Redundancey can alse oceur in bottom-up methods as facts are devived more Lhan once.
However. there the redundancy is controlled by subsumption. which deletes duplicale or
less general facts. Although methods such as subsumption are costly and can drasticalty
reduce the rate of inference. reduced size of the search space often compensates for the lower
infereuce rate.

A second problem wilth top-down reasoning systems is thal they tyvpically have much
less flexibility in specifying order of search than bottom-up reasoning svstems. Prolog and
PP, for example. use depth-lirst searcl with backiracking lor an ellicient implementation
with minimal storage requirenients by representing only the goals on a single brauch of the
search space al a time: this, however. makes it impossible (o direct search by juinping 1o a
more {avorable branch. Hyperresolution. on the other hand. can maintain a list of Tacts in
order of preference for inference. Lack of control over search is not a necessary limitation
of 1op-down reasoning svstems, bul rather an observation about tvpical ones. It is thus
possible to adapl either bottom-up or top-down reasoning methods to produce a goal-
directed reasoning system with a nonredundant search space and a flexible search strategy.
We choose to adapt bottom-up reasoning methods hecause their implementations appear
to be closer to this ideal already. Hyperresolution is a prototypical boltom-up reasoning
system for which there are effective methods for controlling redundancy (subsumption) and
ordering the search space (merit-ordered search). As we shall see. it is feasible Lo make this
hottom-up reasoning method more goal-directed.

The approach we adopt is basically an extension of the magic-sets [4. 49] or Alexan-
der [12] method for query evaluation in deductive databases. We trauslate Horn clauses
similarly to the mmagic-sets or Alexander method, and then extend the translation to ab-
ductive reasoning and non-Horn clanses.

The extension to non-Horn clauses is based on the model elimination theorem-proving
procedure. Model elimination is a complete theorem-proving procedure for the full first-
order predicate calenlus thal possesses the desirable properties of linear prools, literal or-
dering. set of support. and no need for factoring. PTTP’s implementation of the model
climination procedure has a high inference rate with minimal storage requirements. The
largest problem with model elimination and PTTP is the failure to control search-space
redundancy. Hereo we demonstrate how, while unfortunately sacrificing PTTP s implemen-



tation approach with its high inference rate and minimal storage requirements, we can make
search muceh less rednndant by imeans ol npside-down meta-interpretation. i.e.. by executing
the top-down model elimination procednre by a bottom-up reasoning svstem.

Our approach is to start with top-down. backward-chaining input resolution and trans-
late the clauses for execation by a holtom-up reasoning svstem such as hyperresolution,
Iistead of a goal-subgoal tree heing created. literals ol the form goal(() are derived. Use
of the implication Ay A ---A 4, 2 C o derive the lact € lrom lacts Aq....L A, is made
dependent on the existence of goal{(€") by nse of the transtated clause goal(CYA fact{ A} A
oA Sact{ ) — Saet{C). The translation is extended Lo impoese a requirement of Jeft-lo-
right solution. as in Prolog and the model elimination procedure. In many cases, this can
substantially reduoce the scarch space as solutions for earlier goals instantiate later goals.

The model elimination procedure angments input resolution with an additional inference
rule that allows solving a goal by unifving it with the complement of an ancestor goal. or
the model elimination procedure. goal literals are augmented with information about the
ancestor goals of the goal: fact literals are augmented with information about what ancestor
goals must he present to solve a goal that matches the fact.

Abductive reasoning (alvduction) is becoming an important application of extended
Prolog and model elimination systems. Abduction extends deduction to the case of partial
proofs with assuiptions that, il they could be proved. would allow a proof Lo he completed.
We extend our translation method to abduction. The added possibility in abduaction of
assiming as well as proving forntulas makes the search space for abduction problems larger
than for deduction problems with the same axioms. This. plus the fact that many applica-
tions of abduction detand rich knowledge hases witl maay irrelevant elauses. means thal
Lhere mayx be an even bigger payoll for this method in the case of abduction than deduetion.

Clauses used in Prolog and maodel elimination inference are translated for execution by a
bottom-up reasoning system using metapredicates goal, faet, and conf (for “continuations,”
which concisely encode what goals we are trying 1o solve. which of their subgoals have been
solved, and which sebgoals remain). New facts. goals. and continuations are derived by
bottom-up inference in a laithlul encoding of the Prolog or model elimination scarch tree.
possibly in a different order depending on the chosen search strategy. and with redundant
subtrees eliminable by the reuse of lacls derived ecarlier and by subsumption. The time
complexity i the worst case. when there is no eliminable redundancy, should be the same
order as that of Prolog or model elimination when the model elimination search strategy
is imitated (a threefold inerease in length of the proof may occur, as a single literal in the
searcl tree may he represented by goal. facl. and cont literals in the encoding). In the case
of Horn clanses. the procedure closely resembles hyperresolution in behavior. except that
v perresolntion operations are allowed only il they derive a lact thal matches a top-down
derived goal.

Because this method is a new approach to implementing standard theorem-proving
pracedures (P’rolog, madel elimination. and their extensions for abduction) instead ol a
new theorem-proving procedure. we will omit soundness and completeness results. The
benefit of the new appreach in eliminating redundancy should be obvious. Gains {rom
climinating redandaney can be arbitrarily large.

In Section 2. we recount past approaches to the problem of redundancy in the model
elimination procedure and cite their disadvantages, which are absent from the new approach.



In Section 3. we deseribe upside-down meta-interpretation of Prolog-sixvle deduetion with
Horn clauses. This. except for the remarks on generalizing subswmption and generalizing
derived facts, is essentially the magic-sets or Alexander method. lu Section A, the method is
extonded 1o ahduetion by allowing conditional {acts accompanied by assumptions suflicient
to establish them. T Section 5. the method for abduction with Horn clauses is transformed
by cilferent handling of agsumptions into a methoed Tor upside-down meta-interpretation of
model-elimination-stvle deduction with non-Horen clanses. Dedoction with non-Horn clanses
is then extended to abduction with non-llorn clauses in Section 6. Related work is described
in Soction 7.

2 Other Methods for Eliminating Redundancy

There are several other approaches to eliminating redundancy in model elimination and
similar procedures. Factoring is the carliest methiod for eliminating duplicate goals and ix
requirved for completeness in many resobution procedures. though not for Prolog or model
climination. It is clearly beneficial and can be made mandatory in the propositional case.
Tlowever. in 1he first-order case. when goals must he mnified during factoring. lactoring
must be optional and prools with and without the goals Tactored must both he sought.
This results in an increase in The hreadil of the searel space: the depth of the search space
is reduced in compensation only if a shorter proof can be Tonnd with factoring than without.
which is too rarely the case. Unilving goals olten resulls in clauses thiat are overinstantiated
and nol usable in a proof.

The graph construction procedure [1] adds the Corediiction operation to the model
elimination procedure. C-reduction resembles lactoring except that it unifies an noproved
goal with a proved goal instead of another unproved goal, This is an improvement hecause
unprovable goals are never factored. For example. i a pair of factorable goals do not happen
o have a common provable instance, Tactoring them will ultimately result in failure. .asin
the graph construction procedure. it is necessary for one to be proved before being lactored
with the other. the goals witl no longer be factorable after one of them is instantiated hy
its proof.

Both factoring and C-reduction affect only 1he descendants of the Tactored clanse, 1n-
formation about provable goals is not made available elsewhere in the search space. Len-
mas [23. 24] are extra clauses derivable by the model elinination procedure that contain
proved zoals. Thev are not required for completeness. but their use can shorten proofs by
matching a goal with a lemma instead of reproving it. Ualike factoring and C-reduction.
lemmas are available throughout the search space after they are derived. not just in de-
seendant clanses. However, like factoring and Coreduction. femmas increase the bhreadth
of the search space. by allowing proofs Trom lemmas as well as axioms. Lemmas in the
miodel elimination procedure save information abont suceessful but not unsuccessful proof
attonpts. There nevertheless is the obvious notion of “lailure lemmas” —remembered goals
that could not he proved. Lemmas have been used in database query evaluation [6. 13. 18]
methods and in other theorem-proving procedures [14. 29, 31]. Use of lemmas has often
been called eaching, although we preler to use 1hat term for a slightly different coneept.,

Caching is the most complete approach lor eliminating redundancy in top-down reasoun-
ing svalems, By saving goals as well as solutions. caching can record information aboul



both success and failure. In a depth-bounded reasoner like PTTE, the cache would con-
tain goals and associated depth bounds asserting that the cache contains all solutions to
the goal discoverable with that depth bound. When attemipting to prove a goal with a
depth bound. il the goal or a more general one with the same or greater depth hound is
stored in the cache. solutions are retrieved from the cache instead of being searched for by
backward-chaining. The difference between Temmas and eaching is that lemmas are treated
as extra axioms and broaden the search while caching replaces the search for solutions of a
goal by cache lookup. Ouly caching of the methods we have described uniformly replaces
search instead of adding alternatives to it in the ope of finding a shorter proof. Caching
can casily reduce the size of the search space even il Uhe prool found is not shorier. Many
snccessful experiments with lemmas and caching are reported on in [1. 2).

Caching will surely be more complicated and less effective for the [oll moedel elimination
procedure than lor the Prolog subset on which it has been successhully tested. In the full
procedure. solutions to a goal no longer depend on the goal formula afone. but also on s
ancestor goals. Lven if goals recur frequently. they may rarely recar with a set of ancestor
goals that can be found in the cache. A refinement of the model elimination procednre that
wses negalive but not positive ancestor goals may make looking up solutions in the cache
succecd more frequently [35]. bat probably still not often enough. Although caching can
climinate redundant search. it can contribute little to solving the other problem of top-down
reasoning systems. the inflexibility of their searclh strategy.

3 Deduction with Horn Clauses

A Horu-clanse problem is composed of a set ol acts F.oa set of rules Ay A - AL, DO
with w2 1oand a goal (/L where P00 O and G are all atomic formulas, Requiring the
goal to be atomic is nol a significant restriction. A conjunctive goal (/) A --- A G, can e
converted imto the rule & A --- A G, DG Tor atomie goal (/.

Aovule Ay A oA DO can be interpreted in top-down or bottom-up fashion. The
Ltop-down interpretation is

From the goal (" derive the goals Ay... ... A,

A prablem is solved when one can recursively derive from the goal 7 a sel of subgoals
all of whicl mateh initial facts 0 Inpul resolution. as in Prolog. is a standard top-down
reasoning method. The bottom-up interpretalion is

Derive the Tact €' from the facts A ... i

A problem ix solved when a faet matching the goal G is derived [rom the initial facts /.
Nyperresolution. for example. is a standard bottom-up reasoning method.

In the following. we assume a hottom-up reasoning system such as hyperresolution with
subsumption. The rule Ay A -« A A, — O s interpreted as: 00 Ay... .0, are prosent,
then ¢ can he derived.! The separate roles of an atomic formula £, as a Taet or goal will he
distinguished by putting L as an argument of the foel or goul metapredicate,

Top-down and bottom-up interpretations of Ay A ---A A, D O are expressed by

"Note the nse of — for executable rnles versns D for assertions.



qoal () — goal( Ay)

goal () — goal{A,,)
and
Jaet{ AN - A faet( A, ) — [acl{(")

respectively.
We now connect the goel and faed rales. The faet ritle can be modified and used in
conjuncition with 1he goal rules to provide bottom-up execution with top-down filtering;:

qoal((') — goal(A))

goal((") — qoal{,,)
gqoal(CYN facl{ WA - A Jact(A,)) — [aet((7)

Goals are generated in simulated top-down fashion. bul bottom-up reasoning is constrained:
fact{T") can he derived only il goal((7) is present. The clauses resulling from this translation
and all the extensions we present are [orn clavses. Thus. a bottom-up reasoning svstem
such as hvperresolution will derive only unit clanses using them.

Subsumption is used to eliminate duplicate or less general Tacts or goals. Facts. once
derived. can be used again in the solution of other goals. The goal derivation rules enmiploy
upside-down meta-interpretation. since the meaning ol the rules is the top-down gonera-
tion of subgoals. hut the rales themselves are exceuted bottom-up. Each initial [act Fis
translated to fae!{(]') and the initial goal is translated to goal((G). Proofs are compteted
by deriving instances of facl((/).

This translation of the problem is often sullicient. However, it is sometimes better in the
case of clauses with more than one antecedent literal to create subgoals sequentially. e.g..
to generate (an appropriate instance ol) goal(A;) only alter goals Ay..... .,y have been
solved. This is especially important in logic programming. in which some subgoals compute
values used as inputs 1o later subgoals. Vor example. the rale fib{x,y) A fib{s(r).2) A
plus(y. z ey O fib{s(«(2)). ) Tor computing Fibonacel numbers could be used to create
the subgoals fib(3.y). fib(-1 2)cand plus(y. s ) from the goal fib(5. ur). It would be befter
to delay creating the subgoal plus(y. z. w) until alfter fib(3.y) and f7b(-1. 2} are solved. thus
instantiating y and z.

To impose a left-to-right execution order for subgoals so that goal{;11) is not intro-
duced until a solution to goalf( ;) has been found. the rule Ay A~ -A L, D C with m > 2
can be translated as follows:

goal((') — goal(A))
qoal (YA fact(AyY — goal{ 1y)
gool(CYN facll A YA fact{ Ay) — goal( Ax)

goallCYA fael( A YA A fael (N 20) — goal (4]
.‘f””"((") A facl{Ay) A A f”“’(-’]m ) — fael(('}



Continuation predicates [42] can be used to encode the state of matching antecedent
literals of a rule 1o eliminate the repeated matching of goal{C'). fact( ) .. fact(4;_1)
al the cost of deriving additional literals that represent inlermediate results, Lot £ be a
unigue nunther for the rule Ay A---A Ay, D C with m > 2 and let Vo be aterm that contains
variablos of the rule except those in the head.> The rule is translated as Jollows:?

goal((') — qoal( )
goal(C)A facl{ 1) — conlp2(CLVY A goad( As)
contio(COATYVA facl(Ag) — eomlpa(CUV) A goal(Ay)

comt et (VYA facl{ Ay ) — conti(CV) A goal(A,,)
conlp  C VYA faet( ) — faet{()

The literals eont; (€. 1V7) identify which subgoal is being solved with what substitution.

This method will be generalized to abduction with Horn clanses and to deduction and
abduction with non-lHorn clauses in Sections 1. 5.0 and 6. For brevity. only the translation
to the form with continuation predicates will be shown in detail there, Simpler translations
that introduce goals in left-to-right order withoul using continuation prediecates or that
introdnee all the subgoals at once are always possible.

A classic example of poor. highly redundant. top-down excecution behavior is the com-
putation ol Fibonacei anmbers. The computation can he defined by

o plas(0L )
| pluste g z) D plus(s(a). y.s(2))
LS04
(1. fib(s(0).s(0))
oo fib{ae gy A fibls(e). 2) A plusty.zow) D fib{s(s00)) o)

which ean be translated to!

1. fact{plus(0,r.0))
2. goal{(plus(s(r).y.s(2))) — goal(plus{a.y.z))
3. goal(plus(s(). g (1) A facl(plusteogoz)) — facl(plus(s(r). g, <(2))
1. fact( fi0{0.0))
5. fact{ fib{<(0).5(0)))
6. qoad [ fib(s(s(x)). w ))— goal( fiblx )
T goad( fib{s(s(a ) ) A fael( fibla, y)) —
(()Hl',‘-_g(_fl!)( s(s(e)ow) ) A goal( fil{s(r). )
8. cont, s{ fibls(s(x)).w) gy A fact{ fib(s(r).2)) —
conle 30 Lib(s(s())ow)oy 2} A goad (plus(y, =, w))
9. cond, 3 fib(s(s(x))omw) g . 2V A fact(plus(y. = w)) — fael( fib(s(s(2x)) w))

INot all variables need be included in every continuation.  For conty,. it is sufficient to include
Vars({Ar.. .., A pinVars{{A. . ... Aw ) = Vars((?), where Vears(X) is the set ol variables appearing
in literal or set of literals Y.

Tome of these rubes have multiliteral consequents conty, (€ V) A gort(A,), which means that both
conli (O V) and goal(Ay) are to be derived. I standard. clausal hyperresolntion is nsed as the bottom-up
reasoning svstem, they can he split imto sepavate rales < - — conlp (CUV) and conly (COV) — goul (A )

Tnstead of a variable-comtaining term V. we write all the variables as separate argnments of conly,.



whose execution is substantially less redundant becanse Fibonacei numbers do not need (o
he recomputed.

3.1 Generalizing Subsumption

Subsumption is the principal mechanism for eliminating redundancy in bottom-up reason-
ing. If faci(L) and fael{ La) are both derived. then faet{ La) can be deleted. Likewise.
i\ goal( L) and goal{ La) are both derived. then goal( La) can be deleted.  Similarly for
conl A C VY and conty ;(Ca. Va), These deletions can be accomplished by ordinary sub-
sumption.

It is benelicial 1o generalize this. The [ollowing instances ol generalized subsumption
are possible:

o fuct( L) subsumes goal( L'}, where L' = La for some substitution a. Goals can be
deleted if they are the same as or more specific than a fact.®

o faci(L) subsumes conty {C, V) where (" = La lor some substitution a. Conlinua-
tions can be deleted if they lead only Lo the dertvation of facts the same as or more
specific than an existing one.

A stronger deletion strategy would also delele subgoals of deleted goals, Goal-subgoal
refationships would have to be recorded so that a subgoal is deleted only i all the goals of
whicl it is a snbgoal have heen deleted.

3.2 Generalizing Derived Facts

Although wnnecessary recomputation of Fibonacei numbers is successiully eliminated in the
example. bottom-up execution unfiltered by goals could vield a still shorter prool that uses
fewer. more general, derived lacts, The problenvis that Tacts derived with top-down filtering
can he overly specific.

It is passible to derive plus(1. y.s(y)) from clauses a and b, and 11 is likewise possible
Lo derive it from 1-3 when given the general goal goal{pfus(1.y.2)). However. il more
specific goals such as goal{(plus(1.1.2)), goal{(plus( 1.2, 2)) and goal{plus( 1.3, z)) are given.
as they are when tlhese rules are used to compute Fibonacei numbers. only the more specific
lacts such as fact{plus{1, 1.2)). fact{(plus(1. 2. ). and fact{plus{1.300)) will be derived.
Computing larger Fibonacci numbers results in many more repeated instances of computing
4y ..o The length of each of these derivations is linear in the size of w.

When geal( L) leads to the derivation of faet(Lep). Uie problem of possible overspeci-
ficity of fact{Lay) can he overcome by reexccuting the same inference steps starting with
goad{xr)y—ie.. with a free variable as goal formula-—-instead ol goe/{ L) and ending with
fact{ray). which is stored instead of facl{ Lay). The result facH{aay) is an equally valid
conclusion that is either a generalization of or cquivalent to faci( Lay). There is no danger
in deriving these more general facts, They are more easily used. but top-down filtering still
prevents Lheir use excepl in the presence of a relevant goal.

*Although derved lacts are alwavs instances of the goals that lead to them. aninitial fact might be more
ceneral than a goal. 1 is also possible (o modify e method 1o derive more general Tacls (xee Section 3.2).



The problem of deriving overly specific facts is not universal. From ground flacts and
range-restricted rules (those in which every variable in a positive literal also appears in a
negative literal), which are custowary in databases, hottom-up reasoning can derive ouly
gromnd facts, and top-down filtering cannot result in anything more specific. Thus, there is
no need for fact generalization Tor range-restricted dalabases.

3.3 Generalizing Goals

H is always sound to use more general goals than this methoed specifies. 1t may he beneficial
to do so in order to reduce the number of goals at the possible cost of deriving more facts
since botlom-up reasoning is less constrained. Term depth abstraction [18,-13] automatically
generalizes goals that exceed a specified depth by replacing subterms that are too deep
by variables; it thus restricts Lthe set of possible goals to be finite. Without generalizing
goals somehow. upside-down meta-interpretation may have an infinite search space, even
when bottom-up execution las a fipite one. For example. goaf(pla)) and goad(p{r)) —
goal(p( fl2))) can be used Lo derive an infinite set ol goals of the Torm p{ f7(a@)). althongl
only a finite sel of Tacts might be derivable Trom the olther clauses.

4 Abduction with Horn Clauses

We shall now extend the method to ahduction with Tlorn clauses. First. we give a general
deseription of abduction. not restricted to Horn clanses. We then extend the method T
Section 3 to a method lor abdnction with Horn elauses. Section 6 deacribes abduetion with
nou-Iorn clavses.

Abduction is the Torm of reasoning that allows us to hypothesize that /s true if we know
that 2 D @ is true and we are trying to explain why @ is true [33]. 1t can naturally be viewed
as an extension of deduction. Instead of requiring us to prove a formula. abdnction allows
us 10 identily sets of hypotheses that, il they could be proved. would allow a prool of the
formula to be completed. This style of reasoning has been applied to diagnosis 9. 31. 32, 3%].
design synthesis [16], theory formation [37]. default and circomseriptive reasoning {37, 39].
and natnral language interpretation [8, 18, 30, 47].

A widespread approach for implementing abduction is top-down. backward-chaining
reasoning, with some literals heing allowed to be assumed instead of proved [9. I8, 19, 37.
38.39. 15, 47]. i.e.. an inference rule that assumes a literal is added to Prolog-like inference
{in the case of Horn clavses) or the model elimination procedure.  Standard top-down
reasoning can he viewed as operating on a list of goals, removing goals when they match
lacts, adding subgoals when a goal matches the head of a rule. and succeeding only whe
the list becomes empty. Abductive reasoning allows this process to skip cortain goals [19].
An abduclive prool or explanation is found when only skipped goals vemain. These are the
assumplions that would allow completion of the proof.

The presence of an additional inference rule that allows literals 1o be either assumed
or proved makes the search space for abduction even larger than that for deduction. This
provides a strong motivation for upside-down meta-interpretation of the top-down inference
rules for abduction in order to eliminate search-space redundancy. Recent work on using an
ATMS [10. 1] to cache results of abductive reasoning [28] has the same objective as onrs



ol eliminating redundant work on duplicate goals and has already demonstrated significant
improvement. This is done for the case of llorn clauses with some limitation on unification
ag a result of using an ATMS.

For some theory T and goal (7, abduction consists of finding sets of assnmptions /f and
substitutions # such that &8 is a consequence of T U H Jie.. [T D G8 is o consequence of T
We require that [ consist of assumable atomic formulas with designated predicate symbols,

We [ocus on only one element of abduction here. namely. finding /f and (/8. I is a nearly
universal regquirement that # be consistent with 7. but this must be determined by some
othier means (e.g.. by attempiing to refute T U M and failing) and is undecidable in general.
AMany abductive prools can usually be fTound, and selection of a preferred abductive prool is
a vital part ol abduction. Qne criterion is that an abductive prool that requires a subsel of
the assumptions required by another proof is preferred. Generalized subsumplion of derived
Facts allows us 1o discard less general proofls. Assigning costs Lo assumable Tormmnlas is a
popular method 1o help choose among alternative prools and is the lfocus of mueh recent
work on abduction [7. 18, 17]. We believe the top-down meta-interpretation approach for
abduction can be adapted 1o such cost-hased abduction. but this is outside the scope of the
present work.

To support abductive reasoning, the metatheoretic predicate faet is extended to (wo
arguments: an atomic formula and a set of assumptions sufflicient to prove it. The bottoms-
up interpretation of the vule Sy A -2 A A, D (7 can be expressed by

facti A YA <A Jael( Ay, ) — faet{lCUH U~ U H,)

Heach o4 is true, assuming 7. then s true. assuming the union of the assumptions. Each
initial fact /" is translated 1o fael( F ). 1f atomic formula L is assumable, foct( L. {L}}is
included in the initial Tacts: its meaning is that L is allowed to be proved by assuming /.
Thus, faellN.{N})is a tantology.ie, L. > L oor Lv =L,

Our rules for Horn-clause deduction by bottom-up execution with top-down [iltering
and left-to-right solution of goals can also he easily adapted to Horn-clause abduction. The
ecneral case of the translationol Ay A---A A, s

qoul (O} — goal(A))
qual{C)YA Toact(Ay )Y — cont (O HL V) A goaf{( Ag)
ol COH VYA fael{Agy Hy) — comdpo(C H U T V) A goad( Ag)

O e (C T VYA Jaet{ Aoy I =) — conty (o (C HUH 1V YA goal(A,,)
contp  (COH YA fact{ A, Hy) — fact(COH O H,)

whoere o000 11, are variables whose values during execution will be sets ol assumplions
used in deriving a continuation or faci.

The procedure is complete: for any /1 and G such that H is composed of assumable
literals, 1 D (/8 ix a consequence of theory T. and H is consistent with 7.5 this procedure
can derive some fael(G'OH) sueh that Gfe = (8 and ['o C I for some substitution a.

“Althonglh the procednre may generate abductive preofs whose hypotheses are tnconsistent with 77 it ix
not gnaranteed 1o do so. and we would not want. it 1o generate all possible sets of inconsistent hypotheses,

10



Subsumption can be further generalized 1o take account of assumptions. The following
instances of generalized subsumption are possible:

o fact{ . subsumes fact(L'. H'). where L7 = Lo and ' 2 He for some substitution
o.

o [fact(L. 1) subsumes conty (CO 1) where ¢ = Lo and 1D o for some substi-
tution a.

o fael{ L.0) subsuines goel{ L'). where L' = Lo for some substitution a.

o conlp(CH, VY subsumes cont . (C'. H' V), where (Y= Co, H D Hoand Vi= Ve
for some substitution a.

As an example, consider the following theory nsed ta explain abievele’s wobbly wheel [21].
Heve, brolen-spokes. puaetured-tabe, and leakyg-volre are assumable predicates thatl ean
bhe used Lo ereate an explanation,

a. flat-tire D wobbly-wheel

b. brolen-spokes D wobbly-wheel
c. punctured-tube O flai-tire

d. lealey-ralee D flal-Tire

The translation is

Saettbrolen-spolecs Abrolcn-spoles})
.Z factipunctured-tube  {punctured-tube})
3. factllcaky-valve {lealiy-valvel)
4o goeal{wobbly-whecl) — goad{ flal-tive)
5. goal(wobbly-wheely A fact( flat-lire , HY — facl{wobbly-whecld 11
G. goal{ wobbly-wnhecl)y — goal{(brofen-spolie <)
o god(wobbly-wheely A factlbroken-spolios, ) — faet(wobbl y-wheel 1)
N, goall [lat-tive) — qoal(punctured-iube)
9. goal( flal-tivcY A faei(punctured-tube, 1Y — fact{ flat-tive  H)
1() goul( flatdivey — goal(leal-y-radve)

cyoal( flat-tiveY A fact(lealoy-calee, [y — fael{ flai-tive  J)

These rules can be used to explain a wobbly wheel. Explanations are found on lines 16.
19. and 21 helow: e, if there was a punctured tube, then there would be a wobbly wheel.
The execution is as follows:

12, goal(woldd y-whedl) initial goal

13. goall flat-tire) subgoal of 12 by

L. goad(punelured-Tube) subgoal of 13 by 8
15, fact{ flai-tire {punctured-tube}} solution of 13 by 2.9
16, factCwobbly-whed {punctured-tube})  solution of 12 by 15.5
17, goul(leaky-ralee) subgoal of 13 by 10
IR, fact{ flat-tive {deaky-ralve}) solution of 13 by 3,11



19, factlwobbl y-whecl {lealy-calvel) solution of 12 by 185
20. goal(brokcn-spoles) subgoal of 12 by 6
21, fact(wobbly-wheel {brolcn-spolies)) solution of 12 by 1.7

5 Deduction with Non-Horn Clauses

Using the method for abduction witlh Horn clauses as a starting point, we now extend
our upside-down meta-interpretation method to deduetion with possibly non-Tlorn clauses.
Abduction will be added again in Seetion G, Facts. goals, and rules can be written with
literals instead of just atomic formulas. We require that contraposilives of the rules he
present. That is. if Ay A---A A, DO is a rale, then m other rules of the form B; D —2;
mus! also be provided. where B; is the conjenction of A, ..., . A PRI F T Ay O and,
for any literal f. =L denotes its complement.

The model elimination (M2} theorem-proving procedinre has a single imference rule in
addition 1o Prolog’s:

If the current goal is unifiable with the complement of one of its ancestor goals.
then apply the unifving substitation and treat the current goal as if it were
solved.

This added inference operation is the AlE reduetion operation. The normal Prolog inferenee
operation is the M eadfension operation. T'he two together constitute a complete inlerence
procedure for the Tull first-order predicate caleunlus. not just the Horn-clause subset. Unless
the unifving substitution (nnifier) is empiy (i.e.. the goal and its ancestor goal are exactly
complementary). the redaction operation is used as an alternative to. not a substitute for.
solving the goal by extension or by reduction with a different ancestor goal.

As in abduction with Horn clauses. we begin by formulating the model climination
procedure in terms of deriving facts that lollow from a sel of assumptions.

The metatheoretic predicate fuel has two arguments: a literal and a set of assumptions
suflicient to prove it. The hottom-up interpretation of the rule Ay A A Ay, D can he
expressed by

Jact{ Ay HYA A fact{ A, Yy — facl{C U U---U )= =00

If eacl A; is true. assuming ff;0 then (" is true. assuming the union of the assumptlions.,
exciuding =", This description is accurale for the ground case. In the nonground case, it is
necessary to consider unifving =" with other assunmiptions to derive alternative results. In
that wav. different instances of ¢ can be shown Lo follow lrom different sets of assumptions.
For example. suppose =" is not a member of ffy U ---U If,,. We couclude that ' is true,
assuming [y U« U H 0 =C s anifable (by unifier &) with a member of HyU---U H,,,
we can also conclude that (e is true. assaming the smaller set (HyoU---U H, o) — (o,
Single-literal facts Fare translated to fact(F. (). The single literal fact(x. {x})is also
included. Tts interpretation is that any literal = is a consequence of its own assumption.

Again. fact(r {r})is a tantology, iwec o D or V.
This differs fram upside-down meta-interpretation of abduction with Horn clanses he-
canse afl literals are treated as assmnable (because any literal might he solvable by reduction
12



with a complementary ancestor goal) and becanse -€" can be omitted from the set of as-
sutnptions used.

Top-doswn filtering by goals along with lefi-to-right exceution order [or subgoals can he
acconmplished almost exactly as in the case of abduction lor Horn clauses:

god(C') — goal(A))
goadd (CONA fact( Ay Hy) — contp 20010V ) A goal(2Ly)
f‘l)Hf,r‘..»_)((.’. IR 1) A _f(l(‘f(;lg._ ”2} — ('f}f.t!.,'l.‘:],((“. Hu ”»_). ‘) A _([H(.'!(:l;n,)

conly (O H VWA fael{ Ay s o) — condp o (C HUH VI Agoal{s,),)
vomlp , (COH VYA facll Ay M) — fael(CUHH UL — ()

Note the use of =0 in the final clause.

Performance of this code is likely to be very poor. Assumptions can bhe made easily but
can be removed ooly o the presence of a complementary ancesior goal: a prool is complete
only when the assnmption-free fael(Ga () is derived for goal{(/). I 1s apparent that more
control over the generation of [acts is required. Top-down filtering is done above using only
the Torm of the goal: we propose that top-down filtering also take account of the goal's
ancestors, so that a fact will not be derived unless a goal exists whose ancestor list ineludes
all the faet’s assemplions. ’

lor top-down wota-interpretation of the wodel elimination procednre Tor dednetian,
we inclode another argument. P.in goals and continuations that specifios the set of as-
sumplions {obtained from negations of ancestor goals) thal are permitted to be made in
the solution of a goal. Siegel likewise replaced model elimination’s representation of goal-
subgoal relationships in chains by direct]ly associating a goal with its set of ancestors [13].
The [ollowing translated roles will not be able to derive facts that require assumptions

oulside the permitted sef:

qoal(C ) — goal( A PU{-CY))
goal(C.PYA fact( Ay H ) A ) CPU{=CY —

cond o OOl POV A goal(Ay. PU =T
conlp(CoH POVYA fac{ Ay H)YA M, CPU{SC) —

conlps3(COH Uy POVYA goal{ Ay, PU{=(C'})

oMl e — (O P YA faei( Ao Hopy YA,y T PU{=CTY —
ol (CoHUH PV YA goal(A,  PU=CYH)
conlp  (COHCPAIA fact( Ay, 0N, © PUL=CY — fael{ OO ) —=(0)

A single-literal goal is translated to goaf/(G.0).i.c.. an assumption-Tree proof of (1 is sought.
Unification of members of #; and PU{-("} may be necessary to make € hold and unification
of members of H U M, with =" may be necessary to derive Tacts with fewer assumptions.
I this rafe ix invoked by goal{G. )00 will derive literals of the Torm facl{G'. H ), where
(¢ = GG and I C Pa Tor some substitution o, Derived Tacts include only assmmptions
that are used {those in /) not all those that are permitied Lo be used (Lhose in 7). Thus,
equally genoral Facts can be derived even if P2 has extra members.
The follewing instances of generalized subsumption are possible:

13



o fact(L.H)subsumes fact{(L'. 11"} where 1" = Lo and 1" D o for some substitution
a. Facts that are less general or require more assumptions can he deleted.

o facl{ L ) subsumes goal{(C.P)or conty (C . P A where O = Laand P D He
for some substitution o. Such facts solve the goal without instantiating it.

o conlp  (CLHL PV subsumies cond (C P A whoere (Y = Co 17D e, 17 =
Po_and V= Ve for some substitution . Continualions that are less general or have
made more assuniptions can be deleted.

In addition, standard model elimination praning rules imply that

o goul(C'. ) or conly. JC.H.P. V) can be deleted i0 " € 0 =" € PP0or P conlains
complementary fiterals.

As an example. considor the proof that a A b follows Trom a Vi —a v b and a v =, The
problem is formulated with contrapositives as

a. o b
h. =b Da
c.o0 Dl

d. b BEalf]
e, na Db
{. 6 BT

B ahl >y

and the translation is

12 fact(ax.{r})

2: goal(h. Py — goad(=a. P U {=b})

30 goal(b. PYA fact(ma  HYA I C PUA{=D) — fact(h. 1 = {=b})
A goal(a. P) — goal(=b, PU {=a})

5 goal{a, PYA fact(=b. YA H C P U {-a} — fact(a ] = {=a})
62 goal{h. ")y — goal{a. P U {=b})

Togoalih. PYA factta YA T C PU{SD} — fact(h. H — {=0})

R: goal{=a. P) — goud(=6. P U {a})

9: goal{=a.PYA facl(=b. HYANH C PU{a} — fact(—a, Il = {a})
10: goal(=b. ') — goal{—a, P U {b})

L goad(=h. PYA fact(—~a. YA H C PU{L} — fact(=b 1T - {b})
12: goal(a. P) — goal(b. P U {=a})

13: goal(a. PYA fact(b. HYA T C P U{-a} — facl{a. H — {-a))
1: goal(q, P) — goal(a. P U {=~q})

15: goad(q. PYA factla HEYAN T C P U =g} — conty (g J1.P)

V6: conty (g 1 P)— goal(h, P U {~q})

1o cond olq L PYA fact{b. HoY A, C PU{~g) — fact{q . (H U Iy) — {~q))

Fxecution of these rales leads 1o the following proal:



18: goal(q,0) initial goal

19: goal{a. {-¢}) subgoal of I8 by 14

20: goal(b. {~a.nq)) subgoal of 19 by 12

21: facth {-u}) solution of 20 by 3.1

22: faet{a.§)) solution of 19 by 13.21

23: facl(b. ) solution of 20 by 7.22

24z comty (g, 0.0) continuation of 18 by 13,22
25: foct(q.9) solution of |8 by 17.23.21

Derived facts exactly correspond 1o lemmas in the model elimination procedure: they
are conditionally solved goals. where the conditions are negations of ancestor goals used
in their solution. Contrapositives of derived facts are also valid consequences. so [acts
like fact{=b.{a.c}) can be automatically derived {rom faci(a. {b.c}). or the procedure
can be reformulated 1o use a neutral clause form facl({a. =b.2e}) instead (1his is done in
Demolombe’s similar method [£2]).

6 Abduction with Non-Horn Clauses

The case of abduction with non-lorn clanses is nearly identical to thal of deduction. The
only change required iz that assumptions are no longer restricted to those listed in goals
as being permitied because their negations appeared tn ancestor goals. This vestriction is
imposed by the test [ C ' The test is mediflied in the case of abduction 1o apply onty
to literals that are not abhductively assumable: nonass(1;)Y C PU{=C}. where nonass(1;)
is the largest subsei of /f; that canpot he abductively assnmmed (those with ponassumable
predicate names), In other words, any abductively assmmable literal in [I; need not appear
in 7U {-C}. but others mnst.

We summarize the treatment of assumptions in these procedures. In the Horn case
of abduction. fact{L.{L}) exists only for abductively assumable literals. so only they can
be assumed. In the non-Horn case of deduction. faet(w. {a}) exists and any literal can
he assumed, although top-down filtering permits only assumptions that match negated
ancestor goals to be used. In the non-llorn case of abduction. we again allow any literal to
he assumed. but omit the regairenient to mateh assemptions with negated ancestor goals
in the case of abductively assumable [iterals.

Dertvation of faci{Cla. H) is an abductive proof of (7, provided H consists entirely of
abductively assumable literals. The procedure is complete: for any /1 and (8 such that ]
is composed of abductively assumable literals. ff D 8 is a consequence of theory T and
I is consistent with T, this procedure can derive some faci{ (7. 77) such that Gla = (/8
and o C H for some substitution .

7 Related Work

Demolombe [12] also developed upside-down meta-interpretation of the model elimination
theorem-proving procedure. [lis method resembles the procedure in Section 3. but differs
in thai



o 1t uses literals like goad{a vV =b V ~e) and fael(a V =bV =e) instead of goal{a {6.¢})
and faet(a.{b c}): contraposilives of facts are thus always available,

o [ ouses rules like goal (CYA facl{ A A< A facl( i) — goal{ ;) to generate subgoals.
instead of using more concise continnation predicates,

o [i does not keep track of which permitted assumptions are actaally used. so goel(a vV
OV ) can lead only 1o instances of fact{a vV IV ) being derived, instead of the more
general facl{a), faei{avh), ete., thal can be derived if not all permitted assimiptions
are used.

Plaisted and Greenbaum [36] developed an upside-down meta-interpretation metiod
for non-Horn clauses that is not based on the model elimination procedure. It does not
require contrapositives and represents clanses by 3 A=A A, Oy v - v (L whore
Ao VO SR ¢, are all atomic formulas, However, only negative clauses are usod as
initial goals. A key difference hetween their method and ours is that our translation vields
a Tlorn set of elauses. The advantage of this is that if hyperresolntion is used 1o execute
the clauses. only single-literal results will be derived (although these single-literal facts or
goals may coutain mulbtiple fiterals from the problem and thus would still have a clause
interpretation). Plaisted and Greenbaum’™s method reqguires devivation of nonunit positive
clauses. such as foel{a) vV facl(h). They also developed an extension for equality, hased on
Brand's modification method [5].

Upside-down meta-interpretation has heen applied to Horn-clanse theorem proving in
Neiman's subgoal extraction method [27]. 1t closely resembles rewriting methods for guery
evaluation. as do the Horn-clause case tn Section 3 and the Demolombe and the Plaisted and
Greenbaum methods restricted to Horn clanses. Neiman describes special data stroctures
for more efficient execution,

There is a vast literature on such upside-down meta-interpretation wethods lor query
evaluation in Horon-clause databases. These moethods generally rosemble cach other ab-
stractlyv, differing in details of the compilation and the extent to which the input rules
are partially evaliated. Bry demonstrated upside-down metasinterpretation (Le.. rowriting-
hased methods for query evaluation) and top-down evaluation with lemmas (i.c.. resolution-
based methods for query evaluation) are essentially equivalent instances of his hackward fis-

point procedure [G]. There has also been a lot of work that extends the magic-sets method
to non-Horn deductlive databases with negation as lailure or the closed world assumption
rather than classical semantics for negation —c.g., [3. 15. 20].

Qur approach is to use bottom-up execution with top-down filtering. This is similar
to the use of relevancy testing in the bottom-up SATCIHNMO [25] and MGTP [17] theorem
provers that employ hyperresolution and case-splitting on nonunit derived clanses. The
use of range-restricted clauses guarantees that positive clauses are gronnd and makes case-
splitting practical. since no variables are shared hetween cases. The relevaney test requires
that some [10]-—or better vel every [30]--literal of a. derived clause bo relevant to the goal in
order to boe retained and split on: this can dramatically rednce the search space. A non-Horn
magic-sels method has recently beon developed for MGTP by Hasegawa. Ohta. and Tnone.”

"Persgnal commumication [rom R, Hazegawa, 19493,
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I their method. the implication Ay A---Ad, DOV, Cwhere Ao A, O O
are all atomic formulas, is transiated to

goal(COVA - A goad(C)) — goad{ )

goal(Cry A=A goad () — goal( )
goal(C A Agoa{Cy ) A facl (AN <A Jael( 4 ) — Jacl{C )V -2V foel{C)

or a variant thatl uses continuation predicates. This is a nice extension of te method for
Horn clanses in Section 3 to non-llorn clanses that uses hyperresolition and case-splitting
instead ol model eliminaiion. They prove their method is equivalent 1o relevaney testing in
which every literal of a derived clause must be relevant, which is formulated quite differently.
The SATCHMO/MGTP approach appears to work very well on naturally range-restricted
problems  hetter than model elimination. Problems that are notl range-restricted can easily
he converted into those that are. bul tlis entails adding clauses that can generate all the
terms of the Herbrand universe, and the SATCHMO/MGTP approach is usnally ineffective
{for sucl problems.

8 Conclusion

The model olimination procedure is an elfective theorem-proving procedure whose prineipal
delect is Lhe redundaney of iLs search space. Despite Lhis defect, it ias been used eflectively
{or thearem proving and recenily for abductive and related inference. Model elimination
is @ highly restrictive inference procedure that includes compatibility with set of support,
This goal-directedness is erucial in the presence of many trrelevant axioms. as in dednctive
database. logic programming. and artificial intelligeuce applications.

Upside-down meta-interpretation. the execution of the top-down model elimination pro-
codure by a bottonm-up reasoning svstem such as hyperresolution with subsiaption. can
hasically reproduce the model elimination search space while eltminating much of its re-
dundaney, Four variants of the method have been shown. T'he basie method lor deduction
with Horn clauses resembles the magic-sets or Alexander method Tor guery evaluation in
databases. Extensions deal with non-Horn clauses and with abduction as well as deduction.

Upside-down meta-interpretation can be vegarded as adding top-down fittering 1o a
bottom-up reasoning system, thus making it more goal-directed. Its principal contribution
is in applications with many irrelevant axioms. not for mathematical problems. Althongh
non-goal-directed wethods such as hyperresolution might seem naive even for mathematical
problems. they can actually be quite elfoctive: when all the axioms are accessible from the
initial goal and general subgoals are quickly generated. the top-down filtering provided by
upside-down meta-interpretation is able to offer little or no goal-dircetedness.

Deriving and storing goal literals allows liberalization of the searceh stralegy of top-down
reasontug svstems.  Literals can be ordered for preference in future inference operations
by tvpe (Tact or goal). by size, by number of assumplions or ancestor goals, and other
criteria. Upside-down meta-interpretation makes merit-ordered search feasible for 1op-down
reasoning svstems like inpul resolution and model elimination.

The high inference rate and low memory consumption ol top-down reasoning svstems
stch as Prolog and PTTP are lost in Lhis move to upside-down meta-interpretation. T'his



loss seents inevitable, since controlling redundancy requires storing more inlormation about
goals, solutions. etc., and the volume ol information stored demands efficient. although slow,
indexing. Efforts 1o make the inference rate of bottom-up reasoning sysiems more closely
approach that ol top-down reasoning systems will niake the upside-down meta-interprelation
approach more attractive. Writing a botlom-up reasoning svstem specialized to the rales
nsed i upside-down meta-interpretation can also improve performance. Neiman did thisin
the case of deduction with Horn clauses when Implenenting his subgoal extraction method.
The translated clauses [or Horn-clause dednction are executable by standard hyperresolotion
reasoning svstems such as OTTER [26]. Such systems need be extended only slightiy 1o
support generalized subsumption and generalizing derived lacts as well: these features can
significantly improve the method’s hehavior. More substantial extensions are necessary lor
the abductive and non-Horn cases: these require handling sets of assumptions in the lfact
and zoal literals.
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