
~ - H O L I A N D

SMALLEST HORN CLAUSE PROGRAMS

P. DEVIENNE, P. LEBEGUE, A. PARRAIN, J. C. ROUTIER, AND
J. W[IRTZ

I> The simplest nontrivial program pattern in logic programming is the
following:

'p(fact)
p(left) ~ p(right) .
~ p(goal) .

where fact, goal, left, and right are arbitrary terms. Because the well-known
append program matches this pattern, we will denote such programs
"append-like."

In spite of their simple appearance, we prove in this paper that
termination and satisfiability (i.e., the existence of answer-substitutions,
called the emptiness problem) for append-like programs are undecidable.
We also study some subcases depending on the number of occurrences of
variables in fact, goal, left, or right.

Moreover, we prove that the computational power of append-like pro-
grams is equivalent to the one of Turing machines; we show that there
exists an append-like universal program. Thus, we propose an equivalent of
the B6hm-Jacopini theorem for logic programming. This result confirms
the expressiveness of logic programming.

The proofs are based on program transformations and encoding of
problems, unpredictable iterations within number theory defined by J. H.
Conway, or the Post correspondence problem. <3

This paper is a survey which covers the results of [19], [20], [21], and [28].
Address correspondence to J. C. Routier, Laboratoire d'Informatique Fondamentale de Lille, CNRS

URA 369, Universit6 des Sciences et Technologies de Lille, Cit6 Scientifique, 59655 Villeneuve d'Ascq
c6dex, France. Email: {devienne,lebegue,parrain,routierl@lifl.fr.

Received July 1994; accepted August 1995.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1996
655 Avenue of the Americas, New York, NY 10010

0743-1066/96/$15.00
SSDI 0743-1066(95)00122-0

228 p. DEVIENNE, ET AL.

1. INTRODUCTION

The study of minimal patterns of programming languages allows

• to extract useful properties for improving larger programs (for example, new
technics of compilation),

• to strengthen the power of the language.

In Horn clause languages, the simplest nontrivial pattern is built with one fact,
one two-literal recursive Horn clause (in the following we will say binary), and one
goal:

p(fac t) ~ .
p(left) ~ p(right) .

p(goal).

where fact, left, right, and goal are arbitrary terms.
We will use this pattern many times in this paper, sometimes with a simple

reference to fact, left, right, or goal. We will refer to such programs as append-like
programs according to the most famous program matching this pattern:

Example 1.1.

'append([], L, L) ~ .
append([H I L], LL , [H I LLL]) <--- append(L, LL , LLL) .

append(?, ?, ?).

[]

While for simple examples good intuition on the behavior (halting and existence
of solutions) of an append-like program is possible, the nonlinearity of the terms
may cause high-complexity phenomena. Indeed, as we will see here, in spite of
their structural simplicity, the computational power of append-like programs is the
same as that of Turing machines.

The two first important problems are the halting problem and the emptiness
problem, that is, the problem of the existence of at least one solution (answer-sub-
stitution). Different behaviors of append-like programs are possible depending on
the goal: finite or infinite computation; empty, finite, or infinite set of solutions.

Schmidt-Schaufl [47] has shown that the two problems are decidable when goal
and fact are ground. 1 This result is a corollary of his work on the implication of
clauses, or equivalently, on the decision problem of clause sets consisting of one
clause and some ground units (one-literal clause) (see also [36]). Dauchet et al. [11]
and Devienne [17] studied the linear 2 case and proved it decidable as well. They
used a new technic based on weighted directed graph (an extension of the directed
graphs). Bibel et al. [2] considered the emptiness problem and proved it decidable
for some particular cases. 3 They denoted this problem as the cycle unification

1A term t is said to be g r o u n d when it does not contain any variable occurrence [34].
ZA term t is said to be l inear when each variable occurs at most once.
3They consider cases where there exists a substitution tr such that o'lefl = right or left = o'right ,

called left (resp. right) matching cycle.

SMALLEST HORN CLAUSE PROGRAMS 229

problem, that is, a unification of the goal--which begins the cycle, and the
fact--which terminates the cycle, through the binary Horn clause--which defines
the cycle. For particular cycle unification classes, see [45, 51].

In this paper, we will show that the two problems are undecidable for append-like
programs. The proof technic of [19,20] is based on an original encoding of the
unpredictable iterations of Conway within number theory [8] which are close to
Minsky machines [39]. An alternative proof of undecidability of the emptiness
problem can be found in [28]. It has been made independently, and it is based on
an encoding of the Post correspondence problem. We will present both proofs. We
also study some particular subcases defined by the number of occurrences of
variables in terms (linearity).

Another crucial question is the computational power of append-like programs.
Dauchet [10] proved that it is possible to simulate any Turing machine with only
one regular 4 left-linear rewrite rule. In [49], it is shown that every computable
function is characterizable by a program consisting only of facts and binary Horn
clauses. Another encoding of Turing machines using binary programs can be found
in [4]. And in [41], a meta-interpreter has been written using only one fact, one
goal, and two binary recursive clauses. In pure Datalog, Shmueli has proved that a
single recursive predicate (not clause) is sufficient [46].

In this paper, we establish that all computations on Minsky machines can be
expressed by an append-like program [21]. The class of append-like programs is
Turing-complete. The proof uses the encoding of Conway functions and logical
reductions on meta-programs.

This theorem is equivalent to the B6hm-Jacopini theorem for declarative
languages. The B/Shm-Jacopini theorem establishes that for imperative languages,
every flowchart is equivalent to a while-program with one occurrence of whi 1 e -do ,
provided additional variables are allowed (for more details, see [27]). This proof is
constructive and usually cited as the mathematical justification for structured
imperative programming.

We will show that in Horn clause languages, any program can be automatically
transformed into another one composed of one binary Horn clause and two unit
clauses. This transformation preserves both termination and solutions (answer-sub-
stitutions on the original variables). This shows the expressive power of a single
Horn clause, and can be used as a theoretical tool for decision problems in
theorem proving.

The paper is organized as follows. Section 2 states the main results. In Section 3,
we introduce binary Horn clauses and resolution. In Section 4, the Minsky machine
formalism and the unpredictable iterations of Conway are presented. In the next
section, it is shown how they can be simulated by binary clauses. We present the
halting and emptiness problems and some subcases in Sections 6 and 7, respec-
tively. Section 8 is about meta-interpreters and the computational power of
append-like programs. Some results about ternary (three-literal) programs, close to
clause implication problem, are presented in Section 9. A conclusion summarizes
the results.

4A rule is regular iff it is left-linear and nonoverlapping (i.e., there are no nontrivial critical pairs).

230 P. DEVIENNE, ET AL.

2. MAIN RESULTS

The main result of this paper is about the computational power of append-like
programs.

Main Result (Theorem 8.1, p. 33). There exists a meta-interpreter for Horn clauses in
the form of a program with only one binary Horn clause, a fact and goal which,
given as input a Horn clause program P, has the same solutions as P and terminates
if and only if P terminates.

The two other main results are, in fact, consequences of this theorem:

Result 1 (Theorem 6.2, p. 17). There exists an explicitly constructable right-linear
binary Horn clause for which the halting problem, according to SLD resolution, is
undecidable. The resolution can be applied with or without occur-check.

Result 2 (Theorem 7.1, p. 20). For a program of the form

'p(fact)

p (left) *- p (right) .

~ p (goal) .

where fact and right are linear, the emptiness problem is undecidable.

Due to the used proof technics, we will prove Result 1 and Result 2 first. The
proof of the Main Result will use the principles introduced before.

3. PRELIMINARIES

We assume the reader to be familiar with the notions of unification and resolution
introduced in [34].

The goal of this section is to present indexation of variables and how to express,
in term of equations, the resolution of append-like program.

3.1. Binary Horn Clause

Let ~ be a set of function symbols (which contains at least two constants and one
symbol whose arity is greater than 1), and Var an infinite countable set of variables.
We denote by J (~ , Var) the set of terms built from ~r and Var.

Definition 3.1. Binary recursive Horn clauses have the following form:

p (l l l") ~ p (r 1 r")

where l i and r i a r e any terms of 3 (J , Var).
In the following, we will often abbreviate "binary recursive Horn clause" by

"binary clause"; we also refer to it as the rule.
A binary clause l ~ r is said to be right-linear (resp. left-linear) if each variable

occurs at most once in the body part r (resp. the head part 1).

SMALLEST HORN CLAUSE PROGRAMS 231

For example, "append([X I L], LL, [X I LLL]) append(L, LL, LLL). is a right-lin-
ear binary clause.

3.2. Variable Indexa t ion

It is well known that, during resolution, formal variables of a clause are renamed to
fresh variables. We introduce fresh variables by adding a subscript to the formal
variables. This subscript will denote the number of the inference.

ith inference: append([X i IL i] , LL i , [Xi I L L L i]) <--- append(Li , LL i , L L L i) .

The sequence of inferences using the clause "left ~ right" can be drawn in the
form of a series of dominoes:

• .. leftl , - right 1 l e f t 2 * - right 2 " .] left~ 1 *- right~ ~ left, ~ right n ...

The ith domino can be followed by an (i + 1)th one, if the terms lefti+ 1 and right i
can be unified (and this is compatible with those of the other iterations). Hence,
applying n times this binary clause is equivalent to solving the following system of
equations:

{ l e f t i+ 1 = right i l i ~ [1, n - 1]}.

Example 3.1. Applying n times the append clause is equivalent to solving the
system

{append([Xi+l [Li+ 1] ,LL i+I , [X i + I I n n c i + ,])

= append (L i, L L i, L L L i) Ii ~ [1, n - 1]},

that is, in solved form

(L,= [x,+, IL,+ l
Vi • [1,n - I]~ LL i = LLi+ 1 []

 LLL, = [X,+, I LLL,+I].

To express the whole resolution, the goal and the fact must be taken into
account. Thus, applying n times the rule "left *--right." starting with the goal
"*--goal." and checking whether there exists a solution at the nth iteration with
the fact "fact *-- ." is equivalent to solving

goal = left1

l e f t i + 1 = righti,
right, =fact .

i [1,n-q

This indexation of variables and the modeling of resolution through equations
will be one of the basic notions in the following sections.

232 P. DEVIENNE, ET AL.

4. MINSKY MACHINES AND CONWAY ITERATIONS

in the following, the expression, 'fit is undecidable whether or not . . ." stands for
"There exists no algorithm that always decides, whether or not "

4.1. Minsky Machines

4.1.1. Presentation. The Minsky machines [39, 8] are deterministic machines with
registers and instructions. Registers (finitely many of them) can hold arbitrary large
nonnegative integers. A machine executes a program composed of instructions
sequentially. Instructions are labeled by Q1, Q2,. "',On (for a program of n
instructions). Three kinds of instructions are possible:

• "Halt": Stop the machine.

• "Successor": At step Qi, add 1 to some register a and proceed to the next
step Q/(where (a) denotes the value of the register a):

• "Decrement or jump": At step Qi, if (a) > 0, then subtract 1 from register a
and proceed to the next step WQfi else simply go to step Qk:

(a) - I ,

- - ~ (a) > 0 - ~ " j

These machines have the same computational power as Turing machines (two
registers are sufficient [39]). For any partial recursive function f , there exists a
Minsky machine which, started with register contents n, 0,0 (n will be called
the input of the machine M), reaches the "Halt" instruction with register contents
f(n), 0,0 if f (n) exists and does not halt otherwise.

If the computation is finite, M(n) denotes the content of the first register (i.e.,
f(n)), which we call the result of the Minsky machine's computation for initial
register values (the input of the machine) n, O, O,--.. Otherwise (the computation
does not terminate), M(n) will be infinite.

Let us state some usual definitions and properties:

• The domain Dom(M) of a Minsky machine M is: {n ~ ~d [M(n) is finite}.

• A Minsky machine M is said to be total iff its domain is ~.

• Given a Minsky machine, it is undecidable whether or not this machine is
total.

• Given a Minsky machine M, it is undecidable whether or not a given n
belongs to Dom(M).

4.1.2. A Particular Class of Minsky Machines. In the proofs of further sections,
we use a particular class of Minsky machines given by the following definition.

SMALLEST HORN CLAUSE PROGRAMS 233

Definition 4.1. Given a Minsky machine M?, a new machine M, with a a fixed
natural number, and n ~ N* as input, can be constructed as follows:

1. Compute a × n and put it into a new register r.
2. If (r) = 0, then goto 5; else subtract one from r.
3. Execute one instruction of M?(0).
4. If M~(0) has reached the "Hal t" instruction, then go into "an infinite loop";

else goto 2.
5. Put zero in all the registers and halt.

Moreover, we force M(0) to be finite and equal 0. M is called a linear and null
Minsky machine.

Property 1. Let M be a linear and null Minsky machine; the two following
assertions stand:

• null: 0 ~ D o m (M) and all the registers contains 0 at the final computation
step (after the "Hal t" instruction), in particular, the associated partial
function, f , satisfies: Vn ~ D o m (f) , f (n) = O.

• linear: For all input n ~ D o m (M) , if n > 0, then M(n) is computed in less
than o~ x n steps.

It is straightforward that such Minsky machines do exist. Simply consider the
machine with one register, which decrements it until it reaches 0. It is clearly linear
(with ol = 2) and null.

Theorem 4.1. It is undecidable whether or not a linear and null Minsky machine M is
total.

PROOF. 5 Let M? be the Minsky machine from which M is constructed.
A natural integer n belongs to the domain of M iff the "infinite loop" is not

reached, that is, M?(0) needs more than a x n steps to be computed. By construc-
tion, this null Minsky machine is total iff Me(0) does not terminate. This is
undecidable. It remains to prove that M is linear.

Let us compute the complexity of M for any n ~ Dom(M) . Step 1 can be done
in ((a + 1) x n) instructions. M reaches step 5 after (2 ~ x n) instructions. Once in
this step, the sum of all the contents of the k registers of M? is, by construction, at
most (o~ x n). Consequently, it takes at worst (a x n + k) instructions to put 0 in all
the registers of M?, then of M. Hence, the complexity of M is ((4a + 1) x n + k).

Thus, by construction, the linear null Minsky machine M is total iff M~(0) does
not stop, but this is undecidable. []

Definition 4.2. A set ~ is said to be recursively enumerable iff it is the domain of a
Turing machine (or a Minsky machine).

5We would like to thank Prof. Jean-Paul Delahaye for the basic idea of this proof and previous
definition.

234 P. DEVIENNE, ET AL.

From definitions, we can deduce the following property:

Property 2. Every recursively enumerable set containing {0} is the domain of a null
Minsky machine.

Definition 4.3. A recursively enumerable set E is said to be linear if there exists a
linear and null Minsky machine the domain of which is E.

Corollary 4.1. It is undecidable whether a linear recursively enumerable set is equal to

PROOF. By application of Theorem 4.1. []

4.2. Conway Unpredictable Iterations

In the previous section, we have considered the Minsky machines that can be seen
as an arithmetization of Turing machines since the tape is replaced by registers
with integer values. This section deals with the work of the mathematician J. H.
Conway. He proposed an encoding in terms of numeric functions of the Minsky
machines. It results from the study of a generalization of the Collatz conjecture.
Including the characterization of recursively enumerable sets, the results obtained
for the Minsky machines can be extended to Conway functions.

4.2.1. The Collatz Conjecture. This conjecture asserts that, given a positive
integer n, the program below always terminates:

While n > 1 Do
If n is even

Then n ~ n / 2

Else n *- 3n + 1
Endlf

EndWhile

The exact origin of this conjecture--also called "Syracuse conjecture" or
"3x + 1 problem" [30, 31]--is not clearly known. This problem is credited to
Lothar Collatz at the University of Hamburg in the 1930s.

Nabuo Yoneda at the University of Tokyo has checked the conjecture for all
n < 24°. The behavior of the Collatz series, that is, the sequence of all the numbers
successively obtained during the execution of the above program, seems to be
random. While it takes only 10 steps to meet 1 from 26, it takes 111 steps from 27:

2 6 ~ 13 ~ 40 ~ 20 ~ 1 0 ~ 5 ~ 1 6 ~ 8 ~ 4 ~ 2 ~ 1
2 7 ~ 8 2 ~ 4 1 ~ --- - - - , 4 ~ 2 ~ 1.

111 steps

The conjecture may be formulated as follows:

Conjecture 4.1. (Collatz). Let g be the function defined as follows:

1 (n - 0mod2) i n

g (n) = 3 n + l (n - l m o d 2)

for every natural n, there exists k ~ ~ such that g(k)(n)= g(g "" (g(n))"")= 1.

k

SMALLEST HORN CLAUSE PROGRAMS 235

Conway has considered the more general functions, which we will call in the
following "Conway functions"6:

aon + b o
. . .

g (n) =]akn +bk

I ~ap_~n +bp_ 1

(n = 0mod p)

(n - k m o d p)

(n - p - l m o d p)

where p is a positive integer and a k and b k are rational numbers greater than 0
such that g(n) is always a natural number. He studies the iterates g('n)(n). Conway
proved that even if the b k are all equal to zero, the behavior of such functions is
unpredictable. This was achieved by a translation of the Minsky machines into
Conway functions. We will also define by analogy with the null Minsky machines
so-called null functions.

4.2.2. Presentation. Conway considered the class of periodically piecewise linear
functions g : ~ ---, 1~ having the structure

Vk, O < k < p - 1 , g (n) = a k n (n - k m o d p)

where a o ap_ ~ are rational numbers such that g(n) ~ ~. These are exactly the
functions g :1~* ~ ~ such that g(n) /n is periodic (~* denotes 1~\{0}).

Theorem 4.2. (Conway; see [8]). If f is any partial recursive function, there exists a
function g such that

1. g (n) / n is periodic mod p for some p and takes rational values
2. V n ~ ~, n ~ Dom(f) iff 3(m, j) ~ ~* × ~, such that g(m)(2 n) = 2 j
3. g(m)(2n) = 2 f(") for the minimal m > 1 such that g(m)(2") is a power of 2.

The first point expresses that g is a Conway function. The second point shows
how to characterize a member of the domain of a partial recursive function f from
this function. The last explains how it is possible to compute the value of f (n)
through iterations of g. This means that the Conway functions are as expressive as
the Turing or Minsky machines. This is not a surprise since, as we will see now, the
Conway functions are a direct translation of the Minsky machines.

The following proof explicitly shows the connection between Minsky machines
and Conway functions, and this connection is important in the following.

PRINCIPLE OF PROOF. Conway showed that with every Minsky machine, it is
possible to associate such a function g which simulates step by step the behavior of
this machine. In fact, he explains how to construct this g from the Minsky
machine:

• With register r i, we associate a prime number pi and characterize the value
(r i) of this register by p!ri).

• With each step Qj, we associate a prime number Pj.

6In the following, g will denote a Conway function.

236 P. DEVIENNE, ET AL.

• The current situation of the machine, characterized by the contents k i of the
registers r i and by the current step Q j, is expressed by an integer of the
following form:

p ~ rl) * p(2 r2) * . . . , p(n rn) * P j .

Now, let us consider how to express the instructions. This can be done in a very
natural way if the above encoding of the current situation by a number is well
understood:

• For the "Successor" instructions:

_ @ (ra)+ 1 (~

If step Q1 is characterized by prime number PI, step Q2 by/°2, and register
r a by Pa, this instruction may be translated as the multiplication of the
current situation of the machine by the factor:

P2
P-T x pa

which means: "From step Q1 (× 1/P1), proceed to Q2 (×P2) and add one to
register r a (×p~)."

• For the "Decrement or jump" instructions:

(ra)- 1

With the above conventions and if the prime number Pk is associated with
Qk, these instructions can be expressed by the factors

P2 1 Pk
- - x - - or - - .
P1 P~ P1

The choice between these two factors corresponds, respectively, to the cases
(r~) > 0 and (ra) = O. It will be achieved by the "mod p" in the definition of
the g functions. It will be similar for the detection of "Am I at step Pj?."

For every instruction of the Minsky machine to be coded, we have to create the
associated factors, and then from these factors, determine the period p (which is
just Pl × "'" X Pn X P1 × "'" × Pq) such that g(n) always remains an integer, and
finally compute all the a k.

We can see that each instruction of the associated Minsky machine corresponds
to one iteration of the function. []

Since there exists a direct translation between Minsky machines and Conway
functions, we will speak in the following about a Conway function associated with a
Minsky machine (and conversely).

SMALLEST HORN CLAUSE PROGRAMS 237

As an example of encoding of a recursive function into a Conway machine, in
[26], Conway and Guy have detailed how to produce a prime number generator
Conway functions from a machine.

Remark 4.1. By construction, the number of iterations required from g(2 n) to
reach 2 f(") is equal to the number of elementary instructions used by the
associated Minsky machine to produce f (n) from n.

4.2.3. Conway Relations. We have seen that Minsky machines and Conway
functions are strongly connected. Then it is natural to extend some definitions for
Minsky machines to Conway functions.

Definition 4.4. Let g be a Conway function; the domain of g is

Dom(g) = {n ~ N [3 (k , p) ~ N* X N,g(k)(2 ") = 2P}.

A Conway function g is said to be total if its domain is N.

Considering the Conway function associated to the null Minsky machines, we
define the null Conway functions as follows:

Definition 4.5. A Conway function g is said to be null if

• 0 belongs to its domain,

• for every n in the domain of g, the first power of 2 reached by iterations
from g(2 n) is 2 °.

Since we have seen that to each instruction of a machine there corresponds one
iteration (see Remark 1), it is reasonable to measure the "complexity" of the
functions as the number of iterations:

Definition 4.6. A null Conway function is said to be linear if there exists a natural
integer a such that for every n E Dora(g), 20 is reached from 2 n in less than
ct × n iterations of g.

We will study these null functions more precisely and extract some properties to
define so-called Conway relations. We will first analyze the behavior of the negative
iterations of Conway functions.

Definition 4. 7. Let g be a Conway function; the kth negative iterate of g on n is
defined as

V k ~ N , g(-k)(n) = { m ~ N I g (k) (m) = n } .

Comment 4.1. g(-1)(n) (and therefore g(-k)(n) for any k ~ N) may be a set since n
can be the range of many m for g.

Proposition 4.1. Let g be a null Conway function and n an arbitrary integer; the only
power of 2 reachable (if any) from 2" by iterative applications of g is 2 °. By
negative iterations of g from 2 °, exactly the 2 i for all i ~ Dora(g) are reached.

238 P. DEVIENNE, ET AL.

PROOF. Since g is null, 0 belongs to its domain. Then there exists k > 0 such that
g(k~(20) = 2 f(°) = 2 °, and k is the smallest positive integer such that g(k)(2°) is a
power of 2. So it follows that no other power of 2 can be reached by iterations of g
from 2 0 .

Now, let us consider the definition of a null Conway function. For a given n, if it
does not belong to the domain of g, no power of 2 will be reached. Conversely, if n
belongs to it, since the first power of 2 reached by iterations from 2 n is 2 f~") = 2 °,
then it is the only possible one.

The second part of the proposition follows immediately from Definitions 4.4 and
4.7. []

Thus, if an integer n belongs to the domain of a null function g, then there
exists only one path between 2 n and 2 0 using positive or negative iterates (we will
neglect the loops on 2 0 since they do not contain other powers of 2). The existence
of such a path is fully determined by n being in the domain of g.

Thus, we can define the Conway relation:

Definition 4.8. Let g be a null Conway function; we define the Conway relation
associated to g, and we denote it by --g, obtaining the relation such that:
2 m --=g2 n if and only if there exists k ~ 7/such that g(k)(2m) = 2 ~ (m , n ~ N*).

It is easy to check that -~ is really an equivalence relation: transitivity,
reflexivity, and symmetry of -=g are straightforward.

Now, it is possible to characterize the recursively enumerable sets containing 0,
that are the domains of null functions, with these relations.

Proposition 4.2. For every recursively enumerable set ~ containing 0, there exists a
Conway relation =-g such that: ~ = {n ~ N 12 n -g2 °}

PROOF. The recursively enumerable sets containing 0 are the domains of the null
Minsky machines, and consequently of the null Conway functions. If g is the
function the domain of which is ~, then -g satisfies the proposition. []

This proposition is crucial for the following. In many proofs, we will create some
recursively enumerable sets from 2 °, and use the negative iterations of null
Conway functions in order to enumerate all the elements of these sets. Then we
will use known undecidable properties concerning these sets.

5. RECURSIVELY E N U M E R A B L E SETS A N D BINARY H O R N CLAUSES

In this section, we will establish the relationship between binary Horn clauses and
the Conway functions. A Conway function g is expressed by relations like g(n) =
a~n with n = a p + k and 0 _< k < p - 1, and such that akn is always an integer. So
a function g associates, with a given number of the form ap + k, another number
of the form (ak a) p + (akk) with a, k, ak a and akk in N.

We will first prove that it is possible to express with a binary clause and a goal
every relation that associates a number ai + b with another number ci + d where
a, b, c, d are integers. We will then prove that an encoding of the Conway functions
with a binary clause is possible. This encoding will be described explicitly. We will
deduce a characterization of recursively enumerable sets through a binary clause.

SMALLEST HORN CLAUSE PROGRAMS 239

5.1. The E n c o d i n g

Example 5.1. Let us consider the following program:

p (s (X) , s (s (Y))) + - p (X , Y) .

+ p (U , U) .

it creates the following equalities between indexed variables:

X i = s i (Y i) a n d Y/=X2i.

The size of Y increases by 2, while the size of X increases only by 1. []

In general, we will establish that any relation of the form

Xai+ = r+i+h,

can be obtained with a binary clause and a nonlinear goal. The encoding will be
very similar to the one of the example: it requires the use of one function symbol.
However, in order to improve the reading, we will use the list constructor instead
of the function s(_) of the example.

In fact, we will only consider relations such as

Xai+b ~- Xa,i+ b,

since they are sufficient in the following. The production of relations between two
distinct variables X and Y will be obvious from the following.

Proposition 5.1. For every natural integer a , a ' , b , b ' , there exist a variable X , a
right-linear binary clause "p(lef i) + p(right)," and a goal " + p (g o a l) " such that

({goal = left1} U {right i = left i + ~ IVi > 0}) S x - { Xa, + b = X d i + b' l i > O}

where 5; ~ ?x is the projection onto the X~ o f the equations expressed in 50.

PROOF. Let us consider first the case where a' = 1 and b = b' = 0.

p Z I L , [X I L L] , - p (L , L L) .

[~ p (L , L) .

As in the previous example, the size of the first argument of the Horn clause
decreases by a, while the one of the second decreases by 1.

The equal arguments in the goal generate the equality of the two arguments. So
we deduce the relation Z i = X~i.

Let us assume now that we want to establish a relation such as Z i = Xai+b. We
have to shift the equality between the previous terms. This can be achieved by the
goal

b

The relations in this case will affect the Z i only from i >_ b.

240 P. DEVIENNE, ET AL.

Now, if we combine two relations Z i =Sai+b and Z i =Sa,i+b, , the transitive
closure of these relations and the projection onto the variable X provides the
intended relations

gai+b = Xa'i+b'

obtained by the program

p , _ , . . . , I L l , X I L 2 , Z [L 3 , g I L a

~ p (L 1 , L 2 , L 3 , L a) .

~ P ([- ' " ' , ~ I L] ,L , [u_~.~,~ I L L I , L L) •

b b'

[]

Remark 5.1. Another encoding of the relation gai+b =ga'i+b', when b < a and
b' < a', is possible:

p , Z I L l , [X I L 2] , , Z " IL3 , [g i L a]

b b'

~ p (L 1 , L2, L3, La) .

~ p (L , L ,LL , LL).

The encoding of the Conway functions by a binary recursive clause is now
straightforward.

Proposition 5.2. For every Conway function g, there exist a variable X, a right-linear
binary clause "p(left) p(right), and a goal ~ p(goal)" such that

({goal=left1} u {right i =lefti+ 1 IV/> 0})1" x - {X n =Xg(n)IVn > 0}.

PROOF. Let g be a Conway function. It is defined by some a 0, a 1 ap_ 1. As was
previously discussed, g can be decomposed into a finite number of relations of the
form (Xai+b =Xa'i+b')i>o, where a, b, a', and b' are integers. From the previous
proposition, it is possible to associate with each of these relations a binary Horn
clause and goal. All of these can be merged in only one clause and one goal which
satisfy the proposition. []

Example 5.2. The Collatz program can be translated into equivalence relations on
Var x ~:

Vk ~ [~ If k is even Then X k =Xkl 2 Else X k = S 3 k + l .

SMALLEST HORN CLAUSE PROGRAMS 241

Let f be the function such that Vi > 0, f (2 i) = i and f (2 i + 1) = 6i + 4. Since
there does not exist some k ~ N such that f(k)(1) = n (Vn > 4), we can extend the
previous relation to the following system of equations:

X i = X2i

g2i+ 1 = X3(2i+ a)+ a.

But we have seen that such relations can be expressed through a binary
recursive clause. The following clause is constructed in a way slightly different from
that described before since we have grouped two arguments into one.

[LI ~ L2 ~ ~ L3)

p ([X I U I , [Y , X [V] , [. Y [W]" (- - p (U , V , W) .
]

p(Z,Z,Z).

From the general goal "~-p(L1 , L2 ,L3) . , " through the inferences the solved
systems of equations increase as

1. L a = [X a IU1] L 2 = [Y1, Xa IVx]

2. L a = [X a , X 2]U2] L 2 = [Y 1 , X a , Y 2 , X 2 11.12]

/2. L a = [X 1 , X 2 ,X , , IUn] Z 2 = [Y 1 , X a , Y 2 , X 2 , Y n , S n IVn]

1. L 3 = [. V a [Wa]

2. L 3 - - [. ra r2 IW2]

n. L 3 = [. Y1 , Yn IWn].

Therefore, after n iterations, we have

L 2 = [Y a , X a , Y 2 , X z , Y 3 , X 3 Y n , S n IVn]

t 1 = [X I , X 2 , X 3 , X 4 , X 5 , X 6 S n _ l , g n]Un]

t 3 = [. E l Vn]Wn I •

Then, with the goal *--p(Z, Z , Z) , we force the equalities

1. L a =L2 ~X2i+1 =Y/ and X 2 i = X i
2. L l = L 3 = a X 6 i + a - - Yi,

that is,

X i =X2i and Xei+I =X6i+4.

With a goal of the form

n n n

242 P. DEVIENNE, ET AL.

we obtain that X 1 = ~ and X n = ~. Therefore, the resolution is finite if and only if
a unification fails because of X, v~ X1, that is, if the Collatz program with the input
n terminates. In other words, the Collatz conjecture is equivalent to the assertion
that, given any n, if the goal is of the above form, then the resolution is finite. []

5.2. A Binary Clause and Recursiuely Enumerable Sets

In Section 4.2.3, we defined the notion of Conway relations. We have shown that
they allow to characterize the recursively enumerable sets containing 0. Now,
according to the previous paragraph, we are going to associate with each such set a
program consisting of one binary right-linear recursive clause and one goal.

Theorem 5.1. Let ~ be a special symbol. For every recursively enumerable set E
containing O, there exist a right-linear binary clause and a goal such that a natural
integer n belongs to "2 iff after a certain number of SLD resolution steps, the first

i
rgument of the initial goal becomes instantiated to a list where the (2n)th element is

PROOF. According to the two previous propositions, let X be the variable which
codes the Conway relation associated with E (as in Proposition 4.2). The list L is
built linearly as [X 1, X 2 , X n] with all the Xi connected by the relations
X~ = Xg(i). Consequently, according to Proposition 4.2, we deduce that

xZ : {n ~ ~ [X2, =-gXl}.

If variable X 1 is instantiated to ~, then this mark will be propagated to all 3(2,
such that n belongs to 3~. []

Remark 5.2. Let ~ be a recursively enumerable set; the above theorem associates a
clause and a goal with E. By construction (see Proposition 5.2), because some
variable (a list in this case) is written many times in the goal, the same list is
eaten on all arguments (for each generated equality Xai+b =Xa, i+b,). Then the
speed of eating is linear (for each argument). But we can ensure that when the
slowest eater has eaten the k first variables of the list, then all the paths, using
equations X, = Xg~i) which do not use a number larger than k, have been built.

The previous theorem and remark are crucial for the following results. The
clause associated with a recursively enumerable set can be considered as a process
of enumeration of this set. It suffices to init X 1 to ~ as explained and to apply
iteratively this clause. Thus, we will build sets and use some results about them.
The remark explains that the "construction" of the set is linear since the construc-
tion of the Conway relation -g, associated with ~, is so.

6. THE HALTING PROBLEM

In this section, we will provide the answer to the first problem: Does the resolution
of a binary recursive Horn clause when given a goal halt? While it has been
established decidable in the ground [47] and linear [17] goal case, we will establish
here the undecidability in the general case [19]. Already a right-linear rule is

SMALLEST HORN CLAUSE PROGRAMS 243

sufficient. In order to complete the answer, we will show the decidability if the rule
is left-linear.

6.1. The General Case

Theorem 6.1. The halting problem, according to SLD resolution, o f a right-linear
binary recursive Horn clause is undecidable. The resolution can be applied with or
without occur-check.

PRoov. It is a direct consequence of Theorem 5.1 using a similar principle as in
the example with the Collatz problem encoding in t~e previous section.

By initializing L in the goal to [~, X 2 X2, 1,--[LL] where the mark ~ is put
on the (2n)th positiop of L, then the resolution will stop if and only if equation
X 1 = X2,, that is, ~ = b, is generated during SLD resolution, that is, if and only if n
is an element of £. Since it is undecidable for a given integer n and a recursively
enumerable £, whether or not n belongs to £, the result is proved. It is easy to
verify that the occur-check does not play any role in the proof. []

Let us observe that the constructed clause depends only on £; it is only the goal
that depends on n. So, if we fix any nonrecursive E, we get:

Theorem 6.2. There exists an explicitly constructable right-linear binary Horn clause for
which the halting problem, according to SLD resolution, is undecidable. The
resolution can be applied with or without occur-check.

6.2. Consequences

Some corollaries can be immediately established. In each case, it is possible to give
a general version and an "explicitly constructable" version. We will give only the
second one (since it includes the first one).

6.2.1. Finite Number of Solutions

Corollary 6.1. There is a particular program in the following form:

p(fact) ~ .

p(le f t) ~ p (right).

where fact, left, right are terms such that it is undecidable whether or not, for a
given goal, " ~ p(goal).," there exists a finite number of answer-substitutions.

PROOF. If we consider the program built with

• the binary Horn clause and the goal defined in the previous proof,

• a fact "p (X) ~ ." where X is a variable

each time that the fact is considered, we obtain a solution. This program will have
a finite number of solutions if and only if the binary Horn clause stops for the
given goal. This has been proven to be undecidable in Theorem 6.2. []

244 P. D E V I E N N E , E T AL.

6 .22 Occur-Check. The previous results have been established over and above
the occur-check. From this, we can assert that it is undecidable whether or not,
when given a program, this occur-check must be applied during the resolution.

Corollary 6.2. There exists an explicitly constructable right-linear binary Horn clause for
which it is undecidable whether or not, when given a goal, the occur-check will be
necessary during the resolution.

PROOF. In the proof of Theorem 6.2, we replace the equalities

X 1 -~ ~ and Sen =

of the goal by

X 1 = h (Y , s (Y)) and X2, = h (Z , Z)

where h and s are function symbol of arity 2 and 1, respectively. It is undecidable
whether or not the program will stop because of the equalities Z = Y and
Z = s(Y), that is, because of the occur-check. []

6.2.3. "Total Decoration" Here follows the last result which is a consequence of
the undecidability of the halting problem. It concerns the property of "total
decoration" [5] in the resolution of logic program. This property is used to optimize
the step from logic programming to attribute grammars. The SLD resolution of a
program is said to be totally decorated if and only if, at each step of the resolution,
all Horn clauses of the program are applicable. The decidability of this problem
was stated as open in [5]. In our case, there is only one clause. The property is then
equivalent to the halting problem, or better, to the nonhalting problem, of this
clause.

Corollary 6.3. There exists an explicitly constructable right-linear binary Horn clause for
which it is undecidable whether or not, when given a goal, its resolution will be
totally decorated.

PROOF. See the paragraph above. []

6.3. The Left-Linear Clause Case

At this point, we know that the halting problem is decidable if the goal is linear
and undecidable if the rule is right-linear. We now consider the case where the
rule is left-linear. The proof of the following result uses a completely different
method from the previous one. It is based on the weighted graphs. We refer the
reader to [16, 17, 32, 22].

Theorem 6.3. The halting problem of a left-linear binary Horn clause, when given a
goal, is decidable.

6.4. Conclusion

We conclude that for a program of the following pattern:

{ p(left) *- p(right) .

p(goal).

SMALLEST HORN CLAUSE PROGRAMS 245

the halting problem is decidable as soon as one of the terms left or goal is linear.
These results are summarized in the following table:

goal left right termination

ground any any decidable [47]
linear any any decidable [11]
any linear any decidable
any any linear undecidable

7. THE EMPTINESS PROBLEM

The second problem concerns the existence of at least one solution, also called the
emptiness problem. Although it has been shown to be decidable in the ground [47]
and linear [17] case, we will show in this section that it is undecidable in the
general case. Two proofs will be presented. The first one is based on the Conway
function encoding [20]. The second is based on the Post problem [28]. They have
been established simultaneously and independently. The second proof is more
elegant, but the first also works for a syntactical defined class of programs that is of
some interest to us.

' p (f a c t) * - .

p (left) ~ p (right) .

~- p (goal).

are equivalent.

7.1. Prel iminary R e m a r k

Conceming the existence of solutions, the programs

p(goal) ~- .

and p(right) ~ p (left) .

~ p (fact) .

In the first case, the system of equations

{goal = left1, lefti + 1 = righti(1 <_ i <_ n - 1), right n =fact}

must be solved; in the second,

{goal = leftn, left i = righti+ 1(1 _< i < n - 1), right 1 =fact}.

According to a renaming of the variables (V1 _<j _< n, Xj renamed in X n_j+ 1),
the two systems are equivalent. The existence of solutions for one provides the
existence of solutions for the other. Then, when a result is established for some
properties of the 4-tuple (fact, left, right, goal), the same result with the 4-tuple
(goal, right, left, fact) can be deduced.

7.2. The P r o o f via Conway

This is probably the most complex proof in this paper. It requires a good
understanding of how the encoding of the Conway functions into Horn clauses
works. The principle is as follows: assume we have a linear Conway function (or its
associated relation). In the associated program, the propagation of the mark ~ in

246 P. DEVIENNE, ET AL.

II1 builds the list :
Z:~ = [~,~,b,~,b, . - -~, . . . , b,...]

1 T
~ = 2Pn ~ 2p

the (n = 2P) th element is instantiated to ~1
in less than 2 p iterations.

II2 builds the list :
1;2 = [~,-,"" ~,'" '] the (n = 2p)th element is instantiated to

X ~ in less than 2 p iterations if and only if
n=2PandpE~ pE~.

In 11, the fact impose at the n t~ iteration to unify the n th element of £1 with
| .rod the n th of £~ with I~. At this step, three kinds of unification may occur

[]

n # 2 p ~ £1=[~ ,~ ,k ,~ , - - - , b , - . -] ~ fail
~ 2 = [b , x ~ , . . . , ? , . . .]

b

n = 2 P a n d p E ~ = ~ , /~1=[~ , | , 1~ ,~ , ' " ,~ , " ' '] £~=[b,X~,- . - ,~ , . - -] ~ fail

b

£1=[~,~,~,fl,..., ~ ,...]
n = 2 v a n d p ~ = ~ £ 2 = [~ , X 2 , - , X 2 , , " -] -----4 success

b

We wilt have a solution if and only if :

3p, n = 2P a n d p e E

and no solution iff E is total, which is undecidable (see Corollary 4.1)

FIGURE 1. Theorem 7.1: principle of proof.

the list o f the goal will be l inear too. I t is poss ib le to wri te a p r o g r a m for which a
so lu t ion at the (2n)th s tep is equiva lent to the fact that n does not be long to the
l inear recursive set. Then we can deduce f rom Coro l la ry 4.1 the undec idabi l i ty of
the empt iness p rob lem.

Let us examine the de t a i l ed proof . A less formal p r e sen t a t i on is given in F igure
1.

Theorem 7.1. For a program of the form

p (fact) ¢ - .

p (left) ~- p (right) .

p (goa l) .

where fact and right are linear, the emptiness problem is undecidable.

F o r the p r o o f of T h e o r e m 7.1, we need the fol lowing l emma.

Lemma 7.1. For every linear recursively enumerable set ~ (containing 0), there exists a
right-linear binary clause and a goal such that a natural integer, n, belongs to ~ if

SMALLEST HORN CLAUSE PROGRAMS 247

and only i f after at most 2 n SLD resolution steps, the first argument of the initial
goal becomes instantiated to a list, the (2")th element of which is ~.

PROOF. Let E be a linear recursively enumerable set. By Definition 4.3 and its
natural counterpart, there exists a linear and null Conway function whose domain
is ~. According to Theorem 5.1, there exists a clause ~ and a goal ff that can be
associated to ~. As stated in Remark 5.2, the associated Conway relation is linearly
computed by. (~) and (if), with a linear coefficient equal to some a. In other
words, mark ~ is linearly propagated in the first list-argument of the goal. It is now
easy to define a linear clause (~ ') and a goal (if ') , with linear coefficient equal to
1, such that each resolution step of ~ ' corresponds to c~ steps of ~. []

PROOF OF THEOREM 7.1. Consider the following program:

p (, _ [X , L] , [_ , X , L L]) < - p (L , L L) .

It puts a mark ~ to all the (2n)th positions of the list [~ Ig] of the goal. It is
possible, to modify it slightly such that it marks the other positions with another
symbol~ :

The clause generiates the equality X i =Xz i for all i _< 1; the goal produces
X 1 = ~ and Xzi + 1 = b for all i < 1 because of the L found three times. Hence,
after n resolution steps, the first argument of the goal, L, becomes instantiated to

 =[xl,x2 x]

where V k < n, X k = ~ if k is a power of 2 and X k = ~' otherwise.
We now define a class of programs for which the existence of solutions is

undecidable. Let ~ be any linear recursively enumerable set; the associated clause
and goal defined in the previous lemma are denoted as follows:

p(ll, 12 l k) ~ P(rl , r2 rk) .

II2 ~ P (g l , g 2 gk)"

Now, by merging II 1 and I]2, our particular class of programs follows:

~ p (r 1, r 2 r k, U, V, L , L L , L L L)

.

248 P. DEVIENNE, ET AL.

The k first arguments codify 2£. The (k + 1)th argument allows to extract, at the
nth iteration, the nth argument of the list which characterizes 2£. The (k + 2)th
argument is the list itself (because of the unification with gl in the goal) with its n
first elements deleted at the nth iteration. Finally, the last three arguments codify
the list of powers of 2. Because there is a solution at the nth step if and only if:

• n is a power of 2 (because of the three last arguments and the unification
with [~ I L] in the goal)

• the nth element of the list ~hich characterizes ~ is not marked by ~ because
it must be unifiable with ~ (the (k + 1)th argument of the fact and the
variable U of the rule).

In other words, since we know that the marking (by ~) is linear (with a = 1), there
is a solution at the (2n)th step if and only if the (2n)th element of the list associated
to E is not marked by ~, that is, if and only if n does not belong to E. Therefore, 1-I
has no solution if and only if E is equal to ~. According to Corollary 4.1, this is
undecidable. This proves the result. []

By symmetry of the problem, according to Section 7.1, we immediately deduce
an equivalent theorem with the terms goal and linear and any right and fact terms.

7.3. An Important Corollary

An important consequence of this theorem is that it allows to solve one open
problem in first-order logic concerning the satisfiability of formulas. Indeed, for the
first-order formulas with four subformulas such as

VXi , (P(g)/x (a(t2) v R(t3)) A S(t4))

where P, Q, R, and S are literals and the X i are the variables occurring in t 1, t 2,
t3, and t 4, a particular instance of this problem is

VX i, (P (t l) A (P(t2) v -7 e (t3)) A --tP(t4))

for which the nonsatisfiability problem is equivalent to the existence of solutions
for the program

P(t l) ~ .

P(t2) *--P(t3)"
P(t4).

where tl, t2, t3, and t 4 are any terms. Then we can assert:

Corollary 7.1. The satisfiability of the class of first-order formulas with four subformu-
las is undecidable.

PROOF. From Theorem 7.1 []
This result can be connected to an old open problem: the satisfiability of

formulas in pure quantification theory (that is, without function symbol and with an
eventually infinite number of constants):

V t : : lu V v ' - - V w (. ~ " 1 A.a¢ 2 V . . . A.~¢,)

SMALLEST HORN CLAUSE PROGRAMS 249

where the ~ are atomic positive or negative formulas; the satisfiability of the
5-subformula case has been shown to be undecidable in [23]. It is established that
this problem is equivalent to the halting problem of 2-counter machines (which is
undecidable). The 3- and 4-subformula problems remain open.

7.4. The P r o o f via Pos t

This proof [28] is not based on the Conway functions, but on the better known Post
problem [42].

7.4.1. The Post Problem. Let us consider a finite alphabet E. A Post correspon-
dence system over X is a nonempty finite set S ° = {(l i, r i) I i ~ [1 , m]} where the
li, r i are words over X. A nonempty sequence of indices 1 < i I i n < rn is called a
solution of 5 ~ if and only if

l i l " '" l i , " = r i I . . . r i m .

It is well known that the Post correspondence problem, that is, "Does there exist
a solution for a given system ?," is, in general, undecidable if the alphabet contains
at least two symbols.

7.4.2. Encoding o f the Post Problem. Elements a i of the alphabet ~ will be
represented as unary function symbols, and a word w = a 1 ... a n over X thus
becomes a term aa(az(. . . (an(e)) . . .)) where e is a constant corresponding to the
empty word. So, the composition of words is associative since the composition of
functions is associative. For convenience, we also write w(e) instead of
(a l (a z (. . . (a n (E)) . . .))) and u (v (e)) = u v (e) w h e r e u and v correspond to words
over X. For instance, if w 1 = ab, w z = ha, vl = a, and v 2 = bba, then Wl(W2(t))=
a(b(b(a(t)))) -- abba(t) = VlV2(t) for any term t.

To append something to a list using unification, we use the concept of difference
lists. To explain the encoding of a Post correspondence problem, we adopt SLD
resolution as an operational semantics for the logic problem. The search space of
possible sequences of indices inherent to a Post correspondence problem is not
encoded in the a n d / o r tree of the logic program. Instead, we encode it in two
(difference) lists L and R. At the beginning of the computation, L and R are
Ill(e) ,lm(E)l X] - X and [r l (e) , . . . , rm(E) l Y] - Y, respectively. This encodes
all possible sequences of indices of length 1 (i.e., 1, 2 m). In the next step, we
select the sequence 1 and replace it by all sequences that have length 2 and as
suffix 1. In terms of the lists L and R, we remove lx(e) and r l (e) (representing the
sequence 1 of length 1) and append [11(l 1) lm(ll) I X] and [ra(r 1) r, ,(rl) I Y],
respectively (representing the sequences 11, 12 lm of length 2).

In the general case, we select in each step a sequence i x .-. ij of indices and
replace it by all sequences that have length j + 1 and i x ... ij as suffix. Always
selecting the heads of L and R and appending the extensions is a fair strategy, i.e.,
it ensures that successively all possible sequences appear as heads of the two
difference lists.

250 P. DEVIENNE, ET AL.

Given a Post correspondence problem as above, the following binary program
has an SLD refutation iff the Post correspondence problem has a solution.

p([EIH1] _H2,[EIH3] _n4)<_
P([CIL]- I l l (C) [m(C) IX]_

, [D I R I - [q (D) r ,n(D) l Y] < - - - P (L - X , R - Y) . [~ - P([ll(") , '" , lm(') l X] - x ,

[r l (e) rm(e) IY] - Y) .

The fact checks whether the beads of the lists in the current goal are equal, i.e.,
encode a solution of the Post correspondence problem. In Figure 2, the sequence
of goals is depicted which is induced by SLD resolution, with a search rule always
taking the binary rule for the next SLD resolution step.

Since the Post correspondence problem is undecidable, the existence of solu-
tions for this program is undecidable too. []

• - P (p , (,) , . . . , a,,,(,)
IXo] - X o ,

• - P (P ~ (O , - . - , i , , , (O
, z , t , (,) , . . . , i,,,i, (,)

IX1] - X l ,

,-. e ([~ (,) , . . . , t , , , (,)
, a a t , (O , . . . , i , , I , (O
, a , t , (,) , . . . , z , , , ~ , (,)

IX, l -X~,

. o °

• - P ([h l , (O , . - - , Z,,,Z,(~)
, h l 2 (O , " ' , l,,,a2(~)
I t ' ' "

, t , l , , , (O , . . . , I , , , I , . (O

I X - I - x . ,

• -- P([121a(,),..., i,,d,(~)
, z , z , (,) , • • . , ~ . ~ (,)

, : , a . (0 , - - . , : , - : , - (0
, l , ~ , l , (O , . . . , , , z , l , (,)

I X - + d - X,,,+~,

[, 1 (0 , . . . , r-,(01Y0] - Yo)

[~ (0 , ' " , ~ , - (0

, ~ , ~ , (,) , - . . , ~ . ~ , (,) I Y , I - Y ,)

[r , (0 , ' " , r , . (0
, ' , ~ , (0 , ' " , ' - , ' , (0
, ' , ~ 2 (') , ' " , ' - . r ~ (~) l ~] - Y ~)

[' , ' ,(') , '", '=',(0
, ' , '~(0, '" , ' , , ' , (0

. . .

, ,~ r . (,) , . • •, r , ,d.(,)lY.,] - I f .)

[,2~1 (0 , - - , , , - , , (,)
, r , , 2 (,) , . . . , , , , 2 (,)

, ~, , . , (0 , • • •, . . d , . (0
, rl r, rl (~),- • •, r . r , rl (c)lY,,~+,] - g . , ,)

FIGURE 2. A goal sequence induced by the logic program.

SMALLEST HORN CLAUSE PROGRAMS 251

7.5. Some Particular Cases

First, we will establish the decidability of the emptiness problem in the cases where
three characteristic elements of our programs are linear, and where only one is
ground. Then we will prove that the result remains undecidable if the clause is (left
and right) linear.

7.5.1. Decidability. The proofs of the following theorems will appear in [22].

Theorem 7.2. The emptiness problem for the class of programs

p(fact) ~ .
p(left) ~ p(right) .

~ p(goal).

where three of the terms left, right, fact, and goal are linear, is decidable.

Theorem 7.3. The emptiness problem for the class of programs

p(fact) ~- .

p(left) ~ p(right) .

, - p (goal) .

is decidable as soon as one of the terms left, right, goal, or fact is ground.

7.5.2. Undecidability. Here, we will consider the case where the left and right
terms of the rule are linear. We shall transform the nonlinear clauses that code the
Conway functions into linear to show that the proof of Theorem 7.1 can be applied.
Now, we are no longer able to use two occurrences of the same variable in "left" to
ensure that two elements of the list L are equal. Instead, we built out of the
elements of L new lists LLU and L L V such that their corresponding elements are
supposed to be equal. For linearity reasons, we cannot force the equality of L L U
and L L V during the resolution, so we postpone it, and check the equality while
unifying with the fact.

Theorem 7.4. For the class of programs

'p(fact)
p(left) ~ p(right) .

~ p(goal).

where left, right are linear and fact, goal are arbitrary, the emptiness problem is
undecidable.

PROOF. Let us consider the following program:

. -

b d

252 P. DEVIENNE, ET AL.

It produces the equalities

Xci+~ E.

If we slightly modify this program and add a fact as in

~p< L , L) +-

+ p(CX, LU, LV, [UI LLUI,[VILLV]).

b d

the two last arguments become instantiated to the lists [U 1 Un I_1 and
[V1,..., g, I_1. Then, because of the nonlinearity of the fact, we add the equality
U/= V i, and deduce that we have for X

xo,+b =Xc,+~.

And no other different relation on X is defined.
It is easy to create n other equalities on X. For example, if n is 2,

' p (_ ,X L1,L1 L2, L2) ~ .

p [X I L X I , Y , 1 _-ILU1, 1, . . . ,_ ' lEg1 ,LLU1,LLV1,

a2 ¢2

+ p(LX, X, LU1, LV1, [UI I LLU1], [VI I LLV1],
LU2, LV2, [U21LLU2], [V21LLV2])

(Ill" ~-p ~IL1 " ~ ' ~ _ , ~ I L 1 , [. I L l ,[1,[1,

[. ~ i L 2] , [. ~ i L 2] , [] , []) .

b2 d2

In the same way as previously, this program produces the equalities

Xali+bl =Xcli+dl and Xa2i+b2 ~-Xc2i+d2,
Let us note that in the fact, after p iterations, X is Xp. The extension for any

n > 2 is now obvious; then we can code any Conway function, that is, any linear
recursive set E (containing {0}). Indeed, if p = 2 k, then in the fact, X = Xp = X2~ =
if and only if k ~ E. Let us call II~ such a program associated with E.

SMALLEST HORN CLAUSE PROGRAMS 253

Now, we consider another program H':

. . . . L , t) .

It is the linear equivalent to the program II in proof of Theorem 7.1. It builds the
list

. . . .]

with the relations Xp - ~ if p is a power of two and Xp = [' otherwise.
As in the general case (see proof of Theorem 7.1), by merging the Horn clauses

and goals of the above program and of some H:~, and by choosing a fact such as

.

II~ part II' part

we obtain a program with one linear binary rule which will have at least one
solution if and only if E is not equal to [~. This property is undecidable. []

7.6. Conclusion
We have established the undecidability of the emptiness problem in the general
case. Moreover, we have proven that the emptiness problem is decidable as soon as
three characteristic terms are linear or as soon as only one is ground.

goal left right fact Emptiness

ground any any ground decidable [47]

linear any any linear decidable [11]

ground any any any decidable
any any any ground

linear linear linear any decidable
any linear linear linear

any any linear linear undecidable
linear linear any any
any linear linear any undecidable

8. COMPUTATIONAL POWER

In this section, we will prove the main result. We prove that append-like programs
have the same computational power as Turing machines [21].

We will use the principles of the two previously presented proofs of the
existence of solutions. Roughly speaking, the following proof consists of building a

254 P. DEVIENNE, ET AL.

Prolog meta-interpreter with only one binary Horn clause. First, we will build a
word generator, then a pseudo-meta-interpreter which never stops, and last we will
add the termination. The only difficult point is the technical one which uses the
Conway functions in order to guarantee the termination of our meta-interpreter.

8.1. A W o r d Genera tor

In this section, we show how to build a one binary Horn clause program which
generates all words over the alphabet {a, b}. These words are represented by a list
(e.g., [a, b, b, a, b[stands for abbab). The encoding is similar to these previously
presented to encode the Post Correspondence Problem:

gen([Word [R] - RR , Word) ~-

gen([Word [R] - [[a [Word], [b l Word] l RR] , A W o r d)

*- - gen(R - RR , A W o r d) .

gen([[] [R[- R , Word).

The behavior of the difference list is the following:

[Word , _ , [a [Word], [b [Word] , _ , ,, , . . .] .

R - R R R R

Consider the first steps of this program. By unifying the goal and the fact, we
obtain the solution Word = []. Using the binary clause once results in the new goal

gen([[a] , [b][RR1] - - R R 1 , A W o r d ,)

producing by unification with the fact the solution Word = [a]. Resolving this new
goal with the binary clause instead of the fact results in the goal

gen([[b], [a ,a] , [b, a[[RR2] - RR2, A W o r d 2)

resulting in the solution Word = [b], etc. Observe that a and b serve as prefixes of
two new words such that the suffix of these words is the first element of the list.
These two words are concatenated to the tail of the list generated so far. In other
words, the difference-list can be seen as a FIFO (First In First Out) pipe.

The principle is strictly similar to the one of the Post problem encoding. It is
clear that this generator can be easily extended for any finite alphabet.

8.2. A First Meta-In terpre ter

Let us begin with the study of a meta-program. It is made of one fact, two binary
recursive rules, and one goal [41]. An equivalent form, with two facts, one ternary
rule, and one goal can be established.

Let II be the set of Horn clauses

II = { clause1, clause 2 c l a u s e n }

SMALLEST HORN CLAUSE PROGRAMS 255

and ,---g~ , gk a goal. The following meta-program generates the same answer-
substitutions in the same order as a standard breadth-first SLD interpreter:

'solve([] ,[]) ~ .

solve ([Goal] RestOfGoals], [[Goal I Body] - RestOfGoals I L])

*-- solve (Body, ~) .

solve(Goals, [Clause I Rest]) *-- solve(Goals, Rest) .

*- solve(~ , ~) .

~' denotes the list [g~, gz g,] and .~ the list of difference lists which encode
the clauses of the program II, ~ = [clause I clause,]. A clause a *-- b a b m of
II is encoded by the difference list [a, b~ , bm I R] - R. In this meta-program, the
first binary clause is used to choose the first clause in the current clause list and
check if its head part can be unified with the current goal. The second clause
discards the first clause in the current clause list. It is easy to check that SLD
resolution is achieved. 7

This meta-program is studied in detail in [40]. The proof of its equivalence with
the object program H with respect to standard SLD resolution (through a depth-
first, left to right, traversal of the SLD tree) is presented in [22]. Its complexity--as
defined below--is shown to be linearly dependent on that of the original program
II.

Let us call the complexity of a solution-node sol, the number of crossed nodes
of the SLD tree (through a depth-first, left to right, traversal) before reaching sol,.
We will denote by ~p the complexity function of program p, and Np its number
of rules, p will take the values o for the object program, and m for the meta-
program.

At best, the goal unifies with the first rule of the original program, and this rule
is a fact. At worst, it unifies with the last one. We obtain

~o(SOln) + g o ~_~ LDm(SOln) ~ (~o(SOln) X No) 7 t- g o.

Example 8.1. The code of the meta-program associated to the "append" program is
as follows:

1. solve([] , []) .
2. solve([GoallL1], [[GoallL3] - LllList_of_Rules]) : -

solve(L3, [[append(I],Lappl ,Lappl)lL] - L,
[append([XlLapp2],Lapp3,[XlLapp4]),
append(Lapp2,Lapp3,Lapp4)lLL] - LL]).

3. solve(List of Goals, [RulelList_of_Rules]) :-
solve(List_ of_ Goals,List_ of_ Rules).

7Note that the fact cannot be simplified into solve([] , -) because, in this case, any goal *--
solve([], Prog) could unify with either the fact or the second binary clause. So each solution in ~ would
produce n solutions for *--solve(SO, ~).

256 P. DEVIENNE, ET AL.

For the initial goal append(]1], [2,3],L), the corresponding goal in the meta-pro-
gram will be

• - solve([append([1],[2,3],L1)],
[[append(r I ,Lappl ,Lappl) lL] - L,
[append([XlLapp2],Lapp3, [XlLapp4]),
append(Lapp2,Lapp3,Lapp4)]LL] - LL]). []

For the encoding of an arbitrary program 1-I, both the first binary clause and the
goal have to be adapted in an appropriate way.

Now, assume that II is a meta-interpreter. Then this encoding allows to define
the explicitly constructible meta-interpreter M I with the right pattern. In order to
interpret any program with the help of II, we just have to encode the appropriate
goal for II, and therefore for MI.

To summarize, we have built a meta-interpreter for Horn clause languages with
one fact, two binary recursive clauses, and one goal.

8.3. A n S L D Tree Genera tor

Assume a program II consists of the two binary clauses "left 1 ~ right1" and
"left 2 ~ right2," one goal " ~ g o a l , " and one fact "fact ~ ." Consider the word-
generator where .a¢ = right1, left 1 and oq~ = right2, lefi2.

' m e t a ([W I R] - RR , W) ,--

m e t a ([W I R] - [[~ 1 W] , [~ ' I W] I RR], [n I RRR])

~ meta(R - RR , [H , X , X] R R R]) .

meta([[goal l L] l R] - R , [fact l L L]) .

After n times using the binary clause for resolving, we obtain as the second
argument of the new goal the list

[fact, X l , X l , X 2 , X 2 x . , x . It].

Furthermore, according to what we have seen concerning the word generator,
we obtain, after some iterations, as the head of the first argument

[righti , lefiim, righti,, lefli ,, goal] T] .

The ij are either 1 or 2, and the variables are renamed before each resolution
step. By resolving a current goal with the fact of the above program, we obtain the
unification problem

[r igh t im, lef t im , rightim_l rightil , le f t i l , goal, _]
$ $ $. . . $ $ $ $

[fact, X 1, X 1 Xm_l , X m, Xm X , , Y I _]

SMALLEST HORN CLAUSE PROGRAMS 257

which has a solution iff the following system has one.

fact = rightim

leftik = righti, - l, 2 < k <_ m

goal = l e f t i .

It is important to note that, by construction, it is assured that the list containing
the fact has a sufficient length to obtain these equations. All the possible lists

[rightim, le f t i , rightil, leftil, goal l Q']

are selected; therefore, SLD resolution is complete. This system will be solvable if
and only if there exists a corresponding refutation of the original program 11 using
the resolution order imposed by the equations (i.e., by the ik).

Indeed, this program works as an SLD tree generator, and achieves the
resolution relative to this tree with a breadth-first strategy as described in Figure 3.

Each time a node is selected, the two new nodes corresponding to the inferences
with the rules ~¢' and ~ are added at the end of the "to be examined nodes" list
(that is, at the end of the "R - R R list"). Then the following node is considered,
etc.

8. 4. A Binary Nons topping Meta-Interpreter

In this section, the results of the two previous sections are combined.
Our meta-interpreter M I of Section 8.2 satisfies the pattern of the program II

of the previous section. Hence, it is possible to encode it as above. Therefore, one
can associate with any logic program an equivalent program (i.e., with the same
solutions) containing a binary clause, one fact and one goal. Unfortunately, this
encoding does not preserve termination. Thus, we have a "never stopping" meta-
interpreter, say Mns.

In a next section we will show how to construct from this non-terminating
interpreter a terminating one. This requires a technical preliminary.

®

.,4 B

A B

, 7

8 9 10 11 1 2 1 3

slready examined nodes 9 to be examined nodes

current node 1 3 new added nodes

FIGURE 3.

258 P. DEVIENNE, ET AL.

8.5. The Technical Preliminary

Our aim is to cause the termination of Mns. As in the proof of the halting problem,
the termination will be caused by a failing unification. But here, we need that the
halting happens after a certain number of resolution steps since we want the
program to produce the answer-substitutions first.

Remark 8.1. In the following, the term "program" corresponds to the intuitive
meaning. The reader can consider it also to denote "a machine (in the sense of a
Turing machine) which computes a partial recursive function."

Proposition 8.1. For every program H with input I, there exist a binary Horn clause
~q2 n and a goal, depending on I, such that 92ii stops after at least n iterative
applications if II stops after n elementary steps with input I, and does not stop
otherwise.

PROOF. Let II be given; let g be the Conway function associated with II (or with
the Minsky machine related to II). g is characterized by its "period" p (in fact, the
period of g (n) / n) and the rational numbers ao, a x ,ap_ 1. Let ~ ' be the
associated binary Horn clause as in Proposition 5.1. By construction, at each
iteration, ~ ' build p new equalities X~ =Xu(i). In fact, at the ith iteration, the
program builds the equalities

V O < k < d - 1 , Xp(i_l)+k+l =Xak×(p(i_l)+k+l).
According to Section 4.2.3, since g is a null Conway function, there is only one

path from 2" to 2 °, if any. The Horn clause produces as well positive and negative
iterates. Then at each iteration, ~ creates Pi positive and n i negative equalities of
the series

(Xgti,(2n) = Xgo+ 1)(2n)) i E i%1

with p~ + n~ _< d. This is depicted as follows:
g . g(- 1),

2" Pl - - - - n l 20.

Consequently, if it takes k, iterations from g(2") to 1, the equality X2, - -X 1
will be generated in at least k , / p iterative applications of the Horn clause. By
adding some extra variables, it is possible to slow down ~ p times such that the
speed (the complexity) of ~ ' is at best the same as the one of g. The resulting
clause is called ,9~ n.

Now, as in the proof of the undecidability of the halting problem, for any value
I, we can choose a goal for ~ 'n such that it stops if and only if the relation
)(2, =)(2o occurs. And we can guarantee that the number of iterations before
termination is greater than the number of elementary steps of H with input I
before halting. []

Now, let us build a particular program from M,s. We will apply Proposition 8.1
to program II, which takes a Horn clause program P as input, and is defined as
follows:

1. read P
2. evaluate P by a breadth-first strategy and keep the solutions in
3. compute M , s (P) and keep the solutions in 5,2; stop as soon as S ' 2 =5,~ and

write 0.

SMALLEST HORN CLAUSE PROGRAMS 259

It is clear that 11 stops if and only if P stops. The stopping time (that is, the
number of steps before termination) with input P is greater than the time used by
M~s(P) to produce all the solutions of P.

Now, according to the previous proposition, there exists a clause ~9~' n. By adding
a general fact and a goal depending on the input, we can build the program Ms:

~stop(fact s)

Ms st°p(lefts) ~ St°p(rights) . ('~'n)

stop(goal s) .

M s stops with input a program P (in goal s) (based, in fact, on the G6del
number of P, for example) if and only if P stops. The stopping time of M s is
greater than the one required by M~s(P) to produce all solutions.

8.6. The Meta-Interpreter

Combining M,s and M s, we can state:

Theorem 8.1. There exists a meta-interpreter for Horn clauses in the form of a program
with only one binary Horn clause, a fact and goal, which, given as input a Horn
clause program P, has the same solutions as P and terminates if and only if P
terminates.

PROOF. Let us denote &Ins as follows:

meta(faCtns) *--.

Mns : meta(left ns) ~ meta(rightns) .

meta(goal, s) .

We merge M,s and M s in a new meta-interpreter:

{ TheMeta(fact, s, facts) ~ .

M J : TheMeta(lefi~s, lefts) ~ TheMeta(right, s, rights).

TheMeta(goal,s , goal s)

such that, with input a Horn clause program P, it produces all the solutions of P
(because of the &Ins part), and then will stop if and only if P terminates (because
of the M s part).

Thus, we have a meta-interpreter, with one binary recursive clause, one fact, and
one goal, which preserves the solutions (produced in the same order as in a
breadth-first strategy) and the termination of any Horn clause program given as
input. []

This result can be seen as the equivalent of the B6hm-Jacopini theorem for
logic programming.

Corollary 8.1. The class of programs with only one binary Horn clause and two unit
clauses has the same computational power as Turing machines.

PROOF. Since we have a recta-interpreter for Horn clauses containing only one
binary recursive clause, we can assert that this class of programs has the same

260 P. DEVIENNE, ET AL.

computational power as Horn clause programs, and consequently as Turing ma-
chines.

The previous two main results (Theorems 6.2 and 7.1) are, of course, corollaries
of this result.

Corollary 8.2. For append-like programs, halting and emptiness problems are undecid-
able.

We recall briefly the notations of Section 8.2. ~o v denotes the complexity
function for program p and Np its number of rules, p will take the value u for the
universal program (the one of Theorem 8.1), m for the meta-interpreter MI of
Section 8.2, and o for the meta-interpreter II encoded in ML Since the universal
meta-interpreter u achieves the resolution of the SLD tree of m as described in
Figure 3 with a breadth-first strategy, its complexity ~ou is bounded by

~Ou(sol,) < 2era(sot,) _< 2(*o(SOt.)XUo)+Uo.

~0 u is the complexity of the universal program for obtaining the solutions. For
halting, the bound of the number of crossed nodes is greater since we add the
complexity due to the halting technique with the Conway functions. Hence, when
the complexity of the first meta-interpreter is only linearly dependent, the complex-
ity of the universal program is at least exponential with respect to the complexity of
the original program.

9. DISCUSSION: TERNARY CLAUSES AND IMPLICATION

9.1. Horn Clause Implication

"The solution of the implication s~¢ ~ . ~ of two clauses ~ and ~q~ is usually interpreted
as the formula (Vx 1 ,x. ~) = (Vy I Ym ~) , where {Xl,... ,x n} are the variables
occurring in ~ and {Yl ,Ym} are the variables in ~ (where, by hypothesis,
the clauses .~¢, ~q~ are variable disjoint). Clause implication is equivalent to the non-
satisfiability problem of a clause set consisting of clause ~ and ground unit clauses that
are obtained from the negation of the clause ~ . Hence the undecidability result holds
also for the satisfiability problem of such clause sets" [47].

In particular, in the case of the Horn clauses, let us explain the equivalence
between Horn clause implication and the satisfiability problem of logic programs.
First, assume that

= A V m A 1 v ' ' ' v m A n

and

, ~ = B V "~B 1 V " " V ~B,,,

SMALLEST HORN CLAUSE PROGRAMS 261

and we shall denote by ~ variables occurring in sO, and ~ variables in ~ ' .

W (A v -7 h 1 V "'" V -7 A n) =* V y ' (B v -~ n I V "" V m nrn)

-~(--n(3~-m(A V m A 1 v "'" V --nAn) V V)~(B V mO 1V "'" V m o r n)))

m (VYc(A V -7 A 1 V " " V -7 A n) A 3 y (m O A O 1 A " " A Bin))

--n(Vfc(A v -7 A 1 v ... v m A n) A 30(m OB A OB 1A ... A OBm))

where 0 is a ground substitution on

I
' OB1.

VO (ground) --1 OBrn" has a solution

] A ~--A1, . . . ,A n.

~*--OB.

Let us note that in the case where n = m = 1, we are back to our small binary
program scheme, where the goal and the fact are ground. This case was considered
by Schmidt-Schaufl, who proved it also to be decidable. He had also shown that it
becomes undecidable if .~ is a four-literal clause [47].

Later, Marcinkowski and Pacholski proved the three-literal case (n = 2) to be
undecidable as well. They proved this result for Horn clauses [36, 35].

Now, let us consider that n = 2 and m = 1. Then the class of programs to be
satisfied becomes

OB ,:--- .

A ~ A 1 , A 2.

OB.

which is clearly close to the studied structure.
We are optimistic that the results a n d / o r methods of the previous sections can

help to establish the status of the satisfiability of this pattern. Thus, we will provide
another proof of the result in [36] with a restriction on the size of ~ (m -- 1).

In the following section, we give a first step in this direction. The proof is
established through program transformations.

9. 2. Resu l t s on Ternary Programs

Theorem 9.1. There is a particular explicitly constructible program in the following
form:

p (f a c t l) * - .

p (f a c t 2) ~ .

p (l e f t) ~- p (right I), p (right 2).

262 e. DEVIENNE, ET AL.

where fact 1 is ground, and either

• left and right I are linear

• left and right 2 are linear

• right 2 and fact 2 are linear

for which it is undecidable if, for a ground goal" ~ goal.," the program halts and i f
there are some answer-substitutions.

PROOF. We show that any append-like program (so, in particular, we can choose
the smallest meta-interpreter of Section 8)

p(fact) ~ .
p (left) ~ p (right).

p (goal).

can be encoded by

p(fac t , [1] , [1) 7 5
p(goal2, [], []) •

p(left, [X[L] , [Y[LL]) ~- p (right, [X] , L L), p(goal, L, Z).

p(goal 1, [1, 1], [1]).

where

1. goal 2 is a ground instance of goal
2. goal does not share any variable with left and right
3. X , Y, Z, L, L L are new variables not appearing in left, right, goal
4. goal 1 is a ground instance of left by the substitution ~r, such that o" unifies

right and fact: since we consider the emptiness problem, we do not care
about the trivial case where fact and right do not unify (this case does not
alter the halting problem). Since we can assume that there exists a most
general unifier 0 for fact and right, ~r is chosen as an instance of 0 which
makes left ground.

Clearly, the first three conditions are syntactical ones.
Now, we show that from the third step of resolution (p(goal, [1], Z)), the

derivation of both programs can be the same until the first success: the second
program will stop iff the first will, and the second program will stop with a success
iff the first one has at least one solution.

After the second derivation step, we obtain the goal ~p(goa l , [1], Z)which has
the same derivation as ,---p(goal) in the binary program, except that at each
unification with the third clause (the ternary one), a new atom p(goal, [] , -) is
generated. But these atoms will unify only with the second fact (p(goal 2, [], []))
because of the second argument. If, during the resolution, there is a unification of
the first goal atom with the first clause, all other goal atoms will be removed after a
unification with the second clause. This is shown in Figure 4.

As there is no condition for the original program, our proof is correct, in
particular, for all the classes of programs for which the halting and emptiness
problem is undecidable. []

SMALLEST HORN CLAUSE PROGRAMS 263

p(goall, [1, 1], [1])

goal = crlefi
x = 1, L = Ill
Y = I , LL--[]

p(aright, [1], []), p(goal, [1], Z)

{ crright = a fact

lJlgoal = I t l f a ~

[]

v(go, l, [11, z)

~ 01goal = 011ef~
X = I , L = []
g = IF ILL]

p(Oxright, [1], Zx),p(goal, [], Z2)

p(goal, [], Z2) p(O2right, [1], 2"4), p(goal, [], Zz),
p(go,,t, [],z2)

[]

FIGURE 4. Beginning of the resolution.

as
If we consider only the halting problem, we have just to encode a program such

{ p(left) ~ p(right) .
p(goal).

The coding for a standard Prolog selection rule (depth-first, leftmost atom) is

p(factl, [1, II, [l).
p(left, IX[L] , [Y ILL]) +- p(right, [XIL] , LL), p(goal, L, Z) .

,:-- p(goal], [1, 11, [11).

where

• goal] and fact I are ground instances of, respectively, left and right

• goal does not share any variable with left and right
• X, Y, L, LL, Z are new variables not appearing in left, right, and goal.

The difference between these two programs is that, if the first case, the second
atom (of the ternary clause) will be derived only when the first has been removed.
At the second step of resolution, if the first atom is selected, it will only unify with
fact1: it will not alter the rest of the resolution. If the second atom is chosen, it will

264 P. DEVIENNE, ET AL.

be the start of a derivation similar to that of the original program, except that an
atom p(goal, [], -) will be generated at each step of derivation. I f these atoms are
not selected before the first a tom (standard computation rule), then they will not
be: the program never stops (left always unifies with right), or stops with a failure
(because of the second argument, right cannot unify with fact1). If any other
computat ion rule is used, then these atoms must be removed (unified with a
success), so a second fact must be added to the program to ensure that these atoms
will not prune an infinite derivation. Thus, the coding is

p(facta, [1, 1], []).

p(fact2, [], [1, 11).

left, [xIL], [rILL]) ~- p(right, [X IL], LL) , p(goal, L, Z).
p(goall ,[1,1],[1]).

where fact 2 is a ground instance of goal.

10. CONCLUSION

The two tables below summarize the known results about the halting and empti-
ness problems depending on the form of the characteristic elements goal, fact, left,
and right of append-like programs:

'p(fact)
p(lefi) ~ p(right) .

p(goal).

goal left right Termination

ground any any decidable [47]
linear any any decidable [I1]
any linear any decidable
any any linear undecidable

goal left right fact Emptiness

ground any any ground decidable [47]
linear any any linear decidable [11]

ground any any any decidable
any any any ground

linear linear linear any decidable
any linear linear linear

any any linear linear undecidable
linear linear any any
any linear linear any undecidable

Linearity seems to state the border between decidability and undecidability. For
both problems, the groundness of one term ensures decidability. The halting
problem becomes decidable as soon as goal or left are linear. The emptiness
problem is decidable if three terms are linear.

SMALLEST HORN CLAUSE PROGRAMS 265

The technic based on our encoding of the Conway functions provides a consis-
tent framework for the study of the binary recursive Horn clauses. Indeed, it allows
to solve the halting and emptiness problems and many other properties.

The main consequence of the undecidability of the emptiness problem is that
the satisfiability for the class of first-order formulas containing four subformulas is
undecidable too.

We have shown in this paper that append-like programs have the same computa-
tional power as Turing machines since we prove that there exists a universal
append-like program. This result can be seen as an extension of the B6hm-Jacopini
theorem [3] to logic programming. As in imperative languages, the simplest
nontrivial program scheme can express any partial recursive function. As in the
B6hm-Jacopini proof, the transformation can be done automatically.

The results on undecidability justify pragmatic or heuristic approaches to logic
programming analysis, as in abstract interpretation or type inference. There is no
way to define formal and complete methods to control the most basic recursive
pattern. Even in such restrictive classes of programs, most of the interesting
properties to provide a more efficient compilation technic are undecidable.

Finally, the proof method based on Conway functions appears to be a powerful
and efficient tool for encoding hard problems. As an example, consider [37,38].
Therein, Marcinkowski proves (among many other results) that uniform bounded-
ness is undecidable for single rule Datalog programs by using Conway functions.

We thank the anonymous referees for their careful reading and helpful remarks. We are also grateful to
Jurek Marcinkowski for all his relevant and fruitful comments.

REFERENCES
1. Abramson, H. and Rogers, M. H. (eds.), Meta-Programming in Logic Programming, Logic

Programming series, MIT Press, 1989.
2. Bibel, W., HiSlldobler, S., and Wiirtz, J., Cycle Unification, CADE 94-108 (June 1992).
3. B6hm, C. and Jacopini, G., "Flow Diagrams, Turing Machines and Languages with Only

Two Formation Rules," Communications of the ACM 9:366-371 (1966).
4. Blair, H. A., The Recursion-Theoretic Complexity of Predicate Logic as a Programming

Language, Information and Control 54:25-47 (1982).
5. Bouquard, J. L., Logic Programming and Attribute Grammars, Ph.D. Thesis, Orl6ans

1992.
6. Bratko, I., Prolog Programming for Artificial Intelligence, Addison-Wesley, 1986.
7. Chen, H. and Hsiang, J., Recurrence Domains: Their Unification and Application to

Logic Programming, Technical Report, Stony Brook (available by anonymous ftp on
"sbcs.sunysb.edu"), July 1991.

8. Conway, J. H., Unpredictable Iterations, in: Proc. 1972 Number Theory Conference,
University of Colorado, pp. 49-52, 1972.

9. Courcelle, B., Fundamental Properties of Infinite Trees, J. TCS 17:95-169 (1983).
10. Dauchet, M., Simulation of Turing Machines by a Regular Rewrite Rule, J. Theoretical

Computer Science 103:409-420 (1982).
11. Dauchet, M., Devienne, P., and Leb~gue, P., Weighted Graphs: A Tool for Logic

Programming, in: llth CAAP86, 1986.

266 P. DEVIENNE, ET AL.

12. Dauchet, M., Devienne, P., and Leb~gue, P., Weighted Systems of Equations, Infor-
matika 91, Grenoble, Special Issue of TCS (1991).

13. Delahaye, J.-P., S6mantique Logique et D6notationnelle des Interpr6teurs Prolog,
Informatique Th~orique et Applications 22(1):3-42 (1988).

14. De Schreye, D., Verschaetse, K., and Bruynooghe, M., A Practical Technique for
Detecting Nonterminating Queries for a Restricted Class of Horn Clauses, Using
Directed Weighted Graphs, in: Proc. ICLP'90, Jerusalem, MIT Press, June 1990, pp.
649-663.

15. De Schreye, D. and Decorte, S., Termination of Logic Programs: The Never-Ending
Story, J. Logic Programming (1994).

16. Devienne, P., Les Graphes Orient6s Pond6r6s: Un Outil pour l'6tude de la Terminaison
et de la Complexit6 dans les Syst~mes de R66critures et en Programmation Logique,
Ph.D. Thesis, Lille, 1987.

17. Devienne, P., Weighted Graphs--Tool for Studying the Halting Problem and Time
Complexity in Term Rewriting Systems and Logic Programming, J. Theoretical Computer
Science 75:157-215 (1990).

18. Devienne, P., Leb~gue, P., and Routier, J. C., Weighted Systems of Equations Revisited,
in: Analyse Statique, Actes WSA'92, Bordeaux, BIGRE 81-82, Sept. 1992, pp. 163-173.

19. Devienne, P., Leb~gue, P., and Routier, J. C., Halting Problem of One Binary Horn
Clause is Undecidable, in: Proc. STACS'93, Wiirzburg, Springer-Verlag, Feb. 1993.

20. Devienne, P., Leb~gue, P., and Routier, J. C., The Emptiness Problem of One Binary
Recursive Horn Clause is Undecidable, in Proc. ILPS'93, Vancouver, MIT Press, Nov.
1993, pp. 250-265.

21. Devienne, P., Leb~gue, P., Routier, J. C., and Wiirtz, J., One Binary Horn Clause is
Enough, in: Proc. STACS'94, Caen, Springer-Verlag, Feb. 1994, pp. 21-32.

22. Devienne, P., Leb~gue, P., Parrain, A., Routier, J. C., and Wiirtz, J., Smallest Horn
Clause Programs (extended), Technical Report, LIFL, June 1995.

23. Goldfarb, W. and Lewis, H. R., The Decision Problem for Formulas with a Small
Number of Atomic Subformulas, J. Symbolic Logic 38(3):471-480 (1973).

24. Gaifman, H. and Mairson, H., Undecidable Optimisation Problems for Database Logic
Programs, in: Syrup. on Logic in Computer Science, New York, 1987, pp. 106-115.

25. Gallagher, J. and Bruynooghe, M., Some Low-Level Source Transformations for Logic
Programs, in: Proc. 2nd Workshop on Meta-Programming in Logic, Leuven, Belgium, Apr.
1990, pp. 229-244.

26. Guy, R. K., Conway's Prime Producing Machine, Mathematics Magazine, 56:26-33
(1983).

27. Harel, D., On Folk Theorems, Commun. ACM 7:379-389 (1980).
28. Hanschke, P. and Wiirtz, J., Satisfiability of the Smallest Binary Program, Inform.

Processing Lett. 45(5):237-241 (Apr. 1993).
o o

29. Hansson, A. and Tiirnlund, S. A., Program Transformation by Data Structure Mapping,
in: Logic Programming, K. L. Clark and S. A. T~irnlund (eds.), APIC Studies in Data
Processing, Academic Press, 1982, pp. 117-122.

30. Lagarias, J. C., The 3x + 1 Problem and Its Generalizations, Amer. Math Monthly
92:3-23 (1985).

31. Lagarias, J. C., Annotated Bibliography on Collatz Problem," Private Communication,
1992.

32. Leb~gue, P., Contribution ~ i'Etude de la Programmation Logique par les Graphes
Orient6s Pod6r6s, Ph.D. Thesis, Lille, 1988.

33. Lewis, H. R., The Decision Problem for Formulae with a Bounded Number of Atomic
Subformulae, Notices Amer. Math. Soc. 20 (1973).

34. Lloyd, J. W., Foundations of Logic Programming (2nd, ext. ed.), Springer-Verlag, 1987.
35. Marcinkowski, J., A Horn Clause that Implies an Undecidable Set of Horn Clauses,

Private Communication, 1993.

SMALLEST HORN CLAUSE PROGRAMS 267

36. Marcinkowski, J. and Pacholski, L., Undecidability of the Horn-Clause Implication
Problem, in: FOCS, 1992.

37. Marcinkowski, J., The 3 Frenchmen Method Proves Undecidability of the Uniform
Boundedness for Single Recursive Rule Ternary DATALOG Programs, Submitted (1995).

38. Marcinkowski, J., Undecidability of Uniform Boundedness for Single Rule Datalog
Programs, Submitted (1995).

39. Minsky, M., Computation: Finite and Infinite Machines, Prentice-Hall, 1967.
40. Parrain, A., Transformations de Programmes Logiques et S6mantique Op6rationnelle,

Ph.D. Thesis, Lille, Feb. 1994.
41. Parrain, A., Devienne, P., and Leb~gue, P., Prolog Programs Transformations and

Meta-Interpreters, in: Logic Program Synthesis and Transformation, LOP-STR'91,
Manchester, Springer-Verlag, 1991, pp. 228-241.

42. Post, E. M., A Variant of a Recursively Unsolvable Problem, Bulletin Amer. Math. Soc.
46:264-268 (1946).

43. Rogers, H., Theory of Recursive Functions and Effective Computability, MIT Press, 1987.
44. Routier, J. C., Termination, Satisfiability and Computational Power of One Binary Horn

Clause, Ph.D. thesis, Lille, Feb. 1994.
45. Salzer, G., Solvable Classes of Cycle Unification Problems, in: IMYCS, Smolenice

(CSFR), 1992.
46. Shmueli, O., A Single Recursive Predicate is Sufficient for Pure Datalog, Inform. and

Computation 117:91-97.
47. Schmidt-SchauB, M., Implication of Clauses is Undecidable, J. Theoretical Comput. Sci.

59:287-296 (1988).
48. Tamaki, H. and Sato, T., Unfold/Fold Transformation of Logic Programs, in: S.-,~.

T~irnlund (ed.), 2nd Int. Logic Programming Conf., Uppsala, 1984, pp. 127-138.
o

49. T~irnlund, S. A., Horn Clause Computability, BIT 172:215-226 (1977).
50. Vardi, M., Decidability and Undecidability Results for Boundedness of Linear Recursive

Queries, in: Syrup.. Principles of Database Systems, Austin, TX, 1988, pp. 341-351.
51. WiSrtz, J., Unifying Cycles, in: Proc. European Conf. on Artificial Intelligence, Aug. 1992,

pp. 60-64.

