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SMALLEST HORN CLAUSE PROGRAMS 

P. DEVIENNE, P. LEBEGUE, A. PARRAIN, J. C. ROUTIER, AND 
J. W[IRTZ 

I> The simplest nontrivial program pattern in logic programming is the 
following: 

'p( fact)  
p(  left ) ~ p(  right ) . 
~ p(  goal) . 

where fact, goal, left, and right are arbitrary terms. Because the well-known 
append program matches this pattern, we will denote such programs 
"append-like." 

In spite of their simple appearance, we prove in this paper that 
termination and satisfiability (i.e., the existence of answer-substitutions, 
called the emptiness problem) for append-like programs are undecidable. 
We also study some subcases depending on the number of occurrences of 
variables in fact, goal, left, or right. 

Moreover, we prove that the computational power of append-like pro- 
grams is equivalent to the one of Turing machines; we show that there 
exists an append-like universal program. Thus, we propose an equivalent of 
the B6hm-Jacopini theorem for logic programming. This result confirms 
the expressiveness of logic programming. 

The proofs are based on program transformations and encoding of 
problems, unpredictable iterations within number theory defined by J. H. 
Conway, or the Post correspondence problem. <3 
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1. INTRODUCTION 

The study of minimal patterns of programming languages allows 

• to extract useful properties for improving larger programs (for example, new 
technics of compilation), 

• to strengthen the power of the language. 

In Horn clause languages, the simplest nontrivial pattern is built with one fact, 
one two-literal recursive Horn clause (in the following we will say binary), and one 
goal: 

p( fac t )  ~ . 
p(  left ) ~ p(  right ) . 

p(  goal). 

where fact, left, right, and goal are arbitrary terms. 
We will use this pattern many times in this paper, sometimes with a simple 

reference to fact, left, right, or goal. We will refer to such programs as append-like 
programs according to the most famous program matching this pattern: 

Example 1.1. 

'append([ ], L,  L)  ~ .  
append( [ H I L ], LL , [ H I LLL  ]) <--- append( L,  LL ,  LLL  ) . 

append(?, ?, ?). 

[] 

While for simple examples good intuition on the behavior (halting and existence 
of solutions) of an append-like program is possible, the nonlinearity of the terms 
may cause high-complexity phenomena. Indeed, as we will see here, in spite of 
their structural simplicity, the computational power of append-like programs is the 
same as that of Turing machines. 

The two first important problems are the halting problem and the emptiness 
problem, that is, the problem of the existence of at least one solution (answer-sub- 
stitution). Different behaviors of append-like programs are possible depending on 
the goal: finite or infinite computation; empty, finite, or infinite set of solutions. 

Schmidt-Schaufl [47] has shown that the two problems are decidable when goal 
and fact are ground. 1 This result is a corollary of his work on the implication of 
clauses, or equivalently, on the decision problem of clause sets consisting of one 
clause and some ground units (one-literal clause) (see also [36]). Dauchet et al. [11] 
and Devienne [17] studied the linear 2 case and proved it decidable as well. They 
used a new technic based on weighted directed graph (an extension of the directed 
graphs). Bibel et al. [2] considered the emptiness problem and proved it decidable 
for some particular cases. 3 They denoted this problem as the cycle unification 

1A term t is said to be g r o u n d  when it does not  contain any variable occurrence [34]. 
ZA term t is said to be l inear  when each variable occurs at most  once. 
3They consider cases where there exists a substitution tr such that o'lefl  = right or left = o'right ,  

called left (resp. right) matching cycle. 
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problem, that is, a unification of the goal--which begins the cycle, and the 
fact--which terminates the cycle, through the binary Horn clause--which defines 
the cycle. For particular cycle unification classes, see [45, 51]. 

In this paper, we will show that the two problems are undecidable for append-like 
programs. The proof technic of [19,20] is based on an original encoding of the 
unpredictable iterations of Conway within number theory [8] which are close to 
Minsky machines [39]. An alternative proof of undecidability of the emptiness 
problem can be found in [28]. It has been made independently, and it is based on 
an encoding of the Post correspondence problem. We will present both proofs. We 
also study some particular subcases defined by the number of occurrences of 
variables in terms (linearity). 

Another crucial question is the computational power of append-like programs. 
Dauchet [10] proved that it is possible to simulate any Turing machine with only 
one regular 4 left-linear rewrite rule. In [49], it is shown that every computable 
function is characterizable by a program consisting only of facts and binary Horn 
clauses. Another encoding of Turing machines using binary programs can be found 
in [4]. And in [41], a meta-interpreter has been written using only one fact, one 
goal, and two binary recursive clauses. In pure Datalog, Shmueli has proved that a 
single recursive predicate (not clause) is sufficient [46]. 

In this paper, we establish that all computations on Minsky machines can be 
expressed by an append-like program [21]. The class of append-like programs is 
Turing-complete. The proof uses the encoding of Conway functions and logical 
reductions on meta-programs. 

This theorem is equivalent to the B6hm-Jacopini theorem for declarative 
languages. The B/Shm-Jacopini theorem establishes that for imperative languages, 
every flowchart is equivalent to a while-program with one occurrence of whi 1 e -do ,  
provided additional variables are allowed (for more details, see [27]). This proof is 
constructive and usually cited as the mathematical justification for structured 
imperative programming. 

We will show that in Horn clause languages, any program can be automatically 
transformed into another one composed of one binary Horn clause and two unit 
clauses. This transformation preserves both termination and solutions (answer-sub- 
stitutions on the original variables). This shows the expressive power of a single 
Horn clause, and can be used as a theoretical tool for decision problems in 
theorem proving. 

The paper is organized as follows. Section 2 states the main results. In Section 3, 
we introduce binary Horn clauses and resolution. In Section 4, the Minsky machine 
formalism and the unpredictable iterations of Conway are presented. In the next 
section, it is shown how they can be simulated by binary clauses. We present the 
halting and emptiness problems and some subcases in Sections 6 and 7, respec- 
tively. Section 8 is about meta-interpreters and the computational power of 
append-like programs. Some results about ternary (three-literal) programs, close to 
clause implication problem, are presented in Section 9. A conclusion summarizes 
the results. 

4A rule is regular iff it is left-linear and nonoverlapping (i.e., there are no nontrivial critical pairs). 
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2. MAIN RESULTS 

The main result of this paper is about the computational power of append-like 
programs. 

Main Result (Theorem 8.1, p. 33). There exists a meta-interpreter for Horn clauses in 
the form of  a program with only one binary Horn clause, a fact and goal which, 
given as input a Horn clause program P, has the same solutions as P and terminates 
if and only if P terminates. 

The two other main results are, in fact, consequences of this theorem: 

Result 1 (Theorem 6.2, p. 17). There exists an explicitly constructable right-linear 
binary Horn clause for which the halting problem, according to SLD resolution, is 
undecidable. The resolution can be applied with or without occur-check. 

Result 2 (Theorem 7.1, p. 20). For a program of  the form 

'p(  fact ) 

p (  left ) *- p (  right ) . 

~ p (  goal ) . 

where fact and right are linear, the emptiness problem is undecidable. 

Due to the used proof  technics, we will prove Result 1 and Result 2 first. The 
proof of the Main Result will use the principles introduced before. 

3. PRELIMINARIES 

We assume the reader to be familiar with the notions of unification and resolution 
introduced in [34]. 

The goal of this section is to present indexation of variables and how to express, 
in term of equations, the resolution of append-like program. 

3.1. Binary Horn  Clause 

Let ~ be a set of function symbols (which contains at least two constants and one 
symbol whose arity is greater than 1), and Var an infinite countable set of variables. 
We denote by J ( ~ ,  Var) the set of terms built from ~r and Var. 

Definition 3.1. Binary recursive Horn clauses have the following form: 

p ( l  l . . . . .  l") ~ p ( r  1 . . . . .  r") 

where l i and r i a r e  any terms of 3 ( J ,  Var). 
In the following, we will often abbreviate "binary recursive Horn clause" by 

"binary clause"; we also refer to it as the rule. 
A binary clause l ~ r is said to be right-linear (resp. left-linear) if each variable 

occurs at most once in the body part r (resp. the head part 1). 
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For example, "append([X I L], LL, [X I LLL]) append(L, LL, LLL). is a right-lin- 
ear binary clause. 

3.2. Variable Indexa t ion  

It is well known that, during resolution, formal variables of a clause are renamed to 
fresh variables. We introduce fresh variables by adding a subscript to the formal 
variables. This subscript will denote the number of the inference. 

ith inference: append([ X i IL i] ,  LL i ,  [ Xi I L L L i ] )  <--- append( Li ,  LL i ,  L L L i ) .  

The sequence of inferences using the clause "left ~ right" can be drawn in the 
form of a series of dominoes: 

• .. leftl , -  right 1 l e f t  2 * -  right 2 " .  ] left~ 1 *- right~ ~ left, ~ right n ... 

The ith domino can be followed by an (i + 1)th one, if the terms lefti+ 1 and right i 
can be unified (and this is compatible with those of the other iterations). Hence, 
applying n times this binary clause is equivalent to solving the following system of 
equations: 

{ l e f t i+  1 = right i l i ~ [1, n - 1]}. 

Example 3.1. Applying n times the append clause is equivalent to solving the 
system 

{append([Xi+l  [Li+ 1] ,LL i+I ,  [ X i + I  I n n c i + , ] )  

= append (L  i, L L  i, L L L i )  Ii ~ [1, n - 1]}, 

that is, in solved form 

(L,= [x,+, IL,+ l 
Vi • [1,n - I]~ LL i  = LLi+ 1 [] 

 LLL, = [X,+, I LLL,+I]. 

To express the whole resolution, the goal and the fact must be taken into 
account. Thus, applying n times the rule "left *--right." starting with the goal 
"*--goal." and checking whether there exists a solution at the nth iteration with 
the fact "fact  *-- ." is equivalent to solving 

goal = left1 

l e f t i  + 1 = righti, 
right, =fact .  

i [1,n-q 

This indexation of variables and the modeling of resolution through equations 
will be one of the basic notions in the following sections. 
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4. MINSKY MACHINES AND CONWAY ITERATIONS 

in the following, the expression, 'fit is undecidable whether or not . . ."  stands for 
"There exists no algorithm that always decides, whether or not . . . .  " 

4.1. Minsky Machines 

4.1.1. Presentation. The Minsky machines [39, 8] are deterministic machines with 
registers and instructions. Registers (finitely many of them) can hold arbitrary large 
nonnegative integers. A machine executes a program composed of instructions 
sequentially. Instructions are labeled by Q1, Q2,. "',On (for a program of n 
instructions). Three kinds of instructions are possible: 

• "Halt": Stop the machine. 

• "Successor": At step Qi, add 1 to some register a and proceed to the next 
step Q/(where (a) denotes the value of the register a): 

• "Decrement or jump": At step Qi, if (a) > 0, then subtract 1 from register a 
and proceed to the next step WQfi else simply go to step Qk: 

( a ) - I  , 

- - ~  (a) > 0 - ~  " j  

These machines have the same computational power as Turing machines (two 
registers are sufficient [39]). For any partial recursive function f ,  there exists a 
Minsky machine which, started with register contents n, 0,0 . . . .  (n will be called 
the input of the machine M), reaches the "Halt"  instruction with register contents 
f(n), 0,0 . . . . .  if f (n)  exists and does not halt otherwise. 

If the computation is finite, M(n) denotes the content of the first register (i.e., 
f(n)), which we call the result of the Minsky machine's computation for initial 
register values (the input of the machine) n, O, O,--.. Otherwise (the computation 
does not terminate), M(n) will be infinite. 

Let us state some usual definitions and properties: 

• The domain Dom(M) of a Minsky machine M is: {n ~ ~d [ M(n) is finite}. 

• A Minsky machine M is said to be total iff its domain is ~. 

• Given a Minsky machine, it is undecidable whether or not this machine is 
total. 

• Given a Minsky machine M, it is undecidable whether or not a given n 
belongs to Dom(M). 

4.1.2. A Particular Class of Minsky Machines. In the proofs of further sections, 
we use a particular class of Minsky machines given by the following definition. 



SMALLEST HORN CLAUSE PROGRAMS 233 

Definition 4.1. Given a Minsky machine M?, a new machine M, with a a fixed 
natural number, and n ~ N* as input, can be constructed as follows: 

1. Compute a × n and put it into a new register r. 
2. If ( r )  = 0, then goto 5; else subtract one from r. 
3. Execute one instruction of M?(0). 
4. If M~(0) has reached the "Hal t"  instruction, then go into "an infinite loop"; 

else goto 2. 
5. Put zero in all the registers and halt. 

Moreover, we force M(0) to be finite and equal 0. M is called a linear and null 
Minsky machine. 

Property 1. Let M be a linear and null Minsky machine; the two following 
assertions stand: 

• null: 0 ~ D o m ( M )  and all the registers contains 0 at the final computation 
step (after the "Hal t"  instruction), in particular, the associated partial 
function, f ,  satisfies: Vn ~ D o m ( f ) ,  f ( n )  = O. 

• linear: For all input n ~ D o m ( M ) ,  if n > 0, then M(n)  is computed in less 
than o~ x n steps. 

It is straightforward that such Minsky machines do exist. Simply consider the 
machine with one register, which decrements it until it reaches 0. It is clearly linear 
(with ol = 2) and null. 

Theorem 4.1. It is undecidable whether or not a linear and null Minsky machine M is 
total. 

PROOF. 5 Let M? be the Minsky machine from which M is constructed. 
A natural integer n belongs to the domain of M iff the "infinite loop" is not 

reached, that is, M?(0) needs more than a x n steps to be computed. By construc- 
tion, this null Minsky machine is total iff Me(0) does not terminate. This is 
undecidable. It remains to prove that M is linear. 

Let us compute the complexity of M for any n ~ Dom(M) .  Step 1 can be done 
in ( (a  + 1) x n) instructions. M reaches step 5 after (2 ~ x n) instructions. Once in 
this step, the sum of all the contents of the k registers of M? is, by construction, at 
most (o~ x n). Consequently, it takes at worst ( a  x n + k) instructions to put 0 in all 
the registers of M?, then of M. Hence, the complexity of M is ((4a + 1) x n + k). 

Thus, by construction, the linear null Minsky machine M is total iff M~(0) does 
not stop, but this is undecidable. [] 

Definition 4.2. A set ~ is said to be recursively enumerable iff it is the domain of a 
Turing machine (or a Minsky machine). 

5We would like to thank Prof. Jean-Paul Delahaye for the basic idea of this proof and previous 
definition. 
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From definitions, we can deduce the following property: 

Property 2. Every recursively enumerable set containing {0} is the domain of a null 
Minsky machine. 

Definition 4.3. A recursively enumerable set E is said to be linear if there exists a 
linear and null Minsky machine the domain of which is E. 

Corollary 4.1. It is undecidable whether a linear recursively enumerable set is equal to 

PROOF. By application of Theorem 4.1. [] 

4.2. Conway Unpredictable Iterations 

In the previous section, we have considered the Minsky machines that can be seen 
as an arithmetization of Turing machines since the tape is replaced by registers 
with integer values. This section deals with the work of the mathematician J. H. 
Conway. He proposed an encoding in terms of numeric functions of the Minsky 
machines. It results from the study of a generalization of the Collatz conjecture. 
Including the characterization of recursively enumerable sets, the results obtained 
for the Minsky machines can be extended to Conway functions. 

4.2.1. The Collatz Conjecture. This conjecture asserts that, given a positive 
integer n, the program below always terminates: 

While n > 1 Do 
If n is even 

Then n ~ n / 2  

Else n *- 3n + 1 
Endlf 

EndWhile 

The exact origin of this conjecture--also called "Syracuse conjecture" or 
"3x + 1 problem" [30, 31]--is not clearly known. This problem is credited to 
Lothar Collatz at the University of Hamburg in the 1930s. 

Nabuo Yoneda at the University of Tokyo has checked the conjecture for all 
n < 24°. The behavior of the Collatz series, that is, the sequence of all the numbers 
successively obtained during the execution of the above program, seems to be 
random. While it takes only 10 steps to meet 1 from 26, it takes 111 steps from 27: 

2 6 ~  13 ~ 40 ~ 20 ~ 1 0 ~ 5  ~ 1 6 ~ 8 ~ 4 ~ 2 ~  1 
2 7 ~ 8 2 ~ 4 1  ~ --- - - - , 4 ~ 2 ~  1. 

111 steps 

The conjecture may be formulated as follows: 

Conjecture 4.1. (Collatz). Let g be the function defined as follows: 

1 (n - 0mod2)  i n  

g ( n ) =  3 n + l  ( n - l m o d 2 )  

for every natural n, there exists k ~ ~ such that g(k)(n)= g(g  "" (g(n))"" )=  1. 

k 
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Conway has considered the more general functions, which we will call in the 
following "Conway functions"6: 

aon + b o 
. . .  

g ( n )  = ]akn +bk 

I ~ap_~n +bp_ 1 

(n  = 0mod p)  

(n  - k m o d p )  

(n - p -  l m o d p )  

where p is a positive integer and a k and b k are rational numbers greater than 0 
such that g(n) is always a natural number. He studies the iterates g('n)(n). Conway 
proved that even if the b k are all equal to zero, the behavior of such functions is 
unpredictable. This was achieved by a translation of the Minsky machines into 
Conway functions. We will also define by analogy with the null Minsky machines 
so-called null functions. 

4.2.2. Presentation. Conway considered the class of periodically piecewise linear 
functions g : ~ ---, 1~ having the structure 

Vk,  O < k < p - 1 ,  g ( n ) = a k n ( n - k m o d p )  

where a o . . . . .  ap_ ~ are rational numbers such that g(n) ~ ~. These are exactly the 
functions g :1~* ~ ~ such that g(n ) /n  is periodic (~* denotes 1~\{0}). 

Theorem 4.2. (Conway; see [8]). If  f is any partial recursive function, there exists a 
function g such that 

1. g ( n ) / n  is periodic mod p for some p and takes rational values 
2. V n ~ ~, n ~ Dom( f ) iff 3(m, j )  ~ ~* × ~, such that g(m)(2 n) = 2  j 
3. g(m)(2n) = 2 f(") for the minimal m > 1 such that g(m)(2") is a power of 2. 

The first point expresses that g is a Conway function. The second point shows 
how to characterize a member of the domain of a partial recursive function f from 
this function. The last explains how it is possible to compute the value of f (n )  
through iterations of g. This means that the Conway functions are as expressive as 
the Turing or Minsky machines. This is not a surprise since, as we will see now, the 
Conway functions are a direct translation of the Minsky machines. 

The following proof explicitly shows the connection between Minsky machines 
and Conway functions, and this connection is important in the following. 

PRINCIPLE OF PROOF. Conway showed that with every Minsky machine, it is 
possible to associate such a function g which simulates step by step the behavior of 
this machine. In fact, he explains how to construct this g from the Minsky 
machine: 

• With register r i, we associate a prime number pi and characterize the value 
(r i) of this register by p!ri). 

• With each step Qj, we associate a prime number Pj. 

6In the following, g will denote a Conway function. 
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• The current situation of the machine, characterized by the contents k i of the 
registers r i and by the current step Q j, is expressed by an integer of the 
following form: 

p ~  rl) * p(2 r2) * . . . ,  p(n rn) * P j .  

Now, let us consider how to express the instructions. This can be done in a very 
natural way if the above encoding of the current situation by a number is well 
understood: 

• For the "Successor" instructions: 

_ @  (ra)+ 1 ( ~  

If step Q1 is characterized by prime number PI, step Q2 by/°2, and register 
r a by Pa, this instruction may be translated as the multiplication of the 
current situation of the machine by the factor: 

P2 
P-T x pa 

which means: "From step Q1 ( × 1/P1), proceed to Q2 (×P2) and add one to 
register r a (×p~)." 

• For the "Decrement or jump" instructions: 

(ra)- 1 

With the above conventions and if the prime number Pk is associated with 
Qk, these instructions can be expressed by the factors 

P2 1 Pk 
- -  x - -  or - - .  
P1 P~ P1 

The choice between these two factors corresponds, respectively, to the cases 
(r~) > 0 and (ra) = O. It will be achieved by the "mod p"  in the definition of 
the g functions. It will be similar for the detection of "Am I at step Pj?." 

For every instruction of the Minsky machine to be coded, we have to create the 
associated factors, and then from these factors, determine the period p (which is 
just Pl × "'" X Pn X P1 × "'" × Pq) such that g(n) always remains an integer, and 
finally compute all the a k. 

We can see that each instruction of the associated Minsky machine corresponds 
to one iteration of the function. [] 

Since there exists a direct translation between Minsky machines and Conway 
functions, we will speak in the following about a Conway function associated with a 
Minsky machine (and conversely). 
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As an example of encoding of a recursive function into a Conway machine, in 
[26], Conway and Guy have detailed how to produce a prime number generator 
Conway functions from a machine. 

Remark 4.1. By construction, the number of iterations required from g(2 n) to 
reach 2 f(") is equal to the number of elementary instructions used by the 
associated Minsky machine to produce f (n)  from n. 

4.2.3. Conway Relations. We have seen that Minsky machines and Conway 
functions are strongly connected. Then it is natural to extend some definitions for 
Minsky machines to Conway functions. 

Definition 4.4. Let g be a Conway function; the domain of g is 

Dom(g) = {n ~ N [ 3 ( k , p )  ~ N* X N,g(k)(2 ") = 2P}. 

A Conway function g is said to be total if its domain is N. 

Considering the Conway function associated to the null Minsky machines, we 
define the null Conway functions as follows: 

Definition 4.5. A Conway function g is said to be null if 

• 0 belongs to its domain, 

• for every n in the domain of g, the first power of 2 reached by iterations 
from g(2 n) is 2 °. 

Since we have seen that to each instruction of a machine there corresponds one 
iteration (see Remark 1), it is reasonable to measure the "complexity" of the 
functions as the number of iterations: 

Definition 4.6. A null Conway function is said to be linear if there exists a natural 
integer a such that for every n E Dora(g), 20 is reached from 2 n in less than 
ct × n iterations of g. 

We will study these null functions more precisely and extract some properties to 
define so-called Conway relations. We will first analyze the behavior of the negative 
iterations of Conway functions. 

Definition 4. 7. Let g be a Conway function; the kth negative iterate of g on n is 
defined as 

V k ~ N ,  g(-k)(n) = { m ~ N I g ( k ) ( m ) = n } .  

Comment 4.1. g(-1)(n) (and therefore g(-k)(n) for any k ~ N) may be a set since n 
can be the range of many m for g. 

Proposition 4.1. Let g be a null Conway function and n an arbitrary integer; the only 
power of 2 reachable (if any) from 2" by iterative applications of g is 2 °. By 
negative iterations of g from 2 °, exactly the 2 i for all i ~ Dora(g) are reached. 
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PROOF. Since g is null, 0 belongs to its domain. Then there exists k > 0 such that 
g(k~(20) = 2 f(°) = 2 °, and k is the smallest positive integer such that g(k)(2°) is a 
power of 2. So it follows that no other power of 2 can be reached by iterations of g 
from 2 0 . 

Now, let us consider the definition of a null Conway function. For a given n, if it 
does not belong to the domain of g, no power of 2 will be reached. Conversely, if n 
belongs to it, since the first power of 2 reached by iterations from 2 n is 2 f~") = 2 °, 
then it is the only possible one. 

The second part of the proposition follows immediately from Definitions 4.4 and 
4.7. [] 

Thus, if an integer n belongs to the domain of a null function g, then there 
exists only one path between 2 n and 2 0 using positive or negative iterates (we will 
neglect the loops on 2 0 since they do not contain other powers of 2). The existence 
of such a path is fully determined by n being in the domain of g. 

Thus, we can define the Conway relation: 

Definition 4.8. Let g be a null Conway function; we define the Conway relation 
associated to g, and we denote it by --g, obtaining the relation such that: 
2 m --=g2 n if and only if there exists k ~ 7/such that g(k)(2m) = 2 ~ ( m , n  ~ N*). 

It is easy to check that -~ is really an equivalence relation: transitivity, 
reflexivity, and symmetry of -=g are straightforward. 

Now, it is possible to characterize the recursively enumerable sets containing 0, 
that are the domains of null functions, with these relations. 

Proposition 4.2. For every recursively enumerable set ~ containing 0, there exists a 
Conway relation =-g such that: ~ = {n ~ N 12 n -g2 °} 

PROOF. The recursively enumerable sets containing 0 are the domains of the null 
Minsky machines, and consequently of the null Conway functions. If g is the 
function the domain of which is ~, then -g satisfies the proposition. [] 

This proposition is crucial for the following. In many proofs, we will create some 
recursively enumerable sets from 2 °, and use the negative iterations of null 
Conway functions in order to enumerate all the elements of these sets. Then we 
will use known undecidable properties concerning these sets. 

5. RECURSIVELY E N U M E R A B L E  SETS A N D  BINARY H O R N  CLAUSES 

In this section, we will establish the relationship between binary Horn clauses and 
the Conway functions. A Conway function g is expressed by relations like g(n) = 
a~n with n = a p  + k and 0 _< k < p  - 1, and such that akn is always an integer. So 
a function g associates, with a given number of the form ap  + k, another number 
of the form (ak a)  p + (akk)  with a, k, ak a and akk in N. 

We will first prove that it is possible to express with a binary clause and a goal 
every relation that associates a number ai + b with another number ci + d where 
a, b, c, d are integers. We will then prove that an encoding of the Conway functions 
with a binary clause is possible. This encoding will be described explicitly. We will 
deduce a characterization of recursively enumerable sets through a binary clause. 
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5.1. The  E n c o d i n g  

Example  5.1. Let us consider the following program: 

p ( s ( X ) ,  s ( s ( Y ) ) )  + - p ( X ,  Y) .  

+ p ( U , U ) .  

it creates the following equalities between indexed variables: 

X i = s i ( Y i )  a n d  Y/=X2i. 

The size of Y increases by 2, while the size of X increases only by 1. [] 

In general, we will establish that any relation of the form 

Xai+ = r+i+h, 

can be obtained with a binary clause and a nonlinear goal. The encoding will be 
very similar to the one of the example: it requires the use of one function symbol. 
However, in order to improve the reading, we will use the list constructor instead 
of the function s(_) of the example. 

In fact, we will only consider relations such as 

Xai+b ~- Xa,i+ b, 

since they are sufficient in the following. The production of relations between two 
distinct variables X and Y will be obvious from the following. 

Proposition 5.1. For every natural integer a , a ' , b , b ' ,  there exist a variable X ,  a 
right-linear binary clause "p(lef i  ) + p(right)," and a goal " + p ( g o a l ) "  such that 

({goal  = left1} U {right i = left i + ~ IVi > 0}) S x - { Xa, + b = X d i + b' l i > O} 

where 5; ~ ?x is the projection onto the X~ o f  the equations expressed in 50. 

PROOF. Let us consider first the case where a' = 1 and b = b' = 0. 

p Z . . . . . . . .  I L  , [ X I L L ]  , - p ( L , L L ) .  

[ ~ p ( L , L ) .  

As in the previous example, the size of the first argument of the Horn clause 
decreases by a, while the one of the second decreases by 1. 

The equal arguments in the goal generate the equality of the two arguments. So 
we deduce the relation Z i = X~i. 

Let us assume now that we want to establish a relation such as Z i = Xai+b. We 
have to shift the equality between the previous terms. This can be achieved by the 
goal 

b 

The relations in this case will affect the Z i only from i >_ b. 
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Now, if we combine two relations Z i =Sai+b and Z i =Sa,i+b, , the transitive 
closure of these relations and the projection onto the variable X provides the 
intended relations 

gai+b = Xa'i+b' 

obtained by the program 

p , _ , . . . ,  I L l ,  X I L 2 ,  Z . . . . . . . .  [ L 3 ,  g I L a  

~ p ( L 1 , L 2 , L 3 , L a ) .  

~ P ( [ - ' " ' , ~  I L] ,L ,  [u_~.~,~ I L L I , L L  ) • 

b b' 

[] 

Remark 5.1. Another encoding of the relation gai+b =ga'i+b', when b < a  and 
b' < a', is possible: 

p , Z  . . . . . .  I L l  , [ X I L 2 ] ,  , Z  . . . . . .  " IL3 , [ g i L a ]  

b b' 

~ p ( L 1 ,  L2, L3, La) .  

~ p ( L ,  L ,LL ,  LL).  

The encoding of the Conway functions by a binary recursive clause is now 
straightforward. 

Proposition 5.2. For every Conway function g, there exist a variable X, a right-linear 
binary clause "p(left) p(right), and a goal ~ p(goal)" such that 

({goal=left1} u {right i =lefti+ 1 IV/> 0})1" x - {X n =Xg(n)IVn > 0}. 

PROOF. Let g be a Conway function. It is defined by some a 0, a 1 . . . . .  ap_ 1. As was 
previously discussed, g can be decomposed into a finite number of relations of the 
form (Xai+b =Xa'i+b')i>o, where a, b, a', and b' are integers. From the previous 
proposition, it is possible to associate with each of these relations a binary Horn 
clause and goal. All of these can be merged in only one clause and one goal which 
satisfy the proposition. [] 

Example 5.2. The Collatz program can be translated into equivalence relations on 
Var x ~: 

Vk ~ [~ If k is even Then X k =Xkl  2 Else X k = S 3 k + l .  
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Let f be the function such that Vi > 0, f (2 i )  = i and f ( 2 i  + 1) = 6i + 4. Since 
there does not exist some k ~ N such that f(k)(1) = n (Vn > 4), we can extend the 
previous relation to the following system of equations: 

X i = X2i 

g2i+ 1 = X3(2i+ a)+ a. 

But we have seen that such relations can be expressed through a binary 
recursive clause. The following clause is constructed in a way slightly different from 
that described before since we have grouped two arguments into one. 

[ LI ~ L2 ~ ~ L3 ) 

p ( [ X I U I , [ Y , X [ V ] ,  [ . . . . . .  Y . . . .  [W]" ( - - p ( U , V , W ) .  
] 

p(Z,Z,Z). 

From the general goal "~-p(L1 ,  L2 ,L3) . , "  through the inferences the solved 
systems of equations increase as 

1. L a = [ X  a IU1] L 2 =  [Y1, Xa IVx] 

2. L a = [ X a , X  2 ]U2] L 2 = [ Y 1 , X a , Y 2 , X 2  11.12] 

/2. L a = [ X 1 , X  2 . . . .  ,X , ,  IUn] Z 2 = [ Y 1 , X a , Y 2 , X  2 . . . .  , Y n , S n  IVn] 

1. L 3 = [ . . . . . .  V a . . . .  [Wa] 

2. L 3 - - [  . . . . . .  ra . . . . . . . . . . .  r2 . . . .  IW2] 

n. L 3 = [ . . . . . .  Y1 . . . . . . . .  , . . . . . .  Yn . . . .  IWn]. 

Therefore, after n iterations, we have 

L 2 =  [ Y a , X a , Y 2 , X z , Y 3 , X  3 . . . . .  Y n , S n  IVn] 

t 1 = [ X I , X 2 , X 3 , X 4 , X 5 , X  6 . . . . .  S n _ l , g  n ]Un] 

t 3 = [  . . . . . .  E l  . . . . . . . . . . .  Vn . . . .  ]Wn I • 

Then, with the goal *--p(Z,  Z ,  Z) ,  we force the equalities 

1. L a =L2  ~X2i+1 =Y/ and X 2 i = X i  
2. L l = L 3 = a X 6 i + a - -  Yi, 

that is, 

X i =X2i  and Xei+I =X6i+4. 

With a goal of the form 

n n n 
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we obtain that X 1 = ~ and X n = ~. Therefore, the resolution is finite if and only if 
a unification fails because of X, v~ X1, that is, if the Collatz program with the input 
n terminates. In other words, the Collatz conjecture is equivalent to the assertion 
that, given any n, if the goal is of the above form, then the resolution is finite. [] 

5.2. A Binary Clause and Recursiuely Enumerable Sets 

In Section 4.2.3, we defined the notion of Conway relations. We have shown that 
they allow to characterize the recursively enumerable sets containing 0. Now, 
according to the previous paragraph, we are going to associate with each such set a 
program consisting of one binary right-linear recursive clause and one goal. 

Theorem 5.1. Let ~ be a special symbol. For every recursively enumerable set E 
containing O, there exist a right-linear binary clause and a goal such that a natural 
integer n belongs to "2 iff after a certain number of SLD resolution steps, the first 

i 
rgument of  the initial goal becomes instantiated to a list where the (2n)th element is 

PROOF. According to the two previous propositions, let X be the variable which 
codes the Conway relation associated with E (as in Proposition 4.2). The list L is 
built linearly as [X 1, X 2 . . . .  , X n . . . .  ] with all the Xi connected by the relations 
X~ = Xg(i ). Consequently, according to Proposition 4.2, we deduce that 

xZ : {n ~ ~ [ X2, =-gXl}. 

If variable X 1 is instantiated to ~, then this mark will be propagated to all 3(2, 
such that n belongs to 3~. [] 

Remark 5.2. Let ~ be a recursively enumerable set; the above theorem associates a 
clause and a goal with E. By construction (see Proposition 5.2), because some 
variable (a list in this case) is written many times in the goal, the same list is 
eaten on all arguments (for each generated equality Xai+b =Xa, i+b,). Then the 
speed of eating is linear (for each argument). But we can ensure that when the 
slowest eater has eaten the k first variables of the list, then all the paths, using 
equations X, = Xg~i ) which do not use a number larger than k, have been built. 

The previous theorem and remark are crucial for the following results. The 
clause associated with a recursively enumerable set can be considered as a process 
of enumeration of this set. It suffices to init X 1 to ~ as explained and to apply 
iteratively this clause. Thus, we will build sets and use some results about them. 
The remark explains that the "construction" of the set is linear since the construc- 
tion of the Conway relation -g, associated with ~, is so. 

6. THE HALTING PROBLEM 

In this section, we will provide the answer to the first problem: Does the resolution 
of a binary recursive Horn clause when given a goal halt? While it has been 
established decidable in the ground [47] and linear [17] goal case, we will establish 
here the undecidability in the general case [19]. Already a right-linear rule is 
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sufficient. In order to complete the answer, we will show the decidability if the rule 
is left-linear. 

6.1. The General Case 

Theorem 6.1. The halting problem, according to SLD resolution, o f  a right-linear 
binary recursive Horn clause is undecidable. The resolution can be applied with or 
without occur-check. 

PRoov. It is a direct consequence of Theorem 5.1 using a similar principle as in 
the example with the Collatz problem encoding in t~e previous section. 

By initializing L in the goal to [~, X 2 . . . . .  X2, 1,--[ LL] where the mark ~ is put 
on the (2n)th positiop of L, then the resolution will stop if and only if equation 
X 1 = X2,, that is, ~ = b, is generated during SLD resolution, that is, if and only if n 
is an element of £. Since it is undecidable for a given integer n and a recursively 
enumerable £, whether or not n belongs to £, the result is proved. It is easy to 
verify that the occur-check does not play any role in the proof. [] 

Let us observe that the constructed clause depends only on £; it is only the goal 
that depends on n. So, if we fix any nonrecursive E, we get: 

Theorem 6.2. There exists an explicitly constructable right-linear binary Horn clause for 
which the halting problem, according to SLD resolution, is undecidable. The 
resolution can be applied with or without occur-check. 

6.2. Consequences 

Some corollaries can be immediately established. In each case, it is possible to give 
a general version and an "explicitly constructable" version. We will give only the 
second one (since it includes the first one). 

6.2.1. Finite Number of  Solutions 

Corollary 6.1. There is a particular program in the following form: 

p(  fact ) ~ . 

p( le f t )  ~ p (  right ). 

where fact, left, right are terms such that it is undecidable whether or not, for a 
given goal, " ~  p(goal).," there exists a finite number of  answer-substitutions. 

PROOF. If we consider the program built with 

• the binary Horn clause and the goal defined in the previous proof, 

• a fact "p (X)  ~ ." where X is a variable 

each time that the fact is considered, we obtain a solution. This program will have 
a finite number of solutions if and only if the binary Horn clause stops for the 
given goal. This has been proven to be undecidable in Theorem 6.2. [] 
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6 .22  Occur-Check. The previous results have been established over and above 
the occur-check. From this, we can assert that it is undecidable whether or not, 
when given a program, this occur-check must be applied during the resolution. 

Corollary 6.2. There exists an explicitly constructable right-linear binary Horn clause for 
which it is undecidable whether or not, when given a goal, the occur-check will be 
necessary during the resolution. 

PROOF. In the proof of Theorem 6.2, we replace the equalities 

X 1 -~ ~ and Sen = 

of the goal by 

X 1 = h ( Y , s ( Y ) )  and X2, = h ( Z , Z )  

where h and s are function symbol of arity 2 and 1, respectively. It is undecidable 
whether or not the program will stop because of the equalities Z = Y and 
Z = s(Y), that is, because of the occur-check. [] 

6.2.3. "Total Decoration" Here follows the last result which is a consequence of 
the undecidability of the halting problem. It concerns the property of "total 
decoration" [5] in the resolution of logic program. This property is used to optimize 
the step from logic programming to attribute grammars. The SLD resolution of a 
program is said to be totally decorated if and only if, at each step of the resolution, 
all Horn clauses of the program are applicable. The decidability of this problem 
was stated as open in [5]. In our case, there is only one clause. The property is then 
equivalent to the halting problem, or better, to the nonhalting problem, of this 
clause. 

Corollary 6.3. There exists an explicitly constructable right-linear binary Horn clause for 
which it is undecidable whether or not, when given a goal, its resolution will be 
totally decorated. 

PROOF. See the paragraph above. [] 

6.3. The Left-Linear Clause Case 

At this point, we know that the halting problem is decidable if the goal is linear 
and undecidable if the rule is right-linear. We now consider the case where the 
rule is left-linear. The proof of the following result uses a completely different 
method from the previous one. It is based on the weighted graphs. We refer the 
reader to [16, 17, 32, 22]. 

Theorem 6.3. The halting problem of a left-linear binary Horn clause, when given a 
goal, is decidable. 

6.4. Conclusion 

We conclude that for a program of the following pattern: 

{ p( left ) *- p(  right ) . 

p(  goal). 
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the halting problem is decidable as soon as one of the terms left or goal is linear. 
These results are summarized in the following table: 

goal left right termination 

ground any any decidable [47] 
linear any any decidable [11] 
any linear any decidable 
any any linear undecidable 

7. THE EMPTINESS PROBLEM 

The second problem concerns the existence of at least one solution, also called the 
emptiness problem. Although it has been shown to be decidable in the ground [47] 
and linear [17] case, we will show in this section that it is undecidable in the 
general case. Two proofs will be presented. The first one is based on the Conway 
function encoding [20]. The second is based on the Post problem [28]. They have 
been established simultaneously and independently. The second proof is more 
elegant, but the first also works for a syntactical defined class of programs that is of 
some interest to us. 

' p ( f a c t )  * - .  

p (  left ) ~ p (  right ) . 

~- p (  goal).  

are equivalent. 

7.1. Prel iminary R e m a r k  

Conceming the existence of solutions, the programs 

p(  goal) ~- . 

and p(  right ) ~ p (  left ) . 

~ p (  fact ) . 

In the first case, the system of equations 

{goal = left1, lefti + 1 = righti( 1 <_ i <_ n - 1), right n =fact} 

must be solved; in the second, 

{goal = leftn, left i = righti+ 1(1 _< i < n - 1), right 1 =fact}.  

According to a renaming of the variables (V1 _<j _< n, Xj renamed in X n_j+ 1), 
the two systems are equivalent. The existence of solutions for one provides the 
existence of solutions for the other. Then, when a result is established for some 
properties of the 4-tuple (fact,  left, right, goal), the same result with the 4-tuple 
(goal, right, left, fact) can be deduced. 

7.2. The P r o o f  via Conway  

This is probably the most complex proof in this paper. It requires a good 
understanding of how the encoding of the Conway functions into Horn clauses 
works. The principle is as follows: assume we have a linear Conway function (or its 
associated relation). In the associated program, the propagation of the mark ~ in 
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II1 builds the list : 
Z:~ = [~,~,b,~,b, . - -~, . . . ,  b,...] 

1 T 
~ = 2Pn ~ 2p 

the (n = 2P) th element is instantiated to ~1 
in less than 2 p iterations. 

II2 builds the list : 
1;2 = [~,-,"" ~,'" '] the (n = 2p)th element is instantiated to 

X ~ in less than 2 p iterations if and only if 
n=2PandpE~ pE~. 

In 11, the fact impose at the n t~ iteration to unify the n th  element of £1 with 
| .rod the n th  of £~ with I~. At this step, three kinds of unification may occur 

[]  

n # 2  p ~ £1=[~ ,~ ,k ,~ , - - - ,  b , - . - ]  ~ fail 
~ 2 = [ b , x ~ , . . . ,  ? , . . .]  

b 

n = 2 P a n d p E ~ = ~ ,  /~1=[~ , | , 1~ ,~ , ' " ,~ ,  " ' ' ]  £~=[b,X~,- . - ,~ , . - - ]  ~ fail 

b 

£1=[~,~,~,fl,..., ~ ,...] 
n = 2  v a n d p ~ = ~  £ 2 = [ ~ , X 2 ,  - , X 2 , , " - ]  -----4 success 

b 

We wilt have a solution if and only if : 

3p, n = 2P a n d p e E  

and no solution iff E is total, which is undecidable (see Corollary 4.1) 

FIGURE 1. Theorem 7.1: principle of proof. 

the  list o f  the  goal  will be  l inear  too.  I t  is poss ib le  to wri te  a p r o g r a m  for  which a 
so lu t ion  at  the  (2n)th s tep  is equiva lent  to the  fact  that  n does  not  be long  to the  
l inear  recursive set. Then  we can deduce  f rom Coro l la ry  4.1 the  undec idabi l i ty  of  
the  empt iness  p rob lem.  

Let  us examine  the de t a i l ed  proof .  A less formal  p r e sen t a t i on  is given in F igure  
1. 

Theorem 7.1. For a program of  the form 

p (  fact ) ¢ - .  

p (  left ) ~- p (  right ) . 

p (goa l ) .  

where fact and right are linear, the emptiness problem is undecidable. 

F o r  the  p r o o f  of  T h e o r e m  7.1, we need  the fol lowing l emma.  

Lemma 7.1. For every linear recursively enumerable set ~ (containing 0), there exists a 
right-linear binary clause and a goal such that a natural integer, n, belongs to ~ if 
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and only i f  after at most 2 n SLD resolution steps, the first argument of  the initial 
goal becomes instantiated to a list, the (2")th element of  which is ~. 

PROOF. Let E be a linear recursively enumerable set. By Definition 4.3 and its 
natural counterpart, there exists a linear and null Conway function whose domain 
is ~. According to Theorem 5.1, there exists a clause ~ and a goal ff  that can be 
associated to ~. As stated in Remark 5.2, the associated Conway relation is linearly 
computed by. ( ~ )  and (if), with a linear coefficient equal to some a. In other 
words, mark ~ is linearly propagated in the first list-argument of the goal. It is now 
easy to define a linear clause (~ ' )  and a goal (if ') ,  with linear coefficient equal to 
1, such that each resolution step of ~ '  corresponds to c~ steps of ~.  [] 

PROOF OF THEOREM 7.1. Consider the following program: 

p ( , _ [ X , L ] , [ _ , X , L L ] ) < - p ( L , L L ) .  

It puts a mark ~ to all the (2n)th positions of the list [~ Ig] of the goal. It is 
possible, to modify it slightly such that it marks the other positions with another 
symbol~ : 

The clause generiates the equality X i =Xz i  for all i _< 1; the goal produces 
X 1 = ~ and Xzi  + 1 = b for all i < 1 because of the L found three times. Hence, 
after n resolution steps, the first argument of the goal, L, becomes instantiated to 

 =[xl,x2 . . . . .  x .  . . . .  ] 

where V k  < n, X k = ~ if k is a power of 2 and X k = ~' otherwise. 
We now define a class of programs for which the existence of solutions is 

undecidable. Let ~ be any linear recursively enumerable set; the associated clause 
and goal defined in the previous lemma are denoted as follows: 

p(  ll,  12 . . . . .  l k) ~ P( rl , r2 . . . . .  rk ) . 

II2 ~ P ( g l , g 2  . . . . .  gk)" 

Now, by merging II 1 and I]2, our particular class of programs follows: 

~ p (  r 1, r 2 . . . . .  r k, U, V, L ,  L L ,  L L L  ) 

. . . . .  
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The k first arguments codify 2£. The (k + 1)th argument allows to extract, at the 
nth iteration, the nth argument of the list which characterizes 2£. The (k + 2)th 
argument is the list itself (because of the unification with gl in the goal) with its n 
first elements deleted at the nth iteration. Finally, the last three arguments codify 
the list of powers of 2. Because there is a solution at the nth step if and only if: 

• n is a power of 2 (because of the three last arguments and the unification 
with [~ I L] in the goal) 

• the nth element of the list ~hich characterizes ~ is not marked by ~ because 
it must be unifiable with ~ (the (k + 1)th argument of the fact and the 
variable U of the rule). 

In other words, since we know that the marking (by ~) is linear (with a = 1), there 
is a solution at the (2n)th step if and only if the (2n)th element of the list associated 
to E is not marked by ~, that is, if and only if n does not belong to E. Therefore, 1-I 
has no solution if and only if E is equal to ~. According to Corollary 4.1, this is 
undecidable. This proves the result. [] 

By symmetry of the problem, according to Section 7.1, we immediately deduce 
an equivalent theorem with the terms goal and linear and any right and fact terms. 

7.3. An Important Corollary 

An important consequence of this theorem is that it allows to solve one open 
problem in first-order logic concerning the satisfiability of formulas. Indeed, for the 
first-order formulas with four subformulas such as 

VXi , (P(g  )/x (a( t2)  v R(t3) ) A S(t4)  ) 

where P, Q, R, and S are literals and the X i are the variables occurring in t 1, t 2, 
t3, and t 4, a particular instance of this problem is 

VX i, ( P ( t l )  A (P( t2)  v -7 e ( t3)  ) A --tP(t4) ) 

for which the nonsatisfiability problem is equivalent to the existence of solutions 
for the program 

P( t l )  ~ .  

P(t2) *--P(t3)" 
P(t4). 

where tl, t2, t3, and t 4 are any terms. Then we can assert: 

Corollary 7.1. The satisfiability of the class of first-order formulas with four subformu- 
las is undecidable. 

PROOF. From Theorem 7.1 [] 
This result can be connected to an old open problem: the satisfiability of 

formulas in pure quantification theory (that is, without function symbol and with an 
eventually infinite number of constants): 

V t  : : lu V v  ' - -  V w ( . ~ "  1 A.a¢ 2 V . . .  A.~¢, )  



SMALLEST HORN CLAUSE PROGRAMS 249 

where the ~ are atomic positive or negative formulas; the satisfiability of the 
5-subformula case has been shown to be undecidable in [23]. It is established that 
this problem is equivalent to the halting problem of 2-counter machines (which is 
undecidable). The 3- and 4-subformula problems remain open. 

7.4. The  P r o o f  via Pos t  

This proof  [28] is not based on the Conway functions, but on the better  known Post 
problem [42]. 

7.4.1. The Post Problem. Let us consider a finite alphabet E. A Post correspon- 
dence system over X is a nonempty finite set S ° =  {(l i, r i) I i ~ [1 . . . .  , m]} where the 
li, r i are words over X. A nonempty sequence of indices 1 < i I . . . . .  i n < rn is called a 
solution of 5 ~ if and only if 

l i l  " '" l i ,  " = r i  I . . .  r i m .  

It is well known that the Post correspondence problem, that is, "Does there exist 
a solution for a given system ?," is, in general, undecidable if the alphabet contains 
at least two symbols. 

7.4.2. Encoding o f  the Post Problem. Elements a i of the alphabet ~ will be 
represented as unary function symbols, and a word w = a  1 ... a n over X thus 
becomes a term aa(az( . . . ( an(e ) ) . . . ) )  where e is a constant corresponding to the 
empty word. So, the composition of words is associative since the composition of 
functions is associative. For  convenience, we also write w(e)  instead of 
( a l ( a z ( . . . ( a n ( E ) ) . . . ) ) )  and u ( v ( e ) ) = u v ( e ) w h e r e  u and v correspond to words 
over X. For instance, if w 1 = ab, w z = ha, vl = a, and v 2 = bba, then Wl(W2(t))= 
a(b(b(a( t ) ) ) )  -- abba(t)  = VlV2(t) for any term t. 

To append something to a list using unification, we use the concept of difference 
lists. To explain the encoding of a Post correspondence problem, we adopt SLD 
resolution as an operational semantics for the logic problem. The search space of 
possible sequences of indices inherent to a Post correspondence problem is not 
encoded in the a n d / o r  tree of the logic program. Instead, we encode it in two 
(difference) lists L and R. At the beginning of the computation, L and R are 
Ill(e) . . . .  ,lm(E)l X ] - X  and [r l (e ) , . . . , rm(E) l  Y ] -  Y,  respectively. This encodes 
all possible sequences of indices of length 1 (i.e., 1, 2 . . . . .  m). In the next step, we 
select the sequence 1 and replace it by all sequences that have length 2 and as 
suffix 1. In terms of the lists L and R, we remove lx(e) and r l (e)  (representing the 
sequence 1 of length 1) and append [11(l 1) . . . . .  lm(ll) I X]  and [ra(r 1) . . . . .  r, ,(rl) I Y], 
respectively (representing the sequences 11, 12 . . . . .  lm  of length 2). 

In the general case, we select in each step a sequence i x .-. ij of indices and 
replace it by all sequences that have length j + 1 and i x ... ij as suffix. Always 
selecting the heads of L and R and appending the extensions is a fair strategy, i.e., 
it ensures that successively all possible sequences appear as heads of the two 
difference lists. 
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Given a Post correspondence problem as above, the following binary program 
has an SLD refutation iff the Post correspondence problem has a solution. 

p([EIH1] _H2,[EIH3] _n4)<_ 
P([CIL]- I l l ( C )  . . . . .  [m(C) IX]_ 

, [ D I R I - [ q ( D )  . . . . .  r ,n(D) l Y  ] < - - - P ( L - X , R - Y ) .  [ ~ -  P([ll( ") , '" , lm( ' )  l X] - x ,  

[ r l ( e )  . . . . .  rm( e) IY] - Y) .  

The fact checks whether the beads of the lists in the current goal are equal, i.e., 
encode a solution of the Post correspondence problem. In Figure 2, the sequence 
of goals is depicted which is induced by SLD resolution, with a search rule always 
taking the binary rule for the next SLD resolution step. 

Since the Post correspondence problem is undecidable, the existence of solu- 
tions for this program is undecidable too. [] 

• - P ( p , ( , ) , . . . ,  a,,,(,) 
IXo] - X o ,  

• - P ( P ~ ( O , - . - , i , , , ( O  
, z , t , ( , ) , . . . ,  i,,,i, ( , )  

IX1] - X l ,  

,-. e ( [ ~ ( , ) , . . . , t , , , ( , )  
, a a t , ( O , . . . , i , , I , ( O  
, a , t , ( , ) , . . . , z , , , ~ , ( , )  

IX, l -X~, 

. o °  

• - P ( [ h l , ( O , . - - ,  Z,,,Z,(~) 
, h l 2 ( O , " ' ,  l,,,a2(~) 
I t ' ' "  

, t , l , , , ( O , . . . ,  I , , , I , . (O 

I X - I  - x . ,  

• -- P([121a(,),..., i,,d,(~) 
, z , z , ( , ) ,  • • . ,  ~ . ~ ( , )  

, : , a . ( 0 , - - . ,  : , - : , -  ( 0  
, l , ~ , l , ( O , . . . , , , z , l , ( , )  

I X - + d  - X,,,+~, 

[ , 1 ( 0 , . . . ,  r-,(01Y0] - Yo) 

[ ~ ( 0 , ' " , ~ , - ( 0  

, ~ , ~ , ( , ) , - . . , ~ . ~ , ( , ) I Y ,  I - Y , )  

[ r , ( 0 , ' " , r , . ( 0  
, ' , ~ , ( 0 , ' " , ' - , ' , ( 0  
, ' , ~ 2 ( ' ) , ' " , ' - . r ~ ( ~ ) l ~ ] - Y ~ )  

[' , ' ,( ') , '", '=',(0 
, ' , '~(0, '" , ' , , ' , (0 

. . .  

, ,~ r . ( , ) , .  • •, r , ,d.( ,)lY.,]  - I f . )  

[,2~1 ( 0 , - - , , , - , , ( , )  
, r , , 2 ( , ) , . . . ,  , , , 2 ( , )  

, ~, , . , ( 0 ,  • • •, . . d , .  ( 0  
, rl r, rl (~),- • •, r . r ,  rl (c)lY,,~+, ] - g . , , )  

FIGURE 2. A goal sequence induced by the logic program. 
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7.5. Some Particular Cases 

First, we will establish the decidability of the emptiness problem in the cases where 
three characteristic elements of our programs are linear, and where only one is 
ground. Then we will prove that the result remains undecidable if the clause is (left 
and right) linear. 

7.5.1. Decidability. The proofs of the following theorems will appear in [22]. 

Theorem 7.2. The emptiness problem for the class of  programs 

p(  fact ) ~ . 
p(  left ) ~ p(  right ) . 

~ p(  goal). 

where three of  the terms left, right, fact, and goal are linear, is decidable. 

Theorem 7.3. The emptiness problem for the class of  programs 

p(  fact ) ~- . 

p(  left ) ~ p(  right ) . 

, -  p ( goal ) . 

is decidable as soon as one of  the terms left, right, goal, or fact is ground. 

7.5.2. Undecidability. Here, we will consider the case where the left and right 
terms of the rule are linear. We shall transform the nonlinear clauses that code the 
Conway functions into linear to show that the proof of Theorem 7.1 can be applied. 
Now, we are no longer able to use two occurrences of the same variable in "left" to 
ensure that two elements of the list L are equal. Instead, we built out of the 
elements of L new lists LLU and L L V  such that their corresponding elements are 
supposed to be equal. For linearity reasons, we cannot force the equality of L L U  
and L L V  during the resolution, so we postpone it, and check the equality while 
unifying with the fact. 

Theorem 7.4. For the class of  programs 

'p( fact)  
p(  left ) ~ p(  right ) . 

~ p(  goal). 

where left, right are linear and fact, goal are arbitrary, the emptiness problem is 
undecidable. 

PROOF. Let us consider the following program: 

. . . . .  - 

b d 
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It produces the equalities 

Xci+~ E. 

If we slightly modify this program and add a fact as in 

~p< . . . . . .  L , L )  +- 

+ p( CX, LU, LV, [UI LLUI,[VILLV]). 

b d 

the two last arguments become instantiated to the lists [U 1 . . . . .  Un I_1 and 
[V1,..., g, I_1. Then, because of the nonlinearity of the fact, we add the equality 
U/= V i, and deduce that we have for X 

xo,+b =Xc,+~. 

And no other different relation on X is defined. 
It is easy to create n other equalities on X. For example, if n is 2, 

' p (_ ,X  . . . . .  L1,L1 . . . . .  L2, L2) ~ . 

p [ X I L X I , Y ,  1 . . . . . . .  _-ILU1, 1, . . . ,_ ' lEg1 ,LLU1,LLV1, 

a2 ¢2 

+ p( LX, X, LU1, LV1, [UI I LLU1], [VI I LLV1], 
LU2, LV2, [ U21LLU2], [ V21LLV2]) 

(Ill" ~-p ~IL1 . . . . . . . . .  " ~ ' ~ _ , ~ I L 1  , [  . . . . . . . . . .  I L l  ,[ 1,[ 1, 

[ . . . . . . .  ~ i L 2 ] , [  . . . . . . .  ~ i L 2 ] , [  ] , [  ]) .  

b2 d2 

In the same way as previously, this program produces the equalities 

Xali+bl =Xcli+dl and Xa2i+b2 ~-Xc2i+d2, 
Let us note that in the fact, after p iterations, X is Xp. The extension for any 

n > 2 is now obvious; then we can code any Conway function, that is, any linear 
recursive set E (containing {0}). Indeed, if p = 2 k, then in the fact, X = Xp = X2~ = 
if and only if k ~ E. Let us call II~ such a program associated with E. 
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Now, we consider another program H': 

. . . .  L , t ) .  

It is the linear equivalent to the program II in proof of Theorem 7.1. It builds the 
list 

. . . .  ] 

with the relations Xp - ~ if p is a power of two and Xp = [' otherwise. 
As in the general case (see proof of Theorem 7.1), by merging the Horn clauses 

and goals of the above program and of some H:~, and by choosing a fact such as 

. . . . .  . . . . . . . . .  . . . . .  

II~ part II' part 

we obtain a program with one linear binary rule which will have at least one 
solution if and only if E is not equal to [~. This property is undecidable. [] 

7.6. Conclusion 
We have established the undecidability of the emptiness problem in the general 
case. Moreover, we have proven that the emptiness problem is decidable as soon as 
three characteristic terms are linear or as soon as only one is ground. 

goal left right fact Emptiness 

ground any any ground decidable [47] 

linear any any linear decidable [11] 

ground any any any decidable 
any any any ground 

linear linear linear any decidable 
any linear linear linear 

any any linear linear undecidable 
linear linear any any 
any linear linear any undecidable 

8. COMPUTATIONAL POWER 

In this section, we will prove the main result. We prove that append-like programs 
have the same computational power as Turing machines [21]. 

We will use the principles of the two previously presented proofs of the 
existence of solutions. Roughly speaking, the following proof consists of building a 
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Prolog meta-interpreter with only one binary Horn clause. First, we will build a 
word generator, then a pseudo-meta-interpreter which never stops, and last we will 
add the termination. The only difficult point is the technical one which uses the 
Conway functions in order to guarantee the termination of our meta-interpreter. 

8.1. A W o r d  Genera tor  

In this section, we show how to build a one binary Horn clause program which 
generates all words over the alphabet {a, b}. These words are represented by a list 
(e.g., [a, b, b, a, b[ stands for abbab). The  encoding is similar to these previously 
presented to encode the Post Correspondence Problem: 

gen( [ Word [ R ] - RR ,  Word) ~- 

gen([ Word [ R ] - [[a [Word], [ b l Word] l RR] , A W o r d )  

*- -  gen( R - RR ,  A W o r d )  . 

gen([[] [ R[ - R ,  Word).  

The behavior of the difference list is the following: 

[Word . . . . . .  , _ , [ a [ Word ], [ b [ Word ] , _ , ,, , . . . ] . 

R - R R  R R  

Consider the first steps of this program. By unifying the goal and the fact, we 
obtain the solution Word = [ ]. Using the binary clause once results in the new goal 

gen([[a] , [  b][ RR1] - -  R R 1 ,  A W o r d , )  

producing by unification with the fact the solution Word = [a]. Resolving this new 
goal with the binary clause instead of the fact results in the goal 

gen([[ b ], [ a ,a] ,  [ b, a[ [ RR2] - RR2, A W o r d  2) 

resulting in the solution Word = [b], etc. Observe that a and b serve as prefixes of 
two new words such that the suffix of these words is the first element of the list. 
These two words are concatenated to the tail of the list generated so far. In other 
words, the difference-list can be seen as a FIFO (First In First Out) pipe. 

The principle is strictly similar to the one of the Post problem encoding. It is 
clear that this generator can be easily extended for any finite alphabet. 

8.2. A First Meta-In terpre ter  

Let us begin with the study of a meta-program. It is made of one fact, two binary 
recursive rules, and one goal [41]. An equivalent form, with two facts, one ternary 
rule, and one goal can be established. 

Let II be the set of Horn clauses 

II = { clause1, clause 2 . . . . .  c l a u s e  n } 
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and ,---g~ . . . .  , gk a goal. The following meta-program generates the same answer- 
substitutions in the same order as a standard breadth-first SLD interpreter: 

'solve([ ] ,[  ] ) ~ .  

solve ([ Goal ] RestOfGoals ], [ [ Goal I Body ] - RestOfGoals I L ] ) 

*-- solve ( Body, ~ ) .  

solve( Goals, [Clause I Rest]) *-- solve( Goals, Rest) .  

*- solve( ~ ,  ~ ) .  

~' denotes the list [g~, gz . . . . .  g,] and .~ the list of difference lists which encode 
the clauses of the program II, ~ = [clause I . . . . .  clause,]. A clause a *-- b a . . . . .  b m of 
II is encoded by the difference list [a, b~ . . . .  , bm I R] - R.  In this meta-program, the 
first binary clause is used to choose the first clause in the current clause list and 
check if its head part can be unified with the current goal. The second clause 
discards the first clause in the current clause list. It is easy to check that SLD 
resolution is achieved. 7 

This meta-program is studied in detail in [40]. The proof of its equivalence with 
the object program H with respect to standard SLD resolution (through a depth- 
first, left to right, traversal of the SLD tree) is presented in [22]. Its complexity--as 
defined below--is shown to be linearly dependent on that of the original program 
II. 

Let us call the complexity of a solution-node sol, the number of crossed nodes 
of the SLD tree (through a depth-first, left to right, traversal) before reaching sol,.  
We will denote by ~p the complexity function of program p, and Np its number 
of rules, p will take the values o for the object program, and m for the meta- 
program. 

At best, the goal unifies with the first rule of the original program, and this rule 
is a fact. At worst, it unifies with the last one. We obtain 

~o( SOln) + g o ~_~ LDm( SOln) ~ ( ~o( SOln) X No) 7 t- g o. 

Example 8.1. The code of the meta-program associated to the "append" program is 
as follows: 

1. solve([ ] , [ ] ) .  
2. solve([GoallL1], [[GoallL3] - LllList_of_Rules]) : -  

solve(L3, [[append(I],Lappl ,Lappl)lL] - L, 
[append([XlLapp2],Lapp3,[XlLapp4]), 
append(Lapp2,Lapp3,Lapp4)lLL] - LL]). 

3. solve(List of Goals, [RulelList_of_Rules]) :-  
solve(List_ of_ Goals,List_ of_ Rules). 

7Note that the fact cannot be simplified into solve([ ] , - )  because, in this case, any goal *-- 
solve([ ], Prog) could unify with either the fact or the second binary clause. So each solution in ~ would 
produce n solutions for *--solve(SO, ~).  
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For the initial goal append(]1 ], [2,3],L), the corresponding goal in the meta-pro- 
gram will be 

• - solve([append([1 ],[2,3],L1 )], 
[ [append(r I ,Lappl ,Lappl ) lL ]  - L, 
[append([XlLapp2],Lapp3, [XlLapp4]), 
append(Lapp2,Lapp3,Lapp4)]LL] - LL]). [] 

For the encoding of an arbitrary program 1-I, both the first binary clause and the 
goal have to be adapted in an appropriate way. 

Now, assume that II is a meta-interpreter. Then this encoding allows to define 
the explicitly constructible meta-interpreter M I  with the right pattern. In order to 
interpret any program with the help of II, we just have to encode the appropriate 
goal for II, and therefore for MI. 

To summarize, we have built a meta-interpreter for Horn clause languages with 
one fact, two binary recursive clauses, and one goal. 

8.3. A n  S L D  Tree Genera tor  

Assume a program II consists of the two binary clauses "left 1 ~ right1" and 
"left 2 ~ right2," one goal " ~ g o a l , "  and one fact "fact  ~ ." Consider the word- 
generator where .a¢ = right1, left 1 and oq~ = right2, lefi2. 

' m e t a ( [ W I R ]  - RR ,  W )  ,-- 

m e t a ( [ W I R ]  - [ [ ~ 1 W ] ,  [~ '  I W] I RR], [ n  I RRR]) 

~ meta(  R - RR ,  [ H ,  X ,  X ] R R R  ]) . 

meta(  [ [ goal l L ] l R ] - R ,  [ fact  l L L ] ) .  

After n times using the binary clause for resolving, we obtain as the second 
argument of the new goal the list 

[fact, X l , X l , X 2 , X 2  . . . . .  x . , x .  It]. 

Furthermore, according to what we have seen concerning the word generator, 
we obtain, after some iterations, as the head of the first argument 

[ righti , lefiim, . . . .  righti,, lefli ,, goal] T ] . 

The ij are either 1 or 2, and the variables are renamed before each resolution 
step. By resolving a current goal with the fact of the above program, we obtain the 
unification problem 

[r igh t im,  lef t im , rightim_l . . . . .  rightil , le f t i l  , goal, _] 
$ $ $ . . .  $ $ $ $ 

[fact, X 1, X 1 . . . . .  Xm_l ,  X m, Xm . . . . .  X , , Y I _ ]  
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which has a solution iff the following system has one. 

fact = rightim 

leftik = righti, - l, 2 < k <_ m 

goal = l e f t  i . 

It is important to note that, by construction, it is assured that the list containing 
the fact has a sufficient length to obtain these equations. All the possible lists 

[ rightim, le f t i ,  . . . .  rightil, leftil, goal l Q'] 

are selected; therefore, SLD resolution is complete. This system will be solvable if 
and only if there exists a corresponding refutation of the original program 11 using 
the resolution order imposed by the equations (i.e., by the ik). 

Indeed, this program works as an SLD tree generator, and achieves the 
resolution relative to this tree with a breadth-first strategy as described in Figure 3. 

Each time a node is selected, the two new nodes corresponding to the inferences 
with the rules ~¢' and ~ are added at the end of the "to be examined nodes" list 
(that is, at the end of the "R - R R  list"). Then the following node is considered, 
etc. 

8. 4. A Binary Nons topping  Meta-Interpreter 

In this section, the results of the two previous sections are combined. 
Our meta-interpreter M I  of Section 8.2 satisfies the pattern of the program II 

of the previous section. Hence, it is possible to encode it as above. Therefore, one 
can associate with any logic program an equivalent program (i.e., with the same 
solutions) containing a binary clause, one fact and one goal. Unfortunately, this 
encoding does not preserve termination. Thus, we have a "never stopping" meta- 
interpreter, say Mns. 

In a next section we will show how to construct from this non-terminating 
interpreter a terminating one. This requires a technical preliminary. 

® 

.,4 B 

A B 

, 7 

8 9 10 11 1 2  1 3  

slready examined nodes 9 to be examined nodes 

current node 1 3  new added nodes 

FIGURE 3. 
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8.5. The Technical  Preliminary 

Our aim is to cause the termination of Mns. As  in the proof of the halting problem, 
the termination will be caused by a failing unification. But here, we need that the 
halting happens after a certain number of resolution steps since we want the 
program to produce the answer-substitutions first. 

Remark 8.1. In the following, the term "program" corresponds to the intuitive 
meaning. The reader can consider it also to denote "a machine (in the sense of a 
Turing machine) which computes a partial recursive function." 

Proposition 8.1. For every program H with input I, there exist a binary Horn clause 
~q2 n and a goal, depending on I, such that 92ii stops after at least n iterative 
applications if II stops after n elementary steps with input I, and does not stop 
otherwise. 

PROOF. Let II be given; let g be the Conway function associated with II (or with 
the Minsky machine related to II). g is characterized by its "period" p (in fact, the 
period of g ( n ) / n )  and the rational numbers ao, a x . . . .  ,ap_ 1. Let ~ '  be the 
associated binary Horn clause as in Proposition 5.1. By construction, at each 
iteration, ~ '  build p new equalities X~ =Xu(i). In fact, at the ith iteration, the 
program builds the equalities 

V O < k < d - 1 ,  Xp(i_l)+k+l =Xak×(p(i_l)+k+l). 
According to Section 4.2.3, since g is a null Conway function, there is only one 

path from 2" to 2 °, if any. The Horn clause produces as well positive and negative 
iterates. Then at each iteration, ~ creates Pi positive and n i negative equalities of 
the series 

( Xgti,(2n ) = Xgo+ 1)(2n ) ) i  E i%1 

with p~ + n~ _< d. This is depicted as follows: 
g .  g( -  1), 

2" Pl - -  - - n l  20. 

Consequently, if it takes k,  iterations from g(2") to 1, the equality X2, - -X 1 
will be generated in at least k , / p  iterative applications of the Horn clause. By 
adding some extra variables, it is possible to slow down ~ p times such that the 
speed (the complexity) of ~ '  is at best the same as the one of g. The resulting 
clause is called ,9~ n. 

Now, as in the proof of the undecidability of the halting problem, for any value 
I, we can choose a goal for ~ 'n such that it stops if and only if the relation 
)(2, =)(2o occurs. And we can guarantee that the number of iterations before 
termination is greater than the number of elementary steps of H with input I 
before halting. [] 

Now, let us build a particular program from M,s.  We will apply Proposition 8.1 
to program II, which takes a Horn clause program P as input, and is defined as 
follows: 

1. read P 
2. evaluate P by a breadth-first strategy and keep the solutions in 
3. compute M , s ( P )  and keep the solutions in 5,2; stop as soon as S '  2 =5,~ and 

write 0. 
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It is clear that 11 stops if and only if P stops. The stopping time (that is, the 
number of steps before termination) with input P is greater than the time used by 
M~s(P) to produce all the solutions of P. 

Now, according to the previous proposition, there exists a clause ~9~' n. By adding 
a general fact and a goal depending on the input, we can build the program Ms: 

~stop( fact s) 

Ms st°p( lefts ) ~ St°p( rights ) . ( '~'n) 

stop( goal s ) . 

M s stops with input a program P (in goal s) (based, in fact, on the G6del 
number of P, for example) if and only if P stops. The stopping time of M s is 
greater than the one required by M~s(P) to produce all solutions. 

8.6. The Meta-Interpreter 

Combining M,s and M s, we can state: 

Theorem 8.1. There exists a meta-interpreter for Horn clauses in the form of  a program 
with only one binary Horn clause, a fact and goal, which, given as input a Horn 
clause program P, has the same solutions as P and terminates if and only if P 
terminates. 

PROOF. Let us denote &Ins as follows: 

meta( faCtns ) *--. 

Mns : meta( left ns ) ~ meta( rightns ) . 

meta( goal, s ) . 

We merge M,s and M s in a new meta-interpreter: 

{ TheMeta( fact, s, facts) ~ . 

M J :  TheMeta(lefi~s, lefts) ~ TheMeta(right, s, rights). 

TheMeta( goal,s , goal s) 

such that, with input a Horn clause program P, it produces all the solutions of P 
(because of the &Ins part), and then will stop if and only if P terminates (because 
of the M s part). 

Thus, we have a meta-interpreter, with one binary recursive clause, one fact, and 
one goal, which preserves the solutions (produced in the same order as in a 
breadth-first strategy) and the termination of any Horn clause program given as 
input. [] 

This result can be seen as the equivalent of the B6hm-Jacopini theorem for 
logic programming. 

Corollary 8.1. The class of  programs with only one binary Horn clause and two unit 
clauses has the same computational power as Turing machines. 

PROOF. Since we have a recta-interpreter for Horn clauses containing only one 
binary recursive clause, we can assert that this class of programs has the same 
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computational power as Horn clause programs, and consequently as Turing ma- 
chines. 

The previous two main results (Theorems 6.2 and 7.1) are, of course, corollaries 
of this result. 

Corollary 8.2. For append-like programs, halting and emptiness problems are undecid- 
able. 

We recall briefly the notations of Section 8.2. ~o v denotes the complexity 
function for program p and Np its number of rules, p will take the value u for the 
universal program (the one of Theorem 8.1), m for the meta-interpreter MI of 
Section 8.2, and o for the meta-interpreter II encoded in ML Since the universal 
meta-interpreter u achieves the resolution of the SLD tree of m as described in 
Figure 3 with a breadth-first strategy, its complexity ~ou is bounded by 

~Ou( sol,) < 2era(sot,) _< 2(*o(SOt.)XUo)+Uo. 

~0 u is the complexity of the universal program for obtaining the solutions. For 
halting, the bound of the number of crossed nodes is greater since we add the 
complexity due to the halting technique with the Conway functions. Hence, when 
the complexity of the first meta-interpreter is only linearly dependent, the complex- 
ity of the universal program is at least exponential with respect to the complexity of 
the original program. 

9. DISCUSSION: TERNARY CLAUSES AND IMPLICATION 

9.1. Horn Clause Implication 

"The solution of the implication s~¢ ~ . ~  of two clauses ~ and ~q~ is usually interpreted 
as the formula (Vx 1 .. . .  ,x. ~ )  = (Vy I . . . . .  Ym ~ ) ,  where {Xl,... ,x n} are the variables 
occurring in ~ and {Yl .. . .  ,Ym} are the variables in ~ (where, by hypothesis, 
the clauses .~¢, ~q~ are variable disjoint). Clause implication is equivalent to the non- 
satisfiability problem of a clause set consisting of clause ~ and ground unit clauses that 
are obtained from the negation of the clause ~ .  Hence the undecidability result holds 
also for the satisfiability problem of such clause sets" [47]. 

In particular, in the case of the  Horn clauses, let us explain the equivalence 
between Horn clause implication and the satisfiability problem of logic programs. 
First, assume that 

= A V  m A  1 v ' ' ' v  m A n  

and 

, ~ = B V  "~B 1 V " "  V ~B,,,  
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and we shall denote by ~ variables occurring in sO, and ~ variables in ~ ' .  

W ( A  v -7 h 1 V "'" V -7 A n )  =* V y ' ( B  v -~ n I V "" V m nrn) 

-~(--n(3~-m(A V m A  1 v "'" V --nAn) V V)~(B V mO 1V "'" V m o r n ) )  ) 

m (VYc(A V -7 A 1 V " "  V -7 A n )  A 3 y (  m O A O 1 A " "  A Bin) ) 

--n(Vfc( A v -7 A 1 v ... v m A n )  A 30(  m OB A OB 1A  ... A OBm) ) 

where 0 is a ground substitution on 

I 
' OB1. 

VO (ground) --1 OBrn" has a solution 

] A  ~--A1, . . . ,A n. 

~*--OB.  

Let us note that in the case where n = m = 1, we are back to our small binary 
program scheme, where the goal and the fact are ground. This case was considered 
by Schmidt-Schaufl, who proved it also to be decidable. He had also shown that it 
becomes undecidable if .~ is a four-literal clause [47]. 

Later, Marcinkowski and Pacholski proved the three-literal case (n = 2) to be 
undecidable as well. They proved this result for Horn  clauses [36, 35]. 

Now, let us consider that n = 2 and m = 1. Then the class of programs to be 
satisfied becomes 

OB ,:--- . 

A ~ A 1 ,  A 2. 

OB. 

which is clearly close to the studied structure. 
We are optimistic that the results a n d / o r  methods of the previous sections can 

help to establish the status of the satisfiability of this pattern. Thus, we will provide 
another proof of the result in [36] with a restriction on the size of ~ (m -- 1). 

In the following section, we give a first step in this direction. The proof is 
established through program transformations. 

9. 2. Resu l t s  on  Ternary  Programs  

Theorem 9.1. There is a particular explicitly constructible program in the following 
form: 

p ( f a c t l )  * - .  

p ( f a c t 2 )  ~ . 

p ( l e f t )  ~- p (  right I ),  p (  right 2). 
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where fact 1 is ground, and either 

• left and right I are linear 

• left and right 2 are linear 

• right 2 and fact 2 are linear 

for which it is undecidable if, for a ground goal"  ~ goal.," the program halts and i f  
there are some answer-substitutions. 

PROOF. We show that any append-like program (so, in particular, we can choose 
the smallest meta-interpreter of Section 8) 

p(  fact ) ~ . 
p (  left ) ~ p (  right ). 

p (  goal). 

can be encoded by 

p( fac t , [1] , [  1) 7 5  
p(goal2, [ ], [ ]) • 

p(  left, [X[L] ,  [ Y[LL  ]) ~- p (  right, [ X ] ,  L L  ), p(  goal, L,  Z ). 

p(goal  1, [1, 1], [1]). 

where 

1. goal 2 is a ground instance of goal 
2. goal does not share any variable with left and right 
3. X ,  Y, Z, L, L L  are new variables not appearing in left, right, goal 
4. goal 1 is a ground instance of left by the substitution ~r, such that o" unifies 

right and fact: since we consider the emptiness problem, we do not care 
about the trivial case where fact and right do not unify (this case does not 
alter the halting problem). Since we can assume that there exists a most 
general unifier 0 for fact and right, ~r is chosen as an instance of 0 which 
makes left ground. 

Clearly, the first three conditions are syntactical ones. 
Now, we show that from the third step of resolution (p(goal, [1], Z)), the 

derivation of both programs can be the same until the first success: the second 
program will stop iff the first will, and the second program will stop with a success 
iff the first one has at least one solution. 

After the second derivation step, we obtain the goal ~p(goa l ,  [1], Z)which  has 
the same derivation as ,---p(goal) in the binary program, except that at each 
unification with the third clause (the ternary one), a new atom p(goal, [ ] , - )  is 
generated. But these atoms will unify only with the second fact (p(goal 2, [ ], [ ])) 
because of the second argument. If, during the resolution, there is a unification of 
the first goal atom with the first clause, all other goal atoms will be removed after a 
unification with the second clause. This is shown in Figure 4. 

As there is no condition for the original program, our proof is correct, in 
particular, for all the classes of programs for which the halting and emptiness 
problem is undecidable. [] 
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p(goall, [1, 1], [1]) 

goal = crlefi 
x = 1, L = Ill 
Y = I ,  LL--[] 

p(aright, [1], []), p(goal, [1], Z) 

{ crright = a fact 

lJlgoal = I t l f a ~  

[] 

v(go, l, [11, z) 

~ 01goal = 011ef~ 
X = I ,  L = [ ]  
g = IF ILL] 

p(Oxright, [1], Zx),p(goal, [ ], Z2) 

p(goal, [], Z2) p( O2right, [1], 2"4), p(goal, [ ], Zz), 
p(go,,t, [],z2) 

[] 

FIGURE 4. Beginning of the resolution. 

as 
If we consider only the halting problem, we have just to encode a program such 

{ p(  left ) ~ p(  right ) . 
p( goal). 

The coding for a standard Prolog selection rule (depth-first, leftmost atom) is 

p(factl, [1, II, [ l). 
p( left, IX[L] ,  [ Y ILL  ]) +- p(  right, [XIL] ,  LL ), p(  goal, L, Z ) .  

,:-- p(  goal], [1, 11, [11). 

where 

• goal] and fact I are ground instances of, respectively, left and right 

• goal does not share any variable with left and right 
• X, Y, L, LL, Z are new variables not appearing in left, right, and goal. 

The difference between these two programs is that, if the first case, the second 
atom (of the ternary clause) will be derived only when the first has been removed. 
At the second step of resolution, if the first atom is selected, it will only unify with 
fact1: it will not alter the rest of the resolution. If the second atom is chosen, it will 
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be the start of  a derivation similar to that of the original program, except that an 
atom p(goal, [ ], - )  will be generated at each step of derivation. I f  these atoms are 
not selected before the first a tom (standard computation rule), then they will not 
be: the program never stops (left always unifies with right), or stops with a failure 
(because of the second argument,  right cannot unify with fact1). If  any other 
computat ion rule is used, then these atoms must be removed (unified with a 
success), so a second fact must be added to the program to ensure that these atoms 
will not prune an infinite derivation. Thus, the coding is 

p(facta, [1, 1], [ ]). 

p(fact2, [ ], [1, 11). 

left, [xIL], [rILL]) ~- p(  right, [ X IL  ], LL  ) , p(  goal, L,  Z ). 
p(goall ,[1,1],[1]).  

where fact 2 is a ground instance of goal. 

10. CONCLUSION 

The two tables below summarize the known results about the halting and empti- 
ness problems depending on the form of the characteristic elements goal, fact, left, 
and right of append-like programs: 

'p( fact ) 
p(  lefi ) ~ p(  right ) . 

p( goal). 

goal left right Termination 

ground any any decidable [47] 
linear any any decidable [I1] 
any linear any decidable 
any any linear undecidable 

goal left right fact Emptiness 

ground any any ground decidable [47] 
linear any any linear decidable [ 11] 

ground any any any decidable 
any any any ground 

linear linear linear any decidable 
any linear linear linear 

any any linear linear undecidable 
linear linear any any 
any linear linear any undecidable 

Linearity seems to state the border  between decidability and undecidability. For 
both problems, the groundness of one term ensures decidability. The halting 
problem becomes decidable as soon as goal or left are linear. The emptiness 
problem is decidable if three terms are linear. 
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The technic based on our encoding of the Conway functions provides a consis- 
tent framework for the study of the binary recursive Horn clauses. Indeed, it allows 
to solve the halting and emptiness problems and many other properties. 

The main consequence of the undecidability of the emptiness problem is that 
the satisfiability for the class of first-order formulas containing four subformulas is 
undecidable too. 

We have shown in this paper that append-like programs have the same computa- 
tional power as Turing machines since we prove that there exists a universal 
append-like program. This result can be seen as an extension of the B6hm-Jacopini 
theorem [3] to logic programming. As in imperative languages, the simplest 
nontrivial program scheme can express any partial recursive function. As in the 
B6hm-Jacopini proof, the transformation can be done automatically. 

The results on undecidability justify pragmatic or heuristic approaches to logic 
programming analysis, as in abstract interpretation or type inference. There is no 
way to define formal and complete methods to control the most basic recursive 
pattern. Even in such restrictive classes of programs, most of the interesting 
properties to provide a more efficient compilation technic are undecidable. 

Finally, the proof method based on Conway functions appears to be a powerful 
and efficient tool for encoding hard problems. As an example, consider [37,38]. 
Therein, Marcinkowski proves (among many other results) that uniform bounded- 
ness is undecidable for single rule Datalog programs by using Conway functions. 

We thank the anonymous referees for their careful reading and helpful remarks. We are also grateful to 
Jurek Marcinkowski for all his relevant and fruitful comments. 
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