
Mactüne Learning, 19, 95-131 (1995)
@ 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Automated Refinement of
First-Order Horn-Clause Domain Theories

BRADLEY L. RICHARDS bradley@ai-lab.fh-furtwangen.de
Fachhochschule Furtwangen, Gerwigstr. 15, 78120 Furtwangen, Germany

RAYMOND J. MOONEY
Department of Computer Sciences, University of Texas, Austin, Texas, 78712

mooney@cs.utexas.edu

EdRor: Steve Minton

Abstract. Knowledge acquisition is a diffcult, error-prone, and time-consuming task. The task of auto-
matically improving an existing knowledge base using learning methods is addressed by the class of systems
performing theory refinement. This paper presents a system, FOaTE (First-Order Revision of Theories from
Examples), which refines frst-order Hom-clanse theories by integrating a variety of different revision teeh-
niqnes into a coherent whole. FORTE uses these teehniques within a hill-climbing frarnework, guided by
a global heuristic. It identifies possible errors in the theory and calls on a library of operators to develop
possible revisions. The best revision is implemented, and the process repeats until no further revisions are
possible. Operators are drawn frorn a variety of sources, ineluding propositional theory refinernent, first-order
induction, and inverse resolution. FOaTE is dernonstrated in several domains, including logic programming
and qualitative rnodelling.

Keywords: theory revision, knowledge refinement, inductive logic programming

1. Introduct ion

A number of recent machine learning projects have focussed on the task of refining
incomplete and/or incorrect rule bases (domain theories) (Ginsberg, 1990; Ourston &

Mooney, 1990; Towell & Shavlik, 1993; Craw & Sleeman, 1991; Wilkins, 1988). The
goal of this work is to automate the laborious process of knowledge-base refinement
and thereby speed the development of knowledge-based systems (Ginsberg, Weiss, &
Politakis, 1988). Theory refinement normally integrates analytical and empirical machine
learning methods in an attempt to leverage two sources of information: approximate rules
obtained from an expert or a textbook, and empirical data on actual problems. A theory
refinement system is successful to the extent that it can improve the accuracy of its
initial domain theory and produce a more accurate and more comprehensible theory than
purely inductive methods. Recent experiments have demonstrated such success in a few
real-world domains (Ourston & Mooney, 1994; Towell & Shavlik, 1993).

However, much existing work in theory refinement has dealt only with proposit ional
rule bases. Such systems are primarily restricted to performing classification tasks for
examples described as feature vectors. This paper describes FORTE (First Order Revision
of Theories from Examples), a system for automatically revising function-free first-
order Horn-clause knowledge bases (i.e., pure Prolog programs without functions). This
more powerful representation language allows FortTE to work in domains involving

96 B. RICHARDS AND R. MOONEY

relations, such as computer programming, qualitative modelling, and natural language
processing. Since it uses first-order Horn-clauses as a representation language, FORTE
can be viewed as part of the growing body of work in inductive logic programming
(ILP) (Muggleton, 1992). However, existing ILP research has primarily focussed on
generalizing an existing theory by adding clauses, which does not address the issue of
modifying incorrect knowledge. Existing ILP systems that modify incorrect knowledge
generally require interaction with auser in order to isolate and correct faults (Shapiro,
1983; DeRaedt & Bruynooghe, 1992).

By contrast, FORTE is a fully automated system performing a hill-climbing search
through a space of both specializing and generalizing operators in an attempt to find
a minimal revision to a theory that makes it consistent with a set of training exam-
ples. FORTE'S revision operators include methods from propositional theory refinement
(Ourston & Mooney, 1990), first order induction (Quinlan, 1990), and inverse resolution
(Muggleton & Buntine, 1988). The system has successfully been used to debug Prolog
programs collected from students in a course on programming languages, to debug a
decision-tree induction program, and to revise a qualitative model of a portion of the
Reaction Control System of the NASA Space Shuttle.

The body of the paper is organized as follows. Section 2 defines the specific problem
addressed by FORTE. Section 3 presents some background on theory refinement and
inductive logic programming. Section 4 presents the details of the refinement algorithm.
Sections 5 to 7 present empirical results on benchmark problems in relational learning,
logic program debugging, and qualitative modelling, respectively. Section 8 discusses
relationships to other work in the area, Section 9 discusses directions for future research,
and Section 10 presents our conclusions. Richards (1992) provides more complete details
on the system and the experimental resultsJ

2. Task Definition

The objective of this research has been to develop methods for revising frst-order the-
ories, and to implement and test the resulting methods in several domains. The specific
task addressed is:

• Given: An incorrect initial theory and a consistent set of positive and negative
instances.

• Find: A "minimally revised" theory that is correct on the given instances.

Our terminology is defined as follows:
Theory. A theory is a set of function-free definite program clauses 2. FORTE views

theories as pure Prolog programs. In the family domain, for example, a theory would be a
set of clauses defining relationships such as: fa ther (x, Y) : - parent (x, Y), gender (X,
male) .

Concept. A concept is a predicate in a theory for which examples appear in the training
set. Concepts need not be disjoint. In a family domain, concepts might include fa ther ,
aunt, and nephew.

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 97

Instance. An instance is an instantiation (not necessarily ground) of a concept. For
example, an instance of the concept fa the r is f a the r (f rank , susan). Each instance i
has an associated set of facts Fi. A positive instance should be derivable from the theory
augmented with its associated facts; the negative instances should not. In the family do-
main, the facts define a particular family, e.g., parent (f rank , susan), gender(frank,
male).

Correctness. Given a set, P, of positive instances and a set, N, of negative instances,
we say that a theory T is correct on these instances if and only if

V p E P : T U F p k - p and V n E N : T U F ~ n

Derivability is established using standard SLD-resolution, taking the instance to be the
initial goal. A set of positive and negative instances is consistent if and only if there
exists a correct theory for it.

"Minimally revised" theory. A correct theory for a set of instances can be produced
trivially by deleting all existing clauses and asserting new clauses that memorize the
positive instances, but such a theory is unlikely to be of interest. Ideally, we want
the theory to generalize to unseen instances. Since the initial theory is assumed to
be approximately correct, a revised theory should be as semantically and syntactically
similar to it as possible. FORTE tries to ensure this by using operators that make small
syntactic changes and attempting to minimize the number of operations performed}

3. Background

This section provides background that is useful in understanding FORTE. A broader
discussion of related work is left until Section 8. FORTE'S development is an outgrowth
of related work in propositional theory refinement, top-down first-order induction, and
inverse resolution; each of which will be discussed briefly.

3.1. Propositional Theory Refinement

A number of researchers have developed propositional theory refinement systems. EI-
THER (Ourst0n & Mooney, 1990; Ourston & Mooney, 1994) uses a combination of
deduction, abduction, and induction to refine a propositional Horn-clause theory. It uses
greedy set covering to identify a small set of rules that are responsible for the errors and
then adds and retracts rules and antecedents to correct the theory. Although EITHER is
limited to propositional domains, it is the conceptual predecessor of FORTE.

KRUST (Craw & Sleeman, 1991) generates a wide array of possible revisions to a
knowledge base, and then filters and ranks the revisions to choose the most suitable one.
Much of the filtering depends on the existence of certain canonical "chestnut" examples,
which must be identified by a human expert. FORTE'S overall approach is similar to
KRUST'S, in that it generates a number of possible revisions, and then selects the one
which performs best.

98 B. RICHARDS AND R. MOONEY

3.2. Top-Down First-Order lnduction

FOIL (Quinlan, 1990) is a recent, efficient algorithm for inducing first-order Horn-clause
rules. Its outer loop is a greedy covering algorithm that learns one clause at a time.
Each clause is constructed to maximize coverage of positive examples while excluding
all negatives. Clauses are constructed one literal at a time using hill-climbing. At each
step, the literal that maximizes an information-gain metric is added to the clause. Literals
are added until all negative examples have been excluded. This hill-climbing technique is
efficient, but vulnerable to local maxima. In order to reduce this problem, Quinlan (1991)
added determinate literals. Given its input arguments, a determinate literal has only one
possible binding for its output arguments. FOIL adds all possible determinate literals
to a clause before beginning the normal induction process. This is a recursive process,
as the new variables introduced by determinate literals can be used to define further
determinate literals; hence, an arbitrary depth-bound is imposed. Excess determinate
literals are deleted after learning is complete. One of FORTE'S techniques for building
new rules and specializing existing ones is based on the original FOIL algorithm.

3.3. Inverse Resolution

Inverse resolution is an inductive generalization method introduced by Muggleton and
Buntine (1988). Suppose we have the resolution step:

+-- c~,/3 (goal) c~ +-- 5 (input clause)

+-- 5,/3 (resolvent)

If we know the resolvent and either the goal or the input clause, we can abduce the missing
element. It is important to note that, when working in first-order logic, inverse resolution
operations taust take into account variable substitutions, so that any literal appearing in
the goal or input clause is (non-strictly) more general than the corresponding literal in the
resolvent. CIGOL (Muggleton & Buntine, 1988) used this technique to learn first-order
theories from examples; however, it required the user to interactively verify certain steps.

GOLEM (Muggleton & Feng, 1992) is a more efficient, automated induction system
based on Plotkin's (1971) framework of relative least-general generalization (RLGG),
which Muggleton (1992a) shows to be closely related to inverse resolution. GOLEM
learns first-order theories "bottom-up," generalizing the positive training instances while
excluding the negative instances.

Two of FORTE's theory revision operators are based on inverse resolution. However,
unlike CIGOL and GOLEM, FORTE'S operators do not require input clauses 4 to be unit
clauses.

4. System Description

This se¢tion describes the FORTE system. The first subsection looks at FORTE's interface
to the outside world. The second subsection examines the theory refinement process

R E F I N E M E N T OF F I R S T - O R D E R DOMAIN T HE ORIES 99

Initial Theory

Language Bias

Training Set

'y Revised Theory

' FORTE l

'l Example _ _
Translator

[Fundamental I I Revision]
Domain Theory Verifier

Figure 1. FORTE Interfaces.

itself how FORTE specializes and generalizes clauses in a theory. The third subsection
provides detailed algorithms for the revision operators.

4.1. Interfaces

Figure 1 shows FORTE's interface to the outside world. FORTE itself is represented by
the central box. The language blas and the auxiliary modules shown are described below.

Theory translator. The theory translator is an optional module used to translate
between the native representation of a theory and the representation required by FORTE.
This is necessary when the native representation of a theory is not function-free pure
Prolog. The most common use of the theory translator is to replace function symbols in
a theory with calls to predicates which calculate the functions.

Example translator. FORTE requires examples to be provided as Prolog terms. As
with theories, the FORTE representation may not be convenient in all domains. The
example translator can be used to translate between a native domain representation and
that required by FORTE.

Language bias. The language bias is used to limit FORTE'S search space when the
user knows that certain restrictions taust apply to the output theory. For example, the
user can require the theory to be conjunctive, or to be nonrecursive. Other options in the
language bias are described more fully as they apply to the revision operators discussed
below.

100 B. RICHARDS AND R. MOONEY

repeat

generate revision points

sott revision points bypotential (high to low)

for each revision point

generate revisions

update best revision found

until potential of next revision point is less

than the score of the best revision to date

if hest revision improves the theory

implement best revision

end if

until no revision improves the theory

Figure 2. Top-level refinement algorithm.

Revision verifier. The revision verifier is an optional module that allows the user to
insert domain-specific consistency checks in the revision process. For example, when
working in the domain of qualitative modelling, the revision verifier enforces dimen-
sional consistency in the qualitative equations. To see how this works, suppose a revi-
sion operator proposes adding the constraint de r iva t ive (X, Y) to a clause containing
add(X,] er, Z) . The d e r i v a t i v e constraint requires X and Y to have dimensions which
differ by a factor of 1/time, while the add constraint requires their dimensions to be the
same. This is domain specific knowledge provided by the revision verifier for qualitative
modelling; when the revision verifier is called to examine this revision, it will detect the
dimensional conflict and reject the revision.

Fundamental domain theory. The fundamental domain theory is an optional module
which provides a place for predicates which the user wishes to shield from FORTE's
revision process. There are two reasons why this might be desirable. First, if some
portion of the theory is known to be correct, shielding it in the fundamental domain
theory will reduce the space of revisions, thereby speeding FORTE'S execution. Second,
the fundamental domain theory can provide intensional defnitions of the fundamental
relations used to define a domain (GOLEM uses an extensional defnition of background
information the same way). Since these definitions will not be revised by FORTE, they
can be written using all the features of standard Prolog.

4.2. Top-Level Algorithm

FORTE revises theories iteratively, using a hill-climbing approach. Each iteration iden-
tifies points in the theory, called revision points, where a revision has the potential to
improve the theory's accuracy. It then generates a set of revisions, based on the revision
points, selects the best one, and implements it. The process iterates until no revision
improves the theory. This top-level algorfthm is shown in Figure 2.

In order to generate revision points, the current theory is tested on the training set.
FORTE annotates failed proofs of positive instances and successful proofs of negatives.

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 101

From these annotations it identifies points in the theory for possible revision (see Section
4.2.1). Each revision point has a potential, defined as the maximum increase in theory
accuracy which could result from a revision of that point. For example, if a particular
clause was used in successful proofs of five negative instances, then specialization of
that clause has a potential of five.

FORTE then generates a set of proposed revisions from the revision points, beginning
with the point that has the highest potential and working down the list. Each revision
receives a score, which is the actual increase in theory accuracy it achieves; FORTE
retains the single best revision generated so far, where the best revision is the õne
increasing äccuracy the most (in case of a tie, FORTE chooses the revision resulting in
the smallest theory). FORTE stops generating revisions when the potential of the next
revision point is less than the actual accuracy increase of the best revision generated to
date. At that point, the best revision is implemented, and the cycle begins again. Since
we require an increase in accuracy on each iteration, and accuracy is limited to 100%,
this algorithm is guaranteed to terminate.

This process continues until FORTE is unable to generate any revisions which improve
the theory. At this point, we hope to have developed a theory that is correct on the
training set. However, since this is a hill-climbing process, FORTE can be caught in
local maxima. We minimize this danger in two ways. First, revisions are developed and
scored using the entire training set, rather than just a single instance; this global vision
gives us better direction than if revisions were developed from single instances. Second,
FORTE uses a variety of different operators to generate possible revisions. Since the
operators have different strengtbs and weaknesses, they can escape different types of
locality problems.

4.2.1. Generating revision points

Revision points are places in a theory where errors may lie. They are of two types:
specialization points and generalization points. We idenufy revision points by annotating
proofs or attempted proofs of misclassified instances. Points in the theory where proofs
of positive instances fail are places where the theory may need to be generalized, and
clauses used in successful proofs of negative instances are points where the theory may
need to be specialized. The number of different instances which flag a particular point
represents its potential, i.e., the maximum increase in theory accuracy that could be
gained by revising the theory at that point.

Generating specialization revision points is simply the process of noting which clauses
participate in proofs of negative instances; these clauses become the revision points.

Generating revision points for generalization is more complex because we have three
kinds of generalization operators. Some generalization operators are antecedent-based,
meaning that their revisions target a particular antecedent in a particular clause, some
are clause-based, and some are predicate-based. We must generate revision points for
each of these operator types. However, all of these revision points are generated from
annotations made from failed proofs of positive instances.

102 B. RICHARDS AND R. MOONEY

The annotation process works as follows: Each time we backtrack, we note which
antecedent in which clause failed; this antecedent is a failure point. In addition, we
must consider which other antecedents may have contributed to this failure, perhaps by
binding variables to incorrect values. These antecedents are called contributing points.
As an example, consider the following program:

sister(A, B) :- daughter(A, C), parent(C, C).

daughter(A, B) :- gender(A, female), parent(B, A).

If we try to execute the s i s t e r predicate, the unprovable parent antecedent will be
marked as a failure point. The daughter antecedent instantiates variable c, and so is
marked as a contributing point. Within the daughter predicate, the parent predicate
instantiates variable B, and is therefore also marked as a contributing point. The gender
antecedent is neither a failure point nor a contributing point, and so is not marked and will
not be subject to revision. No subsequent distinction is made between failure points and
contributing points; all of the underlined antecedents become antecedent-based revision
points.

We create clause-based revision points for all clauses in which we made an annota-
tion. The potential of a clause-based revision point is the number of distinct instances
that marked any antecedent within it. These revision points are used by clause-based
operators, which revise a single clause without regard for any particular antecedent. In
the above example we would have two clause-based revision points, since both clauses
contain annotations.

Predicate-based revision points are the next step beyond clause-based revision points.
A predicate-based revision point is created for each theory predicate that appears as a
marked antecedent in the annotated theory. In other words, since we marked d~ughter CA,
c) in the theory, we create a predicate-based revision point for daughter. Predicate-based
revision points have a potential equal to the number of distinct instances that annotated
a call to the predicate anywhere in the theory. These revision points are used by the
operator identification, which seeks to generalize the definition of the predicate, without
reference to any particular clause.

4.2.2. Special provisions

There are two types of theories, as specified by the language bias, for which FORTE
makes speciai provisions: recursive theories and most-specific theories. These provisions
are discussed below.

Recursive theories. Revising a recursive theory is substantially more difficult than
revising a nonrecursive one. With nonrecursive theories, we can treat the predicate
under revision in isolation from the rest of the theory. If the predicates appearing as
antecedents contain slight errors, we will still be able to develop a revision for the
chosen predicate. If the antecedents contain gross errors, the proposed revision may
simply eliminate them as antecedents. When revising a recursive theory, we inevitably
need to evaluate a recursive call to the very predicate we are revising. Since we are

R E F I N E M E N T O F F I R S T - O R D E R D O M A I N T H E O R I E S 1 0 3

revising it, we can be almost certain that the results of evaluating the recursive call will

be incorrect.
In order to solve this problem, we must decouple our evaluation of a recursive call

from the definition of the predicate that we are revising. The training set provides
us with a way to do this; we can use the positive instances in the training set as an
extensional definition of the predicate. By using this extensional definition to evaluate
recursive calls, we allow the revision process to work unhindered by the complications of
recursion. GOLEM and FOIL also use extensional definitions to handle recursion. After
the revision has been developed, we can test its effectiveness using normal resolution.

Unfortunately, using the training set as an extensional definition works only if the
training set contains all instances that will be generated during well-founded recursion
from other instances present. For example, if we are learning a definition of list reversal,
and we wish to prove the example reverse([a ,b , c] , [c ,b ,a]), then the training set
taust contain the examptes reverse ([b,c] , [c,b]) and reverse (Ic] , [el). If either
of these instances is missing, our proof will fail and we may not be able to develop
a correct revision. Since the user is not expected to know what recursion scheine is
appropriate for the theory, this means that the training set should contain a complete set
of examples below a certain size. For example, our data set for r everse contains all
permutations of all lists of length-2 and smaller, plus one example of a length-3 list,
using the symbols a, b, and c.

If the recursive predicate we wish to revise is not a top-level predicate for which we
have training data, FORTE derives a temporary training set for the predicate from the
top-level predicates. This process works well if the higher-level predicates are correctly
defined, but may develop different predicates than expected if the higher-level predicates
contain errors.

To see how we derive a training set, suppose we have the following correct definition
for subset: 5

subset([] , A) .

subset([EltlElts], Set) :-

member(Elt, Set) ,

subset(Elts, Set) .

To derive a training set for member, we start the proofs of all positive instances for the
subset predicate, and collect the instantiated calls to member made at the top-most level
(i.e., we do not descend into the recursive calls, since the results of doing so depend
on the correct functioning of member, which is the predicate we are seeking to revise).
These calls become the training set for the member predicate. We thus have the following
correspondence between subset instances and derived member instances:

subset([a], [a])

subset([a], [a,b])

subset([b,c], [b,c])

subset([a,b], [a,b,c])

--- member(a, [a])

--- member(a, la,b])

--- member(b, [b,c])

--- member(a, [a,b,c])

This process can be viewed as abduction, as in Wirth & O'Rorke (1991).

104 B. RICHARDS AND R. MOONEY

After revising a theory, it is tested by normal meta-interpretation (i.e., without intercept-
ing recursive calls and using the training set as an extensional definition). Nontermination
on an example is considered to be a false classification, and is detected by means of a
depth limit.

FORTE'S effectiveness in revising recursive theories depends on the theory being re-
vised; refer to Section 6.3 for a more complete discussion of its limitations.

Most-specific theories. In some dornains, negative examples are not available and we
wish to develop the most-specific theory which fits the positive instances as tightly as
possible. In order to prevent simple memorization, FortTE requires that most-specific
theories be conjunctive (i.e., they must consist of a single clause).

An example of a domain requiring a most-specific theory is qualitative modelling.
Given a set of observed system behaviors, we wish to develop a model that reproduces
those behaviors; negative behaviors are not normally available. 6 Hence, we ask FOaTE to
develop the most constrained model that accounts for all of the given positive behaviors.
Since a model is a conjunction of one or more constraints, this is naturally a conjunctive
theory.

In order to develop a most-specific theory, FOaT• follows the normal revision process
to generalize the input theory as necessary to allow all positives to be provable. It then
makes the theory as specific as possible by adding all possible antecedents which do not
eliminate any of the positive instances. In order to ensure that this process is finite, we
do not allow the antecedents added in the second step to introduce new variables.

4.3. Revision Operators

In order to be able to repair arbitrarily incorrect theories, revision operators must be
able to transform any theory in the language into any other. This can be done with four
basic revision operations: adding rules, deleting rules, adding antecedents to a rule, and
deleting antecedents from a rule. A simple implementation of these basic operations
would produce a workable theory revision system. However, such a system would often
find itself trapped in local maxima or lost on local plateaus. FORWE's operators are
designed to more quickly develop useful revisions to a theory, for example, by adding
several antecedents at once until a desired goal is reached. However, FORTE'S operators
can often best be understood by remembering that they are ultimately composed of these
basic revision operations.

The following subsections describe FORTE'S revision operators. For complex oper-
ators, we also give explicit algorithms. Although the operators are described in terms
of the changes they make to the theory, recall that each operator is developing a pro-
posed revision, and that the revision will be implemented only if it is the best revision
developed by any operator for any revision point in the current revision cycle.

Conceptually, each operator develops its revision using the entire training set. However,
in practice, this is usually unnecessary. For example, when specializing a clause, we will
not change the provability of any unprovable instance, or of any provable instance whose
proof does not rely on the clause being specialized. Hence, we can develop the revision

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 1 0 5

Christopher Penelope

Arthur Victoria James

X
Colin Charlotte

Figure 3. A portion of Hinton's family data.

using a subset of the training set consisting only of those provable instances whose proofs
rely on the target clause. Similar subsets are used for generalization as well.

The operators are illustrated using examples in the domain of family relationships. Part
of one of the family data sets used by Hinton (1986) is shown in Figure 3. Horizontal
lines denote marriage relationships and the remaining lines denote parental relationships.

4.4. Operators for Specialization

FORTE specializes clauses when they are used to prove negative instances. A clause may
be specialized by being deleted (operator delete-rule), or by having antecedents added to
it (operator add-antecedent). These operators are described below.

4.4.1. Operator delete-rule

The simplest way to specialize a clause is to delete it. There are two restrictions. First,
if the clause is the only base case of a recursive predicate (i.e., a predicate that currently
has one or more recursive clauses) then it cannot be deleted, as doing so would invalidate
the recursive clauses as welk Second, if this is the only clause for a top-level concept,
we replace the deleted clause with the rule

concept :- fail.

This provides us with a starfing point for later revisions to the predicate.

106 B. RICHARDS AND R. MOONEY

repeat

specialize clause by hill-climbing

specialize original clause by relational pathfinding

choose specialized clause covering the most positives

add chosen clause to the revision

until all positives covered by original clause are covered

or no specialized clause can be generated

Figure 4. Algorithm for add-antecedent.

4.4.2. Operator add-antecedent

Another approach is to specialize a clause by adding antecedents to discriminate between
positive and negative instances. FORTE adds antecedents to a clause in an attempt to
make all negative instances unprovable. If adding these antecedents also makes some
positive instances unprovable, FOrtTE adds the specialized clause to the theory and
begins again with the original clause, looking for alternate specializations that retain the
proofs of the other positive instances while still eliminating the negatives. This process
continues until we have a set of clauses that retains the provability of all of the originally
provable positive instances.

FORTE provides two separate algorithms for producing a specialized clause: hill-
climbing antecedent addition and relational pathfinding (Richards & Mooney, 1992). As
shown in Figure 4, both methods are used to develop specializations of a clause, and the
one with the best performance is selected. In practice, these two methods of specializing
clauses are complementary; certain types of revisions are performed well by one but not
the other.

Hill-climbing antecedent addition. The hill-climbing method of antecedent addition
is based on the original FOIL algorithm. Our implementation departs from FOIL in one
respect: FORTE does not maintain "tuples" as FOIL does. FOIL'S tuple-based approach
counts the number of proofs of instances, whereas FORTE keeps track of the number
of provable instances (ignoring the fact that one instance may be provable in several
different ways).

The language bias may be used to limit the types of antecedents considered for addition,
e.g., in a nonrecursive theory, recursive antecedents would not be allowed. Clearly invalid
or redundant antecedents are also not generated, for example, relational antecedents must
contain at least one variable that already appears in the current clause.

The Fo~c approach is quite effective in many cases, particularly for developing recur-
sive base-cases and for adding non-relational antecedents to a rule. However, as with
any hill-climbing method, it can be caught by local maxima. Local plateaus can also
occur when there are a number of antecedents that do not decrease accuracy; but in
order to actually increase accuracy, several antecedents must be added at once. We can
see the local plateau problem by trying to define the grandparent relation using only the
instances below and the data shown in Figure 3.

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 107

(+) grandfather(christopher, colin)

(-) grandfather(christopher, arthur).

There is no single antecedent that we can add which will allow the positive instance to
be proven while making the negative instance unprovable. Both Colin and Arthur have
parents, neither has children, and neither is married. Even determinate literals would
not help in this example, since all parents have two children and all children have two
parents. In order to create a correct theory, we must simultaneously add both of the
required parent relationships, i.e.,

grandparent(x, y) :- parent(x, z), parent(z, y).

To do this, we need a method which is capable of searching for relationships among the
constants in a domain. Our method for accomplishing this is called relationalpathfinding.

Relational pathfinding, Relational pathfinding (Richards & Mooney, 1992) is a
method of antecedent addition designed to escape local maxima and local plateaus. The
idea of pathfinding in a relational domain is to view the domain as a (possibly infinite)
hypergraph of terms linked by the relations that hold among the terms. Our underlying
assumption is that, in most relationäl domains, important concepts will be represented
by a small number of fixed paths among the terms defining a positive instance. For
example, in the "grandfather" example, constants satisfying the relation are joined by a
single fixed path consisting of two parent relations.

Relational pathfinding can be used any time a clause needs to be specialized and does
not have relational paths joining all of its variables. If, after pathfinding, the rule is still
too general, we do further specialization using hill-climbing. This arises, for example,
when a rule requires non-relational antecedents.

Relational pathfinding as described in Figure 5 finds paths by successive expansion
around the nodes associated with the terms in a positive example, in a manner reminiscent
of Quillian's (1968) spreading activation. We arbitrarily choose one misclassified positive
instance and use it to instantiate the initial rule. The terms in the instantiated rule are
nodes in the domain graph, possibly connected by antecedents in the rule. We then
identify isolated subgraphs among these terms; if the initial rule contains no antecedents,
then each term forms a singular subgraph.

We view a subgraph as a nexus from which we explore the surrounding portion of the
domain graph. Each exploration that leads to a new node in the domain graph is a patb,
and the term at the node it has reached is the path's end-value. Initially, each term in a
sub-graph is the end-value of a path of length zero.

Taking each subgraph in turn, we find all new terms that can be reached by extending
any path with any defined relation. These terms form a new set of path end-values for
the subgraph. We check this set against the sets of end-values for all other subgraphs,
looking for an intersection. If we do not find an intersection, we expand the next node.
This process continues until we either find an intersection or exceed a preset bound on
the maximum path-length we will consider. There is also a (very high) limit on the
number of new paths generated when expanding nodes, intended to prevent termination
problems when working in infinite domains.

108 B. RICHARDS AND R. MOONEY

instantiate rule with a randomly chosen positive instance

find isolated sub-graphs

for each sub-graph

terms become initial end-values

end for

repeat

for each sub-graph

expand paths by one relation is all possible ways

remove paths with previously seen end-values

end for

until intersection found or resource bound exceeded

if one or more intersections found

for each intersection

add path-relations to original rule

if the new rule contains new singleton variables

add relations using the singleton variables

if all singletons cannot be used

discard the rule

end if

end if

replace terms with variables

end for

select most accurate rule

end if

if selected rule allows negatives

specialize using hill-climbing

end if

Figure 5. Algorithm for relational pathfinding.

When we find an intersection, we add the relations in the intersecting paths to the
original instantiated rule. If the new relations have introduced new terms that appear
only once, we try to complete the rule by adding relations that hold between these
singletons and other terms in the rule; these new relations are not allowed to eliminate
any of the currently provable positive instances. If we are unable to use all o f the new
singletons, the revision is rejected.

Finally, we replace all terms with unique variables to produce the final, specialized
theory clause. If we simultaneously discover several intersections, we develop clauses
for each of them separately and choose the one that provides the best accuracy on the
training set.

As an example, suppose we want to learn the uncle relationship, given an initially empty
rule and the positive instance unc l e (arthur, e h a r l o t t e) . This process is illustrated in
Figure 6. We begin by exploring paths from the node labelled Arthur, which leads us
to the new nodes Chris topher and Penelope. We then expand from the node labelled
charZot te , leading to the nodes v i c t o r i a and James. At this point we still do not have
an intersection, so we lengthen all paths originating from node Arthur. We eliminate

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 109

Christopher Penelope

Arthur Victoria James

Colin Charlotte

Christopher - - Penelope

<
Arthur Victoria James

Colin Charlotte

Figure 6. Learning the concept uncle with relational pathfinding.

any end-values that we have already used (and which, therefore, do not give us an
intersection). This leaves only orte value: v i c t o r i a . Since v i c t o r i a is also an end-
value of one of the paths originating from Charlotee, we recognize an intersection.

There are actually two paths leading from Arthur to Vic tor ia , but in this case they
are isomorphic (merely leading through different grandparents). If we had found several
paths, we would select the one providing the best overall accuracy. The final path in this
example is

uncle(X, Y) :- parent(Z, X), parent(Z, W), patent(W, Y)

Since relational pathfinding is only able to add relations as antecedents, it calls on the
hill-climbing method of antecedent addition to complete its clauses. In this case, hill-
climbing antecedent addition would need to add the titeral gender (X, male) to remove
any remaining negatives.

4.5. Operators for Generalization

FOrtTE generalizes a predicate when a positive instance is unprovable. It uses four
operators to perform generalization. Two methods are similar to methods used in propo-
sitional theory revision: adding new rules and deleting antecedents from existing rules.
The second two are variants of the inverse-resolution operators absorption and identifi-
cation.

4.5.1. Operator delete-antecedent

In many cases, FORTE may be able to create a good revision simply by deleting an-
tecedents from an existing clause. In order to develop a revision, we generalize the
original clause to cover as many positives as possible, without allowing proofs of any

110 B. RICHARDS AND R. M O O N E ¥

repeat

for each antecedent in the clause

if deletion does not allow provable negatives

count number of positives deletion makes provable

end if

end for

delete antecedent allowing the most positives

until no antecedent can be deleted without proving negatives

Figure 7. Algorithm for hill-climbing delete-antecedent.

negatives. We then add the generalized clause to the theory. If there are more positives
to be covered, we begin again with the original clause and repeat the process. We stop
when all of the positive instances listed in the revision point are provable or we are un-
able to generalize the original clause to allow proof of any of the remaining unprovable
instances.

We have two methods at our disposal. First, we try a hill-climbing approach. This
method deletes one antecedent at a time, selecting each time the antecedent whose dele-
tion allows the most unprovable positives to be proven. As with any hill-climbing
approach, this is efficient but vulnerable to local maxima. If this approach falls, we use
a more general method that can delete multiple antecedents simultaneously.

Hill-climbing antecedent deletion. This method of deleting antecedents is iterative.
It tries deleting each antecedent in the specified clause, and notes two things: how many
unprovable positives can be proven when the antecedent is deleted, and whether any
negatives become provable as a result of its deletion. We select the antecedent that
allows proof of the largest number of positives while not allowing any negatives to be
proven. This antecedent is deleted, and the process repeats. We stop when there are no
more antecedents whose deletion gains us anything.

This approach to deleting antecedents may fall for two reasons. First, it may be that
we need to add new discriminating antecedents to the clause after generalizing it. In
this case, the add-rule operator is likely to propose a useful revision. Second, the clause
may be so over-specialized that we need to delete several antecedents at once in order
to affect the provability of any instance. This local plateau problem is dealt with by the
technique for deleting multiple antecedents.

Deleting multiple anteeedents. This method is much more computationally expensive
than the hill-climbing approach to antecedent deletion, since it must try deleting combi-
nations of antecedents. Because of this expense, it is not used if hill-climbing antecedent
deletion successfully develops a revision.

To generalize a clause, we first collect all antecedents whose (individual) deletion does
not allow any negative instance to be proven. None of these deletions will, by itself,
allow positive instances to be proven either, or the hill-climbing approach to antecedent
deletion would have found them. We generate combinations of these antecedents, looking
for a combination whose deletion allows proof of one or more positives but no negatives.

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 111

find all antecedents whose deletion does not allow provable negatives

repeat

consider an antecedent for deletion

if negatives are provable

prune this braneh of the search space

else

delete this antecedent

end if

until no antecedents left to try

if one or more positives have become provable

propose generalized clause as a revision

end if

Figure 8. Algorithm for delete-multiple-amecedents.

We build combinations of deletions one antecedent at a time, working left-to-right
through the clause. When we delete an antecedent, we check to see if any negatives
have become provable. This allows us to substantially prune the search space, as, if
negatives have become provable, we discard not only this particular combination but all
supersets of it. We do not stop when positives have become provable--we delete as
many antecedents as we can, covering as many positives as possible.

4.5.2. Operator add-rule

Add rule is a clause-based generalization operator that develops one or more new versions
of an existing rule, while leaving the original rule in the theory. Its objective is to create
a new rule that allows proof of the positive instances that identified the original rule as
a failure point. Building this rule is a two-step process.

First, we create a generalized rule containing only the core of antecedents essential
to keep negatives from being proven, while not interfering with proofs of positives. To
do this, we copy the original rule, delete antecedents whose deletion does not allow
any negatives to be proven, and also delete antecedents whose deletion allows one or
more previously-unprovable positives to be proven (even if doing so allows proofs of
negatives). This is done in the same way as hill-climbing antecedent deletion (see above).

Second, we create one or more specializations of this core rule, which will allow proofs
of the desired positives while eliminating the negatives. We do this by passing the rule
to the add-antecedent operator described earlier.

4.5.3. Operator identification

Identification is a predicate-based operator which attempts to generalize the theory by
creating a new rule for an existing predicate. It constructs a new clause to generalize the
definition of an antecedent that caused one or more proofs of positive instances to fail.

112 B. RICHARDS AND R. MOONEY

Rather than developing the clause from scratch, it performs an inverse resolution step
using two existing rules in the domain theory. For a complete definition of the inverse
resolution operators, refer to Muggleton (1992a).

Suppose that our initial theory of family relationships includes the following rules,
where aunt_uncle is intended to be a general rule for identifying aunts and uncles
without regard to gender.

uncle(A, B) :- gender(A, male), aunt_uncle(A, B).

uncle(C, D) :- gender(C, male), sibling(C, E), patent(E, D).

aunt_uncle(A, B) :- married(A, C), sibling(C, D), parent(D, B).

aunt(A, B) :- gender(A, female), aunt_uncle(A, B).

When we are presented with an instance of an aunt who is a blood relative, this instance
will not be provable. One of the failure points is the call to a u n t _ u n c l e . Identification
looks for ways to provide another rule for this predicate, and finds one in the two rules
for uncle. The proposed revision replaces the second uncle clause with the new rule

aunt_uncle(A, B) :- sibling(A, E), parent(E, B).

4.5.4. Operator absorption

Absorption is the complement of identification. Rather than constructing a new clause
for the predicate corresponding to a failing antecedent, absorption looks for an existing
clause whose antecedents subsume the failing antecedent (and possibly other antecedents
in the clause), and which has alternate clauses that will allow the failing positive instances
to be proven. For example, suppose our theory includes the rules

uncle(A, B) :- gender(A, male), sibling(A, C), patent(C, B).

aunt_uncle(D, F) :- sibling(D, E), parent(E, F).

aunt_uncle(A, B) :- married(A, C), sibling(C, D), patent(D, B).

When we are presented with an instance of an uncle who is not a blood relative, we will
not be able to prove it using this theory. We will have a failure point either at sibl2ng
or parent. Absorption finds similar antecedents in the second a u n t _ u n e l e clause. Thus,
it replaces the unele rule with the new rule

unele(A, B) :- gender(A, male), aunt_unele(A, B).

5. Experimental Results in the Family Domain

In this section, we examine FORTE'S performance in the domain of family relationships,
a standard benchmark problem in relational learning (Quinlan, 1990). Richards (1992)
also presents results on another standard benchmark problem, illegal chess positions for
king-rook-king endgames. The results indicate that FORTE improves the accuracy of
randomly corrupted theories and produces more accurate theories than pure inductive

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 113

learning. Since FORTE'S hill-climbing techniques make it vulnerable to local maxima,
another important aspect of learning is the accuracy of revised theories on the training
data. In practice, FORTE has very little trouble with local maxima. In over 1300 test
runs, FORTE was caught in local maxima only nine times (0.69%); in all cases the
accuracy of the revised theory on the training data was greater than 98%.

5.1. Description of Data and lnitial Theories

Our earlier examples used the family data employed by Hinton (1986) and Quinlan
(1990). While the simplicity of this data makes it suitable for examples, it includes a
great deal of artificial structure (for example, all married couples have two children, one
boy and orte girl). In order to provide a more realistic test, we created a large, diverse
family composed of 86 people across 5 generations. This domain uses the same twelve
concepts as Hinton's data: husband, wife, mother, father, sister, brother, son, daughter,
aunt, uncle, niece, and nephew.

The family data set includes 744 positive instances and 1488 randomly generated
negative instances. Every test tun used an independent, randomly selected subset of
these instances as the training set, with the remaining instances used as the test set. The
background facts provide the gender of each person, all marriages, and all parent-child
relationships.

The theory revision tests used randomly corrupted versions of the correct theory shown
in Figure 9. The number of errors introduced in each corrupted theory depended on the
test being run (see below). Six types of errors could be introduced:

® Delete rule

• Add rule (1-3 antecedents)

• Delete antecedent

• Add antecedent

® Change antecedent (delete plus add)

® Change variable

When adding a new antecedent, there was a 50% chance that the antecedent used
would be taken from elsewhere in the theory, and a 50% chance that it would be newly
constructed. When changing a variable, there was a 50% chance that it would be changed
to a variable appearing elsewhere in the same clause and a 50% chance that it would be
a new variable.

5.2. Theory Refinement Performance

The basic premise of theory refinement is that it is better to revise a theory that is
approximately correct than it is to induce a new theory from scratch. In order to verify

114 B. RICHARDS AND R. MOONEY

wife(X, Y) : - gender(X, female), married(X, Y).

husband(X, Y) :- gender(X, male), married(X, Y).

mother(X, Y) :- gender(X, female), patent(X, Y).

father(X, Y) :- gender(X, male), parent(X, Y).

daughter(X, Y) :- gender(X, female), parent(Y, X).

son(X, Y) :- gender(X, male), parent(Y, X).

sister(X, Y) :- gender(X, female), sibling(X, Y).

brother(X, Y) :- gender(X, male), sibling(X, Y).

aunt(X, Y) :- gender(X, female, au(X, Y).

uncle(X, Y) :- gender(X, male, au(X, Y).

niece(X, Y) :- gender(X, female), au(Y, X).

nephew(X, Y) :- gender(X, male), au(Y, X).

au(X, Y) :- sibling(X, B), patent(B, Y).

au{X, Y) :- married(X, A), sibling(A, C), parent(C, Y).

sibling(X, Y) :- parent(A, X), parent(A, Y), X \= Y.

Figure 9. A correct theory for family relationships.

% Correc t

100,00 - - - -

9 5 . 0 0

90 .00

85 .00 - - - -

8 o . o o - - . /

75 .00 - -

I -

7 0 . 0 0 d

65 .00 ~ " d ' - -
~toau ~nsts

0 . 0 0 50 .00 100.00 150.00 200 .00 250 .00 300 .00

Figure I0. Refinement performance in the family domain.

this premise, we generated five corrupted theories, containing an average of 3.6 errors
each. Their average initial accuracy was 91.65%. Figure 10 shows a revision learning
curve, averaged across four runs on each of the five theories, and an induction curve
(i.e., FORTE revising an empty initial theory) averaged over 20 trials. A statistical t-test
revealed that the difference between the curves at all training-set sizes is statistically
significant (p < 0.01). These results show that beginning with an approximate domain

R E F I N E M E N T OF F I R S T - O R D E R D O M A I N T H E O R I E S 1 1 5

% Correct

! I 100 Train lnsts
100.00 - - ~ I i - - ~ÖŒräii{'fi~s's"

- . . j , [f _ ~~;~-~ .
98.00-- l "', " ' - , , ~] ~ '~n-d üc~iõn- lõ ö Tr'-ain Tn~ ~

• ~_N,,_____ ~ 96.00 --:____-Z~~__ ~ ~ - ~ , ~ ~ • Ynductlon 50 Tram Insts

94.00 -- - - - -

92.00 -- ! , '-.. -

90.00 -- I

88.00 -- I

86.00 - - - - 1

84.00 ! -

I
0.00 2.00 4.00

"-%.
' N

"%.
-%

i

6.00

L

8.00
Theory Errors

Figure 11. Degradation due to initial theory corruption in the family domain.

theory not only provides an initial boost in accuracy, but also that this advantage is
maintained as the training set size increases.

Another performance issue in theory refinement is how a system responds to increasing
degradation of the initial theory. A good system will degrade gracefully as the accuracy
of the input theory decreases. To illustrate this characteristic of FORTE, we created five
series of increasingly corrupted theories. Each series contains four theories, containing
from two to eight errors each. We fixed the training set size, and ran FORTE four times
on each corrupted theory in each series, and then averaged the results for each level of
corruption (i.e., we averaged together the 20 runs on theories containing two errors, the
20 runs on theories containing four errors, and so forth). We repeated this experiment
for training set sizes of 50 and 100 instances. The results appear in Figure 11.

The lowest curve shows the accuracy of the initial corrupted theories. The center
curve shows the accuracy of FORTE'S theories when it is given 50 training instances.
The highest curve shows FORTE's accuracy when it is given 100 training instances.
As expected, increasingly inaccurate initial theories do lower the accuracy of FORTE's
revised theories for a given training set size. However, the degradation is gradual, and
FORTE'S output theories are always significantly better than the input theories (p <
0.01). Also shown are accuracies of pure induction for 50 and 100 examples. With
50 examples, revision is always better than induction. With 100 examples, revision is
bettet up to six theory errors. With eight theory errors, as many as half of the rules
in the initial theory may be corrupted (the initial theory contains 15 rules), and FORTE
performs better when allowed to induce a new theory.

116 B. RICHARDS AND R. MOONEY

% C o r r e c t

1 0 0 . 0 0

9 5 . 0 0 - - -

9 0 . 0 0

8 5 . 0 0 - -

8 0 . 0 0 - -

7 5 . 0 0 - -

7 0 . 0 0 - -

65.00 ~ '

6 0 . 0 0 - -

0 . 0 0

• A " " " ' " " ' "

. x "

e " - - - - «

"'..«"

5 0 . 0 0 1 0 0 . 0 0 1 5 0 . 0 0 2 0 0 . 0 0

~öI~2 3"f
~öLg~ 170-'

T r a i n I n s t s

Figure 12. Inductive performance in the family domain.

5.3. Inductive Performance

The family domain is a prototypical first-order domain, in that it depends heavily on
relations such as parent (x, Y) and raarried (X, Y) that cannot easily be translated into
a propositional representation. Much of FORTE's performance in highly relational do-
mains of this sog comes from relational pathfinding (Richards & Mooney, 1992). To
demonstrate this, Figure 12 shows FORTE performing inductive learning both with and
without relational pathfinding. These curves are averaged over 20 runs for each data
point. The difference between them is statistically significant (p < 0.01) at all points.

Figure 12 also includes learning curves for FOIL version 5.1 and GOLEM version 1.0c~,
also averaged over 20 trials. Since QOLEM and FOIL only learn one concept at a time,
each trial actually consisted of a run on each of the twelve family concepts, using training
sets one-twelfth of the size noted. F o m ' s accuracy is ultimately limited by its inability
to learn the concepts aunt, uncle, niece, and nephew. GOLEM performs poorly on
all concepts, generally just memorizing the positive instances. Since the p a r e n t relation
is not determinate, GOLEM is simply unable to learn in this domain.

Finally, we ran induction experiments in two domains, family and king-rook-king, to
determine how FORTE scales with increasing amounts of data. As one would expect,
FORTE'S complexity is exponential in the size of the input theory, and in the arity of the
theory predicates. For example, when FORTE considers new antecedents for addition to
a rule, the number of permutations of arguments to a predicate is an exponential function
of the predicate's arity. However, FORTE'S complexity for a given learning problem,
where these items are fixed, is at most quadratic in the size of the training set. This
complexity result is demonstrated in Figure 13. This is a log-log graph, which means
that polynomials show as lines, with the slope of the line proportional to the degree of the
polynomial. The lower and upper lines show linear and quadratic bounds respectively.
The learning times for both of the test domains fall between these two bounds.

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 117

Secs

2 - -

l e + 0 4 - -

5 - -

2 - -

le+03 - -

5 - -

2 - -

l e + 0 2 - -

5 - -

2 - -

le+01
I

le+01

/1//
"Quadractic Bound

- Ng/g'iS"ömJff
- 9-~i~~]Sõm~~~
- Zi3eE gõu?ff

ù..,.

ù.,-.
.......... . . - " " :-...r.= L'L: --

r,

i
5 le+02 2

Train Ins~

Figure 13. Time complexity of training.

6. A p p l i c a t i o n : L o g i c P r o g r a m m i n g

Since FORTE represents theories as Prolog programs, we can view theory induction and
refinement as logic program synthesis and debugging, respectively. However, the logic
programming domain is substantially different from most machine learning domains.
First, logic programs are highly recursive. Second, while we may be satisfied with a
highly accurate classification theory, one is usually not happy with a "mostly correct"
program. Consequently, we test FO~{TE'S performance in this domain differently. In-
stead of producing learning curves showing increasing accuracy with larger training sets,
we show that, given sufficient training data, FORTE will produce a completely correct
program.

6.1. Program Synthesis

Although designed as a theory refinement system, FORTE is able to inductively synthesize
simple logic programs from examples of desired behavior. As discussed in Section 4.2.2,
in order to correctly synthesize or revise a recursive theory, FORTE requires the training
set to provide a complete extensional definition for a subset of the problem domain.

Table 1 presents a summary of several standard program synthesis problems to which
FORTE has been applied. 7 In all of these cases, correct definitions were given for any
necessary lower-level predicates. For example, the meree-sor t problem provides defi-
nitions for s p l i t and merge.

The first column in the tabte identifies the program to be synthesized. The second
column shows the size of the training set that was provided. The third column gives
the run-time required for the synthesis with relational pathfinding disabled. The fourth
zolumn gives the run-time for the synthesis with relational pathfinding enabled. The

118 B. RICHARDS AND R. MOONEY

Table 1. Summary of program synthesis results.

Pmgram Training Set No Pathfinding Normal FORTE GOLEM 1.0 FOIL 5.1

member 21 instances 4 seconds 4 seconds 7 seconds 1 second
append 39 instances Jhiled 21 seconds failed 3 seconds
directed path 121 instances 25 seconds 24 seconds failed 1 second
insert after 35 instances 30 seconds 50 seconds failed failed
merge sort 60 instances failed 199 seconds failed 17 seconds
nabe reverse 38 instances .failed 207 seconds failed 2 seconds

fifth and sixth columns give run-times for GOLEM version 1.0c~ and FOIL version 5.1
respectively. All run-times are for a SPARCstation 2.

Where run-times are shown, a correct program was synthesized. Where the annotation
failed appears, the system did not generate a correct program. FORTE learned correct
programs for all six problems. Relational pathfinding was essential for FORTE tO cor-
rectly synthesize the recursive clause for three of the six programs. FOIL also performed
quite well, missing only one of the problems and executing more quickly due to its
efficient implementation and more limited search. GOLEM fared especially badly, as it
tended to either memorize the positive instances or to produce infinite recursions. For
example, for naive reverse, GOLEM produced the recursive clause: r everse (A, B) . -

reverse (B, A) .

6.2. Debugging Student Programs

In order to provide a realistic test of FORTE'S 1ogic program debugging capabilities, we
asked students in an undergraduate class on programming languages to hand in their first
attempts at writing simple Prolog programs. They gave us their programs after they had
satisfied themselves on paper that the programs were correct, but before they tried to run
them. The student programs were distributed among three problems: find a patb through
a directed graph, insert an element into a list, and merge-sort a list. We collected 23
distinctly different incorrect programs, representing a wide variety of errors ranging from
simple typographical mistakes to complete misunderstandings of recursion.

FORTE was able to debug all of these programs (see Table 2). The training sets were
the same as those FORTE used to synthesize these same programs. Since FORTE is able
to synthesize all of these programs, it is perhaps no surprise that it was able to debug them
as welk However, what is noteworthy is FORTE'S ability to debug the programs while
preserving the basic structure provided by the program author. For example, consider the
correct program for finding a path through a directed graph (this is the program FORTS
synthesizes):

path(A, B) :- edge(A, B).

path(A, B) :- edge(A, C), path(C, B) .

One student's attempt at writing this program was:

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 119

Table 2. Summary of program debugging results.

Program # of Programs Training Set Mean Revision Time % Correct

directed path 4 121 instances 87 seconds 100%
insert after 9 35 instances 82 seconds 100%
merge sort 10 60 instances 199 seconds 100%

path(A, B) :- edge(B, A).

!oath(A, B) :-edge(A, B).

path(A, B) :-edge(A, C), edge(D, B), path(C, D).

Even though this program is highly inaccurate, FORTE was able to preserve both the
one correct base case and the unusual recursion scheine. FORTE'S revised program is:

path(A, B) :-edge(A, B).

path(A, B) :-edge(A, C), edge(C, B).

path(A, B) :- edge(A, C), edge(D, B), path(C, D).

6.3. Debugging Deeply Recursive Programs

FORTE is able to repair top-level recursive predicates effectively by treating the positive
instances in the training set as an extensional definition of the correct predicate, and
using this extensional definition to evaluate recursive calls while the predicate is being
revised. In order to use the same technique on lower-level recursive predicates, FORTE
derives temporary extensional definitions from proofs (or attempted proofs) of the positive
instances in the training set (see Section 4.2.2).

This approach is not foolproof, but is often effective. The method fails in three cir-
cumstances. The first occurs when the top-level predicates are so incorrect that they do
not provide a meaningful set of calls to the lower-level predicate. Second, the calls to the
lower tevel predicate may not be ground. In this case, the derived extensional definition
will be overly general, and FORTE is likely to develop an unintended definition for the
lower-level predicate. Third, the lower-level predicate may be called with a restricted
set of arguments. In this case, FORTS may again learn an unintended definition for the
predicate.

An unintended definition often results in a correct program, but the lower level predicate
does not have the expected meaning. For example, a predicate for naive reverse always
calls append with lists of length one in the second argument. Suppose we begin with the
incorrect program:

reverse([], []) .

reverse([AIß], C) :-append(D, [A], C), reverse(B, D).

append([AIß], C, [DIE]) : -append(B, C, E).

FORTE successfully revises this program to be a correct implementation of reverse:

120 B. RICHARDS AND R. MOONEY

reverse([], []).

reverse([AIB], C) :- append(D, [A], C), reverse(B, D).

append(A, [BIA], [B[A]).

append([A[B], C, [AID]) :- append(B, C, D).

The definition of append is correct for its role in this program. However, it is not a
general-purpose append predicate, as the first clause is only correct when the second
argument is a list of exactly one element.

In order to demonstrate the potential of FORTE'S techniques, we presented it with
incorrect versions of a realistic logic program. The program we used is a variation of
Bratko's (1991) decision-tree induction program.

As a concession to efficiency, we placed most of the program's lower-level predicates
in the fundamental domain theory. The portion of the program FORTE was asked to
revise consisted of a top-level non-recursive predicate (which served as an interface
to the program proper), a second level recursive predicate containing two base cases
and three recursive clauses (which actually builds the decision trees), and a third-level
recursive predicate containing one base case and two recursive clauses (which chooses
the correct attribute to split on at a given level in the decision tree). This was a total of
31 lines of code.

The task given to the decision tree program was to construct a decision tree to correctly
classify twelve blocks as positive or negative based on attributes of color, shape, and size.
An instance to FORTE included the attributes and instances given to the decision-tree
program along with the decision tree expected as output. FORTE received 14 positive
instances, corresponding to the full decision tree constructed from the twelve instances,
and all subtrees of the full tree (including leaves). FORTE also received 12 negative
instances, which were trees or subtrees which might be constructed if the decision-tree
program were to select the wrong attribute to split on at some point.

FOlgTE was able to repair most single errors introduced into the program, eren in
lower-level recursive predicates. The limits of our ability to repair the program were
reached when we simultaneously introduced errors in two nested, recursive program
predicates. In this case, Forte was able to correctly revise the program only if the error
in the outer predicate did not prevent the derivation of a correct training set for the inner
predicate. In practice, this meant that we placed the outer error in a base-case. In two
such tests, the revision time averaged 3850 seconds. This relatively long revision time
is due to the high arity of the predicates and the large number of variables present in
several program clauses.

7. Application: Qualitative Modelling

To demonstrate FORTE'S ability to work in diverse domains, we have also applied it to
qualitative modelling. When supplied with appropriate domain knowledge, through the
fundamental domain theory and the revision verifier, FORTE is able to synthesize and
revise qualitative models suitable for use by QSlM (Kuipers, 1986).

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 121

7.1. Background

Qualitative modelling uses constraint-based models to predict and explain the behavior
of dynamic systems in intuitive terms. For example, when trying to understand the
effect of heating a pot of water, it may be more useful to simply know that the pot may
boil over rather than to understand the numerical thermodynamic equations. Qualitative
models can be given to simulators like QSIM (Kuipers, 1986) to determine all possible
qualitative behaviors of the system.

Traditionally, qualitative models have been constructed by hand. This works for simple,
well-understood systems. For complex systems, the approach of compositional modelling
(Falkenhainer & Forbus, 1991) allows a system model to be built up from predefined
components. Although this makes constructing models easier, it still requires the user
to understand the system being modelled. Often, however, users want a model precisely
because the target system is not well-understood.

An alternative approach is to induce a qualitative model directly from observations
of a system's behavior. Coiera (1989) presents a method which, given a qualitative
description of one or more system behaviors, derives a qualitative model that reproduces
those behaviors. MISQ, a system independently developed by Richards, Kraan, and
Kuipers (1992), uses some of the same techniques, but can synthesize qualitative models
from qualitative or quantitative behavioral data. MISQ learns maximally constrained
models and can handle incomplete behavioral descriptions.

FORTE uses components of MISQ to provide the domain knowledge it needs to work
in the domain of qualitative modelling. However, FORTE substantially extends MIsq's
capabilities by allowing the introduction of new system variables. FORTE can also be
used to revise an imperfect qualitative model supplied by the user.

A qualitative model is represented as a single, conjunctive clause. Furthermore, one
generally wants tightly constrained models that produce only the desired behaviors; so
the language bias is most-specific. This means that FORTE will produce a single clause
containing all constraints consistent with the input behaviors. As discussed by Richards,
Kraan, and Kuipers (1992), when given complete behavioral information, a model gen-
erated in this manner is guaranteed to be unique, complete, and correct.

One instance specifies a complete system behavior over time; for each system variable
we have a list specifying the variable's qualitative value, sign, and direction-of-change
at a series of points in time. This information is interpreted by the QSIM constraint def-
initions provided in the fundamental domain theory. For example, in order to prove the
constraint m_plus(Amount, Outflow), FORTE provides the information on the variables
amount and outflow to the fundamental domain theory predicate ra_plus. If a mono-
tonically increasing function holds between the two behavior terms, rn_plus succeeds;
otherwise it fails. A more complete description of QSIM constraints is beyond the scope
of this paper, and is discussed by Kuipers (1986, 1989). FORTE'S implementation of the
QSIM constraints is taken from MISQ (Richards, Kraan, & Kuipers, 1992), and includes:
constant, M+, Yl--, add, mult iply, and der iva t ive . From FORTE'S point of view, the
constraints in the fundamental domain theory are simply predicates that succeed or fail
in the course of a Droof.

122 13. RICHARDS AND R. MOONEY

Table 3, Summary of qualitative model induction results.

Model Training Set Number of Constraints Execution Time

thrown baß 1 behavior 2 constraints 4 seconds
simple bathtub 1 behavior 3 constraints 2 seconds
two independent bathtubs 2 behaviors 6 constraints 35 seconds
cascaded tanks 2 behaviors 7 constraints 43 seconds
reaction control system 1 behavior 55 constraints 114 seconds

Table 3 provides a summary of several models FORTg induced from behavioral data,
ranging from the very simple model of a thrown ball to the much more complex Reaction
Control System (RCS) on the space shuttle. As illustrations, we discuss the two cascaded
tanks and the RCS below.

7.2. Two Cascaded Tanks

Cascading two tanks so that the drain from one provides the inflow to the next provides
a moderately complex second order system. In order to provide a more difficult test, we
omitted two system variables that auser might realistically forget: we supposed the user
measured all the flows and amounts but did not realize that the calculated netflow for each
tank would be important. Thus, we provided behaviors for the five other variables, but
omitted the netflows entirely. Given two examples of system behavior, FORTE produces
the model we would expect:

model(In_A, Out_A, Amt_A, Out_B, Amt_B) :-

add(Out_A, Net-A, In_A),

derivative (Amt-A, Net_A)

m_plus {Amt_A, Out_A) ,

add(0ut_B, Ner_B, Out_A)

derivative (Amt-B, Net_B)

m_plus (Amt_B, Out_B) .

The netflow variables are reintroduced by relational pathfinding, as a way of satisfying
the requirement (enforced by the revision verifier) that the model be connected.

7.3. Reaction Control System

The Space Shuttle Reaction Control System (RCS) (Kay, 1992) is substantially more com-
plex than the system of cascaded tanks, and provides a more realistic test of FORTE's
capabilities in this domain. The RCS consists of a number of identical, parallel com-
ponents; our test domain consisted of one of these components with its valves in fixed
positions. Although space prevents us from giving a complete description of the RCS,
a simplified view would contain three interconnected tanks, plus the thruster outlet. The

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 123

first tank contains Helium, which is provided at constant pressure to the fuel tank. The
Helium forces fuel out of the fuel tank and into the manifold. From the manifold, the
fuel enters the thruster and ignites to provide thrust.

For the purposes of this section, we assume that the valve leading to the thruster
is closed (i.e., the thruster is oft), the Helium regulator valve is open and providing a
constant-pressure supply of Helium, and the valve between the fuel tank and the manifold
has just been opened. If the initial pressure in the manifold is lower than the initial
pressure in the fuel tank (so that the system is not immediately at equilibrium), then fuel
flows into the manifold until the pressures equalize. Providing this single behavior to
FORTE allows FORTE to induce a correct system model for the RCS, with the addition
of several correct but redundant constraints.

However, since FORTE is a theory refinement system, we can use it in a more so-
phisticated wäy. Suppose that the user has a correct system model, hut that the system
is behaving incorrectly. In this case, we can use theory refinement to revise the correct
system model to reflect the actual system behavior. The resulting changes in the model
can be viewed as a diagnosis.

One of the failures that can occur in the RCS is a leak in one of the manifolds leading
from the fuel tank. In order to isolate the leak, the astronauts shut the valve leading from
the fuel tank into the manifolds. They then isolate the suspected manifold and reopen
the valve connecting the fuel tank and the manifolds. If the leak has been eliminated,
the system will quickly reach equilibrium. If the leak has not been isolated, the system
will not reach a pressure equilibrium (at least, not before all of the fuel has drained out
through the leak).

If FOR•E begins with a correct system model along with the system behavior caused
by a leak in the manifold, FORTF; revises the model by deleting the constraint m±-
nus(D_~~t_Fuel, D_Arat_Nan). The variable D_amt_Fuel is the amount of fuel leaving the
fuel tank and flowing into the manifold. Variable D_Amt._Nan is the net change in the
amount of fuel in the manifold. Normally, the amount of fuel flowing out of the fuel
tank should be the same, except for sign, as the net amount of fuel being added to the
manifold. Since FORTE deletes this constraint, there must be another influence on the
amount of fuel in the manifold, namely, a leak.

8. Related Work

8.1. Propositional Theory Refinement

As previously mentioned, much existing work in theory refinement has dealt with propo-
sitional theories and does not handle relations or recursion. EITHER (Ourston & Mooney,
in press) is FOgTE's conceptual predecessor. It revises propositional theories using a
combination of abduction and induction. Unlike FORWE, EITHER does not hill-climb
and is guaranteed to fit an arbitrary theory to any set of noise-free data. However, EI-
THER's approach of computing all abductive proofs of unprovable positive examples was
deemed computationally intractable for first-order theories.

1 2 4 B. RICHARDS AND R. MOONEY

RTLS (Ginsberg, 1990), KBANN (Towell & Shavlik, 1993), Ducwort (Cain, 1991), and
KRUST (Craw & Sleeman, 1991) are other theory refinement systems that are restricted
to propositional theories. Of these, KrtUST is most closely related to FOrtTE, since it
follows the approach of generating many possible revisions to theories, and then choosing
among them based on their performance. However, KRUST'S approach suffers from a
number of weaknesses. For example, even though KRUST requires multiple examples
to be available, it generates revisions from only a single example. Also, revisions are
evaluated based on rule-belief factors which ignore the difference between specialization
and generalization errors; hence, a specialization error can be used to justify further
specialization of a rule.

8.2. First-Order Learning

Most work in inductive logic programming (Muggleton, 1992) concerns generalizing
an existing first-order Horn-clause theory by adding clauses, but does not address the
problems of generalizing existing clauses or removing or specializing incorrect clauses.
Shapiro's (1983) MIS system was capable of specializing theories; however, it required
an oracle to answer membership queries for any predicate in the theory. His Prolog
debugging system, PDS6, required even more interaction with the user. It required the
user to judge the correctness of predicate calls, determine which clause in a predicate
to change, and to actually write missing clauses. Other interactive systems include
MARVIN (Sammut & Banerji, 1986) and CLINT (DeRaedt & Bruynooghe, 1992). CLINT
generalizes and specializes theories and also creates new predicates via analogy. CLINT'S
revisions only include adding and removing clauses; it does not attempt to modify existing
clauses. Unlike MIS and CLINT, FORTE automatically revises theories without any user
interaction.

A number of recent knowledge-based learning systems use a first-order domain theory
to bias the learning of an operational concept description but do not modify the actual
domain theory. ML-SMART (Bergadano & Giordana, 1988) was the first system to take
this approach. FOCL (Pazzani & Kibler, 1992) is a more recent approach based on
FOIL. FOCL successively operationalizes a theory by either including portions of the
domain theory or adding new literals via induction. The addition that provides the best
information gain is chosen at each point. This general approach is at a disadvantage
when the initial theory is missing lower-level rules (Cohen, 1992) since it must learn
a completely new disjunct at the top level. Also, it can unnecessarily eliminate large
portions of the theory that are consistent with the data but happen not to be needed
to explain the training examples. By contrast, FORTE preserves as much of the initial
theory as possible and can learn rules at any level in the theory. FOCL has been used
as the basis for an interactive theory refinement system, KR-FoCL (Pazzani & Brunk,
1990). However, this system requires the user to determine where to make most theory
changes.

GRENDEL (Cohen, 1992) is a recent system to use domain knowledge to guide in-
duction. GRENDEL is a FoIL-like inductive learner that allows the user to provide an
explicit bias in the form of a grammar. By providing different bias grammars, Cohen

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 125

has shown that GRENDEL can simulate other systems such as FOCL. However, the user
taust encode the domain knowledge in the appropriate form and, as with FOCL, GREN-
DEL does not actually refine an initial theory. When a good initial theory is available,
true theory refinement should have an advantage over systems like ML-SMART, FOCL,
and GRENDEL. Also, theory refinement can improve the accuracy of subconcepts and
related concepts for which no explicit training examples have been provided (Ourston &
Mooney, 1991; Tangkitvanich & Shimura, 1992).

The GOLEM system has been applied to a number of learning problems. However,
since it works by generalization, it may overgeneralize a theory. Bain and Muggleton
(1992a, 1992b) present a method of specialization for GOLEM using "closed-world spe-
cialization" (i.e., negation as failure). GOLEM first executes normally, generalizing from
examples to an induced theory. Any exceptions to this theory generated by a closed-
world specialization algorithm are then recursively generalized. Using this technique
in the KRK domain, GOLEM learns a correct theory after 10,000 examples. FORTE
integrates specialization operators from the start, and it is therefore no surprise that its
performance compares favorably with C-OLEM'S, learning a correct theory after 5000
examples. Wrobel (1993) presents an alternative definition of minimal semantic special-
ization, hut does not address the issue of generalizing the resulting exceptions.

A few other automated refinement systems for first-order theories have also recently
been developed. AUDREY (Wogulis, 1991) first specializes a theory by deleting clauses
and then generalizes it using an abductive method that makes a single fault assumption.
Consequently, its range of revisions is limited compared to FORTE. RX (Tangldtvanich &
Shimura, 1992) first produces a revised operational definition and then translates this into
changes to the original theory (as in the RTLS propositional system (Ginsberg, 1990)).
The basic learning mechanism is very similar to FOCL, and therefore has some of the
same problems discussed above. In addition, complete operationalization can result in
an exponential expansion of the theory and can duplicate work when revising rules for
a subconcept that appears in multiple places in the theory.

Aben and ran Someren (1990) use a method of annotating and repairing incomplete
or incorrect logic programs which is similar to FORTE'S, in that they meta-interpret the
execution of an example set and accumulate evidence which directs them to revise certain
parts of the input program. However, they revise the program by means of syntactic
transformations; for example, they might replace the constant "steev" in a failing rule
with the similar constant "steve", found elsewhere in the program. This allows them
to identify and correct many syntactic errors, such as typographical mistakes, which
FORTE would have to treat as semantic errors (i.e., FORTE would not recognize the
typographical similarity between "steev" and "steve"). However, their success depends
on the initial theory being very nearly correct, since the corrections are expected to be
found elsewhere in the program.

Finally, it should be noted that FORTE'S relational pathfinding is similar to an early
method for learning production rules developed by Langley (1980). Important differences
are that Langley's method used unidirectional search and required the path to form the
entire rule. Relational pathfinding uses spreading activation and can specialize paths by
adding additional literals.

126 B. RICHARDS AND R. MOONEY

8.3. Belief Revision

Research in belief revision addresses the problem of finding a minimal retraction of
beliefs required to consistently incorporate a new belief (Gardenfors, 1992). However
this work does not address the inductive problem of generalizing a theory or specializing
it by adding constraints (e.g., by adding additional antecedents to rules). Also, this work
tends to focus on minimal semantic change which requires memorizing exceptions to the
theory rather than producing a specialization that generalizes to new cases.

8.4. Qualitative Modelling

Bratko, Mozetic, and Lavrac (1989) did some of the earliest work on learning qualitative
models; however, it was not based on a general purpose simulation language like QSIM.
Coiera (1989) presents GENMODEL, a method for inducing a QSIM qualitative model
from qualitative behaviors. His approach is limited by the fact that behaviors must be
completely specified, and his output models may contain incorrect constraints, due to
the absence of dimensional analysis. A more powerful system, MIsQ, was developed
independently by Richards, Kraan, and Kuipers (1992). MISQ uses dimensional analysis,
and is also able to work with incomplete behavioral information. The MISQ model-
building techniques are subsumed by FORTE, and FORTE'S relational pathfinding allows
correct models to be learned even when essential system variables have been omitted.

GOLEM has also been applied to the problem of learning qualitative models by Bratko,
Muggleton, and Varsek (1991). However, their method requires hand-generated negative
information (i.e., examples of behaviors that the system does not exhibit), it does not
completely implement the QSIM constraints (e.g., corresponding values are ignored),
and it does not use dimensional information. GOLEM also requires extensionally defined
background knowledge, whereas FORTE'S fundamental domain theory allows background
knowledge to be defined intensionally.

There has also been some recent work in constructing and revising models based on
Forbus's (1984) qualitative process theory (Falkenhainer & Rajamoney, 1988). However
this work uses analogy (Falkenhainer, 1990) and experimentation (Rajamoney, 1990)
rather than induction from a fixed set of behaviors.

9. Future Work

Although FORTE performs hill-climbing search, it considers a large number of operations
at each step. Significant speedup could be obtained if a method could be developed for
reducing the branching factor by only producing and testing the most promising revisions
at each cycle. FORTE also spends a great deal of time reproving many examples for
each revision. A truth maintenance system that kept track of which examples would be
affected by which changes could potentially eliminate much of this continual reproving.

Unlike some ILP systems (Muggleton & Feng, 1992; Quinlan, 1991), FORTE does not
exploit mode information, i.e., knowledge of which predicate arguments are input and

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 127

which are output. The system could be enhanced to use available mode information to
prune revisions and order literals in a clause.

FORTE could also be enhanced to deal with negation as failure. Negation complicates
revision since it switches the effect of generalizing and specializing operators. For
example, learning a new rule for a predicate specializes rules in which the predicate
appears negated. Bain and Muggleton (1992a, 1992b) present a general approach for
inducing theories containing negation, and this approach could be adapted to theory
revision.

The problems of modifying deeply recursive rules, discussed in Section 6.3, need to
be addressed. Most current methods, such as FOIL and GOLEM, also require complete
extensional definitions of recursive predicates. However, a couple of recent papers ad-
dress this issue (Muggleton, 1992b; Lapointe & Matwin, 1992; Cohen, 1993), and these
ideas may lead to better techniques for revising recursive programs.

Another major problem is that FORTE, like many ILP systems, cannot invent new
predicates. The invention of new recursive predicates is a particularly difficult and
important problem. Using general inverse resolution methods (Muggleton & Buntine,
1988) to invent new predicates without an oracle is computationally intractable. However,
several efficient methods for inventing new predicates in restricted cases have recently
been developed (Wirth & O'Rorke, 1991; Kijsirikul, Numao, & Shimura, 1992), and
would be useful to add to FORTE.

In many domains, some form of uncertain or probabilistic reasoning is desirable; how-
ever, current theory refinement systems like FORTE are restricted to purely logical do-
main theories. RAPTURE (Mahoney & Mooney, 1993) is a recent system that combines
connectionist and symbolic methods to refine propositional certainty-factor rule bases
(Shortliffe & Buchanan, 1975). However, its basic approach should be applicable to
first-order theories.

lO. Conelusions

This paper has described and evaluated a completely automated approach to revising
imperfect first-order Horn-clause domain theories by incorporating methods from propo-
sitional theory refinement and inductive logic programming. The ability to revise re-
lational and recursive theories greatly increases the range of application of automated
knowledge-base refinement. In particular, it allows for the automatic refinement of logic
programs and qualitative models.

Out implemented system, FORTE, uses a hill-climbing algorithm with a diverse col-
lection of generalization and specialization operators in an attempt to find a minimally
revised theory that is consistent with a set of training examples. Its operators include
simple propositional ones such as delete-rule and delete-antecedent, inverse resolution op-
erators like absorption and identification, and a FolL-like learner for adding antecedents
and learning new rules. In addition, we introduce a powerful new operator, relational
pathfinding, that helps overcome local maxima when learning relational concepts.

Experiments on standard relational benchmarks, such as the family domain, demon-
strate FORTE'S ability to effectively revise randomly corrupted domain theories and

128 B. RICHARDS AND R. MOONEY

produce more accurate results than purely inductive learning. In the family domain,
an ablation study reveals the particular effectiveness of relational pathfinding, which
increases accuracy up to 20 percentage points.

Results in logic program debugging demonstrate that FORTE can correctly debug sim-
ple logic programs written by students for a programming languages course. The system
was also able to correct small bugs in a decision-tree induction program. Finally, un-
like previous Prolog debugging systems like Shapiro's PDS6, FOR•E requires no user
interaction.

In the domain of qualitative modelling, FORTE has been used to induce QSlM models
of a number of simple systems from only a single positive qualitative behavior. It has also
been used to induce, revise, and diagnose a fairly complex qualitative model of the Space-
Shuttle Reaction Control System. The relational pathfinding operator is particularly
important in automated qualitative modelling since it allows FOrtTE to introduce new
system variables.

We believe that our results in these diverse domains demonstrate that relatively efficient
automated refinement of complex relational theories is possible using existing methods
in theory refinement and inductive logic programming. Continued research will hope-
fully improve the efficiency of these methods and incorporate advanced features such
as predicate invention, negation as failure, uncertain reasoning, and better methods for
revising deeply recursive programs.

Acknowledgments

Thanks to Ross Quinlan for making FOIL 5.1 available, to Steve Muggleton for making
GOLEM 1.0 available, and to Josh Konvisser for helping us run these programs. Also,
many thanks to the anonymous reviewers for their helpful comments on the initial draft
of this paper. The first author was supported by the Air Force Institute of Technology.
This research was also supported by the National Science Foundation under grant IRI-
9102926, by the NASA Ames Research Center under grant NCC 2-629, and by the Texas
Advanced Research Program under grant 003658114.

Notes

1. The Quintus Prolog implementafion of FORTE, along with sample theories and test data, is avallable by
anonymous FTP from cs.utexas.edu in the directory/pub/mooney/forte.

2. A definite program clause is a clause of the form a ~/~1 Ôr~ where a, ~1,. •./3r~ are atomic formulae
(Lloyd, 1987).

3. Mooney (in press) presents a formal definition of minimal change based on the notion of syntactic distance
and shows that it guarantees convergence to a probably approximately correct (PAC) theory if the initial the-
ory is guaranteed to be within a fixed distance of the true theory. Unfortunately, it appears computationally
intractable to guarantee minimal syntactic change for any realistic theory language.

4. The input clause in resolution is the clause whose literal appears positively in the resolution step.

5. For readability, we display lists using functional notation, The actual representation used by FORTE uses
explicit destructor predicates in place of function symbols.

REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 129

6. The user can readily observe what the system does, but there are an infinite number of things that the
system does not do, most of which do not provide useful information to the revision process.

7. The i n s e r t - a f t e r program may not be familiar. This program adds a new element into a list after the
first occurrence of a specified marker element, e.g., i n s e r t _ a f t e r ([a,ra, b] , m, n, [a , m , n , b]).

References

Aben, M., & van Someren, M. (1990). Heuristic Refinement of Logic Programs. Proceedings of the Ninth
European Conference on Artificial Intelligence (pp. 7-12). London: Pitman.

Bain, M., & Muggleton, S. (1992a). Non-monotonic learning. In S. Muggleton (Ed.), Inductive Logic Pro-
gramming. New York, NY: Academic Press.

Bain, M., & Muggleton, S. (1992b). Experiments in Non-monotonic First-Order Induction. In S. Muggleton
(Ed.), Inductive Logic Programming. New York, NY: Academic Press.

Bergadano, F., & Giordana, A. (1988). A knowledge intensive approach to concept induction. Proceedings of
the Fifth International Workshop on Machine Learning (pp. 305-317). San Mateo, CA: Morgan Kaufman.

Bratko, I. (1991). Prolog programming for artificial intelligence. Reading: MA, Addison Wesley.
Bratko, I., Mozetic, I., & Lavrac, N. (1989) KARDIO: A study in deep and qualitative knowledge .for expert

systems. Cambridge, MA: MIT Press.
Bratko, L, Muggleton, S., & Varsek, A. (1991). Learning qualitative models of dynamic systems. Proceedings

of the Eighthlnternational Workshop onMachine Learning (pp. 385-388). San Mateo, CA: Morgan Kaufmam
Cain, T. (1991). The DUCTOR: A theory revision system for propositional domains. Proceedings of the Eighth

International Workshop on Machine Learning (pp. 485-489). San Mateo: CA: Morgan Kanfman.
Cohen, W. (1992). Compiling prior knowledge into an explicit bias. Proceedings of the Ninth International

Conference on Machine Learning (pp. 102-110). San Marco, CA: Morgan Kanfman.
Cohen, W. (1993). Pac-learning a restricted class of recursive logic programs. Proceedings of the Eleventh

National Conference on Artificial Intelligence (pp. 86-92). San Mateo, CA: Morgan Kaufman.
Coiera, E. (1989). Generating qualitative models from example behaviors. Technical Report DCS 8901,

Department of Computer Science, University of New South Wales.
Craw, S., & Sleeman, D. (1991). The flexibility of speculative refinement. Proceedings of" the Eighth Interna-

tional Workshop on Machine Learning (pp. 28-32). San Mateo, CA: Morgan Kaufman.
DeRaedt, L., & Bruynooghe, M. (1992). Interactive concept learning and constructive induction by analogy.

Machine Learning, 8, 107-150.
Falkenhainer, B. (1990). A unified approach to explanation and theory formation. In J. Shrager and E Langley

(Eds.), Computational Models of Scientific Discovery and Theory Formation. San Mateo, CA: Morgan
Kaufman.

Faikenhainer, B., & Forbus, K. (1991). Compositional modelling: Finding the fight model for the job. Artificial
Intelligence, 51, 95-144.

Falkenhainer, B., & Rajamoney, S. (1988). The interdependencies of theory formation, revision, and exper-
imentation. Proceedings of the Fifth International Conference on Machine Learning (pp. 353-366). San
Mateo, CA: Morgan Kaufman.

G~denfors, E (1992) (Ed.). Belief Revision. Cambridge, England: Cambridge University Press.
Ginsberg, A. (1990). Theory reduction, theory revision, and retranslation. Proceedings of the Eighth National

Conference on Artificial Intelligence (pp. 777-782). Cambridge, MA: MIT Press.
Ginsberg, A., & Weiss, S. and Politakis, E (1988). Automatic knowledge-base refinement for classification

systems. Artificial Intelligence, 35, 197-226.
Hinton, G.E. (1986). Learning distributed representations of concepts. Proceedings of the Eighth Annual

Conference of the Cognitive Science Society (pp. 1-12). Hillsdale, NJ: Erlbaum.
Kay, H. (1992). A qualitative model of the space shuttle reaction control system. Technical Report AI92-188,

Artificial Intelligence Laboratory, University of Texas at Austin.
Kijsirikul, B., Numao, M., & Shimura, M. (1992). Discrimination-based constructive induction of logic

programs. Proceedings of the Tenth National Conference on Artificial Intelligence (pp. 44-49). Cambridge,
MA: MIT Press.

Kuipers, B. (1986). Qualitative simulation. Artificial Intelligence, 29, 289-338.

130 B. RICHARDS AND R. MOONEY

Kuipers, B. (1989). Qualitative reasoning: Modelling and simulation with incomplete knowledge Automatica,
25, 571-585.

Langley, P. (1980). Finding common paths as a learning mechanism. CIP Working Paper 419, Carnegie-Mellon
University.

Lapointe, S., & Matwin, S. (1992). Sub-unification: A tool for efficient induction of recursive programs.
Proceedings of the Ninth International Conference on Machine Learning (pp. 273-281). San Mateo, CA:
Morgan Kaufman.

Lloyd, J.W. (1987). Foundations of logic programming, second, extended edition. Berlin: Springer-Verlag.
Mahoney, J., & Mooney, R. (1993). Combining connectionist and symbolic leaming to refine certainty-factor

rule bases. Connection Science, 5, 339-364.
Mooney, R.J. (in press). A preliminary PAC analysis of theory revision. In T. Petsche, S. Judd, and S. Hanson

(Eds.) Computational Learning Theory and Natural Learning Systems, Vol. 3. Cambridge, MA: MIT Press.
Muggleton, S. (1992a). Inductive logic programming. In S. Muggleton (Ed.), lnductive Logic Programming

(pp. 3-27). New York, NY'. Academic Press.
Muggleton, S. (1992b). Inverting implication. Proceedings of the Second International Workshop on lnductive

Logic Programming. Tokyo.
Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution.

Proceedings of the Fifih International Conference on Machine Learning (pp. 339-352). San Mateo, CA:
Morgan Kaufman.

Muggleton, S & Fang, C. (1992). Efficient induction of logic programs. In S. Muggleton (Ed.) lnductive
Logic Programming (pp. 281-298). New York, NY: Academic Press.

Ourston, D., & Mooney, R. (1990). Changing the rules: A comprehensive approach to theory refinement.
Proceedings of the Eighth National Conference on Artificial Intelligence (pp. 815-820). Cambridge, MA:
MIT press.

Ourston, D., & Mooney, R, (1991). Improving shared rules in multiple category domain theories. Proceedings
of the Eighth International Workshop on Machine Learning (pp. 534-538). San Mateo, CA: Morgan Kaufman.

Ourston, D., & Mooney, R. (1994). Theory refinement combining analytical and empirical methods. Artificial
lntelligence, 66, 311-344.

Pazzani, M., & Brunk, C. (1990). Detecting and correcting errors in rule-based expert systems: An integration
of empirical and explanation-based learning. Proceedings of the 5th Knowledge Acquisition for Knowledge-
Based Systems Workshop.

Pazzani, M., & Kibler, D. (1992). The utility of prior knowledge in inductive learning. Machine Learning, 9,
57-94.

Plotkin, G. D. (1971). Automatic Methods of Inductive Inference. Ph.D. Thesis. Edinburgh University,
Edinburgh, Scotland.

Quillian, M.R. (1968). Semantic memory. In M. Minsky (Ed.) Semantic Information Processing. Cambridge,
MA: MIT Press.

Quinlan, J.R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.
Quinlan, J.R. (1991). Determinate literals in inductive logic programming. Proceedings of the Eighth Interna-

tional Workshop on Machine Learning (pp. 442-446). Sah Mateo, CA: Morgan Kaufman.
Rajamoney, S. (1990). A computational approach to theory revision. In J. Shrager and P. Langley (Eds.),

Computational Models of Scientific Discovery and Theory Formation. Sah Mateo, CA: Morgan Kaufman.
Richards, B. (1992). An operator-based approach to first-order theory revision. Ph.D. Thesis. Department of

Computer Sciences, University of Texas, Austin, TX. Also appears as Technical Report AI 92-181, Artificial
Intelligence Laboratory.

Richards, B., Kraan, I., & Kuipers, B. (1992). Automatic abduction of qualitative models. Proceedings of the
Tenth National Conference on Artificial Intelligence (pp. 723-728). Cambridge, MA: MIT Press.

Richards, B., & Mooney, R. (1992). Learning relations by pathfinding. Proceedings of the Tenth National
Conference on Artificial Intelligence (pp. 50-55). Cambridge, MA: MIT Press.

Sammut, C., & Banerji, R.B. (1986). Leaming concepts by asking questions, In R.S. Michalski, J.G. Carbonell,
and T.M. Mitchell (Eds.) Machine Learning: An Artificial lntelligence Approach, Volume H. Sah Mateo,
CA: Morgan Kaufman.

Shapiro, E. (1983). Algorithmic program debugging. Cambridge, MA: MIT Press.
Shortliffe, E.H., & Buchanan, B.G. (1975). A model of inexact reasoning in medicine. Mathematical Bio-

sciences. 23, 351-379.

I~EFINEMENT OF FIRST-ORDER DOMAIN THEORIES 131

Tangkitvanich, S., & Shimura, M. (1992). Refining a relational theory with multiple faults in the concept and
subconcepts. Proceeding of the Ninth International Conference on Machine Learning (pp. 436-444). San
Mateo, CA: Morgan Kaufman.

Towell, G., & Shavlik, J. (1993). Extracting refined rules from knowledge-based neural networks. Machine
Learning, 13, 71-101.

Wilkins, D. (1988). Knowledge base refinement using apprenticeship learning techniques. Proceedings of the
Seventh National Conference on Artificial Intelligence (pp. 646-651). San Mateo, CA: Morgan Kaufman.

Wirth, R., & O'Rorke, P. (1991). Constraints on predicate invention. Proceedings of the Eighth International
Workshop on Machine Learning (pp. 457-461). San Mateo, CA: Morgan Kaufman.

Wrobel, S. (1993). On the proper definition of minimality in specialization and theory revision. In Brazdil
(Ed.) Machine Learning - ECML-93 (pp. 65-81). Springer Lecture Notes on Artificial Intelligence Vol. 667.

Wogulis, J. (1991). Revising relational domain theories. Proceedings of the Eighth International Workshop on
Machine Learning (pp. 462-466). San Mateo, CA: Morgan Kaufman.

Received December 18, 1992
Accepted September 22, 1993

Final Manuscript December 2, 1993

