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Abstract. Knowledge acquisition is a diffcult, error-prone, and time-consuming task. The task of auto- 
matically improving an existing knowledge base using learning methods is addressed by the class of systems 
performing theory refinement. This paper presents a system, FOaTE (First-Order Revision of Theories from 
Examples), which refines frst-order Hom-clanse theories by integrating a variety of different revision teeh- 
niqnes into a coherent whole. FORTE uses these teehniques within a hill-climbing frarnework, guided by 
a global heuristic. It identifies possible errors in the theory and calls on a library of operators to develop 
possible revisions. The best revision is implemented, and the process repeats until no further revisions are 
possible. Operators are drawn frorn a variety of sources, ineluding propositional theory refinernent, first-order 
induction, and inverse resolution. FOaTE is dernonstrated in several domains, including logic programming 
and qualitative rnodelling. 

Keywords: theory revision, knowledge refinement, inductive logic programming 

1. Introduct ion 

A number of recent machine learning projects have focussed on the task of  refining 
incomplete and/or incorrect rule bases (domain theories) (Ginsberg, 1990; Ourston & 

Mooney, 1990; Towell & Shavlik, 1993; Craw & Sleeman, 1991; Wilkins, 1988). The 
goal of this work is to automate the laborious process of knowledge-base refinement 
and thereby speed the development of knowledge-based systems (Ginsberg, Weiss, & 
Politakis, 1988). Theory refinement normally integrates analytical and empirical machine 
learning methods in an attempt to leverage two sources of information: approximate rules 
obtained from an expert or a textbook, and empirical data on actual problems. A theory 
refinement system is successful to the extent that it can improve the accuracy of  its 
initial domain theory and produce a more accurate and more comprehensible theory than 
purely inductive methods. Recent experiments have demonstrated such success in a few 
real-world domains (Ourston & Mooney, 1994; Towell & Shavlik, 1993). 

However, much existing work in theory refinement has dealt  only with proposit ional  
rule bases. Such systems are primarily restricted to performing classification tasks for 
examples described as feature vectors. This paper describes FORTE (First Order Revision 
of  Theories from Examples),  a system for automatically revising function-free first- 
order Horn-clause knowledge bases (i.e., pure Prolog programs without functions). This 
more powerful representation language allows FortTE to work in domains involving 
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relations, such as computer programming, qualitative modelling, and natural language 
processing. Since it uses first-order Horn-clauses as a representation language, FORTE 
can be viewed as part of the growing body of work in inductive logic programming 
(ILP) (Muggleton, 1992). However, existing ILP research has primarily focussed on 
generalizing an existing theory by adding clauses, which does not address the issue of 
modifying incorrect knowledge. Existing ILP systems that modify incorrect knowledge 
generally require interaction with auser  in order to isolate and correct faults (Shapiro, 
1983; DeRaedt & Bruynooghe, 1992). 

By contrast, FORTE is a fully automated system performing a hill-climbing search 
through a space of both specializing and generalizing operators in an attempt to find 
a minimal revision to a theory that makes it consistent with a set of training exam- 
ples. FORTE'S revision operators include methods from propositional theory refinement 
(Ourston & Mooney, 1990), first order induction (Quinlan, 1990), and inverse resolution 
(Muggleton & Buntine, 1988). The system has successfully been used to debug Prolog 
programs collected from students in a course on programming languages, to debug a 
decision-tree induction program, and to revise a qualitative model of a portion of the 
Reaction Control System of the NASA Space Shuttle. 

The body of the paper is organized as follows. Section 2 defines the specific problem 
addressed by FORTE. Section 3 presents some background on theory refinement and 
inductive logic programming. Section 4 presents the details of the refinement algorithm. 
Sections 5 to 7 present empirical results on benchmark problems in relational learning, 
logic program debugging, and qualitative modelling, respectively. Section 8 discusses 
relationships to other work in the area, Section 9 discusses directions for future research, 
and Section 10 presents our conclusions. Richards (1992) provides more complete details 
on the system and the experimental resultsJ 

2. Task Definition 

The objective of this research has been to develop methods for revising frst-order the- 
ories, and to implement and test the resulting methods in several domains. The specific 
task addressed is: 

• Given: An incorrect initial theory and a consistent set of positive and negative 
instances. 

• Find: A "minimally revised" theory that is correct on the given instances. 

Our terminology is defined as follows: 
Theory. A theory is a set of function-free definite program clauses 2. FORTE views 

theories as pure Prolog programs. In the family domain, for example, a theory would be a 
set of clauses defining relationships such as: fa ther  (x, Y) : - parent  (x, Y), gender (X, 
male) . 

Concept. A concept is a predicate in a theory for which examples appear in the training 
set. Concepts need not be disjoint. In a family domain, concepts might include fa ther ,  
aunt, and nephew. 
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Instance. An instance is an instantiation (not necessarily ground) of a concept. For 
example, an instance of the concept fa the r  is f a the r ( f rank ,  susan). Each instance i 
has an associated set of facts Fi. A positive instance should be derivable from the theory 
augmented with its associated facts; the negative instances should not. In the family do- 
main, the facts define a particular family, e.g., parent ( f rank ,  susan), gender(frank,  
male). 

Correctness. Given a set, P,  of positive instances and a set, N, of negative instances, 
we say that a theory T is correct on these instances if and only if 

V p E P : T U F p k - p  and V n E N : T U F ~ n  

Derivability is established using standard SLD-resolution, taking the instance to be the 
initial goal. A set of positive and negative instances is consistent if and only if there 
exists a correct theory for it. 

"Minimally revised" theory. A correct theory for a set of instances can be produced 
trivially by deleting all existing clauses and asserting new clauses that memorize the 
positive instances, but such a theory is unlikely to be of interest. Ideally, we want 
the theory to generalize to unseen instances. Since the initial theory is assumed to 
be approximately correct, a revised theory should be as semantically and syntactically 
similar to it as possible. FORTE tries to ensure this by using operators that make small 
syntactic changes and attempting to minimize the number of operations performed} 

3. Background 

This section provides background that is useful in understanding FORTE. A broader 
discussion of related work is left until Section 8. FORTE'S development is an outgrowth 
of related work in propositional theory refinement, top-down first-order induction, and 
inverse resolution; each of which will be discussed briefly. 

3.1. Propositional Theory Refinement 

A number of researchers have developed propositional theory refinement systems. EI- 
THER (Ourst0n & Mooney, 1990; Ourston & Mooney, 1994) uses a combination of 
deduction, abduction, and induction to refine a propositional Horn-clause theory. It uses 
greedy set covering to identify a small set of rules that are responsible for the errors and 
then adds and retracts rules and antecedents to correct the theory. Although EITHER is 
limited to propositional domains, it is the conceptual predecessor of FORTE. 

KRUST (Craw & Sleeman, 1991) generates a wide array of possible revisions to a 
knowledge base, and then filters and ranks the revisions to choose the most suitable one. 
Much of the filtering depends on the existence of certain canonical "chestnut" examples, 
which must be identified by a human expert. FORTE'S overall approach is similar to 
KRUST'S, in that it generates a number of possible revisions, and then selects the one 
which performs best. 
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3.2. Top-Down First-Order lnduction 

FOIL (Quinlan, 1990) is a recent, efficient algorithm for inducing first-order Horn-clause 
rules. Its outer loop is a greedy covering algorithm that learns one clause at a time. 
Each clause is constructed to maximize coverage of positive examples while excluding 
all negatives. Clauses are constructed one literal at a time using hill-climbing. At each 
step, the literal that maximizes an information-gain metric is added to the clause. Literals 
are added until all negative examples have been excluded. This hill-climbing technique is 
efficient, but vulnerable to local maxima. In order to reduce this problem, Quinlan (1991) 
added determinate literals. Given its input arguments, a determinate literal has only one 
possible binding for its output arguments. FOIL adds all possible determinate literals 
to a clause before beginning the normal induction process. This is a recursive process, 
as the new variables introduced by determinate literals can be used to define further 
determinate literals; hence, an arbitrary depth-bound is imposed. Excess determinate 
literals are deleted after learning is complete. One of FORTE'S techniques for building 
new rules and specializing existing ones is based on the original FOIL algorithm. 

3.3. Inverse Resolution 

Inverse resolution is an inductive generalization method introduced by Muggleton and 
Buntine (1988). Suppose we have the resolution step: 

+-- c~,/3 (goal) c~ +-- 5 (input clause) 

+-- 5,/3 (resolvent) 

If we know the resolvent and either the goal or the input clause, we can abduce the missing 
element. It is important to note that, when working in first-order logic, inverse resolution 
operations taust take into account variable substitutions, so that any literal appearing in 
the goal or input clause is (non-strictly) more general than the corresponding literal in the 
resolvent. CIGOL (Muggleton & Buntine, 1988) used this technique to learn first-order 
theories from examples; however, it required the user to interactively verify certain steps. 

GOLEM (Muggleton & Feng, 1992) is a more efficient, automated induction system 
based on Plotkin's (1971) framework of relative least-general generalization (RLGG), 
which Muggleton (1992a) shows to be closely related to inverse resolution. GOLEM 
learns first-order theories "bottom-up," generalizing the positive training instances while 
excluding the negative instances. 

Two of FORTE's theory revision operators are based on inverse resolution. However, 
unlike CIGOL and GOLEM, FORTE'S operators do not require input clauses 4 to be unit 
clauses. 

4. System Description 

This se¢tion describes the FORTE system. The first subsection looks at FORTE's interface 
to the outside world. The second subsection examines the theory refinement process 



R E F I N E M E N T  OF F I R S T - O R D E R  DOMAIN T HE ORIES  99 

Initial Theory 

Language Bias 

Training Set 

'y Revised Theory 

' FORTE l 

'l Example _ _  
Translator 

[ Fundamental I I Revision ] 
Domain Theory Verifier 

Figure 1. FORTE Interfaces. 

itself how FORTE specializes and generalizes clauses in a theory. The third subsection 
provides detailed algorithms for the revision operators. 

4.1. Interfaces 

Figure 1 shows FORTE's interface to the outside world. FORTE itself is represented by 
the central box. The language blas and the auxiliary modules shown are described below. 

Theory translator. The theory translator is an optional module used to translate 
between the native representation of a theory and the representation required by FORTE. 
This is necessary when the native representation of a theory is not function-free pure 
Prolog. The most common use of the theory translator is to replace function symbols in 
a theory with calls to predicates which calculate the functions. 

Example translator. FORTE requires examples to be provided as Prolog terms. As 
with theories, the FORTE representation may not be convenient in all domains. The 
example translator can be used to translate between a native domain representation and 
that required by FORTE. 

Language bias. The language bias is used to limit FORTE'S search space when the 
user knows that certain restrictions taust apply to the output theory. For example, the 
user can require the theory to be conjunctive, or to be nonrecursive. Other options in the 
language bias are described more fully as they apply to the revision operators discussed 
below. 
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repeat 

generate revision points 

sott revision points bypotential (high to low) 

for each revision point 

generate revisions 

update best revision found 

until potential of next revision point is less 

than the score of the best revision to date 

if hest revision improves the theory 

implement best revision 

end if 

until no revision improves the theory 

Figure 2. Top-level refinement algorithm. 

Revision verifier. The revision verifier is an optional module that allows the user to 
insert domain-specific consistency checks in the revision process. For example, when 
working in the domain of qualitative modelling, the revision verifier enforces dimen- 
sional consistency in the qualitative equations. To see how this works, suppose a revi- 
sion operator proposes adding the constraint de r iva t ive (X,  Y) to a clause containing 
add(X, ] er, Z) .  The d e r i v a t i v e  constraint requires X and Y to have dimensions which 
differ by a factor of 1/time, while the add constraint requires their dimensions to be the 
same. This is domain specific knowledge provided by the revision verifier for qualitative 
modelling; when the revision verifier is called to examine this revision, it will detect the 
dimensional conflict and reject the revision. 

Fundamental domain theory. The fundamental domain theory is an optional module 
which provides a place for predicates which the user wishes to shield from FORTE's 
revision process. There are two reasons why this might be desirable. First, if some 
portion of the theory is known to be correct, shielding it in the fundamental domain 
theory will reduce the space of revisions, thereby speeding FORTE'S execution. Second, 
the fundamental domain theory can provide intensional defnitions of the fundamental 
relations used to define a domain (GOLEM uses an extensional defnition of background 
information the same way). Since these definitions will not be revised by FORTE, they 
can be written using all the features of standard Prolog. 

4.2. Top-Level Algorithm 

FORTE revises theories iteratively, using a hill-climbing approach. Each iteration iden- 
tifies points in the theory, called revision points, where a revision has the potential to 
improve the theory's accuracy. It then generates a set of revisions, based on the revision 
points, selects the best one, and implements it. The process iterates until no revision 
improves the theory. This top-level algorfthm is shown in Figure 2. 

In order to generate revision points, the current theory is tested on the training set. 
FORTE annotates failed proofs of positive instances and successful proofs of negatives. 



REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 101 

From these annotations it identifies points in the theory for possible revision (see Section 
4.2.1). Each revision point has a potential, defined as the maximum increase in theory 
accuracy which could result from a revision of that point. For example, if a particular 
clause was used in successful proofs of five negative instances, then specialization of 
that clause has a potential of five. 

FORTE then generates a set of proposed revisions from the revision points, beginning 
with the point that has the highest potential and working down the list. Each revision 
receives a score, which is the actual increase in theory accuracy it achieves; FORTE 
retains the single best revision generated so far, where the best revision is the õne 
increasing äccuracy the most (in case of a tie, FORTE chooses the revision resulting in 
the smallest theory). FORTE stops generating revisions when the potential of the next 
revision point is less than the actual accuracy increase of the best revision generated to 
date. At that point, the best revision is implemented, and the cycle begins again. Since 
we require an increase in accuracy on each iteration, and accuracy is limited to 100%, 
this algorithm is guaranteed to terminate. 

This process continues until FORTE is unable to generate any revisions which improve 
the theory. At this point, we hope to have developed a theory that is correct on the 
training set. However, since this is a hill-climbing process, FORTE can be caught in 
local maxima. We minimize this danger in two ways. First, revisions are developed and 
scored using the entire training set, rather than just a single instance; this global vision 
gives us better direction than if revisions were developed from single instances. Second, 
FORTE uses a variety of different operators to generate possible revisions. Since the 
operators have different strengtbs and weaknesses, they can escape different types of 
locality problems. 

4.2.1. Generating revision points 

Revision points are places in a theory where errors may lie. They are of two types: 
specialization points and generalization points. We idenufy revision points by annotating 
proofs or attempted proofs of misclassified instances. Points in the theory where proofs 
of positive instances fail are places where the theory may need to be generalized, and 
clauses used in successful proofs of negative instances are points where the theory may 
need to be specialized. The number of different instances which flag a particular point 
represents its potential, i.e., the maximum increase in theory accuracy that could be 
gained by revising the theory at that point. 

Generating specialization revision points is simply the process of noting which clauses 
participate in proofs of negative instances; these clauses become the revision points. 

Generating revision points for generalization is more complex because we have three 
kinds of generalization operators. Some generalization operators are antecedent-based, 
meaning that their revisions target a particular antecedent in a particular clause, some 
are clause-based, and some are predicate-based. We must generate revision points for 
each of these operator types. However, all of these revision points are generated from 
annotations made from failed proofs of positive instances. 
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The annotation process works as follows: Each time we backtrack, we note which 
antecedent in which clause failed; this antecedent is a failure point. In addition, we 
must consider which other antecedents may have contributed to this failure, perhaps by 
binding variables to incorrect values. These antecedents are called contributing points. 
As an example, consider the following program: 

sister(A, B) :- daughter(A, C), parent(C, C). 

daughter(A, B) :- gender(A, female), parent(B, A). 

If we try to execute the s i s t e r  predicate, the unprovable parent  antecedent will be 
marked as a failure point. The daughter antecedent instantiates variable c, and so is 
marked as a contributing point. Within the daughter predicate, the parent predicate 
instantiates variable B, and is therefore also marked as a contributing point. The gender 
antecedent is neither a failure point nor a contributing point, and so is not marked and will 
not be subject to revision. No subsequent distinction is made between failure points and 
contributing points; all of the underlined antecedents become antecedent-based revision 
points. 

We create clause-based revision points for all clauses in which we made an annota- 
tion. The potential of a clause-based revision point is the number of distinct instances 
that marked any antecedent within it. These revision points are used by clause-based 
operators, which revise a single clause without regard for any particular antecedent. In 
the above example we would have two clause-based revision points, since both clauses 
contain annotations. 

Predicate-based revision points are the next step beyond clause-based revision points. 
A predicate-based revision point is created for each theory predicate that appears as a 
marked antecedent in the annotated theory. In other words, since we marked d~ughter CA, 
c) in the theory, we create a predicate-based revision point for daughter. Predicate-based 
revision points have a potential equal to the number of distinct instances that annotated 
a call to the predicate anywhere in the theory. These revision points are used by the 
operator identification, which seeks to generalize the definition of the predicate, without 
reference to any particular clause. 

4.2.2. Special provisions 

There are two types of theories, as specified by the language bias, for which FORTE 
makes speciai provisions: recursive theories and most-specific theories. These provisions 
are discussed below. 

Recursive theories. Revising a recursive theory is substantially more difficult than 
revising a nonrecursive one. With nonrecursive theories, we can treat the predicate 
under revision in isolation from the rest of the theory. If the predicates appearing as 
antecedents contain slight errors, we will still be able to develop a revision for the 
chosen predicate. If the antecedents contain gross errors, the proposed revision may 
simply eliminate them as antecedents. When revising a recursive theory, we inevitably 
need to evaluate a recursive call to the very predicate we are revising. Since we are 
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revising it, we can be almost certain that the results of evaluating the recursive call will 

be incorrect. 
In order to solve this problem, we must decouple our evaluation of a recursive call 

from the definition of the predicate that we are revising. The training set provides 
us with a way to do this; we can use the positive instances in the training set as an 
extensional definition of the predicate. By using this extensional definition to evaluate 
recursive calls, we allow the revision process to work unhindered by the complications of 
recursion. GOLEM and FOIL also use extensional definitions to handle recursion. After 
the revision has been developed, we can test its effectiveness using normal resolution. 

Unfortunately, using the training set as an extensional definition works only if the 
training set contains all instances that will be generated during well-founded recursion 
from other instances present. For example, if we are learning a definition of list reversal, 
and we wish to prove the example reverse(  [ a ,b , c ] ,  [c ,b ,a]  ), then the training set 
taust contain the examptes reverse (  [b,c] , [c,b] ) and reverse (  Ic] , [el ). If  either 
of these instances is missing, our proof will fail and we may not be able to develop 
a correct revision. Since the user is not expected to know what recursion scheine is 
appropriate for the theory, this means that the training set should contain a complete set 
of examples below a certain size. For example, our data set for r everse  contains all 
permutations of all lists of length-2 and smaller, plus one example of a length-3 list, 
using the symbols a, b, and c. 

If  the recursive predicate we wish to revise is not a top-level predicate for which we 
have training data, FORTE derives a temporary training set for the predicate from the 
top-level predicates. This process works well if the higher-level predicates are correctly 
defined, but may develop different predicates than expected if the higher-level predicates 
contain errors. 

To see how we derive a training set, suppose we have the following correct definition 
for subset: 5 

subset([] , A) . 

subset([EltlElts], Set) :- 

member(Elt, Set) , 

subset(Elts, Set) . 

To derive a training set for member, we start the proofs of all positive instances for the 
subset predicate, and collect the instantiated calls to member made at the top-most level 
(i.e., we do not descend into the recursive calls, since the results of doing so depend 
on the correct functioning of member, which is the predicate we are seeking to revise). 
These calls become the training set for the member predicate. We thus have the following 
correspondence between subset instances and derived member instances: 

subset([a], [a]) 

subset([a], [a,b]) 

subset([b,c], [b,c]) 

subset([a,b], [a,b,c]) 

--- member(a, [a]) 

--- member(a, la,b]) 

--- member(b, [b,c]) 

--- member(a, [a,b,c]) 

This process can be viewed as abduction, as in Wirth & O'Rorke (1991). 
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After revising a theory, it is tested by normal meta-interpretation (i.e., without intercept- 
ing recursive calls and using the training set as an extensional definition). Nontermination 
on an example is considered to be a false classification, and is detected by means of a 
depth limit. 

FORTE'S effectiveness in revising recursive theories depends on the theory being re- 
vised; refer to Section 6.3 for a more complete discussion of its limitations. 

Most-specific theories. In some dornains, negative examples are not available and we 
wish to develop the most-specific theory which fits the positive instances as tightly as 
possible. In order to prevent simple memorization, FortTE requires that most-specific 
theories be conjunctive (i.e., they must consist of a single clause). 

An example of a domain requiring a most-specific theory is qualitative modelling. 
Given a set of observed system behaviors, we wish to develop a model that reproduces 
those behaviors; negative behaviors are not normally available. 6 Hence, we ask FOaTE to 
develop the most constrained model that accounts for all of the given positive behaviors. 
Since a model is a conjunction of one or more constraints, this is naturally a conjunctive 
theory. 

In order to develop a most-specific theory, FOaT• follows the normal revision process 
to generalize the input theory as necessary to allow all positives to be provable. It then 
makes the theory as specific as possible by adding all possible antecedents which do not 
eliminate any of the positive instances. In order to ensure that this process is finite, we 
do not allow the antecedents added in the second step to introduce new variables. 

4.3. Revision Operators 

In order to be able to repair arbitrarily incorrect theories, revision operators must be 
able to transform any theory in the language into any other. This can be done with four 
basic revision operations: adding rules, deleting rules, adding antecedents to a rule, and 
deleting antecedents from a rule. A simple implementation of these basic operations 
would produce a workable theory revision system. However, such a system would often 
find itself trapped in local maxima or lost on local plateaus. FORWE's operators are 
designed to more quickly develop useful revisions to a theory, for example, by adding 
several antecedents at once until a desired goal is reached. However, FORTE'S operators 
can often best be understood by remembering that they are ultimately composed of these 
basic revision operations. 

The following subsections describe FORTE'S revision operators. For complex oper- 
ators, we also give explicit algorithms. Although the operators are described in terms 
of the changes they make to the theory, recall that each operator is developing a pro- 
posed revision, and that the revision will be implemented only if it is the best revision 
developed by any operator for any revision point in the current revision cycle. 

Conceptually, each operator develops its revision using the entire training set. However, 
in practice, this is usually unnecessary. For example, when specializing a clause, we will 
not change the provability of any unprovable instance, or of any provable instance whose 
proof does not rely on the clause being specialized. Hence, we can develop the revision 
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Christopher Penelope 

Arthur Victoria James 

X 
Colin Charlotte 

Figure 3. A portion of Hinton's family data. 

using a subset of the training set consisting only of those provable instances whose proofs 
rely on the target clause. Similar subsets are used for generalization as well. 

The operators are illustrated using examples in the domain of family relationships. Part 
of one of the family data sets used by Hinton (1986) is shown in Figure 3. Horizontal 
lines denote marriage relationships and the remaining lines denote parental relationships. 

4.4. Operators for Specialization 

FORTE specializes clauses when they are used to prove negative instances. A clause may 
be specialized by being deleted (operator delete-rule), or by having antecedents added to 
it (operator add-antecedent). These operators are described below. 

4.4.1. Operator delete-rule 

The simplest way to specialize a clause is to delete it. There are two restrictions. First, 
if the clause is the only base case of a recursive predicate (i.e., a predicate that currently 
has one or more recursive clauses) then it cannot be deleted, as doing so would invalidate 
the recursive clauses as welk Second, if this is the only clause for a top-level concept, 
we replace the deleted clause with the rule 

concept :- fail. 

This provides us with a starfing point for later revisions to the predicate. 
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repeat 

specialize clause by hill-climbing 

specialize original clause by relational pathfinding 

choose specialized clause covering the most positives 

add chosen clause to the revision 

until all positives covered by original clause are covered 

or no specialized clause can be generated 

Figure 4. Algorithm for add-antecedent. 

4.4.2. Operator add-antecedent 

Another approach is to specialize a clause by adding antecedents to discriminate between 
positive and negative instances. FORTE adds antecedents to a clause in an attempt to 
make all negative instances unprovable. If adding these antecedents also makes some 
positive instances unprovable, FOrtTE adds the specialized clause to the theory and 
begins again with the original clause, looking for alternate specializations that retain the 
proofs of the other positive instances while still eliminating the negatives. This process 
continues until we have a set of clauses that retains the provability of all of the originally 
provable positive instances. 

FORTE provides two separate algorithms for producing a specialized clause: hill- 
climbing antecedent addition and relational pathfinding (Richards & Mooney, 1992). As 
shown in Figure 4, both methods are used to develop specializations of a clause, and the 
one with the best performance is selected. In practice, these two methods of specializing 
clauses are complementary; certain types of revisions are performed well by one but not 
the other. 

Hill-climbing antecedent addition. The hill-climbing method of antecedent addition 
is based on the original FOIL algorithm. Our implementation departs from FOIL in one 
respect: FORTE does not maintain "tuples" as FOIL does. FOIL'S tuple-based approach 
counts the number of proofs of instances, whereas FORTE keeps track of the number 
of provable instances (ignoring the fact that one instance may be provable in several 
different ways). 

The language bias may be used to limit the types of antecedents considered for addition, 
e.g., in a nonrecursive theory, recursive antecedents would not be allowed. Clearly invalid 
or redundant antecedents are also not generated, for example, relational antecedents must 
contain at least one variable that already appears in the current clause. 

The Fo~c approach is quite effective in many cases, particularly for developing recur- 
sive base-cases and for adding non-relational antecedents to a rule. However, as with 
any hill-climbing method, it can be caught by local maxima. Local plateaus can also 
occur when there are a number of antecedents that do not decrease accuracy; but in 
order to actually increase accuracy, several antecedents must be added at once. We can 
see the local plateau problem by trying to define the grandparent relation using only the 
instances below and the data shown in Figure 3. 
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(+) grandfather(christopher, colin) 

(-) grandfather(christopher, arthur). 

There is no single antecedent that we can add which will allow the positive instance to 
be proven while making the negative instance unprovable. Both Colin and Arthur have 
parents, neither has children, and neither is married. Even determinate literals would 
not help in this example, since all parents have two children and all children have two 
parents. In order to create a correct theory, we must simultaneously add both of the 
required parent relationships, i.e., 

grandparent(x, y) :- parent(x, z), parent(z, y). 

To do this, we need a method which is capable of searching for relationships among the 
constants in a domain. Our method for accomplishing this is called relationalpathfinding. 

Relational pathfinding, Relational pathfinding (Richards & Mooney, 1992) is a 
method of antecedent addition designed to escape local maxima and local plateaus. The 
idea of pathfinding in a relational domain is to view the domain as a (possibly infinite) 
hypergraph of terms linked by the relations that hold among the terms. Our underlying 
assumption is that, in most relationäl domains, important concepts will be represented 
by a small number of fixed paths among the terms defining a positive instance. For 
example, in the "grandfather" example, constants satisfying the relation are joined by a 
single fixed path consisting of two parent relations. 

Relational pathfinding can be used any time a clause needs to be specialized and does 
not have relational paths joining all of its variables. If, after pathfinding, the rule is still 
too general, we do further specialization using hill-climbing. This arises, for example, 
when a rule requires non-relational antecedents. 

Relational pathfinding as described in Figure 5 finds paths by successive expansion 
around the nodes associated with the terms in a positive example, in a manner reminiscent 
of Quillian's (1968) spreading activation. We arbitrarily choose one misclassified positive 
instance and use it to instantiate the initial rule. The terms in the instantiated rule are 
nodes in the domain graph, possibly connected by antecedents in the rule. We then 
identify isolated subgraphs among these terms; if the initial rule contains no antecedents, 
then each term forms a singular subgraph. 

We view a subgraph as a nexus from which we explore the surrounding portion of the 
domain graph. Each exploration that leads to a new node in the domain graph is a patb, 
and the term at the node it has reached is the path's end-value. Initially, each term in a 
sub-graph is the end-value of a path of length zero. 

Taking each subgraph in turn, we find all new terms that can be reached by extending 
any path with any defined relation. These terms form a new set of path end-values for 
the subgraph. We check this set against the sets of end-values for all other subgraphs, 
looking for an intersection. If we do not find an intersection, we expand the next node. 
This process continues until we either find an intersection or exceed a preset bound on 
the maximum path-length we will consider. There is also a (very high) limit on the 
number of new paths generated when expanding nodes, intended to prevent termination 
problems when working in infinite domains. 
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instantiate rule with a randomly chosen positive instance 

find isolated sub-graphs 

for each sub-graph 

terms become initial end-values 

end for 

repeat 

for each sub-graph 

expand paths by one relation is all possible ways 

remove paths with previously seen end-values 

end for 

until intersection found or resource bound exceeded 

if one or more intersections found 

for each intersection 

add path-relations to original rule 

if the new rule contains new singleton variables 

add relations using the singleton variables 

if all singletons cannot be used 

discard the rule 

end if 

end if 

replace terms with variables 

end for 

select most accurate rule 

end if 

if selected rule allows negatives 

specialize using hill-climbing 

end if 

Figure 5. Algorithm for relational pathfinding. 

When we find an intersection, we add the relations in the intersecting paths to the 
original instantiated rule. If the new relations have introduced new terms that appear 
only once, we try to complete the rule by adding relations that hold between these 
singletons and other terms in the rule; these new relations are not allowed to eliminate 
any of  the currently provable positive instances. If we  are unable to use all o f  the new 
singletons, the revision is rejected. 

Finally, we  replace all terms with unique variables to produce the final, specialized 
theory clause. If we simultaneously discover several intersections, we  develop clauses 
for each of  them separately and choose  the one that provides the best accuracy on the 
training set. 

As an example, suppose we want to learn the uncle relationship, given an initially empty 
rule and the positive instance unc l e  (arthur,  e h a r l o t t e ) .  This process is illustrated in 
Figure 6. We begin by exploring paths from the node labelled Arthur, which leads us 
to the new nodes Chris topher  and Penelope.  We then expand from the node labelled 
charZot te ,  leading to the nodes v i c t o r i a  and James. At this point we  still do not have 
an intersection, so we lengthen all paths originating from node Arthur. We eliminate 
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Christopher Penelope 

Arthur Victoria James 

Colin Charlotte 

Christopher - -  Penelope 

< 
Arthur Victoria James 

Colin Charlotte 

Figure 6. Learning the concept uncle with relational pathfinding. 

any end-values that we have already used (and which, therefore, do not give us an 
intersection). This leaves only orte value: v i c t o r i a .  Since v i c t o r i a  is also an end- 
value of one of the paths originating from Charlotee, we recognize an intersection. 

There are actually two paths leading from Arthur to Vic tor ia ,  but in this case they 
are isomorphic (merely leading through different grandparents). If  we had found several 
paths, we would select the one providing the best overall accuracy. The final path in this 
example is 

uncle(X, Y) :- parent(Z, X), parent(Z, W), patent(W, Y) 

Since relational pathfinding is only able to add relations as antecedents, it calls on the 
hill-climbing method of antecedent addition to complete its clauses. In this case, hill- 
climbing antecedent addition would need to add the titeral gender (X, male) to remove 
any remaining negatives. 

4.5. Operators for Generalization 

FOrtTE generalizes a predicate when a positive instance is unprovable. It uses four 
operators to perform generalization. Two methods are similar to methods used in propo- 
sitional theory revision: adding new rules and deleting antecedents from existing rules. 
The second two are variants of the inverse-resolution operators absorption and identifi- 
cation. 

4.5.1. Operator delete-antecedent 

In many cases, FORTE may be able to create a good revision simply by deleting an- 
tecedents from an existing clause. In order to develop a revision, we generalize the 
original clause to cover as many positives as possible, without allowing proofs of any 
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repeat 

for each antecedent in the clause 

if deletion does not allow provable negatives 

count number of positives deletion makes provable 

end if 

end for 

delete antecedent allowing the most positives 

until no antecedent can be deleted without proving negatives 

Figure 7. Algorithm for hill-climbing delete-antecedent. 

negatives. We then add the generalized clause to the theory. If there are more positives 
to be covered, we begin again with the original clause and repeat the process. We stop 
when all of the positive instances listed in the revision point are provable or we are un- 
able to generalize the original clause to allow proof of any of the remaining unprovable 
instances. 

We have two methods at our disposal. First, we try a hill-climbing approach. This 
method deletes one antecedent at a time, selecting each time the antecedent whose dele- 
tion allows the most unprovable positives to be proven. As with any hill-climbing 
approach, this is efficient but vulnerable to local maxima. If this approach falls, we use 
a more general method that can delete multiple antecedents simultaneously. 

Hill-climbing antecedent deletion. This method of deleting antecedents is iterative. 
It tries deleting each antecedent in the specified clause, and notes two things: how many 
unprovable positives can be proven when the antecedent is deleted, and whether any 
negatives become provable as a result of its deletion. We select the antecedent that 
allows proof of the largest number of positives while not allowing any negatives to be 
proven. This antecedent is deleted, and the process repeats. We stop when there are no 
more antecedents whose deletion gains us anything. 

This approach to deleting antecedents may fall for two reasons. First, it may be that 
we need to add new discriminating antecedents to the clause after generalizing it. In 
this case, the add-rule operator is likely to propose a useful revision. Second, the clause 
may be so over-specialized that we need to delete several antecedents at once in order 
to affect the provability of any instance. This local plateau problem is dealt with by the 
technique for deleting multiple antecedents. 

Deleting multiple anteeedents. This method is much more computationally expensive 
than the hill-climbing approach to antecedent deletion, since it must try deleting combi- 
nations of antecedents. Because of this expense, it is not used if hill-climbing antecedent 
deletion successfully develops a revision. 

To generalize a clause, we first collect all antecedents whose (individual) deletion does 
not allow any negative instance to be proven. None of these deletions will, by itself, 
allow positive instances to be proven either, or the hill-climbing approach to antecedent 
deletion would have found them. We generate combinations of these antecedents, looking 
for a combination whose deletion allows proof of one or more positives but no negatives. 
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find all antecedents whose deletion does not allow provable negatives 

repeat 

consider an antecedent for deletion 

if negatives are provable 

prune this braneh of the search space 

else 

delete this antecedent 

end if 

until no antecedents left to try 

if one or more positives have become provable 

propose generalized clause as a revision 

end if 

Figure 8. Algorithm for delete-multiple-amecedents. 

We build combinations of deletions one antecedent at a time, working left-to-right 
through the clause. When we delete an antecedent, we check to see if any negatives 
have become provable. This allows us to substantially prune the search space, as, if 
negatives have become provable, we discard not only this particular combination but all 
supersets of it. We do not stop when positives have become provable--we delete as 
many antecedents as we can, covering as many positives as possible. 

4.5.2. Operator add-rule 

Add rule is a clause-based generalization operator that develops one or more new versions 
of an existing rule, while leaving the original rule in the theory. Its objective is to create 
a new rule that allows proof of the positive instances that identified the original rule as 
a failure point. Building this rule is a two-step process. 

First, we create a generalized rule containing only the core of antecedents essential 
to keep negatives from being proven, while not interfering with proofs of positives. To 
do this, we copy the original rule, delete antecedents whose deletion does not allow 
any negatives to be proven, and also delete antecedents whose deletion allows one or 
more previously-unprovable positives to be proven (even if doing so allows proofs of 
negatives). This is done in the same way as hill-climbing antecedent deletion (see above). 

Second, we create one or more specializations of this core rule, which will allow proofs 
of the desired positives while eliminating the negatives. We do this by passing the rule 
to the add-antecedent operator described earlier. 

4.5.3. Operator identification 

Identification is a predicate-based operator which attempts to generalize the theory by 
creating a new rule for an existing predicate. It constructs a new clause to generalize the 
definition of an antecedent that caused one or more proofs of positive instances to fail. 
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Rather than developing the clause from scratch, it performs an inverse resolution step 
using two existing rules in the domain theory. For a complete definition of the inverse 
resolution operators, refer to Muggleton (1992a). 

Suppose that our initial theory of family relationships includes the following rules, 
where aunt_uncle is intended to be a general rule for identifying aunts and uncles 
without regard to gender. 

uncle(A, B) :- gender(A, male), aunt_uncle(A, B). 

uncle(C, D) :- gender(C, male), sibling(C, E), patent(E, D). 

aunt_uncle(A, B) :- married(A, C), sibling(C, D), parent(D, B). 

aunt(A, B) :- gender(A, female), aunt_uncle(A, B). 

When we are presented with an instance of an aunt who is a blood relative, this instance 
will not be provable. One of the failure points is the call to a u n t _ u n c l e .  Identification 
looks for ways to provide another rule for this predicate, and finds one in the two rules 
for uncle. The proposed revision replaces the second uncle clause with the new rule 

aunt_uncle(A, B) :- sibling(A, E), parent(E, B). 

4.5.4. Operator absorption 

Absorption is the complement of identification. Rather than constructing a new clause 
for the predicate corresponding to a failing antecedent, absorption looks for an existing 
clause whose antecedents subsume the failing antecedent (and possibly other antecedents 
in the clause), and which has alternate clauses that will allow the failing positive instances 
to be proven. For example, suppose our theory includes the rules 

uncle(A, B) :- gender(A, male), sibling(A, C), patent(C, B). 

aunt_uncle(D, F) :- sibling(D, E), parent(E, F). 

aunt_uncle(A, B) :- married(A, C), sibling(C, D), patent(D, B). 

When we are presented with an instance of an uncle who is not a blood relative, we will 
not be able to prove it using this theory. We will have a failure point either at sibl2ng 
or parent.  Absorption finds similar antecedents in the second a u n t _ u n e l e  clause. Thus, 
it replaces the unele rule with the new rule 

unele(A, B) :- gender(A, male), aunt_unele(A, B). 

5. Experimental Results in the Family Domain 

In this section, we examine FORTE'S performance in the domain of family relationships, 
a standard benchmark problem in relational learning (Quinlan, 1990). Richards (1992) 
also presents results on another standard benchmark problem, illegal chess positions for 
king-rook-king endgames. The results indicate that FORTE improves the accuracy of 
randomly corrupted theories and produces more accurate theories than pure inductive 
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learning. Since FORTE'S hill-climbing techniques make it vulnerable to local maxima, 
another important aspect of learning is the accuracy of revised theories on the training 
data. In practice, FORTE has very little trouble with local maxima. In over 1300 test 
runs, FORTE was caught in local maxima only nine times (0.69%); in all cases the 
accuracy of the revised theory on the training data was greater than 98%. 

5.1. Description of Data and lnitial Theories 

Our earlier examples used the family data employed by Hinton (1986) and Quinlan 
(1990). While the simplicity of this data makes it suitable for examples, it includes a 
great deal of artificial structure (for example, all married couples have two children, one 
boy and orte girl). In order to provide a more realistic test, we created a large, diverse 
family composed of 86 people across 5 generations. This domain uses the same twelve 
concepts as Hinton's data: husband, wife, mother, father, sister, brother, son, daughter, 
aunt, uncle, niece, and nephew. 

The family data set includes 744 positive instances and 1488 randomly generated 
negative instances. Every test tun used an independent, randomly selected subset of 
these instances as the training set, with the remaining instances used as the test set. The 
background facts provide the gender of each person, all marriages, and all parent-child 
relationships. 

The theory revision tests used randomly corrupted versions of the correct theory shown 
in Figure 9. The number of errors introduced in each corrupted theory depended on the 
test being run (see below). Six types of errors could be introduced: 

® Delete rule 

• Add rule (1-3 antecedents) 

• Delete antecedent 

• Add antecedent 

® Change antecedent (delete plus add) 

® Change variable 

When adding a new antecedent, there was a 50% chance that the antecedent used 
would be taken from elsewhere in the theory, and a 50% chance that it would be newly 
constructed. When changing a variable, there was a 50% chance that it would be changed 
to a variable appearing elsewhere in the same clause and a 50% chance that it would be 
a new variable. 

5.2. Theory Refinement Performance 

The basic premise of theory refinement is that it is better to revise a theory that is 
approximately correct than it is to induce a new theory from scratch. In order to verify 
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wife(X, Y) : -  gender(X, female), married(X, Y). 

husband(X, Y) :- gender(X, male), married(X, Y). 

mother(X, Y) :- gender(X, female), patent(X, Y). 

father(X, Y) :- gender(X, male), parent(X, Y). 

daughter(X, Y) :- gender(X, female), parent(Y, X). 

son(X, Y) :- gender(X, male), parent(Y, X). 

sister(X, Y) :- gender(X, female), sibling(X, Y). 

brother(X, Y) :- gender(X, male), sibling(X, Y). 

aunt(X, Y) :- gender(X, female, au(X, Y). 

uncle(X, Y) :- gender(X, male, au(X, Y). 

niece(X, Y) :- gender(X, female), au(Y, X). 

nephew(X, Y) :- gender(X, male), au(Y, X). 

au(X, Y) :- sibling(X, B), patent(B, Y). 

au{X, Y) :- married(X, A), sibling(A, C), parent(C, Y). 

sibling(X, Y) :- parent(A, X), parent(A, Y), X \= Y. 

Figure 9. A correct theory for family relationships. 
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Figure I0. Refinement performance in the family domain. 

this premise, we generated five corrupted theories, containing an average of 3.6 errors 
each. Their average initial accuracy was 91.65%. Figure 10 shows a revision learning 
curve, averaged across four runs on each of the five theories, and an induction curve 
(i.e., FORTE revising an empty initial theory) averaged over 20 trials. A statistical t-test 
revealed that the difference between the curves at all training-set sizes is statistically 
significant (p < 0.01). These results show that beginning with an approximate domain 
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Figure 11. Degradation due to initial theory corruption in the family domain. 

theory not only provides an initial boost in accuracy, but also that this advantage is 
maintained as the training set size increases. 

Another performance issue in theory refinement is how a system responds to increasing 
degradation of the initial theory. A good system will degrade gracefully as the accuracy 
of the input theory decreases. To illustrate this characteristic of FORTE, we created five 
series of increasingly corrupted theories. Each series contains four theories, containing 
from two to eight errors each. We fixed the training set size, and ran FORTE four times 
on each corrupted theory in each series, and then averaged the results for each level of 
corruption (i.e., we averaged together the 20 runs on theories containing two errors, the 
20 runs on theories containing four errors, and so forth). We repeated this experiment 
for training set sizes of 50 and 100 instances. The results appear in Figure 11. 

The lowest curve shows the accuracy of the initial corrupted theories. The center 
curve shows the accuracy of FORTE'S theories when it is given 50 training instances. 
The highest curve shows FORTE's accuracy when it is given 100 training instances. 
As expected, increasingly inaccurate initial theories do lower the accuracy of FORTE's 
revised theories for a given training set size. However, the degradation is gradual, and 
FORTE'S output theories are always significantly better than the input theories (p < 
0.01). Also shown are accuracies of pure induction for 50 and 100 examples. With 
50 examples, revision is always better than induction. With 100 examples, revision is 
bettet up to six theory errors. With eight theory errors, as many as half of the rules 
in the initial theory may be corrupted (the initial theory contains 15 rules), and FORTE 
performs better when allowed to induce a new theory. 
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Figure 12. Inductive performance in the family domain. 

5.3. Inductive Performance 

The family domain is a prototypical first-order domain, in that it depends heavily on 
relations such as parent  (x, Y) and raarried (X, Y) that cannot easily be translated into 
a propositional representation. Much of FORTE's performance in highly relational do- 
mains of this sog comes from relational pathfinding (Richards & Mooney, 1992). To 
demonstrate this, Figure 12 shows FORTE performing inductive learning both with and 
without relational pathfinding. These curves are averaged over 20 runs for each data 
point. The difference between them is statistically significant (p < 0.01) at all points. 

Figure 12 also includes learning curves for FOIL version 5.1 and GOLEM version 1.0c~, 
also averaged over 20 trials. Since QOLEM and FOIL only learn one concept at a time, 
each trial actually consisted of a run on each of the twelve family concepts, using training 
sets one-twelfth of the size noted. F o m ' s  accuracy is ultimately limited by its inability 
to learn the concepts aunt, uncle, niece,  and nephew. GOLEM performs poorly on 
all concepts, generally just memorizing the positive instances. Since the p a r e n t  relation 
is not determinate, GOLEM is simply unable to learn in this domain. 

Finally, we ran induction experiments in two domains, family and king-rook-king, to 
determine how FORTE scales with increasing amounts of data. As one would expect, 
FORTE'S complexity is exponential in the size of the input theory, and in the arity of the 
theory predicates. For example, when FORTE considers new antecedents for addition to 
a rule, the number of permutations of arguments to a predicate is an exponential function 
of the predicate's arity. However, FORTE'S complexity for a given learning problem, 
where these items are fixed, is at most quadratic in the size of the training set. This 
complexity result is demonstrated in Figure 13. This is a log-log graph, which means 
that polynomials show as lines, with the slope of the line proportional to the degree of the 
polynomial. The lower and upper lines show linear and quadratic bounds respectively. 
The learning times for both of the test domains fall between these two bounds. 
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Figure 13. Time complexity of training. 

6. A p p l i c a t i o n :  L o g i c  P r o g r a m m i n g  

Since FORTE represents theories as Prolog programs, we can view theory induction and 
refinement as logic program synthesis and debugging, respectively. However, the logic 
programming domain is substantially different from most machine learning domains. 
First, logic programs are highly recursive. Second, while we may be satisfied with a 
highly accurate classification theory, one is usually not happy with a "mostly correct" 
program. Consequently, we test FO~{TE'S performance in this domain differently. In- 
stead of producing learning curves showing increasing accuracy with larger training sets, 
we show that, given sufficient training data, FORTE will produce a completely correct 
program. 

6.1. Program Synthesis 

Although designed as a theory refinement system, FORTE is able to inductively synthesize 
simple logic programs from examples of desired behavior. As discussed in Section 4.2.2, 
in order to correctly synthesize or revise a recursive theory, FORTE requires the training 
set to provide a complete extensional definition for a subset of the problem domain. 

Table 1 presents a summary of several standard program synthesis problems to which 
FORTE has been applied. 7 In all of these cases, correct definitions were given for any 
necessary lower-level predicates. For example, the meree-sor t  problem provides defi- 
nitions for s p l i t  and merge. 

The first column in the tabte identifies the program to be synthesized. The second 
column shows the size of the training set that was provided. The third column gives 
the run-time required for the synthesis with relational pathfinding disabled. The fourth 
zolumn gives the run-time for the synthesis with relational pathfinding enabled. The 
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Table 1. Summary of program synthesis results. 

Pmgram Training Set No Pathfinding Normal FORTE GOLEM 1.0 FOIL 5.1 

member 21 instances 4 seconds 4 seconds 7 seconds 1 second 
append 39 instances Jhiled 21 seconds failed 3 seconds 
directed path 121 instances 25 seconds 24 seconds failed 1 second 
insert after 35 instances 30 seconds 50 seconds failed failed 
merge sort 60 instances failed 199 seconds failed 17 seconds 
nabe  reverse 38 instances .failed 207 seconds failed 2 seconds 

fifth and sixth columns give run-times for GOLEM version 1.0c~ and FOIL version 5.1 
respectively. All run-times are for a SPARCstation 2. 

Where run-times are shown, a correct program was synthesized. Where the annotation 
failed appears, the system did not generate a correct program. FORTE learned correct 
programs for all six problems. Relational pathfinding was essential for FORTE tO cor- 
rectly synthesize the recursive clause for three of the six programs. FOIL also performed 
quite well, missing only one of the problems and executing more quickly due to its 
efficient implementation and more limited search. GOLEM fared especially badly, as it 
tended to either memorize the positive instances or to produce infinite recursions. For 
example, for naive reverse, GOLEM produced the recursive clause: r everse  (A, B) . -  

reverse (B, A) . 

6.2. Debugging Student Programs 

In order to provide a realistic test of FORTE'S 1ogic program debugging capabilities, we 
asked students in an undergraduate class on programming languages to hand in their first 
attempts at writing simple Prolog programs. They gave us their programs after they had 
satisfied themselves on paper that the programs were correct, but before they tried to run 
them. The student programs were distributed among three problems: find a patb through 
a directed graph, insert an element into a list, and merge-sort a list. We collected 23 
distinctly different incorrect programs, representing a wide variety of errors ranging from 
simple typographical mistakes to complete misunderstandings of recursion. 

FORTE was able to debug all of these programs (see Table 2). The training sets were 
the same as those FORTE used to synthesize these same programs. Since FORTE is able 
to synthesize all of these programs, it is perhaps no surprise that it was able to debug them 
as welk However, what is noteworthy is FORTE'S ability to debug the programs while 
preserving the basic structure provided by the program author. For example, consider the 
correct program for finding a path through a directed graph (this is the program FORTS 
synthesizes): 

path(A, B) :- edge(A, B). 

path(A, B) :- edge(A, C), path(C, B) . 

One student's attempt at writing this program was: 
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Table 2. Summary of program debugging results. 

Program # of Programs Training Set Mean Revision Time % Correct 

directed path 4 121 instances 87 seconds 100% 
insert after 9 35 instances 82 seconds 100% 
merge sort 10 60 instances 199 seconds 100% 

path(A, B) :- edge(B, A). 

!oath(A, B) :-edge(A, B). 

path(A, B) :-edge(A, C), edge(D, B), path(C, D). 

Even though this program is highly inaccurate, FORTE was able to preserve both the 
one correct base case and the unusual recursion scheine. FORTE'S revised program is: 

path(A, B) :-edge(A, B). 

path(A, B) :-edge(A, C), edge(C, B). 

path(A, B) :- edge(A, C), edge(D, B), path(C, D). 

6.3. Debugging Deeply Recursive Programs 

FORTE is able to repair top-level recursive predicates effectively by treating the positive 
instances in the training set as an extensional definition of the correct predicate, and 
using this extensional definition to evaluate recursive calls while the predicate is being 
revised. In order to use the same technique on lower-level recursive predicates, FORTE 
derives temporary extensional definitions from proofs (or attempted proofs) of the positive 
instances in the training set (see Section 4.2.2). 

This approach is not foolproof, but is often effective. The method fails in three cir- 
cumstances. The first occurs when the top-level predicates are so incorrect that they do 
not provide a meaningful set of calls to the lower-level predicate. Second, the calls to the 
lower tevel predicate may not be ground. In this case, the derived extensional definition 
will be overly general, and FORTE is likely to develop an unintended definition for the 
lower-level predicate. Third, the lower-level predicate may be called with a restricted 
set of arguments. In this case, FORTS may again learn an unintended definition for the 
predicate. 

An unintended definition often results in a correct program, but the lower level predicate 
does not have the expected meaning. For example, a predicate for naive reverse always 
calls append with lists of length one in the second argument. Suppose we begin with the 
incorrect program: 

reverse([], []) . 

reverse([AIß], C) :-append(D, [A], C), reverse(B, D). 

append([AIß],  C, [DIE]) : -append(B,  C, E). 

FORTE successfully revises this program to be a correct implementation of reverse: 
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reverse([], []). 

reverse([AIB], C) :- append(D, [A], C), reverse(B, D). 

append(A, [BIA], [B[A]). 

append([A[B], C, [AID]) :- append(B, C, D). 

The definition of append is correct for its role in this program. However, it is not a 
general-purpose append predicate, as the first clause is only correct when the second 
argument is a list of exactly one element. 

In order to demonstrate the potential of FORTE'S techniques, we presented it with 
incorrect versions of a realistic logic program. The program we used is a variation of 
Bratko's (1991) decision-tree induction program. 

As a concession to efficiency, we placed most of the program's lower-level predicates 
in the fundamental domain theory. The portion of the program FORTE was asked to 
revise consisted of a top-level non-recursive predicate (which served as an interface 
to the program proper), a second level recursive predicate containing two base cases 
and three recursive clauses (which actually builds the decision trees), and a third-level 
recursive predicate containing one base case and two recursive clauses (which chooses 
the correct attribute to split on at a given level in the decision tree). This was a total of 
31 lines of code. 

The task given to the decision tree program was to construct a decision tree to correctly 
classify twelve blocks as positive or negative based on attributes of color, shape, and size. 
An instance to FORTE included the attributes and instances given to the decision-tree 
program along with the decision tree expected as output. FORTE received 14 positive 
instances, corresponding to the full decision tree constructed from the twelve instances, 
and all subtrees of the full tree (including leaves). FORTE also received 12 negative 
instances, which were trees or subtrees which might be constructed if the decision-tree 
program were to select the wrong attribute to split on at some point. 

FOlgTE was able to repair most single errors introduced into the program, eren in 
lower-level recursive predicates. The limits of our ability to repair the program were 
reached when we simultaneously introduced errors in two nested, recursive program 
predicates. In this case, Forte was able to correctly revise the program only if the error 
in the outer predicate did not prevent the derivation of a correct training set for the inner 
predicate. In practice, this meant that we placed the outer error in a base-case. In two 
such tests, the revision time averaged 3850 seconds. This relatively long revision time 
is due to the high arity of the predicates and the large number of variables present in 
several program clauses. 

7. Application: Qualitative Modelling 

To demonstrate FORTE'S ability to work in diverse domains, we have also applied it to 
qualitative modelling. When supplied with appropriate domain knowledge, through the 
fundamental domain theory and the revision verifier, FORTE is able to synthesize and 
revise qualitative models suitable for use by QSlM (Kuipers, 1986). 
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7.1. Background 

Qualitative modelling uses constraint-based models to predict and explain the behavior 
of dynamic systems in intuitive terms. For example, when trying to understand the 
effect of heating a pot of water, it may be more useful to simply know that the pot may 
boil over rather than to understand the numerical thermodynamic equations. Qualitative 
models can be given to simulators like QSIM (Kuipers, 1986) to determine all possible 
qualitative behaviors of the system. 

Traditionally, qualitative models have been constructed by hand. This works for simple, 
well-understood systems. For complex systems, the approach of compositional modelling 
(Falkenhainer & Forbus, 1991) allows a system model to be built up from predefined 
components. Although this makes constructing models easier, it still requires the user 
to understand the system being modelled. Often, however, users want a model precisely 
because the target system is not well-understood. 

An alternative approach is to induce a qualitative model directly from observations 
of a system's behavior. Coiera (1989) presents a method which, given a qualitative 
description of one or more system behaviors, derives a qualitative model that reproduces 
those behaviors. MISQ, a system independently developed by Richards, Kraan, and 
Kuipers (1992), uses some of the same techniques, but can synthesize qualitative models 
from qualitative or quantitative behavioral data. MISQ learns maximally constrained 
models and can handle incomplete behavioral descriptions. 

FORTE uses components of MISQ to provide the domain knowledge it needs to work 
in the domain of qualitative modelling. However, FORTE substantially extends MIsq's 
capabilities by allowing the introduction of new system variables. FORTE can also be 
used to revise an imperfect qualitative model supplied by the user. 

A qualitative model is represented as a single, conjunctive clause. Furthermore, one 
generally wants tightly constrained models that produce only the desired behaviors; so 
the language bias is most-specific. This means that FORTE will produce a single clause 
containing all constraints consistent with the input behaviors. As discussed by Richards, 
Kraan, and Kuipers (1992), when given complete behavioral information, a model gen- 
erated in this manner is guaranteed to be unique, complete, and correct. 

One instance specifies a complete system behavior over time; for each system variable 
we have a list specifying the variable's qualitative value, sign, and direction-of-change 
at a series of points in time. This information is interpreted by the QSIM constraint def- 
initions provided in the fundamental domain theory. For example, in order to prove the 
constraint m_plus(Amount, Outflow), FORTE provides the information on the variables 
amount and outflow to the fundamental domain theory predicate ra_plus. If a mono- 
tonically increasing function holds between the two behavior terms, rn_plus succeeds; 
otherwise it fails. A more complete description of QSIM constraints is beyond the scope 
of this paper, and is discussed by Kuipers (1986, 1989). FORTE'S implementation of the 
QSIM constraints is taken from MISQ (Richards, Kraan, & Kuipers, 1992), and includes: 
constant,  M+, Yl--, add, mult iply,  and der iva t ive .  From FORTE'S point of view, the 
constraints in the fundamental domain theory are simply predicates that succeed or fail 
in the course of a Droof. 
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Table 3, Summary of qualitative model induction results. 

Model Training Set Number of Constraints Execution Time 

thrown baß 1 behavior 2 constraints 4 seconds 
simple bathtub 1 behavior 3 constraints 2 seconds 
two independent bathtubs 2 behaviors 6 constraints 35 seconds 
cascaded tanks 2 behaviors 7 constraints 43 seconds 
reaction control system 1 behavior 55 constraints 114 seconds 

Table 3 provides a summary of several models FORTg induced from behavioral data, 
ranging from the very simple model of a thrown ball to the much more complex Reaction 
Control System (RCS) on the space shuttle. As illustrations, we discuss the two cascaded 
tanks and the RCS below. 

7.2. Two Cascaded Tanks 

Cascading two tanks so that the drain from one provides the inflow to the next provides 
a moderately complex second order system. In order to provide a more difficult test, we 
omitted two system variables that auser  might realistically forget: we supposed the user 
measured all the flows and amounts but did not realize that the calculated netflow for each 
tank would be important. Thus, we provided behaviors for the five other variables, but 
omitted the netflows entirely. Given two examples of system behavior, FORTE produces 
the model we would expect: 

model(In_A, Out_A, Amt_A, Out_B, Amt_B) :- 

add(Out_A, Net-A, In_A), 

derivative (Amt-A, Net_A) 

m_plus {Amt_A, Out_A) , 

add(0ut_B, Ner_B, Out_A) 

derivative (Amt-B, Net_B) 

m_plus (Amt_B, Out_B) . 

The netflow variables are reintroduced by relational pathfinding, as a way of satisfying 
the requirement (enforced by the revision verifier) that the model be connected. 

7.3. Reaction Control System 

The Space Shuttle Reaction Control System (RCS) (Kay, 1992) is substantially more com- 
plex than the system of cascaded tanks, and provides a more realistic test of FORTE's 
capabilities in this domain. The RCS consists of a number of identical, parallel com- 
ponents; our test domain consisted of one of these components with its valves in fixed 
positions. Although space prevents us from giving a complete description of the RCS, 
a simplified view would contain three interconnected tanks, plus the thruster outlet. The 
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first tank contains Helium, which is provided at constant pressure to the fuel tank. The 
Helium forces fuel out of the fuel tank and into the manifold. From the manifold, the 
fuel enters the thruster and ignites to provide thrust. 

For the purposes of this section, we assume that the valve leading to the thruster 
is closed (i.e., the thruster is oft), the Helium regulator valve is open and providing a 
constant-pressure supply of Helium, and the valve between the fuel tank and the manifold 
has just been opened. If the initial pressure in the manifold is lower than the initial 
pressure in the fuel tank (so that the system is not immediately at equilibrium), then fuel 
flows into the manifold until the pressures equalize. Providing this single behavior to 
FORTE allows FORTE to induce a correct system model for the RCS, with the addition 
of several correct but redundant constraints. 

However, since FORTE is a theory refinement system, we can use it in a more so- 
phisticated wäy. Suppose that the user has a correct system model, hut that the system 
is behaving incorrectly. In this case, we can use theory refinement to revise the correct 
system model to reflect the actual system behavior. The resulting changes in the model 
can be viewed as a diagnosis. 

One of the failures that can occur in the RCS is a leak in one of the manifolds leading 
from the fuel tank. In order to isolate the leak, the astronauts shut the valve leading from 
the fuel tank into the manifolds. They then isolate the suspected manifold and reopen 
the valve connecting the fuel tank and the manifolds. If the leak has been eliminated, 
the system will quickly reach equilibrium. If the leak has not been isolated, the system 
will not reach a pressure equilibrium (at least, not before all of the fuel has drained out 
through the leak). 

If FOR•E begins with a correct system model along with the system behavior caused 
by a leak in the manifold, FORTF; revises the model by deleting the constraint m±- 
nus(D_~~t_Fuel, D_Arat_Nan). The variable D_amt_Fuel is the amount of fuel leaving the 
fuel tank and flowing into the manifold. Variable D_Amt._Nan is the net change in the 
amount of fuel in the manifold. Normally, the amount of fuel flowing out of the fuel 
tank should be the same, except for sign, as the net amount of fuel being added to the 
manifold. Since FORTE deletes this constraint, there must be another influence on the 
amount of fuel in the manifold, namely, a leak. 

8. Related Work 

8.1. Propositional Theory Refinement 

As previously mentioned, much existing work in theory refinement has dealt with propo- 
sitional theories and does not handle relations or recursion. EITHER (Ourston & Mooney, 
in press) is FOgTE's conceptual predecessor. It revises propositional theories using a 
combination of abduction and induction. Unlike FORWE, EITHER does not hill-climb 
and is guaranteed to fit an arbitrary theory to any set of noise-free data. However, EI- 
THER's approach of computing all abductive proofs of unprovable positive examples was 
deemed computationally intractable for first-order theories. 
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RTLS (Ginsberg, 1990), KBANN (Towell & Shavlik, 1993), Ducwort  (Cain, 1991), and 
KRUST (Craw & Sleeman, 1991) are other theory refinement systems that are restricted 
to propositional theories. Of these, KrtUST is most closely related to FOrtTE, since it 
follows the approach of generating many possible revisions to theories, and then choosing 
among them based on their performance. However, KRUST'S approach suffers from a 
number of weaknesses. For example, even though KRUST requires multiple examples 
to be available, it generates revisions from only a single example. Also, revisions are 
evaluated based on rule-belief factors which ignore the difference between specialization 
and generalization errors; hence, a specialization error can be used to justify further 
specialization of a rule. 

8.2. First-Order Learning 

Most work in inductive logic programming (Muggleton, 1992) concerns generalizing 
an existing first-order Horn-clause theory by adding clauses, but does not address the 
problems of generalizing existing clauses or removing or specializing incorrect clauses. 
Shapiro's (1983) MIS system was capable of specializing theories; however, it required 
an oracle to answer membership queries for any predicate in the theory. His Prolog 
debugging system, PDS6, required even more interaction with the user. It required the 
user to judge the correctness of predicate calls, determine which clause in a predicate 
to change, and to actually write missing clauses. Other interactive systems include 
MARVIN (Sammut & Banerji, 1986) and CLINT (DeRaedt & Bruynooghe, 1992). CLINT 
generalizes and specializes theories and also creates new predicates via analogy. CLINT'S 
revisions only include adding and removing clauses; it does not attempt to modify existing 
clauses. Unlike MIS and CLINT, FORTE automatically revises theories without any user 
interaction. 

A number of recent knowledge-based learning systems use a first-order domain theory 
to bias the learning of an operational concept description but do not modify the actual 
domain theory. ML-SMART (Bergadano & Giordana, 1988) was the first system to take 
this approach. FOCL (Pazzani & Kibler, 1992) is a more recent approach based on 
FOIL. FOCL successively operationalizes a theory by either including portions of the 
domain theory or adding new literals via induction. The addition that provides the best 
information gain is chosen at each point. This general approach is at a disadvantage 
when the initial theory is missing lower-level rules (Cohen, 1992) since it must learn 
a completely new disjunct at the top level. Also, it can unnecessarily eliminate large 
portions of the theory that are consistent with the data but happen not to be needed 
to explain the training examples. By contrast, FORTE preserves as much of the initial 
theory as possible and can learn rules at any level in the theory. FOCL has been used 
as the basis for an interactive theory refinement system, KR-FoCL (Pazzani & Brunk, 
1990). However, this system requires the user to determine where to make most theory 
changes. 

GRENDEL (Cohen, 1992) is a recent system to use domain knowledge to guide in- 
duction. GRENDEL is a FoIL-like inductive learner that allows the user to provide an 
explicit bias in the form of a grammar. By providing different bias grammars, Cohen 
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has shown that GRENDEL can simulate other systems such as FOCL. However, the user 
taust encode the domain knowledge in the appropriate form and, as with FOCL, GREN- 
DEL does not actually refine an initial theory. When a good initial theory is available, 
true theory refinement should have an advantage over systems like ML-SMART, FOCL, 
and GRENDEL. Also, theory refinement can improve the accuracy of subconcepts and 
related concepts for which no explicit training examples have been provided (Ourston & 
Mooney, 1991; Tangkitvanich & Shimura, 1992). 

The GOLEM system has been applied to a number of learning problems. However, 
since it works by generalization, it may overgeneralize a theory. Bain and Muggleton 
(1992a, 1992b) present a method of specialization for GOLEM using "closed-world spe- 
cialization" (i.e., negation as failure). GOLEM first executes normally, generalizing from 
examples to an induced theory. Any exceptions to this theory generated by a closed- 
world specialization algorithm are then recursively generalized. Using this technique 
in the KRK domain, GOLEM learns a correct theory after 10,000 examples. FORTE 
integrates specialization operators from the start, and it is therefore no surprise that its 
performance compares favorably with C-OLEM'S, learning a correct theory after 5000 
examples. Wrobel (1993) presents an alternative definition of minimal semantic special- 
ization, hut does not address the issue of generalizing the resulting exceptions. 

A few other automated refinement systems for first-order theories have also recently 
been developed. AUDREY (Wogulis, 1991) first specializes a theory by deleting clauses 
and then generalizes it using an abductive method that makes a single fault assumption. 
Consequently, its range of revisions is limited compared to FORTE. RX (Tangldtvanich & 
Shimura, 1992) first produces a revised operational definition and then translates this into 
changes to the original theory (as in the RTLS propositional system (Ginsberg, 1990)). 
The basic learning mechanism is very similar to FOCL, and therefore has some of the 
same problems discussed above. In addition, complete operationalization can result in 
an exponential expansion of the theory and can duplicate work when revising rules for 
a subconcept that appears in multiple places in the theory. 

Aben and ran Someren (1990) use a method of annotating and repairing incomplete 
or incorrect logic programs which is similar to FORTE'S, in that they meta-interpret the 
execution of an example set and accumulate evidence which directs them to revise certain 
parts of the input program. However, they revise the program by means of syntactic 
transformations; for example, they might replace the constant "steev" in a failing rule 
with the similar constant "steve", found elsewhere in the program. This allows them 
to identify and correct many syntactic errors, such as typographical mistakes, which 
FORTE would have to treat as semantic errors (i.e., FORTE would not recognize the 
typographical similarity between "steev" and "steve"). However, their success depends 
on the initial theory being very nearly correct, since the corrections are expected to be 
found elsewhere in the program. 

Finally, it should be noted that FORTE'S relational pathfinding is similar to an early 
method for learning production rules developed by Langley (1980). Important differences 
are that Langley's method used unidirectional search and required the path to form the 
entire rule. Relational pathfinding uses spreading activation and can specialize paths by 
adding additional literals. 
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8.3. Belief Revision 

Research in belief revision addresses the problem of finding a minimal retraction of 
beliefs required to consistently incorporate a new belief (Gardenfors, 1992). However 
this work does not address the inductive problem of generalizing a theory or specializing 
it by adding constraints (e.g., by adding additional antecedents to rules). Also, this work 
tends to focus on minimal semantic change which requires memorizing exceptions to the 
theory rather than producing a specialization that generalizes to new cases. 

8.4. Qualitative Modelling 

Bratko, Mozetic, and Lavrac (1989) did some of the earliest work on learning qualitative 
models; however, it was not based on a general purpose simulation language like QSIM. 
Coiera (1989) presents GENMODEL, a method for inducing a QSIM qualitative model 
from qualitative behaviors. His approach is limited by the fact that behaviors must be 
completely specified, and his output models may contain incorrect constraints, due to 
the absence of dimensional analysis. A more powerful system, MIsQ, was developed 
independently by Richards, Kraan, and Kuipers (1992). MISQ uses dimensional analysis, 
and is also able to work with incomplete behavioral information. The MISQ model- 
building techniques are subsumed by FORTE, and FORTE'S relational pathfinding allows 
correct models to be learned even when essential system variables have been omitted. 

GOLEM has also been applied to the problem of learning qualitative models by Bratko, 
Muggleton, and Varsek (1991). However, their method requires hand-generated negative 
information (i.e., examples of behaviors that the system does not exhibit), it does not 
completely implement the QSIM constraints (e.g., corresponding values are ignored), 
and it does not use dimensional information. GOLEM also requires extensionally defined 
background knowledge, whereas FORTE'S fundamental domain theory allows background 
knowledge to be defined intensionally. 

There has also been some recent work in constructing and revising models based on 
Forbus's (1984) qualitative process theory (Falkenhainer & Rajamoney, 1988). However 
this work uses analogy (Falkenhainer, 1990) and experimentation (Rajamoney, 1990) 
rather than induction from a fixed set of behaviors. 

9. Future Work 

Although FORTE performs hill-climbing search, it considers a large number of operations 
at each step. Significant speedup could be obtained if a method could be developed for 
reducing the branching factor by only producing and testing the most promising revisions 
at each cycle. FORTE also spends a great deal of time reproving many examples for 
each revision. A truth maintenance system that kept track of which examples would be 
affected by which changes could potentially eliminate much of this continual reproving. 

Unlike some ILP systems (Muggleton & Feng, 1992; Quinlan, 1991), FORTE does not 
exploit mode information, i.e., knowledge of which predicate arguments are input and 
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which are output. The system could be enhanced to use available mode information to 
prune revisions and order literals in a clause. 

FORTE could also be enhanced to deal with negation as failure. Negation complicates 
revision since it switches the effect of generalizing and specializing operators. For 
example, learning a new rule for a predicate specializes rules in which the predicate 
appears negated. Bain and Muggleton (1992a, 1992b) present a general approach for 
inducing theories containing negation, and this approach could be adapted to theory 
revision. 

The problems of modifying deeply recursive rules, discussed in Section 6.3, need to 
be addressed. Most current methods, such as FOIL and GOLEM, also require complete 
extensional definitions of recursive predicates. However, a couple of recent papers ad- 
dress this issue (Muggleton, 1992b; Lapointe & Matwin, 1992; Cohen, 1993), and these 
ideas may lead to better techniques for revising recursive programs. 

Another major problem is that FORTE, like many ILP systems, cannot invent new 
predicates. The invention of new recursive predicates is a particularly difficult and 
important problem. Using general inverse resolution methods (Muggleton & Buntine, 
1988) to invent new predicates without an oracle is computationally intractable. However, 
several efficient methods for inventing new predicates in restricted cases have recently 
been developed (Wirth & O'Rorke, 1991; Kijsirikul, Numao, & Shimura, 1992), and 
would be useful to add to FORTE. 

In many domains, some form of uncertain or probabilistic reasoning is desirable; how- 
ever, current theory refinement systems like FORTE are restricted to purely logical do- 
main theories. RAPTURE (Mahoney & Mooney, 1993) is a recent system that combines 
connectionist and symbolic methods to refine propositional certainty-factor rule bases 
(Shortliffe & Buchanan, 1975). However, its basic approach should be applicable to 
first-order theories. 

lO. Conelusions 

This paper has described and evaluated a completely automated approach to revising 
imperfect first-order Horn-clause domain theories by incorporating methods from propo- 
sitional theory refinement and inductive logic programming. The ability to revise re- 
lational and recursive theories greatly increases the range of application of automated 
knowledge-base refinement. In particular, it allows for the automatic refinement of logic 
programs and qualitative models. 

Out implemented system, FORTE, uses a hill-climbing algorithm with a diverse col- 
lection of generalization and specialization operators in an attempt to find a minimally 
revised theory that is consistent with a set of training examples. Its operators include 
simple propositional ones such as delete-rule and delete-antecedent, inverse resolution op- 
erators like absorption and identification, and a FolL-like learner for adding antecedents 
and learning new rules. In addition, we introduce a powerful new operator, relational 
pathfinding, that helps overcome local maxima when learning relational concepts. 

Experiments on standard relational benchmarks, such as the family domain, demon- 
strate FORTE'S ability to effectively revise randomly corrupted domain theories and 
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produce more accurate results than purely inductive learning. In the family domain, 
an ablation study reveals the particular effectiveness of relational pathfinding, which 
increases accuracy up to 20 percentage points. 

Results in logic program debugging demonstrate that FORTE can correctly debug sim- 
ple logic programs written by students for a programming languages course. The system 
was also able to correct small bugs in a decision-tree induction program. Finally, un- 
like previous Prolog debugging systems like Shapiro's PDS6, FOR•E requires no user 
interaction. 

In the domain of  qualitative modelling, FORTE has been used to induce QSlM models 
of a number of simple systems from only a single positive qualitative behavior. It has also 
been used to induce, revise, and diagnose a fairly complex qualitative model of  the Space- 
Shuttle Reaction Control System. The relational pathfinding operator is particularly 
important in automated qualitative modelling since it allows FOrtTE to introduce new 
system variables. 

We believe that our results in these diverse domains demonstrate that relatively efficient 
automated refinement of complex relational theories is possible using existing methods 
in theory refinement and inductive logic programming. Continued research will hope- 
fully improve the efficiency of these methods and incorporate advanced features such 
as predicate invention, negation as failure, uncertain reasoning, and better methods for 
revising deeply recursive programs. 
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Notes 

1. The Quintus Prolog implementafion of FORTE, along with sample theories and test data, is avallable by 
anonymous FTP from cs.utexas.edu in the directory/pub/mooney/forte. 

2. A definite program clause is a clause of the form a ~/~1 . . . .  Ôr~ where a, ~1,. •./3r~ are atomic formulae 
(Lloyd, 1987). 

3. Mooney (in press) presents a formal definition of minimal change based on the notion of syntactic distance 
and shows that it guarantees convergence to a probably approximately correct (PAC) theory if the initial the- 
ory is guaranteed to be within a fixed distance of the true theory. Unfortunately, it appears computationally 
intractable to guarantee minimal syntactic change for any realistic theory language. 

4. The input clause in resolution is the clause whose literal appears positively in the resolution step. 

5. For readability, we display lists using functional notation, The actual representation used by FORTE uses 
explicit destructor predicates in place of function symbols. 
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6. The user can readily observe what the system does, but there are an infinite number of things that the 
system does not do, most of which do not provide useful information to the revision process. 

7. The i n s e r t - a f t e r  program may not be familiar. This program adds a new element into a list after the 
first occurrence of a specified marker element, e.g., i n s e r t _ a f t e r (  [a,ra, b ] ,  m, n,  [ a , m , n , b ]  ). 
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