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Abstract. We present a general theory and corresponding declarative model for
the embodied grounding and natural language based analytical summarisation
of dynamic visuo-spatial imagery. The declarative model —ecompassing spatio-
linguistic abstractions, image schemas, and a spatio-temporal feature based lan-
guage generator— is modularly implemented within Constraint Logic Program-
ming (CLP). The implemented model is such that primitives of the theory, e.g.,
pertaining to space and motion, image schemata, are available as first-class ob-
jects with deep semantics suited for inference and query. We demonstrate the
model with select examples broadly motivated by areas such as film, design, ge-
ography, smart environments where analytical natural language based externali-
sations of the moving image are central from the viewpoint of human interaction,
evidence-based qualitative analysis, and sensemaking.

Keywords: moving image, visual semantics and embodiment, visuo-spatial cog-
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1 INTRODUCTION

Spatial thinking, conceptualisation, and the verbal and visual (e.g., gestural, iconic, di-
agrammatic) communication of commonsense as well as expert knowledge about the
world —the space that we exist in— is one of the most important aspects of every-
day human life [Tversky} 2005} 2004} [Bhatt, 2013||. Philosophers, cognitive scientists,
linguists, psycholinguists, ontologists, information theorists, computer scientists, math-
ematicians have each investigated space through the perspective of the lenses afforded
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by their respective field of study [Freksa), 2004, Mix et al.,|2009} Bateman, |2010, Bhatt,
2012, |Bhatt et al., [2013al [Waller and Nadel, [2013]]. Interdisciplinary studies on visuo-
spatial cognition, e.g., concerning ‘visual perception’, ‘language and space’, ‘spatial
memory’, ‘spatial conceptualisation’, ‘spatial representations’, ‘spatial reasoning’ are
extensive. In recent years, the fields of spatial cognition and computation, and spatial
information theory have established their foundational significance for the design and
implementation of computational cognitive systems, and multimodal interaction & as-
sistive technologies, e.g., especially in those areas where processing and interpretation
of potentially large volumes of highly dynamic spatio-temporal data is involved [Bhatt,
2013]]: cognitive vision & robotics, geospatial dynamics [Bhatt and Wallgriinl, 2014],
architecture design [Bhatt et al., | 2014] to name a few prime examples.

Our research addresses ‘space and spatio-temporal dynamics’ from the viewpoints of
visuo-spatial cognition and computation, computational cognitive linguistics, and for-
mal representation and computational reasoning about space, action, and change. We
especially focus on space and motion as interpreted within artificial intelligence and
knowledge representation and reasoning (KR) in general, and declarative spatial rea-
soning [Bhatt et al.| [2011} |Schultz and Bhatt, |2012, Walega et al., 2015] in particular.
Furthermore, the concept of image schemas as “abstract recurring patterns of thought
and perceptual experience” [Johnson, [1990| [Lakoff, | 1990] serves a central role in our
formal framework.

Visuo-Spatial Dynamics of the Moving Image The Moving Image, from the view-
point of this paper, is interpreted in a broad sense to encompass:

multi-modal visuo-auditory perceptual signals (also including depth sensing, haptics,
and empirical observational data) where basic concepts of semantic or content level
coherence, and spatio-temporal continuity and narrativity are applicable. L]

As examples, consider the following:

» cognitive studies of film aimed at investigating attention and recipient effects in
observers vis-a-vis the motion picture [[Nannicelli and Taberham, 2014} /Aldamal [2015]]

» evidence-based design [Hamilton and Watkins| [2009, |Cama) 2009] involving analy-
sis of post-occupancy user behaviour in buildings, e.g., pertaining visual perception of
signage

» geospatial dynamics aimed at human-centered interpretation of (potentially large-
scale) geospatial satellite and remote sensing imagery [Bhatt and Wallgriin| |2014]]

» cognitive vision and control in robotics, smart environments etc, e.g., involving
human activity interpretation and real-time object / interaction tracking in professional
and everyday living (e.g., meetings, surveillance and security at an airport) [Vernon,
2006, 2008, |Dubba et al., 2011} [Bhatt et al., 2013b} |Spranger et al., 2014, |Dubba et al.,
2015].

Within all these areas, high-level semantic interpretation and qualitative analysis of the
moving image requires the representational and inferential mediation of (declarative)
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embodied, qualitative abstractions of the visuo-spatial dynamics, encompassing space,
time, motion, and interaction.

Declarative Model of Perceptual Narratives With respect to a broad-based under-
standing of the moving image (as aforediscussed), we define visuo-spatial perceptual
narratives as:

declarative models of visual, auditory, haptic and other (e.g., qualitative, analytical)
observations in the real world that are obtained via artificial sensors and / or human
input. L]

Declarativeness denotes the existence of grounded (e.g., symbolic, sub-symbolic) mod-
els coupled with deep semantics (e.g., for spatial and temporal knowledge) and sys-
tematic formalisation that can be used to perform reasoning and query answering, em-
bodied simulation, and relational learningﬂ With respect to methods, this paper par-
ticularly alludes to declarative KR frameworks such as logic programming, constraint
logic programming, description logic based spatio-terminological reasoning, answer-
set programming based non-monotonic (spatial) reasoning, or even other specialised
commonsense reasoners based on expressive action description languages for handling
space, action, and change. Declarative representations serve as basis to externalise ex-
plicit and inferred knowledge, e.g., by way of modalities such as visual and diagram-
matic representations, natural language, etc.

Core Contributions. We present a declarative model for the embodied grounding of
the visuo-spatial dynamics of the moving image, and the ability to generate correspond-
ing textual summaries that serve an analytical function from a computer-human inter-
action viewpoint in a range of cognitive assistive technologies and interaction system
where reasoning about space, actions, change, and interaction is crucial. The overall
framework encompasses:

(F1). a formal theory of qualitative characterisations of space and motion with deep
semantics for spatial, temporal, and motion predicates

(F2). formalisation of the embodied image schematic structure of visuo-spatial dynam-
ics wrt. the formal theory of space and motion

(F3). a declarative spatio-temporal feature-based natural language generation engine
that can be used in a domain-independent manner

The overall framework (F1-F3) for the embodied grounding of the visuo-spatial dynam-
ics of the moving image, and the externalisation of the declarative perceptual narrative
model by way of natural language has been fully modelled and implemented in an elab-
oration tolerant manner within Constraint Logic Programming (CLP). We emphasize
that the level of declarativeness within logic programming is such that each aspect per-
taining to the overall framework can be seamlessly customised and elaborated, and that
question-answering & query can be performed with spatio-temporal relations, image

* Broadly, we refer to methods for abstraction, analogy-hypothesis-theory formation, belief re-
vision, argumentation.
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INSIDE(person(The Driver), cinematographic_object(HALF(left)

MOVE(camera, backwards)

INSIDE(person(irene), cinematographic_object(HALF(right))) INSIDE(person(The Driver), cineatographic_object(HALF (right)))
——
INSIDE(person(Irene), cinematographic_object(HALF(right))) INSIDE(person(Irene), cinematographic_object(HALF(left)))

Fig. 1: Analysis based on the Quadrant system (Drive 2011)

schemas, path & motion predicates, syntax trees etc as first class objects within the
CLP environment.

Organization of the Paper. Section[2]presents the application scenarios that we will
directly demonstrate as case-studies in this paper; we focus on a class of cognitive inter-
action systems where the study of visuo-spatial dynamics in the context of the moving
image is central. Sections BH4] present the theory of space, motion, and image schemas
elaborating on its formalisation and declarative implementation within constraint logic
programming. Section [5]presents a summary of the declarative natural language gener-
ation component. Section [6]concludes with a discussion of related work.

2 TALKING ABOUT THE MOVING IMAGE

Talking about the moving image denotes:

the ability to computationally generate semantically well-founded, embodied, multi-
modal (e.g., natural language, iconic, diagrammatic) externalisations of dynamic
visuo-spatial phenomena as perceived via visuo-spatial, auditory, or sensorimotor
haptic interactions. N

In the backdrop of the twin notions of the moving image & perceptual narratives (Sec-
tion [T), we focus on a range of computer-human interaction systems & assistive tech-
nologies at the interface of language, logic, and cognition; in particular, visuo-spatial
cognition and computation are most central. Consider the case-studies in (Sl—S4)E|

5 The paper is confined to visual processing and analysis, and ‘talking about it” by way of natural
language externalisations. We emphasise that our underlying model is general, and elaboration
tolerant to other kinds of input features.
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(S1). CoGNITIVE STUDIES OF FILM Cognitive studies of the moving image —specifically,
cognitive film theory— has accorded a special emphasis on the role of mental activity
of observers (e.g., subjects, analysts, general viewers / spectators) as one of the most
central objects of inquiry [Nannicelli and Taberham)|, 2014, [Aldamal, 2015] (e.g., expert
analysis in Listing L1; Fig[T). Amongst other things, cognitive film studies concern mak-
ing sense of subject’s visual fixation or saccadic eye-movement patterns whilst watch-
ing a film and correlating this with deep semantic analysis of the visuo-auditory data
(e.g., fixation on movie characters, influence of cinematographic devices such as cuts
and sound effects on attention), studies in embodiment [[Sobchackl 2004, [Coegnarts and|

Kravanja, 2012].

DRIVE (2011) | QUADRANT SYSTEM. VISUAL ATTENTION.

Director. Nicolas Winding Refn

This short scene, involving The Driver (Ryan Gosling) and Irene (Carey Mulligan), adopts a TOP-BOTTOM and LEFT-RIGHT quadrant system that is executed
in a SINGLE TAKE / without any cUTS

The CAMERA MOVES BACKWARD tracking the movement of The Driver and Irene; DURING MOVEMENT._1, Irene OCCUPIES the right quadrant, WHILE The
Driver OCCUPIES the LEFT quadrant

Spectator eye-tracking data suggests that the audience is repeatedly switching their attention between the LEFT and RIGHT quadrants, with a majority of
the audience fixating visual attention on Irene as she MOVES into an extreme CLOSE-UP SHOT

Credit. Quadrant system method based on study by Tony Zhou.

(S2). EVIDENCE BASED DESIGN (EBD) OF THE

BuiLT ENVIRONMENT Evidence-based building design involves the study of the post-
occupancy behaviour of building users with the aim to provide a scientific basis for
generating best practice guidelines aimed at improving building performance and user
experience. Amongst other things, this involves an analysis of the visuo-locomotive
navigational experience of subjects based on eye-tracking and egocentric video capture
based analysis of visual perception and attention, indoor people-movement analysis,
e.g., during a wayfinding task, within a large-scale built-up environment such as a hos-
pital or an airport (e.g., see Listing L2). EBD is typically pursued as an interdisciplinary
endeavour —involving environmental psychologists, architects, technologists— toward
the development of new tools and processes for data collection, qualitative analysis etc.

THE NEW PARKLAND HOSPITAL | WAYFINDING STUDY.

Location. Dallas, Texas

This experiment was conducted with 50 subjects at the New Parkland Hospital in Dallas

Subject 21 (Barbara) performed a wayfinding task (#T5), STARTING FROM the reception desk of the emergency department and FINISHING AT the Anderson
Pharmacy. Wayfinding task #5 GOES THROUGH the long corridor in the emergency department, the main reception and the blue elevators, going up to Level
2 INTO the Atrium Lobby, PASSING THROUGH the Anderson-Bridge, finally ARRIVING AT the X-pharmacy

Eye-tracking data and video data analysis suggests that Barbara fixated on passerby Person.5 for two seconds as Person.5 PASSES FROM her RIGHT IN
the long corridor. Barbara fixated most ON the big blue elevator signage AT the main reception desk. DURING the 12th minute, video data from external
GoPro cameras and egocentric video capture and eye-tracking suggest that Barbara looked indecisive (stopped walking, looked around, performed rapid
eye-movements

Credit. Based on joint work with Corgan Associates (Dallas)
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(S3). GEospPATIAL DYNaMICS The ability of semantic and qualitative analytical capa-
bility to complement and synergize with statistical and quantitatively-driven methods
has been recognized as important within geographic information systems. Research in
geospatial dynamics [Bhatt and Wallgriin, [2014] investigates the theoretical founda-
tions necessary to develop the computational capability for high-level commonsense,
qualitative analysis of dynamic geospatial phenomena within next generation event and
object-based GIS systems.

(S4). HUMAN ACTIVITY INTERPRETATION Research on embodied perception of vi-
sion —termed cognitive vision [Vernon, 2006, 2008, Bhatt et al., |2013b]— aims to
enhance classical computer vision systems with cognitive abilities to obtain more ro-
bust vision systems that are able to adapt to unforeseen changes, make “narrative” sense
of perceived data, and exhibit interpretation-guided goal directed behaviour. The long-
term goal in cognitive vision is to provide general tools (integrating different aspects
of space, action, and change) necessary for tasks such as real-time human activity in-
terpretation and dynamic sensor (e.g., camera) control within the purview of vision,
interaction, and robotics.

3 Space, Time, and Motion

Qualitative Spatial & Temporal Representation and Reasoning (QSTR) [Cohn and Haz-
arika), |2001] abstracts from an exact numerical representation by describing the rela-
tions between objects using a finite number of symbols. Qualitative representations
use a set of relations that hold between objects to describe a scene. Galton [Galton,
19931{1995,2000] investigated movement on the basis of an integrated theory of space,
time, objects, and position. Muller [Muller, [1998] defined continuous change using
4-dimensional regions in space-time. Hazarika and Cohn [Hazarika and Cohn, 2002]
build on this work but used an interval based approach to represent spatio-temporal
primitives.

We use spatio-temporal relations to represent and reason about different aspects of
space, time, and motion in the context of visuo-spatial perception as described by
[Suchan et al.| 2014]). To describe the spatial configuration of a perceived scene and
the dynamic changes within it we combine spatial calculi to a general theory for declar-
atively reason about spatio-temporal change. The domain independent theory of Space,
Time, and Motion (XsTMm) consists of:

> X space — Spatial Relations on topology, relative position, relative distance of spatial
objects

» YTime — Temporal Relations for representing relations between time points and
intervals

» > Motion — Motion Relations on changes of distance and size of spatial objects

The resulting theory is given as: stm =ges [Lspace U LTime U LMotion)-
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Fig. 2: Region Connection Calculus (RCC-8)
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Natural Language
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Fig. 3: General Theory of Space, Time, Motion, and Image Schema

Objects and individuals are represented as spatial primitives according to the nature of
the spatial domain we are looking at, i.e., regions of space S = {s1, $2, ..., Sn }, points
P = {p1,p2, ..., Pn}, and line segments L = {ly,1s, ..., 1, } . Towards this we use func-
tions that map from the object or individual to the corresponding spatial primitive. The
spatial configuration is represented using n-ary spatial relations R = {ri,r, ..., }
of an arbitrary spatial calculus. & = {¢1, @2, ..., P, } is a set of propositional and func-
tional fluents, e.g. ¢(e1, e2) denotes the spatial relationship between e; and ey. Tem-
poral aspects are represented using time points T = {ti,ta,...,t,} and time inter-
vals T = {i1,i2,...,1n}. Holds(p,r, at(t)) is used to denote that the fluent ¢ has the
value r at time . To denote that a relation holds for more then one contiguous time
points, we define time intervals by its start and an end point, using between(t1,t2).
Occurs(8,at(t)), and Occurs(8, between(ty, t2)) is used to denote that an event or
action occurred.

3.1  Xspace — Spatial Relations

The theory consists of spatial relations on objects, which includes relations on topol-
ogy and extrinsic orientation in terms of left, right, above, below relations and depth
relations (distance of spatial entity from the spectator).

» Topology. The Region Connection Calculus (RCC) [Cohn et al.,[1997] is an ap-

proach to represent topological relations between regions in space. We use the RCC8
subset of the RCC, which consists of the eight base relations in Ry, (Figure , for
representing regions of perceived objects, e.g. the projection on an object on the image
plan.
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1

Riop = {dc, €c, po, eq, tpp, ntpp, tpp ™, ntpp’l}

» Relative Position. We represent the position of two spatial entities, with respect
to the observer’s viewpoint, using a 3-Dimensional representation that resemble Allen’s
interval algebra [Allen, [1983] for each dimension, i.e. vertical, horizontal, and depth
(distance from the observer). Rpos = [Rpos—v U Rpos—h U Rpos—d]

Rpos—v = {above, overlaps_above, along_above, vertically_equal, overlaps_below, along_below,
below}

Rpos—h = {left, overlaps_left, along_left, horizontally_equal, overlaps_right, along_right, right }
Rpos—d = {closer, overlaps_closer, along_closer, distance_equal, overlaps_further, along_further,
further}

» Relative Distance. We represent the relative distance between two points p; and
po with respect to a third point ps, using ternary relations Rgist.

Raist = {closer, further, same}

» Relative Size. For comparison of the size of two regions we use the relations in
Rsize~

Rdist = {smaller, bigger, same}

3.2 X t1ime — Temporal Relations

Temporal relations are used to represent the relationship between actions and events,
e.g. one action happened before another action. We use the extensions of Allen’s interval
relations [[Allen, 1983 as described by [Vilain, [1982], i.e. these consist of relations
between time points, intervals, and point - interval.

Rpoint = {ebeforee, eaftere, eequalse}

Rinterval = {before, after, during, contains, starts, started_by, finishes, finished_by, overlaps,
overlapped_by, meets, met_by, equal }

Rpoint—interval = { @before, aftere, estarts, started_bye, eduring, containse, efinishes, finished_bye,
eafter, beforee }

The relations used for temporal representation of actions and events are the union of
these three, ie. RTime = [Rpoint U Rinterval U Rpoint—interval]-

3.3 X otion — Qualitative Spatial Dynamics

Spatial relations holding for perceived spatial objects change as an result of motion of
the individuals in the scene. To account for this, we define motion relations by making
qualitative distinctions of the changes in the parameters of the objects, i.e. the distance
between two depth profiles and its size.

» Relative Movement. The relative movement of pairs of spatial objects is repre-
sented in terms of changes in the distance between two points representing the objects.
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Rmove = {approaching, receding, static}

» Size Motion. For representing changes in size of objects, we consider relations on
each dimension (horizontal, vertical, and depth) separately. Changes on more than one
of these parameters at the same time instant can be represented by combinations of the
relations.

Rsize = {elongating, shortening, static}

4 Image Schemas of the Moving Image

Table 1: Image Schemas identifiable in the literature (non-exhaustive list)

SPACE ABOVE . ACROSS . COVERING , CONTACT
VERTICAL ORIENTATION , LENGTH

CONTAINMENT PATH , PATH_GOAL , SOURCE_PATH_GOAL ,
MOTION BLOCKAGE , CENTER_PERIPHERY , CYCLE ,
CYCLIC_CLIMAX

COMPULSION , COUNTERFORCE , DIVERSION

FORCE REMOVAL_OF_RESTRAINT / ENABLEMENT , ATTRACTION ,
LINK , SCALE
BALANCE AXIS_BALANCE . POINT_BALANCE , TWIN_PAN_BALANCE .
EQUILIBRIUM
LINEAR_PATH FROM_MOVING _OBJECT .
TRANSFORMATION PATH_TO_ENDPOINT , PATH_TO_OBJECT MASS

MULTIPLEX_TO_MASS , REFLEXIVE , ROTATION’

SURFACE , FULL-EMPTY , MERGING . MATCHING ,
OTHERS NEAR-FAR , MASS-COUNT , TERATION . OBJEGT |
SPLITTING , PART-WHOLE . SUPERIMPOSITION , PROCESS ,
COLLECTION

Image schemas have been a cornerstone in cognitive linguistics [Geeraerts and Cuyck-
ens}, [2007]], and have also been investigated from the perspective of psycholinguistics,
and language and cognitive development [Mandler, |1992| Mandler and Pagan Canovas|
2014]. Image schemas, as embodied structures founded on experiences of interactions
with the world, serve as the ideal framework for understanding and reasoning about
perceived visuo-spatial dynamics, e.g., via generic conceptualisation of space, motion,
force, balance, transformation, etc. Table E] presents a non-exhaustive list of image
schemas identifiable in the literature. We formalise image schemas on individuals, ob-
jects and actions of the domain, and ground them in the spatio-temporal dynamics, as
defined in Section [3] that are underling the particular schema. As examples, we fo-
cus on the spatial entities PATH, CONTAINER, THING, the spatial relation CONTACT,
and movement relations MOVE, INTO, OUT OF (these being regarded as highly im-
portant and foundational from the viewpoint of cognitive development [Mandler and
Pagan Canovas), 2014]).
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CONTAINMENT The CONTAINMENT schema denotes, that an object or an individual
is inside of a container object.

containment (entity (E), container(C)) :- inside(E, C).

As an example consider the following description from the film domain described in
Listing L1.

Irene OCCUPIES the RIGHT QUADRANT, WHILE The Driver OCCUPIES the LEFT
QUADRANT.

In the movie example the ENTITY is a person in the film, namely The Driver, and the
CONTAINER is a cinematographic object, the top-left quadrant, which is used to analyse
the composition of the scene. We are defining the inside relation based on the involved
individuals and objects, e.g. in this case we define the topological relationship between
The Drivers face and the bottom-right quadrant.

inside (person(P), cinemat_object (quadrant (Q)) :-—
region (person(P), P_region),
region (cinemat_object (quadrant (Q)), Q_region)
topology (nttp, P_region, Q_region).

To decide on the words to use for describing the schema, we make distinctions on
the involved entities and the spatial characteristics of the scene, e.g. we use the word
‘occupies’, when the person is taking up the whole space of the container, i.e. the size
is bigger than a certain threshold.

phrase (containment (E, C), [E, ’'occupy’, C]) :-
region (person(E), E_region),
region (cinemat_object (quadrant (C), C_region),
threshold (C_region, C_tresh),
size(bigger, E_region, C_tresh).

Similarly, we choose the word ’in’, when the person is fully contained in the quadrant.

PATH_.GOAL and SOURCE_PATH.GOAL The PATH_.GOAL Image Schema is used to
conceptualise the movement of an object or an individual, towards a goal location, on
a particular path. In this case, the path is the directed movement towards the goal. The
SOURCE_PATH_GOAL Schema builds on the PATH_.GOAL Schema by adding a source
to it. Both Schemas are used to describe movement, however, in the first case, the source
is not important, only the goal of the movement is of interest. Here we only describe
the SOURCE_PATH_GOAL Schema in more detail, as the PATH Schema is the same,
without the source in it.
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source_path_goal (Trajector, Source, Path, Goal) :-
entity (Trajector), location(Source), location (Goal),
path (Path, Source, Goal),

at_location (Trajector, Source, at_time(T_1)),
at_location (Trajector, Goal, at_time(T_2)),

move (Trajector, Path, between(T_1, T_2)).

In the way finding analysis one example of the SOURCE_PATH_GOAL schema is when
a description of the path a subject was walking is generated.

Barbara WALKS FROM the EMERGENCY, THROUGH the ATRIUM LOBBY TO the BLUE
ELEVATORS.

Another example is when a descriptions of a subjects eye movement is generated from
the eye tracking experiment.

Barbaras eyes MOVE FROM the EMERGENCY SIGN,
OVER the EXIT SIGN TO the ELEVATOR SIGN.

In both of these sentences there is a moving entity, the trajector, a source and a goal
location, and a path connecting the source and the goal. In the first sentence it is Barbara
who is moving, while in the second sentence Barbaras eyes are moving. Based on the
different spatial entities involved in the movement, we need different definitions of
locations, path, and the moving actions. In the way finding domain, a subject is at a
location when the position of the person upon a 2-dimensional floorplan is inside the
region denoting the location, e.g. a room, a corridor, or any spatial artefact describing a
region in the floorplan.

at_location (Subject, Location) :-
person (Subject), room(Location),
position (Subject, S_pos), region(Location, L_req),
topology (ntpp, S_pos, Loc_reqg).

Possible paths between the locations of a floorplan are represented by a topological
route graph, on which the subject is walking.

move (person (Subject), Path) :-
action (movement (walk), Subject, Path),
movement (approaching, Subject, Goal).

For generating language, we have to take the type of the trajector into account, as well as
the involved movement and the locations, e.g. the eyes are moving "over’ some objects,
but Barbara moves ‘trough’ the corridor.

ATTRACTION The ATTRACTION schema is expressing a force by which an entity is
attracted.
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attraction (Subject, Entity) :-
entity (Subject), entity(Entity),
force (attraction, Subject, Entity).

An example for ATTRACTION is the eye tracking experiment, when the attention of a
subject is attracted by some object in the environment.

While walking THROUGH the HALLWAY, Barbaras attention is attracted by the
OUTSIDE VIEW.

In this case the entity is Barbara’s attention which is represented by the eye tracking
data, and it is attracted by the force, the outside view applies on it. We define attraction
by the fact, that the gaze position of Barbara has been on the outside for a substantial
amount of time, however, this definition can be adapted to the needs of domain experts,
e.g. architects who want to know what are the things that grab the attention of people in
a building.

5 From Perceptual Narratives to Natural Language

The design and implementation of the natural language generation component has been
driven by three key developmental goals: (1) ensuring support for, and uniformity with
respect to the (deep) representational semantics of space and motion relations etc (Sec-
tion [3); (2) development of modular, yet tightly integrated set of components that can
be easily used within the state-of-the-art (constraint) logic programming family of KR
methods; and (3) providing seamless integration capabilities within hybrid Al and com-
putational cognition systems.

System Overview (NL Generation)

The overall pipeline of the language generation component follows a standard natural
language generation system architecture [Reiter and Dale, 2000, |Bateman and Zockl
2003]). Figure [ illustrates the system architecture encompassing the typical stages of
content determination & result structuring, linguistic & syntactic realisation, and syntax
tree & sentence generation.

S1. Input - Interaction Description Schema Interfacing with the language genera-
tor is possible with a generic (activity-theoretic) Interaction Description Schema (IDS)
that is founded on the ontology of the (declarative) perceptual narrative, and a gen-
eral set of constructs to introduce the domain-specific vocabulary. Instances of the IDS
constitute the domain-specific input data for the generator.
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Fig. 4: From Perceptual Narratives to Natural Language

S2. Syntax Tree and Sentence Generation The generator consists of sub-modules
concerned with input IDS instance to text planning, morphological & syntanctic real-
isation, and syntax tree & sentence generation. Currently, the generator functions in a
single interaction mode where each invocation of the system (with an input instance of
the IDS) produces a single sentence in order to produce spatio-temporal domain-based
text. The morphological and syntactic realisation module brings in assertions of detailed
grammatical knowledge and the lexicon that needs to be encapsulated for morpoho-
logical realisation; this encompasses aspects such as noun and verb categories, spatial
relations and locations; part of speech identification is also performed at this stage, in-
cluding determiner and adjective selection, selection of verb and tense etc. The parts
of speech identified by the morph analyser taken together with context free grammar
rules for simple, complex, and compound sentence constructions are used for syntactic
realisation, and sentence generation.

Language Generation (Done Declaratively)

Each aspect of generation process, be it at a factual level (grammar, lexicon, input data)
or at a process level (realisation, syntax tree generation) is fully declarative (to the ex-
tent possible in logic programming) and elaboration tolerant (i.e., addition or removal
or facts & rules, constraints etc does not break down the generation process). An im-
portant consequence of this level of declarativeness is that a query can work both ways:
from input data to syntax tree to sentence, or from a sentence back to its syntax tree and
linguistic decomposition wrt. to a specific lexicon.

Empirical Evaluation of Language Generation

We tested the language generation component with data for 25 subjects, 500 IDS in-
stances, and 53 domain facts (using an Intel Core i7-3630QM CPU @ 2.40GHz x 8). We
generated summaries in simple/continuous present, past, future respectively for all IDS
instances. Table (2): (a). average of 20 interactions, on an average 26.2 sentences / sum-
mary, with 17.6 tokens as the average length / sentence; (b) generated 100 sentences for
simple, compound, and complex types reflecting the average sentence generation time.
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Table 2: Time (in ms) for (a) summaries, (b) sentences

Tense ‘ Avg. Min. Max.
simple 77.8 70 96
continous|84.48 73 99

complex | 1,32
(a) (b)

6 DISCUSSION AND RELATED WORK

Cognitive vision as an area of research has already gained prominence, with several
recent initiatives addressing the topic from the perspectives of language, logic, and arti-
ficial intelligence [[Vernon, |2006} 2008}, [Dubba et al., 2011}, Bhatt et al.,|2013b} |[Spranger
et al.,[2014, Dubba et al.,[2015]. There has also been an increased interest from the com-
puter vision community to synergise with cognitively motivated methods for language
grounding and inference with visual imagery [Karpathy and Fei-Feil 2015/ [Yu et al.|
2015]]. This paper has not attempted to present advances in basic computer vision re-
search; in general, this is not the agenda of our research even outside the scope of this
paper. The low-level visual processing algorithms that we utilise are founded in state-
of-the-art outcomes from the computer vision community for detection and tracking of
people, objects, and motion [Canny, 1986, |Lucas and Kanadel |1981], [Viola and Jones|
2001} |Dalal and Triggs, ZOOS]E] On the language front, the number of research projects
addressing natural language generation systems [Reiter and Dalel 2000, Bateman and!
Zock, [2003[] is overwhelming; there exist a plethora of projects and initiatives focussing
on language generation in general or specific contexts, candidate examples being the
works in the context of weather report generation [|Goldberg et al., 1994, Sripada et al.|
2014]], Pollen forecasts [Turner et al., 2006]E] Our focus on the (declarative) language
generation component of the framework of this paper (Section [5) has been on the use
of “deep semantics” for space and motion, and to have a unified framework —with each
aspect of the embodied perception grounding framework— fully implemented within
constraint logic programming.

Our research is motivated by computational cognitive systems concerned with inter-
preting multimodal dynamic perceptual input; in this context, we believe that it is es-
sential to build systematic methods and tools for embodied visuo-spatial conception,
formalisation, and computation with primitives of space and motion. Toward this, this
paper has developed a declarative framework for embodied grounding and natural lan-
guage based analytical summarisation of the moving image; the implemented model

® For instance, we analyse motion in a scene sparse and dense optical flow [[Lucas and Kanadel
1981}, [Farneback} 2003], detecting faces using cascades of features [Viola and Jones| [2001]],
detecting humans using histograms of oriented gradients [Dalal and Triggs| [2005]].

7 'We have been unable to locate a fitting & comparable spatio-temporal feature sensitive lan-
guage generation module for open-source usage. We will disseminate our language generation
component as an open-source PROLOG library.
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consists of modularly built components for logic-based representation and reasoning
about qualitative and linguistically motivated abstractions about space, motion, and im-
age schemas. Our model and approach can directly provide the foundations that are
needed for the development of novel assistive technologies in areas where high-level
qualitative analysis and sensemaking [Bhatt et al.| [2013a, Bhatt, |2013]] of dynamic
visuo-spatial imagery is central.
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