OREILLY"

Natural Language
Processing with
Transformers

Building Language Applications
with Hugging Face

N
/ ‘,:..-;L hx
= |

\

b a_\’i
e T
|

Lewis Tunstall,
Leandro von Werra
& Thomas Wolf




Praise for Natural Language Processing with Transformers

Pretrained transformer language models have taken the NLP
world by storm, while libraries such as %' Transformers have made
them much easier to use. Who better to teach you how to leverage
the latest breakthroughs in NLP than the creators of said library?
Natural Language Processing with Transformers is a tour de force,
reflecting the deep subject matter expertise of its authors in both
engineering and research. It is the rare book that offers both
Ssubstantial breadth and depth of insight and deftly mixes research
advances with real-world applications in an accessible way. The
book gives informed coverage of the most important methods and
applications in current NLP, from muiltilingual to efficient models
and from question answering to text generation. Each chapter
provides a nuanced overview grounded in rich code examples that
highlights best practices as well as practical considerations and
enables you to put research-focused models to impactful real-
world use. Whether you’re new to NLP or a veteran, this book will
improve your understanding and fast-track your development and
deployment of state-of-the-art models.

—Sebastian Ruder, Google DeepMind

Transformers have changed how we do NLP, and Hugging Face
has pioneered how we use transformers in product and research.
Lewis Tunstall, Leandro von Werra, and Thomas Wolf from
Hugging Face have written a timely volume providing a convenient
and hands-on introduction to this critical topic. The book offers a
solid conceptual grounding of transformer mechanics, a tour of the
transformer menagerie, applications of transformers, and practical
issues in training and bringing transformers to production. Having
read chapfters in this book, with the depth of its content and lucid
presentation, | am confident that this will be the number one
resource for anyone interested in learning transformers,
particularly for natural language processing.

—Delip Rao, Author of Natural Language Processing
and Deep Learning with PyTorch



Complexity made simple. This is a rare and precious book about
NLP, transformers, and the growing ecosystem around them,
Hugging Face. Whether these are still buzzwords to you or you
already have a solid grasp of it all, the authors will navigate you
with humor, scientific rigor, and plenty of code examples into the
deepest secrets of the coolest technology around. From “off-the-
shelf pretrained” to “from-scratch custom” models, and from
performance to missing labels issues, the authors address
practically every real-life struggle of a ML engineer and provide
state-of-the-art solutions, making this book destined to dictate the
Standards in the field for years to come.

—Luca Perrozzi, PhD, Data Science and Machine
Learning Associate Manager at Accenture



Natural Language Processing with
Transformers

Building Language Applications with Hugging Face

Lewis Tunstall, Leandro von Werra, and Thomas
Wolf
Foreword by Aurélien Géron



Natural Language Processing with Transformers
by Lewis Tunstall, Leandro von Werra, and Thomas Wolf

Copyright © 2022 Lewis Tunstall, Leandro von Werra, and Thomas
Wolf. All rights reserved.

Printed in the United States of America.

Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Rebecca Novack
Development Editor: Melissa Potter
Production Editor: Katherine Tozer
Copyeditor: Rachel Head
Proofreader: Kim Cofer

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery

lllustrator: Christa Lanz

February 2022: First Edition


http://oreilly.com/

Revision History for the First Edition
o 2022-01-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098103248 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Natural Language Processing with Transformers, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not
represent the publisher’s views. While the publisher and the authors
have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-10324-8
ILSI]


http://oreilly.com/catalog/errata.csp?isbn=9781098103248

Foreword

A miracle is taking place as you read these lines: the squiggles on
this page are transforming into words and concepts and emotions as
they navigate their way through your cortex. My thoughts from
November 2021 have now successfully invaded your brain. If they
manage to catch your attention and survive long enough in this
harsh and highly competitive environment, they may have a chance
to reproduce again as you share these thoughts with others. Thanks
to language, thoughts have become airborne and highly contagious
brain germs—and no vaccine is coming.

Luckily, most brain germs are harmless,' and a few are wonderfully
useful. In fact, humanity’s brain germs constitute two of our most
precious treasures: knowledge and culture. Much as we can’t digest
properly without healthy gut bacteria, we cannot think properly
without healthy brain germs. Most of your thoughts are not actually
yours: they arose and grew and evolved in many other brains before
they infected you. So if we want to build intelligent machines, we will
need to find a way to infect them too.

The good news is that another miracle has been unfolding over the
last few years: several breakthroughs in deep learning have given
birth to powerful language models. Since you are reading this book,
you have probably seen some astonishing demos of these language
models, such as GPT-3, which given a short prompt such as “a frog
meets a crocodile” can write a whole story. Although it's not quite
Shakespeare yet, it's sometimes hard to believe that these texts
were written by an artificial neural network. In fact, GitHub’s Copilot
system is helping me write these lines: you'll never know how much |
really wrote.

The revolution goes far beyond text generation. It encompasses the
whole realm of natural language processing (NLP), from text
classification to summarization, translation, question answering,
chatbots, natural language understanding (NLU), and more.
Wherever there’s language, speech or text, there’s an application for
NLP. You can already ask your phone for tomorrow’s weather, or



chat with a virtual help desk assistant to troubleshoot a problem, or
get meaningful results from search engines that seem to truly
understand your query. But the technology is so new that the best is
probably yet to come.

Like most advances in science, this recent revolution in NLP rests
upon the hard work of hundreds of unsung heroes. But three key
ingredients of its success do stand out:

» The transformer is a neural network architecture proposed in
2017 in a groundbreaking paper called “Attention Is All You
Need”, published by a team of Google researchers. In just a
few years it swept across the field, crushing previous
architectures that were typically based on recurrent neural
networks (RNNs). The Transformer architecture is excellent
at capturing patterns in long sequences of data and dealing
with huge datasets—so much so that its use is now
extending well beyond NLP, for example to image processing
tasks.

* In most projects, you won’t have access to a huge dataset to
train a model from scratch. Luckily, it's often possible to
download a model that was pretrained on a generic dataset:
all you need to do then is fine-tune it on your own (much
smaller) dataset. Pretraining has been mainstream in image
processing since the early 2010s, but in NLP it was restricted
to contextless word embeddings (i.e., dense vector
representations of individual words). For example, the word
“bear” had the same pretrained embedding in “teddy bear”
and in “to bear.” Then, in 2018, several papers proposed full-
blown language models that could be pretrained and fine-
tuned for a variety of NLP tasks; this completely changed the
game.

» Model hubs like Hugging Face’s have also been a game-
changer. In the early days, pretrained models were just
posted anywhere, so it wasn’t easy to find what you needed.


https://arxiv.org/abs/1706.03762

Murphy’s law guaranteed that PyTorch users would only find
TensorFlow models, and vice versa. And when you did find a
model, figuring out how to fine-tune it wasn'’t always easy.
This is where Hugging Face’s Transformers library comes in:
it's open source, it supports both TensorFlow and PyTorch,
and it makes it easy to download a state-of-the-art pretrained
model from the Hugging Face Hub, configure it for your task,
fine-tune it on your dataset, and evaluate it. Use of the library
is growing quickly: in Q4 2021 it was used by over five
thousand organizations and was installed using pip over four
million times per month. Moreover, the library and its
ecosystem are expanding beyond NLP: image processing
models are available too. You can also download numerous
datasets from the Hub to train or evaluate your models.

So what more can you ask for? Well, this book! It was written by
open source developers at Hugging Face—including the creator of
the Transformers library!—and it shows: the breadth and depth of the
information you will find in these pages is astounding. It covers
everything from the Transformer architecture itself, to the
Transformers library and the entire ecosystem around it. | particularly
appreciated the hands-on approach: you can follow along in Jupyter
notebooks, and all the code examples are straight to the point and
simple to understand. The authors have extensive experience in
training very large transformer models, and they provide a wealth of
tips and tricks for getting everything to work efficiently. Last but not
least, their writing style is direct and lively: it reads like a novel.

In short, | thoroughly enjoyed this book, and I’'m certain you will too.
Anyone interested in building products with state-of-the-art
language-processing features needs to read it. It's packed to the
brim with all the right brain germs!

Aurélien Géron
November 2021, Auckland, NZ




1 For brain hygiene tips, see CGP Grey’s excellent video on memes.


https://youtu.be/rE3j_RHkqJc

Preface

Since their introduction in 2017, transformers have become the de
facto standard for tackling a wide range of natural language
processing (NLP) tasks in both academia and industry. Without
noticing it, you probably interacted with a transformer today: Google
now uses BERT to enhance its search engine by better
understanding users’ search queries. Similarly, the GPT family of
models from OpenAl have repeatedly made headlines in mainstream
media for their ability to generate human-like text and images.'
These transformers now power applications like GitHub’s Copilot,
which, as shown in Figure P-1, can convert a comment into source
code that automatically creates a neural network for you!

So what is it about transformers that changed the field almost
overnight? Like many great scientific breakthroughs, it was the
synthesis of several ideas, like attention, transfer learning, and
scaling up neural networks, that were percolating in the research
community at the time.

But however useful it is, to gain traction in industry any fancy new
method needs tools to make it accessible. The & Transformers
library and its surrounding ecosystem answered that call by making it
easy for practitioners to use, train, and share models. This greatly
accelerated the adoption of transformers, and the library is now used
by over five thousand organizations. Throughout this book we’ll
guide you on how to train and optimize these models for practical
applications.


https://copilot.github.com/
https://oreil.ly/Z79jF

1 # Create a convolutional neural network to classify MNIST images in PyTorch.
Z claas|Cunvﬂet{nn.ﬂﬂdulejr
def __init_ (self):

super(ConvNet, self).__init_ ()

self.convl = nn.Conv2d(1, 18, kernel _size=5)

self.conv? = nn.Conv2d(18, 28, kernel size=5)

self.conv2_drop = nn.Dropout2d()

self.fcl = nn.Linear(328, 58)

self.fc?2 = nn.Linear(58, 18)

def forward(self, x):

= F.relufF.max_pool2d(self.convi(x), 2))

= F.relu(F.max_pool2d({self.convZ_drop(self.convZ(x)}, 2))
x.view(-1, 328)

= F.relufself.fcl(x))

= F.dropout(x, training=self.training)

= self.fc2(x)

return F.leog_softmax(x, dim=1)

Figure P-1. An example from GitHub Copilot where, given a brief description of
the task, the application provides a suggestion for the entire class (everything
following class is autogenerated)

oM oM oM oM M
n



Who Is This Book For?

This book is written for data scientists and machine learning
engineers who may have heard about the recent breakthroughs
involving transformers, but are lacking an in-depth guide to help
them adapt these models to their own use cases. The book is not
meant to be an introduction to machine learning, and we assume
you are comfortable programming in Python and has a basic
understanding of deep learning frameworks like PyTorch and
TensorFlow. We also assume you have some practical experience
with training models on GPUs. Although the book focuses on the
PyTorch API of (%! Transformers, Chapter 2 shows you how to
translate all the examples to TensorFlow.

The following resources provide a good foundation for the topics
covered in this book. We assume your technical knowledge is
roughly at their level:

e Hands-On Machine Learning with Scikit-Learn and
TensorFlow, by Aurélien Géron (O’Reilly)

» Deep Learning for Coders with fastai and PyTorch, by
Jeremy Howard and Sylvain Gugger (O'Reilly)

e Natural Language Processing with PyTorch, by Delip Rao
and Brian McMahan (O’Reilly)

e The Hugging Face Course, by the open source team at
Hugging Face


https://pytorch.org/
https://www.tensorflow.org/
https://oreil.ly/n3MaR

What You Will Learn

The goal of this book is to enable you to build your own language
applications. To that end, it focuses on practical use cases, and
delves into theory only where necessary. The style of the book is
hands-on, and we highly recommend you experiment by running the
code examples yourself.

The book covers all the major applications of transformers in NLP by
having each chapter (with a few exceptions) dedicated to one task,
combined with a realistic use case and dataset. Each chapter also
introduces some additional concepts. Here'’s a high-level overview of
the tasks and topics we’ll cover:

Chapter 1, Hello Transformers, introduces transformers and
puts them into context. It also provides an introduction to the
Hugging Face ecosystem.

Chapter 2, Text Classification, focuses on the task of
sentiment analysis (a common text classification problem)
and introduces the Trainer API.

Chapter 3, Transformer Anatomy, dives into the Transformer
architecture in more depth, to prepare you for the chapters
that follow.

Chapter 4, Multilingual Named Entity Recognition, focuses
on the task of identifying entities in texts in multiple
languages (a token classification problem).

Chapter 5, Text Generation, explores the ability of
transformer models to generate text, and introduces
decoding strategies and metrics.

Chapter 6, Summarization, digs into the complex sequence-
to-sequence task of text summarization and explores the
metrics used for this task.



o Chapter 7, Question Answering, focuses on building a
review-based question answering system and introduces
retrieval with Haystack.

» Chapter 8, Making Transformers Efficient in Production,
focuses on model performance. We’'ll look at the task of
intent detection (a type of sequence classification problem)
and explore techniques such a knowledge distillation,
quantization, and pruning.

o Chapter 9, Dealing with Few to No Labels, looks at ways to
improve model performance in the absence of large amounts
of labeled data. We'll build a GitHub issues tagger and
explore techniques such as zero-shot classification and data
augmentation.

e Chapter 10, Training Transformers from Scratch, shows you
how to build and train a model for autocompleting Python
source code from scratch. We'll look at dataset streaming
and large-scale training, and build our own tokenizer.

o Chapter 11, Future Directions, explores the challenges
transformers face and some of the exciting new directions
that research in this area is going into.

¥ Transformers offers several layers of abstraction for using and
training transformer models. We’'ll start with the easy-to-use
pipelines that allow us to pass text examples through the models and
investigate the predictions in just a few lines of code. Then we'll
move on to tokenizers, model classes, and the Trainer API, which
allow us to train models for our own use cases. Later, we’ll show you
how to replace the Trainer with the & Accelerate library, which gives
us full control over the training loop and allows us to train large-scale
transformers entirely from scratch! Although each chapter is mostly
self-contained, the difficulty of the tasks increases in the later
chapters. For this reason, we recommend starting with Chapters 1
and 2, before branching off into the topic of most interest.



Besides ¥ Transformers and ¥ Accelerate, we will also make
extensive use of (%! Datasets, which seamlessly integrates with other
libraries. ¥! Datasets offers similar functionality for data processing
as Pandas but is designed from the ground up for tackling large
datasets and machine learning.

With these tools, you have everything you need to tackle almost any
NLP challenge!



Software and Hardware Requirements

Due to the hands-on approach of this book, we highly recommend
that you run the code examples while you read each chapter. Since
we're dealing with transformers, you’ll need access to a computer
with an NVIDIA GPU to train these models. Fortunately, there are
several free online options that you can use, including:

» Google Colaboratory
o Kaggle Notebooks

» Paperspace Gradient Notebooks

To run the examples, you'll need to follow the installation guide that
we provide in the book’s GitHub repository. You can find this guide
and the code examples at https.//github.com/nlp-with-
transformers/notebooks.

TIP

We developed most of the chapters using NVIDIA Tesla P100
GPUs, which have 16GB of memory. Some of the free platforms
provide GPUs with less memory, so you may need to reduce the
batch size when training the models.


https://oreil.ly/jyXgA
https://oreil.ly/RnMP3
https://oreil.ly/mZEKy
https://github.com/nlp-with-transformers/notebooks

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names,
databases, data types, environment variables, statements, and
keywords.

Constant width bold
Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.



WARNING

This element indicates a warning or caution.




Using Code Examples

Supplemental material (code examples, exercises, etc.) is available
for download at https.//github.com/nip-with-transformers/notebooks.

If you have a technical question or a problem using the code
examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or
distributing examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and ISBN. For
example: “Natural Language Processing with Transformers by Lewis
Tunstall, Leandro von Werra, and Thomas Wolf (O’Reilly). Copyright
2022 Lewis Tunstall, Leandro von Werra, and Thomas Wolf, 978-1-
098-10324-8.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at
permissions@oreilly.com.


https://github.com/nlp-with-transformers/notebooks
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand
access to live training courses, in-depth learning paths, interactive
coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit
http://oreilly.com.


http://oreilly.com/
http://oreilly.com/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at
https.//oreil.ly/nlp-with-transformers.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http.//facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http.//youtube.com/oreillymedia


https://oreil.ly/nlp-with-transformers
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Acknowledgments

Writing a book about one of the fastest-moving fields in machine
learning would not have been possible without the help of many
people. We thank the wonderful O’Reilly team, and especially
Melissa Potter, Rebecca Novack, and Katherine Tozer for their
support and advice. The book has also benefited from amazing
reviewers who spent countless hours to provide us with invaluable
feedback. We are especially grateful to Luca Perozzi, Hamel Husain,
Shabie Igbal, Umberto Lupo, Malte Pietsch, Timo Moller, and
Aurélien Géron for their detailed reviews. We thank Branden Chan at
deepset for his help with extending the Haystack library to support
the use case in Chapter 7. The beautiful illustrations in this book are
due to the amazing Christa Lanz—thank you for making this book
extra special. We were also fortunate enough to have the support of
the whole Hugging Face team. Many thanks to Quentin Lhoest for
answering countless questions on (¥ Datasets, to Lysandre Debut
for help on everything related to the Hugging Face Hub, Sylvain
Gugger for his help with ! Accelerate, and Joe Davison for his
inspiration for Chapter 9 with regard to zero-shot learning. We also
thank Sidd Karamcheti and the whole Mistral team for adding
stability tweaks for GPT-2 to make Chapter 10 possible. This book
was written entirely in Jupyter Notebooks, and we thank Jeremy
Howard and Sylvain Gugger for creating delightful tools like fastdoc
that made this possible.


https://www.deepset.ai/
https://christalanz.ch/
https://oreil.ly/aOYLt
https://oreil.ly/yVCfT

Lewis

To Sofia, thank you for being a constant source of support and
encouragement—without both, this book would not exist. After a long
stretch of writing, we can finally enjoy our weekends again!



Leandro

Thank you Janine, for your patience and encouraging support during
this long year with many late nights and busy weekends.



Thomas

| would like to thank first and foremost Lewis and Leandro for coming
up with the idea of this book and pushing strongly to produce it in
such a beautiful and accessible format. | would also like to thank all
the Hugging Face team for believing in the mission of Al as a
community effort, and the whole NLP/Al community for building and
using the libraries and research we describe in this book together
with us.

More than what we build, the journey we take is what really matters,
and we have the privilege to travel this path with thousands of
community members and readers like you today. Thank you all from
the bottom of our hearts.

1 NLP researchers tend to name their creations after characters in
Sesame Street. We'll explain what all these acronyms mean in
Chapter 1.



Chapter 1. Hello Transformers

In 2017, researchers at Google published a paper that proposed a novel neural
network architecture for sequence modeling.” Dubbed the Transformer, this
architecture outperformed recurrent neural networks (RNNs) on machine translation
tasks, both in terms of translation quality and training cost.

In parallel, an effective transfer learning method called ULMFIT showed that training
long short-term memory (LSTM) networks on a very large and diverse corpus could
produce state-of-the-art text classifiers with little labeled data.?

These advances were the catalysts for two of today’s most well-known transformers:
the Generative Pretrained Transformer (GPT)? and Bidirectional Encoder
Representations from Transformers (BERT).* By combining the Transformer
architecture with unsupervised learning, these models removed the need to train task-
specific architectures from scratch and broke almost every benchmark in NLP by a
significant margin. Since the release of GPT and BERT, a zoo of transformer models
has emerged; a timeline of the most prominent entries is shown in Figure 1-1.

ULMFIT BERT RoBERTa XLM-R  DeBERTa  GPT-Neo
L]
Transformer GPT GPT-2 DistilBERT  GPT-3|T5 GPT-J
2017 2018 2019 2020 2021

Figure 1-1. The transformers timeline

But we're getting ahead of ourselves. To understand what is novel about transformers,
we first need to explain:

e The encoder-decoder framework
¢ Attention mechanisms
e Transfer learning

In this chapter we’ll introduce the core concepts that underlie the pervasiveness of
transformers, take a tour of some of the tasks that they excel at, and conclude with a
look at the Hugging Face ecosystem of tools and libraries.

Let’s start by exploring the encoder-decoder framework and the architectures that
preceded the rise of transformers.



The Encoder-Decoder Framework

Prior to transformers, recurrent architectures such as LSTMs were the state of the art
in NLP. These architectures contain a feedback loop in the network connections that
allows information to propagate from one step to another, making them ideal for
modeling sequential data like text. As illustrated on the left side of Figure 1-2, an RNN
receives some input (which could be a word or character), feeds it through the
network, and outputs a vector called the hidden state. At the same time, the model
feeds some information back to itself through the feedback loop, which it can then use
in the next step. This can be more clearly seen if we “unroll” the loop as shown on the
right side of Figure 1-2: the RNN passes information about its state at each step to the
next operation in the sequence. This allows an RNN to keep track of information from
previous steps, and use it for its output predictions.

1 r 1 1 1

Inputt Input1 Input 2 Input3 Inputt
Figure 1-2. Unrolling an RNN in time

These architectures were (and continue to be) widely used for NLP tasks, speech
processing, and time series. You can find a wonderful exposition of their capabilities in
Andrej Karpathy’s blog post, “The Unreasonable Effectiveness of Recurrent Neural
Networks”.

One area where RNNs played an important role was in the development of machine
translation systems, where the objective is to map a sequence of words in one
language to another. This kind of task is usually tackled with an encoder-decoder or
sequence-to-sequence architecture,® which is well suited for situations where the input
and output are both sequences of arbitrary length. The job of the encoder is to encode
the information from the input sequence into a numerical representation that is often
called the last hidden state. This state is then passed to the decoder, which generates
the output sequence.

In general, the encoder and decoder components can be any kind of neural network
architecture that can model sequences. This is illustrated for a pair of RNNs in
Figure 1-3, where the English sentence “Transformers are great!” is encoded as a
hidden state vector that is then decoded to produce the German translation
“Transformer sind grossartig!” The input words are fed sequentially through the
encoder and the output words are generated one at a time, from top to bottom.


https://oreil.ly/Q55o0

Transformers | RNN cell RNN cell B - Transformer

are> || RNNcell RNNcell B sind

\ v
great | RNNcell | RNNcell | - grossartig

15| RNNcell | ——— [ RNNcell J§5!

Encoder block Decoder block
Figure 1-3. An encoder-decoder architecture with a pair of RNNSs (in general, there are many more
recurrent layers than those shown here)

Although elegant in its simplicity, one weakness of this architecture is that the final
hidden state of the encoder creates an information bottleneck: it has to represent the
meaning of the whole input sequence because this is all the decoder has access to
when generating the output. This is especially challenging for long sequences, where
information at the start of the sequence might be lost in the process of compressing
everything to a single, fixed representation.

Fortunately, there is a way out of this bottleneck by allowing the decoder to have
access to all of the encoder’s hidden states. The general mechanism for this is called
attention,® and it is a key component in many modern neural network architectures.
Understanding how attention was developed for RNNs will put us in good shape to
understand one of the main building blocks of the Transformer architecture. Let’s take
a deeper look.



Attention Mechanisms

The main idea behind attention is that instead of producing a single hidden state for
the input sequence, the encoder outputs a hidden state at each step that the decoder
can access. However, using all the states at the same time would create a huge input
for the decoder, so some mechanism is needed to prioritize which states to use. This
is where attention comes in: it lets the decoder assign a different amount of weight, or
“attention,” to each of the encoder states at every decoding timestep. This process is
illustrated in Figure 1-4, where the role of attention is shown for predicting the third
token in the output sequence.

Transformers & | _RNI‘s{ceII .-I-P
are | RNI\;S_-ceII -P

great 9 | .RN.I\_;CE" : -b

> RNcell | 8] states |

; Encoder block Decader block
Figure 1-4. An encoder-decoder architecture with an attention mechanism for a pair of RNNs

By focusing on which input tokens are most relevant at each timestep, these attention-
based models are able to learn nontrivial alignments between the words in a
generated translation and those in a source sentence. For example, Figure 1-5
visualizes the attention weights for an English to French translation model, where each
pixel denotes a weight. The figure shows how the decoder is able to correctly align the
words “zone” and “Area”, which are ordered differently in the two languages.



agreement
European
Economic
Area

was

The

on

the
signhed
in
August
1992
<end>

L
accord

sur

la

zone
économique
européenne
a

été

signé

en

ao(lt

1992

<end>

Figure 1-5. RNN encoder-decoder alignment of words in English and the generated translation in
French (courtesy of Dzmitry Bahdanau)

Although attention enabled the production of much better translations, there was still a
major shortcoming with using recurrent models for the encoder and decoder: the
computations are inherently sequential and cannot be parallelized across the input
sequence.

With the transformer, a new modeling paradigm was introduced: dispense with
recurrence altogether, and instead rely entirely on a special form of attention called
self-attention. We’ll cover self-attention in more detail in Chapter 3, but the basic idea
is to allow attention to operate on all the states in the same layer of the neural network.
This is shown in Figure 1-6, where both the encoder and the decoder have their own
self-attention mechanisms, whose outputs are fed to feed-forward neural networks (FF
NNSs). This architecture can be trained much faster than recurrent models and paved
the way for many of the recent breakthroughs in NLP.

Transformers FFNN || - B e
are FENN | - ESEIGY)

great FFNN | » BRI ICE]

! Attention FENN | » EEEEICE

Encoder block Decoder block
Figure 1-6. Encoder-decoder architecture of the original Transformer



In the original Transformer paper, the translation model was trained from scratch on a
large corpus of sentence pairs in various languages. However, in many practical
applications of NLP we do not have access to large amounts of labeled text data to
train our models on. A final piece was missing to get the transformer revolution started:

transfer learning.



Transfer Learning in NLP

It is nowadays common practice in computer vision to use transfer learning to train a
convolutional neural network like ResNet on one task, and then adapt it to or fine-tune
it on a new task. This allows the network to make use of the knowledge learned from
the original task. Architecturally, this involves splitting the model into of a body and a
head, where the head is a task-specific network. During training, the weights of the
body learn broad features of the source domain, and these weights are used to
initialize a new model for the new task.” Compared to traditional supervised learning,
this approach typically produces high-quality models that can be trained much more
efficiently on a variety of downstream tasks, and with much less labeled data. A
comparison of the two approaches is shown in Figure 1-7.

Training and evaluation on
the same task/ domain

Dormain A Domain B

Extract knowledge from source task,
and apply to different target task

|

Domain A
Body A

Initialize
w rn Bmly A -
Model B l
. Head ! ! '

I | l

Predictions A Predictions B Predictions A Predictions B

Model A

| | I |
I Supervised learning I I Transfer leamning I
Figure 1-7. Comparison of traditional supervised learning (left) and transfer learning (right)

In computer vision, the models are first trained on large-scale datasets such as
ImageNet, which contain millions of images. This process is called pretraining and its
main purpose is to teach the models the basic features of images, such as edges or
colors. These pretrained models can then be fine-tuned on a downstream task such as
classifying flower species with a relatively small number of labeled examples (usually a
few hundred per class). Fine-tuned models typically achieve a higher accuracy than
supervised models trained from scratch on the same amount of labeled data.

Although transfer learning became the standard approach in computer vision, for many
years it was not clear what the analogous pretraining process was for NLP. As a result,


https://image-net.org/

NLP applications typically required large amounts of labeled data to achieve high
performance. And even then, that performance did not compare to what was achieved
in the vision domain.

In 2017 and 2018, several research groups proposed new approaches that finally
made transfer learning work for NLP. It started with an insight from researchers at
OpenAl who obtained strong performance on a sentiment classification task by using
features extracted from unsupervised pretraining.® This was followed by ULMFiT,
whichgjntroduced a general framework to adapt pretrained LSTM models for various
tasks.

As illustrated in Figure 1-8, ULMFiT involves three main steps:
Pretraining

The initial training objective is quite simple: predict the next word based on the
previous words. This task is referred to as language modeling. The elegance of this
approach lies in the fact that no labeled data is required, and one can make use of
abundantly available text from sources such as Wikipedia.'®

Domain adaptation

Once the language model is pretrained on a large-scale corpus, the next step is to
adapt it to the in-domain corpus (e.g., from Wikipedia to the IMDb corpus of movie
reviews, as in Figure 1-8). This stage still uses language modeling, but now the
model has to predict the next word in the target corpus.

Fine-tuning

In this step, the language model is fine-tuned with a classification layer for the
target task (e.g., classifying the sentiment of movie reviews in Figure 1-8).

Language
Model

Language

Model IMDb

Figure 1-8. The ULMFiIT process (courtesy of Jeremy Howard)

By introducing a viable framework for pretraining and transfer learning in NLP, ULMFiT
provided the missing piece to make transformers take off. In 2018, two transformers
were released that combined self-attention with transfer learning:

GPT

Uses only the decoder part of the Transformer architecture, and the same
language modeling approach as ULMFiT. GPT was pretrained on the
BookCorpus,! which consists of 7,000 unpublished books from a variety of genres
including Adventure, Fantasy, and Romance.



BERT

Uses the encoder part of the Transformer architecture, and a special form of
language modeling called masked language modeling. The objective of masked
language modeling is to predict randomly masked words in a text. For example,
given a sentence like “I looked at my [MASK] and saw that [MASK] was late.” the
model needs to predict the most likely candidates for the masked words that are
denoted by [MASK]. BERT was pretrained on the BookCorpus and English
Wikipedia.

GPT and BERT set a new state of the art across a variety of NLP benchmarks and
ushered in the age of transformers.

However, with different research labs releasing their models in incompatible
frameworks (PyTorch or TensorFlow), it wasn’t always easy for NLP practitioners to
port these models to their own applications. With the release of ¥: Transformers, a
unified APl across more than 50 architectures was progressively built. This library
catalyzed the explosion of research into transformers and quickly trickled down to NLP
practitioners, making it easy to integrate these models into many real-life applications
today. Let’s have a look!


https://oreil.ly/Z79jF

Hugging Face Transformers: Bridging the Gap

Applying a novel machine learning architecture to a new task can be a complex
undertaking, and usually involves the following steps:

1. Implement the model architecture in code, typically based on PyTorch or
TensorFlow.

2. Load the pretrained weights (if available) from a server.

3. Preprocess the inputs, pass them through the model, and apply some task-
specific postprocessing.

4. Implement dataloaders and define loss functions and optimizers to train the
model.

Each of these steps requires custom logic for each model and task. Traditionally (but
not always!), when research groups publish a new article, they will also release the
code along with the model weights. However, this code is rarely standardized and
often requires days of engineering to adapt to new use cases.

This is where & Transformers comes to the NLP practitioner’s rescue! It provides a
standardized interface to a wide range of transformer models as well as code and
tools to adapt these models to new use cases. The library currently supports three
major deep learning frameworks (PyTorch, TensorFlow, and JAX) and allows you to
easily switch between them. In addition, it provides task-specific heads so you can
easily fine-tune transformers on downstream tasks such as text classification, named
entity recognition, and question answering. This reduces the time it takes a practitioner
to train and test a handful of models from a week to a single afternoon!

You'll see this for yourself in the next section, where we show that with just a few lines
of code, ¥ Transformers can be applied to tackle some of the most common NLP
applications that you're likely to encounter in the wild.



A Tour of Transformer Applications

Every NLP task starts with a piece of text, like the following made-up customer
feedback about a certain online order:

text = """Dear Amazon, last week | ordered an Optimus Prime action figure
from your online store in Germany. Unfortunately, when | opened the package,

| discovered to my horror that | had been sent an action figure of Megatron
instead! As a lifelong enemy of the Decepticons, | hope you can understand my
dilemma. To resolve the issue, | demand an exchange of Megatron for the
Optimus Prime figure | ordered. Enclosed are copies of my records concerning
this purchase. | expect to hear from you soon. Sincerely, Bumblebee.""

Depending on your application, the text you're working with could be a legal contract, a
product description, or something else entirely. In the case of customer feedback, you
would probably like to know whether the feedback is positive or negative. This task is
called sentiment analysis and is part of the broader topic of text classification that we’ll
explore in Chapter 2. For now, let’s have a look at what it takes to extract the
sentiment from our piece of text using ¥ Transformers.



Text Classification

As we'll see in later chapters, (¥ Transformers has a layered API that allows you to

interact with the library at various levels of abstraction. In this chapter we’ll start with
pipelines, which abstract away all the steps needed to convert raw text into a set of

predictions from a fine-tuned model.

In & Transformers, we instantiate a pipeline by calling the pipeline() function and
providing the name of the task we are interested in:

from import pipeline

classifier = pipeline("text-classification")

The first time you run this code you’ll see a few progress bars appear because the
pipeline automatically downloads the model weights from the Hugging Face Hub. The
second time you instantiate the pipeline, the library will notice that you’ve already
downloaded the weights and will use the cached version instead. By default, the text-
classification pipeline uses a model that’s designed for sentiment analysis, but it also
supports multiclass and multilabel classification.

Now that we have our pipeline, let’'s generate some predictions! Each pipeline takes a
string of text (or a list of strings) as input and returns a list of predictions. Each
prediction is a Python dictionary, so we can use Pandas to display them nicely as a
DataFrame:

import as

outputs = classifier(text)
pd.DataFrame(outputs)

label score
0 NEGATIVE 0.901546

In this case the model is very confident that the text has a negative sentiment, which
makes sense given that we're dealing with a complaint from an angry customer! Note
that for sentiment analysis tasks the pipeline only returns one of the POSITIVE or
NEGATIVE labels, since the other can be inferred by computing 1-score.

Let’'s now take a look at another common task, identifying named entities in text.


https://oreil.ly/zLK11

Named Entity Recognition

Predicting the sentiment of customer feedback is a good first step, but you often want
to know if the feedback was about a particular item or service. In NLP, real-world
objects like products, places, and people are called named entities, and extracting
them from text is called named entity recognition (NER). We can apply NER by loading
the corresponding pipeline and feeding our customer review to it:

ner_tagger = pipeline("ner", aggregation_strategy="simple")
outputs = ner_tagger(text)
pd.DataFrame(outputs)

entity_group score word start end
0 ORG 0.879010 Amazon 5 11
1 MISC 0.990859 Optimus Prime 36 49
2 LOC 0.999755 Germany 90 97
3 MISC 0.556569 Mega 208 212
4 PER 0.590256 #ittron 212 216
5 ORG 0.669692 Decept 253 259
6 MISC 0.498350 #iticons 259 264
7 MISC 0.775361 Megatron 350 358
8 MISC 0.987854 Optimus Prime 367 380
9 PER 0.812096 Bumblebee 502 511

You can see that the pipeline detected all the entities and also assigned a category
such as ORG (organization), LOC (location), or PER (person) to each of them. Here
we used the aggregation_strategy argument to group the words according to the
model’s predictions. For example, the entity “Optimus Prime” is composed of two
words, but is assigned a single category: MISC (miscellaneous). The scores tell us
how confident the model was about the entities it identified. We can see that it was
least confident about “Decepticons” and the first occurrence of “Megatron”, both of
which it failed to group as a single entity.

NOTE

See those weird hash symbols (#) in the word column in the previous table? These are
produced by the model’s tokenizer, which splits words into atomic units called tokens.
You'll learn all about tokenization in Chapter 2.

Extracting all the named entities in a text is nice, but sometimes we would like to ask
more targeted questions. This is where we can use question answering.



Question Answering

In question answering, we provide the model with a passage of text called the context,
along with a question whose answer we’d like to extract. The model then returns the
span of text corresponding to the answer. Let’'s see what we get when we ask a
specific question about our customer feedback:

reader = pipeline("question-answering")

question = "What does the customer want?"
outputs = reader(question=question, context=text)
pd.DataFrame([outputs])

score start end answer
0 0.631291 335 358 an exchange of Megatron

We can see that along with the answer, the pipeline also returned start and end
integers that correspond to the character indices where the answer span was found
(just like with NER tagging). There are several flavors of question answering that we
will investigate in Chapter 7, but this particular kind is called extractive question
answering because the answer is extracted directly from the text.

With this approach you can read and extract relevant information quickly from a
customer’s feedback. But what if you get a mountain of long-winded complaints and
you don’t have the time to read them all? Let’s see if a summarization model can help!



Summarization

The goal of text summarization is to take a long text as input and generate a short
version with all the relevant facts. This is a much more complicated task than the
previous ones since it requires the model to generate coherent text. In what should be
a familiar pattern by now, we can instantiate a summarization pipeline as follows:

summarizer = pipeline("summarization")
outputs = summarizer(text, max_length=45, clean_up_tokenization_spaces=True)
print(outputs[0]['summary_textT)

Bumblebee ordered an Optimus Prime action figure from your online store in
Germany. Unfortunately, when | opened the package, | discovered to my horror
that | had been sent an action figure of Megatron instead.

This summary isn’t too bad! Although parts of the original text have been copied, the
model was able to capture the essence of the problem and correctly identify that
“‘Bumblebee” (which appeared at the end) was the author of the complaint. In this
example you can also see that we passed some keyword arguments like max_length
and clean_up_tokenization_spaces to the pipeline; these allow us to tweak the outputs
at runtime.

But what happens when you get feedback that is in a language you don’t understand?
You could use Google Translate, or you can use your very own transformer to
translate it for you!



Translation

Like summarization, translation is a task where the output consists of generated text.
Let’s use a translation pipeline to translate an English text to German:

translator = pipeline("translation_en_to_de",
model="Helsinki-NLP/opus-mt-en-de")

outputs = translator(text, clean_up_tokenization_spaces=True, min_length=100)

print(outputs[0]['translation_text'])

Sehr geehrter Amazon, letzte Woche habe ich eine Optimus Prime Action Figur aus
Ihrem Online-Shop in Deutschland bestellt. Leider, als ich das Paket 6ffnete,
entdeckte ich zu meinem Entsetzen, dass ich stattdessen eine Action Figur von
Megatron geschickt worden war! Als lebenslanger Feind der Decepticons, Ich

hoffe, Sie kdnnen mein Dilemma verstehen. Um das Problem zu 16sen, Ich fordere
einen Austausch von Megatron fiir die Optimus Prime Figur habe ich bestellt.

Anbei sind Kopien meiner Aufzeichnungen Uber diesen Kauf. Ich erwarte, bald von
Ihnen zu hoéren. Aufrichtig, Bumblebee.

Again, the model produced a very good translation that correctly uses German’s
formal pronouns, like “lhrem” and “Sie.” Here we’ve also shown how you can override
the default model in the pipeline to pick the best one for your application—and you can
find models for thousands of language pairs on the Hugging Face Hub. Before we take
a step back and look at the whole Hugging Face ecosystem, let's examine one last
application.



Text Generation

Let’s say you would like to be able to provide faster replies to customer feedback by
having access to an autocomplete function. With a text generation model you can do
this as follows:

generator = pipeline("text-generation")

response = "Dear Bumblebee, | am sorry to hear that your order was mixed up."
prompt = text + "\n\nCustomer service response:\n" + response

outputs = generator(prompt, max_length=200)
print(outputs[O]['generated_text])

Dear Amazon, last week | ordered an Optimus Prime action figure from your online
store in Germany. Unfortunately, when | opened the package, | discovered to my
horror that | had been sent an action figure of Megatron instead! As a lifelong
enemy of the Decepticons, | hope you can understand my dilemma. To resolve the
issue, | demand an exchange of Megatron for the Optimus Prime figure | ordered.
Enclosed are copies of my records concerning this purchase. | expect to hear

from you soon. Sincerely, Bumblebee.

Customer service response:

Dear Bumblebee, | am sorry to hear that your order was mixed up. The order was
completely mislabeled, which is very common in our online store, but | can
appreciate it because it was my understanding from this site and our customer
service of the previous day that your order was not made correct in our mind and
that we are in a process of resolving this matter. We can assure you that your
order

OK, maybe we wouldn’t 