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Abstract

This technical report summarizes work done between February and August 2021,
toward the realization of the concept of an AI-DSL [23] first articulated in a
blogpost on the SingularityNET website in December 2020 – a language for
AI agents running on a decentralized platform to use to communicate their
relevant properties to each other, so as to support various forms of agent inter-
operation. This AI-DSL is a significant component in a larger endeavor to
create a system that enables autonomous interoperability between AI services
over a decentralized blockchain-based network. This reports presents in fair
detail what has been accomplished in prototyping efforts so far, as well as plans
for future implementation and experimentation.
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Chapter 1

Introduction

One big part of the SingularityNET vision is the creation of a decentralized
“society of minds” in which multiple AI agents can cooperate and collaborate
to solve problems together – so that the SingularityNET network as a whole
becomes a complex self-organizing system in which the intelligence of the whole
greatly exceeds the intelligence of the parts.

The current SingularityNET marketplace comprises mainly agents that carry
out AI functions for customers on their own, without referencing other agents
on the platform in their own back-end operations. There is no obstacle to
connecting multiple agents on the current network into complex assemblages,
however, the platform also does not provide any particular tools designed to
make this easier and more natural.

The SingularityNET whitepaper alludes to a meta-API or API-of-APIs ac-
cording to which AI agents can describe to each other various aspects of their
operation, to make it easier for agents to make automated decisions about which
other AIs to connect to for what reasons. However, the whitepaper does not
describe in any detail how this API-of-APIs would be designed or implemented.

This technical gap is filled by the concept of an AI-DSL or “AI Domain-
Specific Language”, by which is meant not a language for the implementation
of the nitty-gritty internal operations of AI algorithms or data structures, but
rather a language that AI algorithms can use to describe their properties to
each other, so as to allow agent interactions to be automatically determined in
an appropriately knowledgeable way.

Much as the SingularityNET platform could be used to host any sort of
software agents, not just AI-based agents, similarly the AI-DSL could be used
to allow any sorts of software processes to describe their properties to other
software processes. However, both SingularityNET and the AI-DSL are being
initially tuned for particular effectiveness in the AI context, in ways that do not
constrain their potential for more general application.

The high level concept of the AI-DSL, and the first steps toward technical
specification of the idea, were presented in a December 2020 blog post, AI-DSL
[23]. Since that time considerable work has been done toward an initial technical
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implementation of the AI-DSL. This document describes much of that work,
and then briefly discusses what still needs to be done to move from these initial
achievements toward an AI-DSL that can be broadly and efficiently deployed in
the SingularityNET platform.

1.1 Autonomous Interoperability of AI Services

As a concrete example of the inter-agent cooperation that the AI-DSL is de-
signed to mediate in a decentralized AI network, note that building a system to
discover new drugs may consist of

1. a reasoner to extract background knowledge from biological databases,

2. a principal component analyzer to discover abstractions,

3. a feature selector to discard irrelevant information,

4. a learner to generate predictive models relating selected features and drug
efficacy.

In today’s software ecosystem, the task of composing such AI algorithms is,
in most cases, done by humans – and, as any AI practitioner knows, can grow
rather tedious and time consuming. Not just the final composition of the whole,
but also the search and the understanding required to find the parts. Facilitating
and ultimately automating such processes is key for the future of the AI field
and the success of the SingularityNET platform.

What are the requirements for such an AI-DSL? At a minimum, an AI-DSL
should be able to:

1. Provide mechanisms to clearly specify requirements, input APIs, output
types, desired properties, and constraints;

2. Search and discover AI services matching those requirements, input APIs,
output types, desired properties and constraints;

3. Manage financial and computational resources (CPUs, GPUs, etc);

4. Incorporate measures of expected result quality;

5. Search and discover helper services such as data cleaning, data pre-processing,
and data conversion and transformation services;

6. Facilitate chaining of AI services.

Different algorithms typically ingest and output data of different types and
formats. Inputs and output could be, for example, booleans, integers, floating
point numbers, strings, matrices, more complex data structures, or even entail
specific constraints such as divisibility by particular integers.

Chaining of AI services necessitates, therefore, the ability to either
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1. match outputs of one service to required inputs of another service, or

2. specify and call helper services to transform outputs of one service into
the required format of another service.

The AI-DSL search service should, therefore, be able to not only find match-
ing AI services, but also helper services that can serve as intermediate links
enabling connections between otherwise incompatible AI services.

As described in the blog post, the design direction we have taken for realizing
the AI-DSL vision is to rely on Dependent Types [21] to express and validate the
specifications of the AI services, including cost, quality and their relationships
thereof. The reason Dependent Types have been chosen is because they are
geared toward program specification checking and program generation, which
in our case comes close to AI services verification and combination if one sees
AI services as functions. More specifically Idris has been chosen as our initial
Dependently Typed Language (DTL) candidate, due to its efficiency and the
fact that is has been primarily designed to verify and generate actual running
programs as opposed to proofs 1.

1.2 Objectives and accomplishments

For the first iteration of work on the AI-DSL, reported here, the goals were to

1. Experiment with matching and retrieval of AI services using Idris [9], a
Dependently Typed Language (DTL) [1], equipped with a powerful type
system to express function specifications. That work is described in Chap-
ter 2.

2. Start building an AI ontology to ultimately provide a rich and extendable
vocabulary for the AI-DSL. That work is described in Chapter 4.

3. Start building the AI-DSL itself, from its syntax to its semantics. Ex-
ploratory work on that is described in Chapter 3.

4. Integrate all the above into a holistic prototype, running on a real world
test case of AI service assemblage, in real conditions, that is ideally on
the SingularityNET-on-Cardano network. Preparatory work on that is
described in Section 2.2.3.

All the objectives except the last one have been accomplished at least to some
degree. The last, and the most ambitious, objective on this list (holistic in-
tegration toward a real-world test-case) ended up being pushed into the next
iteration due to its complexity.

1Programs are equivalent to proofs according to the Curry-Howard correspondence but
some representations are more amenable to running actual programs than others
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1.3 Related work

To the best of our knowledge there is no existing work on creating an AI-
DSL system to enable autonomous AI services interoperability using Dependent
Types, let alone running on a blockchain. There are however attempts using
related methodologies, usually involving ontologies with more or less explicit
forms of reasoning, outside of the context of the blockchain technology.

We are collecting a body of literature in a github issue [6] serving as a living
document and being regularly updated with such related work. We will not
describe the entire body here due to its volume (over 80 references at the time
of writing) and the fact that we are still in the process of reviewing it. Here is
however the most relevant work we have encountered so far.

The most recent and also most relevant work we have found is the Function
Ontology [7, 28]. Its goal is to define a standard for describing, both formally
and informally, functions, their mappings to implementations, as well as devel-
oping tools for retrieving and executing them, remotely or locally. To the best
of our knowledge, at this stage of its development, it does not make use of for-
mal specification to retrieve function, it only uses non-dependent types of the
inputs and outputs, key words of its informal description, as well as ontological
constraints pertaining to the domain and problem it relates. However the au-
thors mention the idea of formally specifying functions using languages such as
OWL [4]. It is clear such features are planned for future development. Their
goal clealy aligns with that of the AI-DSL. The technological path they are
taking, based on the Semantic Web, makes it unclear how reusable their work
would be for the AI-DSL though. They also ignore the aspects of costs and
result quality, which are essential for integrating such system on a blockchain
marketplace, though these could conceivably be built on top of it. Their sys-
tem does allow, however almost seamless execution of retrieved functions either
remotely, as services, or locally on the client’s machine. It is worth keeping an
eye on its future development.

Other relevant work with potential for reuse is described below.
Starting with the field of multi-agent systems (MAS), In [26] the authors

describe a system called DESIRE which formally defines inputs and outputs
of agents and their control flows. The logic seems somewhat limited but their
goals align with ours. In [24] an extension of Computation Tree Logic (CTL),
called multi-modal branching-time logic, is defined to apply model checking on
collections of agent given their description in an abstract programming language.
It’s not clear whether the specification language they use is convenient and the
model checking methodology open-ended enough. Nevertheless the work is solid
and relevant. An architecture for a distributed multi-agent intelligent system
is described in [30]. The architecture description is high level but the authors
mention Agent Communication Language (ACL) standards [40] such as FIPA-
ACL [3], used to communicate agents requests to each other.

We found the following papers that describe a variety of different ontolo-
gies. In [34] the authors introduce an ontology called EngMath for representing
mathematical concepts useful for engineering, including units, equations and
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more in KIF [11], to be used in SHADE [35], a system for collaborative intel-
ligent agents. It is rather old and it seems development has halted, but could
nevertheless be interesting to learn more about. OpenMath [20] is another old,
but still maintained, ontology covering mathematics. More recent mathematical
ontologies worth mentioning are OntoMath [31] and OntoMathPRO [43]. While
they seem rather high level, they might still be useful. Broadening the scope,
[50] is focused on validating the consistency of ontologies. Relatedly, in [55],
a tool for analyzing and propagating changes across overlapping ontologies ac-
cording to predefined inference rules, called FIDOE, is introduced. The authors
mention standards such as SUMO [47] and SWRL [2] as well. Such work could
be relevant towards the goal of facilitating the decentralization of the AI-DSL
and its ontology.

Finally, it is important to mention a rather young field called Verified Artifi-
cial Intelligence (VAI) [51, 36, 42]. The objective of VAI is to bring formal veri-
fication to AI to insure that algorithms and models meet certain mathematical
requirements. This includes work using dependent types to that effect [29, 49].
For instance [27] uses Idris to guaranty that layers of a neural network are ar-
ranged in a sound manner. This does not guaranty that the neural networks
coming out of that program are good models of reality, but does eliminate cer-
tain types of memory corruption errors by forbidding, for instance, to connect
an input vector of a size unequal to that of the first layer.
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Chapter 2

AI-DSL Registry

In this chapter we describe a prototype of an AI-DSL registry, a service in
charge of storing AI service specifications and returning matching AI services
upon request, given a specification to fulfill. In Section 2.1 we describe ex-
periments for implementing the RealizedAttributes and RealizedFunction

data structures described in [23] used for capturing financial and computational
costs, as well as measures of expected result quality. In Section 2.2 we describe
the implementation of a network of trivially simple AI services implemented in
Idris, and use the Idris compiler to type check if they can properly connect to
each other. Finally, in Section 2.3 we describe the implementation of an AI-DSL
Registry prototype, as a proof-of-concept for querying AI services based on their
dependently typed specifications.

2.1 Realized Function

2.1.1 Description

The RealizedFunction data structure, as introduced in [23], is a wrapper
around a regular function to integrate aspects of its specifications pertaining to
its execution on real physical substrates as opposed to just its algorithmic prop-
erties. For instance it contains descriptions of costs (financial, computational,
etc) and performances (quality, etc) captured in the RealizedAttributes data
structure, as introduced in [23] as well.

We implemented a simple version of RealizedFunction and RealizedAttributes

in Idris2 [9]. The RealizedAttributes data structure contains

• Costs: as a triple of three constants, financial, temporal and computational,

• Quality: as a single quality value.

as well as an example of compositional law, add costs min quality, in which
the total cost is calculated as the sum of the individual functional costs, and
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overall quality is the minumum of the individual qualities. Below is a small
snippet of that code to give an idea of how it looks

record RealizedAttributes where

constructor MkRealizedAttributes

costs : Costs

quality : Quality

add_costs_min_quality : RealizedAttributes ->

RealizedAttributes ->

RealizedAttributes

add_costs_min_quality f_attrs g_attrs = fg_attrs where

fg_attrs : RealizedAttributes

fg_attrs = MkRealizedAttributes (add_costs f_attrs.costs g_attrs.costs)

(min f_attrs.quality g_attrs.quality)

The full implementation can be found in RealizedAttributes.idr, under the
experimental/realized-function/ folder of the AI-DSL repository [5].

Then we have implemented RealizedFunction that essentially attaches a
RealizedAttributes instance to a function. In addition we have implemented
a composition (as in function composition) operating on RealizedFunction in-
stead of regular function, making use of that compositional law above. Likewise
below is a snippet of that code

data RealizedFunction : (t : Type) -> (attrs : RealizedAttributes) -> Type where

MkRealizedFunction : (f : t) -> (attrs : RealizedAttributes) ->

RealizedFunction t attrs

compose : {a : Type} -> {b : Type} -> {c : Type} ->

(RealizedFunction (b -> c) g_attrs) ->

(RealizedFunction (a -> b) f_attrs) ->

(RealizedFunction (a -> c) (add_costs_min_quality f_attrs g_attrs))

compose (MkRealizedFunction g g_attrs) (MkRealizedFunction f f_attrs) =

MkRealizedFunction (g . f) (add_costs_min_quality f_attrs g_attrs)

The full implementation can be found in RealizedFunction.idr under the
same folder.

Given such data structure we used the Idris compiler to type check if the re-
alized attributes of realized functions, i.e. AI services, composed from other real-
ized functions would follow the defined compositional law, here add costs min quality.
That is given for instance the realized attributes of an incrementer function

incrementer_attrs = MkRealizedAttributes (MkCosts 100 10 1) 1

and a twicer function

twicer_attrs = MkRealizedAttributes (MkCosts 200 20 2) 0.9
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the realized attributes of their compositions must be

rlz_compo1_attrs = MkRealizedAttributes (MkCosts 300 30 3) 0.9

otherwise Idris detects a type error.

2.1.2 Objectives and achievements

The objective of this work was to see if Idris2 was able to type check that the
realized attributes of composed realized functions followed the defined compo-
sitional law. We have found that Idris2 is not only able to do that, but to
our surprise does it considerably faster that Idris1 (instantaneous instead of
seconds to minutes), by bypassing induction on numbers and using efficient
function-driven rewriting on the realized attributes instead.

That experiment can be found in RealizedFunction-test.idr, under the
experimental/realized-function/ folder of the AI-DSL repository [5].

An improvement of that work is also described in Section 3.1.

2.1.3 Future work

Experimenting with constants as realized attributes was the first step in our
investigation. The subsequent steps will be to replace constants by functions,
probability distributions and other sophisticated ways to represent costs and
quality.

2.2 Network of Idris AI services

2.2.1 Description

In this work we have implemented a small network of trivially simple AI services,
with the objective of testing if the Idris compiler could be used to type check
the validity of their connections. Three primary services were implemented

1. incrementer: increment an integer by 1

2. twicer: multiply an integer by 2

3. halfer: divide an integer by 2

as well as composite services based on these primary services, such as

• incrementer . halfer . twicer

to test that such composition, for instance, is properly typed. The networking
part was implemented based on the SingularityNET example service [16] men-
tioned in the SingularityNET tutorial [19]. The specifics of that implementation
are of little importance for that report and thus are largely ignored. The point
was to try to be as close as possible to real networking conditions. For the part
that matters to us we may mention that communications between AI services
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are handled by gRPC [8], which has some level of type checking by insuring that
the data being exchanged fulfill some type structures (list of integers, union type
of string and bool, etc) specified in Protocol Buffers [14]. Thus one may see the
usage of Idris in that context as adding an enhanced refined verification layer
on top of gRPC making use of the expressive power of dependent types.

2.2.2 Objectives and achievements

As mentioned above the objective of such an experiment was to see how the
Idris compiler could be used to type check combinations of AI services. It
was initially envisioned to make use of dependent types by specifying that the
twicer service outputs an even integer, as opposed to any integer, and that the
halfer service only accepts an even integer as well. The idea was to prohibit
certain combinations such as

• halfer . incrementer . twicer

Since the output of incrementer . twicer is provably odd, halfer should
refuse it and such combination should be rejected. This objective was not
reached in this experiment, but was reached in the experiments described in Sec-
tions 2.3 and 3.1.3. The other objective was to type check that the compositions
have realized attributes corresponding to the compositional law implemented in
Section 2.1, which was fully achieved in this experiment. For instance by chang-
ing either the input/output types, costs or quality of the following composition

-- Realized (twicer . incrementer).

rlz_compo1_attrs : RealizedAttributes

rlz_compo1_attrs = MkRealizedAttributes (MkCosts 300 30 3) 0.9

-- The following does not work because 301 /= 200+100

-- rlz_compo1_attrs = MkRealizedAttributes (MkCosts 301 30 3) 0.9

rlz_compo1 : RealizedFunction (Int -> Int) Compo1.rlz_compo1_attrs

rlz_compo1 = compose rlz_twicer rlz_incrementer

defined in experimental/simple-idris-services/service/Compo1.idr, the
corresponding service would raise a type checking error at start up. More details
on the experiment and how to run it can be found in the README.md under
the experimental/simple-idris-services/service/ folder of the AI-DSL
repository [5].

Thus besides the fact that dependent types were ignored in that experiment,
the objectives were met. See Section 2.3 for a follow up experiment involving
dependent types.

2.2.3 Future work

Our experiments explored how Idris could be integrated into a network of ser-
vices. What we need to do next is experiment with actual AI algorithms, mak-
ing full use of dependent types in their specifications. Such an endeavor was
attempted using our Fake News Warning app described in Section 4.1.2, but it
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was eventually concluded to be too ambitious for the first iteration. More about
that is discussed in Section 2.3.3.

Also, we obviously want to be able to reuse existing AI services and write
their specifications on top of them, as opposed to writing both specification and
code in Idris (and ultimately the AI-DSL). To that end it was noted that having
a Protobuf to/from Idris converter would be useful, so that a developer can start
from an existing AI service, specified in Protobuf, and enrich it with dependent
types using Idris. The other way around could be useful as well to enable a
developer to implement AI services entirely in Idris and expose their Protobuf
specification to the network. Relatedly having directly an implementation of
gRPC for Idris could be handy as well.

2.3 Dependently Typed Registry

2.3.1 Description

One important goal of the AI-DSL is to have a system that can perform au-
tonomous matching and composition of AI services, so that provided the spec-
ification of an AI, it should suffice to find it, complete it or even entirely build
it from scratch. We have implemented an AI-DSL Registry prototype to start
experimenting with such functionality.

So far we have two versions in the AI-DSL repository, one without dependent
types support, under experimental/registry/, and a more recent one with de-
pendent type support that can be found under experimental/registry-dtl/.
We will focus our attention on the latter which is far more interesting.

The AI-DSL registry (reminiscent of the SingularityNET registry [18]) is
itself an AI service with the following functions

1. retrieve: find AI services on the network fulfilling a given specification.

2. compose: construct composite services fulfilling that specification. Useful
when no such AI services can be found.

The experiment contains the same incrementer, twicer and halfer ser-
vices described in Section 2.2 with the important distinction that their specifi-
cations now utilize dependent types. For instance the type signature of twicer
becomes

twicer : Integer -> EvenInteger

instead of

twicer : Integer -> Integer

where EvenInteger is a shorthand for the following dependent type

EvenInteger : Type

EvenInteger = (n : WFInt ** Parity n 2)
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that is a dependent pair composed of a well founded integer of type WFInt and
a dependent data structure, Parity containing a proof that the first element of
the pair, n, is even. More details on that can be found in Section 3.1.3.

For now our prototype of AI-DSL registry implements the retreive func-
tion, which, given an Idris type signature, searches through a database of AI
services and returns one fulfilling that type. In that experiment the database of
AI services is composed of incrementer, twicer, halfer, the registry itself
and compo, a composite service using previously listed services.

One can query each service via gRPC. For instance querying the retreive

function of the registry service with the following input

String -> (String, String)

outputs

Registry.retreive

which is actually itself (as the retrieve procedure of the registry service takes
a string, a type signature, and returns two strings, the service and procedure
names matching such type signature). Likewise one can query

Integer -> Integer

which outputs

Incrementer.incrementer

corresponding to the Incrementer service with the incrementer function. Next
one can provide a query involving dependent types, such as

Integer -> EvenInteger

outputting

Twicer.twicer

Or equivalently provide the unwrapped dependent type signature

Integer -> (n : WFInt ** Parity n (Nat 2))

retrieving the correct service again

Twicer.twicer

At the heart of it is Idris. Behind the scene the registry communicates the
type signature to the Idris REPL and requests, via the :search meta function,
all loaded functions matching the type signature. Then the registry just returns
the first match.

Secondly, we can now write composite services with missing parts. The
compo service illustrates this. This service essentially implements the following
composition
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incrementer . halfer . (Registry.retrieve ?type)

Thus upon execution, the compo AI service queries the registry to fill the hole
with the correct service according to its specification, here twicer.

More details about this, including steps to reproduce it, can be found in
the README.md under the experimental/simple-idris-services/service/

folder of the AI-DSL repository [5].

2.3.2 Objectives and achievements

As shown above we were able to implement a prototype of an AI-DSL reg-
istry. Only the retrieve function was implemented. The compose function
still remains to be implemented, although the compo service is already somewhat
halfway there, with the limitation that the missing type, ?type, is hardwired
in the code, Integer -> EvenInteger. It should be noted however that Idris
should be capable of inferring such information but more work is needed to fully
explore that functionality.

Of course it is a very simple example, in fact the simplest we could come
up with, but we believe serves as a proof of concept, and demonstrates that AI
services matching and retrieval, using dependent types as formal specification
language, is possible.

2.3.3 Future work

There are many possible future improvements for this work, falling into two
main categories, the prototype itself, and its use cases.

Improve the prototype

Here is a list in no particular order of possible improvements of that AI-DSL
prototype.

• Implement compose for autonomous composition.

• Use structured types to represent type signatures instead of String.

• Return a list of services instead of the first one.

• Allow fuzzy matching and infer sophisticated casts to automatically con-
vert data in case of imperfect match between output and input types.

• Improve its implementation. The registry prototype is currently imple-
mented in Python1, querying Idris when necessary. However it is likely
that this should be better suited to Idris itself. Which leads us to an
interesting possibility, maybe the registry, and in fact most (perhaps all)
components and functions of the AI-DSL could or should be implemented
in the AI-DSL itself.

1because the SingularityNET example it is derived from is written in Python, not because
Python is considered to be the most suitable language for this purpose.
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Improve the test cases

• First, we want to expand our trivial AI service assemblage by defining
more complex properties, making use for instance of product and sum
types (corresponding to the logical connectors ∧ and ∨), and explore how
to cast specialized properties into more abstract ones. For instance, given
the AI services A, B and C, let’s assume A’s output satisfies a conjunction
of properties, such as an integer that is both even and within a certain
interval. Then B and C inputs may only need to partially fulfill such
conjunction of properties. For instance B may require an even integer,
while C may require that integer to be within a certain interval. In other
words both services B and C may take the output of A as input but for
different reasons. It is not conceptual difficult to cast the output of A to
match the input types of B and C, however this is something we still need
to explore in its full generality with Idris.

• Second, we want to adapt the Fake News Warning app described in Sec-
tion 4.1.2 as test case for the AI-DSL Registry. To briefly explain, the Fake
News Warning app is an AI service assemblage estimating if the headline
of an article is consistent with its body. Such assemblage is composed of

1. a collection of classifiers, each attempting to learn to recognize if the
headline of an article is consistent with its body;

2. an aggregator combining the outputs of all classifiers into a single
answer.

So what we would like to achieve is to

1. formally specify the functions of each AI service above (which requires
to enrich the leaf ontology described in Section 4.2.2 as well as the
composition functions described in Sections 2.1 and 3.1);

2. populate the AI-DSL registry described in Section 2.3 with these
formal specifications;

3. type check combinations of these AI services, rejecting illegal ones,
such as two classifiers serially connected, and accepting legal ones,
such as classifiers connected in parallel to the aggregator;

4. automatically connect the AI services into a valid assemblage given its
high level specification of such assemblage. Such high level specifica-
tion should include its type signature, the overall financial, temporal
and computational cost, as well as the overall expected result quality.
Then the assemblage should be constructed in a way to simultane-
ously satisfy all the requirements. For instance in order to reach the
expected result quality, the assemblage may require more classifiers,
which may however increase the financial cost, etc.

By now we have a good grasp of how such service assemblage works and
some ideas of how to formally specify its subcomponents. As an interme-
diary step we have also started porting portions of the Fake News Warning
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app to Idris, see ai-algorithms/NeuralNets/README.md in the AI-DSL
repository [5], with the intension of refining the type signatures of the
various parts by taking advantage of dependent types.
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Chapter 3

Software Engineering
Strategies

3.1 Service Composition in Idris2

A key requirement of the AI-DSL is to provide both an ergonomic syntax for
describing service properties and a robust process for using these descriptions
to verify the correctness of composed services. This work involved investigating
several different methods for meeting this requirement using Idris2.

3.1.1 RealizedFunction and RealizedAttributes

The RealizedFunction and RealizedAttributes data types were an early
strategy for describing and composing AI services. They directly contained
values representing the relevant properties of arbitrary Idris functions and made
use of a compose function to compute the properties of the function resulting
from the composition of two others.

While this approach worked to verify that a small, fixed set of attributes
was correct for a composition of functions, it also presented several issues:

• The RealizedFunction definition contains only the raw data representing
function properties, while using a separate function to represent composi-
tion logic. Because the composition logic is not part of the type definition,
there is no way for Idris to prove that the correct logic was used to con-
struct any given RealizedFunction.

• RealizedAttributes represents only a set of example properties. The
syntax tree for the AI-DSL should be able to represent any properties
specified by the user, assuming the composition laws for those properties
are known.
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3.1.2 Service

To address these problems, we implemented the Service type, which can be
found in experimental/realized-function/ServiceAttributes.idr. It dif-
fers from RealizedFunction in two important ways:

• Composition logic is represented entirely at the type level as a second
constructor for the Service type.

• Idris’ Num interface is used as a generic representation of any attribute
that can be added when two Services are sequenced.

These changes were sufficient to solve the problems with our earlier ap-
proach, but we still needed to improve the expressiveness of our representation.
Many important properties are too complex to be described using only the Num

interface.

3.1.3 A Look into Dependent Pairs

Idris represents the intersection between a theorem proof assistant and a pro-
gramming language. As such, it is often useful to think of types as logical
propositions, and values as proofs of those propositions. Since our goal is to
verify that a desired property is true of some value, we can use dependent types
to describe a proposition parameterized by a specific value.

Idris provides a special syntax for this. (x : a ** p) can be read as “x
is a value of type a such that proposition p holds true of x”. This is called a
dependent pair, and it can only be constructed by providing both a value and a
proof that a desired property holds true for that specific value. In the context
of service composition, we can use dependent pairs as a direct representation of
input values that satisfy some condition.

To demonstrate the practicality of this pairing, consider the following types:

public export

data WFInt : Type where

Nat : (n : Nat) -> WFInt

Neg : (n : Nat) -> WFInt --Note: In the negative case, n=Z represents -1.

-- n-parity, i.e. proof that an integer a is evenly divisible by n (or not).

public export

data Parity : (a : WFInt) -> (n : WFInt) -> Type where

-- a has even n-parity if there exists an integer multiple x s.t. x*n = a.

Even : (x : WFInt ** (x * n) = a) -> Parity a n

public export

data OddParity : (a : WFInt) -> (n : WFInt) -> Type where

-- a has odd n-parity if there exists

Odd : (b : WFInt ** LT = compare (mag b) (mag n))

-> (Parity (a + b) n) -> OddParity a n
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WFInt is a type describing a well-founded view of an integer. This alternate
view is necessary in order to write more flexible inductive proofs for integer
inputs.

Parity demonstrates the proof obligation necessary to show that one integer
is evenly divisible by another. In plain English, it can be read as “If there exists
some integer x such that x * n = a, then a can be said to have n-parity.”
OddParity is a type representing the opposite proposition, i.e. that dividing
two integers will produce a remainder.

For services such as our Halfer example, this allows us to clearly express that
inputs should be only even numbers, as shown in this function type signature:

halfer : (a : WFInt ** Parity a 2) -> WFInt

Similarly, the type signatures of the Twicer and Incrementer example ser-
vices can express their properties with regards to the 2-parity of the integers
they operate on:

-- Guaranteed to produce a value divisible by 2

twicer : (b : WFInt) -> (a : WFInt ** Parity a 2)

incrementer : (a : WFInt ** Parity a n) -> (b : WFInt ** OddParity b n)

Now that the relevant properties for verification are expressed entirely at
the type level, the Idris2 typechecker can statically check the validity of service
compositions.

-- A valid sequence of services that successfully typechecks.

compo1 : WFInt -> WFInt

compo1 = fst (incrementer . halfer . twicer)

-- An invalid sequence of services that will always fail typechecking

compo2 : WFInt -> WFInt

compo2 = fst (halfer . incrementer . twicer)

With dependent pairs, arbitrary properties of values can be encoded and
formally verified. For an AI-DSL that may need to describe AI services in many
different contexts, this ability to use custom types instead of a limited set of
primitives is crucial. However, this method is not a complete solution, as it
highlights major practical flaws.

An AI service developer making use of the AI-DSL should be able to ade-
quately describe the necessary properties of data their service will take as input,
but there should be no need for them to also encode the exact properties of their
service’s output data. A service developer is not likely to have any knowledge
of how their service’s outputs will be used by other services in the future, so the
AI-DSL should not force them to describe their output data in any more detail
than is possible1. In the examples above, the incrementer service was forced

1Of course given a full specification of the service, which is admittedly hard but possible
to provide, any decidable correct property about its output data can be inferred, possibly at
a prohibitively high cost.
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to describe its inputs and outputs in terms of properties that are only relevant
to other services.

3.1.4 A Monadic DSL

At this stage, there are two key problems which must be solved:

1. At the point of service creation, developers should not be expected to have
knowledge of the properties that are only relevant to other services. They
should be able to encode only the properties relevant to their own service.

2. Due to the limits of computability, some relevant properties of data will
not be formally provable. However, some of these properties might still
be safely assumed to hold in certain contexts, even if a formal proof is im-
possible. The AI-DSL should be able to represent such cases and provide
the strongest possible guarantees.

For the first issue, we borrowed a well-established design pattern from strongly-
typed functional programming and defined a new Service type around the
Monad interface. [54] Monads are a class of types used to describe a context for
operations, along with any custom logic necessary to combine those operations
without imposing any requirement for tight coupling. This is perfect for the
AI-DSL.

To address the issue of unproveable properties, we experimented with a
conceptual model of smart contracts as a core language feature within the DSL.
Because the actual implementation of logic to represent external smart contracts
was outside the scope of this work, we made the assumption that such contracts
could be used to represent a financially-backed assurance that some unproveable
property holds. In theory, this could allow compositions of AI services to be
analyzed for their overall financial risk.

The following type describes the Abstract Syntax Tree for a deeply-embedded
DSL:

public export

data Service : Type -> Type where

||| A Service that is definitely of type `a`

Val : a -> Service a

||| A contract has promised a reward if `a` is not a Service b

Promise : Contract a b -> Service b

||| Application of a Service to another Service

App : Service (a -> b) -> Service a -> Service b

||| Explicitly construct a Service using monadic binding

Bind : Service a -> (a -> Service b) -> Service b

This Service type describes a context wherein values may be either native
Idris2 values or a reference to an external smart contract.

20



Below are some simple definitions for the functions necessary for Service

to be a member of the Monad typeclass, as well as superclasses Functor and
Applicative.

public export

Functor Service where

map f (Val a) = Val $ f a

map f (Promise c) = Val $ f $ trustContract c

map f s = App (Val f) s

public export

Applicative Service where

pure = Val

(<*>) = App

public export

Monad Service where

(>>=) = Bind

join m = !m

With these operations defined, sequencing services becomes much simpler.
Idris2 provides a special /textttdo-notation for monads, as well as convenient
syntax for pattern-matching on intermediate values. The following are several
example composition scenarios, taken from experimental/typed-dsl/Compo.idr:

-- composition of Twicer and Incrementer

compo1 : Integer -> Service (Integer)

compo1 a = do

n <- twicerService a

incrementerService n

-- composition of Twicer, Halfer, and Incrementer

compo2 : Integer -> Service (Integer)

compo2 a = do

i <- twicerService a

-- Because twicerService does not provide its own proof that its

-- output is always even, we use a Promise to provide a soft proof

-- of this property.

p <- Promise ?con

j <- halferService (cast i ** p)

incrementerService j

-- invalid composition of Twicer, Incrementer, and Halfer

compo3 : Integer -> Service (Integer)
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compo3 a = do

i <- twicerService a

j <- incrementerService i

-- The `resolve` hole shows that the programmer must create and apply some logic

-- of type Integer -> EvenNumber to resolve the mismatch here.

halferService $ ?resolve j

-- A potential method to resolve the above mismatch

compo3sol : Integer -> Service (Integer)

compo3sol a = do

i <- twicerService a

j <- incrementerService i

-- Because this function contains the actual composition of the various

-- Services, this is the point where the programmer is best able to decide

-- which measures are acceptable to resolve type mismatches.

-- In this case, forceEven is used.

halferService $ forceEven j

-- In this composition, we have no way to statically prove that

-- halferService is being passed an even number.

compo4 : Integer -> Service (Integer)

compo4 a = do

-- i could be even or odd, depending on the value of a

i <- incrementerService a

-- We can pattern match on the result of a runtime test

-- to create a branch in the logic of this Service.

Just j <- pure $ maybeEven i

| Nothing => twicerService i

-- If there is a Just EvenNumber, run the halferService on it.

-- If there is no EvenNumber value to be found, run the twicerService on i.

halferService j

-- Because all of the above examples are Integer -> Service (Integer),

-- it is relatively trivial to compose them.

compo5 : Integer -> Service (Integer)

compo5 a = (compo1 a) >>= compo2 >>= compo3 >>= compo4

3.2 Depth of Embedding

A domain-specific language requires not only a formal specification for its se-
mantics, but a software implementation as well. The relationship between a
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DSL and its implementation can vary, but most strategies fall into one or more
of three categories:

1. Independent Syntax: A language may be designed completely separately
from its implementation. Such languages typically require dedicated com-
pilers or interpreters, as they are unable to borrow any functionality due
to their lack of a host language.

2. Shallow Embedding: An embedded domain-specific language (eDSL) is
written as a module or library for some host language. Data in the DSL’s
domain is represented directly as values in the host language. [32] Shallow
embeddings tend to be easy to use and extend, but often suffer issues
with performance and expressiveness. Programs written in a shallowly-
embedded DSL can only describe operations in the domain of their host
language, and thus are limited to a single interpretation.

3. Deep Embedding: Similarly to a shallowly-embedded DSL, an eDSL with
a deep embedding is defined in some host language. Deep embeddings
define a custom Generalized Algebraic Data Type (GADT) in the host
language and represent all data as values of this type. [32] Because the
entire Abstract Syntax Tree (AST) of a deeply-embedded program is a sin-
gle type, it is simple to write functions in the host language that operate
directly on the embedded program. This allows for automatic optimization
of embedded programs, as well as multiple possible interpretations. How-
ever, any extensions to a deep eDSL require significant effort, as changes
to the language’s AST type incur a requirement to update every function
that operates on that type.

For the AI-DSL, the most promising approach appears to be a hybrid method.
The basic domain of the DSL can be defined as deep embedding, while more
specialized features can be shallowly embedded as smaller DSLs within the main
AI-DSL instead of directly in Idris2.
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Chapter 4

AI-DSL Ontology

4.1 Description

4.1.1 Design requirements

At the beginning of the current iteration of the AI-DSL project we had a round
of discussions about the high level functional and design requirements for AI-
DSL and its role in SingularityNET platform and ecosystem. The discussions
were based on [23, 17] and are available online in their original form. Here is the
summary of the preliminary design requirements informed by those discussions:

• AI-DSL is a language that allows AI agents/services running on Singlar-
ityNET platform to declare their capabilities and needs for data to other
AI agents in a rich and versatile machine readable form; This will en-
able different AI agents to search, find data sources and other AI services
without human interaction;

• AI-DSL ontology defines data and service (task) types to be used by AI-
DSL. Requirements for the ontology are shaped by the scope and specifi-
cation of the AI-DSL itself;

High level requirements for AI-DSL are:

Extendability The ontology of data types and AI task types should be extend-
able in the sense that individual service providers / users should be able
to create new types and tasks and make them available to the network.
AI-DSL should be able to ingest these new types / tasks and immediately
be able to do the type-checking job. In other words, AI-DSL ontology
of types / tasks should be able to evolve. At the same time, extended
ontologies should relate to existing basic AI-DSL ontology in a clear way,
allowing AI agents to perform reasoning across the whole space of avail-
able ontologies (which, at lower levels, may be globally inconsistent). In
order to ensure interoperability of lower level ontologies, AI-DSL ontology
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will define small kernel / vocabulary of globally accessible grounded types,
which will be built-in into the platform at the deep level. Changing this
kernel will most probably require some form of voting / global consensus
on a platform level.

Therefore, it seems best to define the AI-DSL Ontology and the mechanism
of using it on two levels:

• The globally accessible vocabulary/root ontology of grounded types.
This vocabulary can be seen as immutable (in short and medium
term) kernel. It should be extendable in the long term, but the
mechanisms of changing and extending it will be quite complex, most
probably involving theoretical considerations and/or a strict proce-
dures of reaching global consensus within the whole platform (a sort
of voting);

• A decentralized ontology of types and tasks which each are based
(i.e. type-dependent) on the root ontology/vocabulary, but can be
extended in a decentralized manner – in the sense that each agent
in the platform will be able to define, use and share derived types
and task definitions at its own discretion without the need of global
consensus.

Competing versions and consensus. We want both consistency (for enabling
deterministic type checking – as much as it is possible) and flexibility (for
enabling adaptation and support for innovation). This will be achieved
by enforcing different restrictions for competing versions and consensus
reaching on the two levels of ontology descrbed above:

• The globally accessible vocabulary / root ontology of grounded types
will not allow for competing versions. In a sense, this level will be the
true ontology, representable by a unique root / upper-level ontology
of the network which users will not be able to modify directly;

• All other types and task definitions within the platform will be re-
quired to be derived from the root ontology (if they will want to
be used for interaction with other agents); However, the platform
whould not restrict the number of competing versions or define a
global consensus of types and task descriptions on this level.

• Furthermore, the ontology and the AI-DSL logic should allow for
some variant of ’soft matching’ which would allow to find the type /
service that does not satisfy all requirements exactly, but comes as
closely as available in the platform.

• At the lowest level of describing each instance of AI service or data
source on the platform, AI-DSL shall allow maximum extendabil-
ity so that AI service providers and data providers will be able to
describe and declare their services in the most flexible and uncon-
strained manner, facilitating competition and cooperation between
them.
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Code-level / service-level APIs. It is important to ensure that the ontol-
ogy is readable / writable by different components of the SingularityNET
platform, at least between AI-DSL engine / data structures and each AI
service separately. This is needed because some of the required descrip-
tors of AI services will have to be dynamically calculated at the time of
calling a service and will depend on the immediate context (e.g. price of
service, a machine on which it is running, possibly reputation score, etc.).
It is not clear at this point how much of this functionality will be possi-
ble (and practical) to implement on available dependently typed, ontology
languages or even if it is possible to use a single language. Even it if is
possible to implement all AI-DSL purely on the current dependently typed
language choice Idris, it will have to interface with the world, deal with
indeterministic input from network and mutable states – operations that
may fail in run-time no matter how careful type checking is done during
compile time [25].

Defining and maintaining code-level and service-level APIs will first of
all enable interfacing SingularityNET agents to AI-DSL and therefore be-
tween themselves.

Key AI Agents properties We can distinguish two somewhat distinct (but
yet interacting) levels of AI-DSL Ontology AI service description level and
data description level. It seems that it may be best to start building the
ontology from the service level, because data description language is even
more open-ended than AI description language, which is already open
enough. Initially, we may want to include into the description of each AI
service at least these properties:

• Input and output data structures and types

• Financial cost of service

• Time of computation

• Computational resource cost

• Quality of results

As demonstrated in Chapter 2 it is possible to express and reason about
this data with Idris. It is quite clear however, that in order to enable in-
teraction with and between SingularityNET agents (and NuNet adapters)
all above properties have to be made accessible outside Idris and therefore
supported by the code-level / service-level APIs and the SingularityNET
platform in general.

4.1.2 Domain model considerations

In order to attend to all high level design requirements. All levels of the AI-
DSL Ontology should be developed simultaneously, so that we could make sure
that the work is aligned with the function and role of AI-DSL within Singulari-
tyNET platform and ecosystem. We therefore use the “AI/computer-scientific”
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perspective to ontology and ontology building – emphasizing what an ontologoy
is for – rather than the “philosophical perspective” dealing with the study of
what there is in terms of basic categories [33, 37]. Therefore we first propose
the mechanism of how different levels (upper, domain and the leaf- (or service))
of AI-DSL ontology will relate for facilitating interactions between AI services
on the platform.

Note, that design principles of such mechanism relate to the question of how
the abstract and consistent should relate to the concrete and possibly incon-
sistent – something that may need a deeper conceptual understanding than is
attempted during the project and presented here. We proceed in the most prac-
tical manner for proposing an AI-DSL ontology prototype, being aware that it
may need to (and probably should) be subjected to more conceptual treatment
in the future.

For a concrete domain model of AI-DSL ontology prototype we use the Fake
News Warning1 application being developed by NuNet – a currently incubated
spinoff of SingularityNET2.

NuNet is the platform enabling dynamic deployment and up/down-scaling
of SingularityNET AI Services on decentralized hardware devices of potentially
any type. Importantly for the AI-DSL project, service discovery on NuNet is
designed in a way that enables dynamic construction of application-specific ser-
vice meshes from several SingularityNET AI services[45]. In order for the service
mesh to be deployed, NuNet needs only a specification of the program graph
of the application. Note, that conceptually, construction of an application from
several independent containers is almost equivalent to functionality explained
in Section 2.3 on AI-DSL Registry, namely performance of matching and com-
position of AI services. This is the main reason why we chose the Fake News

Warning application as a domain model for early development efforts of AI-DSL.
However, we use this domain model solely for the application-independent de-
sign of AI-DSL and attend to its application specific aspects only as much as it
informs the project.

The idea of dynamic service discovery is to enable application developers to
construct working applications (or at least their back-ends) by simply passing a
declarative definition of program graph to the special platform component (“net-
work orchestrator”) – which then searches for appropriate SingularityNET AI
containers and connects them in to a single workflow (or workflows). Suppose,
that the back-end of Fake News Warning app consists of three SingularityNET
AI containers news score, uclnlp and binary-classification:

1https://gitlab.com/nunet/fake-news-detection
2https://nunet.io
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Leaf item Description Input Output Source
binary-
classification

A pretrained binary
classification model

English text of any
length

1 – the text is cat-
egorized as fake; 0
– text is categorized
as not-fake

©NuNet
2021

uclnlp Forked and adapted
component of
stance detection
algorithm (FNC
third place winner)

Article title and
text

Probabilities of
the title agreeing,
disagreeing, dis-
cussing or being
unrelated to the
text

©UCL
Machine
Reading
2017;
©NuNet
2021

news-score Calls dependent
services, calculates
overall result and
sends them to the
front-end

URL of the content
to be checked

Probability that the
content in the URL
is fake

©NuNet
2021

Table 4.1: Description of each component of Fake News

Warning application.

Each component of application’s back-end is a SingularityNET AI Service
registered on the platform. Note, that as SingularityNET AI services are defined
through their specification and their metadata[15]. The main purpose of the AI-
DSL Ontology is to be able to describe SNet AI Services in a manner that would
allow them to search and match each other on the platform and compose into
complex workflows – similarly to what is described in Section 2.2. Here is a
simple representation of the program graph of Fake News Warning app:

1 "dag": {

2 "news-score" : ["uclnlp","binary-classification"]

3 }

Figure 4.1: A directed acyclic graph (DAG) of
the Fake News Warning app prototype[12]. It sim-
ply says that news-score depends on uclnlp and
binary-classification.

The schematic representation of the Fake News Warning app deployed as a
result of processing the DAG is depicted below. The addition of NuNet platform
to SingularityNET service discovery is that each service may be deployed on
different hardware environments, sourced by NuNet. When the application
back-end is deployed, it can be accessed from the GUI interface, which in case
of Fake News Warning is a Brave browser extension.
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(a) Schema of dependencies between
backend components of the appli-
cation (SingularityNET AI services
potentially running on different ma-
chines).

(b) Brave browser extension which
calls the backend of Fake News

Warning application on each invo-
cation on new content displayed in
browser tab.

We will use this application design principles as the domain model for the
first design of the AI-DSL Ontology and its prototype.

4.1.3 Ontology language and upper level ontology

After discussing several choices of ontology languages and reusing existing on-
tologies for designing AI-DSL ontology3, we have opted to use SUO-KIF as an
ontology language [47] and SUMO as an upper-level ontology [44]. The main
motivation for this choice was the versatility of KIF/SUO-KIF (Knowledge In-
terchange Format) language, which essentially allows to express First Order
Logic (FOL) statements in a simple text format in terms of lisp-like syntax.
Due to that, KIF can be easily converted to other formats[39]. Also, a con-
version to Atomese – the OpenCog’s language also employing a lisp-like syntax
– has been successfully attempted in the past4. SUMO and the related ontol-
ogy design tools [46] provide a convenient way for starting to design AI-DSL
Ontology levels and their relations.

4.1.4 Tools

For the purposes of design, inital validation and displaying relations between
classes, subclasses and instances of the ontology, we have used software tools
which come together with SUMO ontology 5:

• Sigma IDE for SUMO6 and

• jEdit plugin for SUMO 7

3See Reusing Existing Ontologies discussion on AI-DSL Github repository[5]
4See the SUMO Importer in the OpenCog External Tools repository[13]
5https://ontologyportal.org
6https://github.com/ontologyportal/sigmakee
7https://github.com/ontologyportal/SUMOjEdit
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The ontology prototype, presented here, is fully accessible for browsing and
partial validation via the local Sigma installation8.

4.2 Objectives and achievements

4.2.1 Decentralized ontology

In order to satisfy the extendibility requirement of ontology design, we are
proposing a notion and design of a decentralized ontology, which enables us
to work with globally consistent and locally inconsistent components within the
same mechanism of AI-DSL. Based on our design, the full ontology of Fake

News Warning application is constructed from a number of separate compo-
nents, which operate at different level of decentralization. Table below describes
each of these components.

8Can be temporarily accessed at http://nunetio.ddns.net:8080/sigma/KBs.jsp or installed
and accessed locally by folowing these instructions
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Component Description Dependencies Extendability
Merge.kif SUMO structural on-

tology, base ontology,
numerical functions,
set/class theory, tem-
poral concepts and
mereotopology

None - root ontology Centralized and glob-
ally enforced – defined
by ontologyportal.org

SingularityNet.kif Defines global classes
and types to be used for
describing each Singu-
larityNET AI Service

ComputerInput.kif,
Merge.kif [,..]

Limited: versioning
mechanism controlled
by SingularityNET (to
be defined)

FakeNewsScore.kif SingularityNET ser-
vice responsible for
constructing the whole
back-end of each Fake
News Warning appli-
cation instance i.e.
program graph (DAG)
of the application.

SingularityNET.kif [,..] Fully decentralized:
defined by application
developers; Since Fake
News Warning applica-
tion is open source, any
developer can fork it
and define it otherwise;
Technically, this would
be a different applica-
tion.

fnsBinaryClassifier.kif A pre-trained binary
classification model for
fake news detection

SingularityNET.kif [,..] Fully decentralized: de-
fined by each algorithm
developer indepen-
dently. Technically,
from the platform per-
spective, these will be
different algorithms.

uclnlp.kif Forked and adapted
component of stance
detection algorithm by
UCL Machine Reading
group

SingularityNET.kif [,..] Fully decentralized: de-
fined by each algorithm
developer indepen-
dently. Technically,
from the platform per-
spective, these will be
different algorithms

NuNetEnabledCompu-
ter.kif

Each NuNet enabled
hardware resource will
have to be described
accordingly when on-
boarded to NuNet plat-
form

NuNet.kif Fully decentralized: in-
dependently defined by
the owner of a hardware
resource

NuNet.kif Defines classes to be
used for describing each
hardware resource eligi-
ble for running Singu-
larityNET AI Services
via NuNet platform;

Merge.kif, Singulari-
tyNET.kif [,..]

Limited: versioning
mechanism controlled
by NuNet (to be de-
fined)

Table 4.2: Description of each component of the AI-DSL
Ontology prototype and links to related KIF files.

4.2.2 Ontology prototype

Using the ontology levels described in Table 4.2 and referenced files, we proto-
typed the ontology of Fake News Warning application9.

9Can be temporarily accessed at http://nunetio.ddns.net:8080/sigma/KBs.jsp or installed
and accessed locally by folowing these instructions
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Architectural level Class
SingularityNET platform SNetAIService, SNetAIServiceIO, SNe-

tAIServiceMetadata
NuNet platform NuNetEnabledSNetAIService,

NuNetEnabledComputer

Table 4.3: Main classes defined in AI-DSL ontology prototype per level of
the Fake News Warning application’s stack. Classes defined in SUMO are not
included.

AI algorithms onboarded on the SNet platfrom are instances of SNetAIService
class of sublasses of it. Services of Fake News Warning application are defined
as follows:

1 (instance uclnlp NuNetEnabledSNetAIService)

2 (documentation uclnlp EnglishLanguage "Forked and adapted component of

stance detection algorithm by UCL Machine Reading group.")↪→

(a) Service description

4 (hasInput uclnlp uclnlpInput)

5 (hasInput uclnlp uclnlpOutput)

6

7 (instance uclnlpInputType DataType)

8 (instance uclnlpOutputType DataType)

(b) Descriptions of service input and output types.

10 (=>

11 (and

12 (hasField ?uclnlpInput titleText Text)

13 (hasField ?uclnlpInput mainText Text)

14 )

15 (instance ?uclnlpInput uclnlpInputType)

16 )

17

18 (=>

19 (and

20 (hasField ?uclnlpOutput agree RealNumber)

21 (hasField ?uclnlpOutput disagree RealNumber)

22 (hasField ?uclnlpOutput discuss RealNumber)

23 (hasField ?uclnlpOutput unrelated RealNumber)

24 )

25 (instance ?uclnlpOutput uclnlpOutputType)

26 )

(c) Definition of types and their dependencies.

Figure 4.3: SNet AI Service definition in KIF (uclnlp and binary-classification ser-
vices are described in this way).

Type definitions and their dependency definitions are actually the domain
of formal type-checking part of AI-DSL and Idris related research. However,
irrespective of which language we eventually choose for AI-DSL, Figure 4.3
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expresses that we can:

1. define correct serviceInput and serviceOutput types (unique for each ser-
vice);

2. potentially provide proofs that if a service data of correct type is provided
on input, then it will output correctly typed data;

3. if the above is not possible (which may be the default option when actual
service AI are not written in Idris):

(a) check if input data is of correct type at run-time and refuse to start
service if it is not;

(b) check if output data is of correct type before sending it to the caller
and raise error if it is not so;

FakeNewsScore AI Service is special in that it calls other dependent services
(as described by program graph in Figure 4.2a) and combines their results. We
can define the program graph in terms of dependencies between services in KIF
as follows:

1 (instance fakeNewsScore NuNetEnabledSNetAIService)

2 (documentation fakeNewsScore EnglishLanguage "Calls dependent services,

calculates summary result from their outputs↪→

3 and calculates the overall probability that the provided content contains

fake news")↪→

4

5 (hasDependency fakeNewsScore uclnlp)

6 (hasInput fakeNewsScore uclnlpOutput)

7

8 (hasDependency fakeNewsScore fnsBinaryClassifier)

9 (hasInput fakeNewsScore fnsBinaryClassifierOutput)

Figure 4.4: Defining program graph as a formal ontology. This is
similar to DAG of Figure 4.1.

Figure 4.4 demonstrates how a workflow of connected SingularityNET AI
services can be statically defined and proven to work at compile time. However,
we could go further and define dependencies as subclasses of services with the
same input/output data types. In such case any instantiation of the subclass
would be able to dynamically compile into the workflow. Therefore we would not
need to describe concrete dependencies – they would be dynamically resolved
at run-time by matching input and output types.
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1 (instance fakeNewsScore NuNetEnabledSNetAIService)

2

3 (hasInputType fakeNewsScore StanceType)

4 (hasInputType fakeNewsScore BinaryClassificationType)

5

6 (hasOutput fakeNewsScore fakeNewsScoreOutput)

7 (instance fakeNewsScoreOutputType DataType)

8

9 (=>

10 (and

11 (hasField ?data agree RealNumber)

12 (hasField ?data disagree RealNumber)

13 (hasField ?data discuss RealNumber)

14 (hasField ?data unrelated RealNumber)

15 )

16 (instance ?data StanceType)

17 )

18

19 (=>

20 (hasField ?data fakeOrNot Boolean)

21 (instance ?data BinaryClassificationType)

22 )

Figure 4.5: Defining generic input types instead of concrete depen-
dencies in a FakeNewsScoreDynamic service.

Any AI service with output type matching input type of the FakeNewsScoreDynamic
could be compiled into the workflow:

1 (instance uclnlp NuNetEnabledSNetAIService)

2

3 (hasInput uclnlp WebContentType)

4 (hasInput uclnlp StanceType)

Figure 4.6: Using static globally defined types of input and output
data structures of matching services eligible for compilation into a
workfow.

However, systems with dependent typing, like Idris, may allow to go even
further and to find out if composite types are composed of the same components
and primitive types – and thus match them.
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7 (hasInput uclnlp SomeType)

8 (hasInput uclnlp SomeOtherType)

9

10 (=>

11 (and

12 (hasField ?data titleText Text)

13 (hasField ?data mainText Text)

14 )

15 (instance ?data SomeType)

16 )

17

18 (=>

19 (and

20 (hasField ?data agree RealNumber)

21 (hasField ?data disagree RealNumber)

22 (hasField ?data discuss RealNumber)

23 (hasField ?data unrelated RealNumber)

24 )

25 (instance ?data SomeOtherType)

26 )

Figure 4.7: Hypothetical usage of dynamic typing (most probably
could be achieved in Idris, but not in KIF).

Primitive (or grounded) types (like RealNumeber and Text in Figure 4.7),
however, should be globally accessible and unambiguously defined for this scheme
to work.

All services of Fake News Warning application are instances of NuNetEnablesSNetAIService
subclass, which, in turn, is a subclass of SNetAIService class:

1 (instance fakeNewsScore NuNetEnabledSNetAIService)

2 (instance uclnlp NuNetEnabledSNetAIService)

(a) Declaration of FakeNewsScore service in FakeNewsScore.kif and of
uclnlp service in uclnlp.kif.

1 (subclass NuNetEnabledSNetAIService SNetAIService)

2 (documentation NuNetEnabledSNetAIService EnglishLanguage "SNetAIService

which can be deployed on NuNetEnabledComputers and orchestrated via

NuNet platfrom")

↪→

↪→

(b) Definition of NuNetEnabledSNetAIService in NuNet.kif.

Figure 4.8: Relation between SingularityNet and NuNet domain ontologies.

Figure 4.8 describes relation between SingularityNET and NuNet platforms.
SNetAIService class, defined in SingularityNET.kif, contains all requirements
for the metadata of the service to be published on SingularityNET platform.
NuNetEnabledSNetAIService extends SNetAIService by adding metadata that
is needed for this service to be deployed via NuNet APIs:
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4 (=>

5 (and

6 (hasMetadata ?SNetAIServiceMetadata ?SNetAIService)

7 (hasField ?RequiredComputingResources ?SNetAIServiceMetadata)

8 )

9 (instance ?SNetAIService NuNetEnabledSNetAIService)

10 )

11 ; may include many other requirements

Figure 4.9: The definition of NuNetEnabledSNetAIService in NuNet.kif requires a
service to have compute resource (and possibly other) requirements included in service
metadata. The idea is that without required metadata fields, a service would not pass
validation allowing it to be deployed via NuNet. An arbitrary amount of requirements
could be defined here.

NuNetEnabledSNetAIServices can be deployed only on NuNetEnabledComputers,
which expose their available computing resources in a manner that the ability to
run a service is automatically checked before a service is dynamically deployed
on a computer and a service call is actually issued to it (see Figure 4.10). This
formally described relation between SingularityNET and NuNet ontologies en-
ables to prove at ’compile time’ that a service will have enough computational
resources to be executed. Recall, that SingularityNET ontology alone enables
to prove that a service or a collection of services will return correct results when
called with correct inputs.

13 (subclass NuNetEnabledComputer Computer)

14 (documentation NuNetEnabledComputer EnglishLanguage "A Computer which was

onboarded to NuNet platfrom and complies to its requirements.")↪→

15

16 (=>

17 (and

18 (hasRun ?NuNetEnabledComputer NuNetOnboardingScript)

19 (hasMetadata ?NuNetEnabledComputer ?ComputerMetadata)

20 (hasField AvailableComputingResources ?ComputerMetadata)

21 (or

22 (runsOS ?NuNetEnabledComputer Linux)

23 (runsOs ?NuNetEnabledComputer Raspbian)

24 )

25 (or

26 (hasHardware ?NuNetEnabledComputer PC)

27 (hasHardware ?NuNetEnabledComputer RaspberyPi)

28 )

29 )

30 (instance ?NuNetEnabledComputer NuNetEnabledComputer)

31 )

Figure 4.10: The definition of NuNetEnabledComputer in NuNet.kif requires available
computing resources, computer type and operating system to be listed in the metadata.
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An SNetAIService can only be deployed on NuNetEnabledComputer if avail-
able resources on the computer are not less than compute requirements of a
service:

38 (=>

39 (and

40 (hasMetadata ?NuNetEnabledComputer ?ComputerMetadata)

41 (hasField ?AvailableComputingResources ?ComputerMetadata)

42 (hasMetadata ?NuNetEnabledSNetAIService ?SNetAIServiceMetadata)

43 (hasField ?RequiredComputingResources ?SNetAIServiceMetadata)

44 (lessThanOrEqualTo ?RequiredComputingResources

?AvailableComputingResources)↪→

45 )

46 (canDeploy ?NuNetEnabledSNetAIService ?NuNetEnabledComputer)

47 )

Figure 4.11: Constraints on eligible match between SNetAIService and
NuNetEnabledComputer defined in NuNet.kif and required for deployment of a ser-
vice.

SNetAIService and NuNetEnabledSNetAIService classes are positioned within
the SUMO ontology as follows:
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Class, subclass or
instance

Description Where
defined

Entity The universal class of individuals. This is the root node of the ontol-
ogy.

Merge.kif

Abstract Properties or qualities as distinguished from any particular embodi-
ment of the properties/ qualities in a physical medium. Instances of
Abstract can be said to exist in the same sense as mathematical ob-
jects such as sets and relations, but they cannot exist at a particular
place and time without some physical encoding or embodiment.

Merge.kif

Proposition Propositions are Abstract entities that express a complete thought or
a set of such thoughts. Note that propositions are not restricted to
the content expressed by individual sentences of a Language. They
may encompass the content expressed by theories, books, and even
whole libraries. A Proposition is a piece of information, e.g. that
the cat is on the mat, but a ContentBearingObject is an Object that
represents this information. A Proposition is an abstraction that may
have multiple representations: strings, sounds, icons, etc. For exam-
ple, the Proposition that the cat is on the mat is represented here as a
string of graphical characters displayed on a monitor and/ or printed
on paper, but it can be represented by a sequence of sounds or by
some non-latin alphabet or by some cryptographic form.

Merge.kif

Procedure A sequence-dependent specification. Some examples are Computer-
Programs, finite-state machines, cooking recipes, musical scores, con-
ference schedules, driving directions, and the scripts of plays and
movies.

Merge.kif

ComputerProgram A set of instructions in a computer programming language that can
be executed by a computer.

Merge.kif

SoftwareContainer Singularity-
Net.kif

SNetAIService Software package exposed via SNetPlatfrom and conforming to the
special packaging rules

Singularity-
Net.kif

NuNetEnabled-
SNetAIService

SNetAIService which can be deployed on NuNetEnabledComputers
and orchestrated via NuNet platfrom

NuNet.kif

uclnlp Forked and adapted component of stance detection algorithm by UCL
Machine Reading group.

uclnlp.kif

Table 4.4: Full hierarchy of dependencies of uclnlp SNet AI service instance
within SUMO ontology. The same hierarchy applies to binary-detection and
fakeNewsScore services used in the Fake News Warning app.

4.2.3 The mechanism of dynamic workflow construction

An important part of the decentralized ontology design is the mechanism which
makes it work in actual scenarios. This mechanism was designed using the same
domain model of Fake News Warning application. It also clarifies the reason
why we propose this particular concept and design of decentralized ontology.

AI-DSL will allow to search, match, compile and execute independently de-
veloped AI components in terms of a single veritable workflow running on Sin-
gularityNET platform. AI components of the workflow may be developed using
different programming languages by different people, have different licenses and,
actually, may be developed with different initial goals. Furthermore, these work-
flows will be executed on the machines owned by different entities. In a decen-
tralized system like this, each developer will be able to freely choose properties,
capabilities and internal structure of their algorithms. Through the mechanism
of dynamic workflow construction, AI-DSL will be able to pull together the in-
formation about each component of desired workflow when the execution of it
is required.
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The very high level view of SingularityNET’s AI Service calls involving AI-
DSL looks as follows:

Figure 4.12: Bird’s eye view of application-independent SingularityNET
calls involving AI-DSL.

Within the domain model of Fake News Warning application (Figure 4.2a)
this scheme works approximately in the following way:

1. User/Business accesses the platform via browser-extension by sending (a)
the definition of the workflow to the platform in the form of a DAG (Figure
4.1) and (b) the web content to be checked for probability to contain fake
news.

2. The AI-DSL engine reads the DAG and identifies the dependent SNet AI
Services that need to be called.

3. If dependent services are indicated statically as in 4.1, then the platform
knows immediately names of the services to be called. If, however, de-
pendent services are described in terms of their input / output types (as
in 4.4), the AI-DSL engine searches and matches services available in the
platform that satisfy constraints defined there10.

10In the future, the AI-DSL engine will aim to accommodate fuzzy service definitions and
complex decision functions to search and match them, involving ability for an AI Service to
choose its dependent services.
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4. When matching services are found, the AI-DSL engine pulls their indi-
vidual type signatures and other metadata from each service (note, that
a decentralized system cannot be built with the assumption of availabil-
ity of global registry; such registry can, however, be built as a secondary
index of otherwise decentralized information sources) and compiles into a
workflow. This operation may be done in a few stages:

• When the AI-DSL engine requests metadata for the dependent ser-
vice and receives it, it checks the received metadata for conformance
to AI-DSL Ontology requirements (e.g. well-formed description in
SUO-KIF and correct type dependencies as defined hierarchy in Ta-
ble 4.4 and displayed graphically in Figure 4.13):

Figure 4.13: Graphical form of the hierarchy of dependencies of uclnlp

SNet AI service instance of Fake News Warning application within SUMO
ontology.

• Note, that the correctness of type dependencies of decentralized com-
ponents of the AI-DSL Ontology (uclnlp) will be checked against
centralized components versioned by SingularityNET platform (Ta-
ble 4.2). Defining versioning mechanism of global components of the
ontology is not within the scope of this work. However, merely ac-
knowledging the possible existence of different versions of root and
middle level ontologies within the hierarchy requires to think about
reasonable way to accommodate them into the system. A possibil-
ity is to include information about the version of global components
of ontology when communicating decentralized components between
each other, as suggested in [56]. In such case, the stage 4 of the
workflow construction in Figure 4.12 would look approximately like
this:
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Figure 4.14: Stage 4 of workflow construction sequence (fully depicted in
Figure 4.12) – compiling the workflow and proving its correctness.

• Service metadata returned by calls 2 and 4 of Figure 4.14 include
service definitions and the version number of the global AI-DSL On-
tology that was used to build these definitions. For example, call 4
may contain the following information:

1 {

2 "sender": "uclnlp",

3 "receiver": "fakeNewsScore",

4 "upper-ai-dsl-ontology": "v0.1",

5 "service-metadata": $(include sevice_definition.json),

6 "leaf-ontology": $(include uclnlp.kif)

7 }

Figure 4.15: Metadata of the uclnlp service. Sample contents of
included files can be seen separately for each service definition.json
and uclnlp.kif.

• When all service definitions are collected and the their versions checked
to match, they can be checked for conformance with the global AI-
DSL Ontology of respective version and, if service definitions include
type signature – type-checked.

• The actual compilation of the workflow, compliance to the AI-DSL
Ontology and type-checking need a dedicated and properly config-
ured execution environment. In the context of this document, that
execution environment may include the Idris compiler, an ontology
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prover that is able to process SUO-KIF definitions (e.g. Sigma), their
dependencies and possibly custom code. For that, it would be most
logical to introduce a dedicated AI service into the platform – which
is the verifier component denoted in Figure 4.14. The verifier

service will be able to run any required verification procedures in or-
der to provide a proof that the workflow constructed from services
found in step 3 is valid and can be correctly executed on the Singu-
larityNET platform.

• After calls 1 , 2 , 3 and 4 of Figure 4.14 are completed, a call 5
will be issued to verifier sending all metadata of each service along
with the AI-DSL Ontology version’s identifier. The verifier will
then request all required dependencies (listed in Figure 4.2) from the
central SingularityNET repository (or blockchain) and calculate the
proof.

• After verifier calculates the proof at step 8 , the proof is sent to the
service that has requested it (in the case of 4.12 – to fakeNewsScore).
Additionally, the existence of independent verifiers would allow to
optimize the overall computational costs of calculating proofs on the
platform, by recording them into the blokchain and making search-
able by other services that may require the same workflow. One way
to do this would be to:

(a) Calculate a hash from the metadata of each service of the work-
flow (i.e. *.kif or *.idr files);

(b) Construct a Merkle tree 11 from those hashes which would ex-
actly mirror the structure of the workflow defined in DAG (Fig-
ure 4.1);

(c) Record the root hash of the tree into the blockchain with relevant
metadata;

• Such setup would constitute an implicit reputation system of work-
flows in the sense that a workflow with most proofs of correctness
on the blockchain could be trusted to work without recalculating the
proof each time a workflow is constructed.

4.3 Future work

• In the long term, it may be ideal to develop a converter for converting
OWL to KIF, since OWL may be representable in KIF [41] using OWL
API; For the purpose of the ontology prototype, we are manually selecting
parts of the existing ontologies in order to build the prototype and write
them in SUO-KIF format.

• Similarly we want to be able to convert SUO-KIF specifications into Idris,
and possibly vise versa, to take advantage of the strengths of each for-

11https://en.wikipedia.org/wiki/Merkle tree
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malism. To the best of our knowledge there are no existing tools to au-
tomatically translate SUO-KIF to/from Idris, however there is a tool to
translate SUO-KIF to FOL [48] and a paper describing the translation
from a Dependently Typed Language (DTL) to FOL [52]. Additionally,
to start building an understanding about such process, we have manually
ported the trivial AI services described in Section 2.3 to SUO-KIF, see
TrivialServices.kif under the ontology of the AI-DSL repository [5]. As it
turns out writing formal specifications of functions in SUO-KIF is reason-
ably straight forward. Here is for instance the SUO-KIF implementation
of the Twicer service

(instance TwicerFn UnaryFunction)

(domain TwicerFn 1 Integer)

(range TwicerFn EvenInteger)

(=>

(instance ?INTEGER Integer)

(equal (TwicerFn ?INTEGER) (MultiplicationFn ?INTEGER 2))))

where EvenInteger happens to be predefined in Merge.kif of SUMO, par-
tially recalled below

(=>

(instance ?NUMBER EvenInteger)

(equal (RemainderFn ?NUMBER 2) 0))

Thus one can see that is it easy to specify a function input type, using
domain, and output type, using range, in SUO-KIF, as well its full or par-
tial definition, using =>, equal and universally quantified variables such
as ?NUMBER. It should be noted however that the reason it works so well in
that case is because the output type does not depend on the input value,
the output is an even integer no matter what. It is expected that port-
ing for instance the append function of the dependent type Vect [10] to
SUO-KIF might not be as trivial, since the domain and range constructs
may not be suitable to represent such dependence (i.e. that the size of
the resulting vector of append is the sum of the sizes of the input vec-
tors). However, given that dependent types are essentially functions, it
might be possible to set the domain and range with such type functions.
Alternatively such dependence can be moved to the function definition as
offered by SUO-KIF expressiveness. Another aspect we need to explore is
how tools, such as Automatic Theorem Provers (ATPs) [22, 53, 38], can
be used to autonomously compose as well as retrieve functions given their
input and output types. Obviously if ATP tools running over SUO-KIF
turn out to be deficient in that respect, we already know from Section 2.3
that Idris can fulfill that purpose.
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Chapter 5

Conclusion

While we have not yet created a fully fleshed out AI-DSL suitable for use in
the SingularityNET platform, we have made quite significant progress toward
turning this vision into a reality.

Let us now summarize what we have accomplished so far and what are the
next steps to bring us closer to a complete AI-DSL.

• We have started gathering and reviewing literature of related work to make
sure we do not miss anything major and can take advantage of existing
technologies. Even though we have found no such related project using
dependent types and combined with the blockchain technology, there are
related projects, described in Section 1.3, with potential for re-usability
of ideas or implementations such as the Function Ontology, FIPA-ACL or
more. We intend to keep studying the literature of related work.

• We have experimented with Idris to formalize and reason about realized
function attributes such as costs and quality, see Section 2.1 for more
details. We have done so in a limited manners, only considering additive
cost and infimum-itive quality, but we have proven that it is possible and
tractable to do in Idris. More work is required to expand the complexity
of such realized function attributes, such as functional or distributional
costs and quality.

• An AI-DSL Registry prototype has been build, to retrieve, match and
connect AI services based on their specifications as dependent types using
Idris meta-functions for function matching and retrieval as described in
Section 2.3. This prototype has limits, such as returning only the first
matching AI service and not performing fully autonomous composition of
AI services, but none of these limits seem fundamentally hard to address
and should only require more development time.

• In Chapter 3, we have experimented with Idris to formalize function prop-
erties as dependent types. This was done in a limited manner, using trivial
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properties such as evenness of numbers, but taught us that it is a possible
to do in Idris, and provided us insights on how to expand that to more
complex properties. Also, various approaches for defining AI-DSL as an
Idris eDLS have explored, see Section 3.2. Additional an important idea
was approached in this Chapter, the interaction between the AI-DSL and
the tokenomics of the network as a means to provide soft guaranties when
hard guaranties are difficult to obtain, see 3.1.4.

• In Chapter 4 we have explored ontologies with the goal of defining a rich
and extendable vocabulary for specifying AI services, their algorithms,
data types as well as their relationship to real world. For now the deci-
sion was made to build such an AI ontology on top of SUMO due to its
openness, breadth and quality, as well as the expressiveness of its represen-
tational language, SUO-KIF. The upper layer of the Fake News Warning
app was translated into SUO-KIF as a SUMO extension. We also explored
how to convert SUO-KIF knowledge into Idris, more work is required to
automate such conversions. Something that has been discussed but re-
mains to be fully explored is the use of Automatic Theorem Provers as
complement (or possibly ultimately replacement) to Idris for matching
and composing services. Future work ontology-wise will centrally include

1. building base ontology of ground types, needed for any type descrip-
tion, likely based on Idris and/or Hyperon;

2. importation of relevant domain-specific data-type ontologies into AI-
DSL framework, for instance low hanging fruit will be biomedical and
finance domains where existing ontologies are fairly mature;

3. specifying a service ontology (as part of AI-DSL ontology) for easier
discovery or AI agents based on various criteria.

The work taking place during the next iterations will continue the explo-
ration we have started, refining our existing prototypes and bringing them to-
gether in a holistic system, guided by real world AI service assemblage test
cases, consolidated as a test suite. To support this future work, we have started
building a real world AI service assemblage test case, based on Nunet Fake News
Warning app, see Section 2.3.3. This first test case is going to be critical to put
our AI-DSL prototypes to the test and build the understanding necessary to
push it to the next level. Further test cases will be considered over various
domains such as bio-informatics, finance, embodied agent control and more.

Even though there is much more work to accomplish, we have already made
considerable progress. We are happy to report that no profound difficulties have
been revealed so far. There are however significant challenges to be confronted as
the work moves forward. One difficulty that is expected to eventually come up is
the tractability of the verification and composition process of AI services. This
is generally undecidable, and even when restricted to subclasses of functions
(as is the case in Idris due to its foundation in Intuitionistic Logic) can still
have explosive complexity. However, it is also expected that a tremendous
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amount of value will be created by having such systems work with restricted
applicability, or by relaxing the level of required guaranties. Ultimately it is
expected that the AI-DSL will need to synergize with AGI systems to reach its
full potential, a notion that fits very closely with the overall design and ambition
of SingularityNET.
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Appendix A

Glossary

• AI service assemblage: collection of AI services interacting together to
fulfill a given function. Example of such AI service assemblage would be
the Nunet Fake News Warning system.

• Dependent Types: types depending on values. Instead of being limited
to constants such as Integer or String, dependent types are essentially
functions that take values and return types. A dependent type is usually
expressed as a term containing free variables. An example of dependent
type is Vect n a, representing the class of vectors containing n elements
of type a.

• Dependently Typed Language: functional programming language us-
ing dependent types. Examples of such languages are Idris, AGDA and
Coq.
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