
10
Reducing the Small Disjuncts Problem
by Learning Probabilistic Concept
Descriptions

Kamal M. Ali and Michael J. Pazzani

10.1 Introduction

Concept learners that learn concept descriptions consisting of rules have
been shown to be prone to the small disjuncts problem (Holte et al., 1989).
This is the problem where a large proportion of the overall classi�cation error
made by the concept description on an independent test set can be attributed
to rules which were true for a small number of training examples. In noisy
domains, such concept learners typically learn a few reliable rules that are
true for (i.e. cover) many examples and many rules (small disjuncts) that
cover few examples. This chapter concerns itself with supervised learning
| that is learning in a context where the set of concepts (classes) is known
a priori and each training example is accompanied by a class label.
This chapter presents the system HYDRA which learns a set of rules for

each concept where each rule is augmented with a measure of the reliability
of that rule. HYDRA is aimed at reducing the small disjuncts problem
and at learning probabilistic relational concept descriptions. Probabilistic
relational concepts are those that cannot concisely be described using a set
of necessary and su�cient rules. For example, the concept C(X,Z) whose
de�nition is given below, does not have a concise necessary or su�cient
concept description in �rst-order logic.

p(C(X;Z) j E(X; Y ); F (Y; Z)) = 0:8

p(C(X;Z) j :(E(X; Y ); F (Y; Z))) = 0:1

First-order concept learners whose concept hypothesis language does not
admit probabilistic expressions will not learn a compact description for such
concepts. Instead, as the number of training examples presented increases,
they will learn more and more complex approximations. HYDRA learns
�rst-order rules and then augments them with likelihood ratios (Duda et
al., 1979). HYDRA aims to estimate the reliability of a rule and then uses
that to reduce the e�ect of small disjuncts. In section 10.1.1 we brie
y
explain how the relational concept learner FOIL, from which HYDRA is



180 Ali and Pazzani

derived,1 learns from data. Section 10.1.2 compares HYDRA to previous
work on the small disjuncts problem and section 10.1.3 shows empirically
that FOIL has a small disjuncts problem. Section 10.2 presents HYDRA
and the semantics associated with our formulation of reliability. We show
HYDRA learns concept descriptions that have low error rates when com-
pared to FOIL and other algorithms. Furthermore, we present empirical
evidence in section 10.3 that this increase in accuracy is due to reducing the
contribution to error from small disjuncts.

10.1.1 FOIL

FOIL learns a concept description that is a conjunction of Horn clauses.
Two common ways of writing such descriptions are given below.

(C(X;Z) A(X; Y ) ^B(Y; Z))^ (C(X;Z) D(X;Z)^ :(F (Z; Y )))

C(X;Z) [(A(X; Y ) ^ B(Y; Z))_ (D(X;Z)^ :(F (Z; Y )))]

We now de�ne some terms using the above example. \C(X;Z) A(X; Y )^
B(Y; Z)" is a Horn clause whose head is \C(X;Z)" and whose body is
the conjunction \A(X; Y ) ^ B(Y; Z)". C is called the target concept |
that is, the concept for which we wish to learn a concept description. The
other predicates (A,B,D and F ) are called background concepts. Syntactic
constructs such as A(X; Y ) when they appear in the body of a Horn clause
are called literals. The second way of writing concept descriptions also
illustrates the source of the term \small disjuncts problem". In this notation,
the body of the concept description is a disjunction consisting of disjuncts
that correspond to the bodies of Horn clauses.
FOIL views concepts as relations. An extensional de�nition of a concept

C with arity n consists of all n-tuples that are in the relation C. n-tuples
that are in a given relation (i.e. are members of that relation's extension)
are called positive examples of that relation and n-tuples that are not in the
relation are called negative examples of that relation. A tuple is a sequence
of terms. We de�ne \component" to refer to a term in a tuple. The input
to FOIL consists of full extensional de�nitions of the background relations

1HYDRA is derived from FOIL via FOCL (Pazzani & Kibler, 1991). FOCL added to
FOIL the ability to use a prior domain theory.



Reducing the Small Disjuncts Problem 181

and some positive and negative examples of the target relation. The idea
is to learn a concept description, using the limited numbers of positive and
negative examples, that will be accurate in classifying future examples.
FOIL uses the set of background relations to build a concept description

such that each positive training example of the target relation is covered2 by
one or more clauses and no negative example is covered by any clause. FOIL
uses a separate and conquer approach3 that involves �ltering out any exam-
ples covered by the current clause before presenting the remaining examples
for learning of the next clause. This iterative process terminates when all
positive training examples have been covered by at least one clause.
The body of each clause is learned in the following manner: for each back-

ground relation, FOIL builds candidate literals consisting of the name of
that background relation and a subset of the variables in the head of the
clause. So if the head of the clause is P (V1; : : : ; Vn) and FOIL is considering
the background relation B which has arity m, FOIL will consider all liter-
als B(X1; : : : ; Xm) where X1; : : : ; Xm � V1; : : : ; Vn.

4 We will refer to the
sequence (X1; : : : ; Xm) as a variablization.
FOIL ranks each candidate literal by measuring the information (Shannon

& Weaver, 1949) that would be gained if that literal was conjoined with the
body of the current clause. If p denotes the number of positive examples
covered by the clause before incorporation of the candidate literal, p+ the
number of positive examples after the literal, n the number of negatives
before the literal and n+ the number of negatives after the literal, then the
information gain attributed to that literal is de�ned by Quinlan (1990) as

information-gain(p; n; p+; n+) = p+[information(p+; n+)

�information(p; n)]

where
2If we replace the variables in the head of the clause by the components of the tuple to
obtain a binding list and then if the instantiated body of the clause is provable, we say
that the clause covers the example.
3The separate and conquer approach is slightly di�erent from the divide and conquer
approach used in learning decision trees (Quinlan, 1986) in that it is only concerned with
modelling positive examples. This also implies that FOIL is only able to learn in situations
where there are two classes - a concept and its complement.
4Literals where more than one of the map to the same are included in this framework.



182 Ali and Pazzani

information(a; b) = log2

�
a

a + b

�

After considering each candidate literal, the candidate literal providing the
greatest information gain is conjoined to the body of the clause. The positive
and negative examples covered by the new clause are then presented for
learning the next literal in the clause. If no negative examples are covered
by the new clause, that clause is considered complete. FOIL then removes
the positive examples covered by that clause before proceeding to learn the
next clause.
Having built a concept description, FOIL classi�es an example by check-

ing if any of the clauses are true for the example. If at least one clause is
true for the example, FOIL classi�es the example as a member of the tar-
get concept. If not, it uses the closed world assumption and classi�es the
example to the complement of the target concept. Thus, FOIL is limited to
domains with two concepts which are complements of each other. An impor-
tant point to note about the information gain heuristic is that it trades o�
generality (the p+ term) versus the log of a function that aims to maximize
discriminability. Without the p+ term, a learner could learn one clause per
positive training example, satisfactorily covering all the positive examples
and none of the negative examples, yet obtaining a concept description with
very little generality.
HYDRA uses the same separate and conquer control strategy as used in

FOIL but assumes the data are partitioned into n concepts and it learns a
concept description for each concept. In addition, it attaches weights in the
form of likelihood ratios to each clause. Thus, HYDRA does not assume
that the examples must be partitioned into only two concepts. We discuss
HYDRA in detail in section 10.2.

10.1.2 Previous Work

The work of Holte et al. (1989) demonstrates that various attribute-value
learning systems on several domains are prone to the small disjuncts prob-
lem. One obvious approach to deal with this problem is to delete disjuncts
that cover fewer than some preset number of examples. Holte et al. (1989)
rejected this approach because it may delete disjuncts that are part of the
target concept description but that cover a small fraction of the positive ex-
amples. They also rejected approximations to statistical signi�cance tests in



Reducing the Small Disjuncts Problem 183

favor of a variable bias system that builds maximally general clauses to cover
large disjuncts and maximally speci�c clauses to cover small disjuncts. They
categorize the information gain bias (used in ID3 and CN2, for example) as
a \maximum generality" bias and show that using a maximum speci�city
bias to learn disjuncts covering fewer than a preset number of training ex-
amples lowers the error rates of small disjuncts. They test their method
on the KPa7KR chess end-game task and �nd that by using a switch-over
threshold of 9 examples, the overall error rate is reduced from 7.2% to 5.2%
and that using a switch-over threshold of 5 examples, the overall error rate
stays at 7.2% although the error rate of small disjuncts is reduced from 16%
to 11%. We have chosen to address the small disjuncts problem using a
maximum-likelihood estimation approach using weights which is described
in section 10.2.

10.1.3 Evidence of the Small Disjuncts Problem

Following the de�nition of the small disjuncts problem as given in sec-
tion 10.1.2, �gure 10.1 illustrates the correlation between cumulative
matches over the test set and the cumulative distribution of false positive
classi�cations for FOIL on the \illegal" (King-Rook-King) chess problem
(Muggleton et al., 1989). In a system without such a problem, all disjuncts
would be equally accurate so one would expect that the disjuncts that cover
a given percentage of the examples would be responsible for that same per-
centage of the errors. Because the curves for FOIL and HYDRA are above
the diagonal however, they indicate that disjuncts that match small pro-
portions of the test examples contribute disproportionately to false positive
errors. However, this problem is less severe for HYDRA because it assigns
smaller weights to disjuncts that cover few examples and are likely to be un-
reliable. The line for HYDRA in �gure 10.1 corresponds to disjuncts learned
for both concepts in this domain. In order to produce �gure 10.1, for each
clause (disjunct), we kept track of the number of test examples it matched
and the number of errors it made. This yielded a sequence S of triples
6 clause;matches; errorsi which were sorted in ascending order by matches.
Then we used the algorithm shown in table 10.1 to produce �gure 10.1.
The pattern in �gure 10.1 is repeated reliably on several noise-free and

noisy domains and on both arti�cial and natural data sets (such as the DNA
promoters data set). If FOIL had no small disjuncts problem, it would have
a cumulative error distribution indicated by the diagonal line in �gure 10.1.



184 Ali and Pazzani

Figure 10.1
Clauses from FOIL that cover (match) only 20% of examples from the test set generate
much more than 20% of the false positives (errors of comission). The problem is reduced for
HYDRA. Both algorithms were trained on 160 examples from the \illegal" chess domain
(Muggleton et al., 1989) with 5% tuple noise added. A level of 5% tuple noise means that
for each component of a tuple, there is a 0.05 probability that the value of that component
will be replaced by a random value drawn according to the uniform distribution from the
set of legal values for that component. Each curve represent the average of 20 independent
trials.

Table 10.1
Pseudo-code of the algorithm used to generate �gure 10.1.

current-matches = matches of head element of S
for hclause;matches; errorsi 2 S do begin

if matches 6= current-matches begin
plot(cumulative-matches=total-matches; cumulative-errors=total-errors)

end cumulative-matches = cumulative-matches +matches
cumulative-errors = cumulative-errors + errors

end plot(cumulative-matches=total-matches; cumulative-errors=total-errors)



Reducing the Small Disjuncts Problem 185

One possible explanation for the fact that the error contribution of small
disjuncts is greater than the error contribution of large disjuncts may simply
be due to the relatively large number of small disjuncts learned. Our analysis
compensates for this factor by comparing the proportion of false positive
errors made by a set of disjuncts compared to the proportion of test examples
covered by that set of disjuncts. We �nd that disjuncts that covered only a
few training examples may jointly cover only 20may be jointly responsible
for much more than 20positive errors. Our hypothesis then is that the small
disjuncts problems can be addressed by assigning lower classi�cation weights
to small disjuncts.

10.2 Probabilistic Relational Concept
Descriptions

Our motivation for developing HYDRA derives from two considerations.
First, \real world domains" embody a variety of problems such as noisy re-
lations and noisy class labels, so learners that aim to build necessary and
su�cient concept descriptions end up over-�tting the data. Second, we hope
to reduce the small disjuncts problem by attaching some form of classi�ca-
tion reliability measure to each clause.

10.2.1 Knowledge Representation and Classi�cation

Here we discuss knowledge representation used to represent concepts and
how the resulting concept descriptions are used in classi�cation. The method
of learning such concepts is presented in section 10.2.2. HYDRA di�ers from
FOIL because FOIL assumes the examples are partitioned into two classes
but HYDRA assumes they may be partitioned into two or more classes
(concepts). Therefore, there may be many target concepts for HYDRA, each
one corresponding to a relation. (This set of concepts is disjoint with the set
of background concepts.) HYDRA represents each concept by a conjunction
of Horn clauses. Each clause has an associated weight representing the degree
of logical su�ciency (ls) (Duda et al., 1979) which that clause has for the
concept represented by the head of the clause. A couple of such clauses for
di�erent concepts are shown below.

a(X; Y ) ^ b(Y; Z)! Classi(X;Z) [ls = 3:5]



186 Ali and Pazzani

c(X; Y ) ^ d(Y; Z)! Classj(X;Z) [ls = 4:0]

Let clausei;j denote the body of the (i; j)-th clause of the i-th concept.
Given a set of positive training examples (+) and negative training examples
(�) and a random variable t representing an example, the ls is de�ned as

ls =
p(clausei;j(t) = true j t 2 +)

p(clausei;j(t) = true j t 2 �)

To estimate the reliability of a clause, we chose to use ls rather than ap-
parent accuracy (accuracy over the training data) because Muggleton et al.
(1992) have shown that coverage (the number of training examples covered
by a clause) is a better indicator of the accuracy on future test examples
than apparent accuracy and in our earlier work (Ali & Pazzani, 1993) we
have empirically shown that ls is a better measure of clause reliability than
coverage.
After learning one concept description per concept, a test example is clas-

si�ed as follows. For each concept, we want to estimate the probability that
that test example belongs to the concept given that it has satis�ed some
clause of that concept (an example satis�es a clause if that clause covers
the example). In order to do this, for each concept, considering only clauses
that are satis�ed by the current test example, we choose the clause with the
highest ls value.5 The clause with the highest ls value is chosen because it is
considered the most reliable indicator of the concept, based on the training
data. We do this for each concept and assign the test example to the concept
whose representative clause has the highest ls value. We will refer to this as
optimistic likelihood estimation. Another strategy for evaluating the degree
to which satisfaction of the clauses indicates membership in the concept is
to multiply together the ls values of all the clauses within each concept,
the product being taken over clauses that are satis�ed by the test example.
We will refer to this as pessimistic likelihood estimation. It assumes all the
clauses are independent, given the data. Both these methods are empirically
compared in table 10.2.

5If the example satis�es no clause of any class, HYDRA guesses and assigns the test
example to the class that occurred with greatest frequency in the training data.



Reducing the Small Disjuncts Problem 187

10.2.2 Learning in HYDRA

HYDRA di�ers from FOIL in three major ways. First, HYDRA learns a
concept description for each concept. Second, HYDRA associates an esti-
mate of the degree of logical su�ciency with each learned clause. Third,
HYDRA uses a candidate literal ranking metric (ls-content) that is aimed
at learning probabilistic concept descriptions rather than the information
gain metric which is aimed at learning necessary and su�cient concept de-
scriptions. Learning one concept description per concept is necessary when
concept descriptions are going to compete to classify the test example.
HYDRA uses the same separate and conquer strategy used in FOIL. It

forms clauses iteratively, removing examples covered by previous clauses in
order to learn subsequent clauses. HYDRA uses ls during learning as well
as for estimating the reliability of a clause. Consider the learning process
midway through learning the j-th clause for the i-th concept. Let pi;j;0
denote the number of positive examples not covered by previous clauses.
Thus, these examples are available for learning the current clause. However,
because some literals may already have been added to the body of the current
clause, not all of the examples may satisfy the current clause. Let pi;j denote
the number of positive examples that satisfy the current clause. De�ne ni;j;0
and ni;j analogously. These quantities can then be used to estimate ls from
data using the Laplace approximation (Kruskal & Tanur, 1978):

p(clausei;j(t) = true j t 2 +) �
pi;j + 1

pi;j;0 + 2

(The justi�cation for this approximation follows later in this section.) An
analogous approximation can be made for the denominator of ls to yield a
method of computing ls from data

ls(pi;j ; ni;j; pi;j;0; hi;j;0) �
(pi;j + 1)(ni;j;0 + 2)

(ni;j + 1)(pi;j;0+ 2)

Using this de�nition, ls-content is de�ned as

ls-content((pi;j; ni;j ; pi;j;0; hi;j;0) = ls(pi;j ; ni;j; pi;j;0; hi;j;0)
1��p�i;j

where � is a parameter to the system.



188 Ali and Pazzani

Using this metric, HYDRA compares the value of ls-content before addi-
tion of a literal to the body of the clause to the value after addition of the
literal. If there are no literals that cause an increase in ls-content, HYDRA
completes the clause, otherwise it resets pi;j and ni;j to re
ect the num-
bers of examples covered by the clause with the new literal conjoined. The
parameter ls-content trades o� discriminability against coverage as did in-
formation content, but it is weighed more in favor of coverage as is necessary
in probabilistic domains and when learning from noisy data. Setting � to 0
causes HYDRA to build many clauses, none of which cover many examples.
Setting � = 1 causes HYDRA to build no clauses, e�ectively reducing HY-
DRA to guessing the concept with the highest prior probability estimate.
For the experiments in section 10.3, we set � to a neutral intermediate value
of 0.5.
After all the clauses have been learned, HYDRA forms an estimate of the

degree of logical su�ciency, lsi;j , associated with each clause using the entire
set of positive training examples (+) and the negative training examples (�),

lsi;j =
p(clausei;j(t) = true j t 2 +)

p(clausei;j(t) = true j t 2 �)
:

HYDRA estimates the numerator and denominator from the training set
using the Laplace ratio. According to Laplace's law of succession, if a ran-
dom variable, X , whose domain consists of two values, has been observed
to take on a value v ni times out of N trials, the least biased estimate of
p(X = v) = (ni + 1)=(N + 2). In order to apply Laplace's law of succession
to estimate lsi;j we note that the set of positive examples pi can be split into
two classes: those that satisfy the clause and those that do not. If of the
positive examples satisfy the clause, we can make the following estimation:

p(clausei;j(t) = true j t 2 +) �
pi;j + 1

pi + 2

An analogous approximation can be made for the negative examples to
yield

lsi;j = ls(pi;j; ni;j ; pi; ni) �
(pi;j + 1)(ni + 2)

(ni;j + 1)(pi + 2)



Reducing the Small Disjuncts Problem 189

This is the weight that HYDRA attaches to a clause. It is di�erent from the
likelihood ratio used during learning in that the conditional probabilities are
taken with respect to the entire training set, not just the subset uncovered
by the previous j clauses.
Note that the Laplace ratio also has the convenient property that it does

not assign a ls of in�nity to a clause that may cover just 1 positive and 0
negative training examples. This is convenient because a ls of in�nity means
satisfaction of that clause is totally su�cient to classify the test example as
a member of the concept associated with that clause.

10.3 Experimental Results

In this section, we show that the three changes we have made to transform
FOIL into HYDRA signi�cantly reduce classi�cation error rates in noisy
domains although they slightly increase error rates when learning a necessary
and su�cient target concept. We present evidence that HYDRA reduces the
small disjuncts problem suggesting that a method that weighs unreliable
clauses less heavily leads to lower error rates. We also explore the e�ect
of varying the � parameter and present a method for reducing errors of
omission (false negatives) made by HYDRA.
In our experiments we �rst compared FOIL to MC-FOIL; a system that we

created to isolate the e�ect of learning multiple concept descriptions. Thus,
MC-FOIL only di�ers from FOIL in that it learns one concept description
for each concept in the training data. If a test example satis�es clauses from
more than one concept, the test example is classi�ed to the concept whose
clause covers the greater number of positive training examples. The hope is
that clauses covering more positive examples are more reliable. MC-FOIL's
accuracy on noisy data sets is signi�cantly more accurate than that of FOIL.
This experiment tested to see the e�ect that learning more than one concept
description may have.
Next, we experimented to see what e�ect adding weights to clauses would

have by comparing HYDRA (using the information gain metric) to MC-
FOIL (also using the information gain metric). This change helped signi�-
cantly on the promoters domain but caused an increase in error rates when
learning necessary and su�cient concepts. Finally, we compared HYDRA
using information gain to HYDRA using ls-content. This helped lower error
signi�cantly on domains with tuple noise and the promoters domain. It did



190 Ali and Pazzani

not hurt accuracy on any domain. Altogether, these three changes work in
tandem to increase classi�cation accuracy.

10.3.1 Description of the Domains

We ran experiments on six variants (see table 10.2) of the task of predicting
whether a chess board con�guration was illegal where a board is represented
as a 6-tuple consisting of the �le and rank coordinates of a white king, white
rook and a black king. A board is labeled illegal if either king is in check
or the 6-tuple represents more than one piece occupying the same position.
In order to form a description illegal(V1; : : : ; V6), HYDRA uses the relations
near-�le, between-�le and equal-�le, and their rank counterparts. We also
ran experiments on the \natural" domains of breast-cancer recurrence, DNA
promoter and lymphography. These domains have been extensively used by
attribute-value learners. Background relations for these domains consist of
equal, <, > as well as domain-speci�c relations such as the nucleotide-family
relation in the promoters domain. The last domain we studied is the King-
Rook King-Pawn (KPa7KR) domain which was also used by Holte et al. in
their study of small disjuncts.

10.3.2 Experimental Comparison of HYDRA and FOIL

Table 10.2 shows that a method of assigning lower weights to less reliable
clauses in noisy domains and even in the noise-free DNA domain (where the
data is not noisy but the target concept may not be expressible as a Horn
theory) can yield concept descriptions with lower error rates. The illegal
tasks with 20% class noise mean that on average, 20randomly reassigned.
HYDRA's accuracy is highly competitive with other noise tolerant algo-

rithms in all but the cancer domain. HYDRA does better than the variable
bias system of Holte et al.on the KPa7KR domain and as well as the best al-
gorithms on lymphography. It also does better than Reduced-Error Pruning
applied to FOIL (Brunk & Pazzani, 1990) and better than Reduced-Error
Pruning on other domains we tested (Ali and Pazzani, 1992). Furthermore,
while Holte et al. were not able to reduce the overall error rate by replacing
information gain with a selective speci�city bias system, HYDRA is able
to attain signi�cantly lower error rates, due in part to addressing the small
disjuncts problem.



Reducing the Small Disjuncts Problem 191

Table 10.2
Predictive accuracy rates of FOIL versus HYDRA. The �gures in parentheses are sample
standard deviations. For each task, the algorithm or set of algorithms that performed the
best are in bold font. These accuracies include the \default rule" which is to guess the most
frequently occurring concept. For each algorithm and each task, we ran 20 independent
trials, each time using the number of examples shown for training and another 50% of
that number for testing. Standard deviations are high for the DNA task because we used
leave-one-out testing on that domain.

Task Number of FOIL Optimistic Pessimistic

training accuracy likelihood likelihood

examples Estimation Estimation

Illegal with 20% 160a 83.9 (6.6) 91.8 (2.5) 91.7 (3.2)

Class noise 320 83.8 (4.6) 92.7 (4.6) 92.5 (4.5)

Illegal with 5% 160 90.6 (5.0) 93.6 (3.4) 92.3 (4.0)

tuple noise 320 90.7 (3.8) 96.5 (2.7) 96.3 (2.3)

Noiseless Illegal 100 97.1 (3.3) 95.1 (3.5) 93.6 (4.3)

200 99.1 (0.9) 96.7 (2.7) 95.9 (2.6)

Lymphography 99 78.2b (4.2) 79.8 (5.4) 78.6 (5.8)

KPa7KR 200 90.3 (2.5) 94.7 (1.1)

Breast Cancer 191 63.5 (4.3) 68.9 (4.0) 72.5 (2.2)

DNA 105 73.6 (44.3) 81.1 (39.3) 81.1 (39.3)

aThe training set sizes were chosen to allow comparisons with other algorithms that have
been run on this domain. Examples were drawn without replacement for all but the
illegal domain for which examples can be generated from a set of 86 examples. For the
DNA domain, we used the leave-one-out methodology to train on 105 of the 106 available
examples.
bThis accuracy is for MC-FOIL because FOIL cannot be run on domains with more than
two classes and the lymphography data set contains four classes.

Figures 10.1 and 10.2 illustrate that the small disjuncts problem is reduced
by HYDRA. If an algorithm's curve goes through the point (20,80) that
means that clauses that together cover 20% or less of the test examples made
80% of the false positive classi�cations. Only one \match" is attributed
per test example. For FOIL, this attribution is made to the �rst clause
(in order of learning) that is true on the test example. For HYDRA the
example is attributed to the clause with the highest ls value, considering
only clauses that were satis�ed by the current test example. One can see
from these graphs that for FOIL the clauses that cover a small percentage



192 Ali and Pazzani

Figure 10.2
Comparison of the cumulative error distribution of FOIL and HYDRA to the ideal cu-
mulative error distribution on the DNA promoters domain. A comissive error is a false
positive classi�cation.

of the examples from the test set are responsible for a disproportionate
percentage of the total false positive classi�cations. Note that these graphs
only show the distribution of error; in particular, two algorithms may have
the same distribution but very di�erent overall error rates. In order to make
a comparison between algorithms it is necessary to compare overall accuracy
(table 10.2) as well as the distribution of error.

10.3.3 E�ect of Varying �

One of the major challenges in learning from noisy data is to avoid over�tting
the training data. Both the information gain metric used in FOIL and the
ls-content metric used in HYDRA trade o� coverage against discriminability.
However, this trade o� is made explicit in HYDRA through the use of the
� parameter. �gure 10.3 plots how varying a a�ects accuracy. �gure 10.3
presents preliminary evidence that the best value of � is one that neither
over-�ts the data (� = 0) nor one that under�ts the data (� = 1).



Reducing the Small Disjuncts Problem 193

Figure 10.3
Variation in accuracy as a function of varying the degree to which training data is �tted.
The curve labeled \Accuracy 160,20" refers to training on 160 examples (from the King-
Rook-King domain) containing 20% class noise. \Accuracy 160,5" refers to training on
160 examples containing 5% tuple noise. Both curves represent averages over 15 trials.
Bars correspond to one standard deviation in accuracy.

10.3.4 Partial Clauses

Concept descriptions learned by HYDRA and FOIL su�er from large num-
bers of false negatives (errors of omission) when learning M of N concepts
(Spackman, 1988) or when learning highly disjunctive concepts. On the
DNA promoters domain for example, all clauses of all concept descrip-
tions learned by HYDRA failed to cover 13% of the test examples from
the promoters concept and 21% of the test examples of the non-promoters
concept. In such cases HYDRA is forced to guess the most frequent con-
cept. A better alternative is to determine if the clause nearly covers an
example. We implemented this idea by adding clauses that are derived
from the clauses already learned by HYDRA. For example, the clause
a(X;Z) ^ b(Y;X) ^ c(X;X) ! concept(X; Y ) would give rise to the fol-



194 Ali and Pazzani

Table 10.3
Adding partial clauses helps except when the data is sparse. KRK 10 refers to data sets
containing 10 training examples from the King-Rook-King domain. All KRK data sets
had 20% class noise. These �gures represent the averages of 20 trials.

Task Accuracy without Omissions Accuracy with Omissions

Partial clauses Vector before Partial clauses Vector after

Partial clauses Partial clauses

KRK 10 68.9 (9.1,10.7) 67.5 (1.2,0.8)

KRK 20 71.9 (5.7,5.5) 68.3 (0.1,0.6)

KRK 30 78.7 (4.5,6.0) 77.2 (0.4,1.2)

KRK 50 81.0 (3.6,4.8) 83.1 (0.0,0.1)

KRK 80 85.8 (4.9,3.8) 86.0 (0.0,0.0)

KRK 160 90.6 (3.1,1.1) 92.5 (0.0,0.0)

KRK 320 93.8 (0.5,0.3) 94.4 (0.0,0.0)

Cancer 66.6 (1.9,1.0) 67.5 (0.0,0.0)

Lymph. 81.4 (10.7,16.3,11.3,0.0) 83.5 (0,0.7,0,0)

KPa7KR 94.7 (2.5,3.3) 94.9 (0.0,0.0)

DNA 81.1 (13,21) 86.8 (0,1.9)

lowing additional clauses:

a(X;Z) ^ b(Y; Z)! concept(X; Y )

a(X;Z)! concept(Y; Z)

These clauses serve as backup in case none of the clauses covers a test
example. These clauses, which we will refer to as \partial clauses", tend
to cover larger regions of the instance space but tend to do a poorer job
of discriminating positive from negative examples (and hence, have lower
ls values). Table 10.3 gives a comparison of accuracies with and without
partial clauses.6 Table 10.3 indicates that adding partial clauses helps a lot
on the DNA domain and helps to smaller extents on other natural domains.
Adding partial clauses only hurts accuracy when learning from sparse data
(few training examples). The omissions vector indicates the percentage of

6Average accuracies shown in table 10.3 are slightly di�erent from those shown in table 10.2
because the tables used di�erent sets of runs of HYDRA.



Reducing the Small Disjuncts Problem 195

test examples that failed to match any clause of any concept description. As
expected, addition of partial clauses reduces components of these vectors.

10.4 Conclusions and Future Work

We have presented a method using maximum likelihood estimation for re-
ducing the small disjuncts problem and thereby increasing classi�cation ac-
curacy. This method has been tested on domains requiring relational con-
cept descriptions and those requiring attribute-value concept descriptions.
We plan to extend HYDRA to build several concept descriptions per con-
cept and then combine evidence from these models. This approach has been
referred to as averaging multiple models (Buntine, 1991). We feel that learn-
ing multiple models will help HYDRA and further reduce the problems that
hill-climbing systems like FOIL and HYDRA experience in noisy domains.

You have two citations, Buntine and Holte that seem to con
ict same conference name, two di�erent years
and cities. What are the correct citations?

Buntine W. 1991. Classi�ers: A Theoretical and Empirical Study. In Proceedings of the Eleventh Interna-
tional Joint Conference on Arti�cial Intelligence. Sydney, Australia: Morgan Kaufmann.

Holte R., Acker L. and Porter B. 1989. Concept Learning and the Problem of Small Disjuncts. In Proceedings

of the Eleventh International Joint Conference on Arti�cial Intelligence. Detroit, MI. Morgan Kaufmann.





IV
Theory


