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Abstract

In this paper, we present an introduction to MECA, the Multipurpose Enhanced Cognitive Architecture, a cognitive
architecture developed by our research group and implemented in the Java language. MECA was designed based on
many ideas coming from Dual Process Theory, Dynamic Subsumption, Conceptual Spaces and Grounded Cognition, and
constructed using CST, a toolkit for the construction of cognitive architectures in Java, also developed by our group.
Basically MECA promotes an hybridism of SOAR, used to implement rule-based processing and space-state exploration
in System 2 modules, with a Dynamic Subsumption Motivational System performing the role of System 1, using a
representational system based on conceptual spaces and grounded cognition. We review the conceptual background used
on MECA and further provide a detailed description of the many MECA sub-systems.

Keywords: Cognitive Architecture, Dual-process Theory, Dynamic Subsumption, CST

1. Introduction

A cognitive architecture can be viewed as a general-
purpose control system inspired by scientific theories de-
veloped to explain cognition in animals and men (Langley
et al., 2009). The inner behavior of this control system (a
mind) is decomposed and explained in terms of a set of cog-
nitive capabilities (Paraense et al., 2016a), as e.g. percep-
tion, attention, memory, reasoning, learning, behavior gen-
eration, and others. Furthermore, a cognitive architecture
can be considered both as a theoretical model, explaining
how cognitive processes interact among themselves, and a
computational framework, which can be reused through-
out different applications. Cognitive architectures have
been applied to a broad number of applications such as
in robotics, games, human performance modeling, human-
machine interaction, natural language processing, virtual
agents and others (Kotseruba et al., 2016).

Over the last 20 years, a large set of cognitive archi-
tectures has been proposed. In 2010, Samsonovich (2010)
created a comparative table, presenting a comprehensive
review of implemented cognitive architectures in the liter-
ature. Among the highlighted architectures, most of them
are general purpose and some of them have their source
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code available on the Internet to download and to develop
simulations. In 2014, Goertzel et al. (2014a) also provided
a comparative review of many important cognitive archi-
tectures, and now in 2016, Kotseruba et al. (2016) provided
a thorough review of 40 years of development of cognitive
architectures.

Recently, we started reviewing the many features avail-
able in popular cognitive architectures (Lucentini and
Gudwin, 2015), and started a project for creating an
open-source software toolkit aimed for the construction of
general kinds of cognitive architectures (Paraense et al.,
2016a). The idea for this toolkit was to be an open repos-
itory of cognitive models which might be integrated in
generic ways in order to compose specific purpose cogni-
tive architectures. The work being presented in this pa-
per is a first attempt to compose a large generic-purpose
cognitive architecture with many features inspired in pop-
ular ones like SOAR (Laird, 2012), Clarion (Sun, 2003)
and LIDA (Franklin et al., 2014), using our CST toolkit
(Paraense et al., 2016a) as a core. We named this cogni-
tive architecture MECA, the Multipurpose Enhanced Cog-
nitive Architecture.

During the design of MECA, we tried to integrate many
lessons acquired from our study of other cognitive archi-
tectures. Among these lessons, the use of codelets (just like
in LIDA) as the building blocks of processing, and a mech-
anism inspired on Global Workspace Theory (Baars, 1988)
to implement a machine consciousness cognitive capability
(similarly but not exactly equals to the one in LIDA), the
requirement to have both explicit and implicit knowledge
representations (just like in Clarion), considering rule-
based processing (just like in SOAR) as an explicit pro-
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cessing modality, together with a dynamic subsumption-
like processing (Brooks, 1986; Nakashima and Noda, 1998;
Hamadi et al., 2010; Heckel and Youngblood, 2010) as an
implicit processing modality, with the potential to include
also neural networks like HTM (George and Hawkins,
2009) within some of its modules. We got inspiration
from hybrid cognitive architectures, like SAL (Synthesis
of ACT-R and Leabra) (Jilk et al., 2008), which combined
both a rule-based architecture (ACT-R) with a neural net-
work one (Leabra) in order to compose a more powerful
architecture and mostly a strong inspiration on dual pro-
cess theory, which recently is being explored under the
context of cognitive architectures (Faghihi et al., 2015; Li-
eto et al., 2016, 2017; Augello et al., 2016). We also relied
on important theories regarding knowledge representation,
including Grounded Cognition (Barsalou, 2010), Concep-
tual Spaces (Gärdenfors, 2014) and Computational Semi-
otics (Gudwin, 2015), extending some recent work (Lieto
et al., 2016, 2017) indicating the relevance of extended
kinds of representation beyond the traditional symbolic
rule-based processing and multi-layered backpropagation
neural networks.

The result of this design is presented in the next sec-
tions. A set of background theories is reviewed in section
2. Then, in section 3 we present the main MECA specifi-
cation and finally, in section 4 we provide some conclusions
and the next steps of our research.

2. Foundational Background

2.1. Dual Process Theory

The name Dual Process Theory relates to a convergent
set of theories in Cognitive Psychology about modeling
higher cognition within largely disconnected literatures
in cognitive and social psychology (Osman, 2004; Evans,
2003, 2008; Evans and Stanovich, 2013; Frankish, 2010;
Kahneman, 2011; Osman, 2004; Sloman, 1996; Stanovich
and West, 2000). All these theories have in common the
distinction between cognitive processes that are fast, au-
tomatic and unconscious, and those that are slow, deliber-
ative and conscious. A number of authors have suggested
that there may be two architecturally (and evolutionarily)
distinct cognitive systems underlying these dual-process
accounts. According to Dual Process Theory (Osman,
2004), the mind can be described by the interaction of two
different systems, named System 1 and System 2, which
assume two functionally distinct roles, which integrate to
each other, in order to account for the different facets of
the mind phenomena. The exact characteristics of System
1 and System 2 varies depending on the theory proposers.

System 1 is generally described as a form of universal
cognition shared between humans and animals. It is not
actually just a single system, but a a set of sub-systems
operating with some kind of autonomy. System 1 in-
cludes instinctive behaviors that might be innately pro-
grammed and also automatic learned behaviors evolved

during the system interaction with its environment. Sys-
tem 1 processes are rapid, parallel and automatic in na-
ture: only their final product is posted in consciousness
(Evans, 2003).

System 2 is believed to have evolved much more recently
and is considered by many to be uniquely human. System
2 thinking is slow and sequential in nature, and makes use
of the central working memory system, intensively stud-
ied in psychology. Despite its limited capacity and slower
speed of operation, System 2 permits some kinds of ab-
stract hypothetical thinking that cannot be achieved by
System 1, as e.g. decision-making using past experiences
to abstract new behaviors and the construction of men-
tal models or simulations of future possibilities, in order
to predict future events and behave accordingly to reach
desirable situations or prescribed goals (Evans, 2003).

Despite their intrinsic autonomy, System 1 and System 2
interact with each other in order to build the overall system
behavior. System 1 implements a kind of fast, automatic
reactive behavior which provides a default response to sys-
tem input, aligned with a possible set of general system
goals. System 2 has a kind of inhibitory role in suppress-
ing this default response, emphasizing specific time-based
goals, which are characteristic of exceptional situations,
generating as a result a complex and refined interleaved
overall behavior.

There are several important directions for future re-
search. Current theories are framed in general terms and
are yet to be developed in terms of their specific computa-
tional architecture. An important challenge is to develop
models to show how such two distinct systems interact in
one brain and to consider specifically how the conflict and
competition between the two systems might be resolved
in the control of behavior (something we specifically ad-
dress in our cognitive architecture proposal). According to
Evans (2003), theoretical and experimental psychologists
need to focus on the interaction of the two systems and the
extent to which volitional process in System 2 can be used
to inhibit the strong pragmatic tendencies to response in
inference and judgment that come from System 1, espe-
cially where the latter are known to result in some sort of
cognitive bias.

2.2. Subsumption Architecture
The Subsumption Architecture is a generic name for a

family of computational architectures used in intelligent
control (particularly in robotics), developed by Rodney
Brooks in the 90’s, which gave rise to the whole Behavior-
based Robotics research field (Arkin, 1998). Brooks pro-
posal was developed under the context of mobile robotics,
and was a reaction against the research program on Arti-
ficial Intelligence, which was suffering from a set of lim-
itations. In the traditional operational cycle of an intel-
ligent control system following the Artificial Intelligence
paradigm, information was processed by a kind of pipeline,
involving perception, internal modeling, planning, task ex-
ecution and motor control. Even though this operational
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Figure 1: The Dynamic Subsumption Scheme

cycle was adequate for small toy problem applications,
Brooks pointed out the lack of scalability of such architec-
ture. When the number of considered behaviors started to
increase, the system complexity started to grow into many
problems and the cycle started to become unfeasible.

Alternatively, instead of a serial pipeline, Brooks pro-
posed a parallel strategy, named Subsumption Architec-
ture, where new behaviors could be developed in an iso-
lated way and further integrated in the overall architec-
ture. All behaviors used to compete with each other in
order to have access to the actuators.

One possible shortcoming to list in Classical Subsump-
tion Architecture is that suppression nodes have fixed
dominant and non-dominant nodes. This means that once
a behavior is in a higher level, it will always have priority
in setting up its behavior. Even though this is desirable
in some situations, it is always possible to envision situ-
ations in which this priority should be reversed, at least
in special occasions. This is not possible in classical Sub-
sumption Architecture.

To deal with this difficulty, some authors (Nakashima
and Noda, 1998; Hamadi et al., 2010; Heckel and Young-
blood, 2010) proposed a Dynamic Subsumption scheme,
in which there is no fixed dominant input in a suppression
node, but this dominance can be changed dynamically in
time, according to specific situations.

There are different implementations of this Dynamical
Subsumption idea, but a very simple comprehension of
the idea can be taken from figure 1. In the left side of this
figure, we can see a standard Subsumption Architecture,
with its fixed priority among behaviors. On the right side,
we can see how a Dynamical Subsumption can be imple-
mented. Together with the standard control message xi,
there comes together an evaluation tag ei which is dy-
namically generated by the own behavior. So, instead of
choosing the output value x using a fixed set of priorities,
the dynamical mechanism simply chooses the xi which has
the greatest ei value. This ei value can be generated dy-
namically according to the systems’ requirements.

2.3. Grounded Cognition
One important theoretic background regarding the is-

sue of knowledge representation is the theory on Grounded
Cognition, provided by Barsalou (1999, 2008, 2010).

Most classic artificial intelligence (AI) studies relied on
the concept of symbol, using symbolic logic as a back-
ground. Propositions, predicates, rules, features lists,
frames or semantic networks are typical examples of such
structures, most of them defined by an external expert.
One of the main criticisms to classic AI was this require-
ment for a “human in the loop”, either acquiring and set-
ting up knowledge, or interpreting the system results. It is
not possible to say that these systems (using classic AI) re-
ally “understand" the meaning of symbols they use. Barsa-
lou (1999) draws our attention to the fact that these sym-
bols are amodal and arbitrary. Their internal structures
bear no correspondence with the perceptual states that
produced them and therefore they are linked arbitrarily.
Thus, amodal symbols always require additional represen-
tational structures to express meaning. Fortunately, Com-
putational Intelligence (CI)1 came for the rescue, with its
many algorithms for classification, categorization, cluster-
ing and grouping, based on partial or vague information,
and suitable to provide cumulative layers of perception in
terms of abstractions of input signals. E.g., neural net-
works (or fuzzy systems) can be directly connected to sen-
sors and actuators (i.e. connected to the “real world"), and
so provide this link to reality which was missing in classic
AI. But now we are on the opposite side of the problem.
Where are the symbols within a neural network or a ge-
netic algorithm? Are they symbols for the system, or are
they symbols for the system designer?

To address this issue, the Perceptual Symbol System the-
ory proposed by Barsalou (1999) assumes that the mean-
ing of symbols occurs by the re-enactment of experiences
aroused during the acquisition of concepts from the real
world.

Barsalou explains that this comprises a new category of
symbols, which he calls perceptual symbols. In the human
mind, perceptual symbols might be associated to dynamic
neuronal patterns, in structures he names simulators. In
simulators, information is combined from different sensory
sources and aggregated in order to constitute meaning.
Thus, two processes are required for the development of
a perceptual system: (i) the storage of multi-modal states
in order to create simulators (arriving by perception, ac-
tion and introspection, in long-term memory) and (ii) the
partial re-enactment of these states generating a mental
simulation.

Differently from amodal symbols, perceptual symbols
are analogical and modal, because they are directly repre-
sented by the perceptual states which produce them. Con-
sequently, a representational system based on both kinds

1In the literature of intelligent systems, the term “Computational
Intelligence" is used to designate computational techniques based on
Neural Networks, Fuzzy Systems and Evolutionary Computation
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of symbols, supports both perception and cognition, with-
out the requirement of a human expert to ground them
(Barsalou, 1999). This is specially interesting in language
systems since perceptual symbols, accessed during simula-
tion, can represent an object even when its referent does
not exist in the physical world, which allows the represen-
tation of abstract concepts.

There is somewhat a consensus on the application of
perceptual symbol systems theory as an alternative to deal
with the symbol grounding problem in computer simula-
tions. This can be viewed by the increasing number of
works using this approach to support their models elab-
oration (e.g. Narayanan (1999), Bergen et al. (2004),
Roy (2005), Cangelosi and Riga (2006), Dominey et al.
(2006),Madden et al. (2010), Lallee et al. (2010), Frank
and Vigliocco (2011) and Pezzulo and Calvi (2011)).

2.4. Conceptual Spaces
A second theory which is also related to knowledge rep-

resentation is the theory of Conceptual Spaces from Gär-
denfors (2004, 2014). This semantic theory considers that
the mind organizes information involved in perception, at-
tention, categorization and memory, using geometric and
topological properties, in order to derive the notion of con-
ceptual spaces.

Conceptual spaces are metric spaces providing a robust
mechanism for learning and representing the meaning of
different classes of words (e.g. categories of objects). Ac-
cording to Gärdenfors (2014), an unified theory of mean-
ing about different word classes can be developed when
conceptual spaces are used to provide linguistic ground-
ing. In our conception, this theory is complementary to
Barsalou’s theory by exploring both semantic and lexical
aspects of language. Besides, what Barsalou has defined as
perceptual symbol, Gärdenfors defines as object categories
and both are special kinds of a concept. Moreover, Gär-
denfors concepts may involve perception but also memory,
attention and imagination, while concepts from Barsalou’s
theory are formed only by perceptual experiences.

According to Gärdenfors (2014), concepts are mathe-
matical structures which fully represent the meaning of
words. The most common kind of concepts are object cat-
egories, but there might be concepts associated to quali-
ties, actions, events and possibly to all categories of words
and special combinations of words as well. Concepts are
defined with the help of conceptual spaces, and conceptual
spaces are constructed out of quality dimensions. The pri-
mary role of these dimensions is to represent various “qual-
ities" of objects in different domains.

A domain corresponds to a set of integral dimensions
that are separable from all other dimensions. Many do-
mains, such as temperature or weight, consists of only
one dimension. Other domains, such as color, or location,
might require multiple dimensions. A conceptual space is
a collection of one or more domains, which can be used to
assign properties to an object. Therefore, objects are iden-
tified as points within conceptual spaces. Their properties

are represented by regions in specific domains and the cat-
egory of an object, which is also a concept, is denoted by
a collection of regions (properties) and their relations in a
conceptual space.

To have a space partitioned into a finite number of re-
gions means that a finite number of words can be used to
refer to such regions. Therefore, conceptual spaces provide
a robust framework for learning concepts for language.

According to Gärdenfors (2004), the use of conceptual
spaces provides a different approach when compared to
symbolic AI. In symbolic AI, the assignment of seman-
tics to symbols requires an external interpretation. In the
current approach, the semantics is implicit in the defini-
tion of conceptual spaces. Therefore, the use of conceptual
spaces might be a possible aid for the solution of the sym-
bol grounding problem.

2.5. CST: The Cognitive Systems Toolkit

To finalize our Theoretical Background section, it is im-
portant to mention CST - The Cognitive Systems Toolkit
(Paraense et al., 2016a), which is used as the basic infras-
tructure for the construction of MECA.

The most essential concepts in CST’s core are the no-
tions of Codelets and Memory Objects. Codelets are small
pieces of non-blocking code, each of them executing a well
defined and simple task. The idea of a codelet is of a piece
of code which ideally shall be executed continuously and
cyclically, time after time, being responsible for the be-
havior of a system’s independent component running in
parallel. The notion of codelet was first introduced by
Hofstadter and Mitchell (1994) and further enhanced by
Franklin et al. (1998) and used widely within LIDA archi-
tecture. Any codelet-oriented architecture is intrinsically
a fully parallel asynchronous multi-agent system, where
each agent is modeled by a codelet. CST’s codelets are
implemented much in the same manner as in the LIDA
cognitive architecture (Franklin et al., 2014) and largely
correspond to the special-purpose processors described in
Baars’ Global Workspace Theory (Baars, 1988; Baars and
Franklin, 2007).

The second element which is vital to understanding
CST’s Core is the notion of a Memory Object. A Memory
Object is a generic information holder, acting as a sign or
an internal representation, which is responsible to store
any auxiliary or perennial information necessary for the
cognitive architecture to perform its behavior. Codelets
and Memory Objects are intrinsically coupled to each
other, in the sense that Memory Objects hold the infor-
mation necessary for the Codelets to run, and are also
the placeholders of any new information generated by the
codelet. The main property being hold by a Memory Ob-
ject is its Information (I). This information can be simply a
number, or hold complex structures like lists, trees, graphs
or whole networks. In our computational implementation,
the information I is a generic Java Object, which can be
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used to represent virtually anything2. A Memory Object
also has two extra kinds of meta-information: a time stamp
(T), which tags the Memory Object with a marker indi-
cating its last update, and an evaluation (E), which has
many different uses within CST. This evaluation is simply
a number, which can be used, e.g. as an appraisal factor
in an emotional module, or simply as a discriminator to
differentiate among two or more Memory Objects of the
same type. These meta-information can be simply ignored
by simpler codelets, or be useful while implementing more
sophisticated cognitive models.

Together with the introduction of CST, Paraense et al.
(2016a) also describe the CST Reference Cognitive Archi-
tecture, a reference guide for how to create a cognitive
architecture with CST. They call it a Reference Architec-
ture because it is an abstract view of how to organize a
set of codelets and a set of memory objects, in order to
build a cognitive architecture. Codelets are organized into
groups, each group responsible for implementing a cogni-
tive model of some cognitive function, Like Sensing, Per-
ception, Attention, Emotions, Learning, Language, Con-
sciousness, Imagination, Planning, Behaviors and Motor
Actuation. The CST toolkit provides standard implemen-
tations for some of these groups. Other codelets might be
available in the future, as CST implementation evolves.
New types of codelets can be created by the cognitive ar-
chitect, and easily bound together using CST core func-
tions.

The homepage of the CST Project can be found at
http://cst.fee.unicamp.br, and its source code is avail-
able as open-source in GitHub at https://github.com/
CST-Group/cst.

3. The MECA Cognitive Architecture

The conception of MECA inherits a lot of insights com-
ing from different sources. Most of them were previously
presented in section 2. First of all, MECA is an instance
of the Dual Process Theory. This means that MECA is
split into two major sub-systems, System 1 and System 2.

We start our description of MECA by introducing an
overview of the whole architecture, describing its main
components. After that, we start detailing each of these
components.

3.1. An Overview of the Whole Architecture
An overview of the MECA Cognitive Architecture can

be seen in figure 2. The architecture is specified follow-

2The choice of using a generic Java Object as a general knowledge
representation entity was a deliberate choice in order to bring flexibil-
ity to the toolkit user. The toolkit might provide specific knowledge
representation options, like propositions, predicates, rules, together
with more network oriented kinds of representations like in neural
networks, Bayesian networks or whole graphs like LIDA’s Behavioral
Network, SOAR’s WME’s (Working Memory Elements), or OpenCog
atoms and atom spaces (Goertzel et al., 2014b). In order to get mod-
ules developed in different contexts to work together, solutions like
JSON strings are also an option.

ing the CST Reference Architecture (see (Paraense et al.,
2016a)).

The whole architecture is split into two major sub-
systems, as indicated in figure 2: System 1 and System 2.
These two sub-systems exchange some information, such
that they interact with each other in order to generate its
overall behavior.

The architecture is designed as a network connecting 4
kinds of elements: codelets, memory objects, containers (a
special kind of memory object) and memories, as indicated
in figure 3.
System 1 is comprised by three different memories: Sen-

sory Memory, Perception Memory and Motor Memory.
There are many subsystems accessing those memories,
which are indicated by codelets of different kinds:

• Sensory Subsystem: Sensory Codelets

• Motor and Behavior System: Behavioral Codelets and
Motor Codelets

• System 1 Motivational Subsystem: Motivational
Codelets, Mood Codelets, Emotional Codelets

• Perceptual Subsystem: Perceptual Codelets, Atten-
tion Codelets

System 2 comprises basically 5 different memories: Per-
ceptual Buffer, Episodic Buffer, Episodic Memory, Work-
ing Memory and Procedural Memory. Also, there are
many subsystems accessing those memories, implemented
by different kinds of codelets:

• Episodic Subsystem: Attention Codelets, Episodic
Learning Codelet and Episodic Retrieval Codelet

• Planning Subsystem: Soar Codelet

• System 2 Motivational Subsystem: Goal Codelet and
Appraisal Codelet

• Consciousness Subsystem: Consciousness Codelet

• Expectation Subsystem: Expectation Codelet

All architecture inputs and outputs are performed exclu-
sively by System 1. The inputs to MECA are performed
by the Sensory Codelets (on the left of System 1 at the dia-
gram), which are responsible for collecting the sensor data
and populating the Sensory Memory. The MECA outputs
are performed by the Motor Codelets (on the right of Sys-
tem 1 at the diagram), which basically collect data from
the Motor Memory and are responsible for sending this
data to the system actuators.

3.2. The System1 Specification
To understand the role of System 1 in the overall archi-

tecture, it is important to recapitulate the role of System 1
in Dual Process Theory. According to the theory, System 1
is responsible for the unconscious fast automatic behavior
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Figure 2: An Overview of the MECA Cognitive Architecture

performed by the whole architecture. It is mainly a re-
active behavior, even though motivational based behavior
(instinct) is also possible. The processing in System 1 is
mostly parallel, and the knowledge is usually implicit.

To implement System 1, we designed a Dynamic Sub-
sumption Architecture, implemented on top of CST. The
inputs to this Dynamic Subsumption Architecture might
come directly from Sensory Memory, but usually there is
some kind of Perception processing in between. The role of
Perception is to generate more elaborate Percepts, abstrac-
tions of sensory data, which are then used as input to the
Behavioral Codelets. These percepts can also be tracked
by Attention Codelets in order to detect special situations
and send information upstream to System 2. These at-

tention codelets are responsible for generating the Current
Perception at the Working Memory, where a selected sub-
set of the Perception Memory is made available for System
2 subsystems in a representation suitable to be processed
within System 2.

Among the behavioral codelets, there is a special sub-set
(Motivational Behavioral Codelets) comprising the System
1 Motivational Subsystem, which is responsible for imple-
menting a kind of instinct mechanism in the architecture.
This Motivational Subsystem also includes some sort of
emotional processing.

The details of System 1 are presented in the next sub-
sections.
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Figure 3: The Different Elements in the Architecture

Figure 4: A Zoom on the Sensory Subsystem

3.2.1. The Sensory Subsystem
From a cognitive modeling perspective, the Sensory

Memory is the raw storage of information coming from vi-
sual, auditory, olfactory, tactile and other sensory modali-
ties in a time window which generally spans over something
as 50-500 ms (Baddeley, 1997). This memory usually com-
prises uninterpreted data which is used in the first steps of
perception. In human beings, at least two kinds of sensory
memory were identified, the Iconic Memory, storing visual
pattern stimulus and the Echoic Memory, storing auditory
stimulus, but there might be also other memories for other
senses as well, not so widely investigated.

In MECA, this memory stores Memory Objects carrying
direct representations of system sensors. These Memory
Objects can be simple numbers or very complex data struc-
tures, representing both scalar sensors or n-dimensional
images, according to the information provided by the sen-
sor. It might also store temporal sequences of sensor data,
which can be used by Perceptual Codelets to create more
elaborate percepts. More elaborated or derived represen-
tations from direct sensory capture are not stored here, but
at the Perceptual Memory. The Memory Objects stored
in the Sensory Memory are updated by Sensory Codelets.

Sensory codelets are codelets which are responsible for

grabbing information from sensors at the environment, and
feeding the corresponding Memory Objects which might
hold the sensors values. Depending on the applications
(e.g. robotic applications), sensory codelets will be really
reading the sensor values and creating a corresponding rep-
resentation. In other applications (as e.g. in a video-game,
an internet agent or a virtual world), sensory codelets will
open sockets to other computer applications and will sim-
ulate the acquisition of data from the environment.

Usually, Sensory Codelets are application specifics, and
the MECA software implementation just provides basic
template classes to be reused while building an application
using MECA.

3.2.2. The Behavioral and Motor Subsystem
The Behavioral and Motor Subsystem is the core of Sys-

tem 1, and is focused in figure 5.

Figure 5: A Zoom on the Behavioral and Motor Subsystem

The Motor Memory is a direct representation of the sys-
tem’s actuators. Memory Objects in the Motor Memory
are usually actuator values, which will be used as param-
eters by Motor Codelets in order to actuate at the envi-
ronment. But the Motor Memory, in MECA has a special
kind of implementation. Instead of using simple Memory
Objects, MECA uses a special kind of Memory Object
which is called a Container (see figure 6).

The Container Memory Object is responsible for imple-
menting an important element in the Dynamic Subsump-
tion mechanism used in MECA. Take the example of fig-
ure 5. The first Container in Motor Memory is receiving
an input from a Motivational Behavioral Codelet and an-
other from a Reactive Behavioral Codelet. Both codelets
are proposing a behavior which uses the same actuator.
The system needs to decide which actuator parameters it
will accept in order to send to the real actuators. This
is all performed internally within the Container. All the
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Figure 6: A Container Memory Object and its Implemen-
tation

Memory Objects in a Container are of the same type, and
hold the same parameters. The only differences among
them are that they were generated by a different behav-
ior codelet, and they might have different evaluations. An
evaluation is an inner parameter from any Memory Ob-
ject, which holds a value (usually a real value between 0
and 1) that measures a relative importance given by the
behavioral codelet, and which is used by the Evaluation
codelet within the Container to decide which from all in-
put Memory Objects will be sent to the Motor Codelets.
The behavior of the Evaluation Codelet is very simple. It
simply reads all the evaluation parameters from all input
Memory Objects, and select the Memory Object with the
highest evaluation to send to output. To simplify the dia-
grams, we chose to represent this scheme by a specific icon
in our diagrams, because in fact the Container works just
like a standard Memory Object. The outputs from dif-
ferent behavioral codelets are merged into just one Mem-
ory Object which is redirected to its correspondent Motor
Codelet.

Motor codelets then simply pick up the result Memory
Object from the Motor Memory and reacts directly at the
environment. This can be done by simply capturing ac-
tuator values and feeding actuators, or by some special
protocol interacting with external software or hardware.

3.2.3. The System 1 Motivational Subsystem
The System 1 Motivational Subsystem is depicted in

figure 7. Motivational behavior in cognitive architectures
is derived from studies on human motivation coming from
psychology, like those fromMaslow (1943) and Hull (1943).
Examples of sophisticated models which served as inspira-
tion to our Motivational Subsystem are those from Sun
(2009); Sun and Wilson (2011); McCall (2014).

In order to properly understand what is a motivational
behavior (or a motivated behavior), it is important to
clearly distinguish it from random behaviors and purely
reactive behaviors. A random behavior does not depend
on anything else. It is, as Peirce proposes in Semiotics
theory, a firstness, in the sense that it is completely inde-

Figure 7: A Zoom on the System 1 Motivational Subsystem

pendent of anything else. A purely reactive behavior is a
behavior which is simply triggered by sensory input. This
means that every time some input data is sensed, this will
trigger this behavior. A purely reactive behavior is what
Peirce calls, in Semiotics theory, a secondness, in being
something which depends on something else. A motivated
behavior, instead, do not depend on just the present input,
but depends also on a future state the system is aimed to
reach. In other words, the behavior is not simply a re-
action to some input, but is a behavior which is oriented
towards a future state. It depends both on current input
and on this desired future it is meant to achieve. This
is what Peirce calls a thirdness in Semiotics theory. The
philosopher Aristotle, in his Theory of Causality, used to
call it a final cause. Many authors call this kind of behav-
ior a goal-directed behavior. It is important to notice that a
goal-directed behavior is fundamentally different from a re-
active or a random behavior. During very much time, final
cause and related concepts (e.g. the concepts of purpose or
teleology) were viewed with skepticism in science. Modern
cybernetics clearly explained though, the mechanism be-
hind goal-directed behavior: feedback loops (Rosenblueth
et al., 1943).

According to Hull’s theory of behavior (Hull, 1943),
when a motor action is a pre-requisite to optimum prob-
ability of survival of either an individual or a species, a
state of need is said to exist. This need is said to motivate
or drive the associated motor action. So, Hull defines a
Drive as being an intervening variable used to character-
ize a need. Drives are used as a measurement of a desirable
future state which a creature must reach, in order to sur-
vive. In a biological creature, a drive might be related
to the many needs a biologic being is supposed to have:
need for food, for water, for air, the need to avoid injury,
to maintain an optimal temperature, the need to rest, to
sleep, to mate, etc. In an artificial agent, drives are as-
sociated to the desirable behaviors we want the agent to
manifest. They have to do with the desirable future state
the agent should move itself into. In a very abstract under-
standing, a drive is a measurement of the agent’s success
in achieving its designed purpose. A behavior which is
performed in order to satisfy a drive is said to be a moti-
vational (or motivated) behavior.
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A system might have many different drives, each of them
encoding some internal purpose designed for the system.
This leads to the necessity of creating a whole Motivational
Subsystem.

In MECA, Motivational Behavior is split among System
1 and System 2. System 1 Motivational Behavior is related
to long-term or perennial needs for the agent the cognitive
architecture is controlling (e.g. to optimize energy costs,
to maintain energy balance, etc). They are usually re-
lated to default system behavior which is expected from
the agent. System 2 Motivational Behavior is related to
time-specific needs, that once satisfied results in the dis-
mission of the need (e.g. to reach a particular state, to
achieve a specific goal). They are usually related to an
exceptional situation which is under consideration. Needs
on System 1 are encoded as Drives. Needs on System 2
are encoded as Goals.

The standard dataflow for the System 1 Motivational
Subsystem starts from Sensory Memory Objects flowing
through Motivational Codelets to generate Drives which
are stored in the Perceptual Memory. These Drives are
then used by Motivational Behavioral Codelets in order to
contribute with behaviors to be selected in the Dynamical
Subsumption scheme.

But MECA also previews an enhancement in this stan-
dard dataflow, which is the incorporation of an emotional
mechanism.

The concept of emotion, as brought from cognitive psy-
chology and philosophy, was suggested in the literature, as
an alternative way of dealing with the problem of behavior
generation (Bates et al., 1994; Reilly, 1996; Picard, 1997;
Canamero, 1997, 1998; Septseault and Nédélec, 2005; Bu-
dakova and Dakovski, 2006; Meyer, 2006).

In MECA, we will be following Cañamero’s (Canamero,
1997) approach to emotions, together with Sun’s proposal
to a motivational system. Under this view, emotions work
as temporary cognitive distortions on system drives, re-
sulting in a change in priorities, due to the recognition
of critical situations. These critical situations will be rec-
ognized by Mood Codelets from direct sensor data, but
also from situations remembered from episodic memory
and possible predicted situations (from System 2 ) which
might be classified as critical. The detection of a criti-
cal situation will change the Moods in Perception Mem-
ory. These Moods are responsible for, through Emotional
Codelets, change the Drives intensity landscape, resulting
in a change of priorities in order to better attend the crit-
ical situation.

3.2.4. The Perceptual Subsystem
The Perceptual Subsystem is the subsystem responsible

for abstracting the information coming from Sensory Mem-
ory and building more sophisticated representations for
what is going on at the environment. There might be in-
creasing layers of abstraction in this process, under which
raw data measurements are transformed in a high level
understanding of the environment situation. This process

Figure 8: A Zoom on the Perceptual Subsystem

is similar to the many layers of an onion, where high-level
abstractions sum up and superpose the lower-levels, using
their information and composing more sophisticated rep-
resentations of the environment change over time. This
is the process where sensory measured properties give rise
to derived properties, which are then integrated into the
recognition of objects, which are then identified as being
a part of an ongoing episode, constituting a scene, which
sequence form an understanding of the many situations
experienced by the agent along the passage of time.

In MECA, the Perceptual Subsystem is integrated with
the Motivational Behavior System through the Perceptual
Memory.

The Perceptual Memory is a memory storing the many
structures required both for the Perceptual System and for
the Motivational Behavior Subsystem. It includes a sub-
memory of Percepts, Object Categories, Moods and Drives.

The sub-memory of Percepts comprises Memory Objects
encoding abstractions or high level representation of objec-
tive items of reality. These are usually called in cognitive
science as Percepts. There might be many different possi-
ble ways for representing percepts, like fuzzy sets, patterns,
objects and other more elaborate representations.

Perceptual Memory is mainly fed by Perceptual
Codelets, which collect information from Sensory Mem-
ory Objects and, using the object categories in the Ob-
ject Categories sub-memory, provide high-level abstrac-
tions of sensory data in terms of percepts. Also, Motiva-
tional Codelets feed Moods and Drives at the Perceptual
Memory. Many categories of codelets may use Perceptual
Memory Objects as a source of information.

The Perception Subsystem is also responsible for col-
lecting percepts from the Perceptual Memory and sending
this information to System 2. This is done by an Attention
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codelet, which picks the current list of percepts and creates
a Current Perception representation at the Working Mem-
ory. According to the CST Reference Architecture, Atten-
tion codelets are specialized kinds of codelets which will
work as salience detectors for objects, situations, events
or episodes happening at the environment which might
be important for defining an action strategy, or behavior.
In the case of MECA Perception Subsystem, an attention
codelet is responsible for analyzing the many percepts at
the Perceptual Memory and deciding which of them are
important enough to be a part of the Current Perception
at the Working Memory in System 2. This process is an
important part of the consciousness mechanism in System
2, and also important for the Episodic Subsystem, also in
System 2.

3.3. The System2 Specification
According to Dual Process Theory, System 2 is respon-

sible for the slow conscious process of deliberative reason-
ing. It is mainly a sequential rule-based process, operating
on symbols, and considering not just the present, like in
System 1, but also the past and the future. This is the
place where imagination and planning occurs. This is also
the place where the many unconscious perceptions per-
formed at System 1 enter into a process of competition to
integrate the agent’s present experience, where the most
important percepts are payed attention and other less rel-
evant are discarded. This leads to the formation of the
conscious perception which is usually called experience by
many philosophers of mind, and which are integrated into
episodes, and then stored in an episodic memory to be
recovered later, for many purposes.

The System 2 Specification in MECA includes the def-
inition of an Episodic Subsystem, responsible for higher-
level perception with the tracking of time along Perceptual
Memory and with the aid of Attention codelets discover
and detect the formation of episodes, and the storage and
recovering of these episodes in the Episodic Memory. It
also includes a Planning Subsystem, responsible for sim-
ulating the future and making plans of action in order to
reach possible Goals. The Planning Subsystem is also re-
sponsible for the process of Imagination, which is used as
an aid for testing possible courses of action and evaluating
the best action to take. MECA’s implementation of Sys-
tem 2 also includes a High-Level Motivational Subsystem,
responsible for generating Goals for the Planning Subsys-
tem, an Expectation Subsystem which tries to foresee the
short-term future and learn from the possible inconsisten-
cies found, and a Consciousness Subsystem, responsible for
filtering the information available for the Planning Subsys-
tem.

The details of the System 2 are presented in the next
subsections.

3.3.1. The Episodic Subsystem
MECA’s Episodic Subsystem is illustrated in figure 9.

The Episodic Subsystem in MECA has basically two roles:

Figure 9: A Zoom on the Episodic Subsystem

• To implement a higher-level kind of perception, and
based on sequences of collections of percepts in time
(which in MECA terminology are called configu-
rations), detect and represent Episodes describing
scenes experienced by the MECA agent.

• To store and retrieve these episodes in/from Episodic
Memory

In order to perform the first of these roles, the Episodic
Subsystem uses two auxiliary memories: the Percep-
tion Buffer and the Episodic Buffer, and two Attention
Codelets. Everything starts with the Current Perception
at the Working Memory. This Current Perception was set
up by the Perceptual Subsystem in System 1, and is ba-
sically a representation of a Configuration, a collection of
percepts from Perceptual Memory which was diagnosed as
important or relevant enough to be sent to System 2.

According to the theory on Cognitive Modeling, the
Episodic Buffer is a limited capacity storage buffer which
binds together information from a number of different
sources into chunks or episodes, combining information
from different modalities into a single multi-faceted code
in order to be processed by the Central Executive (Badde-
ley, 2000). The Episodic Buffer comprises the detection of
episodes at the environment, as they are happening. The
information on the Episodic Buffer is an abstract repre-
sentation of the perceived present. The structures in the
Episodic Buffer are the episodes which will later be stored
in the Episodic Memory, in a sequence, forming a con-
tinuous timeline where we can recover episodes from the
past.

In standard Cognitive Modeling theory, the Episodic
Buffer is also a part of Working Memory. In current
MECA implementation, we decided to isolate the Episodic
Buffer out of the Working Memory. This is basically a
development strategy, because this process of recognizing
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and representing an episode is a very complex one and
we would like not to deal with potential complications
if the Episodic Buffer was a part of Working Memory.
This might change in future implementations of MECA,
as there is evidence from the literature that the Episodic
Buffer is really a part of Working Memory.

As we said, the process of detecting and recognizing an
episode is a very sophisticated one. In order to explain
our MECA implementation of this process, we need to
first explain some issues related to the scientific discoveries
regarding Episodic Memory.

The Episodic Memory (which should not be confused
with the Episodic Buffer) is a memory used to store facts
particularly contextualized in time and space, forming
Episodes which refer to information specific to a particu-
lar location and time frame. Episodes are representations
for scenes detected from environment, using a higher level
abstraction of space-time. We can see an episode as a
specific representation for a segment of space-time, where
some specific set of objects, and their trajectory in their
state space is somewhat represented.

Episodic Memory is a neurocognitive mechanism for
accessing time delimited contextualized information that
naturally makes part of the human process of decision
making, usually enhancing the chances of a successful be-
havior. This assertion is supported by several human psy-
chological researches which indicate that the knowledge of
his/her personal history enhances one’s person ability to
accomplish several cognitive capabilities in the context of
sensing, reasoning and learning (Tulving, 1991; Baddeley,
2000, 2002; Tulving, 2002; Howard et al., 2005; Cabeza
et al., 2008).

Our decision was to implement both Scene-based
episodes and State-based episodes in MECA, something
very different from other known Cognitive Architectures
available in the literature. The reason for that is due to
our commitment with Language Processes to be developed
within the scope of MECA. The structure of Grammar
Language, i.e. the use of sentences with meaning and un-
derstanding in artificial systems is directly connected with
the interpretation of scene-based episodes.

The construction of episodes within the Episodic Buffer
required us an additional structure. For that sake, we
introduced the Perceptual Buffer. The whole idea of de-
tecting an episode follows the further sequence of events.

At each time step, the Current Perception in Working
Memory holds a Configuration, including all relevant dis-
covered objects at the environment, and its parameter val-
ues. The first attention codelet in the Episodic Subsys-
tem then compares this Configuration with a sequence of
other Configurations stored in the Perceptual Buffer. If it
is different enough from the last Configuration stored, it
then decides to include it in the Perceptual Buffer. The
Perceptual Buffer works as a FIFO (First-In First-Out)
list. It stores a sequence of the last detected Configura-
tions, as they appeared at System 2. The second Atten-
tion codelet then scans the list of Configurations in the

Perceptual Buffer, trying to detect the beginning and the
end of an Episode, mounting it in the Episodic Buffer.
As a full Episode is detected and released in the Episodic
Buffer, this episode becomes available to the Conscious-
ness Mechanism (see section 3.3.4) to gain access to the
Global Workspace. Whatever is in the Global Workspace
is then collected by the Episodic Learning Codelet and
stored in the Episodic Memory. Finally, as soon as many
Episodes are already stored in the Episodic Memory, the
Episodic Retrieval Codelet can perform its abilities. The
behavior of the Episodic Retrieval Codelet is quite straight-
forward. Basically, it collects a cue from the Cue Mem-
ory (which is basically populated during the working of
the Planning Subystem, tries to recover pertinent episodes
from the Episodic Memory and brings these episodes to
the Episodic Recall Memory within the Working Memory,
from where they become available for the Planning Sub-
system.

3.3.2. The Planning Subsystem
An overview of the Planning Subsystem can be viewed

in figure 10;

Figure 10: A Zoom on the Planning Subsystem

The Planning Subsystem is the core of System 2. The
current implementation of the Planning Subsystem relies
on SOAR, a rule-based Cognitive Architecture developed
by John Laird at the University of Michigan, in USA
(Laird, 2012). This can be changed in a future release
of MECA. The decision to use SOAR for rule-based pro-
cessing in order to perform imagination and planning was
due to our time constraints in the development of MECA,
and depending on the further results might change to a dif-
ferent solution. This decision was aligned with recent ten-
dencies in the literature. The cognitive architecture SAL
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(Synthesis of ACT-R and Leabra) performs exactly some-
thing like that, binding two different cognitive architec-
tures (ACT-R and Leabra), where ACT-R is a rule-based
cognitive architecture, similar to SOAR, and Leabra is a
Neural-network based cognitive architecture. The choice
of SOAR instead ACT-R was due to the fact that there is
an implementation of SOAR in Java (ACT-R is in LISP),
and our CST toolkit is also in Java, allowing for a bet-
ter binding and use of SOAR instead ACT-R. Besides this
technological issue, ACT-R or any other rule-based cog-
nitive architecture might also be used instead of SOAR.
SOAR is though a mature technology, with a very good
documentation and a solid repertoire of use in the com-
munity, and so it appeared to be the right choice.

The role of the Planning Subsystem is to plan a course of
actions that, starting with the current situation, detected
by System 1, find the sequence of operations required to
reach a target situation specified by a Goal. This process,
in current MECA’s implementation, is executed by SOAR,
and is equivalent to the notion of a mental simulator pro-
posed by Barsalou (1999) in Grounded Cognition.

Behind the scenes in the Planning Subsystem, there is
the structure of Working Memory.

According to theories from cognitive modeling, the
Working Memory is a volatile kind of memory used during
perception, reasoning, planning and other cognitive func-
tions. In studies with human beings, its capacity in time
and space is found to be very short, ranging from 4 to
9 items, and periods up to a few dozen seconds (Miller,
1956; Baddeley et al., 1975; Cowan, 2001). According to
Baddeley (1997, 2000), there are at least three subsystems
involved in the implementation of a Working Memory, the
Visuo-spatial Sketchpad, the Phonological Loop and the
Episodic Buffer, coordinated by a Central Executive which
intermediates between them. Regarding brain localiza-
tion, the regions related to working memory processes are
very overlapping, however recent researches point the pre-
frontal cortex and basal ganglia as being crucial (Braver
et al., 1997; Frank et al., 2001; McNab and Klingberg,
2008).

In the current MECA implementation, we are not rely-
ing in this structure. The Episodic Buffer is split from the
Working Memory and we don’t have neither the Visuo-
spatial Sketchpad neither the Phonologic Loop. In future
implementations of MECA, this might change, though.
In its current implementation, the Working Memory is
a repository of Symbols, which are grounded on Percepts
from the Perceptual Memory, and which are used to plan
the future, through a process of Computational Imagina-
tion.

Computational Imagination (Setchi et al., 2007) is a cog-
nitive function described in many works (Chella et al.,
2005; Marques and Holland, 2009) as being the ability to
simulate and test different possible scenarios, allowing the
construction of plans. In this sense, imagination and plan-
ning are bounded together. In the current implementa-
tion of MECA, the process of Computational Imagination

is performed by SOAR, with the help of Episodic Mem-
ory, but other approaches for planning, including Prolog,
ACT-R or others are possible. In fact, any kind of rule-
based system available in Java can be linked to CST and
be a part of MECA.

The Procedural Memory is the memory of actions and
behaviors of a system. According to cognitive modeling
theory, it is a non-declarative memory which refers to a
“how to” kind of information, usually consisting of a record
of possible motor and behavioral skills. Typical examples
of Memory Objects in the Procedural Memory are behav-
ioral rules.

In its current implementation, the Procedural Memory
is a memory of rules in SOAR. They are stored in a text
file and are loaded during MECA initialization process.

The Working Memory is internally split into many sub-
memories: the Current Perception Sub-memory, the Cue
Memory, the Episodic Recall Memory, the Imagination
Sub-memory, the Global Workspace, the Predicted Situa-
tion Sub-memory, the Goals Sub-memory, the Plans Sub-
memory, the Executive Plan Sub-memory and the Next
Action Sub-memory.

The Current Perception Sub-memory holds a represen-
tation of objects identified in the environment by the Per-
ceptual Subsystem in System 1, and is shared with the
Episodic Subsystem. The Cue Memory is a memory hold-
ing cues to be used to query the Episodic Memory. The
Episodic Recall Memory holds the episodes retrieved from
Episodic Memory. The Imagination Sub-memory holds
the structures required for the process of planning. The
Global Workspace is a representation of information which
was considered to be important enough (see sub-section
3.3.4, and interacts with the Consciousness Subsystem.
The Predicted Situation Sub-memory is generated by the
Expectation Subsystem and holds a representation of an
immediate future. The Goals Sub-memory stores the goals
generated by the System 2 Motivational Subsystem, and
which are the starting point for the generation of plans.
The Plans sub-memory holds all the plans generated by
the Planning Subsystem and which were not yet executed.
The Executive Plan Sub-memory holds a plan from the
Plans Sub-memory which was decided to be the plan in
execution in a given moment. And the Next Action Sub-
memory is the next action to be taken while pursuing the
plan in the Executive Plan sub-memory. This Next Ac-
tion Sub-memory is then sent to the Behavior and Motor
Subsystem in System 1 in order to interfere with the au-
tomatic behavior being generated by the System 1 Moti-
vational Subsystem.

3.3.3. The System 2 Motivational Subsystem
The System 2 Motivational Subsystem complements the

System 1 Motivational Subsystem in providing MECA
with Motivated Behavior. It is depicted in figure 11.

The sole purpose of System 2 Motivational Subsystem is
providing the Planning Subsystem with the Goals required
for the Planning process to start. Goals are the dual of
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Figure 11: A Zoom on the System 2 Motivational Subsystem

Drives in System 1, but are meant to a different purpose.
Both Drives and Goals are meant to represent the needs
(or purpose) for motivated behavior. But while Drives
represent long-term needs, which are meant to be always
under seek by the agent, Goals represent short-term needs,
states which are to be timely reached and while they are
reached, we say they were satisfied. So, a main difference
between Drives and Goals is that Drives, despite being al-
ways being pursued, are never satisfied, while Goals should
be satisfied at some point. This means we need to repre-
sent in Goals the conditions leading to this satisfaction.

Goals are created in MECA by the Goal Codelet. The
Goal Codelet uses the Current Perception and the Pre-
dicted Situation in order to generate goals. Basically, it
explores the space of possible future states, using an evo-
lutionary technique, and selecting desirable future states
as Goals.

A second component of the System 2 Motivational Sub-
system is the Appraisal Codelet. This codelet is used to
evaluate the Current Perception and tag it with with a
value, which is then used by the Goal codelet to generate
Goals.

3.3.4. The Consciousness Subsystem
The Consciousness Subsystem is depicted in figure 12.
Consciousness has emerged in animals apparently

around 500 million years ago (Feinberg and Mallatt, 2013).
One of the theories to explain the evolutionary advantage
brought by consciousness is that consciousness works like
a filter in the manifold of perceptions gathered by per-
ception processes. This is basically the Global Workspace
Theory (GWT) from Baars (1988). This filtered informa-
tion is supposed to be the most relevant and important
information at the present time for the animal in ques-
tion. In Global Workspace Theory, this filtered informa-
tion is then broadcast to all other subsystems, allowing an
interesting dynamics to emerge. So, the Global Workspace
is a privileged space within Working Memory, where very
important information is supposed to be present.

The Global Workspace is a virtual kind of memory. In-
stead of storing its own set of Memory Objects, the Global
Workspace is just a collection of references to other Mem-

Figure 12: A Zoom on the Consciousness Subsystem

ory Objects stored in the different memories described be-
fore, tagged as currently important.

Even though the topic of machine consciousness is still
very controversial in the community (Gamez, 2009), one of
the most popular approaches involves the implementation
ofGlobal Workspace Theory, which was implemented in the
LIDA cognitive architecture (Franklin et al., 2012), and
also by others (Shanahan, 2006; Dubois et al., 2008). In
CST, the consciousness mechanism is not a built-in mech-
anism, but a mechanism which is implemented by means
of consciousness codelets. It is true that these codelets
make use of features provided by CST core, like the global
input in codelets, which allow the broadcast required in
GWT. The current implementation of CST provides a set
of codelets which implements GWT in a way very similar
to LIDA, but with some differences. In LIDA, the codelets
assumed to be in a coalition are those which trigger at the
same time. This is not the same in CST. In CST, codelets
are assumed to be in a coalition just if they are coupled
together by means of a common memory object. CST im-
plementation of GWT also allows for subtle variations or
interpretations of GTW, something which is not available
in LIDA. An example on the use of consciousness codelets
to implement GWT machine consciousness in a cognitive
architecture using CST is given in Paraense et al. (2016b).

In the case of MECA, we are using a small variation of
this mechanism, by means of the Consciousness Subsys-
tem. Instead of promoting a competition among all un-
conscious sources of information, the consciousness mech-
anism in MECA selects information from only three dif-
ferent sub-memories: the Current Perception, the Episodic
Recall Memory and the Imagination. At each time step,
the Consciousness Codelet evaluates the Memory Objects
within these three locations and choose something to send
to the Global Workspace. The information in the Global
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Workspace can then be used in the Planning Subsystem.
The information in GWT is also used to feed the Episodic
Memory, being collected by the Episodic Learning Codelet.
This scheme allows for not only perception being stored in
Episodic Memory, but also the contents of Imagination
and Remembrance (the system can remember that in the
past it remembered something).

3.3.5. The Expectation Subsystem
The expectation subsystem is illustrated in figure 13.

Figure 13: A Zoom on the Expectation Subsystem

In 2007, Jeff Hawkins published his book called "On In-
telligence", (Hawkins and Blakeslee, 2007), where he dis-
cussed a new understanding on the phenomena of intelli-
gence, based on the capacity of doing small predictions of
future states. According to Hawkins, the brain is always
performing these small predictions, and these are used to
anticipate things which are imminent to happen. This
ability might be crucial for doing things like catching a
ball coming in our direction or deciding to dodge while a
football player comes in our direction and we don’t want
to shock with him. According to Hawkins this ability is
due to cortical microcircuits (George and Hawkins, 2009)
which use to happen in the cerebral cortex. His theory
gave rise to a whole field of research in neural networks,
which he called Hierarchical Temporal Memories (HTM)
(George, 2008; George and Hawkins, 2009).

The Expectation Subsystem in MECA is basically an at-
tempt to include predictive abilities within our cognitive
architecture. By this time, it is most a specification for
something we consider to be important within a cogni-
tive architecture, but still to be developed. An Expec-
tation Codelet, supposed to run some sort of HTM like
algorithm, will get information from the Working Memory
(with all of its sub-memories), and should be generating a
Predicted Situation, which is to be compared in the near
future with the Current Perception in order to evolve its
predictive abilities. Right now, the implementation of the
Expectation Codelet is just a template for a future to be
implemented algorithm based on HTM.

3.4. The OWRL Representation Language
Language is one of the unique capabilities of human be-

ings, while compared to other cognitive abilities shared
with other species of animals (Deacon, 1998). Recently,

evidences that there are two subsystems in the brain re-
sponsible for language were discovered (Ardila, 2011), one
responsible for grounding the meaning of isolated symbols
(or words) and the other responsible for what is called
grammatical language. One of our goals with MECA is
to be able to use language to allow our MECA enabled
agent to interact through language with other MECA en-
abled agents, or either human beings, such that they are
able to communicate, with actual understanding in such
communications.

In order to implement this understanding, we rely on
Grounded Cognition to build mental simulations of a state
of affairs happening at the environment. In its current
stage of development, we defined a limited, but neverthe-
less quite elaborate ontology of known concepts which are
able to be understood by a MECA mind. This constitutes
the ontology of concepts which can populate the Working
Memory, and compose what we call the OWRL - Object
World Representation Language. An UML Diagram de-
scribing the ontology of concepts in OWRL is shown in
figure 14, which was inspired on the Conceptual Spaces
theory (see section 2.4).

Figure 14: An Ontology of Concepts in OWRL

According to the OWRL ontology, the environment is
represented as being a world full of AbstractObjects. Ab-
stractObjects can be primitive, aggregate or composite.
Primitive objects are defined by the list of its Properties
and eventually Affordances. Composite objects can also
have parts, which are also AbstractObjects. Aggregate ob-
jects are collections of AbstractObjects which are viewed
as a single AbstractObject. A property can be define by
one or more Quality Dimensions. For example, the prop-
erty Position might have the quality dimensions X and
Y. Affordances model possibilities of actions upon an Ab-
stractObject. Affordances allow abstract objects to have
a dynamics over time. This dynamics implies either in a
change of some of its properties along time, new aggre-
gate (or composite) objects to be created, or its aggregate
or composite sub-objects to be destroyed. An instant of
reality can be captured by a configuration, i.e. an Ab-
stractObject collecting all perceived environment objects
as its aggregate, in an instant of time. A configuration
represents the reality state of affairs in this particular in-
stant. We can represent the passage of time by a sequence
of configurations, sampled in a periodic rate. A sequence
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of configurations where some important change happens
is said to be an Action. An action can be represented al-
ternatively by a Descriptor and a Path. A descriptor is a
list of commands in OWRL which from a given configura-
tion, can determine the final configuration obtained. Ac-
tions might have modifiers, which are modeled as Adverbs.
A sequence of actions, might define an Episode. Usually,
episodes are used to model a small number of objects which
are part of the action. There might be the case in which
many episodes are running at the same time. The union of
all these episodes is a Scene. Plans are simply sequences
of Actions.

Basically, this comprises the Object World. Right now,
this is everything a MECA mind is able to understand
from the environment. MECA’s subsystems are able to
start from sensors, acquiring specific quality dimensions,
and perform higher abstractions, discovering World Ob-
jects, Episodes and Scenes. Instances of the many con-
cepts pointed out at figure 14 are the entities populating
the Working Memory, and the Planning Subsystem is able
to create imaginative scenes with possible movements us-
ing all these elements. Goals are merely a specific config-
uration the system wants to achieve.

The next step in this research involves now the use of
MECA to implement the ability of Language. The study
on the simulation of language evolution has brought the
attention on the importance of Language Games in order
to construct the meaning of language in artificial agents
(Steels, 2015; Vogt, 2015). In the next phase of this re-
search project, we will be trying to use MECA to imple-
ment Language Games, allowing a MECA mind to repre-
sent its environment, learn its dynamics and use symbols
to refer to the representation of both its understanding
of reality, and possible alternative realities generated by
imagination. An example of such developments, which
helped us in setting up this framework is reported in
(de Paula and Gudwin, 2015).

4. Conclusion

This work presented the specification and implementa-
tion details of a first version of the MECA Cognitive Ar-
chitecture, with the aid of CST - The Cognitive Systems
Toolkit and SOAR.

The system architecture was fully specified, and a first
Java implementation was generated and is now under tests.
We have built many small demo programs using MECA,
but only using System 1 and System 2 as isolated sub-
systems, controlling traffic signals in a urban traffic simu-
lation using the SUMO simulator (Krajzewicz et al., 2012).
In order to evaluate more complex scenarios, involving the
interaction between System 1 and System 2, we are cur-
rently working in a more extensive demo, which we hope
to be the subject of a future work, with a full evalua-
tion of the MECA architecture. The full implementation
of the architecture will continue together with the next
phase of our research project, where we will use the MECA

package to implement a Cognitive Manager aimed at con-
trolling generic IOT (Internet of Things) devices. In the
next project stage, we will be addressing specifically the
scenario of more complex urban traffic control, where the
collaboration and cooperation between traffic lights, and
their engagement in a language game (Steels and Hild,
2012) are of the utmost importance, aiming at taking ad-
vantage of the MECA cognitive architecture to provide a
high level intelligent control of such environment.
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