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Abstract

In this paper we prove that there exists a Horn clause H such that the problem:
given a Horn clause G. Is G a consequence of H ? is not recursive. Equivalently,
there exists a one-clause PROLOG program such that there is no PROLOG im-
plementation answering TRUE if the program implies a given goal and FALSE
otherwise. We give a short survey of earlier results concerning clause implication
and prove a classical Linial-Post theorem as a consequence of one of them.

1 Introduction

1.1 Introduction

Our main interest is the analysis of the decidability of the implication problem
H1 =⇒ H2 where H1 and H2 are Horn clauses in the language of the first order
logic without equality.

We adopt the following taxonomy: A literal is an atomic formula (an atom) or
its negation. An atom is of the form Q(t1, t2, . . . tk) where Q is a k-ary predicate
symbol and t’s are first order terms constructed from function symbols, variables
and constants. A clause is a universal closure of a disjunction of literals. A Horn
clause (or a program clause) is a clause with at most one positive (i.e. not negated
) literal. A Horn clause with k negative and one positive literal will be called a
k-clause (here we do not obey the standard that a k- clause is a disjunction of k
literals). A Horn clause can be in the usual way written in an implication form.

A term is ground if it contains no variables. An atom is ground if all its
arguments are ground terms. A substitution is a finite function σ such that the
arguments of σ are variables and values are terms. σ can be extended to act
on terms, literals and clauses. Terms t1 and t2 are unifiable if there exists a
substitution σ such that σ(t1) = σ(t2).

If H = (A1 ∧A2 ∧ . . . ∧Ak =⇒ A) is a k-Horn clause then a H -derivation is
a full k-tree D (i.e. such that every its node is a leaf or has exactly k sons) with
each its node labelled by a ground atom so that, if w is an inner node of D , ∆ is
the label of w and for wi, the i’th son of w, ∆i is the label of the son then there
exists a substitution σ such that σ(A) = ∆, and σ(Ai) = ∆i for i = 1, 2, . . . k .

The following lemmas allow us to use two equivalent languages to talk about
the problems of our interest: one of them will be the language of clause implication
and the other the one of derivations:
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Lemma 1.1 Let H1 and H2 be Horn clauses and let H2 = (A1∧A2∧. . .∧Ak =⇒
A). Then ¬(H1 =⇒ H2) holds iff the set consisting of H1, {σ(Ai) : i = 1, 2, . . . k}
and ¬σ(A) is satisfiable, where σ substitutes a constant cx, occuring neither in
H1 nor in H2, for every variable x in H2.

Proof: The if implication is obvious. To prove the opposite implication consider
a model M in which H1 is true and H2 is not. So, there is a valuation v of the
variables in H2 such that every v(Ai) is true in M but v(A) is not. Put v(x) as
the interpretation of cx in M for every x in H2.

Lemma 1.2 Let H1 and H2 be Horn clauses and let H2 = (A1∧A2∧. . .∧Ak =⇒
A) and let σ(x) = cx, for every variable x in H2. Then H1 =⇒ H2 iff there exists
a H1 derivation with the leaves labelled by elements of {σ(Ai) : i = 1, 2, . . . k}
and with the root labelled with σ(A).

Proof: Clearly our notion of H -derivation coincides with the notion of SLD-
resolution. So the lemma follows from the Lemma 1.1., and from the completeness
of SLD-resolution (see[1]).

1.2 Clause Implication: Earlier Results

Questions concerning decidability of clause implication and similar problems are
motivated by artificial intelligence and automated deduction and they have been
an area of some interest recently. Redundancy elimination is known to be an
important issue in optimization of automated theorem provers (where general
clauses are used) or logic programs and clausual knowledge bases (where all
clauses are Horn clauses). Less redundant clause sets require less storage space,
but first of all, since the redundant clauses force the program to do redundant
work, allow better performance of proof procedures.

In practice, in automated theorem provers, the subsumption of clauses, not
the clause implication, is used as a criterion of deletion. We say that the clause
H subsumes the clause G if there exists a substitution σ such that σ(H) ⊆ G
(as a set of literals). Of course, if H subsumes G then also H implies G . The
problem whether the clause H subsumes the clause G is decidable and, what is
much more, is NP-complete. Subsumption algorithms were proposed in [5] and
[21]. Their complexity analysis and some new algorithms can be found in [8] and
[9].

It is easy to observe that it is not always so, that if a clause H implies clause
G then H subsumes G . Hence there are cases of redundancy that can be rec-
ognized by the clause implication test but not by the clause subsumption test.
Unfortunately the problem if (general) clause H implies clause G has been proved
to be undecidable by M. Schmidt-Schauss in 1988[22]. His theorem can be for-
mulated also as: the problem, given three Horn clauses, do the first two imply the
third ? is undecidable. The decidability of a clause implication problem for Horn
clauses (i.e. whether a Horn clause H implies a Horn clause G ) remained open
until 1992, when it was solved negatively by J. Marcinkowski and L. Pacholski
([19]).

Meanwhile, some strong sufficient conditions for decidability of Horn clause
implication where given ([10],[22],[15],[16]). We follow[10] and present a survey
of the results here:
(i) If H ranges over unary Horn clauses then the problem if H implies a Horn

clause G is decidable. Equivalently, the problem, if there exists an H -derivation



with its premise ( notice that such a derivation has just one premise) and con-
clusion labelled with given ground atoms, is decidable. We are not able to name
the author of the theorem here, however following [22] we shall present a proof
of it.

Proof: Let H = (Q(t1) =⇒ Q(t2)). Let Q(s1) be the (hypothetical) label of
the premise of the derivation and Q(s2) be the one of the conclusion (s1 and s2 are
ground terms). Following[22] we define H1 = H . LetHk =(Q(rk

1 ) =⇒ Q(rk
2 )) (we

assume that the variables in r’s are distinct from those in t’s). Let σ be the most
general substitution such that σ(t1) = σ(rk

2 ). Then define Hk+1 = Q(σ(rk
1 )) =⇒

Q(σ(t2)). Notice, that Hk+1 would be the same (up to renaming of variables)
if we have defined σ as the most general substitution such that σ(t2) = σ(rk

1 ).
and Hk+1 as Q(σ(r2)) =⇒ Q(σ(t1)). Let d be a natural number greater than the
depth of s1 and s2 . There are two possibilities: Either for every k the depth of
literals (to be more precise, of terms) of Hk is smaller than d. So, since there
are only finitely many literals of depth smaller than d the function k 7→ Hk is
periodical for sufficiently large k. Or there exists a k such that one of the terms
of Hk is deeper than d. Consider the smallest of such k’s. Suppose rk

1 is deeper
than d (if not, rk

2 is, and the argument is symmetrical). Then every rl
1 (l > k) is

an instance of rk
1 and thus is deeper than d. In both cases the set Ξ = {Hk :the

depth of its literals is smaller than d} is finite and computable.
Now, if there exists Hk ∈ Ξ such that Hk =Q(r1) =⇒ Q(r2) and a substi-

tution σ such that σ(r1) = s1 and σ(r2) = s2 then (and only then) H implies
Q(s1) =⇒ Q(s2). The last question is decidable.
(ii) In this and next items we will assume that H = (A1 ∧A2 ∧ . . . ∧Ak =⇒ A).
Suppose there is no such i and a substitution σ such that σ(Ai) = σ(A) (We say
that H is not a recursive clause). Then H implies a clause G iff G is a tautology
or if H subsumes G. So the implication problem is decidable.
(iii) If H is a linearly recursive clause (i.e. if there is only one i for which there
exists a substitution σ that σ(Ai) = σ(A)) then the problem if H implies a clause
G is decidable. It is similar to the problem proved to be decidable in (i) ([22],[15]).
(iv) The Horn clause implication problem is also decidable if each variable occur-
ing in the conclusion of H occurs on a deeper position in some premise of H and
the conclusion does not exceed any premise in terms depth ([15]).
(v) The Horn clause implication problem is decidable if each variable of H occurs
in such a premise Ai that there is no such substitution σ that σ(Ai) = σ(A) ([15]).
(vi) If H = (A1 ∧ A2 ∧ . . . ∧ Ak =⇒ A) is such that A contains at most one
variable and there is an i such that the premise Ai contains all variables of all
premises then the clause implication problem is decidable for an arbitrary clause
G ([10]).
(vii) Let H = (A1 ∧A2 ∧ . . .∧Ak =⇒ A) be a Horn clause such that there exists
i such that Ai contains all variables occuring in A and such that A and σ(Ai) are
non unifiable, where σ substitutes new variables for those in Ai. The problem if
H implies an arbitrary clause G is decidable ([10]).

1.3 A Related Topic: Cycle Unification Problem

The problem (i) proved to be decidable in the previous section is the strongest
of the natural decidable problems in the area of clause implication. It has two
natural generalizations: first of them is to admit more than only one premise. We
get the full Horn Clause Implication Problem then, which is the main topic of
this paper. The second is the so called Cycle Unification Problem: given an unary



Horn clause H = (Q(t1) =⇒ Q(t2)) and two arbitrary terms s1 and s2, is there
any substitution σ such that Q(σ(s2)) is a logical consequence of H and Q(σ(s1))?
Similarly as in the case of Horn Clause Implication Problem some papers have
been written, giving sufficient conditions for decidability of the Cycle Unification
Problem. The survey of the results and proofs can be found in[3]. The general
problem was proved to be undecidable in 1992 by P. Devienne, P. Lebégue and
J.C. Routier ([6],[7]). In 1993 P. Hanschke and J. Würz ([23],[12]) gave a new,
very clever and simple proof of the undecidability.

It is nice to see that this result can provide a new and easy proof of a classical
Linial-Post theorem ([17]). Consider a language of terms built of variables and
one binary functional symbol =⇒. Suppose terms in some finite set S are already
considered as proved. Then, we can use one of two rules to enrich the set of
proved terms. First, if t is proved and σ is a substitution then also σ(t) is proved.
Second, if t, s are proved, s = (t =⇒ r) then also r is proved (first of those two is
the substitution rule and the second is modus ponens. When writing about the
use of modus ponens we will call s a modus ponens major premise and t a modus
ponens minor premise). If, starting with some set S we can, applying the above
rules finitely many times, get a term s then we write S ` s.

Theorem 1.3 (Linial, Post) The problem
Given a set S of tautologies of the propositional calculus and a term s that

is a tautology. Does S ` s ?
is undecidable.

This theorem gives an answer to a classical Tarski’s question about decid-
ability of derivability in propositional calculus. The proof of the theorem can
be found in [20] and in [24]. It is elementary but quite complicated. In a short
Section 3 we prove it as a corollary of the undecidability of Cycle Unification
Problem.

1.4 Open Problems and Finite Implication

There are, as far as we know, no more natural open problems concerning decid-
ability of clause implication, at least when we consider the classical meaning of
the notion of implication.

However there are still many theorems left to be proved in the case of finite
implication. It can be argued that the word described by a knowledge base is
always a finite set of objects. So, we can claim that the example of a natural
question is not the decidability of the problem does there exist any structure in
which a Horn clause H is satisfied and a Horn clause G is not ? but rather of the
one does there exist a finite structure in which a Horn clause H is satisfied and
a clause G is not? If the last is not true, then we say that H finitely implies G .

Observe that the proof of the Lemma 1.1. is valid for the clause finite im-
plication case, as well as for the classical one. So we can equivalently ask the
decidability questions in the language of clause implication and in the language
of logic programs. It is however clear that there are no reasons for the Lemma
1.2. to be valid for the finite case. So, we can not, as we do in our Main Results
sections, use the language of derivations to consider problems of finite implication.

There are some similarities between decidability problems of clause implica-
tion and decidability problems of dependencies implication in relational database
theory (see [14])(but in fact, as we know up to now, the similarities are rather
formal than technical). The language of first order logic with equality with no



function symbols and with one n-ary predicate symbol A is used there. A depen-
dency is a sentence

∀y1, . . . , yk∃x1, . . . , xl(A(t1)∧A(t2)∧ . . . A(tp)) =⇒ (B(s1)∧B(s2)∧ . . . B(sq))

where each B is either A or =, si, tj denote vectors of variables of proper length,
the variables occuring in the premises of the implication are exactly y1, y2 . . . , yk

and the set of variables occuring in the conclusions contains x1, x2, . . . , xl. The
(finite) implication problem for data dependencies is the problem of deciding
whether a given set of dependencies logically (finitely) implies another depen-
dency. Many sorts of dependencies have been considered and some results con-
cerning undecidability of finite implication have been proved. Usually the follow-
ing two results have been used as tools in the proofs of undecidability:

Theorem 1.4 An equation is a sentence ∀y1, . . . , yk(s = t) where s, t are terms
of first order logic with one functional symbol f and without constants. The prob-
lem

Given an equation. Does it have a finite non-trivial (i.e. consisting of more
than one element) model?

is undecidable.

Theorem 1.5 Let A be an alphabet. A∗ is a free monoid generated by A . Let
E = {ai = bi} be a finite set of equations of words in A∗ and a = b be another
such equation. The problem:

Given E, a, b. Does there exist a finite monoid M and a homomorphism
h : A∗ −→M such that h(ai) = h(bi) for all i and h(a) 6= h(b) ?

is undecidable.

Theorem 1.4. is due to R.McKenzie ([18]) and has been a main tool in the
proof of undecidability of the finite implication in [2]. Theorem 1.5. , due to Y.
Gurevich ([11]) was used in [4] and [13].

We report the topics of database dependencies here since we hope, that the
two theorems used there can be also good tools for our needs in the case of
finite implication. Unfortunately, the equality symbol seems to be inherently
present in both of them. In fact we do not know any question similar to our
in the language without equality. It is not clear how to encode the equality,
or something sufficiently similar to it, within one Horn clause in the language
without the equality symbol.

1.5 The Results

In the Section 2, The Main Result we give a proof of the following theorem:

Theorem 1.6 (i) There exist a Horn clause H and a finite set S of ground
atoms such that the problem:
Given a ground atom A. Does there exist a finite H -derivation with its leaves
labelled by elements of S and with its root labelled by A ?
is undecidable.

(ii) There exist a clause H and atoms A1, A2, . . . Ak such that the problem
Given an atom A . Does H imply G = (A1 ∧A2 ∧ . . . ∧Ak =⇒ A) ?
is undecidable

Parts (i) and (ii) of the theorem are equivalent by Lemma 1.1. and Lemma 1.2.
The theorem is stronger than the result of [19] where the following was proved:



Theorem 1.7 (i) The problem
Given a Horn clause H , a set S of ground atoms and a ground atom A. Does
there exist a finite H -derivation with its leaves labelled by elements of S and
with the root labelled by A ?
is undecidable.

(ii) The problem
Given Horn clauses H and G . Does H imply G ?
is undecidable

As in Theorem 1.6. Parts (i) and (ii) of the theorem are equivalent by Lemma
1.1. and Lemma 1.2.. The difference between results of Theorem 1.6. and Theorem
1.7., although perhaps not very important, still can be viewed as quite practical.
We can think that logic programming is an activity of three participants: First
of them is the company that produces the software for compiling and executing
a logic program (e.g. PROLOG). Second is the author of the program itself. So
it is a person or a team that writes the clause (clauses, but recall that all of that
was already known for programs containing more than one clause) and the set of
facts (which we denote by S ). Third participant is the user of the program which
asks it some queries and hopes to get an answer TRUE if the program implies
the query and FALSE otherwise. Our former result have asserted that the job
of the second participant is not very easy: he can not buy a proper software in
a shop and next use it to all programs he writes but rather he must prepare it
himself, depending of the form of the program he has written. The new result
tells that in some cases the job of the second participant is not only difficult but
just impossible to be done.

The method of the proof in this paper does not differ much from the one of
[19], but the understanding of the method is deeper here. In the former paper
we have built a clause H such that the label of a node of a H -derivation was
equal (as a tree) to the part of the derivation rooted in the node and such that
the problem does there exist a finite derivation containing a given node w was
undecidable. The problem was how to force the derivation to contain w . In the
former paper we gave a solution: we changed H in a way depending of w. Here
only the conclusion is used to force the derivation to contain the required node.

2 The Main Result

2.1 Preliminaries

In this subsection we give basic definitions concerning Turing machines, Thue
processes, derivations and finite trees, and we formulate some lemmas about
connections between the defined notions.

Definition 2.1 Let c1 and c2 be configurations of a deterministic Turing ma-
chine T. Then c1 → c2 denotes the fact, that T moves from c1 to c2 in one step.
Let O(c) denote the equivalency class of c with respect to the symmetric, reflexive
and transitive closure of →. T is useful if it satisfies the following conditions:
(i) the tape of T is right-infinite.

(ii) the tape symbols of T are $, !, 0 and 1.
(iii) ! and $ are special symbols: machine can neither write nor delete them. !

marks the (left) end of the tape, so T has no instruction of the form: ”while
scanning ! in the state q move left”.



(iv) denote by n the following configuration of T : !0n−2$ on the tape, head in
the initial state over the symbol $ . It is undecidable, if O(n) is finite.

Consider the setA of triples 〈tape symbol, state, end of the tape〉 where tape symbol
is one of 0,1,!,$, state is one of the states of T or 0 and end of the tape is 0 or
1. We will think of A as of an alphabet. The triples in A will be symbols of
the alphabet. Symbols 〈$, ., .〉 will be called dollars and symbols 〈., ., 0〉 will be
called static symbols. Symbols that are not static will be called dynamic. Symbols
〈., q, .〉 where q 6= 0 we will call headmarking. Notice, that each configuration of
T can be uniquely identified with a word w over A such that only one symbol of
w is headmarking and only one, last symbol of w, is dynamic. Let T be a Thue
system with alphabet A .

Definition 2.2 For every word w over A we put thue(w) = {v : v ∗T⇐⇒ w}.
For every set W of words over the alphabet A we put THUE(W) = {v : ∃w ∈

W ∃u: v is a prefix of u and w ∗T⇐⇒ u}.

Definition 2.3 A Thue process T is useful if for every w thue(w)=O(w) and:
(i) if < u, v > is a production of T then each of u and v has no more than 2

symbols and no less than one symbol. u and v are not both single symbols.
(ii) if a symbol i ∈A occurs in any production < i,w > then it is dynamic.

(iii) if a symbol i occurs in any production of a form < ji, k > where j, k are
symbols, then it is dynamic.

(iv) if a symbol i occurs in any production of the form < ij, v > then it is static.
(v) if < ij, kl > is a production of T and j is dynamic, so is l.

(vi) if < ij, kl > is a production of T and j is dollar, so is l.
(vii) if < ij, kl > is a production of T and i is dollar, so is k.

Lemma 2.4 There exists a useful Turing machine T and useful Thue process
T .

Proof: It is clear that we can construct a universal Turing machine T satisfy-
ing conditions (i)-(iii) of Definition 2.1. and such, that it is not able to write new
blancs on the tape (i.e. T can overwrite a tape symbol with another tape symbol,
but not with a blanc) If c1 and c2 are configurations of T and if c1 → c2 then c2
uses at least the same number of tape cells as c1. The problem if the machine T
halts, after started in the configuration n, is undecidable. Since the machine is
deterministic, O(n) is finite iff the machine halts, after started in configuration
n.

Once we have a useful T it is easy to construct a useful process T .
T and T will be fixed useful Turing machine and Thue process.

Definition 2.5 (i) An A -tree (or simply tree) is a (not necessarily finite) set
P of words over the alphabet A such that w ∈ P and w = uv implies u ∈
P . Let Pw = {v : ∃u ∈ P u = wv}. Pw is a (rooted in w) subtree of P .

(ii) Let W be a set of words over the alphabet A . By pref(W) we denote the set
of all prefixes of words in W.

Definition 2.6 (i) Let P be an A -tree. We call a node w ∈P semiregular if
Pwv = Pwu for every production 〈v, u〉 ∈T .
We call a node w regular if it is semiregular and if i ∈Pw for every static
i ∈A .

(ii) Call an A -tree P semiregular if every of its nodes is semiregular. Call an A
-tree P regular if every of its nodes w is regular or is a leaf.



The following two lemmas establish a connection between the Thue process and
semiregular trees:

Lemma 2.7 For every set W of words over A THUE(W) is a semiregular tree.

Proof: Let 〈v, u〉 ∈ T and let w ∈ P = THUE(W). If w1 ∈ Pwu then wuw1 ∈ P,
hence wvw1 ∈ P and w1 ∈ Pwv. So Pwu ⊆ Pwv.

Lemma 2.8 Every semiregular tree containing a node w contains all elements
of the set thue(w)= {v : w ∗T⇐⇒ v}. So, if there exists a finite semiregular tree
containing w then also the sets thue(w) and THUE({w}) are finite.

Definition 2.9 (i) Let H be a Horn clause Q(Γ1)∧Q(Γ2)∧ . . .∧Q(Γl)⇒ Q(Γ0)
where Γ ’s denote vectors of terms of length equal to the arity of Q. A H-
derivation is a finite full l-tree D such that every its node w is labelled with
vector ∆(w) of ground terms of the same length as Γ ’s and that for each
inner node w of D there exists a substitution σ such that σΓ0 = ∆(w) and
σΓi = ∆(wi) for every i ≤ l.

(ii) For a set S of vectors of constant terms an H-derivation will be called a
S -H -derivation if for every its leaf w ∆(w) ∈ S .

Let p be the number of elements of A . We fix a numeration of the symbols of
A with numbers 1, 2 . . . p and identify symbols with their numbers.

Definition 2.10 H is the Horn clause Q(Γ1) ∧ Q(Γ2) ∧ . . . ∧ Q(Γp) ⇒ Q(Γ )
where Q is an unary relation symbol and Γ = g(Γ1, Γ2, . . . Γp) is a term built in
the language containing exactly one p-ary functional symbol g and no constant
symbols. Γ has g in the position w iff w is a word consisting of a single, static
symbol of A . The variables in positions u and v in Γ are equal iff < u, v >∈ T
.

We assume from now on that terms are built of variables, a functional symbol
g and of a constant c. So a constant term is uniquely described by a tree of its
symbols g and we identify such a term with this tree. Moreover , we assume
that the only predicate symbol in the language is Q, so we can, for simplicity,
consider nodes of a derivation as being labelled by (vectors of) ground terms,
not by atomic formulas. We put S = {c, g(c, . . . , c)}. Next lemmas describe the
structure of a S -H -derivation.

Lemma 2.11 (i) Suppose the root of a H derivation D is labelled with a constant
term ∆. If there is a node w in the derivation, then ∆(w) = ∆w. (where ∆(w)
is, as in Definition 2.9(i), the label of the node w and ∆w is, as in Definition
2.5(i) a subtree of ∆ rooted in w).

(ii) Suppose the root of a S -H -derivation D is labelled with a constant term ∆
. Then ∆ is a semiregular tree.

Proof: (i) The proof proceeds by induction on the length of w. Suppose that
w and wi are nodes of D, and the label of ∆(w) is ∆w. Then, by the definition
of H , we have ∆(w) = g(t1, t2, . . . tp) and ∆(wi) = ti = ∆wi.
(ii) Let w be a node of ∆. We shall prove that w is semiregular. Let v be the
longest prefix of w such that v ∈ D. If v 6= w, then v is a leaf of D, and ∆(v) ∈ S.
By (i) ∆(v) = ∆v, so since ∆w is a subtree of ∆v w is a semiregular node. If
v = w and w is a leaf of D, then w is clearly semiregular. If v = w and w is
an inner node, then ∆(w) is an instance of Γ and so, ∆(w) is semiregular. Since
∆w = ∆(w), it follows that w is a semiregular node.



Lemma 2.12 (i) Suppose a root of a constant term ∆ is a regular node. then
there exists a substitution σ such that ∆i = σΓi for i ∈A and ∆ = σΓ .

(ii) Suppose a constant term ∆ is a regular tree. Then ∆ is a label of the root of
a S −H-derivation D. D is a full p-tree that has the same set of inner nodes
as ∆. If w is a leaf of ∆ then it is labelled by g(c, c, . . . , c) in D. If w is a leaf
of D but is not in ∆ then it is labelled by c in D.

Proof: (i) It immediately follows from the definition ofH that if ∆ = σΓ then
also ∆i = σΓi, for i ∈ {1, 2, ..., p}. So, to prove that there exists a substitution
σ, such that (i) holds, it suffices to check that
(iii) if x is a variable which occurs in position v in Γ , then position v exists in ∆,

and
(iv) if a variable x occurs in Γ in positions v and u then ∆v = ∆u.

To prove (iii), notice that if Γ has a variable in position v, then v = wj and,
by regularity, the term ∆ has the function symbol g in position w, so it has some
symbol (either g or c) in position wj. To prove (iv) suppose that Γ has variable x
in positions v and u. Then < v, u >∈ T . By semiregularity of the root, if u ∈ ∆,
then ∆u = ∆v. If u /∈ ∆ then by (iii), ∆ has the constant symbol c in positions
v and u. So, the existence of a substitution σ satisfying the conditions of (i) is
established.
(ii) Assume that ∆ is a regular tree, and let D be the least full p-tree containing
all regular nodes of ∆ as inner nodes. Let the nodes w of D which are in ∆ be
labelled by ∆w, and let the other nodes be labelled by the term c. It is easy to
prove that such a labeling defines a valid S -H -derivation.

2.2 From Semiregular to Regular Trees

In [19] we prove, that every finite semiregular tree can be extended to a finite
regular tree. Now, we shall examine the construction of the extension more care-
fuly.

Consider the finite tree THUE({ n }) , where n is as in Definition 2.1. (
n is a configuration of the Turing machine, identified with a word over A ).
Let d denote the depth of this tree. Put Pd= THUE({ n }) , and for given Pk

(k = d, d− 1, d− 2, . . . 1 ) let Pk−1 be the result of the following

Procedure: - put P :=Pk .
-while there exists a nonregular inner node w of P , such that |w| = k, do take
any static symbol i such, that wi /∈P and put P := THUE(P ∪ {wi}).
-put Pk−1 := P .

Lemma 2.13 (i) If w is an inner node of Pd then w contains no dynamic sym-
bols.

(ii) If w is an inner node of Pk (k ≤ d ) then w contains no dynamic symbols.
(iii) The tree THUE(P ∪{wi}) in the substitution above is finite.
(iv) The procedure halts.
(v) If w ∈ P0 and |w| ≥ k then w ∈ Pk.

(vi) P0 is a regular tree.
(vii) If w ∈ Pn+1 and |w| ≥ n then the n’th symbol of w is a dollar.

(viii) If w ∈ Pn and the n′th symbol of w is not a dollar then |w| = n.

Proof: (i) It follows, since n has only one dynamic symbol, as its last symbol
and since there is no production in T that can write a static symbol to the right
of it.



(ii) The procedure chooses w that is not a leaf of P and hence contains no dynamic
symbols. i is a static symbol. There is no production in T that can increase the
number of dynamic symbols in a word. So, every v ∈ THUE(wi) contains only
static symbols. THUE(P ∪{wi}) = THUE(P)∪THUE(wi). Since P is already
semiregular the right hand side of the last equality equals P ∪THUE(wi).
(iii) THUE(wi) contains only words not longer, than |wi|.
(iv) The procedure outputs a sequence of trees increasingly ordered by inclusion.
None of them is deeper than d.
(v) That follows from (ii) and (iii).
(vi) If w ∈ P0 and |w| = k then w becames to be a regular node in Pk and it
cannot change later.
(vii) w ∈ THUE(v) then, where v has a dollar as its n’th symbol. Using T cannot
change it.
(viii) By (vii), w /∈ Pn+1. So, w ∈ THUE(v) for some v of lenght n and not
containing any dynamic symbol. Hence |w| = n.

Let q0 be the initial state of the Turing machine T. Let a = 〈!, 0, 0〉, b =
〈0, 0, 0〉 and c = 〈$, q0, 1〉. So, we identify the configuration n of the T with
the tree of prefixes of the word abn−2c. We shall now prove that, while Pd is an
uncontrolable tree, the intersection P0 ∩{a, b, c}∗ is an easily computable function
of n.

Lemma 2.14 (i) if w ∈ P0 and w contains a, then a is the first or the last
symbol of w.

(ii) if b is the first symbol of some w ∈ P0, then w = b .
(iii) if w ∈ P0 has c as its last symbol, then w ∈ Pd.

Proof: (i) It is so in Pd. The Procedure in the process of constructing Pk can
add the static symbol a to the tree as the last k+ 1’th symbol of some word. No
symbols are added to the tree in a position deeper than k + 1 after that, so the
a will remain the last symbol of every word that contains it.
(ii) A word w that has b as its first symbol can be added only during the con-
struction of P0 from P1. Only words of length 1 are added then.
(iii) c is a dynamic symbol. P0 has such symbols on the same positions as Pk.

Definition 2.15 Let n0 = {abk : k ≤ n− 1} ∪ {abka : k ≤ n− 2} ∪ {b, abn−2c}.
Lemma 2.16 P0 ∩{a, b, c}∗ = n0.

Proof: To prove that the inclusion ⊆ holds notice that, by Lemma 2.13 (vi)
P0 is a regular tree. Since n⊆ P0 all inner nodes of N are regular nodes of P0.
If k ≤ n − 2 then abk is an inner node of n. So, if k ≤ n − 2 then abka ∈ P0

and abk+1 ∈ P0. Empty word is an inner node of n so it is regular in P0. Hence
b ∈ P0.

For the ⊇ inclusion, by the Lemma 2.14.(iii) we must prove that

P0 ∩ {a, b}∗ = {abk : k ≤ n− 1} ∪ {abka : k ≤ n− 2} ∪ {b}
Since neither a nor b is a dollar, by Lemma 2.13 (v),(vii) the depth of P0∩{a, b}∗
is not greater than n. By Lemma 2.14 (ii) if w ∈ P0 ∩{a, b}∗ and w 6= b then the
first symbol of w is a. By Lemma 2.14. (i) w is of the form abk or abka.

As a summary of all the results above we get:

Lemma 2.17 (Main Lemma) The problem
Given n, does there exist a S −H-derivation D such that {a, b, c}∗ ∩ {the set

of inner nodes of D and its leaves labelled with g(c, c, . . . , c)} = n0 ?
is undecidable.



Proof: If D exists then, by Lemma 2.11 its root is labelled by a finite semiregular
tree ∆ such that n⊆ ∆. If there exists a finite semiregular tree ∆ such that
n⊆ ∆ then, by Lemmas 2.13 and 2.16. there exists a regular tree P0 such that
P0 ∩ {a, b, c}∗ =n0. By Lemma 2.12 (ii) there exists a derivation D then. So
the problem of the lemma is equivalent to the one: Given n. Does there exist a
semiregular finite tree ∆ such that n⊆ ∆. The last is undecidable by Definition
2.1 (iv).

2.3 The Main Theorem

Definition 2.18 H? is the Horn clause:
Q1(Γ1, x1) ∧Q1(Γ2, x2) ∧ . . . ∧Q1(Γp, xp) =⇒ Q1(Γ, g(y1, y2, . . . yp))

where Q1 is a binary relation symbol, Γ = g(Γ1, Γ2, . . . Γp) are as in clause H
and y’s and x’s are variables not occuring in Γ ’s. If i ∈ {a, b, c} then xi is the
same variable as yi . Variables not defined as equal are distinct.

The nodes ofH?-derivation are labelled with pairs of terms. So, the legal premises
of the derivation are also pairs of terms:

Definition 2.19 S? = {〈c, c〉, 〈g(c, c, . . . , c), g(c, c, . . . c)〉}.

Lemma 2.20 Let w be a node of a S? − H? -derivation D . If 〈∆1, ∆2〉 is the
label of w then ∆2 = ∆1 ∩ {a, b, c}∗.

Proof: Induction on the depth of the tree Dw.
Now, from the main lemma we get

Lemma 2.21 The problem
Given n, does there exist a S?−H? -derivation with its root labelled with 〈x,

n0〉, where x is any term (we know that it is P0) ?
is undecidable.

We still have an unpredictable term in the root of the derivation. We shall do
a trick to hide it:

Definition 2.22 H?? is the Horn clause
Q(v1, z, v2)∧Q(Γ1, x1, z1)∧Q(Γ2, x2, z2)∧. . .∧Q(Γp, xp, zp)⇒ Q(Γ, g(y1, y2, . . . yp), z)

where Q is a ternary relation symbol , Γ ’s , x’s and y’s are as in clause H?,
z’s and v’s are new distinct variables .

Definition 2.23 S?? = {〈c, c, c〉, 〈g(c, c, . . . , c), g(c, c, . . . c), c〉}.

It is easy to observe, that the following lemma holds:

Lemma 2.24 There exist a S? − H? -derivation with its root labelled with 〈x,
n0〉, where x is any term, if and only if there exists a S?? −H??-derivation with
its root labelled with 〈σΓ, g(c, c, . . . , c), n 0〉, where σ substitutes c for every
variable.

Now, from the last lemma and from Lemma 2.21:

Theorem 2.25 (The Main Theorem) The problem
Given n, does there exist a S?? − H??-derivation with its root labelled with

〈σΓ, g(c, c, . . . , c), n 0〉, where σ substitutes c for every variable?
is undecidable.



3 The Linial-Post Theorem

We will use a version of the theorem about undecidability of the Cycle Unification
Problem a bit stronger than the one presented in [7] and[23]. The stronger result
can be obtained by a refinement of the argument in[23] but we shall not present
the argument here since we are not going to report all the proof.

Lemma 3.1 For the first order language without constant symbols and with only
one binary function symbol f the problem
given a Horn clause H = (Q(t1) =⇒ Q(t2)) and terms s1 and s2, is there any
substitution σ such that Q(σ(s2)) is a logical consequence of H and of Q(σ(s1))
?

is undecidable.

When the substitution in the Lemma 3.1. exists then we say that the answer
for Cycle Unification Problem for data t1, t2, s1 and s2 is positive.

As in Section 1.3. consider the language of terms of propositional calculus
built with variables and the symbol =⇒. We shall prove the following ( a strong
version of the Linial- Post theorem in Section 1.3.)

Theorem 3.2 Let  l be a tautology that is not of the form p =⇒ p for some term
p. Then the problem

Given a set of tautologies of propositional calculus S . Does S ` l
is undecidable

Proof: We shall prove the theorem giving the reduction of the Cycle Unifi-
cation Problem to the problem of the last theorem.

Similarly (but not in quite the same way) as in section 1.2. let δ be the most
general substitution such that δ(t1) = δ(s1). Let H1 = δ(H) and suppose Hk

=(Q(rk
1 ) =⇒ Q(rk

2 )) (we assume that the variables in r’s are distinct from those
in s’s and t’s). Let σ be the most general substitution such that σ(t1) = σ(rk

2 ).
Then define Hk+1 = Q(σ(rk

1 ) =⇒ σ(t2)).
Theorem 3.1. is equivalent to the undecidability of the following problem (with

the assumptions of Theorem 3.1.): Given a unary Horn clause H = (Q(t1) =⇒
Q(t2)) and two terms s1 and s2. Does there exist a natural number n such that:
Hn =(Q(rn

1 ) =⇒ Q(rn
2 )), and rn

2 is an instance of s2 is undecidable.
Now we can construct the reduction. The first idea is, given the data of The-

orem 3.1. put S = {H, s1, f(s2, l)} , where we do not see any difference between
the (binary functional) symbols =⇒ and f in H . We claim that if the answer for
the Cycle Unification Problem for data t1, t2, s1 and s2 is positive then S ` l . In
fact, let n be a natural number such that rn

2 is an instance of s2. Take n copies
of H with pairwise disjoint sets of variables and the most general substitution
σ∗, such that σ∗(tk2) = σ∗(tk+1

1 ) for 1 ≤ k ≤ n (where the k’th copy of H is
Q(tk1) =⇒ Q(tk2)), σ∗(t11) = σ∗(s1) and σ∗(tn2 ) = σ∗(s2) (σ∗ is something like
superposition of δ and all the σ’s in the remarks above).

σ∗(H) is an instance of H for every copy of H and hence is a provable term.
The left hand side of the σ∗ of the first copy Q(t11) =⇒ Q(t12) of H is an instance
of s1, which is a provable term , so also the right hand side of σ∗ of the first copy
of H is a provable term. By induction, also tk2 is a provable term. Now we can
use a proper instance of f(s2, l) to derive  l .

The above method is an easy one but, unfortunately, not quite correct. It is,
in general not true that if S ` l then H and some instance of Q(s1) imply some
instance of Q(s2). To overcome the problem we first require a bit more of H , s1
and s2:



Definition 3.3 (i) t is a symmetric term if t = f(s, s) for some term s.
(ii) A term t is asymmetric if there is no such substitution ς that ς(t) is sym-

metric.
(iii) t̄1 = f(f(t1, f(v, v)), f(t1, f(v, v))), t̄2 = f(f(t2, v), f(t2, v)),

s̄1 = f(f(s1, y), f(s1, y)), s̄2 = f(f(s2, l ), f(s2, l )), v, y are new variables
here.
We suppose that the variables in  l are distinct from those in the other terms.

We put S̄ = {H̄, s̄1, f(s̄2, l)}, where H̄ = (t̄1 =⇒ t̄2). The following easy lemma
allows us to reduce the Cycle Unification Problem to a case of data satisfying
some conditions of symmetry:

Lemma 3.4 (i) t̄1, t̄2, s̄1, s̄2 are symmetric terms.
(ii) f(t̄1, t̄2) in an asymmetric term.

(iii) f(s̄2, l) is an asymmetric term.
(iv) The answer for Cycle Unification Problem for data t̄1, t̄2, s̄1, s̄2 is the same

as for data t1, t2, s1, s2. If the answer is positive and σ∗, is a most general
substitution such that σ∗(tk2) = σ∗(tk+1

1 ) for 1 ≤ k ≤ n (where the k’th copy
of H is Q(tk1) =⇒ Q(tk2)), σ∗(t11) = σ∗(s1) and σ∗(tn2 ) = σ∗(s2) then there
exists a substitution σ̄∗ such that σ̄∗(t̄k2) = σ̄∗( ¯tk+1

1 ), σ̄∗(t̄11) = σ̄∗ ¯(s1) and
σ̄∗(t̄n2 ) = σ̄∗(s̄2). Moreover σ̄∗( l) = l .

(v) All the terms in S̄ are tautologies.
(vi) Every σ̄∗(t̄k1) is a symmetric term.

We claim that the answer for Cycle Unification Problem for t̄1, t̄2, s̄1, s̄2 is
negative then the only new terms that can be derived from S̄ are instances of
some σ̄∗(t̄k1). Suppose, that t is not an instance of some σ̄∗(t̄k1) and that S̄ ` t.
We suppose, that t is the first such term, in the meaning , that t can be derived
from S̄ and some instances of some σ̄∗( ¯tk+1

1 ) by a single use of modus ponens.
Only two of those terms: H̄ and f(s̄2, l) can be productive as modus ponens major
premise. The remaining terms are symmetric. f(s̄2, l) can not be used as modus
ponens major premise since, by the hypothesis, neither s̄1 nor any of instances of
some σ̄∗(t̄k1) can be unified with s̄2 and since H̄, because of its asymmetry, can
not be unified with symmetric s̄2. So we can use only H̄ as the modus ponens
major premise. Now, what can be used as modus ponens minor premise: By
the symmetry argument H̄ can not be used, since it is asymmetric and its left
hand side is symmetric. If s̄1 or any of instances of some σ̄∗(t̄k1) is used then we
get another instance of some σ̄∗(t̄k1) as a conclusion. f(s2, l) can not be used as
modus ponens minor premise since it is asymmetric. So, if the answer for Cycle
Unification Problem for t̄1, t̄2, s̄1, s̄2 is negative then only symmetric new terms
can be derived from S̄. Since  l is not symmetric it is not the case that S̄ ` l. This
ends the proof of Theorem 3.2.

If we choose  l to be such a tautology that gives full axiomatization of propo-
sitional calculus we get

Theorem 3.5 The problem
Given a set S of tautologies of propositional calculus. Is S an axiomatization

of propositional calculus.
is undecidable.
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