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Abstract. Knowledge acquisition is a di�cult, error-prone, and time-consuming task. The task
of automatically improving an existing knowledge base using learningmethods is addressed by the
class of systems performing theory re�nement. This paper presents a system, Forte (First-Order
Revision of Theories from Examples), which re�nes �rst-order Horn-clause theories by integrating
a variety of di�erent revision techniques into a coherent whole. Forte uses these techniques
within a hill-climbing framework, guided by a global heuristic. It identi�es possible errors in
the theory and calls on a library of operators to develop possible revisions. The best revision is
implemented, and the process repeats until no further revisions are possible. Operators are drawn
from a variety of sources, including propositional theory re�nement, �rst-order induction, and
inverse resolution. Forte is demonstrated in several domains, including logic programming and
qualitative modelling.
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1. Introduction

A number of recent machine learning projects have focussed on the task of re�ning
incomplete and/or incorrect rule bases (domain theories) (Ginsberg, 1990; Ourston
& Mooney, 1990; Towell & Shavlik, 1993; Craw & Sleeman, 1991; Wilkins, 1988).
The goal of this work is to automate the laborious process of knowledge-base re�ne-
ment and thereby speed the development of knowledge-based systems (Ginsberg,
Weiss, & Politakis, 1988). Theory re�nement normally integrates analytical and
empirical machine learning methods in an attempt to leverage two sources of infor-
mation: approximate rules obtained from an expert or a textbook, and empirical
data on actual problems. A theory re�nement system is successful to the extent
that it can improve the accuracy of its initial domain theory and produce a more
accurate and more comprehensible theory than purely inductive methods. Recent
experiments have demonstrated such success in a few real-world domains (Ourston
& Mooney, in press; Towell & Shavlik, 1993).
However, much existing work in theory re�nement has dealt only with proposi-

tional rule bases. Such systems are primarily restricted to performing classi�cation
tasks for examples described as feature vectors. This paper describes Forte (First
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Order Revision of Theories from Examples), a system for automatically revising
function-free �rst-order Horn-clause knowledge bases (i.e., pure Prolog programs
without functions). This more powerful representation language allows Forte to
work in domains involving relations, such as computer programming, qualitative
modelling, and natural language processing. Since it uses �rst-order Horn-clauses
as a representation language, Forte can be viewed as part of the growing body of
work in inductive logic programming (ILP) (Muggleton, 1992). However, existing
ILP research has primarily focussed on generalizing an existing theory by adding
clauses, which does not address the issue of modifying incorrect knowledge. Exist-
ing ILP systems that modify incorrect knowledge generally require interaction with
a user in order to isolate and correct faults (Shapiro, 1983; DeRaedt & Bruynooghe,
1992).
By contrast, Forte is a fully automated system performing a hill-climbing search

through a space of both specializing and generalizing operators in an attempt to
�nd a minimal revision to a theory that makes it consistent with a set of training
examples. Forte's revision operators include methods from propositional theory
re�nement (Ourston & Mooney, 1990), �rst order induction (Quinlan, 1990), and
inverse resolution (Muggleton & Buntine, 1988). The system has successfully been
used to debug Prolog programs collected from students in a course on programming
languages, to debug a decision-tree induction program, and to revise a qualitative
model of a portion of the Reaction Control System of the NASA Space Shuttle.
The body of the paper is organized as follows. Section 2 de�nes the speci�c prob-

lem addressed by Forte. Section 3 presents some background on theory re�nement
and inductive logic programming. Section 4 presents the details of the re�nement
algorithm. Sections 5 to 7 present empirical results on benchmark problems in re-
lational learning, logic program debugging, and qualitative modelling, respectively.
Section 8 discusses relationships to other work in the area, Section 9 discusses direc-
tions for future research, and Section 10 presents our conclusions. Richards (1992)
provides more complete details on the system and the experimental results.1

2. Task De�nition

The objective of this research has been to develop methods for revising �rst-order
theories, and to implement and test the resulting methods in several domains. The
speci�c task addressed is:

� Given: An incorrect initial theory and a consistent set of positive and negative
instances.

� Find: A \minimally revised" theory that is correct on the given instances.

Our terminology is de�ned as follows:
Theory. A theory is a set of function-free de�nite program clauses. 2 Forte

views theories as pure Prolog programs. In the family domain, for example, a
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theory would be a set of clauses de�ning relationships such as: father(X,Y) :-

parent(X,Y), gender(X, male).
Concept. A concept is a predicate in a theory for which examples appear in the

training set. Concepts need not be disjoint. In a family domain, concepts might
include father, aunt, and nephew.
Instance. An instance is an instantiation (not necessarily ground) of a concept.

For example, an instance of the concept father is father(frank, susan). Each
instance i has an associated set of facts Fi. A positive instance should be derivable
from the theory augmented with its associated facts; the negative instances should
not. In the family domain, the facts de�ne a particular family, e.g., parent(frank,
susan), gender(frank, male).
Correctness. Given a set, P , of positive instances and a set, N , of negative

instances, we say that a theory T is correct on these instances if and only if

8p 2 P : T [Fp ` p and 8n 2 N : T [ Fn 6` n

Derivability is established using standard SLD-resolution, taking the instance to be
the initial goal. A set of positive and negative instances is consistent if and only if
there exists a correct theory for it.
\Minimally revised" theory. A correct theory for a set of instances can be

produced trivially by deleting all existing clauses and asserting new clauses that
memorize the positive instances, but such a theory is unlikely to be of interest. Ide-
ally, we want the theory to generalize to unseen instances. Since the initial theory
is assumed to be approximately correct, a revised theory should be as semantically
and syntactically similar to it as possible. Forte tries to ensure this by using op-
erators that make small syntactic changes and attempting to minimize the number
of operations performed.3

3. Background

This section provides background that is useful in understanding Forte. A broader
discussion of related work is left until Section 8. Forte's development is an out-
growth of related work in propositional theory re�nement, top-down �rst-order
induction, and inverse resolution; each of which will be discussed briey.

3.1. Propositional Theory Re�nement

A number of researchers have developed propositional theory re�nement systems.
Either (Ourston & Mooney, 1990; Ourston &Mooney, in press) uses a combination
of deduction, abduction, and induction to re�ne a propositional Horn-clause theory.
It uses greedy set covering to identify a small set of rules that are responsible
for the errors and then adds and retracts rules and antecedents to correct the
theory. Although Either is limited to propositional domains, it is the conceptual
predecessor of Forte.
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Krust (Craw & Sleeman, 1991) generates a wide array of possible revisions to a
knowledge base, and then �lters and ranks the revisions to choose the most suitable
one. Much of the �ltering depends on the existence of certain canonical \chestnut"
examples, which must be identi�ed by a human expert. Forte's overall approach
is similar to Krust's, in that it generates a number of possible revisions, and then
selects the one which performs best.

3.2. Top-Down First-Order Induction

Foil (Quinlan, 1990) is a recent, e�cient algorithm for inducing �rst-order Horn-
clause rules. Its outer loop is a greedy covering algorithm that learns one clause
at a time. Each clause is constructed to maximize coverage of positive examples
while excluding all negatives. Clauses are constructed one literal at a time using
hill-climbing. At each step, the literal that maximizes an information-gain metric
is added to the clause. Literals are added until all negative examples have been ex-
cluded. This hill-climbing technique is e�cient, but vulnerable to local maxima. In
order to reduce this problem, Quinlan (1991) added determinate literals. Given its
input arguments, a determinate literal has only one possible binding for its output
arguments. Foil adds all possible determinate literals to a clause before beginning
the normal induction process. This is a recursive process, as the new variables in-
troduced by determinate literals can be used to de�ne further determinate literals;
hence, an arbitrary depth-bound is imposed. Excess determinate literals are deleted
after learning is complete. One of Forte's techniques for building new rules and
specializing existing ones is based on the original Foil algorithm.

3.3. Inverse Resolution

Inverse resolution is an inductive generalization method introduced by Muggleton
and Buntine (1988). Suppose we have the resolution step:

 �; � (goal) � � (input clause)

 �; � (resolvent)

If we know the resolvent and either the goal or the input clause, we can abduce the
missing element. It is important to note that, when working in �rst-order logic,
inverse resolution operations must take into account variable substitutions, so that
any literal appearing in the goal or input clause is (non-strictly) more general than
the corresponding literal in the resolvent. Cigol (Muggleton & Buntine, 1988)
used this technique to learn �rst-order theories from examples; however, it required
the user to interactively verify certain steps.
Golem (Muggleton & Feng, 1992) is a more e�cient, automated induction sys-

tem based on Plotkin's (1971) framework of relative least-general generalization
(RLGG), which Muggleton (1992a) shows to be closely related to inverse reso-
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Figure 1. Forte Interfaces.

lution. Golem learns �rst-order theories \bottom-up," generalizing the positive
training instances while excluding the negative instances.
Two of Forte's theory revision operators are based on inverse resolution. How-

ever, unlike Cigol and Golem, Forte's operators do not require input clauses4

to be unit clauses.

4. System Description

This section describes the Forte system. The �rst subsection looks at Forte's
interface to the outside world. The second subsection examines the theory re�ne-
ment process itself|how Forte specializes and generalizes clauses in a theory. The
third subsection provides detailed algorithms for the revision operators.

4.1. Interfaces

Figure 1 shows Forte's interface to the outside world. Forte itself is represented
by the central box. The language bias and the auxiliary modules shown are de-
scribed below.
Theory translator. The theory translator is an optional module used to trans-

late between the native representation of a theory and the representation required
by Forte. This is necessary when the native representation of a theory is not
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function-free pure Prolog. The most common use of the theory translator is to
replace function symbols in a theory with calls to predicates which calculate the
functions.
Example translator. Forte requires examples to be provided as Prolog terms.

As with theories, the Forte representation may not be convenient in all domains.
The example translator can be used to translate between a native domain repre-
sentation and that required by Forte.
Language bias. The language bias is used to limit Forte's search space when

the user knows that certain restrictions must apply to the output theory. For
example, the user can require the theory to be conjunctive, or to be nonrecursive.
Other options in the language bias are described more fully as they apply to the
revision operators discussed below.
Revision veri�er. The revision veri�er is an optional module that allows the

user to insert domain-speci�c consistency checks in the revision process. For exam-
ple, when working in the domain of qualitative modelling, the revision veri�er en-
forces dimensional consistency in the qualitative equations. To see how this works,
suppose a revision operator proposes adding the constraint derivative(X;Y ) to
a clause containing add(X;Y; Z). The derivative constraint requires X and Y to
have dimensions which di�er by a factor of 1/time, while the add constraint requires
their dimensions to be the same. This is domain speci�c knowledge provided by
the revision veri�er for qualitative modelling; when the revision veri�er is called to
examine this revision, it will detect the dimensional conict and reject the revision.
Fundamental domain theory. The fundamental domain theory is an optional

module which provides a place for predicates which the user wishes to shield from
Forte's revision process. There are two reasons why this might be desirable. First,
if some portion of the theory is known to be correct, shielding it in the fundamental
domain theory will reduce the space of revisions, thereby speeding Forte's execu-
tion. Second, the fundamental domain theory can provide intensional de�nitions
of the fundamental relations used to de�ne a domain (Golem uses an extensional
de�nition of background information the same way). Since these de�nitions will
not be revised by Forte, they can be written using all the features of standard
Prolog.

4.2. Top-Level Algorithm

Forte revises theories iteratively, using a hill-climbing approach. Each iteration
identi�es points in the theory, called revision points, where a revision has the po-
tential to improve the theory's accuracy. It then generates a set of revisions, based
on the revision points, selects the best one, and implements it. The process iterates
until no revision improves the theory. This top-level algorithm is shown in Figure 2.
In order to generate revision points, the current theory is tested on the training

set. Forte annotates failed proofs of positive instances and successful proofs of
negatives. From these annotations it identi�es points in the theory for possible
revision (see Section 4.2.1). Each revision point has a potential, de�ned as the
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repeat

generate revision points

sort revision points by potential (high to low)

for each revision point

generate revisions

update best revision found

until potential of next revision point is less

than the score of the best revision to date

if best revision improves the theory

implement best revision

end if

until no revision improves the theory

Figure 2. Top-level re�nement algorithm.

maximum increase in theory accuracy which could result from a revision of that
point. For example, if a particular clause was used in successful proofs of �ve
negative instances, then specialization of that clause has a potential of �ve.
Forte then generates a set of proposed revisions from the revision points, begin-

ning with the point that has the highest potential and working down the list. Each
revision receives a score, which is the actual increase in theory accuracy it achieves;
Forte retains the single best revision generated so far, where the best revision is
the one increasing accuracy the most (in case of a tie, Forte chooses the revision
resulting in the smallest theory). Forte stops generating revisions when the po-
tential of the next revision point is less than the actual accuracy increase of the best
revision generated to date. At that point, the best revision is implemented, and
the cycle begins again. Since we require an increase in accuracy on each iteration,
and accuracy is limited to 100%, this algorithm is guaranteed to terminate.
This process continues until Forte is unable to generate any revisions which

improve the theory. At this point, we hope to have developed a theory that is
correct on the training set. However, since this is a hill-climbing process, Forte
can be caught in local maxima. We minimize this danger in two ways. First,
revisions are developed and scored using the entire training set, rather than just
a single instance; this global vision gives us better direction than if revisions were
developed from single instances. Second, Forte uses a variety of di�erent operators
to generate possible revisions. Since the operators have di�erent strengths and
weaknesses, they can escape di�erent types of locality problems.

4.2.1. Generating revision points

Revision points are places in a theory where errors may lie. They are of two
types: specialization points and generalization points. We identify revision points
by annotating proofs or attempted proofs of misclassi�ed instances. Points in the
theory where proofs of positive instances fail are places where the theory may



8 B. RICHARDS AND R. MOONEY

need to be generalized, and clauses used in successful proofs of negative instances
are points where the theory may need to be specialized. The number of di�erent
instances which ag a particular point represents its potential, i.e., the maximum
increase in theory accuracy that could be gained by revising the theory at that
point.
Generating specialization revision points is simply the process of noting which

clauses participate in proofs of negative instances; these clauses become the revision
points.
Generating revision points for generalization is more complex because we have

three kinds of generalization operators. Some generalization operators are antece-
dent-based, meaning that their revisions target a particular antecedent in a particu-
lar clause, some are clause-based, and some are predicate-based. We must generate
revision points for each of these operator types. However, all of these revision points
are generated from annotations made from failed proofs of positive instances.
The annotation process works as follows: Each time we backtrack, we note which

antecedent in which clause failed; this antecedent is a failure point. In addition, we
must consider which other antecedents may have contributed to this failure, perhaps
by binding variables to incorrect values. These antecedents are called contributing
points. As an example, consider the following program:

sister(A, B) :- daughter(A, C), parent(C, C).

daughter(A, B) :- gender(A, female), parent(B, A).

If we try to execute the sister predicate, the unprovable parent antecedent will
be marked as a failure point. The daughter antecedent instantiates variable C, and
so is marked as a contributing point. Within the daughter predicate, the parent
predicate instantiates variable B, and is therefore also marked as a contributing
point. The gender antecedent is neither a failure point nor a contributing point,
and so is not marked and will not be subject to revision. No subsequent distinc-
tion is made between failure points and contributing points; all of the underlined
antecedents become antecedent-based revision points.
We create clause-based revision points for all clauses in which we made an an-

notation. The potential of a clause-based revision point is the number of distinct
instances that marked any antecedent within it. These revision points are used by
clause-based operators, which revise a single clause without regard for any partic-
ular antecedent. In the above example we would have two clause-based revision
points, since both clauses contain annotations.
Predicate-based revision points are the next step beyond clause-based revision

points. A predicate-based revision point is created for each theory predicate that
appears as a marked antecedent in the annotated theory. In other words, since
we marked daughter(A, C) in the theory, we create a predicate-based revision
point for daughter. Predicate-based revision points have a potential equal to the
number of distinct instances that annotated a call to the predicate anywhere in the
theory. These revision points are used by the operator identi�cation, which seeks
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to generalize the de�nition of the predicate, without reference to any particular
clause.

4.2.2. Special provisions

There are two types of theories, as speci�ed by the language bias, for which Forte
makes special provisions: recursive theories and most-speci�c theories. These pro-
visions are discussed below.
Recursive theories. Revising a recursive theory is substantially more di�cult

than revising a nonrecursive one. With nonrecursive theories, we can treat the
predicate under revision in isolation from the rest of the theory. If the predicates
appearing as antecedents contain slight errors, we will still be able to develop a revi-
sion for the chosen predicate. If the antecedents contain gross errors, the proposed
revision may simply eliminate them as antecedents. When revising a recursive the-
ory, we inevitably need to evaluate a recursive call to the very predicate we are
revising. Since we are revising it, we can be almost certain that the results of
evaluating the recursive call will be incorrect.
In order to solve this problem, we must decouple our evaluation of a recursive call

from the de�nition of the predicate that we are revising. The training set provides
us with a way to do this; we can use the positive instances in the training set
as an extensional de�nition of the predicate. By using this extensional de�nition
to evaluate recursive calls, we allow the revision process to work unhindered by
the complications of recursion. Golem and Foil also use extensional de�nitions to
handle recursion. After the revision has been developed, we can test its e�ectiveness
using normal resolution.
Unfortunately, using the training set as an extensional de�nition works only if

the training set contains all instances that will be generated during well-founded
recursion from other instances present. For example, if we are learning a de�nition
of list reversal, and we wish to prove the example reverse([a,b,c],[c,b,a]),
then the training set must contain the examples reverse([b,c], [c,b]) and
reverse([c], [c]). If either of these instances is missing, our proof will fail and
we may not be able to develop a correct revision. Since the user is not expected
to know what recursion scheme is appropriate for the theory, this means that the
training set should contain a complete set of examples below a certain size. For
example, our data set for reverse contains all permutations of all lists of length-2
and smaller, plus one example of a length-3 list, using the symbols a, b, and c.
If the recursive predicate we wish to revise is not a top-level predicate for which

we have training data, Forte derives a temporary training set for the predicate
from the top-level predicates. This process works well if the higher-level predicates
are correctly de�ned, but may develop di�erent predicates than expected if the
higher-level predicates contain errors.
To see how we derive a training set, suppose we have the following correct de�-

nition for subset:5
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subset([], A).

subset([Elt|Elts], Set) :-

member(Elt, Set),

subset(Elts, Set).

To derive a training set for member, we start the proofs of all positive instances
for the subset predicate, and collect the instantiated calls to member made at the
top-most level (i.e., we do not descend into the recursive calls, since the results of
doing so depend on the correct functioning of member, which is the predicate we are
seeking to revise). These calls become the training set for the member predicate.
We thus have the following correspondence between subset instances and derived
member instances:

subset([a], [a]) --- member(a, [a])

subset([a], [a,b]) --- member(a, [a,b])

subset([b,c], [b,c]) --- member(b, [b,c])

subset([a,b], [a,b,c]) --- member(a, [a,b,c])

This process can be viewed as abduction, as in Wirth & O'Rorke (1991).
After revising a theory, it is tested by normal meta-interpretation (i.e., without

intercepting recursive calls and using the training set as an extensional de�nition).
Nontermination on an example is considered to be a false classi�cation, and is
detected by means of a depth limit.
Forte's e�ectiveness in revising recursive theories depends on the theory being

revised; refer to Section 6.3 for a more complete discussion of its limitations.
Most-speci�c theories. In some domains, negative examples are not available

and we wish to develop the most-speci�c theory which �ts the positive instances as
tightly as possible. In order to prevent simple memorization, Forte requires that
most-speci�c theories be conjunctive (i.e., they must consist of a single clause).
An example of a domain requiring a most-speci�c theory is qualitative modelling.

Given a set of observed system behaviors, we wish to develop a model that repro-
duces those behaviors; negative behaviors are not normally available.6 Hence, we
ask Forte to develop the most constrained model that accounts for all of the given
positive behaviors. Since a model is a conjunction of one or more constraints, this
is naturally a conjunctive theory.
In order to develop a most-speci�c theory, Forte follows the normal revision

process to generalize the input theory as necessary to allow all positives to be
provable. It then makes the theory as speci�c as possible by adding all possible
antecedents which do not eliminate any of the positive instances. In order to ensure
that this process is �nite, we do not allow the antecedents added in the second step
to introduce new variables.
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4.3. Revision Operators

In order to be able to repair arbitrarily incorrect theories, revision operators must
be able to transform any theory in the language into any other. This can be done
with four basic revision operations: adding rules, deleting rules, adding antecedents
to a rule, and deleting antecedents from a rule. A simple implementation of these
basic operations would produce a workable theory revision system. However, such
a system would often �nd itself trapped in local maxima or lost on local plateaus.
Forte's operators are designed to more quickly develop useful revisions to a theory,
for example, by adding several antecedents at once until a desired goal is reached.
However, Forte's operators can often best be understood by remembering that
they are ultimately composed of these basic revision operations.
The following subsections describe Forte's revision operators. For complex op-

erators, we also give explicit algorithms. Although the operators are described in
terms of the changes they make to the theory, recall that each operator is devel-
oping a proposed revision, and that the revision will be implemented only if it is
the best revision developed by any operator for any revision point in the current
revision cycle.
Conceptually, each operator develops its revision using the entire training set.

However, in practice, this is usually unnecessary. For example, when specializing
a clause, we will not change the provability of any unprovable instance, or of any
provable instance whose proof does not rely on the clause being specialized. Hence,
we can develop the revision using a subset of the training set consisting only of
those provable instances whose proofs rely on the target clause. Similar subsets are
used for generalization as well.
The operators are illustrated using examples in the domain of family relationships.

Part of one of the family data sets used by Hinton (1986) is shown in Figure 3. Hor-
izontal lines denote marriage relationships and the remaining lines denote parental
relationships.

4.4. Operators for Specialization

Forte specializes clauses when they are used to prove negative instances. A clause
may be specialized by being deleted (operator delete-rule), or by having antecedents
added to it (operator add-antecedent). These operators are described below.

4.4.1. Operator delete-rule

The simplest way to specialize a clause is to delete it. There are two restrictions.
First, if the clause is the only base case of a recursive predicate (i.e., a predicate
that currently has one or more recursive clauses) then it cannot be deleted, as doing
so would invalidate the recursive clauses as well. Second, if this is the only clause
for a top-level concept, we replace the deleted clause with the rule
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Figure 3. A portion of Hinton's family data.

concept :- fail.

This provides us with a starting point for later revisions to the predicate.

4.4.2. Operator add-antecedent

Another approach is to specialize a clause by adding antecedents to discriminate
between positive and negative instances. Forte adds antecedents to a clause in an
attempt to make all negative instances unprovable. If adding these antecedents also
makes some positive instances unprovable, Forte adds the specialized clause to the
theory and begins again with the original clause, looking for alternate specializa-
tions that retain the proofs of the other positive instances while still eliminating
the negatives. This process continues until we have a set of clauses that retains the
provability of all of the originally provable positive instances.
Forte provides two separate algorithms for producing a specialized clause: hill-

climbing antecedent addition and relational path�nding (Richards & Mooney, 1992).
As shown in Figure 4, both methods are used to develop specializations of a clause,
and the one with the best performance is selected. In practice, these two methods
of specializing clauses are complementary; certain types of revisions are performed
well by one but not the other.
Hill-climbing antecedent addition. The hill-climbing method of antecedent

addition is based on the original Foil algorithm. Our implementation departs
from Foil in one respect: Forte does not maintain \tuples" as Foil does. Foil's
tuple-based approach counts the number of proofs of instances, whereas Forte
keeps track of the number of provable instances (ignoring the fact that one instance
may be provable in several di�erent ways).
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repeat

specialize clause by hill-climbing

specialize original clause by relational pathfinding

choose specialized clause covering the most positives

add chosen clause to the revision

until all positives covered by original clause are covered

or no specialized clause can be generated

Figure 4. Algorithm for add-antecedent.

The language bias may be used to limit the types of antecedents considered for
addition, e.g., in a nonrecursive theory, recursive antecedents would not be allowed.
Clearly invalid or redundant antecedents are also not generated, for example, rela-
tional antecedents must contain at least one variable that already appears in the
current clause.
The Foil approach is quite e�ective in many cases, particularly for developing

recursive base-cases and for adding non-relational antecedents to a rule. However,
as with any hill-climbingmethod, it can be caught by local maxima. Local plateaus
can also occur when there are a number of antecedents that do not decrease accu-
racy; but in order to actually increase accuracy, several antecedents must be added
at once. We can see the local plateau problem by trying to de�ne the grandparent
relation using only the instances below and the data shown in Figure 3.

(+) grandfather(christopher, colin)

(-) grandfather(christopher, arthur).

There is no single antecedent that we can add which will allow the positive instance
to be proven while making the negative instance unprovable. Both Colin and Arthur
have parents, neither has children, and neither is married. Even determinate literals
would not help in this example, since all parents have two children and all children
have two parents. In order to create a correct theory, we must simultaneously add
both of the required parent relationships, i.e.,

grandparent(x, y) :- parent(x, z), parent(z, y).

To do this, we need a method which is capable of searching for relationships among
the constants in a domain. Our method for accomplishing this is called relational
path�nding.
Relational path�nding. Relational path�nding (Richards & Mooney, 1992) is a

method of antecedent addition designed to escape local maxima and local plateaus.
The idea of path�nding in a relational domain is to view the domain as a (possibly
in�nite) hypergraph of terms linked by the relations that hold among the terms.
Our underlying assumption is that, in most relational domains, important concepts
will be represented by a small number of �xed paths among the terms de�ning a
positive instance. For example, in the \grandfather" example, constants satisfying
the relation are joined by a single �xed path consisting of two parent relations.
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instantiate rule with a randomly chosen positive instance

find isolated sub-graphs

for each sub-graph

terms become initial end-values

end for

repeat

for each sub-graph

expand paths by one relation is all possible ways

remove paths with previously seen end-values

end for

until intersection found or resource bound exceeded

if one or more intersections found

for each intersection

add path-relations to original rule

if the new rule contains new singleton variables

add relations using the singleton variables

if all singletons cannot be used

discard the rule

end if

end if

replace terms with variables

end for

select most accurate rule

end if

if selected rule allows negatives

specialize using hill-climbing

end if

Figure 5. Algorithm for relational path�nding.

Relational path�nding can be used any time a clause needs to be specialized and
does not have relational paths joining all of its variables. If, after path�nding, the
rule is still too general, we do further specialization using hill-climbing. This arises,
for example, when a rule requires non-relational antecedents.
Relational path�nding as described in Figure 5 �nds paths by successive expansion

around the nodes associated with the terms in a positive example, in a manner
reminiscent of Quillian's (1968) spreading activation. We arbitrarily choose one
misclassi�ed positive instance and use it to instantiate the initial rule. The terms
in the instantiated rule are nodes in the domain graph, possibly connected by
antecedents in the rule. We then identify isolated subgraphs among these terms; if
the initial rule contains no antecedents, then each term forms a singular subgraph.
We view a subgraph as a nexus from which we explore the surrounding portion of

the domain graph. Each exploration that leads to a new node in the domain graph
is a path, and the term at the node it has reached is the path's end-value. Initially,
each term in a sub-graph is the end-value of a path of length zero.



REFINEMENT OF FIRST-ORDER DOMAIN THEORIES 15

Christopher Penelope

Arthur Victoria James

Colin Charlotte

6

6

�
�
�
�
��

@
@

@
@
@I

Christopher Penelope

Arthur Victoria James

Colin Charlotte

?

@
@
@
@
@�

�
�
�
��

@
@
@
@
@I

Figure 6. Learning the concept uncle with relational path�nding.

Taking each subgraph in turn, we �nd all new terms that can be reached by
extending any path with any de�ned relation. These terms form a new set of path
end-values for the subgraph. We check this set against the sets of end-values for all
other subgraphs, looking for an intersection. If we do not �nd an intersection, we
expand the next node. This process continues until we either �nd an intersection or
exceed a preset bound on the maximumpath-length we will consider. There is also
a (very high) limit on the number of new paths generated when expanding nodes,
intended to prevent termination problems when working in in�nite domains.
When we �nd an intersection, we add the relations in the intersecting paths to

the original instantiated rule. If the new relations have introduced new terms that
appear only once, we try to complete the rule by adding relations that hold between
these singletons and other terms in the rule; these new relations are not allowed to
eliminate any of the currently provable positive instances. If we are unable to use
all of the new singletons, the revision is rejected.
Finally, we replace all terms with unique variables to produce the �nal, specialized

theory clause. If we simultaneously discover several intersections, we develop clauses
for each of them separately and choose the one that provides the best accuracy on
the training set.
As an example, suppose we want to learn the uncle relationship, given an initially

empty rule and the positive instance uncle(arthur, charlotte). This process is
illustrated in Figure 6. We begin by exploring paths from the node labelled Arthur,
which leads us to the new nodes Christopher and Penelope. We then expand from
the node labelled Charlotte, leading to the nodes Victoria and James. At this
point we still do not have an intersection, so we lengthen all paths originating from
node Arthur. We eliminate any end-values that we have already used (and which,
therefore, do not give us an intersection). This leaves only one value: Victoria.
Since Victoria is also an end-value of one of the paths originating from Charlotte,
we recognize an intersection.
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There are actually two paths leading from Arthur to Victoria, but in this case
they are isomorphic (merely leading through di�erent grandparents). If we had
found several paths, we would select the one providing the best overall accuracy.
The �nal path in this example is

uncle(X, Y) :- parent(Z, X), parent(Z, W), parent(W, Y)

Since relational path�nding is only able to add relations as antecedents, it calls
on the hill-climbing method of antecedent addition to complete its clauses. In this
case, hill-climbing antecedent addition would need to add the literal gender(X,
male) to remove any remaining negatives.

4.5. Operators for Generalization

Forte generalizes a predicate when a positive instance is unprovable. It uses
four operators to perform generalization. Two methods are similar to methods
used in propositional theory revision: adding new rules and deleting antecedents
from existing rules. The second two are variants of the inverse-resolution operators
absorption and identi�cation.

4.5.1. Operator delete-antecedent

In many cases, Forte may be able to create a good revision simply by deleting
antecedents from an existing clause. In order to develop a revision, we generalize
the original clause to cover as many positives as possible, without allowing proofs
of any negatives. We then add the generalized clause to the theory. If there are
more positives to be covered, we begin again with the original clause and repeat
the process. We stop when all of the positive instances listed in the revision point
are provable or we are unable to generalize the original clause to allow proof of any
of the remaining unprovable instances.
We have two methods at our disposal. First, we try a hill-climbing approach.

This method deletes one antecedent at a time, selecting each time the antecedent
whose deletion allows the most unprovable positives to be proven. As with any
hill-climbing approach, this is e�cient but vulnerable to local maxima. If this
approach fails, we use a more general method that can delete multiple antecedents
simultaneously.
Hill-climbing antecedent deletion. This method of deleting antecedents is it-

erative. It tries deleting each antecedent in the speci�ed clause, and notes two
things: how many unprovable positives can be proven when the antecedent is
deleted, and whether any negatives become provable as a result of its deletion.
We select the antecedent that allows proof of the largest number of positives while
not allowing any negatives to be proven. This antecedent is deleted, and the pro-
cess repeats. We stop when there are no more antecedents whose deletion gains us
anything.
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repeat

for each antecedent in the clause

if deletion does not allow provable negatives

count number of positives deletion makes provable

end if

end for

delete antecedent allowing the most positives

until no antecedent can be deleted without proving negatives

Figure 7. Algorithm for hill-climbing delete-antecedent.

This approach to deleting antecedents may fail for two reasons. First, it may be
that we need to add new discriminating antecedents to the clause after generalizing
it. In this case, the add-rule operator is likely to propose a useful revision. Second,
the clause may be so over-specialized that we need to delete several antecedents at
once in order to a�ect the provability of any instance. This local plateau problem
is dealt with by the technique for deleting multiple antecedents.
Deleting multiple antecedents. This method is much more computationally

expensive than the hill-climbing approach to antecedent deletion, since it must try
deleting combinations of antecedents. Because of this expense, it is not used if
hill-climbing antecedent deletion successfully develops a revision.
To generalize a clause, we �rst collect all antecedents whose (individual) deletion

does not allow any negative instance to be proven. None of these deletions will,
by itself, allow positive instances to be proven either, or the hill-climbing approach
to antecedent deletion would have found them. We generate combinations of these
antecedents, looking for a combination whose deletion allows proof of one or more
positives but no negatives.
We build combinations of deletions one antecedent at a time, working left-to-right

through the clause. When we delete an antecedent, we check to see if any negatives
have become provable. This allows us to substantially prune the search space, as,
if negatives have become provable, we discard not only this particular combination
but all supersets of it. We do not stop when positives have become provable|we
delete as many antecedents as we can, covering as many positives as possible.

4.5.2. Operator add-rule

Add rule is a clause-based generalization operator that develops one or more new
versions of an existing rule, while leaving the original rule in the theory. Its objective
is to create a new rule that allows proof of the positive instances that identi�ed the
original rule as a failure point. Building this rule is a two-step process.
First, we create a generalized rule containing only the core of antecedents essential

to keep negatives from being proven, while not interfering with proofs of positives.
To do this, we copy the original rule, delete antecedents whose deletion does not
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find all antecedents whose deletion does not allow provable negatives

repeat

consider an antecedent for deletion

if negatives are provable

prune this branch of the search space

else

delete this antecedent

end if

until no antecedents left to try

if one or more positives have become provable

propose generalized clause as a revision

end if

Figure 8. Algorithm for delete-multiple-antecedents.

allow any negatives to be proven, and also delete antecedents whose deletion allows
one or more previously-unprovable positives to be proven (even if doing so allows
proofs of negatives). This is done in the same way as hill-climbing antecedent
deletion (see above).
Second, we create one or more specializations of this core rule, which will allow

proofs of the desired positives while eliminating the negatives. We do this by passing
the rule to the add-antecedent operator described earlier.

4.5.3. Operator identi�cation

Identi�cation is a predicate-based operator which attempts to generalize the theory
by creating a new rule for an existing predicate. It constructs a new clause to
generalize the de�nition of an antecedent that caused one or more proofs of positive
instances to fail. Rather than developing the clause from scratch, it performs an
inverse resolution step using two existing rules in the domain theory. For a complete
de�nition of the inverse resolution operators, refer to Muggleton (1992a).
Suppose that our initial theory of family relationships includes the following rules,

where aunt uncle is intended to be a general rule for identifying aunts and uncles
without regard to gender.

uncle(A, B) :- gender(A, male), aunt uncle(A, B).

uncle(C, D) :- gender(C, male), sibling(C, E), parent(E, D).

aunt uncle(A, B) :- married(A, C), sibling(C, D), parent(D, B).

aunt(A, B) :- gender(A, female), aunt uncle(A, B).

When we are presented with an instance of an aunt who is a blood relative, this
instance will not be provable. One of the failure points is the call to aunt uncle.
Identi�cation looks for ways to provide another rule for this predicate, and �nds
one in the two rules for uncle. The proposed revision replaces the second uncle

clause with the new rule
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aunt uncle(A, B) :- sibling(A, E), parent(E, B).

4.5.4. Operator absorption

Absorption is the complement of identi�cation. Rather than constructing a new
clause for the predicate corresponding to a failing antecedent, absorption looks for
an existing clause whose antecedents subsume the failing antecedent (and possibly
other antecedents in the clause), and which has alternate clauses that will allow the
failing positive instances to be proven. For example, suppose our theory includes
the rules

uncle(A, B) :- gender(A, male), sibling(A, C), parent(C, B).

aunt uncle(D, F) :- sibling(D, E), parent(E, F).

aunt uncle(A, B) :- married(A, C), sibling(C, D), parent(D, B).

When we are presented with an instance of an uncle who is not a blood relative, we
will not be able to prove it using this theory. We will have a failure point either at
sibling or parent. Absorption �nds similar antecedents in the second aunt uncle

clause. Thus, it replaces the uncle rule with the new rule

uncle(A, B) :- gender(A, male), aunt uncle(A, B).

5. Experimental Results in the Family Domain

In this section, we examine Forte's performance in the domain of family rela-
tionships, a standard benchmark problem in relational learning (Quinlan, 1990).
Richards (1992) also presents results on another standard benchmark problem, il-
legal chess positions for king-rook-king endgames. The results indicate that Forte
improves the accuracy of randomly corrupted theories and produces more accurate
theories than pure inductive learning. Since Forte's hill-climbing techniques make
it vulnerable to local maxima, another important aspect of learning is the accuracy
of revised theories on the training data. In practice, Forte has very little trouble
with local maxima. In over 1300 test runs, Forte was caught in local maxima only
nine times (0.69%); in all cases the accuracy of the revised theory on the training
data was greater than 98%.

5.1. Description of Data and Initial Theories

Our earlier examples used the family data employed by Hinton (1986) and Quinlan
(1990). While the simplicity of this data makes it suitable for examples, it includes a
great deal of arti�cial structure (for example, all married couples have two children,
one boy and one girl). In order to provide a more realistic test, we created a
large, diverse family composed of 86 people across 5 generations. This domain uses
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wife(X, Y) :- gender(X, female), married(X, Y).

husband(X, Y) :- gender(X, male), married(X, Y).

mother(X, Y) :- gender(X, female), parent(X, Y).

father(X, Y) :- gender(X, male), parent(X, Y).

daughter(X, Y) :- gender(X, female), parent(Y, X).

son(X, Y) :- gender(X, male), parent(Y, X).

sister(X, Y) :- gender(X, female), sibling(X, Y).

brother(X, Y) :- gender(X, male), sibling(X, Y).

aunt(X, Y) :- gender(X, female, au(X, Y).

uncle(X, Y) :- gender(X, male, au(X, Y).

niece(X, Y) :- gender(X, female), au(Y, X).

nephew(X, Y) :- gender(X, male), au(Y, X).

au(X, Y) :- sibling(X, B), parent(B, Y).

au(X, Y) :- married(X, A), sibling(A, C), parent(C, Y).

sibling(X, Y) :- parent(A, X), parent(A, Y), X \= Y.

Figure 9. A correct theory for family relationships.

the same twelve concepts as Hinton's data: husband, wife, mother, father, sister,
brother, son, daughter, aunt, uncle, niece, and nephew.
The family data set includes 744 positive instances and 1488 randomly generated

negative instances. Every test run used an independent, randomly selected subset
of these instances as the training set, with the remaining instances used as the test
set. The background facts provide the gender of each person, all marriages, and all
parent-child relationships.
The theory revision tests used randomly corrupted versions of the correct theory

shown in Figure 9. The number of errors introduced in each corrupted theory
depended on the test being run (see below). Six types of errors could be introduced:

� Delete rule

� Add rule (1-3 antecedents)

� Delete antecedent

� Add antecedent

� Change antecedent (delete plus add)

� Change variable

When adding a new antecedent, there was a 50% chance that the antecedent
used would be taken from elsewhere in the theory, and a 50% chance that it would
be newly constructed. When changing a variable, there was a 50% chance that it
would be changed to a variable appearing elsewhere in the same clause and a 50%
chance that it would be a new variable.
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Figure 10. Re�nement performance in the family domain.

5.2. Theory Re�nement Performance

The basic premise of theory re�nement is that it is better to revise a theory that
is approximately correct than it is to induce a new theory from scratch. In order
to verify this premise, we generated �ve corrupted theories, containing an average
of 3.6 errors each. Their average initial accuracy was 91.65%. Figure 10 shows
a revision learning curve, averaged across four runs on each of the �ve theories,
and an induction curve (i.e., Forte revising an empty initial theory) averaged over
20 trials. A statistical t-test revealed that the di�erence between the curves at
all training-set sizes is statistically signi�cant (p < 0.01). These results show that
beginning with an approximate domain theory not only provides an initial boost
in accuracy, but also that this advantage is maintained as the training set size
increases.
Another performance issue in theory re�nement is how a system responds to

increasing degradation of the initial theory. A good system will degrade gracefully
as the accuracy of the input theory decreases. To illustrate this characteristic
of Forte, we created �ve series of increasingly corrupted theories. Each series
contains four theories, containing from two to eight errors each. We �xed the
training set size, and ran Forte four times on each corrupted theory in each series,
and then averaged the results for each level of corruption (i.e., we averaged together
the 20 runs on theories containing two errors, the 20 runs on theories containing
four errors, and so forth). We repeated this experiment for training set sizes of 50
and 100 instances. The results appear in Figure 11.



22 B. RICHARDS AND R. MOONEY

100 Train Insts

50 Train Insts

Initial

Induction 100 Train Insts

Induction 50 Train Insts

% Correct

Theory Errors

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

0.00 2.00 4.00 6.00 8.00

Figure 11. Degradation due to initial theory corruption in the family domain.

The lowest curve shows the accuracy of the initial corrupted theories. The cen-
ter curve shows the accuracy of Forte's theories when it is given 50 training
instances. The highest curve shows Forte's accuracy when it is given 100 train-
ing instances. As expected, increasingly inaccurate initial theories do lower the
accuracy of Forte's revised theories for a given training set size. However, the
degradation is gradual, and Forte's output theories are always signi�cantly better
than the input theories (p < 0.01). Also shown are accuracies of pure induction for
50 and 100 examples. With 50 examples, revision is always better than induction.
With 100 examples, revision is better up to six theory errors. With eight theory
errors, as many as half of the rules in the initial theory may be corrupted (the ini-
tial theory contains 15 rules), and Forte performs better when allowed to induce
a new theory.

5.3. Inductive Performance

The family domain is a prototypical �rst-order domain, in that it depends heav-
ily on relations such as parent(X, Y) and married(X, Y) that cannot easily be
translated into a propositional representation. Much of Forte's performance in
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Figure 12. Inductive performance in the family domain.

highly relational domains of this sort comes from relational path�nding (Richards
& Mooney, 1992). To demonstrate this, Figure 12 shows Forte performing in-
ductive learning both with and without relational path�nding. These curves are
averaged over 20 runs for each data point. The di�erence between them is statisti-
cally signi�cant (p < 0.01) at all points.
Figure 12 also includes learning curves for Foil version 5.1 and Golem version

1.0�, also averaged over 20 trials. Since Golem and Foil only learn one concept at
a time, each trial actually consisted of a run on each of the twelve family concepts,
using training sets one-twelfth of the size noted. Foil's accuracy is ultimately
limited by its inability to learn the concepts aunt, uncle, niece, and nephew.
Golem performs poorly on all concepts, generally just memorizing the positive
instances. Since the parent relation is not determinate, Golem is simply unable
to learn in this domain.
Finally, we ran induction experiments in two domains, family and king-rook-

king, to determine how Forte scales with increasing amounts of data. As one
would expect, Forte's complexity is exponential in the size of the input theory,
and in the arity of the theory predicates. For example, when Forte considers new
antecedents for addition to a rule, the number of permutations of arguments to
a predicate is an exponential function of the predicate's arity. However, Forte's
complexity for a given learning problem, where these items are �xed, is at most
quadratic in the size of the training set. This complexity result is demonstrated in
Figure 13. This is a log-log graph, which means that polynomials show as lines,
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Figure 13. Time complexity of training.

with the slope of the line proportional to the degree of the polynomial. The lower
and upper lines show linear and quadratic bounds respectively. The learning times
for both of the test domains fall between these two bounds.

6. Application: Logic Programming

Since Forte represents theories as Prolog programs, we can view theory induction
and re�nement as logic program synthesis and debugging, respectively. However,
the logic programming domain is substantially di�erent from most machine learn-
ing domains. First, logic programs are highly recursive. Second, while we may be
satis�ed with a highly accurate classi�cation theory, one is usually not happy with
a \mostly correct" program. Consequently, we test Forte's performance in this
domain di�erently. Instead of producing learning curves showing increasing accu-
racy with larger training sets, we show that, given su�cient training data, Forte
will produce a completely correct program.

6.1. Program Synthesis

Although designed as a theory re�nement system, Forte is able to inductively
synthesize simple logic programs from examples of desired behavior. As discussed
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Table 1. Summary of program synthesis results.

Program Training Set No Path�nding Normal Forte Golem 1.0 Foil 5.1

member 21 instances 4 seconds 4 seconds 7 seconds 1 second
append 39 instances failed 21 seconds failed 3 seconds
directed path 121 instances 25 seconds 24 seconds failed 1 second
insert after 35 instances 30 seconds 50 seconds failed failed

merge sort 60 instances failed 199 seconds failed 17 seconds
naive reverse 38 instances failed 207 seconds failed 2 seconds

in Section 4.2.2, in order to correctly synthesize or revise a recursive theory, Forte
requires the training set to provide a complete extensional de�nition for a subset
of the problem domain.
Table 1 presents a summary of several standard program synthesis problems to

which Forte has been applied.7 In all of these cases, correct de�nitions were given
for any necessary lower-level predicates. For example, the merge-sort problem
provides de�nitions for split and merge.
The �rst column in the table identi�es the program to be synthesized. The second

column shows the size of the training set that was provided. The third column
gives the run-time required for the synthesis with relational path�nding disabled.
The fourth column gives the run-time for the synthesis with relational path�nding
enabled. The �fth and sixth columns give run-times for Golem version 1.0� and
Foil version 5.1 respectively. All run-times are for a SPARCstation 2.
Where run-times are shown, a correct program was synthesized. Where the an-

notation failed appears, the system did not generate a correct program. Forte

learned correct programs for all six problems. Relational path�nding was essential
for Forte to correctly synthesize the recursive clause for three of the six programs.
Foil also performed quite well, missing only one of the problems and executing
more quickly due to its e�cient implementation and more limited search. Golem
fared especially badly, as it tended to either memorize the positive instances or to
produce in�nite recursions. For example, for naive reverse, Golem produced the
recursive clause: reverse(A, B) :- reverse(B, A).

6.2. Debugging Student Programs

In order to provide a realistic test of Forte's logic program debugging capabilities,
we asked students in an undergraduate class on programming languages to hand in
their �rst attempts at writing simple Prolog programs. They gave us their programs
after they had satis�ed themselves on paper that the programs were correct, but
before they tried to run them. The student programs were distributed among
three problems: �nd a path through a directed graph, insert an element into a
list, and merge-sort a list. We collected 23 distinctly di�erent incorrect programs,
representing a wide variety of errors ranging from simple typographical mistakes to
complete misunderstandings of recursion.
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Table 2. Summary of program debugging results.

Program # of Programs Training Set Mean Revision Time % Correct

directed path 4 121 instances 87 seconds 100%
insert after 9 35 instances 82 seconds 100%
merge sort 10 60 instances 199 seconds 100%

Forte was able to debug all of these programs (see Table 2). The training sets
were the same as those Forte used to synthesize these same programs. Since
Forte is able to synthesize all of these programs, it is perhaps no surprise that it
was able to debug them as well. However, what is noteworthy is Forte's ability to
debug the programs while preserving the basic structure provided by the program
author. For example, consider the correct program for �nding a path through a
directed graph (this is the program Forte synthesizes):

path(A, B) :- edge(A, B).

path(A, B) :- edge(A, C), path(C, B).

One student's attempt at writing this program was:

path(A, B) :- edge(B, A).

path(A, B) :- edge(A, B).

path(A, B) :- edge(A, C), edge(D, B), path(C, D).

Even though this program is highly inaccurate, Forte was able to preserve both the
one correct base case and the unusual recursion scheme. Forte's revised program
is:

path(A, B) :- edge(A, B).

path(A, B) :- edge(A, C), edge(C, B).

path(A, B) :- edge(A, C), edge(D, B), path(C, D).

6.3. Debugging Deeply Recursive Programs

Forte is able to repair top-level recursive predicates e�ectively by treating the
positive instances in the training set as an extensional de�nition of the correct
predicate, and using this extensional de�nition to evaluate recursive calls while
the predicate is being revised. In order to use the same technique on lower-level
recursive predicates, Forte derives temporary extensional de�nitions from proofs
(or attempted proofs) of the positive instances in the training set (see Section 4.2.2).
This approach is not foolproof, but is often e�ective. The method fails in three

circumstances. The �rst occurs when the top-level predicates are so incorrect that
they do not provide a meaningful set of calls to the lower-level predicate. Second,
the calls to the lower level predicate may not be ground. In this case, the derived
extensional de�nition will be overly general, and Forte is likely to develop an
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unintended de�nition for the lower-level predicate. Third, the lower-level predicate
may be called with a restricted set of arguments. In this case, Forte may again
learn an unintended de�nition for the predicate.
An unintended de�nition often results in a correct program, but the lower level

predicate does not have the expected meaning. For example, a predicate for naive
reverse always calls append with lists of length one in the second argument. Suppose
we begin with the incorrect program:

reverse([], []).

reverse([A|B], C) :- append(D, [A], C), reverse(B, D).

append([A|B], C, [D|E]) :- append(B, C, E).

Forte successfully revises this program to be a correct implementation of reverse:

reverse([], []).

reverse([A|B], C) :- append(D, [A], C), reverse(B, D).

append(A, [B|A], [B|A]).

append([A|B], C, [A|D]) :- append(B, C, D).

The de�nition of append is correct for its role in this program. However, it is not
a general-purpose append predicate, as the �rst clause is only correct when the
second argument is a list of exactly one element.
In order to demonstrate the potential of Forte's techniques, we presented it with

incorrect versions of a realistic logic program. The program we used is a variation
of Bratko's (1991) decision-tree induction program.
As a concession to e�ciency, we placed most of the program's lower-level predi-

cates in the fundamental domain theory. The portion of the program Forte was
asked to revise consisted of a top-level non-recursive predicate (which served as an
interface to the program proper), a second level recursive predicate containing two
base cases and three recursive clauses (which actually builds the decision trees), and
a third-level recursive predicate containing one base case and two recursive clauses
(which chooses the correct attribute to split on at a given level in the decision tree).
This was a total of 31 lines of code.
The task given to the decision tree program was to construct a decision tree to

correctly classify twelve blocks as positive or negative based on attributes of color,
shape, and size. An instance to Forte included the attributes and instances given
to the decision-tree programalong with the decision tree expected as output. Forte
received 14 positive instances, corresponding to the full decision tree constructed
from the twelve instances, and all subtrees of the full tree (including leaves). Forte
also received 12 negative instances, which were trees or subtrees which might be
constructed if the decision-tree program were to select the wrong attribute to split
on at some point.
Forte was able to repair most single errors introduced into the program, even

in lower-level recursive predicates. The limits of our ability to repair the program
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were reached when we simultaneously introduced errors in two nested, recursive
program predicates. In this case, Forte was able to correctly revise the program
only if the error in the outer predicate did not prevent the derivation of a correct
training set for the inner predicate. In practice, this meant that we placed the outer
error in a base-case. In two such tests, the revision time averaged 3850 seconds.
This relatively long revision time is due to the high arity of the predicates and the
large number of variables present in several program clauses.

7. Application: Qualitative Modelling

To demonstrate Forte's ability to work in diverse domains, we have also applied
it to qualitative modelling. When supplied with appropriate domain knowledge,
through the fundamental domain theory and the revision veri�er, Forte is able to
synthesize and revise qualitative models suitable for use by Qsim (Kuipers, 1986).

7.1. Background

Qualitative modelling uses constraint-based models to predict and explain the be-
havior of dynamic systems in intuitive terms. For example, when trying to under-
stand the e�ect of heating a pot of water, it may be more useful to simply know
that the pot may boil over rather than to understand the numerical thermodynamic
equations. Qualitative models can be given to simulators like Qsim (Kuipers, 1986)
to determine all possible qualitative behaviors of the system.
Traditionally, qualitative models have been constructed by hand. This works for

simple, well-understood systems. For complex systems, the approach of composi-
tional modelling (Falkenhainer & Forbus, 1991) allows a system model to be built
up from prede�ned components. Although this makes constructing models easier,
it still requires the user to understand the system being modelled. Often, however,
users want a model precisely because the target system is not well-understood.
An alternative approach is to induce a qualitative model directly from observa-

tions of a system's behavior. Coiera (1989) presents a method which, given a quali-
tative description of one or more system behaviors, derives a qualitative model that
reproduces those behaviors. Misq, a system independently developed by Richards,
Kraan, and Kuipers (1992), uses some of the same techniques, but can synthesize
qualitative models from qualitative or quantitative behavioral data. Misq learns
maximally constrained models and can handle incomplete behavioral descriptions.
Forte uses components of Misq to provide the domain knowledge it needs to

work in the domain of qualitative modelling. However, Forte substantially extends
Misq's capabilities by allowing the introduction of new system variables. Forte
can also be used to revise an imperfect qualitative model supplied by the user.
A qualitative model is represented as a single, conjunctive clause. Furthermore,

one generally wants tightly constrained models that produce only the desired be-
haviors, so the language bias is most-speci�c. This means that Forte will produce
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Table 3. Summary of qualitative model induction results.

Model Training Set Number of Constraints Execution Time

thrown ball 1 behavior 2 constraints 4 seconds
simple bathtub 1 behavior 3 constraints 2 seconds
two independent bathtubs 2 behaviors 6 constraints 35 seconds
cascaded tanks 2 behaviors 7 constraints 43 seconds
reaction control system 1 behavior 55 constraints 114 seconds

a single clause containing all constraints consistent with the input behaviors. As
discussed by Richards, Kraan, and Kuipers (1992), when given complete behav-
ioral information, a model generated in this manner is guaranteed to be unique,
complete, and correct.
One instance speci�es a complete system behavior over time; for each system vari-

able we have a list specifying the variable's qualitative value, sign, and direction-
of-change at a series of points in time. This information is interpreted by the Qsim
constraint de�nitions provided in the fundamental domain theory. For example,
in order to prove the constraint m plus(Amount, Outflow), Forte provides the
information on the variables Amount and Outflow to the fundamental domain the-
ory predicate m plus. If a monotonically increasing function holds between the
two behavior terms, m plus succeeds; otherwise it fails. A more complete descrip-
tion of Qsim constraints is beyond the scope of this paper, and is discussed by
Kuipers (1986, 1989). Forte's implementation of the Qsim constraints is taken
from Misq (Richards, Kraan, & Kuipers, 1992), and includes: constant, M+, M�,
add, multiply, and derivative. From Forte's point of view, the constraints in
the fundamental domain theory are simply predicates that succeed or fail in the
course of a proof.
Table 3 provides a summary of several models Forte induced from behavioral

data, ranging from the very simplemodel of a thrown ball to the muchmore complex
Reaction Control System (RCS) on the space shuttle. As illustrations, we discuss
the two cascaded tanks and the RCS below.

7.2. Two Cascaded Tanks

Cascading two tanks so that the drain from one provides the inow to the next
provides a moderately complex second order system. In order to provide a more
di�cult test, we omitted two system variables that a user might realistically forget:
we supposed the user measured all the ows and amounts but did not realize that the
calculated netow for each tank would be important. Thus, we provided behaviors
for the �ve other variables, but omitted the netows entirely. Given two examples
of system behavior, Forte produces the model we would expect:

model(In A, Out A, Amt A, Out B, Amt B) :-

add(Out A, Net A, In A),
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derivative(Amt A, Net A),

m plus(Amt A, Out A),

add(Out B, Net B, Out A),

derivative(Amt B, Net B),

m plus(Amt B, Out B).

The netow variables are reintroduced by relational path�nding, as a way of satisfy-
ing the requirement (enforced by the revision veri�er) that the model be connected.

7.3. Reaction Control System

The Space Shuttle Reaction Control System (RCS) (Kay, 1992) is substantially
more complex than the system of cascaded tanks, and provides a more realistic test
of Forte's capabilities in this domain. The RCS consists of a number of identical,
parallel components; our test domain consisted of one of these components with
its valves in �xed positions. Although space prevents us from giving a complete
description of the RCS, a simpli�ed view would contain three interconnected tanks,
plus the thruster outlet. The �rst tank contains Helium, which is provided at
constant pressure to the fuel tank. The Helium forces fuel out of the fuel tank and
into the manifold. From the manifold, the fuel enters the thruster and ignites to
provide thrust.
For the purposes of this section, we assume that the valve leading to the thruster

is closed (i.e., the thruster is o�), the Helium regulator valve is open and providing
a constant-pressure supply of Helium, and the valve between the fuel tank and the
manifold has just been opened. If the initial pressure in the manifold is lower than
the initial pressure in the fuel tank (so that the system is not immediately at equi-
librium), then fuel ows into the manifold until the pressures equalize. Providing
this single behavior to Forte allows Forte to induce a correct system model for
the RCS, with the addition of several correct but redundant constraints.
However, since Forte is a theory re�nement system, we can use it in a more

sophisticated way. Suppose that the user has a correct system model, but that
the system is behaving incorrectly. In this case, we can use theory re�nement to
revise the correct system model to reect the actual system behavior. The resulting
changes in the model can be viewed as a diagnosis.
One of the failures that can occur in the RCS is a leak in one of the manifolds

leading from the fuel tank. In order to isolate the leak, the astronauts shut the
valve leading from the fuel tank into the manifolds. They then isolate the suspected
manifold and reopen the valve connecting the fuel tank and the manifolds. If the
leak has been eliminated, the system will quickly reach equilibrium. If the leak has
not been isolated, the system will not reach a pressure equilibrium (at least, not
before all of the fuel has drained out through the leak).
If Forte begins with a correct system model along with the system behavior

caused by a leak in the manifold,Forte revises the model by deleting the constraint
minus(D Amt Fuel, D Amt Man). The variable D Amt Fuel is the amount of fuel
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leaving the fuel tank and owing into the manifold. Variable D Amt Man is the net
change in the amount of fuel in the manifold. Normally, the amount of fuel owing
out of the fuel tank should be the same, except for sign, as the net amount of fuel
being added to the manifold. Since Forte deletes this constraint, there must be
another inuence on the amount of fuel in the manifold, namely, a leak.

8. Related Work

8.1. Propositional Theory Re�nement

As previously mentioned, much existing work in theory re�nement has dealt with
propositional theories and does not handle relations or recursion. Either (Ourston
& Mooney, in press) is Forte's conceptual predecessor. It revises propositional the-
ories using a combination of abduction and induction. Unlike Forte, Either does
not hill-climb and is guaranteed to �t an arbitrary theory to any set of noise-free
data. However, Either's approach of computing all abductive proofs of unprovable
positive examples was deemed computationally intractable for �rst-order theories.
RTLS (Ginsberg, 1990),Kbann (Towell & Shavlik, 1993), Ductor (Cain, 1991),

and Krust (Craw & Sleeman, 1991) are other theory re�nement systems that are
restricted to propositional theories. Of these, Krust is most closely related to
Forte, since it follows the approach of generating many possible revisions to theo-
ries, and then choosing among them based on their performance. However,Krust's
approach su�ers from a number of weaknesses. For example, even though Krust
requires multiple examples to be available, it generates revisions from only a single
example. Also, revisions are evaluated based on rule-belief factors which ignore the
di�erence between specialization and generalization errors; hence, a specialization
error can be used to justify further specialization of a rule.

8.2. First-Order Learning

Most work in inductive logic programming (Muggleton, 1992) concerns generalizing
an existing �rst-order Horn-clause theory by adding clauses, but does not address
the problems of generalizing existing clauses or removing or specializing incorrect
clauses. Shapiro's (1983) MIS system was capable of specializing theories; however,
it required an oracle to answer membership queries for any predicate in the theory.
His Prolog debugging system, PDS6, required even more interaction with the user.
It required the user to judge the correctness of predicate calls, determine which
clause in a predicate to change, and to actually write missing clauses. Other inter-
active systems include Marvin (Sammut & Banerji, 1986) and Clint (DeRaedt
& Bruynooghe, 1992). Clint generalizes and specializes theories and also creates
new predicates via analogy. Clint's revisions only include adding and removing
clauses; it does not attempt to modify existing clauses. Unlike MIS and Clint,
Forte automatically revises theories without any user interaction.
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A number of recent knowledge-based learning systems use a �rst-order domain
theory to bias the learning of an operational concept description but do not modify
the actual domain theory. ML-Smart (Bergadano & Giordana, 1988) was the �rst
system to take this approach. Focl (Pazzani & Kibler, 1992) is a more recent
approach based on Foil. Focl successively operationalizes a theory by either
including portions of the domain theory or adding new literals via induction. The
addition that provides the best information gain is chosen at each point. This
general approach is at a disadvantage when the initial theory is missing lower-
level rules (Cohen, 1992) since it must learn a completely new disjunct at the
top level. Also, it can unnecessarily eliminate large portions of the theory that
are consistent with the data but happen not to be needed to explain the training
examples. By contrast, Forte preserves as much of the initial theory as possible
and can learn rules at any level in the theory. Focl has been used as the basis
for an interactive theory re�nement system, KR-Focl (Pazzani & Brunk, 1990).
However, this system requires the user to determine where to make most theory
changes.
Grendel (Cohen, 1992) is a recent system to use domain knowledge to guide

induction. Grendel is a Foil-like inductive learner that allows the user to provide
an explicit bias in the form of a grammar. By providing di�erent bias grammars,
Cohen has shown that Grendel can simulate other systems such as Focl. How-
ever, the user must encode the domain knowledge in the appropriate form and, as
with Focl,Grendel does not actually re�ne an initial theory. When a good initial
theory is available, true theory re�nement should have an advantage over systems
like ML-Smart, Focl, and Grendel. Also, theory re�nement can improve the
accuracy of subconcepts and related concepts for which no explicit training ex-
amples have been provided (Ourston & Mooney, 1991; Tangkitvanich & Shimura,
1992).
The Golem system has been applied to a number of learning problems. How-

ever, since it works by generalization, it may overgeneralize a theory. Bain and
Muggleton (1992a, 1992b) present a method of specialization for Golem using
\closed-world specialization" (i.e., negation as failure). Golem �rst executes nor-
mally, generalizing from examples to an induced theory. Any exceptions to this
theory generated by a closed-world specialization algorithm are then recursively
generalized. Using this technique in the KRK domain, Golem learns a correct
theory after 10,000 examples. Forte integrates specialization operators from the
start, and it is therefore no surprise that its performance compares favorably with
Golem's, learning a correct theory after 5000 examples. Wrobel (1993) presents
an alternative de�nition of minimal semantic specialization, but does not address
the issue of generalizing the resulting exceptions.
A few other automated re�nement systems for �rst-order theories have also re-

cently been developed. Audrey (Wogulis, 1991) �rst specializes a theory by delet-
ing clauses and then generalizes it using an abductive method that makes a sin-
gle fault assumption. Consequently, its range of revisions is limited compared
to Forte. Rx (Tangkitvanich & Shimura, 1992) �rst produces a revised opera-
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tional de�nition and then translates this into changes to the original theory (as in
the RTLS propositional system (Ginsberg, 1990)). The basic learning mechanism
is very similar to Focl, and therefore has some of the same problems discussed
above. In addition, complete operationalization can result in an exponential ex-
pansion of the theory and can duplicate work when revising rules for a subconcept
that appears in multiple places in the theory.
Aben and van Someren (1990) use a method of annotating and repairing incom-

plete or incorrect logic programs which is similar to Forte's, in that they meta-
interpret the execution of an example set and accumulate evidence which directs
them to revise certain parts of the input program. However, they revise the pro-
gram by means of syntactic transformations; for example, they might replace the
constant \steev" in a failing rule with the similar constant \steve", found elsewhere
in the program. This allows them to identify and correct many syntactic errors,
such as typographical mistakes, which Forte would have to treat as semantic errors
(i.e., Forte would not recognize the typographical similarity between \steev" and
\steve"). However, their success depends on the initial theory being very nearly
correct, since the corrections are expected to be found elsewhere in the program.
Finally, it should be noted that Forte's relational path�nding is similar to an

early method for learning production rules developed by Langley (1980). Important
di�erences are that Langley's method used unidirectional search and required the
path to form the entire rule. Relational path�nding uses spreading activation and
can specialize paths by adding additional literals.

8.3. Belief Revision

Research in belief revision addresses the problem of �nding a minimal retraction of
beliefs required to consistently incorporate a new belief (Gardenfors, 1992). How-
ever this work does not address the inductive problem of generalizing a theory
or specializing it by adding constraints (e.g., by adding additional antecedents to
rules). Also, this work tends to focus on minimal semantic change which requires
memorizing exceptions to the theory rather than producing a specialization that
generalizes to new cases.

8.4. Qualitative Modelling

Bratko, Mozetic, and Lavrac (1989) did the some of the earliest work on learning
qualitative models; however, it was not based on a general purpose simulation lan-
guage likeQsim. Coiera (1989) presents Genmodel, a method for inducing a Qsim
qualitative model from qualitative behaviors. His approach is limited by the fact
that behaviors must be completely speci�ed, and his output models may contain
incorrect constraints, due to the absence of dimensional analysis. A more power-
ful system, Misq, was developed independently by Richards, Kraan, and Kuipers
(1992). Misq uses dimensional analysis, and is also able to work with incomplete
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behavioral information. The Misq model-building techniques are subsumed by
Forte, and Forte's relational path�nding allows correct models to be learned
even when essential system variables have been omitted.
Golem has also been applied to the problem of learning qualitative models by

Bratko, Muggleton, and Varsek (1991). However, their method requires hand-
generated negative information (i.e., examples of behaviors that the system does
not exhibit), it does not completely implement the Qsim constraints (e.g., corre-
sponding values are ignored), and it does not use dimensional information. Golem
also requires extensionally de�ned background knowledge, whereas Forte's funda-
mental domain theory allows background knowledge to be de�ned intensionally.
There has also been some recent work in constructing and revising models based

on Forbus's (1984) qualitative process theory (Falkenhainer & Rajamoney, 1988).
However this work uses analogy (Falkenhainer, 1990) and experimentation (Raja-
money, 1990) rather than induction from a �xed set of behaviors.

9. Future Work

Although Forte performs hill-climbing search, it considers a large number of op-
erations at each step. Signi�cant speedup could be obtained if a method could be
developed for reducing the branching factor by only producing and testing the most
promising revisions at each cycle. Forte also spends a great deal of time reprov-
ing many examples for each revision. A truth maintenance system that kept track
of which examples would be a�ected by which changes could potentially eliminate
much of this continual reproving.
Unlike some ILP systems (Muggleton & Feng, 1992; Quinlan, 1991), Forte does

not exploit mode information, i.e., knowledge of which predicate arguments are
input and which are output. The system could be enhanced to use available mode
information to prune revisions and order literals in a clause.
Forte could also be enhanced to deal with negation as failure. Negation compli-

cates revision since it switches the e�ect of generalizing and specializing operators.
For example, learning a new rule for a predicate specializes rules in which the
predicate appears negated. Bain and Muggleton (1992a, 1992b) present a general
approach for inducing theories containing negation, and this approach could be
adapted to theory revision.
The problems of modifying deeply recursive rules, discussed in Section 6.3, need

to be addressed. Most current methods, such as Foil and Golem, also require
complete extensional de�nitions of recursive predicates. However, a couple of recent
papers address this issue (Muggleton, 1992b; Lapointe & Matwin, 1992; Cohen,
1993), and these ideas may lead to better techniques for revising recursive programs.
Another major problem is that Forte, like many ILP systems, cannot invent

new predicates. The invention of new recursive predicates is a particularly di�-
cult and important problem. Using general inverse resolution methods (Muggleton
& Buntine, 1988) to invent new predicates without an oracle is computationally
intractable. However, several e�cient methods for inventing new predicates in re-
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stricted cases have recently been developed (Wirth & O'Rorke, 1991; Kijsirikul,
Numao, & Shimura, 1992), and would be useful to add to Forte.
In many domains, some form of uncertain or probabilistic reasoning is desirable;

however, current theory re�nement systems like Forte are restricted to purely
logical domain theories. Rapture (Mahoney & Mooney, 1993) is a recent system
that combines connectionist and symbolic methods to re�ne propositional certainty-
factor rule bases (Shortli�e & Buchanan, 1975). However, its basic approach should
be applicable to �rst-order theories.

10. Conclusions

This paper has described and evaluated a completely automated approach to re-
vising imperfect �rst-order Horn-clause domain theories by incorporating methods
from propositional theory re�nement and inductive logic programming. The ability
to revise relational and recursive theories greatly increases the range of application
of automated knowledge-base re�nement. In particular, it allows for the automatic
re�nement of logic programs and qualitative models.
Our implemented system, Forte, uses a hill-climbing algorithm with a diverse

collection of generalization and specialization operators in an attempt to �nd a min-
imally revised theory that is consistent with a set of training examples. Its operators
include simple propositional ones such as delete-rule and delete-antecedent, inverse
resolution operators like absorption and identi�cation, and a Foil-like learner for
adding antecedents and learning new rules. In addition, we introduce a power-
ful new operator, relational path�nding, that helps overcome local maxima when
learning relational concepts.
Experiments on standard relational benchmarks, such as the family domain,

demonstrate Forte's ability to e�ectively revise randomly corrupted domain the-
ories and produce more accurate results than purely inductive learning. In the
family domain, an ablation study reveals the particular e�ectiveness of relational
path�nding, which increases accuracy up to 20 percentage points.
Results in logic program debugging demonstrate that Forte can correctly debug

simple logic programs written by students for a programming languages course. The
system was also able to correct small bugs in a decision-tree induction program.
Finally, unlike previous Prolog debugging systems like Shapiro's PDS6, Forte
requires no user interaction.
In the domain of qualitative modelling, Forte has been used to induce Qsim

models of a number of simple systems from only a single positive qualitative be-
havior. It has also been used to induce, revise, and diagnose a fairly complex
qualitative model of the Space-Shuttle Reaction Control System. The relational
path�nding operator is particularly important in automated qualitative modelling
since it allows Forte to introduce new system variables.
We believe that our results in these diverse domains demonstrate that relatively

e�cient automated re�nement of complex relational theories is possible using ex-
isting methods in theory re�nement and inductive logic programming. Continued
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research will hopefully improve the e�ciency of these methods and incorporate ad-
vanced features such as predicate invention, negation as failure, uncertain reasoning,
and better methods for revising deeply recursive programs.

Acknowledgements

Thanks to Ross Quinlan for makingFoil 5.1 available, to Steve Muggleton for mak-
ing Golem 1.0 available, and to Josh Konvisser for helping us run these programs.
Also, many thanks to the anonymous reviewers for their helpful comments on the
initial draft of this paper. The �rst author was supported by the Air Force Institute
of Technology. This research was also supported by the National Science Founda-
tion under grant IRI-9102926, by the NASA Ames Research Center under grant
NCC 2-629, and by the Texas Advanced Research Program under grant 003658114.

Notes

1. The Quintus Prolog implementation of Forte, along with sample theories and test data, is
available by anonymous FTP from cs.utexas.edu in the directory /pub/mooney/forte.

2. A de�nite program clause is a clause of the form � �1; : : : �n where �; �1; : : : �n are atomic
formulae (Lloyd, 1987).

3. Mooney (in press) presents a formal de�nition of minimal change based on the notion of
syntactic distance and shows that it guarantees convergence to a probably approximately
correct (PAC) theory if the initial theory is guaranteed to be within a �xed distance of the true
theory. Unfortunately, it appears computationally intractable to guarantee minimal syntactic
change for any realistic theory language.

4. The input clause in resolution is the clause whose literal appears positively in the resolution
step.

5. For readability, we display lists using functional notation. The actual representation used by
Forte uses explicit destructor predicates in place of function symbols.

6. The user can readily observe what the system does, but there are an in�nite number of things
that the system does not do, most of which do not provide useful information to the revision
process.

7. The insert-after programmay not be familiar. This program adds a new element into a list
after the �rst occurrence of a speci�ed marker element, e.g., insert after([a,m,b], m, n,

[a,m,n,b]).
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