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Abstract .  In this paper, we show two hardness results for approximat- 
ing the best function-free Horn clause by an element of the same class. 
Our first result shows that for some constant k > 0, the error rate of the 
best k-Horn clause cannot be approximated in polynomial time to within 
any constant factor by an element of the same class. Our second result is 
much stronger. Under some frequently encountered complexity hypoth- 
esis, we show that if we replace the constant number of Horn clauses 
by a small, poly-logarithmic number, the constant factor blows up expo- 
nentially to a quasi-polynomial factor n l°gk '~, where n is the number of 
predicates of the problem, a measure of its complexity. Our main result 
links the difficulty of error approximation with the number of clauses al- 
lowed. We finally give an outline of the incidence of our result on systems 
that learn using ILP (Inductive Logic Programming) formalism. 

1 Introduct ion and mot ivat ion  

ILP is an active research branch at the crossroads of of Machine Learning and 
Logics. It aims at learning concepts expressed as (variously) restricted Horn 
Clause Programs from examples, and in the presence of background knowledge. 
Many experimental applications are available, that  have been applied to domains 
such as biology, chess playing and natural  langage analysis. Theoretical work has 
allowed to establish learnability results for some subclasses of first order Horn 
clauses. Early studies were undertaken in the Identification in the limit model 
[7], but  most work has focused on Approximately Correct (PAC) learnability 
[15], [10] which is thought to  bet ter  quantify the complexity of learning in terms 
of computational effort and number of examples required. In ILP, this latter 
problem is intractable for very general classes such as unconstrained Horn clauses 
(see [11] for a detailed presentation of computational hardness results). So, in 
order to achieve positive results, several restrictions of Horn Clause programs 
have been considered [13], [4], [5], and [6]. 

However, conflicts between PAC results and practical ones have led researchers 
to look for other learnability models [12]. In a previous paper, we highlighted 
divergences between PAC and robust learning [8] results for some of the main 
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ILP classes. Whereas PAC learning makes the strong assumption that any target 
concept can be represented in the hypothesis class H, (which is very rarely 
acceptable in practice), robust learning studies the degradation in prediction 
performance of a hypothesis class 7-t when it is not known a priori whether it 
contains the target concept's class. This makes this model a stricter one but it 
is closer to practical requirements. The commonpoint to both PAC and robust 
learning models is the sufficiency of worst case analyses to obtain negative results. 
Our result in [9] states that, even when considering a simple subclass of ILP 
formalism and even when looking for a single Horn clause, no polynomial-time 
algorithm can produce a formula whose error comes close to the error of the 
optimal single Horn clause. In this paper, we go further in worst-case analyses. 
We show that the condition on the error can be replaced by a much weaker 
one without losing negative results. We show that no polynomial-time algorithm 
can produce a formula approximating the error of the optimal one to within 
very large factors. The rest of this paper is organised as follows: in section 2, 
we present the ILP background we need for our results, and the link between 
ILP and structural complexity. In section 3 and 4 we prove that approximating 
function-free Horn clause is hard. Finally, in section 5, we highligh some relevant 
subclasses of ILP formalism for which our results are valid. 

2 A n  I L P  a p p r o x i m a t i o n  p r o b l e m  

For a complete formalization of the ILP background needed for this article, we 
refer the reader to [9]. Given a Horn clause langage £ and a correct inference 
relation on L, an ILP learning problem can be formalized as follows. Assume a 
background knowledge BE expressed in a langage £B C E, and a set of examples 
$ in a langage £$ C_ £. The goal is to produce a hypothesis h in a hypothesis class 
74 C_ £ consistent with BE and E such that h and the background knowledge 
cover all positive examples and none of the negative ones. The choice of the 
representation langages for the background knowledge and the examples, and 
the inference relation greatly influence the complexity (or decidability) of the 
learning problem. A common restriction for both B~ and E is to use ground 
facts. As in [11], we use 8-subsumption as inference relation. Its main drawback 
being that it does not allow the use of background knowledge, other subsumption 
relations have been defined to do so, in particular generalized subsumption [2], 
and are thus preferred in ILP. We now state a useful lemma 

L e m m a  1 Learning a Horn clause program from a set of ground background 
knowledge 13]C and ground examples E, the inference relation being generalized 
subsumption, is equivalent to learning the same program with 8-subsumption, 
and empty background knowledge and examples defined as ground Horn clauses 
of the form e 4- b, where e E E and b E B]C. 

This lemma allows us to incorporate the background knowledge in the new ex- 
amples (and is thus empty). Examples and clauses are defined by predicates. To 
the variables of these predicates that are in the clauses built correspond constant 
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symbols in the examples. 8-subsumption relative to the examples aims at finding 
adequate substitutions of variables with constant symbols. It can be defined in 
a general way as follows. 

De f in i t i on  1 ( 0 - s u b s u m p t i o n )  A clause C1 O-subsumes a clause C2 if there 
exists a substitution O such that C18 C C2. 

Our ILP problem can be presented as an optimization problem as follows, re- 
specting the formalization of [8] : 

N a m e  : Opt(Weighted-Approx(g(.)-function-free Horn clauses)). 
I n s t a n c e  : A set of examples E = S + U S - ,  an integer weight w(xi) > 0 for 
each example xi E S + U S - .  
Feas ib le  So lu t ions  : h E g(.)-function-free Horn clause. 
Cos t  F u n c t i o n  : ~(xeS+ Ah(x)=O)V(xES_Ah(x)_~l ) W(X). 

g(.) is a function defining the maximum size (clause number) of the function- 
free Horn clauses constructed. It is worthwile remarking that  a machine learning 
algorithm is ran practically on a set of examples often called the "learning sam- 
ple", and aims at finding a low-error formula, without prior knowledge on the 
concept from which these examples were taken. Therefore, what does such an 
algorithm is trying to find a feasible solution to the previous problem having a 
low cost. Proving lower bounds on the costs of polynomial-time algorithms for 
this problem is therefore of practical interest. 

3 R e s u l t  o n  k - f u n c t i o n - f r e e  H o r n  c l a u s e s  

In this section we state and prove a first non-approximability result, dealing with 
small-sized function-free Horn clauses. 

T h e o r e m  1 If N P  ~_ P, Vk > 3, Opt(Weighted-Approx(k-function-free Horn 
clauses)) is not approximable to within any constant d > O. 

We make a reduction from a minimization problem previously studied in [8]: 

N a m e  : Opt(Aggravated 3-SAT). 
I n s t a n c e  : A set of variables U = {xl, El, ..., Xn, En }, a collection of 3-clauses 
over U, a subset U' C_ U, an assignment satisfying all clauses. 
Feas ib le  So lu t ions  : An assignation of the variables of U satisfying all 
clauses. 
Cos t  F u n c t i o n  : The number of variables from U' assigned to T r u e  . 

The satisfiability constraint implies that  a solution always exists; the difficulty 
of the problem therefore relies only is the minimization of the cost function, and 
not in finding feasible solutions, which would be an artifact of the problem's 
hardness. We use the following result on Opt(Aggravated 3-SAT): 

T h e o r e m  2 [8] If  N P  ~. P, Opt(Aggravated 3-SAT) is not approximable to 
within any constant d > O. 
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In order to prove our result, we need to obtain an intermediate inapproximability 
result for the following minimization problem: 

N a m e  : Opt(Aggravated k-Colorability). 
I n s t a n c e  : A graph G = (X, E). A subset X t C X. A vertex x E X \ X  r. A 
trivial k-Colorability of G. 
Feas ib le  So lu t ions  : A valid k-Colorability of G. 
Cos t  F u n c t i o n  : The number of elements of X r having the same color as x. 

Due to space limitations, undetailed proofs can be found in [14]. 

T h e o r e m  3 I] N P  ~_ P,  Opt(Aggravated k-Colorability) is not approximable to 
within any constant d > O. 

Proo] sketch. The reduction is made from the problem Opt(Aggravated 3-SAT). 
C = {C1,..., Cp} denotes the set of 3-clauses instance of Opt(Aggravated 3-SAT). 
We transform it into a new set C' {C~,..., C~, i --~ C p + 2 ,  Cp+3 ,  Cl~4} in the C p + l ,  I t I 

following way : let L = U = {xl, 51,..., xn, 5n} stands for the variables set of the 
3-SAT instance. Let L' = {xl ,  ~1,..., xn, xn+l, ~n+l, xn+2, ~ + 2 ,  x~+3,5~+3 } be 

! 
our new set of variables, and define Vl < i < p, C~ = Ci V xn+t, C~+1 = En+l V 

e I I C~+4 X n + 2 V X n + 3 , .  p+2 ----- "Xn+2VXn'}  -3, Cp+3 : 2 : n + 2 V x n + 3 ,  and = X n + 2 V x n + 3  . 

The length of each new clause in C' is either 2, 3 or 4. We now state a number 
of facts useful to prove theorem 3. We let In] denote the set {1, 2, ..., n}. 

Fac t  1 C' satisfies two properties : (1) if C' is satisfiable, xn+l, xn+2 and x,~+3 
are all False  ; (2) C is satisfiable iff C' is satisfiable. 

The graph G we construct, instance of Opt(Aggravated k-Colorability), has the 
modular structure which we now describe. 

S t ep  1: each of the 2n + 6 variables of L r is represented by a vertex in G: 

{ X l , "X l , " . ,  Xn  , "Xn , X n +  l , "Xn+ l , X n +  2 , -~n+ 2 , Xn+  3 , "Xn+ 3 } 

We call these "variable vertices". We then place n + 3 edges (xi,Si),Vi E In + 3] 
in G. Each couple of variable vertices (xi, ~i), i E In] represent the two possible 
t ruth  assignment of the variables xi ,Si  of U: either T rue  for xi (and False for 
xi), or False  for x~ (and True  for xi). 

S t ep  2: for each clause C~,i E ~p + 4], we create a corresponding subgraph Hi. 
Each of these subgraphs uses a basic buiding block shown in figure 1 (K~ is 
the complete graph on k vertices). In this figure, at least either of a or b is a 
variable vertex, and y is a new vertex. Vi E [p + 4], each clause C~ of size 2, 3 
or 4 is represented in G by a subgraph Hi using 1, 2 or 3 basic building blocks 
respectively. As shown in figure 1, to each clause C~ corresponds a distinct vertex 
noted Y6#. The only vertices shared by these subgraphs H~, i E [p+4] are variable 
vertices. 

S t ep  3: for each clause C~, i e [p + 1], we create a corresponding subgraph H~ 
isomorphic to Hi. Vi E [p + 1], the only vertices shared by Hi and H~ are the 
variable vertices corresponding to C~. Vertices Y6# in Hi are renamed y~# in H~. 
Let X(X) denote the color of any vertex x of G. 
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Fig. 1. Basic building block for Hi,i 6 [p + 4], and subgraphs Hi generated by 2-, 3- 
and 4-clauses. 

Fact  2 Vi 6 [p + 4], Vj 6 [p + 1], for any valid k-coloring of the vertices of Hi 
(resp. Hj), there exists one which gives to Y6,i (resp. y~j)  a color shared by either 

- a or b if C~ (resp. CJ) is o/size 2. 
- a or b or c i/C~ (resp. C~) is of size S. 
- ~ o r b  o r e  oral i lC~ (resp. C} )  is 4 s i z e  4. 

Fact  3 Vi 6 [p+4],Vj 6 iv+ 1], any valid k-coloring oIthe vertices o/Hi (resp. 
Hi) assigning the same color to each variable vertex of the clause C~ (resp. C}), 
forces y6,i (resp. y'cj) to have this color. 

Step  4: The subgraphs constructed in steps 1, 2 and 3 are linked to a subgraph W 
according to figure 2. This terminates the construction of G which now contains 
6pk + 8k + 2n + 6 vertices and is therefore of polynomial size. We have: 

Fact  4 X(Xn+l) = X(v2) and X(en+l) = X(Vl). 

Fact  5 In a valid k-coloring of G, let X1, ...,Xk-2 denote the set of colors used 
to color Kk-2 in W, and X1, ...,Xk the total set of colors. We have 

Vi • [n + 3], {X(Xi),X(Si)} = {Xk-l ,Xk} = {X(Vl),X(V2)} 

Fact  6 Vi 6 [p], let C~ = x h V xi2 V xi3 VXn+l denote a 4-clause of C r. We have 

(x(x~,)  = x ( v l ) )  v (x(=~2) = x ( v l ) )  v (x(=i3)  = x ( v l ) )  

We now let X'  in the instance of Opt(Aggravated k-Colorability) denotethe set 
of variable vertices built from U'. Recall that to one variable in U' corresponds 
one variable vertex. Therefore, X '  does not contain any of the variables from 
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Fig. 2. The subgraph W of G. 

the set {xi, xi}ie{p+l,p+~,p+3,p+4}. We fix the special vertex to vl. P roof  of the 
reduction of theorem 3 can be found in [14]. [] 

We now prove theorem 1 using the following reduction. For any graph G 
instance of Opt(Aggravated k-Cotorability), we create a set of examples E de- 
scribed over a set of predicates ai( .) , i  6 [n], and constant symbols {li}, i 6 [n]; 
{mi j} ,  ( i , j )  6 E ; {si ,x},i  6 X '  (there are n +  IEI + IX' I constant symbols). We 
let x denote the special vertex of the instance of Opt(Aggravated k-Colorability). 

- S + = {q(li) +- Aj#iaj(l i)  : 1 < i < n}. The weight of these positive examples 
is w + -- n. 

- S~" = {q(m~,j) +-- Ak~{i j}ak(mi, j )  : ( i , j )  6 E}. The weight of these negative 
examples is w-  = w + -- n. 

- S~- = {q(si#) +-- Ak~{i#}ak(Si,j) : ( i ,x)  ~ E A i 6 X ' } .  The weight of these 

negative examples is w r-  = 1. 

The proof of theorem 1 follows from the proof of the two following propositions: 

P r o p o s i t i o n  1 From any k-function-free Horn clauses making t errors on S + U 
S~ U S j  , we can build in polynomial time a feasible solution to Opt(Aggravated 
k-Colorability) which gives the same color as x to at most t elements of X ' .  

Proof. Suppose that  t _> n. In tha t  case, we can use the trivial coloring of the 
instance of Opt(Aggravated k-Colorability). Since X '  C X ,  there are trivially at 
most t > n elements of X '  colored by the same color as x. 
Suppose now that  t < n. In tha t  case, any element of weight n is well classified. 
Let {hi, h2, ..., hk } denote the set of clauses solution to Opt(Weighted-Approx(k-  
function-free Horn clauses)). We can suppose without loss of generality that  any 
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predicate is absent of at most one clause. Otherwise, we can add this predicate to 
all clauses but one (in which it is absent), and this does not increase the number 
of errors since it only forces all positive examples to P-subsume exactly one clause 
among the k. The colorability assigned is the following one : Vi E [n], Vj E [k], if 
ai(.) ~ hi, then give color j to vertex xi. 
This is a valid k-colorability, otherwise some examples of weight n would be 
misclassified. The t errors are made on examples of weight 1. These examples 
represent distinct vertices having the same color as x. Note that  a single clause 
is responsible for all the errors : hx(=). 

P r o p o s i t i o n  2 Any feasible solution to Opt(Aggravated k-Colorability) which 
gives the same color as x to at most t elements of X ~ can be transformed in 
polynomial time into a feasible solution to Opt (Weighted-Approx(k-]unction-flee 
Horn clauses)) which makes at most t errors over the examples. 

Proof. The k clauses of the solution to Opt(Weighted-Approx(k-function-free 
Horn clauses)) are defined by: 

Vj E [k], hj =_ q(X) +- AiE[n]:x(x,)~jai(X ) 

These clauses do not make errors on examples of weight n. The only errors made 
are on examples of weight 1 corresponding to vertices having the same color as 
x. Note that  in our construction, only one clause makes all the errors : hx(=). 

Theorem 1 now follows from propositions 1 and 2. 

4 R e s u l t  o n  f u n c t i o n - f r e e  H o r n  c l a u s e s  h a v i n g  

p o l y l o g a r i t h m i c  s i z e  

Let QP denote the class of problems admitting quasi-polynomial time deter- 
ministic algorithms. A function of n is quasi-polynomial iff ](n) < n l°gcn for 
some constant c. Many results have introduced the class QP, such as for exam- 
ple [1], to point out the fact tha t  hard-to-solve or approximate problems (such 
as Opt(Aggravated 3-SAT), and therefore Opt(Weighted-Approx(k-function-free 
Horn clauses))) might not even admit quasi-polynomial time approximation al- 
gorithms. We are going to use this fact to prove our next result. We now prove 
theorem 4 below. 

T h e o r e m  4 If N P  ~ QP, Vd > 0 a constant, Opt(Weighted-Approx(log d+2 n- 
function-flee Horn clauses)) is not approximable to within n l°g~n 

In order to do this, we highlight a correlation between the size of the for- 
mula and its error rate. To that  effect, we multiply logd+2 n = K instances of 
Opt(Weighted-Approx(k-function-free Horn clauses)) by concatenating the tail 
of the examples to form new ones, thus described over a set of n x K pred- 
icates (plus the inferred predicate q(.)). Each predicate taken from the initial 
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set serves to create exactly K new predicates. This can be viewed as making set 
products among the set of tails of the examples of the instance of Opt(Weighted- 
Approx(k-function-free Horn clauses)) we used to prove theorem 1. One of these 
examples could be represented e.g. as follows: 

The subscript in as,j(.) denotes the jth copy of the initial predicate ai(.). The 
example represented has each of its K predicate parts coming from the copy 
of an initial example from S + (we shall write that  this example comes from 
(s+)K).  The new examples are described as follows : 

- S + is the subset (S'~) g. Their weight is n K. 
- S~, K = (S + U S ~ ) K \ S +  K. their weight is n g .  
- -  $ 2 ,  g ~--- (s2)K° their weight is 1. 

Due to the increase in the number of examples, the initial set of n + tEl + IX'] 
constant symbols is replaced by a new larger set of size (n + IE]) g + IX'I g .  
Note that  this new set of examples is created in quasi-polynomial time. For 
the sake of brevity, we let c, denote the minimal error of a feasible solution to 
Opt(Weighted-Approx(k-function-free Horn clauses)), and c~, the minimal error 
of a feasible solution to Opt(Weighted-Approx(K-function-free Horn clauses)). 

P r o p o s i t i o n  3 c, < n 

Proof  follows from the fact that  the instance of Opt(Aggravated k-Colorability) 
which serves to build the instance of Opt(Weighted-Approx(k-function-free Horn 
clauses)) is always k-colorable. Proposition 3 comes from the construction tech- 
nique of proposition 2 : any example of weight n is well classified, and there are at 
most n - 1 examples of weight 1. According to propositions 1 and 2, we can sup- 
pose that  each predicate is absent from at most one clause. Let c, (cx(x)) denote 
the minimal error of the clause that  does not contain the predicate ax(.) corre- 
sponding to the special vertex of the instance of Opt(Aggravated k-Colorability). 
From propositions 1 and 2, proposition 3 can be refined : 

P r o p o s i t i o n  4 c, = c,(hx(~)) 

P r o p o s i t i o n  5 cr, > (c,) K. 

Proof. Whenever an example from the set S + U S~, g is badly classified, proposi- 

tion 3 gives the result: c~, >_ n K > (c,) g .  Suppose that  all examples from the set 
S + U S~, K are well classified. Any error is necessarily due to an example of the 

set S~, g .  The only type of clause that  can cause these errors is a clause of type 
q(X) +- P1 A P2... A PK where Vj E [K], Pj is a clause described over the set of 
predicates {a~,j}~e[n ] such that  Pj makes errors on S~-. Since the error of each 
Pj is at least c,(hx(x)), which is c, (proposition 4), the error of the conjuction 
(A) is at least the product  of the minimal error of each part,  (c,) K. The overall 
error of the set of clauses is thus at least equal to this quantity. 
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P r o p o s i t i o n  6 Let h denote a feasible solution to Opt(Weighted-Approx(K- 
function-free Horn clauses)), whose error is a. Then we can find a feasible solu- 
tion to Opt(Weighted-Approx(k-function-free Horn clauses)) whose error is no 

1 
more than a-~. 

Proof. Recall that  the graph we constructed from the instance of the problem 
Opt(Aggravated 3-SAT) is always k colorable. Therefore, there always exist a 
set of k-function-free Horn clauses consistent with S + U S~- (proposition 2), 
having error < n. In h, whenever an example from the set SK + U S~, g is badly 

classified, proposition 3 gives the result since the error of h is at least c', > ng .  
Suppose that  all examples from the set S + U S~, K are well classified. Any error 

is necessarily due to an example of the set S~, g.  The only type of clause that  
can cause these errors is a clause of type q(X) +- P1 A P2... A PK where Vj E [K], 

1. Pj is a subset of predicates described over the set of predicates {ai,j}ie[n], 
and 

2. the clause isomorphic to q(X) +-- Pj described over the set {ai}i~[n], obtained 

by replacing each at,j E Pj by at in Pj, makes errors on S 2.  

Note that  the error of the conjuction (A) is the product of errors of each part 
P j , j  E [K] on S 2.  So, the part P.  over P1, ...,PK leading to the least number 
of errors on S~- makes an error that  is at most a ~ .  Now, construct the set h ~ of 
(k - 1)-function-free Horn clauses of proposition 2 with all clauses except hx(=) , 
and add (for hx(=) ) the clause corresponding to the par t /9 .  (it is q(X) +- P~. as 

described in point 2 above). The overall error of h ~ does not exceed a ~ .  

, < ( c , )  P r o p o s i t i o n  7 c, 

The proof of this proposition follows simply if we calculate the K-t ime cross- 
product of the solution realizing the cost c,. We obtain a set of k g clauses, and 
the construction can be realized in quasi-polynomial time. 

' (c,) K. We now prove theorem 4 ad absurdum. From this, it comes that  c, = 
Suppose that  Opt(Weighted-Approx(log d+2 n-function-free Horn clauses)) is ap- 

proximable to within n l°gd n. In quasi-polynomial time, from any instance of 
Opt(Weighted-Approx(k-function-free Horn clauses)), we build an instance of 
Opt(Weighted-Approx(K-function-free Horn clauses)) following the procedure 
described at the beginning of this section. We can find an element of K-function- 

free Horn clauses whose error does not exceed (Kn) l°gd(gn)c~, (hypothesis). Thus, 
we can find a solution to Opt(Weighted-Approx(k-function-free Horn clauses)) 

1 

whose cost is approximately no more than ( (Kn)  l°gd(gn)ct,) -~ (proposition 6). 

But (using propositions 5 and 7) 

Kn)log (Kn) c K = Kn)  ~ < (Kn)~c.1 = O(c.) 

This contradicts theorem 1, since we obtain an approximation of Opt(Weighted- 
Approx(k-function-free Horn clauses)) to within a constant factor. 
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5 Consequences  on learnabil i ty 

In this paper, we have essentially presented two structural complexity results. 
Their  purpose, is to prove that  Horn Clauses display very severe error rates when 
used for learning in complex domains, and they extend our previous results [9]. 
It should be noted that  as in this previous work, in order to obtain general 
properties, we have studied general function-free Horn-clauses but  the proofs of 
our theorems are made in such a manner (using simple ILP formalisms) as to 
remain valid for the more specialized classes encoutered in ILP. So, both our non- 
approximability results also apply to many subsets that  have led to theoretical 
studies in the PAC-learning model. Classes for which this result applies are 
subclasses of the following classes where the number of clauses is limited to the 
values of theorems 1 and 4 : / j -de terminate  non recursive Horn clauses [13] where 
i and j are any integer constants satisfying i > 0 and j > 0, and/ - loca l  Horn 
clauses [3] where 1 is any integer constant satisfying 1 > 0. 
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