
APPLICATIONS OF CIRCUMSCRIPTION

TO FORMALIZING COMMON SENSE

KNOWLEDGE

John McCarthy
Computer Science Department

Stanford University
Stanford, CA 94305

jmc@cs.stanford.edu

http://www-formal.stanford.edu/jmc/

1986

Abstract

We present a new and more symmetric version of the circumscrip-
tion method of nonmonotonic reasoning first described in (McCarthy
1980) and some applications to formalizing common sense knowledge.
The applications in this paper are mostly based on minimizing the
abnormality of different aspects of various entities. Included are non-
monotonic treatments of is-a hierarchies, the unique names hypothe-
sis, and the frame problem. The new circumscription may be called
formula circumscription to distinguish it from the previously defined
domain circumscription and predicate circumscription. A still more
general formalism called prioritized circumscription is briefly explored.

1 INTRODUCTION AND NEW DEFINITION

OF CIRCUMSCRIPTION

(McCarthy 1980) introduces the circumscription method of nonmonotonic
reasoning and gives motivation, some mathematical properties and some ex-

1

amples of its application. The present paper is logically self-contained, but
motivation may be enhanced by reading the earlier paper. We don’t repeat
its arguments about the importance of nonmonotonic reasoning in AI, and
its examples are instructive.

Here we give a more symmetric definition of circumscription and appli-
cations to the formal expression of common sense facts. Our long term goal
(far from realized in the present paper) is to express these facts in a way
that would be suitable for inclusion in a general purpose database of com-
mon sense knowledge. We imagine this database to be used by AI programs
written after the initial preparation of the database. It would be best if the
writers of these programs didn’t have to be familiar with how the common
sense facts about particular phenomena are expressed. Thus common sense
knowledge must be represented in a way that is not specific to a particular
application.

It turns out that many such common sense facts can be formalized in a
uniform way. A single predicate ab, standing for “abnormal” is circumscribed
with certain other predicates and functions considered as variables that can
be constrained to achieve the circumscription subject to the axioms. This
also seems to cover the use of circumscription to represent default rules.

2 A NEW VERSION OF CIRCUMSCRIP-

TION

Definition. Let A(P) be a formula of second order logic, where P is a tuple
of some of the free predicate symbols in A(P). Let E(P, x) be a wff in which
P and a tuple x of individual variables occur free. The circumscription of
E(P, x) relative to A(P) is the formula A′(P) defined by

A(P)∧∀P ′.[A(P ′)∧[∀x.E(P ′, x) ⊃ E(P, x)] ⊃ [∀x.E(P ′, x) ≡ E(P, x)]]. (1)

[We are here writing A(P) instead of A(P1, . . . , Pn) for brevity and likewise
writing E(P, x) instead of E(P1, . . . , Pn, x1, . . . , xm)]. Likewise the quantifier
∀x stands for ∀x1 . . . xm. A(P) may have embedded quantifiers. Circum-
scription is a kind of minimization, and the predicate symbols in A(P) that
are not in P itself act as parameters in this minimization. When we wish to
mention these other predicates we write A(P ; Q) and E(P ; Q, x) where Q is
a vector of predicate symbols which are not allowed to be varied.

2

There are two differences between this and (McCarthy 1980). First, in
that paper E(P, x) had the specific form P (x). Here we speak of circum-
scribing a wff and call the method formula circumscription, while there we
could speak of circumscribing a predicate. We still speak of circumscribing
the predicate P when E(P, x) has the special form P (x). Formula circum-
scription is more symmetric in that any of the predicate symbols in P may
be regarded as variables, and a wff is minimized; the earlier form distin-
guishes one of the predicates themselves for minimization. However, formula
circumscription is reducible to predicate circumscription provided we allow
as variables predicates besides the one being minimized.

Second, in definition (1) we use an explicit quantifier for the predicate
variable P ′ whereas in (McCarthy 1980), the formula was a schema. One
advantage of the present formalism is that now A′(P) is the same kind of
formula as A(P) and can be used as part of the axiom for circumscribing
some other wff.

In some of the literature, it has been supposed that nonmonotonic rea-
soning involves giving all predicates their minimum extension. This mistake
has led to theorems about what reasoning cannot be done that are irrelevant
to AI and database theory, because their premisses are too narrow.

3 A TYPOLOGY OF USES OF NONMONO-

TONIC REASONING

Before proceeding to applications of circumscription I want to suggest a ty-
pology of the uses of nonmonotonic reasoning. Each of the several papers
that introduces a mode of nonmonotonic reasoning seems to have a particular
application in mind. Perhaps we are looking at different parts of an elephant.
The orientation is towards circumscription, but I suppose the considerations
apply to other formalisms as well.

Nonmonotonic reasoning has several uses.
1. As a communication convention. Suppose A tells B about a situation

involving a bird. If the bird cannot fly, and this is relevant, then A must say
so. Whereas if the bird can fly, there is no requirement to mention the fact.
For example, if I hire you to build me a bird cage and you don’t put a top on
it, I can get out of paying for it even if you tell the judge that I never said
my bird could fly. However, if I complain that you wasted money by putting

3

a top on a cage I intended for a penguin, the judge will agree with you that
if the bird couldn’t fly I should have said so.

The proposed Common Business Communication Language (CBCL) (Mc-
Carthy 1982) must include nonmonotonic conventions about what may be
inferred when a message leaves out such items as the method of delivery.

2. As a database or information storage convention. It may be a con-
vention of a particular database that certain predicates have their minimal
extension. This generalizes the closed world assumption. When a database
makes the closed world assumption for all predicates it is reasonable to imbed
this fact in the programs that use the database. However, when only some
predicates are to be minimized, we need to say which ones by appropriate
sentences of the database, perhaps as a preamble to the collection of ground
sentences that usually constitute the main content.

Neither 1 nor 2 requires that most birds can fly. Should it happen that
most birds that are subject to the communication or about which informa-
tion is requested from the data base cannot fly, the convention may lead to
inefficiency but not incorrectness.

3. As a rule of conjecture. This use was emphasized in (McCarthy 1980).
The circumscriptions may be regarded as expressions of some probabilistic
notions such as “most birds can fly” or they may be expressions of standard
cases. Thus it is simple to conjecture that there are no relevant present
material objects other than those whose presence can be inferred. It is also
a simple conjecture that a tool asserted to be present is usable for its normal
function. Such conjectures sometimes conflict, but there is nothing wrong
with having incompatible conjectures on hand. Besides the possibility of
deciding that one is correct and the other wrong, it is possible to use one for
generating possible exceptions to the other.

4. As a representation of a policy. The example is Doyle’s “The meeting
will be on Wednesday unless another decision is explicitly made”. Again
probabilities are not involved.

5. As a very streamlined expression of probabilistic information when nu-
merical probabilities, especially conditional probabilities, are unobtainable.
Since circumscription doesn’t provide numerical probabilities, its probabilis-
tic interpretation involves probabilities that are either infinitesimal, within
an infinitesimal of one, or intermediate — without any discrimination among
the intermediate values. The circumscriptions give conditional probabilities.
Thus we may treat the probability that a bird can’t fly as an infinitesimal.
However, if the rare event occurs that the bird is a penguin, then the con-

4

ditional probability that it can fly is infinitesimal, but we may hear of some
rare condition that would allow it to fly after all.

Why don’t we use finite probabilities combined by the usual laws? That
would be fine if we had the numbers, but circumscription is usable when we
can’t get the numbers or find their use inconvenient. Note that the general
probability that a bird can fly may be irrelevant, because we are interested
in the facts that influence our opinion about whether a particular bird can
fly in a particular situation.

Moreover, the use of probabilities is normally considered to require the
definition of a sample space, i.e. the space of all possibilities. Circumscription
allows one to conjecture that the cases we know about are all that there
are. However, when additional cases are found, the axioms don’t have to be
changed. Thus there is no fixed space of all possibilities.

Notice also that circumscription does not provide for weighing evidence;
it is appropriate when the information permits snap decisions. However,
many cases nominally treated in terms of weighing information are in fact
cases in which the weights are such that circumscription and other defaults
work better.

6. Auto-epistemic reasoning. “If I had an elder brother, I’d know it”. This
has been studied by R. Moore. Perhaps it can be handled by circumscription.

7. Both common sense physics and common sense psychology use non-
monotonic rules. An object will continue in a straight line if nothing inter-
feres with it. A person will eat when hungry unless something prevents it.
Such rules are open ended about what might prevent the expected behavior,
and this is required, because we are always encountering unexpected phe-
nomena that modify the operation of our rules. Science, as distinct from
common sense, tries to work with exceptionless rules. However, this means
that common sense reasoning has to decide when a scientific model is appli-
cable, i.e. that there are no important phenomena not taken into account by
the theories being used and the model of the particular phenomena.

Seven different uses for nonmonotonic reasoning seem too many, so per-
haps we can condense later.

4 MINIMIZING ABNORMALITY

Many people have proposed representing facts about what is “normally” the
case. One problem is that every object is abnormal in some way, and we

5

want to allow some aspects of the object to be abnormal and still assume
the normality of the rest. We do this with a predicate ab standing for “ab-
normal”. We circumscribe ab z. The argument of ab will be some aspect of
the entities involved. Some aspects can be abnormal without affecting oth-
ers. The aspects themselves are abstract entities, and their unintuitiveness
is somewhat a blemish on the theory.

The idea is illustrated by the examples of the following sections.

5 WHETHER BIRDS CAN FLY

Marvin Minsky challenged us advocates of formal systems based on math-
ematical logic to express the facts and nonmonotonic reasoning concerning
the ability of birds to fly.

There are many ways of nonmonotonically axiomatizing the facts about
which birds can fly. The following axioms using ab seem to me quite straight-
forward.

∀x.¬ab aspect1 x ⊃ ¬flies x. (2)

Unless an object is abnormal in aspect1, it can’t fly. (We’re using a con-
vention that parentheses may be omitted for functions and predicates of one
argument, so that (2) is the same as ∀x.(¬ab(aspect1(x)) ⊃ ¬flies(x)).)

It wouldn’t work to write ab x instead of ab aspect1 x, because we don’t
want a bird that is abnormal with respect to its ability to fly to be automat-
ically abnormal in other respects. Using aspects limits the effects of proofs
of abnormality.

∀x.bird x ⊃ ab aspect1 x. (3)

∀x.bird x ∧ ¬ab aspect2 x ⊃ flies x. (4)

Unless a bird is abnormal in aspect2, it can fly.
A bird is abnormal in aspect1, so (2) can’t be used to show it can’t fly. If

(3) were omitted, when we did the circumscription we would only be able to
infer a disjunction. Either a bird is abnormal in aspect1 or it can fly unless
it is abnormal in aspect2. (3) expresses our preference for inferring that a
bird is abnormal in aspect1 rather than aspect2. We call (3) a cancellation

6

of inheritance axiom.

∀x.ostrich x ⊃ ab aspect2 x. (5)

Ostriches are abnormal in aspect2. This doesn’t say that an ostrich cannot
fly — merely that (4) can’t be used to infer that it does. (5) is another
cancellation of inheritance axiom.

∀x.penguin x ⊃ ab aspect2 x. (6)

Penguins are also abnormal in aspect2.

∀x.ostrich x ∧ ¬ab aspect3 x ⊃ ¬flies x. (7)

∀x.penguin x ∧ ¬ab aspect4 x ⊃ ¬flies x. (8)

Normally ostriches and penguins can’t fly. However, there is an out. (7) and
(8) provide that under unspecified conditions, an ostrich or penguin might
fly after all. If we give no such conditions, we will conclude that an ostrich
or penguin can’t fly. Additional objects that can fly may be specified. Each
needs two axioms. The first says that it is abnormal in aspect1 and prevents
(2) from being used to say that it can’t fly. The second provides that it can
fly unless it is abnormal in yet another way. Additional non-flying birds can
also be provided for at a cost of two axioms per kind.

We haven’t yet said that ostriches and penguins are birds, so let’s do that
and throw in that canaries are birds also.

∀x.ostrich x ⊃ bird x. (9)

∀x.penguin x ⊃ bird x. (10)

∀x.canary x ⊃ bird x. (11)

Asserting that ostriches, penguins and canaries are birds will help inherit
other properties from the class of birds. For example, we have

∀x.bird x ∧ ¬ab aspect5 x ⊃ feathered x. (12)

7

So far there is nothing to prevent ostriches, penguins and canaries from
overlapping. We could write disjointness axioms like

∀x.¬ostrich x ∨ ¬penguin x, (13)

but we require n2 of them if we have n species. It is more efficient to write
axioms like

∀x.ostrich x ⊃ species x = ′ostrich, (14)

which makes the n species disjoint with only n axioms assuming that the
distinctness of the names is apparent to the reasoner. This problem is like
the unique names problem.

If these are the only facts to be taken into account, we must somehow
specify that what can fly is to be determined by circumscribing the wff ab z

using ab and flies as variables. Why exactly these? If ab were not taken
as variable, ab z couldn’t vary either, and the minimization problem would
go away. Since the purpose of the axiom set is to describe what flies, the
predicate flies must be varied also. Suppose we contemplate taking bird as
variable also. In the first place, this violates an intuition that deciding what
flies follows deciding what is a bird in the common sense situations we want
to cover. Secondly, if we use exactly the above axioms and admit bird as a
variable, we will further conclude that the only birds are penguins, canaries
and ostriches. Namely, for these entities something has to be abnormal,
and therefore minimizing ab z will involve making as few entities as possible
penguins, canaries and ostriches. If we also admit penguin, ostrich, and
canary as variable, we will succeed in making ab z always false, and there
will be no birds at all.

However, if the same circumscriptions are done with additional axioms
like canary Tweety and ostrich Joe, we will get the expected result that
Tweety can fly and Joe cannot even if all the above are variable.

While this works it may be more straightforward, and therefore less likely
to lead to subsequent trouble, to circumscribe birds, ostriches and penguins
with axioms like

∀x.¬ab aspect6 x ⊃ ¬bird x, (15)

We have not yet specified how a program will know what to circumscribe.
One extreme is to build it into the program, but this is contrary to the
declarative spirit. However, a statement of what to circumscribe isn’t just

8

a sentence of the language because of its nonmonotonic character. Another
possibility is to include some sort of metamathematical statement like

circumscribe(ab z ; ab, flies, bird, ostrich, penguin) (16)

in a “policy” database available to the program. (16) is intended to mean that
ab z is to be circumscribed with ab, flies, bird, ostrich and penguin taken as
variable. Explicitly listing the variables makes adding new kinds awkward,
since they will have to be mentioned in the circumscribe statement. Section
11 on simple abnormality theories presents yet another possibility.

6 THE UNIQUE NAMES HYPOTHESIS

Raymond Reiter (1980b) introduced the phrase “unique names hypothesis”
for the assumption that each object has a unique name, i.e. that distinct
names denote distinct objects. We want to treat this nonmonotonically.
Namely, we want a wff that picks out those models of our initial assumptions
that maximize the inequality of the denotations of constant symbols. While
we’re at it, we might as well try for something stronger. We want to maximize
the extent to which distinct terms designate distinct objects. When there
is a unique model of the axioms that maximizes distinctness, we can put it
more simply; two terms denote distinct objects unless the axioms force them
to denote the same. If we are even more fortunate, as we are in the examples
to be given, we can say that two terms denote distinct objects unless their
equality is provable.

We don’t know a completely satisfactory way of doing this. Suppose
that we have a language L and a theory T consisting of the consequences
of a formula A. It would be most pleasant if we could just circumscribe
equality, but as Etherington, Mercer and Reiter (1985) point out, this doesn’t
work, and nothing similar works. We could hope to circumscribe some other
formula of L, but this doesn’t seem to work either. Failing that, we could
hope for some other second order formula taken from L that would express
the unique names hypothesis, but we don’t presently see how to do it.

Our solution involves extending the language by introducing the names
themselves as the only objects. All assertions about objects are expressed as
assertions about the names.

We suppose our theory is such that the names themselves are all provably
distinct. There are several ways of doing this. Let the names be n1, n2, etc.

9

The simplest solution is to have an axiom ni 6= nj for each pair of distinct
names. This requires a number of axioms proportional to the square of
the number of names, which is sometimes objectionable. The next solution
involves introducing an arbitrary ordering on the names. We have special
axioms n1 < n2, n2 < n3, n3 < n4, etc. and the general axioms ∀xy.x < y ⊃
x 6= y and ∀xyz.x < y ∧ y < z ⊃ x < z. This makes the number of axioms
proportional to the number of names. A third possibility involves mapping
the names onto integers with axioms like index n1 = 1, index n2 = 2, etc. and
using a theory of the integers that provides for their distinctness. The fourth
possibility involves using string constants for the names and “attaching” to
equality in the language a subroutine that computes whether two strings are
equal. If our names were quoted symbols as in LISP, this amounts to having
′a 6= ′b and all its countable infinity of analogs as axioms. Each of these
devices is useful in appropriate circumstances.

From the point of view of mathematical logic, there is no harm in having
an infinity of such axioms. From the computational point of view of a theorem
proving or problem solving program, we merely suppose that we rely on the
computer to generate the assertion that two names are distinct whenever
this is required, since a subroutine can easily tell whether two strings are the
same.

Besides axiomatizing the distinctness of the constants, we also want to
axiomatize the distinctness of terms. This may be accomplished by providing
for each function two axioms. Letting foo be a function of two arguments
we postulate

∀x1x2y1y2.foo(x1, y1) = foo(x2, y2) ⊃ x1 = x2 ∧ y1 = y2 (17)

and

∀xy.fnamefoo(x, y) = ′foo. (18)

The first axiom ensures that unless the arguments of foo are identical, its
values are distinct. The second ensures that the values of foo are distinct
from the values of any other function or any constant, assuming that we
refrain from naming any constant ′foo.

These axioms amount to making our domain isomorphic to an extension
of the Herbrand universe of the language.

Now that the names are guaranteed distinct, what about the objects
they denote? We introduce a predicate e(x, y) and axiomatize it to be an

10

equivalence relation. Its intended interpretation is that the names x and y

denote the same object. We then formulate all our usual axioms in terms
of names rather than in terms of objects. Thus on(n1, n2) means that the
object named by n1 is on the object named by n2, and bird x means that the
name x denotes a bird. We add axioms of substitutivity for e with regard to
those predicates and functions that are translates of predicates referring to
objects rather than predicates on the names themselves. Thus for a predicate
on and a function foo we may have axioms

∀n1n2n
′

1
n′

2
.e(n1, n

′

1
) ∧ e(n2, n

′

2
) ⊃ (on(n1, n2) ≡ on(n′

1
, n′

2
)) (19)

and
∀x1x2y1y2.e(x1, x2) ∧ e(y1, y2) ⊃ e(foo(x1, y1), foo(x2, y2)). (20)

If for some class C of names, we wish to assert the unique names hypoth-
esis, we simply use an axiom like

∀n1n2.n1 ∈ C ∧ n2 ∈ C ⊃ (e(n1, n2) ≡ n1 = n2). (21)

However, we often want only to assume that distinct names denote dis-
tinct objects when this doesn’t contradict our other assumptions. In general,
our axioms won’t permit making all names distinct simultaneously, and there
will be several models with maximally distinct objects. The simplest example
is obtained by circumscribing e(x, y) while adhering to the axiom

e(n1, n2) ∨ e(n1, n3)

where n1, n2, and n3 are distinct names. There will then be two models, one
satisfying e(n1, n2)∧¬e(n1, n3) and the other satisfying ¬e(n1, n2)∧e(n1, n3).

Thus circumscribing e(x, y) maximizes uniqueness of names. If we only
want unique names for some class C of names, then we circumscribe the
formula

x ∈ C ∧ y ∈ C ⊃ e(x, y). (22)

An example of such a circumscription is given in Appendix B. However, there
seems to be a price. Part of the price is admitting names as objects. Another
part is admitting the predicate e(x, y) which is substitutive for predicates and
functions of names that really are about the objects denoted by the names.
e(x, y) is not to be taken as substitutive for predicates on names that aren’t

11

about the objects. Of these our only present example is equality. Thus we
don’t have

∀n1n2n
′

1
n′

2
.e(n1, n

′

1
) ∧ e(n2, n

′

2
) ⊃ (n1 = n2 ≡ n′

1
= n′

2
).

The awkward part of the price is that we must refrain from any functions
whose values are the objects themselves rather than names. They would spoil
the circumscription by not allowing us to infer the distinctness of the objects
denoted by distinct names. Actually, we can allow them provided we don’t
include the axioms involving them in the circumscription. Unfortunately,
this spoils the other property of circumscription that lets us take any facts
into account.

The examples of the use of circumscription in AI in the rest of the paper
don’t interpret the variables as merely ranging over names. Therefore, they
are incompatible with getting unique names by circumscription as described
in this section. Presumably it wouldn’t be very difficult to revise those axioms
for compatibility with the present approach to unique names.

7 TWO EXAMPLES OF RAYMOND RE-

ITER

Reiter asks about representing, “Quakers are normally pacifists and Republi-
cans are normally non-pacifists. How about Nixon, who is both a Quaker and
a Republican?” Systems of nonmonotonic reasoning that use non-provability
as a basis for inferring negation will infer that Nixon is neither a pacifist nor
a non-pacifist. Combining these conclusions with the original premiss leads
to a contradiction. We use

∀x.quaker x ∧ ¬ab aspect1 x ⊃ pacifist x, (23)

∀x.republican x ∧ ¬ab aspect2 x ⊃ ¬pacifist x (24)

and
quaker Nixon ∧ republican Nixon. (25)

When we circumscribe ab z using these three sentences as A(ab, pacifist),
we will only be able to conclude that Nixon is either abnormal in aspect1 or
in aspect2, and we will not be able to say whether he is a pacifist. Of course,

12

this is the same conclusion as would be reached without circumscription. The
point is merely that we avoid contradiction.

Reiter’s second example is that a person normally lives in the same city as
his wife and in the same city as his employer. But A’s wife lives in Vancouver
and A’s employer is in Toronto. We write

∀x.¬ab aspect1 x ⊃ city x = city wife x (26)

and
∀x.¬ab aspect2 x ⊃ city x = city employer x. (27)

If we have

city wife A = V ancouver∧city employer A = Toronto∧Toronto 6= V ancouver,

(28)
we will again only be able to conclude that A lives either in Toronto or Van-
couver. In this circumscription, the function city must be taken as variable.
This might be considered not entirely satisfactory. If one knows that a person
either doesn’t live in the same city as his wife or doesn’t live in the same city
as his employer, then there is an increased probability that he doesn’t live in
the same city as either. A system that did reasoning of this kind would seem
to require a larger body of facts and perhaps more explicitly metamathemat-
ical reasoning. Not knowing how to do that, we might want to use aspect1 x

in both (26) and (27). Then we would conclude nothing about his city once
we knew that he wasn’t in the same city as both.

8 A MORE GENERAL TREATMENT OF

AN IS-A HIERARCHY

The bird example works fine when a fixed is-a hierarchy is in question. How-
ever, our writing the inheritance cancellation axioms depended on knowing
exactly from what higher level the properties were inherited. This doesn’t
correspond to my intuition of how we humans represent inheritance. It would
seem rather that when we say that birds can fly, we don’t necessarily have
in mind that an inheritance of inability to fly from things in general is being
cancelled. We can formulate inheritance of properties in a more general way
provided we reify the properties. Presumably there are many ways of doing
this, but here’s one that seems to work.

13

The first order variables of our theory range over classes of objects (de-
noted by c with numerical suffixes), properties (denoted by p) and objects
(denoted by x). We don’t identify our classes with sets (or with the classes
of Gödel-Bernays set theory). In particular, we don’t assume extensionality.
We have several predicates:

ordinarily(c, p) means that objects of class c ordinarily have property p.
c1 ≤ c2 means that class c1 ordinarily inherits from class c2. We assume
that this relation is transitive. in(x, c) means that the object x is in class c.
ap(p, x) means that property p applies to object x. Our axioms are

∀c1c2c3.c1 ≤ c2 ∧ c2 ≤ c3 ⊃ c1 ≤ c3, (29)

∀c1c2p.ordinarily(c2, p)∧c1 ≤ c2∧¬ab aspect1(c1, c2, p) ⊃ ordinarily(c1, p),
(30)

∀c1c2c3p.c1 ≤ c2 ∧ c2 ≤ c3 ∧ ordinarily(c2, not p) ⊃ ab aspect1(c1, c3, p),
(31)

∀xcp.in(x, c) ∧ ordinarily(c, p) ∧ ¬ab aspect2(x, c, p) ⊃ ap(p, x), (32)

∀xc1c2p.in(x, c1) ∧ c1 ≤ c2 ∧ ordinarily(c1, not p) ⊃ ab aspect2(x, c2, p).
(33)

Axiom (29) is the afore-mentioned transitivity of ≤. (30) says that properties
that ordinarily hold for a class are inherited unless something is abnormal.
(31) cancels the inheritance if there is an intermediate class for which the
property ordinarily doesn’t hold. (32) says that properties which ordinarily
hold actually hold for elements of the class unless something is abnormal.
(33) cancels the effect of (32) when there is an intermediate class for which
the negation of the property ordinarily holds. Notice that this reification of
properties seems to require imitation boolean operators. Such operators are
discussed in (McCarthy 1979).

9 THE BLOCKS WORLD

The following set of “situation calculus” axioms solves the frame problem for
a blocks world in which blocks can be moved and painted. Here result(e, s)

14

denotes the situation that results when event e occurs in situation s. The
formalism is approximately that of (McCarthy and Hayes 1969).

∀xes.¬ab aspect1(x, e, s) ⊃ location(x, result(e, s)) = location(x, s). (34)

∀xes.¬ab aspect2(x, e, s) ⊃ color(x, result(e, s)) = color(x, s). (35)

Objects change their locations and colors only for a reason.

∀xls.ab aspect1(x,move(x, l), s) (36)

and

∀xls.¬ab aspect3(x, l, s) ⊃ location(x, result(move(x, l), s)) = l. (37)

∀xcs.ab aspect2(x, paint(x, c), s) (38)

and

∀xcs.¬ab aspect4(x, c, s) ⊃ color(x, result(paint(x, c), s)) = c. (39)

Objects change their locations when moved and their colors when painted.

∀xls.¬clear(topx, s) ∨ ¬clear(l, s) ∨ tooheavy x ∨ l = top x (40)

⊃ ab aspect3(x, l, s). (41)

This prevents the rule (36) from being used to infer that an object will move
if its top isn’t clear or to a destination that isn’t clear or if the object is too
heavy. An object also cannot be moved to its own top.

∀ls.clear(l, s) ≡ ¬∃x.(¬trivial x ∧ location(x, s) = l). (42)

A location is clear if all the objects there are trivial, e.g. a speck of dust.

∀x.¬ab aspect5 x ⊃ ¬trivial x. (43)

Trivial objects are abnormal in aspect5.

15

10 AN EXAMPLE OF DOING THE CIR-

CUMSCRIPTION

In order to keep the example short we will take into account only the following
facts from the earlier section on flying.

∀x.¬ab aspect1 x ⊃ ¬flies x. (2)

∀x.bird x ⊃ ab aspect1 x. (3)

∀x.bird x ∧ ¬ab aspect2 x ⊃ flies x. (4)

∀x.ostrich x ⊃ ab aspect2 x. (5)

∀x.ostrich x ∧ ¬ab aspect3 x ⊃ ¬flies x. (7)

Their conjunction is taken as A(ab, flies). This means that what entities
satisfy ab and what entities satisfy flies are to be chosen so as to minimize
ab z. Which objects are birds and ostriches are parameters rather than
variables, i.e. what objects are birds is considered given.

We also need an axiom that asserts that the aspects are different. Here
is a straightforward version that would be rather long were there more than
three aspects.

(∀xy.¬(aspect1 x = aspect2 y))
∧(∀xy.¬(aspect1 x = aspect3 y))
∧(∀xy.¬(aspect2 x = aspect3 y))

∧(∀xy.aspect1 x = aspect1 y ≡ x = y)
∧(∀xy.aspect2 x = aspect2 y ≡ x = y)
∧(∀xy.aspect3 x = aspect3 y ≡ x = y).

We could include this axiom in A(ab, flies), but as we shall see, it won’t
matter whether we do, because it contains neither ab nor flies. The circum-
scription formula A′(ab, flies) is then

A(ab, flies)∧∀ab′flies′.[A(ab′, f lies′)∧[∀x.ab′ x ⊃ ab x] ⊃ [∀x.ab x ≡ ab′ x]],
(41)

16

which spelled out becomes

[∀x.¬ab aspect1 x ⊃ ¬flies x]
∧[∀x.bird x ⊃ ab aspect1 x]
∧[∀x.bird x ∧ ¬ab aspect2 x ⊃ flies x]
∧[∀x.ostrich x ⊃ ab aspect2 x]
∧[∀x.ostrich x ∧ ¬ab aspect3 x ⊃ ¬flies x]
∧∀ab′ flies′. [[∀x.¬ab′ aspect1 x ⊃ ¬flies′ x]

∧[∀x.bird x ⊃ ab′ aspect1 x]
∧[∀x.bird x ∧ ¬ab′ aspect2 x ⊃ flies′ x]
∧[∀x.ostrich x ⊃ ab′ aspect2 x]
∧[∀x.ostrich x ∧ ¬ab′ aspect3 x ⊃ ¬flies′ x]
∧[∀z.ab′ z ⊃ ab z]

⊃ [∀z.ab z ≡ ab′ z]].

(42)

A(ab, flies) is guaranteed to be true, because it is part of what is assumed
in our common sense database. Therefore (42) reduces to

∀ab′flies′.[[∀x.¬ab′ aspect1 x ⊃ ¬flies′ x]
∧[∀x.bird x ⊃ ab′ aspect1 x]
∧[∀x.bird x ∧ ¬ab′ aspect2 x ⊃ flies′ x]
∧[∀x.ostrich x ⊃ ab′ aspect2 x]
∧[∀x.ostrich x ∧ ¬ab′ aspect3 x ⊃ ¬flies′ x]
∧[∀z.ab′ z ⊃ ab z]
⊃ [∀z.ab z ≡ ab′ z]].

(43)

Our objective is now to make suitable substitutions for ab′ and flies′

so that all the terms preceding the ⊃ in (43) will be true, and the right
side will determine ab. The axiom A(ab, flies) will then determine flies,
i.e. we will know what the fliers are. flies′ is easy, because we need only
apply wishful thinking; we want the fliers to be just those birds that aren’t
ostriches. Therefore, we put

flies′ x ≡ bird x ∧ ¬ostrich x. (44)

ab′ isn’t really much more difficult, but there is a notational problem. We
define

ab′ z ≡ [∃x.bird x ∧ z = aspect1 x] ∨ [∃x.ostrich x ∧ z = aspect2 x], (45)

17

which covers the cases we want to be abnormal.
Appendix A contains a complete proof as accepted by Jussi Ketonen’s

(1984) interactive theorem prover EKL. EKL uses the theory of types and
therefore has no problem with the second order logic required by circum-
scription.

11 SIMPLE ABNORMALITY THEORIES

The examples in this paper all circumscribe the predicate ab. However, they
differ in what they take as variable in the circumscription. The declara-
tive expression of common sense requires that we be definite about what
is circumscribed and what is variable in the circumscription. We have the
following objectives.

1. The general facts of common sense are described by a collection of
sentences that are not oriented in advance to particular problems.

2. It is prescribed how to express the facts of particular situations includ-
ing the goals to be achieved.

3. The general system prescribes what is to be circumscribed and what
is variable.

4. Once the facts to be taken into account are chosen, the circumscription
process proceeds in a definite way resulting in a definite theory — in general
second order.

5. The conclusions reached taking a given set of facts into account are
intuitively reasonable.

These objectives are the same as those of (McCarthy 1959) except that
that paper used only monotonic reasoning.

The examples of this paper suggest defining a simple abnormality formal-

ism used as follows.
1. The general facts include ab and a variety of aspects.
2. The specific facts do not involve ab.
3. The circumscription of ab is done with all predicates variable. This

means that the axioms must be sufficient to tie them down.
I had hoped that the simple abnormality formalism would be adequate

to express common sense knowledge. Unfortunately, this seems not to be the
case. Consider the following axioms.

¬ab aspect1 x ⊃ ¬flies x,

18

bird x ⊃ ab aspect1 x,

bird x ∧ ¬ab aspect2 x ⊃ flies x,

canary x ∧ ¬ab aspect3 x ⊃ bird x,

canary Tweety.

We ask whether Tweety flies. Simply circumscribing ab leaves this undecided,
because Tweety can either be abnormal in aspect1 or in aspect3. Common
sense tells us that we should conclude that Tweety flies. This can be achieved
by preferring to have Tweety abnormal in aspect1 to having Tweety abnor-
mal in aspect3. It is not yet clear whether this can be done using the simple

circumscriptive formalism. Our approach to solving this problem is discussed
in the following section on prioritized circumscription. However, simple ab-
normality theories may be adequate for an interesting set of common sense
axiomatizations.

12 PRIORITIZED CIRCUMSCRIPTION

An alternate way of introducing formula circumscription is by means of an
ordering on tuples of predicates satisfying an axiom. We define P ≤ P ′ by

∀PP ′.P ≤ P ′ ≡ ∀x.E(P, x) ⊃ E(P ′, x). (46)

That P0 is a relative minimum in this ordering is expressed by

∀P.P ≤ P0 ⊃ P = P0, (47)

where equality is interpreted extensionally, i.e. we have

∀PP ′.P = P ′ ≡ (∀x.E(P, x) ≡ E(P ′, x)). (48)

Assuming that we look for a minimum among predicates P satisfying
A(P), (46) expands to precisely to the circumscription formula (1). In some
earlier expositions of circumscription this ordering approach was used, and
Vladimir Lifschitz in a recent seminar advocated returning to it as a more
fundamental and understandable concept.

I’m beginning to think he’s right about it being more understandable, and
there seems to be a more fundamental reason for using it. Namely, certain
common sense axiomatizations are easier to formalize if we use a new kind

19

of ordering, and circumscription based on this kind of ordering doesn’t seem
to reduce to ordinary formula circumscription.

We call it prioritized circumscription.

Suppose we write some bird axioms in the form

∀x.¬ab aspect1 x ⊃ ¬flies x (49)

and
∀x.bird x ∧ ¬ab aspect2 x ⊃ ab aspect1 x. (50)

The intent is clear. The goal is that being a bird and not abnormal in
aspect2 prevents the application of (49). However, circumscribing ab z with
the conjunction of (49) and (50) as A(ab) doesn’t have this effect, because
(50) is equivalent to

∀x.bird x ⊃ ab aspect1 x ∨ ab aspect2 x, (51)

and there is no indication that one would prefer to have aspect1 x abnor-
mal rather than to have aspect2 x abnormal. Circumscription then results
in a disjunction which is not wanted in this case. The need to avoid this
disjunction is why the axioms in section 5 (page 6) included cancellation of
inheritance axioms.

However, by using a new kind of ordering we can leave (49) and (50) as
is, and still get the desired effect.

We define two orderings on ab predicates, namely

∀ab ab′.ab ≤1 ab′ ≡ ∀x.ab aspect1 x ⊃ ab′ aspect1 x (52)

and
∀ab ab′.ab ≤2 ab′ ≡ ∀x.ab aspect2 x ⊃ ab′ aspect2 x. (53)

We then combine these orderings lexicographically giving ≤2 priority over
≤1 getting

∀ab ab′.ab ≤1<2 ab′ ≡ ab ≤2 ab′ ∧ ab =2 ab′ ⊃ ab ≤1 ab′. (54)

Choosing ab0 so as to minimize this ordering yields the result that exactly
birds can fly. However, if we add

∀x.ostrich x ⊃ ab aspect2 x, (55)

20

we’ll get that ostriches (whether or not ostriches are birds) don’t fly without
further axioms. If we use

∀x.ostrich x ∧ ¬ab aspect3 x ⊃ ab aspect2 x (56)

instead of (55), we’ll have to revise our notion of ordering to put minimizing
ab aspect3 x at higher priority than minimizing aspect2 x and a fortiori at
higher priority than minimizing aspect1.

This suggests providing a partial ordering on aspects giving their prior-
ities and providing axioms that permit deducing the ordering on ab from
the sentences that describe the ordering relations. Lifschitz (1985) further
develops the idea of prioritized circumscription.

I expect that prioritized circumscription will turn out to be the most
natural and powerful variant.

Simple abnormality theories seem to be inadequate also for the blocks
world described in section 11. I am indebted to Lifschitz for the following
example. Consider

S2 = result(move(B, top A), result(move(A, top B), S0)), (57)

where S0 is a situation with exactly blocks A and B on the table. Intuitively,
the second action move(B, top A) is unsuccessful, because after the first
action A is on B, and so B isn’t clear. Suppose we provide by a suitable
axiom that when the block to be moved is not clear or the destination place
is not clear, then the situation is normally unchanged. Then S2 should
be the same situation as S1 = result(move(A,B), S0). However, simple
circumscription of ab won’t give this result, because the first move is only
normally successful, and if the first move is unsuccessful for some unspecified
reason, the second move may succeed after all. Therefore, circumscription of
ab only gives a disjunction.

Clearly the priorities need to be arranged to avoid this kind of unintended
“sneak disjunction”. The best way to do it by imposing priorities isn’t clear
at the time of this writing.

13 GENERAL CONSIDERATIONS AND RE-

MARKS

1. Suppose we have a data base of facts axiomatized by a formalism involving
the predicate ab. In connection with a particular problem, a program takes a

21

subcollection of these facts together with the specific facts of the problem and
then circumscribes ab z. We get a second order formula, and in general, as
the natural number example of (McCarthy 1980) shows, this formula is not
equivalent to any first order formula. However, many common sense domains
are axiomatizable in such a way that the circumscription is equivalent to a
first order formula. In this case we call the circumscription collapsible. For
example, Vladimir Lifschitz (1985) has shown that this is true if the axioms
are from a certain class he calls “separable” formulas. This can presumably
be extended to other cases in which the ranges and domains of the functions
are disjoint, so that there is no way of generating an infinity of elements.

Circumscription is also collapsible when the predicates are all monadic
and there are no functions.

2. We can then regard the process of deciding what facts to take into
account and then circumscribing as a process of compiling from a slightly
higher level nonmonotonic language into mathematical logic, especially first
order logic. We can also regard natural language as higher level than logic.
However, as I shall discuss elsewhere, natural language doesn’t have an inde-
pendent reasoning process, because most natural language inferences involve
suppressed premisses which are not represented in natural language in the
minds of the people doing the reasoning.

Reiter has pointed out, both informally and implicitly in (Reiter 1982)
that circumscription often translates directly into Prolog program once it has
been decided what facts to take into account.

3. Circumscription has interesting relations to Reiter’s (1980a) logic of
defaults. In simple cases they give the same results. However, a computer
program using default logic would have to establish the existence of mod-
els, perhaps by constructing them, in order to determine that the sentences
mentioned in default rules were consistent. Such computations are not just
selectively applying the rules of inference of logic but are metamathematical.
At present this is treated entirely informally, and I am not aware of any com-
puter program that finds models of sets of sentences or even interacts with
a user to find and verify such models.

Circumscription works entirely within logic as Appendices A and B illus-
trate. It can do this, because it uses second order logic to import some of the
model theory of first order formulas into the theory itself. Finding the right
substitution for the predicate variables is, in the cases we have examined,
the same task as finding models of a first order theory. Putting everything
into the logic itself is an advantage as long as there is neither a good theory

22

of how to construct models nor programs that do it.
Notice, however, that finding an interpretation of a language has two

parts — finding a domain and interpreting the predicate and function letters
by predicates and functions on the domain. It seems that the second is
easier to import into second order logic than the first. This may be why our
treatment of unique names is awkward.

4. We are only part way to our goal of providing a formalism in which
a database of common sense knowledge can be expressed. Besides sets of
axioms involving ab, we need ways of specifying what facts shall be taken
into account and what functions and predicates are to be taken as variable.

Moreover, some of the circumscriptions have unwanted conclusions, e.g.
that there are no ostriches if none are explicitly mentioned. Perhaps some of
this can be fixed by introducing the notion of present situation. An axiom
that ostriches exist will do no harm if what is allowed to vary includes only
ostriches that are present.

5. Nonmonotonic formalisms in general, and circumscription in particu-
lar, have many as yet unrealized applications to formalizing common sense
knowledge and reasoning. Since we have to think about these matters in a
new way, what the applications are and how to realize them isn’t immediately
obvious. Here are some suggestions.

When we are searching for the “best” object of some kind, we often jump
to the conclusion that the best we have found so far is the best. This process
can be represented as circumscribing better(x, candidate), where candidate

is the best we have found so far. If we attempt this circumscription while
including certain information in our axiom A(better, P), where P represents
additional predicates being varied, we will succeed in showing that there is
nothing better only if this is consistent with the information we take into
account. If the attempt to circumscribe fails, we would like our reasoning
program to use the failure as an aid to finding a better object. I don’t know
how hard this would be.

14 APPENDIX A

CIRCUMSCRIPTION IN A PROOF CHECKER

At present there are no reasoning or problem-solving programs using circum-
scription. A first step towards such a program involves determining what

23

kinds of reasoning are required to use circumscription effectively. As a step
towards this we include in this and the following appendix two proofs in EKL
(Ketonen and Weening 1984), an interactive theorem prover for the theory
of types. The first does the bird problem and the second a simple unique
names problem. It will be seen that the proofs make substantial use of EKL’s
ability to admit arguments in second order logic.

Each EKL step begins with a command given by the user. This is usually
followed by the sentence resulting from the step in a group of lines each ending
in a semicolon, but this is omitted for definitions when the information is
contained in the command. We follow each step by a brief explanation. Of
course, the reader may skip this proof if he is sufficiently clear about what
steps are involved. However, I found that pushing the proof through EKL
clarified my ideas considerably as well as turning up bugs in my axioms.

1. (DEFINE A

|∀AB FLIES.A(AB,FLIES) ≡
(∀X.¬AB(ASPECT1(X)) ⊃ ¬FLIES(X))∧
(∀X.BIRD(X) ⊃ AB(ASPECT1(X)))∧
(∀X.BIRD(X) ∧ ¬AB(ASPECT2(X)) ⊃ FLIES(X))∧
(∀X.OSTRICH(X) ⊃ AB(ASPECT2(X)))∧
(∀X.OSTRICH(X) ∧ ¬AB(ASPECT3(X)) ⊃ ¬FLIES(X))|NIL)

This defines the second order predicate A(ab, flies), where ab and flies are
predicate variables. Included here are the specific facts about flying being
taken into account.

; labels : SIMPINFO

2. (AXIOM

|(∀X Y.¬ASPECT1(X) = ASPECT2(Y))∧
(∀X Y.¬ASPECT1(X) = ASPECT3(Y))∧
(∀X Y.¬ASPECT2(X) = ASPECT3(Y))∧
(∀X Y.ASPECT1(X) = ASPECT1(Y) ≡ X = Y)∧
(∀X Y.ASPECT2(X) = ASPECT2(Y) ≡ X = Y)∧
(∀X Y.ASPECT3(X) = ASPECT3(Y) ≡ X = Y)|)

These facts about the distinctness of aspects are used in step 20 only. Since
axiom 2 is labelled SIMPINFO, the EKL simplifier uses it as appropriate

24

when it is asked to simplify a formula.

3. (DEFINE A1
|∀AB FLIES.A1(AB,FLIES) ≡

A(AB,FLIES)∧
(∀AB1 FLIES1.A(AB1, FLIES1) ∧ (∀Z.AB1(Z) ⊃ AB(Z)) ⊃
(∀Z.AB(Z) ≡ AB1(Z)))|NIL)

This is the circumscription formula itself.

4. (ASSUME |A1(AB,FLIES)|)
deps : (4)

Since EKL cannot be asked (yet) to do a circumscription, we assume the
result. Most subsequent statements list line 4 as a dependency. This is
appropriate since circumscription is a rule of conjecture rather than a rule of
inference.

5. (DEFINE FLIES2|∀X.FLIES2(X) ≡ BIRD(X) ∧ ¬OSTRICH(X)|NIL)

This definition and the next say what we are going to substitute for the
bound predicate variables.

6. (DEFINE AB2
|∀Z.AB2(Z) ≡ (∃X.BIRD(X) ∧ Z = ASPECT1(X))∨
(∃X.OSTRICH(X) ∧ Z = ASPECT2(X))|NIL)

The fact that this definition is necessarily somewhat awkward makes for some
difficulty throughout the proof.

7. (RW 4 (OPEN A1))
A(AB,FLIES) ∧ (∀AB1 FLIES1.A(AB1, FLIES1)∧
(∀Z.AB1(Z) ⊃ AB(Z)) ⊃ (∀Z.AB(Z) ≡ AB1(Z)))
deps : (4)

This step merely expands out the circumscription formula. RW stands for
“rewrite a line”, in this case line 4.

8.(TRW |A(AB,FLIES)|(USE 7))
A(AB,FLIES)
deps : (4)

25

We separate the two conjuncts of 7 in this and the next step.

9. (TRW |∀AB1 FLIES1.A(AB1, FLIES1)∧
(∀Z.AB1(Z) ⊃ AB(Z)) ⊃ (∀Z.AB(Z) ≡ AB1(Z))|
(USE 7))
∀AB1 FLIES1.A(AB1, FLIES1) ∧ (∀Z.AB1(Z) ⊃ AB(Z)) ⊃
(∀Z.AB(Z) ≡ AB1(Z))
deps : (4)

10. (RW 8 (OPEN A))
(∀X.¬AB(ASPECT1(X)) ⊃ ¬FLIES(X))∧
(∀X.BIRD(X) ⊃ AB(ASPECT1(X)))∧
(∀X.BIRD(X) ∧ ¬AB(ASPECT2(X)) ⊃ FLIES(X))∧
(∀X.OSTRICH(X) ⊃ AB(ASPECT2(X)))∧
(∀X.OSTRICH(X) ∧ ¬AB(ASPECT3(X)) ⊃ ¬FLIES(X))
deps : (4)

Expanding out the axiom using the definition a in step 1.

11. (ASSUME |AB2(Z)|)
deps : (11)

Our goal is step 15, but we need to assume its premiss and then derive its
conclusion.

12. (RW11 (OPEN AB2))
(∃X.BIRD(X) ∧ Z = ASPECT1(X))∨
(∃X.OSTRICH(X) ∧ Z = ASPECT2(X))
deps : (11)

We use the definition of ab.

13. (DERIV E |AB(Z)| (12 10) NIL)
AB(Z)
deps : (4 11)

This is our first use of EKL’s DERIVE command. It is based on the notion of
direct proof of (Ketonen and Weyhrauch 1984). Sometimes it can do rather
complicated things in one step.

26

14. (CI (11) 13 NIL)
AB2(Z) ⊃ AB(Z)
deps : (4)

We discharge the assumption 11 with the “conditional introduction” com-
mand.

15. (DERIV E |∀Z.AB2(Z) ⊃ AB(Z)| (14) NIL)
∀Z.AB2(Z) ⊃ AB(Z)
deps : (4)

Universal generalization.

16. (DERIV E

|(∀X.¬AB2(ASPECT1(X)) ⊃ ¬FLIES2(X))∧
(∀X.BIRD(X) ⊃ AB2(ASPECT1(X)))∧
(∀X.BIRD(X) ∧ ¬AB2(ASPECT2(X)) ⊃ FLIES2(X))∧
(∀X.OSTRICH(X) ⊃ AB2(ASPECT2(X)))∧
(∀X.OSTRICH(X) ∧ ¬AB2(ASPECT3(X)) ⊃
¬FLIES2(X))|()(OPEN AB2 FLIES2))

; (∀X.¬AB2(ASPECT1(X)) ⊃ ¬FLIES2(X))∧
; (∀X.BIRD(X) ⊃ AB2(ASPECT1(X)))∧
; (∀X.BIRD(X) ∧ ¬AB2(ASPECT2(X)) ⊃ FLIES2(X))∧
; (∀X.OSTRICH(X) ⊃ AB2(ASPECT2(X)))∧
; (∀X.OSTRICH(X) ∧ ¬AB2(ASPECT3(X)) ⊃ ¬FLIES2(X))

This is another rather lengthy computation, but it tells us that ab2 and
flies2 satisfy the axioms for ab and flies.

17. (UE ((AB.|AB2|) (FLIES.|FLIES2|)) 1 NIL)
; A(AB2, FLIES2) ≡
; (∀X.¬AB2(ASPECT1(X)) ⊃ ¬FLIES2(X))∧
; (∀X.BIRD(X) ⊃ AB2(ASPECT1(X)))∧
; (∀X.BIRD(X) ∧ ¬AB2(ASPECT2(X)) ⊃ FLIES2(X))∧
; (∀X.OSTRICH(X) ⊃ AB2(ASPECT2(X)))∧
; (∀X.OSTRICH(X) ∧ ¬AB2(ASPECT3(X)) ⊃ ¬FLIES2(X))

Now we substitute ab2 and flies2 in the definition of A and get a result we
can compare with step 16.

27

18. (RW 17 (USE 16))
; A(AB2, FLIES2)

We have shown that ab2 and flies2 satisfy A.

19. (DERIV E |∀Z.AB(Z) ≡ AB2(Z)| (9 15 18) NIL)
;∀Z.AB(Z) ≡ AB2(Z)
; deps : (4)

9 was the circumscription formula, and 15 and 18 are its two premisses, so
we can now derive its conclusion. Now we know exactly what entities are
abnormal.

20. (RW 8 ((USE 1 MODE : EXACT)
((USE 19 MODE : EXACT) (OPEN AB2))))
; (∀X.¬(∃X1.BIRD(X1) ∧X = X1) ⊃ ¬FLIES(X))∧
; (∀X.BIRD(X) ∧ ¬(∃X2.OSTRICH(X2) ∧X = X2) ⊃ FLIES(X))∧
; (∀X.OSTRICH(X) ⊃ ¬FLIES(X))
; deps : (4)

We rewrite the axiom now that we know what’s abnormal. This gives a
somewhat awkward formula that nevertheless contains the desired conclu-
sion. The occurrences of equality are left over from the elimination of the
aspects that used the axiom of step 2.

21. (DERIV E |∀X.FLIES(X) ≡
BIRD(X) ∧ ¬OSTRICH(X)| (20) NIL)
;∀X.FLIES(X) ≡ BIRD(X) ∧ ¬OSTRICH(X)
; deps : (4)

DERIVE straightens out 20 to put the conclusion in the desired form. The
result is still dependent on the assumption of the correctness of the circum-
scription made in step 4.

Clearly if circumscription is to become a practical technique, the reason-
ing has to become much more automatic.

28

15 APPENDIX B

Here is an annotated EKL proof that circumscribes the predicate e(x, y)
discussed in section 6.

(proof unique names)

What the user types is indicated by the numbered statements in lower case.
What EKL types is preceded by semicolons at the beginning of each line
and is in upper case. We omit EKL’s type-out when it merely repeats what
the command asked it to do, as in the commands DERIVE, ASSUME and
DEFINE.

1. (axiom |index a = 1 ∧ index b = 2 ∧ index c = 3 ∧ index d = 4|)

Since EKL does not have attachments to determine the equivalence of names,
we establish a correspondence between the names in our domain and some
natural numbers.

2. (derive|¬(1 = 2) ∧ ¬(1 = 3) ∧ ¬(2 = 3) ∧ ¬(1 = 4) ∧ ¬(2 = 4)∧
¬(3 = 4)|)

EKL does know about the distinctness of natural numbers, so this can be
derived.

(der − slow)

We have to tell EKL to use the properties of equality rather than regarding
it as just another predicate symbol in order to do the next step. Sometimes
this leads to combinatorial explosion.

3. (derive |a 6= b| (1 2))

This shows that two names themselves are distinct.

4. (define equiv |∀e.equiv e ≡ (∀x.e(x, x)) ∧ (∀x y.e(x, y) ⊃ e(y, x))
∧(∀x y z.e(x, y) ∧ e(y, z) ⊃ e(x, z))|)

Here we use second order logic to define the notion of equivalence relation.
The first word after “define” is the entity being defined and included between

29

vertical bars is the defining relation. EKL checks that an entity satisfying
the relation exists.

5. (define ax |∀e.ax e ≡ e(a, b) ∧ equiv e|)

We define ax as a predicate we want our imitation equality to satisfy. We
have chosen a very simple case, namely making a and b “equal” and nothing
else.

6. (define ax1|∀e.ax1 e ≡ ax e ∧ ∀e1.(ax e1 ∧ (∀ x y.e1(x, y) ⊃ e(x, y))
⊃ (∀x y.e(x, y) ≡ e1(x, y)))|)

This defines ax1 as the second order predicate specifying the circumscription
of ax.

7. (assume |ax1(e0)|)
(label circum)

We now specify that e0 satisfies ax1. It takes till step 17 to determine what
e0 actually is. When EKL includes circumscription as an operator, we may
be able to write something like circumscribe(e0, ax1) and make this step
occur. For now it’s just an ordinary assumption.

8. (define e2 |∀x y.e2(x, y) ≡ (x = a ∧ y = b) ∨ (x = b ∧ y = a)
∨x = y|)

The predicate e2 defined here is what e0 will turn out to be.

9. (derive |equive2| nil (open equiv) (open e2))

Now EKL agrees that e2 is an equivalence relation. This step takes the KL-10
about 14 seconds.

10. (derive |ax e2| (9) (open ax) (open e2))
(label ax e2)

Moreover it satisfies ax.

11. (rw circum (open ax1))
; AX(E0) ∧ (∀ E1.AX(E1) ∧ (∀X Y.E1(X,Y) ⊃ E0(X,Y)) ⊃
; (∀X Y.E0(X,Y) ≡ E1(X,Y)))
; deps : (CIRCUM)

30

A trivial step of expanding the definition of ax1. EKL tells us that this fact
depends on the assumption CIRCUM. So do many of the subsequent lines of
the proof, but we omit it henceforth to save space.

12. (trw |ax e0| (use 11))
; AX(E0)

The first conjunct of the previous step.

13. (rw 12 (open ax equiv))
(label fact1)
; E0(A,B) ∧ (∀X.E0(X,X)) ∧ (∀X Y.E0(X,Y) ⊃ E0(Y,X))∧
; (∀X Y Z.E0(X,Y) ∧ E0(Y, Z) ⊃ E0(X,Z))

We expand ax(e0) according to the definitions of ax and equiv.

14. (derive |∀p q r.(p ∨ q ⊃ r) ≡ (p ⊃ r) ∧ (q ⊃ r)|)
(label rewrite by cases)

This is a fact of propositional calculus used as a rewrite rule in the next step.
A program that can use circumscription by itself will either need to generate
this step or systematically avoid the need for it.

15. (trw |e2(x, y) ⊃ e0(x, y)|
((open e2) (use rewrite by cases mode : always) (use fact1)))

; E2(X,Y) ⊃ E0(X,Y)

This is the least obvious step, because rewrite by cases is used after some
preliminary transformation of the formula.

16. (derive |∀x y.e0(x, y) ≡ e2(x, y)| (ax e2 11 15))

DERIVE is substituting e2 for the variable e1 in step 11 and using the fact
ax(e2) and step 15 to infer the conclusion of the implication that follows the
quantifier ∀e.

17. (rw 16 (open E2))
;∀X Y.E0(X,Y) ≡ X = A ∧ Y = B ∨X = B ∧ Y = A ∨X = Y

; deps : (CIRCUM)

Expanding the definition of e2 tells us the final result of circumscribing
e0(x, y). A more complex ax(e0) — see step 5 — would give a more com-
plex result upon circumscription. However, it seems that the proof would be
similar. Therefore, it could perhaps be made into some kind of macro.

31

16 Acknowledgments

I have had useful discussions with Matthew Ginsberg, Benjamin Grosof,
Vladimir Lifschitz and Leslie Pack1. The work was partially supported by
NSF and by DARPA. I also thank Jussi Ketonen for developing EKL and
helping me with its use. In particular he greatly shortened the unique names
proof.

17 References

Etherington, D., Mercer, R. and Reiter, R. (1985). On the Adequacy of
Predicate Circumscription for Closed-World Reasoning, Computational In-

telligence 1.

Ketonen, Jussi and Joseph S. Weening (1984). EKL — An Interactive Proof

Checker, User’s Reference Manual, Computer Science Department, Stanford
University.

Ketonen, Jussi and Richard W. Weyhrauch (1984). A Decidable Fragment
of Predicate Calculus, accepted for publication in the Journal for Theoretical

Computer Science.

Lifschitz, Vladimir (1985). Computing Circumscription in Proc. IJCAI-85.

McCarthy, John (1959). Programs with Common Sense, in Proceedings of the

Teddington Conference on the Mechanization of Thought Processes, London:
Her Majesty’s Stationery Office.

McCarthy, John and Patrick Hayes (1969). Some Philosophical Problems
from the Standpoint of Artificial Intelligence, in B. Meltzer and D. Michie
(eds), Machine Intelligence 4, Edinburgh University. (Reprinted in B. L.
Webber and N. J. Nilsson (eds.), Readings in Artificial Intelligence, Tioga,
1981, pp. 431–450; also in M. J. Ginsberg (ed.), Readings in Nonmonotonic

Reasoning, Morgan Kaufmann, 1987, pp. 26–45)

McCarthy, John (1977). Epistemological Problems of Artificial Intelligence,
Proceedings of the Fifth International Joint Conference on Artificial Intel-

ligence, M.I.T., Cambridge, Mass. (Reprinted in B. L. Webber and N. J.

1Leslie P. Kaelbling

32

Nilsson (eds.), Readings in Artificial Intelligence, Tioga, 1981, pp. 459–465;
also in M. J. Ginsberg (ed.), Readings in Nonmonotonic Reasoning, Morgan
Kaufmann, 1987, pp. 46–52)

McCarthy, John (1979). First Order Theories of Individual Concepts and
Propositions, in Michie, Donald (ed.) Machine Intelligence 9, Ellis Horwood.

McCarthy, John (1980). Circumscription — A Form of Non-Monotonic Rea-
soning, Artificial Intelligence, Volume 13, Numbers 1,2. (Reprinted in B. L.
Webber and N. J. Nilsson (eds.), Readings in Artificial Intelligence, Tioga,
1981, pp. 466–472; also in M. J. Ginsberg (ed.), Readings in Nonmonotonic

Reasoning, Morgan Kaufmann, 1987, pp. 145–152)

McCarthy, John (1982). Common Business Communication Language, in
Textverarbeitung und Bürosysteme, Albert Endres and Jürgen Reetz, eds. R.
Oldenbourg Verlag, Munich and Vienna 1982.

Reiter, Raymond (1980a). A Logic for Default Reasoning, Artificial Intelli-

gence, Volume 13, Numbers 1,2, April.

Reiter, Raymond (1980b). Equality and domain closure in first order data
bases, J. ACM, 27, Apr. 1980, 235-249.

Reiter, Raymond (1982). Circumscription Implies Predicate Completion
(Sometimes), Proceedings of the National Conference on Artificial Intelli-

gence, AAAI-82, William Kaufman, Inc.

33

