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I can, but I won’t.1

Abstract

Human free will is a product of evolution and contributes to the
success of the human animal. Useful robots will also require free will
of a similar kind, and we will have to design it into them.

Free will is not an all-or-nothing thing. Some agents have more
free will, or free will of different kinds, than others, and we will try to
analyze this phenomenon. Our objectives are primarily technological,
i.e. to study what aspects of free will can make robots more useful,
and we will not try to console those who find determinism distressing.
We distinguish between having choices and being conscious of these
choices; both are important, even for robots, and consciousness of
choices requires more structure in the agent than just having choices
and is important for robots. Consciousness of free will is therefore not
just an epiphenomenon of structure serving other purposes.

Free will does not require a very complex system. Young children
and rather simple computer systems can represent internally ‘I can,

but I won’t’ and behave accordingly.
Naturally I hope this detailed design stance (Dennett 1978) will

help understand human free will. It takes the compatibilist philosoph-
ical position.
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There may be some readers interested in what the paper says about
human free will and who are put off by logical formulas. The formulas
are not important for the arguments about human free will; they are
present for people contemplating AI systems using mathematical logic.
They can skip the formulas, but the coherence of what remains is not
absolutely guaranteed.

1 Introduction—two aspects of free will

Free will, both in humans and in computer programs has two aspects—the
external aspect and the introspective aspect.

The external aspect is the set of results that an agent P can achieve, i.e.
what it can do in a situation s,

Poss(P, s) = {x|Can(P, x, s)}. (1)

Thus in the present situation, I can find my drink. In one sense I can climb
on the roof of my house and jump off. In another sense I can’t. (The different
senses of can will be discussed in Section 3.1). In a certain position, a chess
program can checkmate its opponent and can also move into a position lead-
ing to the opponent giving checkmate. What is x in Can(P, x, s)? In English
it usually has the grammatical form of an action, but in the interesting cases
it is not an elementary action like those treated in situation calculus. Thus
we have ‘I can go to Australia’, ‘I can make a million dollars’, ‘I can get a
new house’. Often the what is to be achieved is a fluent, e.g. the state of
having a new house.

In the most important case, Poss(P, s) depends only on the causal posi-
tion of P in the world and not on the internal structure of P .

The introspective aspect involves the agent P ’s knowledge of Poss(P, s),
i.e. its knowledge of what it can achieve. Here is where the human sense of
free will comes in. It depends on P having an internal structure that allows
certain aspects of its current state to be interpreted as expressing knowledge.
I know I can find my drink. In a simple chess position I would know I could
give checkmate in three, because the chess problem column in the newspaper
said so, although I mightn’t yet have been able to figure out how.

Some present computer programs, e.g. chess programs, have an extensive
Poss(P, s). However, their knowledge of Poss(P, s) as a set is very limited.
Indeed it is too limited for optimal functionality, and robots’ knowledge of
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their possibilities need to be made more like that of humans. For example, a
robot may conclude that in the present situation it has too limited a set of
possibilities. It may then undertake to ensure that in future similar situations
it will have more choices.

1.1 Preliminary philosophical remarks

Consider a machine, e.g. a computer program, that is entirely deterministic,
i.e. is completely specified and contains no random element. A major ques-
tion for philosophers is whether a human is deterministic in the above sense.
If the answer is yes, then we must either regard the human as having no free
will or regard free will as compatible with determinism. Some philosophers,
called compatibilists, e.g. Daniel Dennett (Dennett 1984), take this view, and
regard a person to have free will if his actions are determined by his internal
decision processes even if these processes themselves are deterministic.2 My
view is compatibilist, but I don’t need to take a position on determinism
itself.

AI depends on a compatibilist view, but having taken it, there is a lot to
be learned about the specific forms of free will that can be designed. That
is the subject of this article.

I don’t discuss the aspects of free will related to assigning credit or blame
for actions according to whether they were done freely. More generally, the
considerations of this article are orthogonal to many studied by philosophers,
but I think they apply to human free will nevertheless.

Specifically, East Germany did not deny its citizens the kind of free will
that some hope to establish via quantum mechanics or chaos theory. It did
deny its citizens choices in the sense discussed in this article.

Logical AI has some further philosophical presuppositions. These are
discussed in (McCarthy 1999b).

2 Informal discussion

There are different kinds and levels of free will. An automobile has none,
a chess program has a minimal kind of free will, and a human has a lot.
Human-level AI systems, i.e. those that match or exceed human intelligence
will need a lot more than present chess programs, and most likely will need
almost as much as a human possesses, even to be useful servants.
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Consider chess programs. What kinds of free will do they have and can
they have? A usual chess program, given a position, generates a list of moves
available in the position. It then goes down the list and tries the moves
successively getting a score for each move. It chooses the move with the
highest score (or perhaps the first move considered good enough to achieve
a certain objective.)

That the program considers alternatives is our reason for ascribing to it a
little free will, whereas we ascribe none to the automobile. How is the chess
program’s free will limited, and what more could we ask? Could further free
will help make it a more effective program?

A human doesn’t usually consider his choices sequentially, scoring each
and comparing only the scores. The human compares the consequences of
the different choices in detail. Would it help a chess program to do that?
Human chess players do it.

Beyond that is considering the set Legals(p) of legal moves in position p

as an object. A human considers his set of choices and doesn’t just consider
each choice individually. A chess position is called ‘cramped’ if there are few
non-disastrous moves, and it is considered useful to cramp the opponent’s
position even if one hasn’t other reasons for considering the position bad for
the opponent. Very likely, a program that could play as well as Deep Blue
but doing 10−6 as much computation would need a more elaborate choice
structure, i.e. more free will. For example, one fluent of chess positions, e.g.
having an open file for a rook, can be regarded as giving a better position
than another without assigning numerical values to positions.

3 The finite automaton model of free will and

can

This section treats Poss(P, s) for finite automata. Finite automata raise the
question of what an agent can do in a sharp form. However, they are not
a useful representation of an agent’s introspective knowledge of what it can
do.

To the extent that a person or machine can achieve any of different goals,
that person or machine has free will. Our ideas on this show up most sharply
considering systems of interacting discrete finite automata. These are as
deterministic as you can get, which is why I chose them to illustrate free
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will.
The material of this section revises that in (McCarthy and Hayes 1969),

section 2.4 entitled ‘The automaton representation and the notion of can’.
Let S be a system of interacting discrete finite automata such as that

shown in figure 1.

10

1

1

9
432

5

8

7

6

2

3

4

Figure 1: System S.

Each box represents a subautomaton and each line represents a signal.
Time takes on integer values and the dynamic behavior of the whole automa-
ton is given by the equations:

a1(t + 1) = A1(a1(t), s2(t))
a2(t + 1) = A2(a2(t), s1(t), s3(t), s10(t))
a3(t + 1) = A3(a3(t), s4(t), s5(t), s6(t), s8(t))
a4(t + 1) = A4(a4(t), s7(t)) (2)

s2(t) = S2(a2(t))
s3(t) = S3(a1(t))
s4(t) = S4(a2(t))
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s5(t) = S5(a1(t))
s7(t) = S7(a3(t))
s8(t) = S8(a4(t))
s9(t) = S9(a4(t))
s10(t) = S10(a4(t)) (3)

The interpretation of these equations is that the state of any subautoma-
ton at time t + 1 is determined by its state at time t and by the signals
received at time t. The value of a particular signal at time t is determined by
the state at time t of the automaton from which it comes. Signals without a
source subautomaton represent inputs from the outside and signals without
a destination represent outputs.

Finite automata are the simplest examples of systems that interact over
time. They are completely deterministic; if we know the initial states of all
the automata and if we know the inputs as a function of time, the behavior
of the system is completely determined by equations (2) and (3) for all future
time.

The automaton representation consists in regarding the world as a system
of interacting subautomata. For example, we might regard each person in the
room as a subautomaton and the environment as consisting of one or more
additional subautomata. As we shall see, this representation has many of the
qualitative properties of interactions among things and persons. However, if
we take the representation too seriously and attempt to represent particular
interesting systems as systems of interacting automata, we encounter the
following difficulties:

1. The number of states required in the subautomata is very large, for ex-
ample 210

10

, if we try to represent a person’s knowledge. Automata this large
have to be represented by systems of equations or by computer programs, or
in some other way that does not involve mentioning states individually. In
Section 4 we’ll represent them partially, by sentences of logic.

2. Geometric information is hard to represent. Consider, for example,
the location of a multi-jointed object such as a person or a matter of even
more difficulty—the shape of a lump of clay.

3. The system of fixed interconnections is inadequate. Since a person
may handle any object in the room, an adequate automaton representation
would require signal lines connecting him with every object.

4. The most serious objection, however, is that (in the terminology of
(McCarthy and Hayes 1969)) the automaton representation is epistemologi-
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cally inadequate. Namely, we do not ever know a person well enough to list
his internal states. The kind of information we do have about him needs to
be expressed in some other way.

Nevertheless, we may use the automaton representation for concepts of
can, causes, useful kinds of counterfactual statements (‘If another car had
come over the hill when you passed just now, there would have been a head-on
collision’). See (Costello and McCarthy 1999).
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Figure 2: Another system S.
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Figure 3: System S1.

Let us consider the notion of can. Let S be a system of subautomata
without external inputs such as that of figure 2. Let p be one of the subau-
tomata, and suppose that there are m signal lines coming out of p. What p

can do is defined in terms of a new system Sp, which is obtained from the
system S by disconnecting the m signal lines coming from p and replacing
them by m external input lines to the system. In figure 2, subautomaton 1
has one output, and in the system S1 (figure 3) this is replaced by an external
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input. The new system Sp always has the same set of states as the system S.
Now let π be a condition on the state such as, ‘a2 is even’ or ‘a2 = a3’. (In
the applications π may be a condition like ‘The box is under the bananas’.)

We shall write
can(p, π, s)

which is read, ‘The subautomaton p can bring about the condition π in the
situation s’ if there is a sequence of outputs from the automaton Sp that
will eventually put S into a state a′ that satisfies π(a′). In other words, in
determining what p can achieve, we consider the effects of sequences of its
actions, quite apart from the conditions that determine what it actually will
do.

Here’s an example based on figure 2. In order to write formulas conve-
niently, we use natural numberss for the values of the states of the subau-
tomata and the signals.

a1(t + 1) = a1(t) + s2(t)
a2(t + 1) = a2(t) + s1(t) + 2s3(t)
a3(t + 1) = if a3(t) = 0 then 0 else a3(t) + 1

s1(t) = if a1(t) = 0 then 2 else 1
s2(t) = 1
s3(t) = if a3(t) = 0 then 0 else 1.

(4)

Consider the initial state of S to be one in which all the subautomata are
in state 0. We have the following propositions:

1. Subautomaton 2 will never be in state 1. [It starts in state 0 and goes
to state 2 at time 1. After that it can never decrease.]

2. Subautomaton 1 can put Subautomaton 2 in state 1 but won’t. [If
Subautomaton 1 emitted 1 at time 0 instead of 2, Subautomaton 2 would go
to state 1.]

3. Subautomaton 3 cannot put Subautomaton 2 in state 1. [The output
from Subautomaton 1 suffices to put Subautomaton 2 in state 1 at time 1,
after which it can never decrease.]

We claim that this notion of can is, to a first approximation, the appro-
priate one for a robot to use internally in deciding what to do by reasoning.
We also claim that it corresponds in many cases to the common sense notion
of can used in everyday speech.

In the first place, suppose we have a computer program that decides what
to do by reasoning. Then its output is determined by the decisions it makes
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in the reasoning process. It does not know (has not computed) in advance
what it will do, and, therefore, it is appropriate that it considers that it can
do anything that can be achieved by some sequence of its outputs. Common-
sense reasoning seems to operate in the same way.

The above rather simple notion of can requires some elaboration, both to
represent adequately the commonsense notion and for practical purposes in
the reasoning program.

First, suppose that the system of automata admits external inputs. There
are two ways of defining can in this case. One way is to assert can(p, π, s)
if p can achieve π regardless of what signals appear on the external inputs.
Thus, we require the existence of a sequence of outputs of p that achieves
the goal regardless of the sequence of external inputs to the system. Note
that, in this definition of can, we are not requiring that p have any way of
knowing what the external inputs were. An alternative definition requires
the outputs to depend on the inputs of p. This is equivalent to saying that p

can achieve a goal, provided the goal would be achieved for arbitrary inputs
by some automaton put in place of p. With either of these definitions can

becomes a function of the place of the subautomaton in the system rather
than of the subautomaton itself. Both of these treatments are likely to be
useful, and so we shall call the first concept cana and the second canb.

3.1 Representing a person by a system of subautomata

The idea that what a person can do depends on his position rather than
on his characteristics is somewhat counter-intuitive. This impression can be
mitigated as follows: Imagine the person to be made up of several subau-
tomata; the output of the outer subautomaton is the motion of the joints. If
we break the connection to the world at that point we can answer questions
like, ‘Can he fit through a given hole?’ We shall get some counter-intuitive
answers, however, such as that he can run at top speed for an hour or can
jump over a building, since these are sequences of motions of his joints that
would achieve these results.

The next step, however, is to consider a subautomaton that receives the
nerve impulses from the spinal cord and transmits them to the muscles. If
we break at the input to this automaton, we shall no longer say that he can
jump over a building or run long at top speed since the limitations of the
muscles will be taken into account. We shall, however, say that he can ride
a unicycle since appropriate nerve signals would achieve this result.
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The notion of can corresponding to the intuitive notion in the largest
number of cases might be obtained by hypothesizing an organ of will, which
makes decisions to do things and transmits these decisions to the main part
of the brain that tries to carry them out and contains all the knowledge of
particular facts.3 If we make the break at this point we shall be able to
say that so-and-so cannot dial the President’s secret and private telephone
number because he does not know it, even though if the question were asked
could he dial that particular number, the answer would be yes. However,
even this break would not give the statement, ‘I cannot go without saying
goodbye, because this would hurt the child’s feelings’.

On the basis of these examples, one might try to postulate a sequence
of narrower and narrower notions of can terminating in a notion according
to which a person can do only what he actually does. This extreme notion
would then be superfluous. Actually, one should not look for a single best
notion of can; each of the above-mentioned notions is useful and is actually
used in some circumstances. Sometimes, more than one notion is used in a
single sentence, when two different levels of constraint are mentioned.

Nondeterministic systems as approximations to deterministic systems are
discussed in (McCarthy 1999a). For now we’ll settle for an example involving
a chess program. It can be reasoned about at various levels. Superhuman
Martians can compute what it will do by looking at the initial electronic
state and following the electronics. Someone with less computational power
can interpret the program on another computer knowing the program and
the position and determine the move that will be made. A mere human chess
player may be reduced to saying that certain moves are excluded as obviously
disastrous but be unable to decide which of (say) two moves the program will
make. The chess player’s model is a nondeterministic approximation to the
program.

3.2 Causality

Besides its use in explicating the notion of can, the automaton representation
of the world is very suited for illustrating notions of causality. For, we may
say that subautomaton p caused the condition π in state s, if changing the
output of p would prevent π. In fact the whole idea of a system of interacting
automata is mainly a formalization of the commonsense notion of causality.

The automaton representation can be used to explicate certain counter-
factual conditional sentences. For example, we have the sentence, ‘If another
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car had come over the hill when you just passed, there would have been a
head-on collision’. We can imagine an automaton representation in which
whether a car came over the hill is one of the outputs of a traffic subautoma-
ton. (Costello and McCarthy 1999) discusses useful counterfactuals, like the
above that are imbedded in a description of a situation and have conse-
quences. One use is that they permit learning from an experience you didn’t
quite have and would rather not have.

3.3 Good analyses into subautomata

In the foregoing we have taken the representation of the situation as a system
of interacting subautomata for granted. Indeed if you want to take them for
granted you can skip this section.

However, a given overall automaton system might be represented as a
system of interacting subautomata in a number of ways, and different rep-
resentations might yield different results about what a given subautomaton
can achieve, what would have happened if some subautomaton had acted
differently, or what caused what. Indeed, in a different representation, the
same or corresponding subautomata might not be identifiable. Therefore,
these notions depend on the representation chosen.

For example, suppose a pair of Martians observe the situation in a room.
One Martian analyzes it as a collection of interacting people as we do, but
the second Martian groups all the heads together into one subautomaton
and all the bodies into another.4 How is the first Martian to convince the
second that his representation is to be preferred? Roughly speaking, he
would argue that the interaction between the heads and bodies of the same
person is closer than the interaction between the different heads, and so
more of an analysis has been achieved from ‘the primordial muddle’ with the
conventional representation. He will be especially convincing when he points
out that when the meeting is over the heads will stop interacting with each
other, but will continue to interact with their respective bodies.

We can express this kind of argument formally in terms of automata as
follows: Suppose we have an autonomous automaton A, i.e. an automaton
without inputs, and let it have k states. Further, let m and n be two integers
such that mn ≥ k. Now label k points of an m-by-n array with the states
of A. This can be done in

(

mn
k

)

! ways. For each of these ways we have a
representation of the automaton A as a system of an m-state automaton B

interacting with an n-state automaton C. Namely, corresponding to each
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row of the array we have a state of B and to each column a state of C.
The signals are in 1–1 correspondence with the states themselves; thus each
subautomaton has just as many values of its output as it has states.

Now it may happen that two of these signals are equivalent in their effect
on the other subautomaton, and we use this equivalence relation to form
equivalence classes of signals. We may then regard the equivalence classes as
the signals themselves. Suppose then that there are now r signals from B to C

and s signals from C to B. We ask how small r and s can be taken in general
compared to m and n. The answer may be obtained by counting the number
of inequivalent automata with k states and comparing it with the number
of systems of two automata with m and n states respectively and r and s

signals going in the respective directions. The result is not worth working
out in detail, but tells us that only a few of the k state automata admit such
a decomposition with r and s small compared to m and n. Therefore, if
an automaton happens to admit such a decomposition it is very unusual for
it to admit a second such decomposition that is not equivalent to the first
with respect to some renaming of states. Applying this argument to the real
world, we may say that it is overwhelmingly probable that our customary
decomposition of the world automaton into separate people and things has
a unique, objective and usually preferred status. Therefore, the notions of
can, of causality, and of counterfactual associated with this decomposition
also have a preferred status.

These considerations are similar to those used by Shannon, (Shannon 1938)
to find lower bounds on the number of relay contacts required on the average
to realize a boolean function.

An automaton can do various things. However, the automaton model
proposed so far does not involve consciousness of the choices available. This
requires that the automata be given a mental structure in which facts are
represented by sentences. This is better done in a more sophisticated model
than finite automata. We start on it in the next section.

4 Formalism for introspective free will

The previous section concerned only external free will, and it isn’t convenient
to represent knowledge by the states of subautomata of a reasoning automa-
ton. (McCarthy 1979) has a more extensive formalization of knowing what
and knowing that.
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The situation calculus, (McCarthy and Hayes 1969) and (Shanahan 1997),
offers a better formalism for a robot to represent facts about its own possi-
bilities.

4.1 A minimal example of introspective free will

The following statement by Suppes (Suppes 1994) provides a good excuse for
beginning with a very simple example of introspective free will.

There are, it seems to me, two central principles that should gov-
ern our account of free will. The first is that small causes can
produce large effects. The second is that random phenomena are
maximally complex, and it is complexity that is phenomenologi-

cally in many human actions that are not constrained but satisfy

ordinary human notions of being free actions.[my emphasis]

I don’t agree that complexity is essentially involved so here’s a minimal
example that expresses, ‘I can, but I won’t’.

Because the agent is reasoning about its own actions, as is common in sit-
uation calculus formalization, the agent is not explicitly represented. Making
the agent explicit offers no difficulties.

If an action a is possible in a situation s, then the situation Result(a, s)
that results from performing the action is achievable.

Possible(a, s) → Can(Result(a, s), s) (5)

If a situation Result(a, s) is achievable and every other situation that is
achievable is less good, then the action a should be done.

Can(Result(a, s), s) ∧ (∀s′)(Can(s′, s) → s′ <good Result(a, s))
→ Should(a, s)

(6)

Here <good means ‘not so good as’.
Actions leading to situations inferior to what can be achieved won’t be

done.
Can(Result(a, s), s) ∧Result(a′, s) <good Result(a, s)

→ ¬WillDo(a′, s)
(7)

This is reasonably close to formalizing ‘It can, but it won’t’ except for
not taking into account the distinction between ‘but’ and ‘and’. As truth
functions, ‘but’ and ‘and’ are equivalent. Uttering ‘p but q’ is a different
speech act from uttering ‘p and q’, but this article is not the place to discuss
the difference.
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4.2 Representing more about an agent’s capability

Here are some examples of introspective free will and some considerations.
They need to be represented in logic so that a robot could use them to learn
from its past and plan its future.

1. Did I make the wrong decision just now? Can I reverse it?

2. ‘Yesterday I could have made my reservation and got a cheap fare.’

3. ‘Next year I can apply to any university in the country. I don’t need
to make up my mind now.’.

4. ‘If I haven’t studied calculus, I will be unable to take differential equa-
tions.’

5. ‘If I learn to program computers, I will have more choice of occupation.’

6. ‘It is better to have an increased set of choices.’

7. ‘I am not allowed to harm human beings.’ Asimov imagined his three
laws of robotics, of which this is one, as built into his imaginary positronic
brains. In his numerous science fiction stories, the robots treated them
as though engraved on tablets and requiring interpretation. This is
necessary, because the robots did have to imagine their choices and
their consequences.

8. Some of a person’s behavior is controlled by reflexes and other auto-
matic mechanisms. We rightly regard reflexive actions as not being
deliberate and are always trying to get better control of them.

• The coach helps the baseball player analyze how he swings at the
ball and helps him improve the reflexive actions involved.

• I’m a sucker for knight forks and for redheads and need to think
more in such chess and social situations.

9. In the introduction I wrote

Poss(P, s) = {x|can(P, x, s)}. (8)

What kind of an entity is x? In situation calculus, the simplest operand
of can is a situation as treated above, but also we can consider an action
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itself or a propositional fluent. A propositional fluent p is a predicate
taking a situation argument, and an agent can reason that it can (or
cannot) bring about a future situation in which p holds.

(McCarthy 1996) includes an extensive discussion of what consciousness,
including consciousness of self, will be required for robots.

5 Conclusions

1. Human level AI requires the ability of the agent to reason about its past,
present, future and hypothetical choices.

2. What an agent can do is determined by its environment rather than
by its internal structure.

3. Having choices is usefully distinguished from the higher capability of
knowing about them.

4. What people can do and know about what they can do is similar to
what robots can do and know.

AI needs a more developed formal theory of free will, i.e. the structures
of choice a robot can have and what it can usefully know about them.
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2Some people ask whether making the system probabilistic or quantum
mechanical or classical chaotic makes a difference in the matter of free will.
I agree with those who say it doesn’t.

3The idea of an organ of will cannot be given a precise definition, which
has caused philosophers and psychologists to denounce as senseless ideas
that separate will from intellect. However, it may be a useful approximate

concept in the sense of (McCarthy 1999a). It presumably won’t correspond
to a specific part of the brain.

4An inhabitant of momentum space might regard the Fourier components
of the distribution of matter as the separate interacting subautomata.
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