The Inversion of Functions Defined by Turing
Machines

J. McCarthy

Computer Science Department
Stanford University
Stanford, CA 95305

jmc@cs.stanford.edu
http://www-formal.stanford.edu/jmc/

1956

Consider the problem of designing a machine to solve well-defined intel-
lectual problems. We call a problem well-defined if there is a test which can
be applied to a proposed solution. In case the proposed solution is a solu-
tion, the test must confirm this in a finite number of steps. If the proposed
solution is not correct, we may either require that the test indicate this in a
finite number of steps or else allow it to go on indefinitely. Since any test may
be regarded as being performed by a Turing machine, this means that well-
defined intellectual problems may be regarded as those of inverting functions
and partial functions defined by Turing machines.

Let f,,(n) be the partial function computed by the m'™ Turing machine.
It is not defined for a given value of n if the computation does not come to
an end. This paper deals with the problem of designing a Turing machine
which, when confronted by the number pair (m, ), computes as efficiently as
possible a function g(m,r) such that f,,(g(m,r)) = r. Again, for particular
values of m and r no g(m,r) need exist. In fact, it has been shown that the
existence of g(m,r) is an undecidable question in that there does not exist a
Turing machine which will eventually come to a stop and print a 1 if g(m, r)
does not exist.

In spite of this, it is easy to show that a Turing machine exists which will



compute a g(m,r) if such exists. Essentially, it substitutes integers in f,,(n)
until it comes to one such that fm(n) = r. It will therefore find g(m,r) if it
exists, but will never know enough to give up if g(m,r) does not exist. Since
the computation of f,,(n) may not terminate for some n, it is necessary to
avoid getting stuck on such n’s Hence the machine calculates the numbers
1% (n) in some order where f*(n) is f,,(n) if the computation of f,,(n) ends
after k steps and is otherwise undefined

Our problem does not end once we have found this procedure for com-
puting g(m, r) because this procedure is extremely inefficient. It corresponds
to looking for a proof of a conjecture by checking in some order all possible
English essays

In order to do better than such a purely enumerative method, it is neces-
sary to use methods which take into account some of the structure of Turing
machines. But before discussing this, we must attempt to be somewhat (only
somewhat) more precise about what is meant by efficiency

The most obvious idea is to say that if 77 and T, are two Turing machines
each computing a g(m, r), then for a particular m and r the more efficient one
is the one which carries out the computation in the fewest steps. However,
this won’t do since for any Turing machine there is another one which does &
steps of the original machine in one step However, the new machine has many
more different kinds of symbol than the old. It is probably also possible to
increase the speed by increasing the number of internal states, though this
is not so easy to show. (Shannon shows elsewhere in these studies that it
is possible to reduce the number of internal states to two at the cost of
increasing the number of symbols and reducing the speed.)

Hence we offer the following revised definition of the length of a compu-
tation performed by a Turing machine. For any universal Turing machine
there is a standard way of recoding on it the computation performed by the
given machine. Let this computation be recoded on a fixed universal Turing
machine and count the number of steps in the new computation. There are
certain difficulties here connected with the fact that the rate of computation
is limited if the tape of the universal machine is finite dimensional, and hence
the rate should probably be defined with respect to a machine whose tape
is infinite dimensional but each square of which has at most two states and
which has only two internal states. This requires a mild generalization of the
concept of Turing machines

The tape space is not required to be either homogeneous or isotropic We
hope to make these considerations precise in a later paper. For now, we only



remark that dimensionality is meant to be

. logV,
lim
n—oo logn

where V,, is the number of squares accessible to a given one in n steps. It
will be made at least plausible that a machine with () internal states and
S symbols should be considered as making about %log @S elementary steps
per step of computation and hence the number of steps in a computation
should be multiplied by this factor to get the length of the computation.

Having now an idea of what should be meant by the length ¢(m,r,T')
of a particular computation of g(m,r) by the machine T', we can return to
the question of comparing two Turing machines. Of course, if £(m,r,T}) <
¢(m,r,Ty) for all m and r for which these numbers are finite, we should cer-
tainly say that 7} is more efficient than T5. (We only consider machines that
actually compute g(m,r) whenever it exists. Any machine can be modified
into such a machine by adding to it facilities for testing a conclusion and
having it spend a small fraction of its time trying the integers in order.)
However, it is not so easy to give a function which gives an over-all estimate
of the efficiency of a machine at computing g(m,r). The idea of assigning a
weight function p(m,r) and then calculating

Zp(m, r)(m,r,T)

does not work very well because ¢(m,r,T) is not bounded by any recursive
function of m and r. (Otherwise, a machine could be described for determin-
ing whether the computation of f,,(n) terminates. It would simply carry out
some k(m,n) steps and conclude that if the computation had not terminated
by this time it was not going to.) There cannot be any machine which is as
fast as any other machine on any problem because there are rather simple
machines whose only procedure is to guess a constant which are fast when
g(m,r) happens to equal that constant.

We now return to the question of how to design machines which make use
of information concerning the structure of Turing machines. The straight-
forward approach would be to try to develop a formalized theory of Turing
machines in which length of a computation is defined and then try to get
a decision procedure for this formal theory. This is known to be a hopeless
task. Systems much simpler than Turing machine theory have been shown to



have unsolvable decision procedures. So, we look for a way of evading these
difficulties

Before discussing how this may be done, it is worthwhile to bring up some
more enumerative procedures. First, let fi(z,y) be the function of two vari-
ables computed by the k'® Turing machine. Our procedure consists in trying
the numbers fi(m,r) in order (again diagonalizing to avoid computations
which don’t end.) This is based on the plausible idea that, in searching for
the solution to a problem, the given data should be taken into account.

The next complication which suggests itself is to revise the order in which
recursive functions are considered. One way is to consider fy, ) (m,r) diag-
onalized on k and ¢. This is based on the idea that the best procedure is
more likely to be recursively simple, rather than merely to have a low number
in the ordering. More generally, the enumeration of partial recursive func-
tions should give an early place to compositions of the functions which have
already appeared.

This process of elaborating the schemes by which numbers are tested can
be carried much further. Intuitively it seems that each successive complica-
tion improves the performance on difficult problems, but imposes a delay in
getting started

The difficulty with the afore-mentioned methods and their elaborations
is that they have no concept of partial success. It is a great advantage in
conducting a search to be able to know when one is close. This suggests first
of all that a function fi(x,y) be tried out first on simpler problems known
to have simple solutions before very many steps of the computation fi(m,r)
are carried out.

At this point it becomes unclear how to proceed further. What has been
done is only a semiformal description of a few of the processes common to
scientific reasoning and we have no guarantee of being exhaustive. Of course,
exhaustiveness in examining for usefulness can be attained for any effectively
enumerable class of objects simply by going through the enumeration. How-
ever, enumerative methods are always inefficient. What is needed is a general
procedure which ensures that all relevant concepts which can be computed
with are examined and that the irrelevant are eliminated as rapidly as possi-
ble. Here we remark that a property is useful mainly when it permits a new
enumeration of the objects possessing it and not merely a test which can be
applied. With the enumeration the objects not possessing the property need
not even be examined Of course, it is then necessary to be able to express
all other relevant properties as functions of the new enumeration.

4



In order to get around the fact that all formal systems which are anywhere
near adequate for describing recursive function theory are incomplete, we
avoid restriction to any one of them by introducing the notion of a formal
theory (not for the first time, of course).

For our purposes a formal theory is a decidable predicate V' (p, t1,. .., tx —
t) which is to be regarded as meaning that p is a proof that the statements
ty,...,tr imply the statement ¢ in the theory We do not require that state-
ments have negatives or disjunctions, although theories with these and other
properties of propositional calculi will presumably belong to the most useful
theories.

An interpretation of a formal theory is a computable function i(¢) map-
ping a class of statements of the theory into statements of other theories
or concrete propositions. The only kind of concrete proposition which we
shall mention for now is P(m,n,r, k) meaning f,,(n) = r in a computation
of length < k. Such a proposition is of course verifiable

The theories and interpretations of them can be enumerated. A function
of their Godel numbers is called a status function. (To be regarded as a
current estimate of their validity and relevance, etc.) An action scheme
is a computation rule which computes from a status function (its Godel
number) a new status function, perhaps gives an estimate of g(m,r) if it has
determined this, and computes a new action scheme.

REMARK 1. A status function would consist primarily of estimates of
the validity of the separate theories and would place theories which had
not been examined in an “unknown” category. However, an action scheme
might modify the status of a whole class of theories simultaneously in some
systematic way.

REMARK 2. The reader should note that a formal equivalence could
probably be established between formal theories and certain action schemes
Thus, knowledge can be interpreted as a predisposition to act in certain ways
under given conditions, and an action scheme can be interpreted as a belief
that certain action is appropriate under these conditions. This equivalence
should not be made because a simple theory may have a very complicated
interpretation as an action scheme and conversely, and in this inversion prob-
lem the simplicity of an object is one of its most important properties

This suggests an Alexandrian solution to a knotty question. Perhaps, a
machine should be regarded as thinking if and only if its behavior can most
concisely be described by statements, including those of the form “It now
believes Pythagoras’ theorem.” This would not be the case for a phonograph



record of a proof of Pythagorasl theorem. Such statements will probably be
especially applicable to predictions of the future behavior under a variety of
stimuli.

REMARK 3. In determining a procedure which has action schemes, the-
ories, etc., we are imposing our ideas of the structure of the problem on the
machine. The point is to do this so that the procedures we offer are general
(will eventually solve every solvable problem) and also are improvable by the
methods built into the machine.

REMARK 4. Except for the concrete proposition none of the statements
of a formal theory have necessary interpretations which are stateable in ad-
vance. However, if the machine were working well, an observer of its internal
mechanism might come to the conclusion that a certain statement of a the-
ory is being used as though it were, say (x)f,,(z) = 0, etc. An important
merit of a particular theory might be that in it the verification of a proof
at the correlate of a certain concrete proposition is much shorter than the
computation of the concrete proposition, i.e., shorter than &k in P(m,n,r, k).

REMARK 5. The relation of certain action schemes to certain theories
might warrant our regarding certain statements in them as being normative,
i.e., of the form “the next axiom scheme should be no. m” or “theory k should
be dropped from consideration.”

REMARK 6. Not every worthwhile problem is well-defined in the sense of
this paper. In particular, if there exist more or less satisfactory answers with
no way of deciding whether an answer already obtained can be improved on
a reasonable time, the problem is not well-defined.

/@steam.stanford.edu:/u/jmc/s96/inversion.tex: begun 1996
May 24, latexed 1996

Jun 1 at 9:44 a.m.



