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Abstract

A theory is elaboration tolerant to the extent that
new information can be incorporated with only
simple changes. The simplest change is con-
joining new information, and only conjunctive
changes are considered in this paper. In gen-
eral adding information to a theory should of-
ten change, rather than just enlarge, its conse-
quences, and this requires that some of the rea-
soning be non-monotonic.

Our theories are narratives—accounts of sets of
events, not necessarily given as sequences. A
narrative is elaboration tolerant to the extent that
new events, or more detail about existing events,
can be added by just adding more sentences.

We propose a new version of the situation calcu-
lus which allows information to be added easily.
In particular, events concurrent with already de-
scribed events can be introduced without modi-
fying the existing descriptions, and more detail
of events can be added. A major benefit is that
if two narratives do not interact, then they can be
consistently conjoined.

1 OBJECTIVESOF SITUATION
CALCULUS

The logical approach to Al ([McC59] and [McC89]) is to
make a computer program that represents what it knows
about the world in general, what it knows about the situ-
ation it is in, and also its goals, all as sentences in some
mathematical logical language. The program then infers
logically what action is appropriate for achieving its goal
and does it. Since 1980 it has been widely known that non-
monotonic inference must be included. The actions our
program can perform include some that generate sentences
by other means than logical inference, e.g. by observation
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of the world or by the use of special purpose non-logical
problem solvers.

Simpler behaviors, e.g. actions controlled by servomecha-
nisms or reflexes can be integrated with logic. The actions
decided on by logic can include adjusting the parameters
of ongoing reflexive actions. Thus a person can decide to
walk faster when he reasons that otherwise he will be late,
but this does not require that reason control each step of the
walking.!

Situation calculus is an aspect of the logic approach to Al.
A situation is a snapshot of the world at some instant. Sit-
uations are rich? objects in that it is not possible to com-
pletely describe a situation, only to say some things about
it. From facts about situations and general laws about the
effects of actions and other events, it is possible to infer
something about future situations. Situation calculus was
first discussed in [McC63], but [MH69] was the first widely
read paper about it.

In this formalization of action in situation calculus, there
are at least three kinds of problem—narrative, planning
and prediction. Of these, narrative seems to be the simplest
for humans. A narrative is an account of what happened.
We treat it by giving some situations and some events and
some facts about them and their relations. Situations in a
narrative are partially ordered in time. The real situations
are totally ordered®, but the narrative may not include full
information about this ordering. Thus the temporal rela-
tions between situations need only be described to the ex-
tent needed to describe their interactions. Situations oc-
curring entirely in different places give the most obvious
examples, but even actions by the same person in the same
place may not interact as far as the inferences we draw. If

1Thus we protect our flank from the disciples of Rod Brooks.

2Though rich, situations are still approximate, partial objects.
The idea will be developed elsewhere.

3Hypothetical situations need not be totally ordered; the situ-
ation where Oswald missed Kennedy is neither in the past nor the
future.



we state that the traveler on certain flight reads a book and
also drinks a Coca-cola, we humans don’t need to know
any temporal relations between the two events unless they
interact.

In situation calculus as it was originally envisaged (and has
been used,) events (mainly actions) in a situation produce
next situations, e.g. s’ = Result(e,s). The original the-
ory did not envisage more than one event occurring in a
situation, and it did not envisage intermediate situations in
which events occur. However, rarely did people write ax-
ioms that forbade* these possibilities; it’s just that no-one
took advantage of them.

Our present formalism doesn’t really change the basic for-
malism of the situation calculus much; it just takes advan-
tage of the fact that the original formalism allows treat-
ing concurrent events even though concurrent events were
not originally supposed to be treatable in that formalism.
Gelfond, Lifschitz and Rabinov [GLR91] treat concurrent
events in a different way from what we propose here.

In a narrative, it is not necessary that what is said to
hold in a situation be a logical consequence (even non-
monotonically) of what was said to hold about a previous
situation and known common sense facts about the effects
of events. In the first place, in stories new facts about sit-
uations are often added, e.g. “When Benjamin Franklin
arrived in London it was raining”. In the second place, we
can have an event like tossing a coin in which neither out-
come has even a non-monotonic preference.®

In interpreting the following formalizations, we regard sit-
uations as rich objects and events as poor. In fact, we are
inclined to take a deterministic view within any single nar-
rative. In principle, every event that occurs in a situation
and every fact about following situations is an inevitable
consequence of the facts about the situation. Thus it is a
fact about a situation that a coin is tossed and that it comes
up tails. However, such facts are only occasionally conse-
quences of the facts about the situation that we are aware
of in the narrative.

Perhaps narrative seems easy, since it is not yet clear what
facts must be included in a narrative and what assertions
should be inferable from a narrative. We have however a
basic model that handles some of the more basic features.

“Reiter [Rei93] did write such axioms.

®Nevertheless, some narratives are anomalous. If we record
that Junior flew to Moscow, and, in the next situation mentioned,
assert that he is in Peking, a reader will feel that something has
been left out.

We want to introduce a concept of a proper narrative, this is a
narrative without anomalies. The fluents holding in a new situa-
tion should be reasonable outcomes of the events that have been
reported, except for those fluents which are newly asserted, e.g.
that it was raining in London when Franklin arrived.

2 ELABORATION TOLERANT
REASONING

A formalization of a phenomenon is elaboration tolerant
to the extent that it permits elaborations of the description
without requiring completely redoing the basis of the for-
malization. In particular, it would be unfortunate to have
to change the predicate symbols. Ideally the elaboration is
achieved by adding sentences, rather than by changing sen-
tences. Often when we add sentences we need to use some
form of non-monotonic reasoning. This is because we of-
ten want to add information that we would previously have
assumed was false. Unless we use non-monotonicity we
would get inconsistency. In this paper we concentrate on
the easier case when there is no need for non-monotonicity.

Natural language descriptions of phenomena seem to be
more elaboration tolerant than any existing formalizations.
Here are the two major kinds of elaboration tolerance that
we examine in this paper.

2.1 NON-INTERACTING EVENTS

Allowing the addition of a description of a second phe-
nomenon that doesn’t interact with the first. In this case
the conclusions that can be drawn about the combined nar-
rative are just the conjunction of the conclusions about the
component narratives. To infer the obvious consequences
of events we need to assume that some other events do not
occur. In this paper, a major novelty is that we do not as-
sume that no other events occur. We only state that there
are no events that would cause an event in our narrative to
fail. Thus a narrative about stacking blocks will state that
the only block moving actions® are those mentioned. A
block stacking narrative will not say that no traveling events
occur. Nor will a narrative about traveling makes claims
about what block stacking events happen. This allows non-
interacting narratives to be consistently conjoined.

Previous proposals could not conjoin two narratives, as
they either assumed that the events that happened were
picked out by the result function, or they assumed that the
only events that occurred were those mentioned.

211 DETAIL OF EVENTS

We can add details of an event. On the airplane from Glas-
gow to London, Junior read a book and drank a Coca-Cola.
If we make the assumption that other relevant events do

5More precisely, no other actions that would move the blocks
mentioned in the narrative occur. Other blocks might be stacked
in Baghdad, if our narrative is about New York. Perhaps a theory
of context, that would interpret a statement about all blocks in our
narrative, as a statement about all the blocks in New York could be
used here.



not happen, we can elaborate by adding another event, so
long as it is compatible with what we have said. However
the notion of relevant must be formalized very carefully, as
is apparent when we elaborate a particular event as a se-
quence of smaller events. “How did he buy the Kleenex?
He took it off the shelf, put it on the counter, paid the clerk
and took it home.” A narrative that just mentions buying
the Kleenex should not exclude this particular elaboration.
Moreover, if we elaborate in this way, we don’t want to
exclude subsequent elaboration of component events, e.g.
elaborating paying the clerk into offering a bill, taking the
change, etc. Our formalism allows details of an event to be
added by conjoining extra sentences.

3 MODIFYING THE SITUATION
CALCULUS

Formalisms such as the situation calculus of McCarthy and
Hayes [MHG69], and the event calculus of Kowalski [KS97]
have been used to represent and reason about a changing
world c.f [Sha97]. Neither of these formalisms is exactly
what is needed to represent the kind of narratives we wish
to consider.

The situation calculus in its most limited version does not
allow us to represent what events occur explicitly—rather
every sequence of events is assumed to occur. We can spec-
ify that a particular sequence of events occurs by introduc-
ing a predicate, actual true of just the sequence of situa-
tions that occur’. This is not ideal, as it forces us to decide
what events happened earlier, before we name the events
that happen later.

For this reason we use a modified situation calculus, adding
a new predicate Occurs(e, s), that states what events oc-
cur. Thus, rather than the function Result(e, s) serving two
purposes, stating that e occurred at s, and designating the
resulting situation, we split these two functions. We keep
Result(e, s), but it now only denotes the result of doing
e in s when e Occurs at s. If e does not occur, then the
value of this function is an arbitrary situation®. This adds
an event calculus style of presentation to the underlying
situation calculus formalism. In particular, it allows us to
specify a sequence of events, without making any claims as
to what other events may have happened in the meantime.

3.1 OURONTOLOGY OF SITUATIONS

Reiter has suggested that the situations in the situation cal-
culus be defined axiomatically. He suggests the following

Pinto and Reiter [PR95] actually do this.
8We could choose instead to make Result a partial function,
but this introduces the difficulties of partial functions.

four axioms®

S0 :Vs.—s < So

Va,s,s'.s < Result(a,s') = (s =s"Vs<s)

P :Va,d',s, s .Result(a,s) = Result(a',s’) —
a=ad Ns=5s

Ind : V¢.(6(So) A (Va.¢(s) — ¢(Result(a, s)))) —
Vs.p(s).

which determine equality of situations, relative to equality
of events or actions. These axioms are categorical, that is
relative to an interpretation of equality of actions, there is a
unique model of situations.

Rather than use these axioms, which state that no other sit-
uations exist between s and Result(a, s), we choose to say
that situations can be ordered by a < predicate, which is a
strict partial order, which we axiomatize as follows.

Va, s.s < Result(a, s),
Vs, s’ s".s <8 — (s <s), 1)
Vs, s,8,8".s< s N <" —s<s”

The predicate < is similar to the future(s,s’) predicate,
introduced by [MH69], which is true when s’ is in the fu-
ture of s. We find it useful to write this in infix notation,
and to use s < s’ as the non-strict version. It also is useful
towrites < s’ <s"fors<s' As <s".

4 SPECIFYING THE EFFECTS OF
EVENTS

In the situation calculus it is usual to specify the effects of
actions by writing effect axioms, like™°,

Vs.Holds(Loaded, s) — Holds(Dead, Result(Shoot, s)).

If we move to a formalism that allows other events to occur
between s and Result(e, s), then this way of specifying
change needs to be adjusted. It is possible that something
might occur in the time between s and Result(Shoot, s)
that causes the event to have a different result. For this
reason it seems natural to allow the preconditions, those
things that hold on the left hand side, to mention properties
of all times between s and Result(Shoot, s).

In previous versions of the situation calculus the precondi-
tions for an event were always modeled as a set of fluents,
namely those fluents that had to hold at s, for the event to
have an effect at Result(a, s). If we allow other things to

9Reiter’s notation differ from ours, he uses do(a, s), while we
use Result(a, s). We use < s’ as a shorthand for s < s'Vs = s’
Reiter writes < as .

©As is customary in Logical A.l. we write Holds(Dead, s)
without saying who is dead. We can suppose the events occur in
a context and lifting rules exist to make this Dead(Victim) in
an outer context. The outer context may contain further precondi-
tions, like that shooter is present.



happen during an event, we cannot just specify the precon-
ditions that must hold at the beginning of the event.

Consider a plane journey from Glasgow to London. It is
necessary that the plane be in working order for the entire
flight. Itis also necessary to be in Glasgow at the beginning
of the flight, but clearly, there is no need for this precondi-
tion to persist for the entire flight. It is necessary to have
a ticket, until the airline steward takes it from you. This is
an example of a precondition, “having a ticket” that must
hold neither just at the moment the event starts, nor for the
entire duration.

Consider another example from the Yale Shooting Prob-
lem. In order to successfully shoot a person, the gun must
be loaded when the trigger is pulled, but the target must re-
main in the cross-hairs until the bullet hits. We represent
the fact the target is in the cross-hairs by aimed. Thus we
write:

Vs.Occurs(Shoot, s) A Holds(Loaded, s)\

Vs"”.s < s" As" < Result(Shoot, s) — .
Holds(Aimed, s'")
Holds(Dead, Result(Shoot, s)).

A possible objection to this example is that if the target
arrives in the cross-hairs at any time before impact and re-
mains in the path of the bullet, then they will be killed. In
this case we write,

Vs.Occurs(Shoot, s) A Holds(Loaded, s)

Js1.s1 < Result(Shoot, s) AVs".s; < s"A _
s < Result(Shoot, s) — Holds(Aimed, s")

Holds(Dead, Result(Shoot, s)).

However, both these examples show the need for precondi-
tions to be richer than a statement of what properties hold
just when the event occurs. What possible properties can
occur as preconditions is important because we wish to
know what kinds of axioms can occur as effect axioms.

Before we consider how to represent preconditions, we re-
call how we represented all possible preconditions earlier.
If we wish to introduce a predicate that can parameterize
all effl(ict axioms in the old-fashioned situation calculus can
write™,

Va, f,g.Changes(a, f, g) = Vs.Holds(g, s) —
—(Holds(f,s) = Holds(f, Result(a, s))

following [Cos97]. g is a predicate on fluents that encodes
the preconditions. Parameterizing all effect axioms allows
us to minimize effect axioms easily.

However, as we want to have preconditions that can extend
over the duration of the event, we need more than one set
of fluents. For this reason we allow as preconditions, two

Mwe will slightly abuse notation and write Holds(g, s) for
(Vf'.g(f") — Holds(f', s)), when g is a predicate on fluents.

sets of fluents. The first set need only hold at the start of an
event, while the others must persist for the entire event.

It might seem that this does not model preconditions that
need hold for only part of the duration of the event. How-
ever, we can model these by using other defined fluents.
Thus we can write that “It is necessary to have a ticket, un-
til the airline steward takes it from you.” using a new fluent
Fy defined by

Vs.Holds(F;,s) = Holds(Has(Ticket), s)V
Holds( Takenby(Steward, Ticket), s).

This fluent should hold for the entire’® duration of the
flight. HoldsD(f, s, e) is a shorthand for Vs'.s < s’ <
Result(e, s) — Holds(f,s').

We can write “It is necessary that the plane be in
working order for the entire flight” using the fluent
WorkingOrder,

Vs, 1,1’ t.HoldsD( WorkingOrder, s, Fly(1,1', t))A
HoldsD(Fy,s, Fly(l,1',t))) —
Holds(at(l'), Result(Fly(1,1',t), s))

We can add “ It is necessary to be in Glasgow? at the be-
ginning of the flight”

Vs, 1,1’ t.Holds(at(l), s)A
HoldsD(WorkingOrder, s, Fly(1,1', t))A
HoldsD(Fy, s, Fly(1,1',t))) —
Holds(at(l"), Result(Fly(l,1',t), s))

Now that our preconditions are represented as two sets?4,
rather than one, we redefine C'hanges as follows:

ve7 f: g1, QQ'Changes(e7 f7 g1, 92) déf

Vs.(Vf1.92(f1) — Holds(f1,s))A
(Vf1.91(f1) — HoldsD(f1, s, €)) —

—(Holds(f,s) = Holds(f, Result(e, s)))

We find it useful to introduce a predicate Succeeds(e, f, s)
defined as,

EglaQQ'Cha/n‘geS(eafaglag2)/\ (2)
Holds(gz, s) A HoldsD(gy, s, €).

Frame Axioms

We usually would write a frame axiom for a fluent, say
On(A,Top(B)), block A is on the top of block B, and an
action, in this case Shoot as,

Vs.Holds(On(A, Top(B)), s) =
Holds(On(A, Top(B)), Result(Shoot, s)).

2The entire duration is taken to be up to, but not including the
endpoint. It is sometimes natural that the endpoint should not be
needed as a precondition.

13\We write the general formula with a variable { for Glasgow.

¥ Here we assume that we have a fluent function —, such that
Vs, f.Holds(f, s) = —Holds(—f, s). In the absence of the fluent
function —, we would need four sets, two for positive fluents and
two for negative fluents.



However, since Result no longer encodes what events oc-
curred, we need to say something like, “if no event that
could change the fluent On(A, Top(B)) occurred in the
interval between s and s’ and On(A, Top(B)) held at s
then On(A, Top(B)) will hold at s’.” It is notable that this
needs the notion of C'hanges that we introduced above.
Thus we write,

Frame Axiom :
Vs, s, f.s < s'A
s",a.s < Result(a,s") < s —
=(Occurs(a, s")A —
Succeeds(a, f,s"))
(Holds(f,s) = Holds(f,s"))

®)

This will generate all of our frame axioms if we mini-
mize C'hanges, varying Succeeds and Holds, and allow-
ing the domain to vary as in [Cos98b, Cos98a]. We do
not consider using non-monotonic reasoning to minimize
Changes here, as we wish to stress other issues. Thus we
explicitly axiomatize the result of the minimization, much
in the same way as Reiter[Rei91] uses an explanation clo-
sure axiom and an explicit statement of what events can
change what fluents.

41 WHAT EVENTSOCCUR?

Before we consider combining narratives, we address
a problem that arises in our new formalism that was not
present in the earlier versions of the situation calculus.

Even frame axioms like this are not enough to allow us to
carry out the simple reasoning we could carry out in pre-
vious versions of the situation calculus. We also need to
know that certain events do not occur.

Consider the following example of moving a block. We
have the action that moves a block, but to move a block
successfully it must be clear. For instance if someone else
puts another block on top of the block we are moving to,
then our action will fail.

Thus our only effect axiom is the following one, which
states moving block a onto block ¢ succeeds, if a and ¢
are clear for the entire duration, and « is not equal to c.

Vs,a,c,e,l.
a # c A e = Move(a, Top(c))A
1 # top(c) A HoldsD(Clear(Top(a)), s, e)A
Holds(On(a,l), s)A
HoldsD(Clear(Top(c)), s, €)

(Holds(On(a, Top(c)), Result(e, s))A )

—

(I # Table — —Holds(On(a,!), Result(e, s)))

For this example we need some other facts about the world,
these are given in an Appendix. We are also told that the
only block that is not on the table is A, which is on B, and

that the action of moving A to the top of C occurred at the
situation S0.

Va,l.Holds(On(a,l), S0) =
(a=ANl=Top(B))V (a # ANl =Table),
Occurs(Move(A, Top(C)), S0).

We can now write our frame axiom, which in this case is,

Vs, s’ a,c.s < s'A
Vs, a' e.e = Mowve(a, Top(a'))A
s < Result(e,s") < s’ ANa#c—

Occurs(e, s )A
'\ Succeeds(e, On(a, Top(a’)), s")

- Holds(On(a, Top(c)), s) =
Holds(On(a, Top(c)), s’)

This states that a block « is on a block ¢ in a situation s
if and only if a is on cin s’, so long as there is no event
e, of moving moving a to Top(a’), which occurs, and is
successful.

Some writers like to think that if an event that might change
a fluent f occurs, but fails, then the fluent f should be un-
determined. We can weaken our frame axiom, so that even
if the event of moving a block a’ to « fails, then our block
a might not be clear. We write this as,

vs’ S/’ a, ¢, a’l7 C’7 b,.(S S 5’/\
Vs a'.s < Result(a,s") < s’ —
Occurs(Move(a, a’),s") A3g1, ge.
- Move(a, a’)
h ) )
Changes \ Onfa, Top()). g1,

_, ( Holds(On(a, Top(c)), s) =
Holds(On(a, Top(c)), s’).

In general we shall prefer the stronger frame axiom.
We wish to prove that

Holds(On(A, Top(C)), Result(Move(A, Top(C)), S0)),
however, we can only prove the weaker,

Ve.e = Move(A, Top(C))A
HoldsD(Clear(A), s, e) A HoldsD(Clear(C), s, e) —
Holds(On(A, Top(C)), Result(e, S0))

Thus, we need to prove that A and C remain clear during
the move action in order to show that the action is suc-
cessful. To show that they remain clear we need to use
our frame axiom. But, all we can prove is that the A
block remains clear if there is no successful move action
Mowe(b;, Top(A)) that occurs, and whose result is before
Result(Move(A, C), S0). As we allow situations before
S0, we can imagine that there was a move in progress that
placed a block on C just after SO.

Thus we explicitly state that no action that might put some-
thing on A or C occurred in the interval®®, save of course

15\We need to state that no event whose result lies in the interval



the action of putting A on the top of C.

Vs, b1, e.e = Move(bs, Top(A)) —
Occurs(e,s) A SO < Result(e, s)
7\ < Result(Move(A, Top(C)), S0)

Vs, b1, e.e = Move(by, Top(C)) A (s # SOV b # by) —
Occurs(e,s) A S0 < Result(e, s)
'\ < Result(Move(A, Top(C)), S0)

We can now prove that

Holds(On(A, Top(C)), Result(Move(A, Top(C)), S0)),

as the above principal allows us to prove that A and C are
clear for the entire interval.

We cannot prove that C' remains on the Table however,
as there may be events that put C' on top of other blocks.
These events will not make C' unclear, so they do not block
the action of putting A on C. To prove that C' remains on
the table we would need,

Occurs(Move(C, x), s)A
Vs, x. S0 < Result(Move(C, z), s)
< Result(Move(A, C), S0).

It is notable that there was no need to state that no other
actions occurred. It sufficed® to say that no other events
occurred that might cause a precondition of an event in our
narrative to fail. The notion that we need only state that
certain events did not occur becomes very important if we
wish to axiomatize domains in a way that will later allow
them to be conjoined. In fact, the motivating property for
developing this new axiomatization was to allow separate
axiomatizations, that do not interfere with each other, to
be conjoined. This is not possible in the old-style situation
calculus, as we explicitly list the sequence of actions that
occurs. Itis also not possible if we state that the only events
that occur are those mentioned, as is sometimes done in
narrative reasoning.

The reasoning that we did was not significantly more
difficult than the usual reasoning in the situation calcu-

or at the endpoints, thus the use of <. Sometimes, especially
when we are checking preconditions of events, we will only need
to show that nothing had an effect strictly before the end, and this
we will only need to show <. When we try to use inertia we will
need to show the <.

In this paper we state that the other events do not hap-
pen monotonically. These statements can be inferred non-
monotonically from sentences that tell which occurrences and
what fluents are explicitly stated to occur and hold in our nar-
rative, and the axiomatization of Changes. A fluent is relevant if
it is a precondition or an effect of a stated event that occurs, or if
the fluent’s value is stated in the narrative. This gives us a notion
of what the relevant fluents and events are in terms of what fluents
and events are explicitly given in the narrative. We then state that
no other events occur that would change the effects of the relevant
fluents. We avoid explaining this reasoning, as the machinery we
currently use is quite complex.

lus. We needed to check a few more conditions, namely
that blocks remained clear, but strategies, such as goal
regression[Rei91] continue to be effective.

4.2 EVENTSWITH MULTIPLE EFFECTS

In general an event may have more than one effect. The
preconditions for each effect may differ, thus preconditions
may be parameterized by the effect. Furthermore, each ef-
fect may occur at a different time.

421 Extending Result

If there is more than one effect of an event e, we
write Result(e,s) for the time of the main effect, and
Result(e, f, s) for the time of the effect of changing f.
For instance, flying from Glasgow to London has as its
resulting situation the situation where you arrive in Lon-
don. However, another effect of this event is to no longer
have your ticket, as the air-hostess takes it from you. The
situation where she takes the ticket off you is picked out by
Result(Fly(Glasgow, LHR, T1), takenby(Steward, ticket), s).
At this situation, the fluent Has(ticket) is also made false.
We use other situations like the time the airline-steward
takes your ticket, rather than explicit times, as explicit
times, like all numerical values are less natural—the num-
bers are hard to get. The statement that you no longer have
your ticket after the air-hostess takes it is very intuitive,
while the statement that your no longer have your ticket
after n minutes, for some definition of » is not.

4.2.2 Implied events

We can deal with events having multiple effects at differ-
ent times by stating that certain events trigger other events.
Thus we might write,

Vs, 1,1 .occurs(Fly(l,1', Ticket), s) —
occurs(take(Steward, Ticket), s).

This is an alternate way to model the notion that the airline
steward takes your ticket during the flight.

We now consider narratives in two domains. One concerns
stacking blocks, the other a plane journey. We show that
we can axiomatize these two narratives separately, but in
such a way that their conjunction is consistent.

5 GLASGOW, LONDON, MOSCOW AND
NEW YORK

The object of this section is to give narratives illustrating
the treatment of concurrent events in two cases. The first
is when two sub-narratives do not interact, and the second



is when they do. The first sub-narrative is ordinary block
stacking (as discussed in many situation calculus papers),
and we suppose the stacking to be done by a person called
Daddy in New York.

In the second sub-narrative, the actor is named Junior, and
he wants to fly from Glasgow to Moscow via London. The
story is taken from earlier web-published but widely cir-
culated manuscripts [McC92] discussing how circumscrip-
tion could be used to treat an unexpected obstacle to a plan,
and [McC95] how narratives should be represented. This
story is also used by Shanahan in [Sha97] in Chapter 10 as
an example to motivate a use of context.

These two sub-narratives do not interact, and thus give an
example of our first goal, a treatment of non-interacting
narratives that can be conjoined consistently.

Because we want to treat interacting events, we make life
more complicated for Junior. If he loses his ticket, he must
wire Daddy in New York for money. Daddy, who normally
indulges Junior, has to interrupt his block stacking and sell
a block in order to get the money to send Junior. In this part
of the narrative we have an example of adding details to an
event. We state the event of Junior getting money occurs,
we also give a sequence of events, Daddy stacking blocks
until block3 is clear, then selling block 3, receiving money
and sending it to Junior. The sequence realizes the single
event of getting money. We show that both statements are
consistent with each other, and the explanation can be con-
sistently conjoined onto the narrative that mentions only
the first event.

The following uses the axiomatizations of traveling and
commerce and blocks-world in the Appendix. In the text
we only give those axioms that are particular to the story.

We give axiomatizations of both the narratives where Ju-
nior loses his ticket, and contacts Daddy who sends him
money, that Daddy raises by selling a block (In New York,
blocks are made of Gold). Naturally Daddy has to clear
the block before selling it, so the narratives interact in a
non-trivial way.

Narrative 1

In this narrative Junior doesn’t lose his tickets, 7} and 15
and gets to Moscow without asking for help. Daddy stacks
blocks in New York. There is no interaction, and noth-
ing is said about the time relations between the two sub-
narratives.

Holds(At(J, Glasgow), S0)

Occurs(Fly(Glasgow, LHR, T¢), S0)

Dest(T1) = LHR A Source(T1) = Glasgow
Holds(Has(J, Ty), S0) 4)
Dest(T>2) = Moscow A Source(T2) = LHR
Holds(Has(J, T2), S0)

Result(Fly(Glasgow, LHR, T1),50) < S1

We should be able to infer:
Holds(At(J, LHR), S1)
To infer this we need to know that,

Vs',e.50 < Result(e, s’) <
Result(Does(J, Fly(Glasgow, LHR, T1)), S0) —
—(Occurs(e, s’) A Succeeds(e, Has(J, T1), s"))

That is, no event occurs that would cause Junior to lose
his ticket before he has to give it to the air-hostess'’. We
actually state the following stronger fact!®, that no events
that would cause Junior to no longer have a ticket occur,
save of course flying from Glasgow.

VS,, 6.(t =T Vt= TQ)/\
(e # Fly(Glasgow, LHR,T1) V s’ # SO)A 5
S0 < Result(e,s’) < 51 — ®)
—(Occurs(e,s’) A\ Succeeds(e, Has(J, t),s"))

When Junior is in London, inertia, and the instance of the
above axiom with ¢ = T5, gets us that Junior still has the
ticket to Moscow. As for the ticket to London, we would
infer that he does not have it as we brought up the fact that
a ticket is used up when one takes the flight the ticket is
for. That is certainly a part of the knowledge of anyone
who travels using tickets. Thus someone who had traveled
by bus would infer it about airplane travel. Indeed it could
be inferred from more general principles about commerce,
e.g. that a seller doesn’t want to allow the buyer to get an
arbitrary number of what he has a paid for one of. However,
anyone who travels has the more specific information and
doesn’t need to infer it from general principles about com-
merce. Indeed he may never have formulated any general
principles about commerce.

Occurs(Fly(LHR, Moscow, Ts), S1) (6)
Result(Fly(LHR, Moscow, T),S1) < S2

We wish to infer,
Holds(At(Junior, Moscow), S2)

Again we need to know that no bad events occur, that is,
Junior doesn’t lose any tickets.

Vs',e.(e # Fly(LHR, Moscow,T») V s’ # S1)A
S1 < Result(e,s’) < S2 — @)
=(Occurs(e, s") A Succeeds(e, Has(J, Tz), s"))

We call these sentences Narl.J, that is the sentences from
4 to 7. Now we begin Daddy’s life as a block stacker.

If we wished that the air-hostess took Junior’s ticket at an-
other time, we might use our three argument version of result and
write,

Vs',e.50 < Result(e,s’) <
Does(J, Fly(Glasgow, LHR,Th)),
Has(J,T1), S0
=(Occurs(e, s') A Succeeds(e, Has(J, T1), s")).

BWhether or not the stronger fact is warranted depends on

whether we wish to state that no event that might cause Junior

to lose his ticket happens, or no event that does cause Junior to
lose his ticket happens.

Result



We have no < relation between the situations S0 and S0’
and know nothing of their temporal relations. If we as-
serted SO < S0’ < S1, then we could conclude that Ju-
nior still had the tickets in S0’. Also asserting S0’ = S0
would do no harm to the conclusions drawn about either
sub-narrative.

Holds(At(D,
Holds(Has(D
Holds(Has(D
Holds(Has(D
Holds(On(A;, Top
Vb.Holds(Clear(b), S0") =
Holds(On (A, Table), SO’
Holds(On(Agz, Table), S0’
Occurs(Does(D, Move(As, Table)), S0")
Result(Does(D, Move(As, Table)), S
Occurs(Does(D, Move(Az, Top Ay))
Result(Does(D, Move(Az, Top Ay)),
)
)5

)
)

®)

NN

< 81’

)
,SJ’)

S1'y < S2'
Occurs(Does(D, Move(As, Top As ), S2’
Result(Does(D, Move(As, Top Asg)), S2")

)
< 83

We also need to know that no other actions that would in-
terrupt the block stacking®® occur.

Vs',e,a,b.50" < Result(e,s’) < S8'A
(s' # S0 Ve = Move(As, Table))A
(s' # S1'Ve= Move(Az, Top A1))A 9)
(s" # 82" Ve = Move(As, Top Ag)) —
—(Occurs(e,s’) A Succeeds(e, On(a, Top(b)),s’))

We call the sentences from 8 to 9 Nar1D We now notice
that if B is the axiomatization of blocksworld in the Ap-
pendix, and T is the axiomatization of traveling, then

BATANarlD A NarlJ E
Holds(On(Ags, Top Az), S3")A
Holds(On(As, Table), S1")A
Holds(At(J, LHR), S1)A
Holds(At(J, Moscow), S2)

(10)

Thus we can derive the obvious conclusions of our narra-
tive. We further note that the two narratives are consistent.

S3’ %
1]
S2 At(J,M) ]
S2's (e
Fly(L,M) 1] [3]
Fly(G,L) 3]
) AJ,G)  so [1][2]
Narrative 2

In this narrative Junior loses the ticket and sends a telegram
to Daddy asking for money. Daddy, who normally indulges

1f we wish to restrict this to block stacking in New
York we would add a conjunct Holds(In(a, New York),s') A
Holds(In(b, New York), s) to the left hand side of the implica-
tion.

Junior, sells a block and sends Junior the money, who buys
a London-Moscow ticket and goes on to Moscow.

We chose a telegram rather than a telephone call, because
we would not want to tell about a telephone call as a se-
quence of statements by Junior and Daddy but rather to
regard its result as a joint action, e.g. an agreement that
Junior and Daddy would do certain actions.

Note also we haven’t treated what Daddy now knows as
the result of the telegram. It seems that treating knowledge
and treating agreement are similar in their requirement for
treating intentional entities. The intentional state that Ju-
nior has requested that Daddy send him the money is not
merely that Daddy knows that Junior wants Daddy to send
him the money. Also the agreement is likely to have some-
thing like a bit of narrative as an argument, e.g. a set of ac-
tions that Junior and Daddy will do with only partial time
relations between the actions.

Here we include sentences 4 and 5. Up to here, narrative 2
is the same as narrative 1. We will also need the sentences
8 and 9.

Occurs(Loses(J, Tz), S1) (11)

This contradicts 7, which stated that no event that lost
the ticket happened before S2. We want to regard los-
ing the ticket as something that happens to Junior rather
than as something he does. That’s why we don’t write
does(J,lose ticket(LHR, Moscow)). The bad conse-
quences of doing the latter would arise when we get around
to writing laws that quantify over voluntary actions. We
will use some of the same names now for situations that
are different than in narrative 1.

Result(Loses(J, Tz), S1) < S2

—Holds(Has(J, Cash), S2) (12)

Occurs(Does(J, Telegraph(D, Request Send Cash)), S2)(13)

Here we intend to have two explanations for what happens
next. One is the simple observation that Daddy does sell
a block, and send the money to Junior. This is a simple
sequence of events, like we detailed earlier.

However we also know that as a dutiful father, Daddy will
get money to Junior. Thus we can predict the event of
Daddy getting money to Junior. Here we are treating Daddy
as if his actions were determined by our inputs. Sometimes
it is useful to describe people in that way. In more elaborate
narratives we would need to reason about Daddy mental
processes, but for this case we can treat him as an automa-
ton.

The following axiom characterizes what Daddy does when



he receives a request from Junior.

Happens(Gets(J,Cash)),

Receives(D, Telegram-from
(J, Request Send Cash)), s

Vs.Holds Result

3.5 — Result (Recewes(D,Telegram-from ) (14)

(J, Request Send Cash)), S2

This is an example of a triggered action, as we have the
defining rule for Holds(Happens(e), s),
Ve, s. Holds(Happens(e), s) = Occurs(e, s).

We now state that the money arrives before S3, when Ju-
nior buys the ticket.

Result(Gets(J, Cash), S8.5) < S3
We now give the other facts about occurrences.

S3' =

Result(Does(J, Telegraph(D, Request Send Cash)), S2

—Holds(Has(D, Cash), S3")
Occurs(Does(D, Sell As), 53')
Result(Does(D, Sell As), S3") < S4'
Occurs(Does(D, Send(J, Cash)), S4")
Result(Does(D, Send(J, Cash))
Occurs(Does(J, Buy ticket(T2)), S8
Result(Does(J, Buy ticket(Tz)), S3) < S4
Occurs(Does(J, Fly(LHR, Moscow)), S4)
Result(Does(J, Fly(LHR, Moscow)), S4) < S5

), 54
,84") < 83
), 53)

We also need to know that no events occur that would divert
the money in the meantimes between these events and the
result of the previous events.

Vs',e.(e # Does(D, Send(J, Cash)) V s' # S4")A
Result(Does(D, SellAs), S3") <

Result(e,s') < 84" — (15)

Occurs(e, s')A
'\ Succeeds(e, Has(D, Cash), s")

Vs, e.(e # Does(J, Buy ticket(T2)) V s' # S3)A
Result(Does(D, Send(J, Cash)), S4") <
Result(e, s') < 88 —

Occurs(e, s")A
'\ Succeeds(e, Has(J,Cash), s")
Vs’ e.(e # Fly(LHR, Moscow,T2) V s’ # S4)A

Result(Does(J, buy ticket(Tz)), S3) <
Result(e,s') < 84 —

Occurs(e, s’ )A
'\ Succeeds(e, Has(J, Tz), s")

We now consider the consequences of narrative two. Let
Nar2 be those sentences directly above and the sentences

from 4 to 5and 8 and 9 and 11 to 15.

Nar2 =
—Holds(Has(J, T2), S2)A
Holds(Has(D, Cash), S4")A
Holds(Has(J, Cash), S3)A
Holds(Has(J), T2, S4)A
Holds(At(J, Moscow), S5)

(16)

Most interestingly we can derive the occurrence of a trig-
gered action:

Nar2 A Dep AU = (17)
Occurs ( gets(J,Cash), S3.5 )

We have two explanations for Junior receiving the money,
the gets event, and the send event. We cannot tell which
happens first, or if they happen simultaneously. Thus our
formalism allows us to add detail of an event without con-
tradiction.

51 ELABORATIONS

Interpolating unconnected situations and events into a nar-
rative does not harm the conclusions. For example, we
could put situations S0.5 and S0.7 between S0 and S1,
and suppose that Junior reads a book on the airplane dur-
ing the inner interval. The previous statements about what
holds when Junior arrives in London should still seem ok.
Indeed we have that when we add

Occurs(Read(J, Book), S1.5)
AS1 < S81.5 < Result(Read(J, Book), S1.5) < S2
Vs.Holds(Intelligent(P), Result(Read (P, Book), s))

we can conclude all our previous sentences, plus some
more about Junior’s intelligence, something we earlier did
not have an opinion about.

In our second narrative, after S2 we have two possible ex-
planations of how Junior gets the cash to buy his ticket.
One explanation is that Daddy always gets cash to Junior.
We also have the more detailed explanation that Daddy
sells Az and sends the proceeds to Junior. The more de-
tailed explanation is an elaboration of how Daddy got them
cash to Junior. If is worth noting that both explanations can
co-exist in our narrative without inconsistencies.

52 ELABORATION OF NARRATIVES

Suppose we are asked, “How did Junior fly from Glasgow
to London?” and want to respond with facts about tak-
ing a taxi to the airport, presenting his ticket at the check-
in counter, going to the gate, getting on the airplane, tak-
ing his assigned seat, etc. We can add this additional nar-
rative with its intermediate situations, and we can throw
in reading the book if we like. There is no reason to
discard Occurs(Does(J, Fly(Glasgow, LHR, T)), S0).



We merely have a redundant way of reaching the same con-
clusion. This is allowed in our formalism, and this property
is demonstrated by the two ways in which we describe how
Daddy gets the money for Junior.

However, we would like a sentence relating the more de-
tailed narrative to the less detailed narrative, i.e. of assert-
ing that one realizes the other. For this we will at least need
narratives as objects, and this has not yet been introduced.

Note that the relation Elaborates(N2, N1), when we get
around to introducing it, will not be like the relation be-
tween a subroutine call and the subroutine. N1 will not in
any sense be the definition of N2. N2 could be realized in
a number of ways, only one of which corresponds to N 1.

5.3 PLANNING AND PREDICTION

We would like to treat the circumstances of the previous
narrative from the point of view of planning. In that case
we need to be explicit about the consequences of actions
and other events. The difference between planning and nar-
rative is that in narrative we know that events and actions
will succeed. This allows us to make assumptions we oth-
erwise could not make. We can also assume that all the
important effects of actions are mentioned. When we plan
we need to show that we have taken into account all the
important effects.

Let us consider the purposes of Junior and Daddy and pre-
dict what actions they will take and what the outcome will
be. Of course, Junior losing the ticket will be an unpre-
dicted event. We just throw it in, but then we should be
able to predict what Junior and Daddy will subsequently
do. This seems more difficult than either planning or pred-
ication.

54 PHILOSOPHICAL CONSIDERATIONS

Reality may be regarded as the deterministic limit of non-
determinist approximations. In what a human or robot can
know about the world many events are not inevitable. In
any human account, it did not have to be raining when Ben-
jamin Franklin first arrived in London. Indeed, maybe it
wasn’t. Even if the world is deterministic, any achievable
description of it is nondeterministic. Elaborations of par-
ticular narratives sometime remove some of the nondeter-
minism by accounting for the causes of particular events
and for fluents holding in the results of these events.

Therefore, it may be worthwhile to regard the world as de-
terminist and suppose that every event has causes whether
we know them or not. Thus any particular nondeterminism
is potentially eliminable.

It might be supposed that quantum mechanics vitiates these
considerations, but we don’t think it requires modifications

on the common sense level. Free will in a determinist world
is discussed in [MH69].

541 REMARKS

We have always felt that the careful classification of the
ways in which events can overlap is unnecessary for almost
all common sense reasoning. We think this article shows it.
Moreover, it is also usually unnecessary to combine con-
current events into compound events as do Gelfond, Lifs-
chitz and Rabinov [GLR91].
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APPENDIX

BLOCKSWORLD

Our blocks world has 4 sorts, situations s, blocks b, loca-
tions [ and actions a. These are all disjoint.

We have a situation constant S0, other situation constant
Sn and Sn’ for various n’s, a set of block constants
Ay, ..., Ay, ..., where n € wand one block location con-
stant T'able. We also have constants A = A;, B = A, and
C = A3.

All blocks are unique, but we do not postulate domain clo-
sure.

Ai# Ajli # ]

ZLhttp:/vww-formal.stanford.edu/jmc/narrative.html

We have block locations??, which are the Top of a block,
or are the T'able.

V1.3b.Top(b) = I V| = Table

All distinct block location terms denote distinct locations.
Vb, b . Top(b) = Top(b') — b=1
Vb.Top(b) # Table

We have a function from actions and situations to situa-
tions, Result(a,s), and a function from blocks and loca-
tions to actions, Move(b, 1), which gives the action where
block b is moved to location /.

All distinct action terms are distinct.
Vb, b, 1,1 . Move(b, 1) = Move(b',1') = b=b" Al=1

We have the foundational axioms for situation calculus we
considered earlier.

We have fluents, Holds(On(b,1),s) which states that b
is on location ! in situation s, and Holds(Clear(l), s).
Holds(Clear(l), s) is fully defined in terms of On.

V1, s.Holds(Clear(l), s) =
(3b.¥0'.1 = Top(b') A =Holds(On(b’, Top(b)), s))V
l =Table

We now add the obvious definition of Changes for
Mowve(b,1) actions. That is, there is a change in On(b,1’)
and On(b,1) when g contains On(b,!’) for an I’ not equal
to [, and I # Top(b), and g; contains Clear(l) and
Clear(top(b)).

Vb, b/7l7l/7g1’92'
Changes(Move(b,1),On(b’,1'), g1,92) =
L#1 AL+# Top(b) Ab=bA

(b= A g0, V)

(b b A g(On(b, 1))
G(Clear(l)) A G(Clear(l"))

This concludes the axiomatization of blocksworld, we
could add domain constraints, but this is not necessary for
the reasoning we do in this paper. We now present an ax-
iomatization of traveling, followed by an axiomatization of
buying selling and sending and receiving.

TRAVELING AND COMMERCE

Our events are flying, doing actions, getting, receiving and
losing. Our actions are selling, sending, telegraphing. Dis-
tinct event terms are distinct. We have two people con-
stants, Junior and Daddy. We have among our objects Cash,

2These are not the same as geographical locations like New
York or London. We use [ to range over both, which is unfortu-
nate.



a message (Request Send Cash), cities, including Lon-
don, Glasgow and Moscow. We also have tickets, and func-
tions which yield destination Dest and source Source of a
flight, given a ticket for that flight. We have unique names
for all fluent terms, and thus for all the terms that can ap-
pear in fluents. Our fluent forming functions are At which
takes a person and a place, Has which takes a persona and
athing, Happens, which takes an event, and the earlier flu-
ents of On and Clear. Our sorts are disjoint, and the sorts
of variables are to be inferred by their use.

Vs, P,l,t.Holds(At(P,1), s) A Source(t) = IA
Dest(t) =1'A

(Vs'.s < s’ < Result(Fly(l,1',t),s) —
Holds(Has(P,t),s")) —

Holds(At(P,1"), Result(Fly(l,1', t), s))A
—Holds(Has(P,t), Result(Fly(l,1', ), s))

This is equivalent to

VI, t, P.

Changes(Fly(l,l',t), Has(P,t), g1, g2) «—
Source(t) =1 A Dest(t) =1U'A
92(AL(P,1)) A g1(Has(P,t))

As this is the only effect axiom for flying, we can change
this to the equivalence.

vl,l/,t,P,gl,QQ.

Changes(Fly(l,I',t), Has(P,t), g1, g2) =
Source(t) =1 A Dest(t) =1U'A
92(AL(P,1)) A g1(Has(P,t))

Vs, P,0.~Holds(has(P, o), Result(lose(P, 0), s))
This immediately gives,
Vs, P, g1, g2,0.Changes(Lose(P, 0), Has(P, 0), g1, g2)

as any set of preconditions is sufficient. We add the obvi-
ous axioms that describe C'hanges for the following effect
axioms using the same method.

Vr, P, s.Holds(Happens(Receives(P’,
Telegram-from(P,r))),
Result(Does(P, Telegraph(P’,T)), 5))

Happens(Gets(J, Cash)),

Vs.Holds Result Receives(D, Telegram-from(J,
esu Request Send Cash)), s

Vs, P,o0.Holds(Has(P, 0),s) A Holds(Clear(o),
Holds(Has(P, Cash), Result(Does(P, Sell(o)
Vs, P,o0.Holds(Has(P, 0),s) A Holds(Clear(o),
—Holds(Has(P, o), Result(Does(P, Sell(0)),
Vs, P, P',0.Holds(Has(P, 0),s) —

l

~

5)
), )
5)

5))

|

)

Holds(Has(P', o), Result(Does(P, Send(P’, 0)), s))

Vs, P.Holds(Has(P, Cash), Result(Gets(P, Cash), s))



