
ACTIONS AND OTHER EVENTS IN SITUATION CALCULUS

John McCarthy
Computer Science Department

Stanford University
Stanford, CA 94305

jmc@cs.stanford.edu

http://www-formal.stanford.edu/jmc/

Abstract

This article presents a situation calculus for-
malism featuring events as primary and the
usual actions as a special case. Events that
are not actions are called internal events and
actions are called external events. The effects
of both kinds of events are given by effect
axioms of the usual kind. The actions are
assumed to be performed by an agent as is
usual in situation calculus. An internal event
e occurs in situations satisfying an occurrence

assertion for that event.

A formalism involving actions and internal
events describes what happens in the world
more naturally than the usual formulations
involving only actions supplemented by state
constraints. Ours uses only ordinary logic
without special causal implications. It also
seems to be more elaboration tolerant.

The first example is the buzzer with only in-
ternal events and which cannot be treated at
all with state constraints, because the system
never settles down to a steady state.

Our second example is the stuffy room sce-
nario. One occurrence axiom states that
when both vents are blocked and the room
isn’t stuffy, the event Getstuffy occurs.
State constraints are unneeded. The stuffy
room formalization tolerates an elaboration
asserting that when the room becomes stuffy
someone unblocks a vent. If we further add
that someone else then finds the room cold
and blocks the vent again, we get a system
that oscillates.

The third example is the blocks world.

The nonmonotonic reasoning involves cir-
cumscribing occurrences, changes, and pre-

vention one situation at a time.

Then we offer a general viewpoint on the sit-
uation calculus and its applications to real
world problems. It relates the formalism of
[MH69] which regards a situation as a snap-
shot of the world to situation calculus theo-
ries involving only a few fluents.

1 Introduction: Actions and other

events

This article emphasizes the idea that an action by an
agent is a particular kind of event. The idea of event
is primary and an action is a special case. The treat-
ment is simpler than those regarding events as natural

actions.

The main features of our treatment are as follows.

1. There are the usual effect axioms involving the
function Result(e, s), the situation that results when
event e occurs in situation s.

2. There are occurrence axioms giving conditions for
an event to occur. They have the form conditions(s) →
occurs(e, s).

3. The theory distinguishes between external events

for which occurrence axioms are not given and internal

events governed by occurrence axioms. Older treat-
ments of situation calculus often do not provide for
internal events. Usually human actions are properly
treated as external events, but if the theory contains
assertions that a person will perform a certain action,
then such an assertion can be given by an occurrence
axiom, and the action is an internal event. We in-
clude an example of an elaboration of the theory of
Ginsberg’s stuffy room scenario [GS88] that uses an
occurrence axiom to assert that a person will unblock
a vent when the room becomes stuffy. Thus an action

can be either an external or internal event. Elaborat-
ing the theory by giving an occurrence axiom for the
action makes it an internal action in the elaborated
theory.

4. Our theories are nonmonotonic and minimize cer-
tain predicates situation by situation. The approach
is proposed only when information about the future
is obtained only by projection from earlier situations.
Thus it is not appropriate for the stolen car scenario.

We use internal events instead of state constraints in
the stuffy room example. Thus we say that when the
vents are blocked, the room becomes stuffy rather than
regarding stuffiness as a state constraint. This is closer
to human common sense reasoning and natural lan-
guage usage, as well as being logically simpler.

We begin with formalizing a buzzer which has only
internal events, continue with the stuffy room scenario
which has both. Our third example is the blocks world.

After these examples, we discuss the nonmonotonic
reasoning.

Then we offer a general viewpoint on the situation cal-
culus and its applications to real world problems. It
relates the formalism of [MH69] which regards a situ-
ation as a snapshot of the world to situation calculus
theories involving only a few fluents.

2 The situation calculus formalism

Situations are denoted by the letter s decorated with
subscripts. Constants like S0 are capitalized, and vari-
ables are lower case. However, we do not assume that
all situations are generated from a big bang situation
S0 as does Reiter [Rei01].

The sentence Holds(pfluent, s) asserts that the
propositional fluent pfluent holds in the situation s.
Sometimes we write just pfluent(s), but the nota-
tion with Holds allows quantifying over fluents. We
also have term fluents, and V alue(tfluent, s) gives the
value of tfluent in the situation s. We also sometimes
write just tfluent(s).

Result(e, s) denotes the situation that arises when the
event e occurs in the situation s. In this simple for-
malism, neither situations nor events have durations.

Occurs(e, s) is the assertion that the event e occurs in
the situation s.

Next(s) is the next situation after s. It is defined by

Occurs(e, s) → Next(s) = Result(e, s) (1)

for those situations in which an occurrence assertion

determines what event will occur.

As an example, three of the axioms of the stuffy room
phenomenon are

Holds(Blocked1, s) ∧Holds(Blocked2, s)
∧¬Holds(Stuffy, s)

→ Occurs(Getstuffy, s),
Holds(Stuffy,Result(Getstuffy, s)), and
Holds(Blocked1, Result(Block1, s)).

(2)

Getstuffy is an internal event and occurs all by itself
when the vents are blocked.

We use circumscription to minimize occurrences, to
minimize change (frame problem), and to minimize the
fluents that prevent actions and other events (qualifi-
cation problem).

Treating internal and external events by the same for-
malism admits elaborations that turn some instances
of external events into internal events. Thus we can
elaborate the stuffy room scenario by adjoining an oc-
currence axiom saying that when the room becomes
stuffy, someone unblocks a vent, which makes the room
unstuffy. The further elaboration that when a vent is
unblocked, someone blocks it again, perhaps from feel-
ing cold, causes the system to oscillate and never settle
down.

An external event can create a situation in which the
occurrence axiom for an internal event is satisfied.
This leads to a new situation in which a new internal
event can occur. When no more internal events occur
the process settles down, and we can infer a statement
about the resulting stable state. Stable states are usu-
ally characterized by state constraints. In physics these
states often minimize potential energy.

The next three sections discuss examples, a buzzer
which has only internal events, the stuffy room sce-
nario, and the blocks world.

3 Formalizing a buzzer

Figure 1: A buzzer.

Figure 1 displays a buzzer consists of a relay connected
to a battery by a switch that is opened when the relay

operates. If the switch is on, the relay operates and
opens the switch which turns off the relay which closes
the switch. Thus the circuit oscillates and never settles

down to a stable state.

The buzzer formalization has only internal events—at
least once it is started, and this makes its operation
easy to formalize.

State constraint axioms for formalizing a buzzer anal-
ogous to those often used for the stuffy room scenario
would be immediately contradictory, asserting that the
relay is on if and only if it is off. Our present situation
calculus formalism follows human common sense rea-
soning directly and requires no special causal formal-
ism or logic with implications not equivalent to their
contrapositives.

There are effect axioms and occurrence axioms. The
former are well known and give the effects of events.
The latter assert that in situations in which certain
fluents hold, certain events will occur.

We distinguish between the fluent On(Sw) asserting
that the switch is on and the event Onn(Sw) that turns
the switch on. The fluent holding in a situation is
asserted by Holds(On(Sw), s). Likewise for the fluent
On(R) and the event Onn(R) that concern the relay.
We also have Off and Offf for the switch and the relay.

Effect axioms:

Holds(On(R), Result(Onn(R), s))
¬Holds(On(R), Result(Offf (R), s))
Holds(On(Sw), Result(Onn(Sw), s)
¬Holds(On(Sw), Result(Offf (Sw), s)).

(3)

Occurrence axioms:

¬Holds(On(Sw), s) ∧Holds(On(R), s)
→ Occurs(Offf (R), s)

Holds(On(Sw), s) ∧ ¬Holds(On(R), s)
→ Occurs(Onn(R), s))

Holds(On(R), s) ∧Holds(On(Sw), s)
→ Occurs(Offf (Sw), s)

¬Holds(On(R), s) ∧ ¬Holds(On(Sw), s)
→ Occurs(Onn(Sw), s)

(4)

Note that each of the above occurrence axioms has a
second term in the precondition. They are needed to
avoid unwanted concurrent events.

Frame assertions—for now axioms:

e = Onn(Sw) ∨ e = Offf (Sw)
→ Holds(On(R), Result(e, s))

≡ Holds(On(R), s)).
(5)

e = Onn(R) ∨ e = Offf (R)
→ Holds(On(Sw), Result(e, s))

≡ Holds(On(Sw), s)).
(6)

These frame assertions tell what doesn’t change. They
are few enough in this case, since there are few actions
and few fluents. In general it is more efficient to say
what does change. In this case we have

Changes(Onn(R), On(R), s),
Changes(Offf(R), On(R), s),
Changes(Onn(Sw), On(Sw), s), and
Changes(Offf(Sw), On(Sw), s).

(7)

In section 6 we describe how to get the frame assertions
by circumscribing Changes(e, f, s).

Let an initial situation, called S0, be given by

¬Holds(On(Sw), S0) ∧ ¬Holds(On(R), S0) (8)

We can proceed a step at a time. We have

Occurs(Onn(Sw), S0) (9)

in accordance with (4). Hence

Next(S0) = Result(Onn(Sw), S0), (10)

and therefore, letting

S1 = Next(S0), (11)

we have

¬Holds(On(R), S1) ∧Holds(On(Sw), S1). (12)

Some elaborations of the buzzer axioms will be worth
doing.

1. Allow the action of stopping the buzzer to occur at
any situation.

2. Consider the action of stopping the buzzer as a
concurrent event.

3. A concurrency elaboration along the lines of
[McC92] and [MC98] might be to have two non syn-
chronized buzzers B1 and B2 with no guaranteed tem-
poral relation between the events involving B1 and B2.

4 The stuffy room scenario

A problem arises when the well-known stuffy room sce-
nario is formalized with a state constraint that when
both vents are blocked by pillows the room is stuffy
and changes in fluents are minimized. This can lead

to the unintended model that when one vent is already
blocked the action of blocking the other event causes
the blocked vent to become unblocked in order to min-
imize change. Some complication of the formalism is
required to deal with the phenomenon. Direct for-
malization in terms of actions and events avoids the
difficulty. Also it corresponds better to the way we
humans think about the problem, i.e. we think about
the room becoming stuffy.

We use fluents Blocked1, Blocked2, and Stuffy. We
have the action events Block1, Unblock1, Block2,
Unblock2 and the internal events Getstuffy and
Ungetstuffy. 1

Effect axioms:

Holds(Blocked1, Result(Block1, s))
Holds(Blocked2, Result(Block2, s))
¬Holds(Blocked1, Result(Unblock1, s))
¬Holds(Blocked2, Result(Unblock2, s))
Holds(Stuffy,Result(Getstuffy, s))
¬Holds(Stuffy,Result(Ungetstuffy, s))

(14)

Occurrence axioms:

Holds(Blocked1, s) ∧Holds(Blocked2, s)
∧¬Holds(Stuffy, s)

→ Occurs(Getstuffy, s) and
(¬Holds(Blocked1, s) ∨ ¬Holds(Blocked2, s))

∧Holds(Stuffy, s)
→ Occurs(Ungetstuffy, s)

(15)

The frame axioms are

Changes(Block1, Blocked1, s),
Changes(Block2, Blocked2, s),
Changes(Unblock1, Blocked1, s),
Changes(Unblock2, Blocked2, s),
Changes(Getstuffy, Stuffy, s), and
Changes(Ungetstuffy, Stuffy, s).

(16)

1One of the referees suggested that using the fluents
Blocked1 and Blocked2 and the corresponding actions was
too special, and we should say that the room is stuffy when
all the vents are blocked. We can accommodate his pref-
erence by introducing the vents as objects and using the
axiom

(∀vent)(Holds(Blocked(vent), s))
→ Occurs(Getstuffy, s)

(13)

and a corresponding axiom for the effect of unblocking
a vent.

This is just a step towards a general commonsense the-
ory of the effects of ventilation on stuffiness. Such a the-
ory would have to take into account the fact that blocking
the vents does not make the room stuffy under all circum-
stances. For now it’s simpler to just consider the particular
room with exactly two vents.

How they work is described in section 6.

We need to distinguish between internal events like
Getstuffy and external events like Block1. As we
shall see, an external event may be an internal event
of a more comprehensive narrative, e.g. one in which
Block1 occurs when Mike is annoyed by cold air com-
ing from V ent1.

We can tell a simple sequential story by first describing
S0, e.g. by

¬Holds(Blocked1, S0) ∧ ¬Holds(Blocked2, S0)
∧¬Holds(Stuffy, S0).

(17)
We can now write the narrative

S1 = Result∗(Block1, S0)
S2 = Result∗(Block2, S1)
S3 = Result∗(Unblock2, S2)
S4 = Result∗(Block2, S3), etc.

(18)

Here Result∗(e, s) is like the Rr of [McC95]. It is the
result of doing a followed by the occurrence of what-
ever internal events occur. The assumption is that
some sequence of internal events will occur after which
the situation remains the same until another external
event occurs. Result∗(e, s) is undefined in the buzzer
example in which internal events occur forever.

Result∗ requires an induction axiom or schema. Here’s
one candidate:

P (s) ∧ (∀s e)(P (s) ∧Occurs(e, s) → P (Result(e, s)))
→ P (Result∗(e, s)).

(19)

The function Next∗ has the same relation to Result∗

that Next has to Result. It gives the next situation to
which no occurrence assertion applies. Next∗ satisfies

Result∗(e, s) = Next∗(Result(e, s)),
(∀e)(¬Occurs(e, s)) → Next∗(s) = s, and
Occurs(e, s) → Next∗(s) = Next∗(Result(e, s)).

(20)

In the present case we will have

S1 = Result∗(Block1, S0) = Result(Block1, S0).

because no internal event will occur in
Result(Block1, S0). However, we’ll have

S2 = Result∗(Block2, S1)
= Result(Getstuffy,Result(Block2, S1)),

(21)

because now the internal event Getstuffy will oc-
cur. Thus we’ll have ¬Holds(Stuffy, S1) but
Holds(Stuffy, S2), ¬Holds(Stuffy, S3),
and Holds(Stuffy, S4).

We can write

S4 = Result∗(Block2, Result∗(Unblock2,
Result∗(Block2, Result∗(Block1, S0))))

= Result(Getstuffy,Result(Block2,
Result(Ungetstuffy,Result(Unblock2,
Result(Getstuffy,Result(Block2,

Result(Block1, S0))))))),
(22)

which can also be written

S4 = Result∗(Block1;Block2;Unblock2;Block2, S0)

= Result(Block1;Block2;Getstuffy;Unblock2;

Ungetstuffy;Block2;Getstuffy, S0).(23)

Here we extend the meaning of Result to allow a se-
quence of events as an argument.

4.1 Telling stories using Occurs and Next

Another way of telling stories is to always use Occurs.
An external event is axiomatized by asserting that it
occurs.

The above story is then given by

Occurs(Block1, S0)
S1 = Next(S0) = Result(Block1, S0)
Occurs(Block2, S1)
S1′ = Next(S1) = Result(Block2, S1)
Occurs(Getstuffy, S1′),by inference
S2 = Next(S1′) = Result(Getstuffy, S1′)
Occurs(Unblock2, S2)
S2′ = Next(S2) = Result(Unblock2, S2)
Occurs(Ungetstuffy, S2′)by inference
S3 = Next(S2′) = Result(Ungetstuffy, S2′)
Occurs(Block2, S3)
S3′ = Next(S3) = Result(Block2, S3)
Occurs(Getstuffy, S3′)by inference
S4 = Next(S3′) = Result(Getstuffy, S3′).

(24)

We can also write the story more briefly as

Occurs(Block1, S0)
S1 = Next∗(S0) = Result∗(Block1, S0)
Occurs(Block2, S1)
S2 = Next∗(S1) = Result∗(Block2, S1)
Occurs(Unblock2, S2)
S3 = Next∗(S2) = Result∗(Unblock2, S2)
Occurs(Block2, S3)
S4 = Next∗(S3) = Result∗(Block2, S3)

(25)

Still more briefly

S4 = Next∗(Next∗(Next∗(Next∗(S0))))
= Result∗(Block2, Result∗(Unblock2,

Result∗(Block2, Result∗(Block1, S0))))
(26)

4.2 Two elaborations of the stuffy room

scenario

The first elaboration says that when Pat finds the
room stuffy he unblocks vent2. We have

Holds(Stuffy, s) → Occurs(Does(Pat, Unblock2), s),
(27)

or, more elaborately,

Holds(Stuffy, s) ∧ ¬Holds(Uncomforable-Pat, s)
→ Occurs(Becomes-Uncomfortable(Pat), s),

Holds(Uncomfortable, Pat,

Result(Becomes-Uncomforable(Pat), s))
Holds(Uncomfortable, Pat, s)
→ Occurs(Does(Pat, Unblock-V ent2), s),
¬Holds(Blocked2, Result(Does(Pat, Unblock-V ent2), s)).

(28)
(24) remains the same except that perhaps we should
change the notation so that instead of S3 and S3′ we
write S2′′ and S2′′′, since these are now intermediate
situations. The situation S4 is now unstable.

Now let’s add a second elaboration in which Mike finds
the room cold when there is an unblocked vent and
blocks vent2. It is expressed by adding

Holds(Unstuffy, s) → Occurs(Does(Mike,Block2), s).
(29)

With both of these elaborations, we get an oscillation;
Pat unblocks vent2 and Mike blocks it again. Result∗

and Next∗ are no longer defined.

5 The blocks world

Assume enough unique names axioms.

The blocks world involves the frame problem in a more
significant way than do the buzzer and the stuffy room
scenarios.

We use the predicate Prevents(p, e, s) to say that a
move is prevented by there being a block on top of
the block to be moved or on the destination unless the
destination is the table. We thereby skip the use of the
fluent Clear(x) prevalent in many blocks world sitcalc
theories.

Here’s the effect axiom for moving a block.

(∀p)(¬(Prevents(p,Move(x, y), s) ∧Holds(p, s)))
→

(Holds(On(x, y), Result(Move(x, y), s)))
∧
((Holds(On(x, z), s)) ∧ z 6= y

→ ¬Holds(On(x, z), Result(Move(x, y), s)))),
(30)

and here are the axioms for prevention:

Prevents(On(z, x),Move(x, y), s) and
y 6= Table → Prevents(On(z, y),Move(x, y), s).

(31)

We adopt the usual way of emphasizing the frame
problem by introducing the action of painting a block
a certain color. Thus

(∀p)(¬(Prevents(p, Paint(x, c), s) ∧Holds(p, s)))
→ Holds(Color(x, color), Result(Paint(x, color), s)),

(32)
or, using object valued, i.e. non propositional, fluents,

(∀p)(¬(Prevents(p, Paint(x, c), s) ∧Holds(p, s)))
→ V alue(Color(x),

Result(Paint(x, color), s)) = color.

(33)
The change axioms for the blocks world are

Changes(Paint(x, c), Color(x), s),
Holds(On(x, z), s)
→ Changes(Move(x, y), On(x, z), s)

∧Changes(Move(x, y), On(x, y), s).

(34)

The nonmonotonic reasoning associated with the
blocks world will be discussed after the section dealing
with nonmonotonic reasoning in situation calculus in
general.

6 Nonmonotonic reasoning—situation

by situation

We use circumscription to minimize the events that
occur in a situation, the fluents that might prevent
an event from having its standard effect, and the
changes in fluents. In contrast to the formalism of
[McC86] which minimized predicates over all the ar-
guments, we minimize for each successive situation
separately. However, in doing this minimization in
s we take as fixed the Holds(f, s) sentences and the
V alue(exp, s) = . . . sentences inferred from the effects

of the event that led to the situation. We are giving
up the possibility of trading and abnormality in one
situation for an abnormality in another.

Doing the nonmonotonic reasoning in situations suc-
cessively corresponds to the way people predict the
consequences of sequences of actions and events. It
seems to give the same conclusions as Yoav Shoham’s
chronological minimization [Sho88] but is computa-
tionally more straightforward. Like chronological min-
imization, it avoids the Yale shooting problem and its
friends.2

However, we advocate this only for projection prob-
lems, i.e. reasoning about the future from information
about the past. The method is not appropriate for the
stolen car scenario in which one has to reason from
an assertion (that the car is missing) about a later
situation. 3

With the present formalism, the person or agent set-
ting up the problem must know that projection for-
ward in time is appropriate. It would be better if this
were a consequence of the formalized facts.

Now let’s consider circumscribing at each situation
separately. The simplest case is when we have a pred-
icate Foo(x, y, s).

We write the axioms

Foo′ ≤s Foo ≡ (∀x y)(Foo′(x, y, s) → Foo(x, y, s)),
(Foo′ <s Foo) ≡ (Foo′ ≤s Foo) ∧ ¬(Foo′ =s Foo),
Foo′ =s Foo ≡ (∀x y)(Foo′(x, y, s) ≡ Foo(x, y, s)).

(35)

Then the circumscription of Foo(x, y, s) takes the form

Axiom(Foo, vars, s) ∧ (∀foo′ vars′)(Axiom(foo′, vars′)
→ ¬(foo′ <s Foo)).

(36)
Here vars stands for a list of the entities being varied
as Foo is minimized.

2The ideas of internal and external events of the pre-
ceding sections are independent of the formalism used for
nonmonotonic reasoning. For example, Golog [Rei01] or
the Causal Calculator [aA01] could be used—perhaps with
some modifications for the buzzer and the oscillating stuffy
room.

3Actually part of the stolen car scenario can be treated
provided we don’t suppose that the car being missing is to
be projected from information about the past. Certainly
we can go forward from the situation in which the car is
missing to further events in the future. Likewise, in the
story of Junior’s travels [McC92], we can assert that Junior
loses his ticket to Moscow in London and reason forward
from that fact.

This spells out to

Axiom(Foo, vars, s) ∧ (∀foo′ vars′)
(Axiom(foo′, vars′) ∧ ((∀x y)(foo′(x, y, s)

→ Foo(x, y, s))
→ (∀xy)(Foo(x, y, s) ≡ foo′(x, y, s)))).

(37)

Call this formula Circ(Axiom;Foo; vars; s). This is
the notation of [Lif94] with the addition of the argu-
ment s to say that s is kept fixed.

The general frame axioms are

¬Changes(e, p, s)
→ (Holds(p,Result(e, s)) ≡ Holds(p, s))

(38)
for propositional fluents and

¬Changes(e, f, s)
→ V alue(f,Result(e, s)) = V alue(f, s).

(39)
for general fluents.

Suppose we allow complex fluents, say p And q when
p and q are propositional fluents. We then need an
axiom

Changes(e, p, s) ∨ Changes(e, q, s)
→ Changes(e, p And q, s).

(40)

Similar axioms are required for the other propositional
functions of fluents and for the compositions of non-
propositional fluents.

[This leads to difficulties when we want to delimit what
changes, since there are arbitrarily complex composi-
tions of fluents. We’ll confine ourselves to elementary
fluents for now by not putting compositions in the lan-
guage.]

In these circumscriptions we also minimize Holds.

This tolerates elaborations like

Holds(Weak, s) → Prevents(Weak,Move(x, y), s).
(41)

If Holds(Weak, s) isn’t asserted, Move(x, y) will not
be prevented.

Lin and Shoham, [LS95] consider a theory of action
to be provably correct if doing the nonmonotonic rea-
soning results in a complete nonmonotonic theory of
the action. This seems like a worthy goal, but I don’t
know if the present theory achieves it.

7 Actions and other events

The previous sections presented a formalism adequate
for the examples discussed. In this section we discuss

the situation calculus in general and its connection
with the real world. We also discuss relations between
different situation calculus theories, e.g. theories at
different levels of detail, 4 with actions by agents as
a special case. Thus an action term a is considered
an abbreviation of the event term Does(person, a).
Besides effect axioms formalizing Result(e, s) [do(e, s)
in Canada and its colonies], there are occurrence ax-

ioms asserting that in situations satisfying certain ex-
pressions in the fluents, an event e occurs—written
Occurs(e, s). 5

Before giving effect and occurrence axioms, we present
some general considerations concerning situation cal-
culus and its applications.

7.1 Situation calculus and the real world

There have been many formulations of situation cal-
culus.

[MH69] regarded a situation as a snapshot of the world
at some instant of time. Such a system could not be
known and described completely, but a person or pro-
gram could know facts about a situation, i.e. the val-
ues of some fluents, and could infer some consequences
of some actions from these facts. Situations are exam-
ples of rich entities, i.e. entities involving more detail
than can be specified. Poor entities have finitely de-
scribable structures.

However, theories of action and change6 often use a
more limited notion of situation. Thus Raymond Re-
iter [Rei01] and his colleagues regard situations as the
nodes of a tree based at an initial situation S0 and
whose edges branching from a situation s are the ac-

4[McC59] proposed mathematical logic as a tool for rep-
resenting facts about the consequences of actions and using
logical reasoning to plan sequences of actions that would
achieve goals. Situation calculus as a formalism was pro-
posed in [McC63] and elaborated in [MH69]. The name
“situation calculus” was first used in [MH69] but wasn’t de-
fined there. [McC86] proposed to solve the frame and quali-
fication problems by circumscription, but the proposed so-
lution to the frame problem was incorrect. [Sha97] and
[Rei01] describe several situation calculus formalisms and
give references.

5I suspect I need to pound the table a little here. Ac-
tions are just a kind of event, and formalized reasoning
about actions and change need to treat events as the gen-
eral case and those events which are actions as special.
This has long seemed obvious to me, but I find that many
other researchers don’t want to use the same formalism for
events that are not actions of agents and those which are.

The consequence has been the introduction of extensions
to logic for treating what are called domain constraints,
most of which are better treated by formalizing events.

6“events and change” would be better terminology

tions that may be taken in s. Other researchers, in-
cluding Murray Shanahan [Sha97] and myself, use S0
as just a name for some situation whose consequences
are of interest.

The viewpoint of this article is that a situation s is
arbitrary element of a space Sits of situations, i.e. s

bears the same relation to Sits as a group element
bears to a group. Situation calculus theories relate
situations, fluents and action by axioms, i.e. are ab-
stract structures satisfying the theory.

A robot can use a poor situation calculus theory T to
decide what to do in a world of rich situations. For
example, the robot’s blocks world theory may only al-
low specifying that one block is on another, not where
it is located on the other. Suppose we have a map-
ping Observe from a subset of rich situations to poor
situations. When the robot observes a world situa-
tion s to which the theory T applies, it obtains a poor
situation Observe(s) ∈ Sits(T). Using the theory T ,
the robot infers that a certain action a will advance
its goal. It then performs an action Execute(a) in
the world. If the theory T corresponds to the world
properly, Result(Execute(a), s) will be an improved
situation.

It isn’t the purpose of this paper to develop a theory of
the correspondence between rich real world situations
and those of limited sitcalc domains. However, the
way we formalize sitcalc is motivated by the hope of
making these correspondences in a later theory.

Whether an event is external depends on the theory.
If we can formulate when an event e will occur, then
we can make our theory more powerful by including
an occurrence axiom for that event. If we assume a
deterministic world, the limiting case is a theory in
which all events are internal.

8 Elaboration tolerance

An important feature of human common sense is that
human knowledge of a phenomenon is often readily
elaborated to take new information into account. It is
important that logical theories of common sense phe-
nomena also have this property. [McC99] has a de-
tailed discussion.

Situation calculus theories benefit from several kinds of
elaboration. Section 4 discusses elaborating the stuffy
room theory by adding occurrence axioms for a per-
son being motivated to open a vent when the room be-
comes stuffy. [McC92] constructs a theory of a persons
travel planning which can be elaborated by adding a
sentence asserting that he loses his airplane ticket at

a certain point in his journey. Because the reasoning
depends on minimizing occurrences, we can no longer
conclude that the original travel plan will succeed.

In general, elaboration tolerance concerns making it
easy to modify a theory, but the simplest kind of elab-
oration is to add one or more sentences to an existing
theory. It is desirable that elaborations be doable in
this way as much as possible. [McC99] discusses when
this can and cannot be done for a given theory and how
to make theories for which elaboration by conjoining
sentences is possible. Theories expressed in natural
language have this kind of elaboration tolerance to a
high extent.

9 Extensions of the formalism and

problems they present

The basic situation calculus admits many useful ex-
tensions. The ideas of this section are tentative.

9.1 Concurrency

There are two limiting cases of concurrency that can
be treated in the situation calculus.

Easy concurrency:

Two or more events, say e1 and e2 occur in a situation
s and result in the same next situation Next(s). The
fluents that hold in Next(s) are those determined by
the effect axioms for e1 and e2 separately. Thus if we
move a block and paint it concurrently, it will have
both the new location and the new color in Next(s).

General concurrency:

Two processes, starting, say from initial situations S0
and S0′ take place and affect different sets of fluents.
If nothing is said about the timing of the processes
and no axioms of interaction are given, nothing can
be inferred about the relative timing of the processes.
Moreover, what can be inferred about the values of the
fluents in successive situations is exactly what can be
inferred by the processes taken separately. Thus Louis
Pasteur was elected to the French Academy of Sci-
ences in 1862 concurrently with certain battles of the
American Civil War, but historians mention neither
process in connection with the other. This is a limit-
ing case, i.e. the case of zero interaction. Two theories
of separate processes can be combined by taking the
conjunction of their axioms. The combined theory is a
conservative extension of each separate theory. It can
be useful to elaborate the combined theory by giving
axioms for the interaction. [McC95] and [MC98] treat
elaborating theories of two non-interacting processes

by adding axioms of interaction. Those articles treat
Junior traveling in Europe and Daddy stacking gold
blocks in New York. There is no interaction until we
adjoin assertions about Junior losing an airplane ticket
and asking Daddy for money, thus forcing Daddy to
sell one of the blocks he was stacking.

We hope to combine the ideas of the two above-
mentioned articles with those of this article in future
work.

9.2 Events whose occurrence depends on the

past

Suppose we want George to unblock both vents when
the room becomes stuffy. When he has unblocked one
vent, the room becomes unstuffy, so the physical sit-
uation is as it was when he blocked the first vent, so
he needs to remember that the room was previously
stuffy. We can make occurrences depend on past situ-
ations by adding for each event e an additional effect
axiom

Past(Result(e, s)) = s. (42)

Notice that Past(Past, s)) is the situation two events
back.

We can have George unblock Vent1 after he has un-
blocked Vent2 and the room has become unstuffy by
introducing the occurrence axiom

Stuffy(Past(Past(s)) → Occurs(Unblock1, s).
(43)

The history as just described does not say what events
occurred. This information is provided by having for
each event e the axiom

Lastevent(Result(e, s)) = e. (44)

Notice that this formalization is noncommittal as to
whether the information is in an actor’s memory.

This seems neat, and maybe it will be useful.

9.3 “Branching time” and “linear time”

We can tell a story by saying what occurs in
each situation. In some situations what occurs
is determined by an occurrence action and de-
pends on the fluents holding in the situation. In
other situations, we simply provide an axiom, e.g.
Occurs(Birth(Benjamin-Franklin), S1806). This is a
linear time theory.

However, linear time and branching time are some-
times appropriately used together. Suppose we wish

to say that the actor will take the low road or the high
road according to which will get him to Scotland first.
We can write

if [Arrival-time(Result(Take-Low-Road, s))
≤ Arrival-time(Result(Take-High-Road, s))]

then Occurs(Take-Low-Road, s)
else Occurs(Take-High-Road, s).

(45)

Here we have used a branching time criterion for a
linear time action.

This is not as elaborate as actual human behavior in
which mental events occur calculating which route will
lead to earliest arrival.

9.4 Induction in the situation calculus

Several kinds of mathematical induction seem to be re-
quired. For example, one may want to prove a propo-
sition P (Next∗(s)) by showing that it is true for s and
is preserved by the events that occur between s and
Next∗(S). A related kind of induction is needed to
prove that something is true for all situations arising
in the operation of a buzzer. The simplest case of the
Next∗ induction might be to show that a block un-
moved by each of a sequence of events is in the same
position in Next∗(s).

The simplest situation calculus is Reiter’s [Rei01]. The
formula is

[P (S0)∧((∀a s)(P (s) → P (Result(a, s))))] → (∀s)P (s).
(46)

Here are two formulas

[P (s) ∧ ((∀e s)(P (s) ∧Occurs(e, s) → P (Next(s))))]
→ P (Next∗(s)).

(47)
(47) is appropriate when Next∗(s) is defined.

When Next∗(s) is not defined, as in the buzzer case,
we can use s ≤ s′ to mean that s′ is a distant successor
of s and have the axiom.

[P (s) ∧ s ≤ s′

∧((∀e s)(P (s) ∧Occurs(e, s) → P (Next(s))))]
→ P (s′).

(48)

9.5 Formalizing Oscillations

The buzzer oscillates, i.e. the situation repeats again
and again. So does the stuffy room scenario with the
two elaborations that cause Vent2 to become blocked

and unblocked repeatedly. However, we don’t need a
complete repetition of the situation to have oscillation.
Suppose, or example, we add a clock to the buzzer, a
natural number valued fluent that each event incre-
ments by 1. Then although the whole situation would
not repeat, we would still want to consider the system
as oscillatory.

This suggests a relative notion of oscillatory, i.e. oscil-
latory with respect to certain fluents.

Moreover, we would like to consider the buzzer as oscil-
lating even if we provide for it stopping its oscillation
by being turned off.

As we have described the buzzer, it cannot be turned
off. Likewise the stuffy room process cannot be
changed once we have added the elaborations about
people blocking and unblocking the vent. See (27) and
(29).

Here’s a way of putting interventions into the formal-
ism.

Let a be an action, e.g. stopping that damn buzzer.
The following two axioms describe an elaboration that
interpolates an action after a normal internal action.
In the buzzer case it would be opening an additional
switch in the circuit. The additional switch isn’t in
Fig. 1 or described in section 3.

Occurs(a, s) ∧ External(a) ∧Occurs(e, s)
→ Next(s) = Result(a,Result(e, s))

(49)

and

Occurs(e, s) ∧ (∀e′)(Occurs(e′, s) → e′ = e)
→ Next(s) = Result(e, s).

(50)

This is a limited kind of concurrency. Only certain
kinds of interventions can be done this way.

9.6 State constraints after all

As was shown in Section 4, the condition for a room
being stuffy is better formalized with effect axioms,
occurrence axioms, and the events Getstuffy and
Ungetstuffy. Lin and Reiter [LR94] consider the Em-
peror’s decree that no more than one object (block)
be yellow, which may be regarded as a domain con-
straint. They point out that it is more efficient to
encode the constraint as a precondition that a block
may be painted yellow only if no block is already yel-
low. Their way of expressing this does not readily
elaborate to require that no more than seven blocks
be yellow.

I think logical AI needs a more complex treatment. It
seems to me that efficiency conflicts with generality.

It is bad or dangerous to have more than one yellow
block, but perhaps only if one is not a special favorite
of the emperor or if one is just about to die anyway.
The point is that common sense (at least human level
common sense) requires that such constraints tolerate
elaboration. Human level common sense also allows
the constraint to become an action precondition as a
result of some inference. This inference should take
place within the logical formalization.

Lin and Reiter include the following formula.

(∀x y s)(Poss(Paint(x, y), s)
≡ (Nearby(x, s) ∧Haspaint(y, s)
∧(∀x1)(Color(x1, Y ellow, s) ∧ y = Y ellow → x = x1))).

(51)

This formula is specialized to the emperor tolerat-
ing just one yellow block. If he tolerates 7 yellow
blocks, we had better use set notation, i.e. refer to
card({x|Color(x, Y ellow)}) ≤ 7.7

There are some domain constraints that are not natu-
rally formalized by internal actions. One is the blocks
world constraint that a block may not be on top of
itself. Formulas like

Above(Top(block), Bottom(block), s) (52)

or even

Height(Top(block), s)−Height(Bottom(block), s)
≥ 1.0cm

(53)
tell more about the world than the simple

¬On(block, Top(block), s). (54)

An important application for the direct use of state
constraints is when an event starts a process that even-
tually leads to an equilibrium state. For example, if
I drop a coin on the floor it will bounce around for a
while and then settle down. It will reach equilibrium
in a second or so, and I am interested in whether the
coin ends up heads or tails rather than in the process
of its settling down. In the case of the coin the equilib-
rium condition, at least what we want to know about
it, is easy to state, namely

On(coin, floor,Result∗(Drop(coin, s)))
∧(Heads(coin,Result∗(s))
∨Tails(coin,Result∗(s))),

(55)

where using Result∗ means that we are skipping by
some internal events, in this case not formalized.

7I pound the table here because of some resistance to
the idea that axiomatic set theory makes logical AI easier.

Another example may be concocted from the elabo-
rated stuffy room scenario. While Pat and Mike dis-
agree in their preferences, under normal circumstances
we can suppose they will come to an agreement in some
short time. One will defer to the other in the matter
of the blocked vents. As with the coins, the theory
of eventual agreement doesn’t predict what the agree-
ment will be.

More generally, Aarati Parmar suggests that internal
events are evoked by any non-equilibrium situations.

9.7 Javier Pinto’s formalism

The work closest to the present is [Pin98b], as one of
the referees forcefully pointed out. There are substan-
tial differences, both in approach and in the formalisms
motivated by the different approaches.

Pinto uses the Reiter notion of situations as trees built
from the initial situation S0 by iterations of forming
do(a, s) where a is an action and s a previously formed
situation term.

Pinto (as does Reiter) builds time, represented by a
real number, into his situation calculus formalism. It
seems to me that making time fit the tree structure of
situation terms leads to complications. Pinto has five
different occur predicates, whereas we have only one.
His occurrence axioms all have time parameters. Our
occurrence axioms involve only situations and fluents
and are therefore simpler. The examples of the present
article do not involve time explicitly. When time must
be explicit, we propose to treat the passage of time
as an independent situation calculus process running
concurrently with the processes we are treating.

Pinto includes the following interesting examples. We
show how our method treats a few of them.

1. “The sun will rise tomorrow at 6:03 am.” Here
we have two concurrent processes: the passage of time
and the path of the sun through the sky. The sentence
describes an interaction.

We can represent the sentence by

V alue(Time, s) = Time(Tomorrow603am)
→ Occurs(Sunrise, s),

where we are not taking into account the explicit in-
dexical of tomorrow, and the implicit indexical that
sunrise being a 6:03am must refer to a specific lati-
tude and longitude.

2. “If you eat the forbidden fruit you will be expelled.”
Pinto treats this as one event causing another but re-
marks that it might be better formalized as a state, i.e.

that of having eaten the fruit, giving rise to an event.
That’s how the present paper would treat it, i.e.

Holds(Has-occurred(Eat(Forbidden-fruit)), s)
→ Occurs(Does(God,Expel(Eater)), s),

(56)
together with the general moving finger axioms

Occurs(e, s) → Holds(Has-occurred(e,Next(s))),
and Holds(Has-occurred(e, s) ∧ s < s′

→ Holds(Has-occurred(e, s′)).
(57)

3. “The train to Ottawa leaves every day at 7 pm.”
where it is understood that this scheduled event may
not occur under exceptional circumstances.

V alue(Time, s) = Time(7pm)
∧¬Prevented(Train-Leaves-for-Ottowa, s)

→ Occurs(Train-Leaves-for-Ottowa, s).

4. “If my neighbor’s burglar alarm goes off
while I am at home, I will call the police.”
Pinto treats this example and the previous one by
slightly different formalisms, one involving a predi-
cate occurspo(action, time) and the other a predicate
occursct(action, time, action2).

5. The Miller-Shanahan [RM94] example of the brief-
case.

6. “My house has a burglar alarm. If the alarm is con-
nected, I have exactly 60 seconds to deactivate it after
opening the main door. If I am unable to disconnect
the alarm, it will go off.”

7. “Upon an insertion into EMP or an update to EMP,
the new SAL is checked, and if it exceeds $100,000,
then the JobTitle of this employee is added to HPAID,
assuming it was not there already.”

Holds(Checksalary,Result(Insert(EMP, y, s)))
∧Holds(Checksalary,Result(Update(EMP, y, s))).

Holds(Checksalary(employee, s) →
Occurs(Add(JobT itle(employee), HPAID), s)

[Pin98a] introduces occurs(a, s), where a is a “natural
action”. Natural actions partly correspond to internal
events. The article is dedicated to concurrent events,
to which I hope devote a separate article.

10 Concluding remarks

Events that are not actions have been previously
used—at least by Fangzhen Lin [Lin98], Sheila McIl-
raith [McI00], and Javier Pinto.

Occurrence axioms are even more important in the
treatment of concurrent events in situation calculus—
to be the subject of another article.

This work benefited from discussions with Eyal Amir,
Tom Costello, Ron Fadel, Hector Levesque, Vladimir
Lifschitz, Fangzhen Lin, Sheila McIlraith, Leora Mor-
genstern, Aarati Parmar, Raymond Reiter, and Tran
Son and the comments of three anonymous referees.

This research was partly supported by SRI Subcon-
tract No. 34-000144 under SPAWAR Prime Contract
No. N66001-00-C-8018.

References

[aA01] Texas Action Group at Austin.
Causal calculator home page, 2001.
http://www.cs.utexas.edu/users/tag/cc.

[GS88] Matthew L. Ginsberg and David E. Smith.
Reasoning about action I: A possible worlds
approach. Artificial Intelligence, 35(2):165–
195, 1988.

[Lif94] Vladimir Lifschitz. Circumscription. In
J. A. Robinson Dov M. Gabbay, C. J. Hog-
ger, editor, Handbook of logic in artificial in-

telligence and logic programmin, volume 3,
pages 297–352. Oxford, 1994.

[Lin98] Fangzhen Lin. On the relationships between
static and dynamic causal rules in the situa-
tion calculus. In Charles L. Ortiz, Jr., editor,
Working Notes of the AAAI Spring Sympo-

sium on Prospects for a Commonsense The-

ory of Causation, pages 38–43, Menlo Park,
CA, 1998. American Association for Artifi-
cial Intelligence.

[LR94] Fangzhen Lin and Ray Reiter. State con-
straints revisited. Journal of Logic and Com-

putation, 4:655–678, 1994.

[LS95] Fangzhen Lin and Yoav Shoham. Provably
correct theories of action. Journal of the

ACM, 42(2):293–320, March 1995.

[MC98] John McCarthy and Tom Costello. Com-
bining narratives. In Proceedings of Sixth

Intl. Conference on Principles of Knowledge

Representation and Reasoning, pages 48–59.
Morgan-Kaufman, 1998.

[McC59] John McCarthy. Programs with Common
Sense8. In Mechanisation of Thought Pro-

cesses, Proceedings of the Symposium of the

8http://www-formal.stanford.edu/jmc/mcc59.html

National Physics Laboratory, pages 77–84,
London, U.K., 1959. Her Majesty’s Sta-
tionery Office. Reprinted in [McC90].

[McC63] John McCarthy. Situations, actions and
causal laws. Technical Report Memo 2, Stan-
ford University Artificial Intelligence Labo-
ratory, Stanford, CA, 1963. Reprinted in
[Min68].

[McC86] John McCarthy. Applications of Circum-
scription to Formalizing Common Sense
Knowledge9. Artificial Intelligence, 28:89–
116, 1986. Reprinted in [McC90].

[McC90] John McCarthy. Formalizing Common

Sense: Papers by John McCarthy. Ablex
Publishing Corporation, 1990.

[McC92] John McCarthy. Overcoming unexpected ob-
stacles10. Web only, 1992.

[McC95] John McCarthy. Situation Calculus with
Concurrent Events and Narrative11. 1995.
Web only, partly superseded by [MC98].

[McC99] John McCarthy. Elaboration tolerance12.
web only for now, 1999.

[McI00] Sheila A. McIlraith. An axiomatic solution
to the ramification problem (sometimes). Ar-

tificial Intelligence, 116(1–2):87–121, 2000.

[MH69] John McCarthy and Patrick J. Hayes. Some
Philosophical Problems from the Standpoint
of Artificial Intelligence13. In B. Meltzer and
D. Michie, editors, Machine Intelligence 4,
pages 463–502. Edinburgh University Press,
1969. Reprinted in [McC90].

[Min68] Marvin Minsky, editor. Semantic informa-

tion processing. MIT Press, 1968.

[Pin98a] Javier A. Pinto. Concurrent actions and
interacting effects. In Anthony G. Cohn,
Lenhart Schubert, and Stuart C. Shapiro, ed-
itors, KR’98: Principles of Knowledge Rep-

resentation and Reasoning, pages 292–303.
Morgan Kaufmann, San Francisco, Califor-
nia, 1998.

9http://www-formal.stanford.edu/jmc/applications.html
10http://www-formal.stanford.edu/jmc/glasgow.html
11http://www-formal.stanford.edu/jmc/narrative.html
12http://www-formal.stanford.edu/jmc/elaboration.html
13http://www-formal.stanford.edu/jmc/mcchay69.html

[Pin98b] Javier A. Pinto. Occurrences and narratives
as constraints in the branching structure of
the situation calculus. Journal of Logic and

Computation, 8(6):777–808, 1998.

[Rei01] Raymond Reiter. Knowledge in Action.
M.I.T. Press, 2001.

[RM94] R.S.Miller and M.P.Shanahan. Narratives in
the situation calculus. Journal of Logic and

Computation, 4(5):513–530, 1994.

[Sha97] Murray Shanahan. Solving the Frame Prob-

lem, a mathematical investigation of the

common sense law of inertia. M.I.T. Press,
1997.

[Sho88] Yoav Shoham. Chronological ignorance: Ex-
periments in nonmonotonic temporal reason-
ing. Artificial Intelligence, 36(3):279–331,
1988.

