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Abstract

[This is a 1985 note with modernized typography.]
STRIPS [FN71] is a planning system that uses logical formulas to repre-

sent information about a state. Each action has a precondition, an add list

and a delete list. When an action is considered, it is first determined whether
its precondition is satisfied. This can be done by a theorem prover, but my
understanding is that the preconditions actually used are simple enough that
whether one is true doesn’t require substantial theorem proving. If the pre-
condition isn’t met, then another action must be tried. If the precondition
is met, then then sentences on the delete list are deleted from the database
and sentences on the add list are added to it. STRIPS was considered to
be an improvement on earlier systems [Gre69] using the situation calculus,
because these earlier systems ran too slowly.

It was often said that STRIPS was just a specialization of the situation
calculus that ran faster. However, it wasn’t easy to see how to model a
system with delete lists in the situation calculus. In this paper we present
a situation calculus formalization of a version of STRIPS. Whether it is the
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full STRIPS isn’t entirely clear. The reader will notice that a large amount
of reification is done.

We have situations denoted by s sometimes with subscripts. The initial
situation is often called s0. We also have proposition variables p and q

sometimes with subscripts. Associated with each situation is a database
of propositions, and this gives us the wff db(p, s) asserting that p is in the
database associated with s. We action variables a, possibly subscripted, and
have the function result, where s′ = result(a, s) is the situation that results
when action a is performed in situation s.

STRIPS is characterized by three predicates.
precondition(a, s) is true provided action a can be performed in situation

s.
deleted(p, a, s) is true if proposition p is to be deleted when action a is

performed in situation s.
add(p, a, s) is true if proposition p is to be added when action a is per-

formed in situation s.
STRIPS has the single axiom

∀p a s.db(p, result(a, s))
≡ if ¬precondition(a, s) then db(p, s)
else db(p, s) ∧ ¬deleted(p, a, s) ∨ add(p, a, s).

We now give an example of this use of STRIPS in the blocks world. Our
individual variables x, y and z range over blocks. The constant blocks used
in the example are a, b, c, d and Table. The one kind of proposition is on(x, y)
asserting that block x is on block y. The one kind of action is move(x, y)
denoting the act of moving block x on top of block y. We assume the blocks
are all different, i.e.

UNA(a, b, c, d, Table)

We will be interested in an initial situation s0 characterized by

∀xy.db(on(x, y), s0) ≡ (x = a∧y = b)∨(x = b∧y = c)∨(x = c∧y = Table)∨(x = d∧y = Table).

Next we characterize the predicates precondition, delete and add. We have

∀xys.precondition(move(x, y), s)
≡ x 6= Table ∧ x 6= y ∧ ∀z.¬db(on(z, x), s) ∧ (y 6= Table ⊃ ∀z.¬db(on(z, y), s)),

∀xys.deleted(on(w, z),move(x, y), s) ≡ w = x ∧ z 6= y
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and
∀xys.add(on(w, z),move(x, y), s) ≡ w = x ∧ z = y.

From these axioms and the initial conditions given above we can prove

∀xy.db(on(x, y), result(move(a, b),
result(move(b, c),

result(move(c, d),
result(move(b, Table),

result(move(a, Table), s0))))))
≡ (x = a ∧ y = b) ∨ (x = b ∧ y = c) ∨ (x = c ∧ y = d) ∨ (x = d ∧ y = Table).

Remarks:
1. In order to handle deleting we made the database explicit and reified

propositions. This allowed us to quantify over propositions.
2. Since the precondition was expressible conveniently in terms of the

presence of sentences in the database, we didn’t require a logic of propo-
sitions. Such a logic can be given by introducing an additional predicate
holds(p, s) and the axiom

db(p, s) → holds(p, s)

together with axioms like

holds(pandq, s) ≡ holds(p, s) ∧ holds(q, s)

and
holds(not p, s) ≡ ¬holds(p, s).

We can then express preconditions in terms of what holds and not merely
what is in the database. However, holds(p, s) will only be very powerful if the
propositions can contain quantifiers. This raises some difficulties which we
don’t want to treat in this note but which are discussed in [McC79]. Keep-
ing holds(p, s) conceptually separate from db(p, s) means that what holds is
updated each time the situation changes.

3. The database in the blocks world example consists of independent
atomic constant propositions. These can be added and deleted independently.
For this reason there is no difficulty in determining what remains true when
a proposition is deleted (or rather what propositions are true in result(a, s)).
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4. Nilsson points out (conversation 1985 February 4) that we might want
more complex propositions to persist rather than be recomputed. For exam-
ple, we might have clear(x) defined by

∀xs.db(clear x, s) ≡ ∀y.¬db(on(y, x), s)

and when move(w, z) occurs with w 6= x and z 6= x, we would like to avoid
recomputing clear x. Obviously this can be done.

5. This formulation does no non-monotonic reasoning. The use of ≡
enables us to completely characterize the set of blocks in s0 and to pre-
serve complete knowledge about the situation resulting from moving blocks.
The role of non-monotonic reasoning in these simple situations needs to be
studied. Compare [McC86].

6. Because this formalism reifies propositions, there need not be an iden-
tity between logical consistency and consistency of the propositions in their
intended meaning. For example, holds(p, s) and holds(not p, s) are consistent
unless we have an axiom forbidding it, e.g. ∀ps.holds(p, s) ≡ ¬holds(notp, s).
This axiom may be stronger than we want, because it may be convenient to
use an interpretation of holds in which neither holds(p, s) nor holds(notp, s)
is true.

7. As Vladimir Lifschitz [Lif87] has pointed out, a working STRIPS sys-
tem may be unstable with regard to adding true propositions to the database,
because unless the proposition is deleted when its truth value changes, it can
lead to inconsistency when an action is performed. This instability is a de-
fect of STRIPS and other systems in which updating is performed by other
means than deduction.

8. As long as much of the knowledge is encoded in the updating rules,
the information encoded in sentences may be minimal.

9. Many of the considerations discussed here concerning STRIPS apply
to other semi-logical formalisms, e.g. EMYCIN and ART. [1997 note: They
also apply to linear logic and Wolfgang Bibel’s formalism TR.]
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