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Poland
Email: kg@is.umk.pl

ISBN 978-3-642-20979-6 e-ISBN 978-3-642-20980-2

DOI 10.1007/978-3-642-20980-2

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011929217

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer.
Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free
for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Preface

In the early days of pattern recognition and statistical data analysis life was
rather simple: datasets were relatively small, collected from well-designed exper-
iments, analyzed using a few methods that had good theoretical background.
Explosive growth of the use of computers led to the creation of huge amounts of
data of all kinds, coming from business, finance, scientific experiments, medical
evaluations, Web-related data, multimedia, various imaging techniques, sensor
networks, and many others sources. Human experts are not capable of deep
exploration of large amounts of data, especially when an expertize in several
different areas is necessary for this purpose.

The need for scalable algorithms applicable for massive data sets, discovering
novel patterns in data, contributed to the growing interest in data mining and
knowledge discovery. It led to the development of new machine learning tech-
niques, including the use of inspirations from nature to develop evolutionary,
neural and fuzzy algorithms for data analysis and understanding. Computa-
tional intelligence became a field in its own, combining all these methods, and
the number of algorithms available for data analysis was rapidly growing. These
algorithms started to be collected in larger data mining packages, with a free
package called Weka starting the trend, and many others that soon followed.
These packages added better user interfaces, environments to build data flow
schemes by connecting various modules and test various algorithms. However,
the number of modules at each stage: pre-processing, data acquisition, feature
selection and construction, instance selection, classification, association and ap-
proximation methods, optimization techniques, pattern discovery, clusterization,
visualization and post-processing became unmanageably large. A large data min-
ing package allows for billions of combinations, making the process of knowledge
discovery increasingly difficult. Gone are the days when the life of a data miner
was simple and a background course in multivariate statistics was all that was
needed to do the job.

Paradoxically, the abundance of methods did not simplify the process of data
analysis. Despite the “no free lunch” theorem the work in computational intel-
ligence has been focused largely on universal algorithms, that should beat all
others in wide range of situations. Large packages allow for construction of more
specialized algorithms, properly biased for a given data. Constructing a success-
ful chain of data transformations to create optimal decision models should not
consist in picking arbitrarily some components and gluing them together. On the
other hand, testing all possible combinations is not feasible, because the num-
ber of combinations of data transformations at each stage is too large, and any
drastic reduction of the set of components that prevents combinatorial explosion
reduces the chance of finding interesting models. Human experts can help, but
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even for trivial data experts tend to create complex systems that miss simple
solutions. For complex data methodology that guarantees finding appropriate
combination of CI transformation does not exist. Some of these methods are
redundant, generating almost identical solutions. Advanced data mining frame-
work in hand of an amateur is like a scalpel in hand of a Parkinson patient
trying to perform neurosurgery on his colleague. It can only result in a brain
salad surgery. Even the best experts do not know weak and strong points of all
methods available.

This is where meta-learning comes to rescue. The term “meta-learning” still
means different things to different people, but in general it covers a broad range
of approaches directed at learning how to learn. Humans are adapted to the niche
of adaptability, not to a particular environment, and this is where the superiority
of human intelligence lies. Learning of each method requires various specialized
selection and adaptation procedures. Meta-learning, operating in the space of
available data transformations and optimization techniques, should learn from
experience of solving different problems, make inferences about transformations
useful in different contexts, and finally help to construct interesting learning
algorithm that can uncover various aspects knowledge hidden in data. In general
meta-learning should do what a good expert does.

The last decade have brought many interesting ideas within the scope of
meta-learning, making this field a hot topic. Various approaches that address
meta-learning challenge at different levels of abstraction include:

• flexible frameworks for data analysis, facilitating systematic composition of
transformations and optimization methods to build data models;

• methods that analyze families of algorithms within a given (usually narrow)
framework;

• methods that support general context-sensitive analysis of the learning
processes;

• methods for meta-knowledge acquisition from human experts;
• methods that build interesting models using meta-knowledge, verify these

models and provide information to improve or correct meta-knowledge;
• theoretical approaches and principles that help to understand learning

methods.

These methods are often focused on a narrow subtask of improving particular
aspects of gaining, building, using, verifying and correcting meta-knowledge. The
problem is so demanding that every little nugget of meta-knowledge is precious.
Hence all tools that are capable of contributing to the final goal are valuable,
including knowledge generated from experiments with many learning algorithms
and also knowledge provided by human experts. Meta-learning should eventually
simplify the work of experts and non-experts, whose job will be to formulate
interesting questions and interpret the results, rather than to fight with tedious
technicalities required to create models, as it is done now.
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In this book the reader will find 10 chapters summarizing research in many
directions relevant to meta-learning. The first chapter, “Universal meta-learning
architecture and algorithms”, written by Norbert Jankowski and Krzysztof
Gr ↪abczewski, is concerned with the most important problem, how should the
meta-learning search be organized. In this chapter authors propose sophisticated
representation of meta-search space in a form of specialized graph of learning
machines generators. The process of meta-learning is advised by dedicated mech-
anism of test tasks ordered by approximation of task complexity, which is guided
by complexity evaluators. The proposed framework is capable of using several
types of meta-knowledge (for example knowledge based on optimization proce-
dures or attractiveness of learning machines).

In the second chapter Kate Smith-Miles and Rafiqul Islam write about “Meta-
learning of instance selection for data summarization”. Selection of instances or
prototypes is important especially for very large datasets as well as for under-
standing the data. Selection is directed here by dedicated meta-learning algo-
rithm based on meta-features extracted especially for this task, although they
should also be useful for other problems.

Chapter three, by Damien François, Vincent Wertz and Michel Verleysen is
focused on the problem of automatic choice of the metric in similarity-based
approaches realized with a help of meta-learning. This is one of the specific
aspects of data mining.

Chapter four, “Meta-learning Architectures: Collecting, Organizing and Ex-
ploiting Meta-knowledge”, by Joaquin Vanschoren is a nice rendez-vous
through different meta-learning algorithms, discussing their strategy of learning.
It presents information about different ways of collecting and using of meta-
knowledge. Authors also compare different architectures of meta-learning sys-
tems and their information flows, presenting in the end an interesting proposal for
extended meta-learning system based on consolidation of different approaches.

Chapter five, “Computational intelligence for meta-learning: a promising av-
enue of research” by Ciro Castiello and Anna Maria Fanelli, presents a system
based on neuro-fuzzy hybridization. Theoretical discussion of various aspects
of meta-learning architectures is given from the point of view of such hybrid
systems. This chapter goes beyond selection of learning machines, focusing on
deeper analysis of the learning model behavior. Applying neuro-fuzzy approach
to standard- and meta-levels of learning an integrated fuzzy logic system is
constructed.

In chapter six, Pavel Kord́ık and Jan Černý discuss self-organization of super-
vised models within their Fully Automated Knowledge Extraction framework.
Diverse local expert models are combined within a cascade-like ensemble using
a group of adaptive models evaluation algorithm based on specialized evolution-
ary optimization and statistical ensemble techniques, including bagging, boosting
and stacking.
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In chapter seven Ricardo B. C. Prudêncio, Marcilio C. P. de Souto and Teresa
B. Ludermir describe how to select machine learning algorithms using the rank-
ing approach. This chapter presents application of meta-learning to the predic-
tion of time series and to clustering. In this case meta-learning is based mainly
on extraction of various meta-features that characterize the dataset.

Chapter eight, by Talib S. Hussain, is more theoretical, introducing “A Meta-
Model Perspective and Attribute Grammar Approach to Facilitating the Devel-
opment of Novel Neural Network Models”. This chapter presents an interesting
direction for systematic creation of complex neural networks that integrate mul-
tiple diverse models.

In chapter nine Melanie Hilario, Phong Nguyen, Huyen Do and Adam Woznica
write about “Ontology-Based Meta-Mining of Knowledge Discovery Workflows”.
This is one of the more advanced meta-learning frameworks, going beyond sys-
tems based on meta-features that use correlations between data and performance
of base learning machines. Data mining ontology is used for optimization process,
and a workflow representation is used to compose complex learning machines de-
fined by direct acyclic graphs.

In the final chapter W�lodzis�law Duch, Tomasz Maszczyk and Marek Gro-
chowski focus on creation of optimal features spaces in which meta-learning may
take place. In their approach parallel chains of transformations extract useful
information granules that are used as additional hidden features. Resulting al-
gorithms facilitate deep learning by composition of transformations, and enable
understanding of data structures by visualization of data distribution after trans-
formations, and by creating various logical rules based on the new features.

We hope that this book will help to find valuable information about the new
trends in meta-learning and will inspire the readers to further research in the
field of meta-learning methods.
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Abstract. There are hundreds of algorithms within data mining. Some
of them are used to transform data, some to build classifiers, others for
prediction, etc. Nobody knows well all these algorithms and nobody can
know all the arcana of their behavior in all possible applications. How
to find the best combination of transformation and final machine which
solves given problem?

The solution is to use configurable and efficient meta-learning to solve
data mining problems. Below, a general and flexible meta-learning system
is presented. It can be used to solve different problems with computa-
tional intelligence, basing on learning from data.

The main ideas of our meta-learning algorithms lie in complexity con-
trolled loop, searching for most adequate models and in using special
functional specification of search spaces (the meta-learning spaces) com-
bined with flexible way of defining the goal of meta-searching.

Keywords: Meta-Learning, Data Mining, Learning Machines, Compu-
tational Intelligence, Data Mining System Architecture, Computational
Intelligence System Architecture.

1 Introduction

Recent decades have brought large amount of data, eligible for automated analy-
sis that could result in valuable descriptions, classifiers, approximators, visualiza-
tions or other forms of models. The Computational Intelligence (CI) community
has formulated many algorithms for data transformation and for solving clas-
sification, approximation and other optimization problems [1]. The algorithms
may be combined in many ways, so that the tasks of finding optimal solutions
are very hard and require sophisticated tools. Nontriviality of model selection
is evident when browsing the results of NIPS 2003 Challenge in Feature Selec-
tion [2,3], WCCI Performance Prediction Challenge [4] in 2006 or other similar
contests.

Most real life learning problems can be reasonably solved only by complex
models, revealing good cooperation between different kinds of learning machines.

N. Jankowski et al. (Eds.): Meta-Learning in Computational Intelligence, SCI 358, pp. 1–76.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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To perform successful learning from data in an automated manner, we need
to exploit meta-knowledge i.e. the knowledge about how to build an efficient
learning machine providing an accurate solution to the problem being solved.

One of the approaches to meta-learning develops methods of decision commit-
tees construction, different stacking strategies, also performing nontrivial analy-
sis of member models to draw committee conclusions [5,6,7,8,9]. Another group
of meta-learning enterprises [10,11,12,13] base on data characterization tech-
niques (characteristics of data like number of features/vectors/classes, features
variances, information measures on features, also from decision trees etc.) or on
landmarking (machines are ranked on the basis of simple machines performances
before starting the more power consuming ones) and try to learn the relation
between such data descriptions and accuracy of different learning methods. Al-
though the projects are really interesting, they still suffer from many limitations
and may be extended in a number of ways. The whole space of possible and
interesting models is not browsed so thoroughly, thereby some types of solutions
can not be found with this kind of approaches.

In gating neural networks [14] authors use neural networks to predict perfor-
mance of proposed local experts (machines preceeded by transformations) and
decide about final decision (the best combination learned by regression) of the
whole system. Another application of meta-learning to optimization problems,
by building relations between elements which characterize the problem and al-
gorithms performance, can be found in [15].

We do not believe that on the basis of some, not very sophisticated or expen-
sive, description of the data, it is possible to predict the structure and configura-
tion of the most successful learner. Thus, in our approach the term meta-learning
encompasses the whole complex process of model construction including adjust-
ment of training parameters for different parts of the model hierarchy, construc-
tion of hierarchies, combining miscellaneous data transformation methods and
other adaptive processes, performing model validation and complexity analy-
sis, etc. So in fact, our approach to meta-learning is a search process, however
not a naive search throughout the whole space of possible models, but a search
driven by heuristics protecting from spending time on learning processes of poor
promise and from the danger of combinatorial explosion.

This article presents many aspects of our meta-learning approach. In Section 2
we present some basic assumptions and general ideas of our efforts. Section 3
presents the main ideas of the computational framework we have developed to
make deeper meta-level analysis possible. Next, Section 4 describes the Meta
Parameter Search Machine, which supports simple searches within the space of
possible models. Section 5 is the most important part which describe main parts
of meta-learning algorithm (definition of configuration of meta-learning, elements
of scheme of main algorithm presented in Section 2, complexity control engine).
Section 7 presents example application of proposed meta-learning algorithm for
variety of benchmark data streams.
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2 General Meta-Learning Framework

First the difference between learning and meta-learning should be pointed out.
Both the learning and meta-learning are considering in the context of learn-
ing from data, which is common around computational intelligence problems.
Learning process of a learning machine L is a function A(L):

A(L) : KL ×D → M, (1)

where KL represents the space of configuration parameters of given learning
machine L, D defines the space of data streams (typically a single data table,
sometimes composed by few independent data inputs), which provide the learn-
ing material, and M defines the space of goal models. Models should play a role
(assumed by L) like classifier, feature selector, feature extractor, approximator,
prototype selector, etc.

Indeed, learning should be seen as the process in which some free parameters
of the machine M are adjusted or determined according to a strategy (algorithm)
of the learning machine L. After the learning process of L, the model M should
be ready to use as a classifier, data transformer, etc. depending on the goal
of L.

From such point of view meta-learning is another or rather specific learning
machine. In the case of meta-learning the learning phase learn how to learn, to
learn as well as possible. This means that the target model of a meta-learning
machine (as the output of meta-learning) is a configuration of a learning machine
extracted by meta-learning algorithm. The configuration produced by meta-
learning should play the goal-role (like, already mentioned, classifier, approx-
imator, data transformer, etc.) of meta-learning task. It is important to see that
meta-learning is obligated to chose machine type (it may be even very complex
one) and their strict configuration. This is because different configuration may
provide incomparable behavior of given learning machine. Of course such defini-
tion does not indicate, how the meta-learning should search for the best type of
learning machine and their best configuration.

Almost always meta-learning algorithms learn by observation and testing of
nested learning machines. Meta-learning differ in the strategy of selection, which
learning machines to observe and what to observe in chosen machines to find
possibly best or at least satisfactory conclusions. From the theoretical point of
view meta-learning, in general, is not limited in any way except the limitation
of memory and time.

We propose a unified scheme of meta-learning algorithms (MLAs) which base
on learning from observations. It is depicted in Figure 1.

The initialization step is a link between given configuration of meta-learning
(which is very important question—see Section 5.2) and the further steps.

The meta-learning algorithm, after some initialization, starts the main loop,
which up to the given stop condition, runs different learning processes, monitors
them and concludes from their gains. In each repetition, it defines a number of
tasks which test the behavior of appropriate learning configurations (i.e. con-
figurations of single or complex learning machines)—step start some tasks. In
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START initialize

stop
condition

evaluate
results

start some
test tasks

finalize

wait for
any task

STOP

yes

no

Fig. 1. General meta-learning algorithm.

other words, at this step it is decided, which (when and whether) machines are
tested and how it is done (the strategy of given MLA). In the next step (wait
for any task) the MLA waits until any test task is finished, so that the main
loop may be continued. A test task may finish in a natural way (at the assumed
end of the task) or due to some exception (different types of errors, broken by
meta-learning because of exceeded time limit and so on). After a task is finished,
its results are analyzed and evaluated. In this step some results may be accumu-
lated (for example saving information about best machines) and new knowledge
items created (e.g. about different machines cooperations). Such knowledge may
have crucial influence on further parts of the meta-learning (tasks formulation
and the control of the search through the space of learning machines). Precious
conclusions may be drawn, even if a task is finished in a non-natural way.

When the stop condition becomes satisfied, the MLA prepares and returns the
final result: the configuration of chosen learning machine or, in more general way,
even a ranking of learning machines (ordered by a degree of goal satisfaction),
comments on chosen learning machines and their interactions, etc.

Each of the key steps of this general meta-learning algorithm may be realized
in different ways yielding different meta-learning algorithms.

It is important to see that such a general scheme is not limited to a single
strategy of MLA or searching by observing task by task (MLA autonomously de-
cides about current group of started test tasks). This scheme does not apply any
limits to the learning machine search space which in general can be a non-fixed
space and may evaluate in the progress of meta search, for example to pro-
duce complex substitutions of machines. This opens the gates even to directing
the functional space of learning machines according to collected meta-knowledge.
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Also the stop condition may be defined according to the considered problem and
their limits.

This meta-scheme may be used to solve different types of problems. It is not
limited only to classification or approximation problems.

First, note that finding an optimal model for given data mining problem P is
almost always NP hard. Because of that, meta-learning algorithms should focus
on finding approximation to the optimal solution independently of the problem
type. Second, it would be very useful if the meta-learning could find solutions
which at least are not worst than the ones that can be found by human experts
in data mining in given limited amount of time. “At least” because usually
meta-learning should find more attractive solutions, sometimes even of surprising
structure. In general meta-learning is more open to make deeper observation of
intermediate test tasks and the search procedure may be more exhaustive and
consistent. Experts usually restrict their tests to a part of algorithms and to some
schemes of using them. Sophisticated meta-learning may quite easily overcome
such disadvantages simultaneously keeping high level of flexibility.

This is why our general goal of the meta-learning is to maximize the
probability of finding possibly best solution of given problem P within a search
space in as short time as possible.

As a consequence of such definition of the goal, the construction of meta-
learning algorithm should carefully advise the order of testing tasks during the
progress of the search and build meta-knowledge based on the experience from
passed tests. Meta-knowledge may cover experience of so different kinds, among
others: the correlations between subparts of machines in the context of perfor-
mance, experience connected to the complexities of machines etc.

In our meta-learning approach, the algorithms search not only among base
learning machines, but also produce and test different, sometimes quite complex
machines like compositions of (several) transformations and classifiers (or other
final e.i. decision making machines), committees of different types of machines,
including complex ones (like composition of a transformer and a classifier as a
single classifier inside the committee). Also, the transformations may be nested
or compose chains. The compositions of complex machines may vary in their
behavior and goal.

In the past, we have come up with the idea that meta-learning algorithms
should favorite simple solutions and start the machines providing them before
more complex ones. It means that MLAs should start with maximally plain learn-
ing machines, then they should test some plain compositions of machines (plain
transformations with plain classifiers), after that more and more complex struc-
tures of learning machines (complex committees, multi-transformations etc.).
But the problem is that the order of such generated tasks does not reflect real
complexity of the tasks in the context of problem P described by data D. Let’s
consider two testing tasks T1 and T2 of computational complexities O(mf2) and
O(m2f) respectively. Assume the data D is given in the form of data table and
m is the number of instances and f is the number of features. In such case, it
is not possible to compare time consumption of T1 and T2 until the final values
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m and f are known. What’s more, sometimes a composition of a transformation
and a classifier may be indeed of smaller complexity than the classifier without
transformation. It is true because when using a transformation, the data passed
to the learning process of the classifier may be of smaller complexity and, as a
consequence, classifier’s learning is simpler and the difference between the classi-
fier learning complexities, with and without transformation may be bigger than
the cost of the transformation. This proves that real complexity is not reflected
directly by structure of learning machine.

To obtain the right order in the searching queue of learning machines, a com-
plexity measure should be used. Although the Kolmogorov complexity [16,17]

CK(P ) = min
p

{l(p) : program p prints P} (2)

is very well defined from theoretical point of view, it is unrealistic from practi-
cal side—the program p may work for a very long time. Levin’s definition [17]
introduced a term responsible for time consumption:

CL(P ) = min
p

{cL(p) : program p prints P in time tp} (3)

where
cL(p) = l(p) + log(tp). (4)

This definition is much more realistic in practical realization because of the time
limit [18,17]. Such definition of complexity (or similar, as it will be seen further
in this paper) helps prepare the order according to the real complexity of test
tasks.

Concluding this section, the meta-learning algorithm presented below as a
special realization of the general meta-learning scheme described above, can be
shortly summarized by the following items:

– The search is performed in a functional space of different learning algorithms
and of different kinds of algorithms. Learning machines for the tests will be
generated using specialized machines generators.

– The mail loop is controlled by checking the complexity of the test tasks.
Complexity control is also useful to handle with halting problems of subse-
quent tasks, started by meta-learning.

– Meta-learning collects meta-knowledge basing on the intermediate test tasks.
Using this knowledge the algorithm provides some correction of complexities,
and changes the behavior of advanced machine generators, what has crucial
role in defining the meta-space of learning machines. The knowledge may be
accumulated per given problem but also may survive like for example in the
case of the knowledge about complexities. Meta-learning algorithms may use
meta-knowledge collected from other learning tasks.
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What can be the role of meta-learning in the context of no free lunch theorem?
Let’s start from another side, from the point of view of a learning machine
which has satisfactory level of validated(!) performance on the training data
and smallest complexity among other machines of similar performance, such
simplest solution has the highest probability of success on a test set, and it
was shown in literature from several perspectives like bias-variance, minimum
description length, regularization, etc [19,20,21,22,23]. From this side, in the case
of classification problems, the process of meta-learning gives closer solution to
the optimal Bayesian classifier than single (accidental?) learning machine.

The problem is that no free lunch theorem does not assume any relation of the
distribution P (X, Y ) of the learning data D with the distribution P (X ′, F (X ′))
(X ⊂ X ′) of unknown target function F (.) except being not contradictory at
points of the data D. Within the context of given learning data D, not all targets
have similarly high (or highest) probability of evidence.

The perfect learning machine should discover not the origin-target, but the
most probable target. In other words: the goal of generalization is not to predict
an unpredictable model.

3 General System Architecture

Advanced data mining, including meta-learning, is not possible without a general
and versatile framework for easy and efficient management of different models,
performing tests etc. One of the main keys to such a system is a unified view of
machines and models. We define a machine as any process that can be configured
and run to bring some results. The results of the processes constitute models. For
example an MLP network algorithm [24] as the MLP machine can be configured
by the network structure, initial weights, learning parameters etc. It can be run
on some training data, and the result is a trained network—the MLP model
created by the learning process of the MLP machine.

We deliberately avoid using the term “learning machine”, since in our ap-
proach a machine can perform any process which we would, not necessarily, call
a learning process, such as loading data from a disk file, data standardization or
testing a classifier on external data.

A general view of a machine is presented in Figure 2. Before a machine may
be created it must be completely configured and its context must be defined.
Full machine configuration consists of:

– specification of inputs and outputs (how many, names and types),
– machine process parameters,
– submachines configuration (it is not depicted in Figure 2 to keep the figure

clear; in further figures, starting with Figure 3, the submachines are visible
as boxes placed within the parent machine).

Machine context is the information about:

– the parent machine (handled automatically by the system, when a machine
orders creation of another machine) and the child index,
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Machine

Input 1.
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Input n
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Output m

Machine process
parameters

Results
repository

Fig. 2. The abstract view of a machine.

– input bindings i.e. the specification of other machines outputs that are to be
passed as inputs to the machine to be created.

Some parts of machine configuration are fixed and do not require verbatim speci-
fication each time, a machine is created (e.g. the collection of inputs and outputs,
for most machines, are always the same). Other configuration items usually have
some (most common or most sensible) default values, so the machine user needs
to specify only the items, that are different from the defaults.

A properly configured machine can be run (more precisely, the machine pro-
cess is run to create the model). After the machine process is finished, the results
may be deposited in the results repository and/or exhibited as outputs.

The inputs and outputs serve as sockets for information exchange between
machines. The difference between machine inputs and configuration is that in-
puts come from other machines and the configuration contains the parameters
of the process provided by the user. It is up to the machine author whether the
machine receives any inputs and whether it has some adjustable parameters.

Similarly, machine outputs provide information about the model to other
machines, and results repositories contain additional information about machine
processes—the information that is not expected by other machines in the form
of inputs.

The interconnections between outputs and inputs of different machines define
the information flow within the project. Therefore, it is very important to prop-
erly encapsulate the CI functionality into machines. For more flexibility, each
machine can create and manage a collection of submachines, performing sep-
arate, well defined parts of more complex algorithms. This facilitates creating
multi-level complex machines while keeping each particular machine simple and
easy to manipulate. An example of a machine with submachines is the repeater
machine presented in Figure 3 The submachines are placed within the area of
their parent machines.

The repeater in the example, performed two independent runs of 2-fold cross-
validation (CV). It has generated two distributors (one for each CV cycle) and
four test schemes (two per CV cycle). The CV distributor outputs are two train-
ing sets and two test sets—the first elements go to the inputs of the first test
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Fig. 3. Run time view of Repeater machine configured to perform twice 2-fold CV.
Test schemes are simplified for clearer view—in fact each one contains a scenario to be
repeated within the CV, for example the one of Figure 4.

scheme and the second elements to the second scheme. In this example the
repeater machine has 6 submachines, each having further submachines.

3.1 Schemes and Machine Configuration Templates

When configuring complex machines like the repeater in Figure 3, it is impor-
tant to be provided with simple tools for machine hierarchy construction. To
be properly defined, the repeater needs definitions of two schemes: one defining
the distributor (i.e. the machine providing training and test data for each fold)
and one to specify the test performed in each fold (Figure 4 shows an example
test scenario, where kNN (k-nearest neighbors [25]) and SVM (support vector

Test scheme

Training Data

Test Data

SVM

Data Classifier

kNN

Data Classifier

Classification test

Data

Classifier

Classification test

Data

Classifier

Fig. 4. A test scheme example.
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Fig. 5. Feature selection template.

machines [26,27]) classifiers are, in parallel, created, trained on the training data
and tested on the test data). At run time the repeater creates and runs the dis-
tributor scheme, and then creates and runs a number of test schemes with inputs
bound with subsequent data series exhibited as distributor scheme outputs.

The repeater’s children are schemes, i.e. machines especially designated for
constructing machine hierarchies. Schemes do not perform any advanced pro-
cesses for themselves, but just run graphs of their children (request creation of
the children and wait till all the children are ready to eventually exhibit their
outputs to other machines).

A machine configuration with empty scheme (or empty schemes) as child ma-
chine configuration (scheme which contain information only about types and
names of inputs and outputs) is called a machine template (or more precisely a
machine configuration template). Machine templates are very advantageous in
meta-learning, since they facilitate definition of general learning strategies that
can be filled with different elements to test a number of similar components in
similar circumstances. Empty scheme may be filled by one or more configura-
tions. The types of empty scheme inputs and outputs defines general type of role
of scheme. For example, the feature selection template, presented in Figure 5,
may be very useful for testing different feature ranking methods from the point
of view of their eligibility for feature selection tasks. The dashed box represents a
placeholder (empty scheme with defined types and names of inputs and outputs)
for a ranking. In case of ranking the scheme has single input with data and single
output with information about ranking of features. After replacing the Ranking
placeholder by a compatible configuration the whole construct can be created
and run or put into another configuration for more complex experiments.

3.2 Query System

Standardization of machine results management makes the technical aspects of
results analysis completely independent of the specifics of particular machines.
Therefore, we have designed the results repository, where the information may
be exposed in one of three standard ways:

– the machine itself may deposit its results to the repository (e.g. classification
test machines put the value of accuracy into the repository),
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– parent machines may comment their submachines (e.g. repeater machines
comment their subschemes with the repetition and fold indices),

– special commentator objects may comment machines at any time (this sub-
ject is beyond the scope of this article, so we do not describe it in more
detail).

The information within the repository has a form of label-value mappings.
Putting the results into the repositories is advantageous also from the per-

spective of memory usage. Machines can be discarded from memory when no
other machine needs their outputs, while the results and comments repositories
(which should be filled with moderation) stay in memory and are available for
further analysis.

The information can be accessed directly (it can be called a low level access) or
by running a query (definitely recommended) to collect the necessary information
from a machine subtree.

Queries facilitate collection and analysis of the results of machines in the
project, it is not necessary to know the internals of the particular machines. It
is sufficient to know the labels of the values deposited to the repository.

A query is defined by:

– the root machine of the query search,
– a qualifier i.e. a filtering object—the one that decides whether an item cor-

responding to a machine in the tree, is added to the result series or not,
– a labeler i.e. the object collecting the results objects that describe a machine

qualified to the result series.

Running a query means performing a search through the tree structure of sub-
machines of the root machine and collecting a dictionary of label-value mappings
(the task of the labeler) for each tree node qualified by the qualifier.

For example, consider a repeater machine producing run time hierarchy of
submachines as in Figure 3 with test schemes as in Figure 4. After the repeater
is finished, its parent wants to collect all the accuracies of SVM machines, so it
runs the following code:

1 Query.Series results = Query(repeaterCapsule,
2 new Query.Qualifier.RootSubconfig(1, 3),
3 new Query.Labeler.FixedLabelList(”Accuracy”));

The method Query takes three parameters: the first repeaterCapsule is the result
of the CreateChild method which had to be called to create the repeater, the sec-
ond defines the qualifier and the third—the labeler. The qualifier RootSubconfig
selects the submachines, that were generated from the subconfiguration of re-
peater corresponding to path “1, 3”. The two-element path means that the source
configuration is the subconfiguration 3 of subconfiguration 1 of the repeater. The
subconfiguration 1 of the repeater is the configuration of the test scheme (0-based
indices are used) and its subconfiguration 3 is the SVM Classification test. So the
qualifier accepts all the machines generated on the basis of the configuration Clas-
sification test taking Classifier input from SVM machine. These are classification
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tests, so they put Accuracy to the results repository. The labeler FixedLabelList
of the example, simply describes each selected machine by the object put into
the results repository with label Accuracy. Intemi provides a number of qualifiers
and labelers to make formulating and running miscellaneous queries easy and
efficient. As a result we obtain a series of four descriptions (descriptions of four
nodes) containing mappings of the label Accuracy to the floating point value of
the accuracy.

In practice we are usually interested in some derivatives of the collected de-
scriptions, not in the result series being the output of the query. For this purpose,
Intemi provides a number of series transformations and tools for easy creation
of new series transformations. The transformations get a number of series ob-
jects and return another series object. One of the basic transformations is the
BasicStatistics which transforms a series into a single item series containing the
information about minimum, mean, maximum values and standard deviation.
More advanced predefined transformations perform results grouping, ungroup-
ing, mapping group elements and calculate statistics for hypotheses testing in-
cluding t-test, Wilcoxon test, McNemar test etc.

For the purpose of meta-learning we have encapsulated machine qualifier,
labeler and final series transformation into the class of QueryDefinition. Running
a query defined by the three components, in fact means collection of the results
according to the qualifier and the labeler, and transforming the collected series
with the transformation to obtain the final result of interest.

3.3 Task Spooling

Before a machine request is fulfilled, i.e. the requested machine is created and
its process run, the request context is equipped with proper task information
and the task is pushed to the task spooler, where it waits for its turn and for a
free processing thread. The task spooler of our system is not a simple standard
queue. To optimize the efficiency of task running, we have introduced a system of
hierarchical priorities. Each parent machine can assign priorities to its children,
so that they can be run in proper order. It prevents from starting many unrelated
tasks in parallel i.e. from too large consumption of memory and computation
time. As a result, the spooler has the form of tree containing nodes with priorities.

Intemi environment delegates machine creation and running machine pro-
cesses to separate task management modules. Each project can subscribe to
services of any number of task managers executed either on local or remote
computers (see Figure 6). Moreover subscribing and unsubscribing to task man-
agers may be performed at project run time, so the CPU power can be assigned
dynamically. Each task manager serves the computational power to any num-
ber of projects. Task managers run a number of threads in parallel to make all
the CPU power available to the projects. Each project and each task manager,
presented in Figure 6, may be executed on different computer.

A task thread runs machine processes one by one. When one task is finished,
the thread queries for another task to run. If a task goes into waiting mode (a
machine requests some submachines and waits for them) the task manager is
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Fig. 6. Two projects and two task managers.

informed about it and starts another task thread, to keep the number of truly
running processes constant.

Machine tasks may need information from another machines of the project (for
example input providers or submachines). In the case of remote task managers, a
project proxy is created to supply the necessary project machines to the remote
computer. Only the necessary data is marshaled, to optimize the information
flow.

Naturally, all the operations are conducted automatically by the system. The
only duty of a project author is to subscribe to and unsubscribe from task
manager services—each requires just a single method call.

3.4 Machine Unification and Machine Cache

In advanced data mining project, it is inevitable that a machine with the same
configuration and inputs is requested twice or even more times. It would not
be right, if an intelligent data analysis system were running the same adaptive
process more than once and kept two equivalent models in memory. Therefore,
Intemi introduced machine contexts as formal objects separate from proper ma-
chines. Different contexts may request for the same machine, and may share the
machine.

Constructed machines are stored in machine cache, where they can be kept
even after getting removed from the project. When another request for the same
machine occurs, it can be restored from the cache and directly substituted in-
stead of repeated creation and running. To achieve this, each machine request is
passed to the machine cache, where the new machine configuration and context
are compared to those, deposited in the cache. If unification is successful, the
machine cache provides the machine for substitution.

Another unification possibility occurs between the requests pushed to the task
spooler. Intemi controls unification also at this level preventing from building
the same machine twice.

An illustrative example of machine unification advantages can be a project test-
ing different feature ranking methods. Table 1 shows feature rankings obtained
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Table 1. Feature rankings for UCI Wisconsin breast cancer data.

Ranking method Feature ranking
F-score 6 3 2 7 1 8 4 5 9
Correlation coefficient 3 2 6 7 1 8 4 5 9
Information theory 2 3 6 7 5 8 1 4 9
SVM 6 1 3 7 9 4 8 5 2
Decision tree (DT), Gini 2 6 8 1 5 4 7 3 9
DT, information gain 2 6 1 7 3 4 8 5 9
DT, information gain ratio 2 6 1 5 7 4 3 8 9
DT, SSV 2 6 1 8 7 4 5 3 9

for Wisconsin breast cancer data from the UCI repository with eight different
methods: three based on indices estimating feature’s eligibility for target pre-
diction (F-score, correlation coefficient and entropy based mutual information
index), one based on internals of trained SVM model and four based on decision
trees using different split criteria (Gini index, information gain, information gain
ratio and SSV [28]). To test a classifier on all sets of top-ranked features for each
of the eight rankings, we would need to perform 72 tests, if we did not control
subsets identity. An analysis of the 72 subsets brings a conclusion that there
are only 37 different sets of top-ranked features, so we can avoid 35 repeated
calculations.

In simple approaches such repetitions can be easily avoided by proper ma-
chine process implementation, but in complex projects, it would be very difficult
to foresee all the redundancies (especially in very complicated meta-learning
projects), so Intemi resolves the problem at the system level by means of ma-
chine unification.

To read more about Intemi please see [29,30,31,32,33].

4 Parameter Search Machine

One of the very important features of meta-learning is the facility of optimization
of given machine configuration parameters, for example, the number of features
to be selected from a data table. Parameter optimization may be embedded in
the algorithm of given learning machine or the optimization may be performed
outside of the learning machine. In some cases, from computational point of view,
it is more advantageous to realize embedded optimization—by implementing
optimization inside given learning process. However it is rather rare and in most
cases the optimization must not be realized in the embedded form without loss
of complexity and time of optimization.

As presented in previous sections, in so general purpose system, the machine
devoted to optimize parameters of machine configurations must be also very
general and ready to realize different search strategies and must be open to
extensions by new search strategies in feature. The new search strategies are
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realized as new modules for optimization machine and extend the possibilities
of searching in new directions.

Presented parameters search machine (PSM) can optimize any elements of
machine configuration1. The optimization process may optimize any elements
of configuration and any element of subconfigurations (including subsubconfig-
urations etc.). Also subelements of objects in (sub-)configurations can be opti-
mized. This is important, because so often, machines are very complex and their
configurations are complex too, then the elements of optimization process are
sometimes deeply nested in complex structures. Thus, a mechanism of pointing
such elements is mandatory in flexible optimization definition. The search and
optimization strategies are realized as separate modules which realize appro-
priate functionality. Because of that, the search strategies are ready to provide
optimization of any kind of elements (of configurations) even the abstract (amor-
phic) structures can be optimized. Such structures may be completely unknown
for PSM, but given search strategy knows what to do with objects of given struc-
ture. Search strategies provides optimization of a single or a set of configuration
elements during the optimization process. It is important to notice that in so
general system, sometimes even changing simple scalar parameter, the behavior
of machine may change very significantly.

The PSM uses test procedures to estimate the objective functions as the
quality test to help the search strategy undertake the next steps. The definition
of such test must be realized in very open way to enable using of PSM to optimize
machines of different kinds and in different ways.

Such general behavior of MPS was obtained by flexible definition of configu-
ration of MPS combined with general optimization procedure presented below.
Let’s start the description of configuration of MPS. The MPS configuration con-
sists of (not all elements are obligatory):

Test Template: It determines the type of test measuring influence of the pa-
rameters being optimized to the quality of the resulting model. The test
template may be defined in many different ways and may be defined for
different types of problems. The most typical test used in such case for the
classification problems is the cross-validation test of chosen classifier (some-
times classifier is defined as complex machine). This is a mandatory part of
configuration.

Path to the final machine: Variable PathToFinalConfigurationInTemplate in
the code presented below, defines a place (a path) of subconfiguration in the
test template, which will become the final configuration machine of MPS.
For example, in the case of optimizing a classifier this path will point to the
classifier in the test template and after optimization process based on con-
figuration pointed by this path in final configuration, the final configuration
of classifier will be extracted, and finally the MPS will play the role of the
classifier (which means that this classifier will be an output of the MPS on
finish). This parameter is not obligatory. If this parameter is not defined in

1 It is possible to optimize single or several parameters during optimization, sequen-
tially or in parallel, depending on used search strategy.
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configuration of MPS, the MPS will return just the final (optimized) config-
uration as the result of the optimization procedure.

Query definition: For each machine configuration created in the optimization
procedure (see below) the quality test must be computed to advise further
process of optimization and final choice of configuration parameters. The
query is realized exactly as it was presented in Section 3.2. The test template
(for example cross-validation) will produce several submachines with some
results like accuracy, which describe the quality of each subsequent test. The
query definition specifies which machines (the machine qualifier) have to be
asked for results and which labels (the machine labeler) provides interesting
values to calculate the final quantity. As a result, series of appropriate values
are constructed. The last element of query definition defines how to calculate
the result-quantity (single real value) on the basis of previously obtained
series of values. Query definition is obligatory in MPS configuration.

Scenario or ConfigPathToGetScenario: These are two alternative ways to
define the scenario (i.e. the strategy) of parameter(-s) search and optimiza-
tion. Either of them must be defined. If the scenario is defined, then it is a
direct scenario is defined directly. If the path is defined, it points the con-
figuration which is expected to support auto-reading of the default scenario
for this type of configuration.

The scenario defined within the configuration of PSM determines the course of
the optimization process. Our system contains a number of predefined scenarios
and new ones can easily be implemented. The main, obligatory functionalities
of the scenarios are:

SetOptimizationItems: each scenario must specify which element(-s) will be
optimized. The items will be adjusted and observed in the optimization pro-
cedure. This functionality is used at the configuration time of the scenario,
not in the optimization time.

NextConfiguration: subsequent calls return the configurations to be tested.
The PSM, inside the main loop, calls it to generate a sequence of config-
urations. Each generated configuration is additionally commented by the
scenario to enable further meta-reasoning or just to inform about the di-
vergence between subsequent configurations. The method NextConfiguration
returns a boolean value indicating whether a new configuration was pro-
vided or the scenario stopped the process of providing next configurations
(compare line 8 of the code of MPS shown below).

RegisterObjective: scenarios may use the test results computed for generated
configurations when generating next configurations. In such cases, for each
configuration provided by the scenario, the MPS, after the learning process
of such task, runs the test procedure, and the value of the quality test is
passed back to the scenario (compare above comments on Query definition
and line code 12) to inform the optimization strategy about the progress.

High flexibility of the elements of MPS, described above, enable creation of
optimization algorithm in relatively simple way, as presented below.
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4 function MetaParamSearch(TestTemplate, Scenario,
5 PathToFinalConfigurationInTemplate, QueryDefinition);
6 Scenario.Init(TestTemplate);
7 ListOfChangeInfo = {};
8 while (Scenario.NextConfiguration(config, changes))
9 {

10 t = StartTestTask(config);
11 qt = computeQualityTest(t, QueryDefinition);
12 Scenario.RegisterObjective(config, qt);
13 ListOfChangeInfo.Add(<qt, changes>);
14 RemoveTask(t);
15 }
16 if (defined PathToFinalConfigurationInTemplate)
17 {
18 confM = config.GetSubconfiguration(
19 PathToFinalConfigurationInTemplate);
20 c = CreateChildMachine(confM);
21 SetOutput(c);
22 }
23 return <config, ListOfChangeInfo>;
24 end

In line 6 the scenario is initialized with the configuration to be optimized.
It is important to note that the starting point of the MPS is not a default
configuration of given machine type but strict configuration (testing template
with strict configuration of adjustable machine) which may be a product of
another optimization. As a consequence, starting the same MPS machine with
different optimized configurations may finish in different final configurations—
for example tuning of the SVM with linear kernel or tuning of the SVM with
Gaussian kernel finish in completely different states.

Every configuration change is commented by the chosen scenario. This is useful
in further analysis of optimization results—see line 7.

The main loop of MPS (line 8) works as long as any new configuration is pro-
vided by the scenario. When NextConfiguration returns false, the variable config
holds the final configuration of the optimization process and this configuration is
returned by the last line of the MPS code. After a new configuration is provided
by the scenario, a test task is started (see line 10) to perform the test procedure,
for example the cross-validation test of a classifier. After the test procedure, the
QueryDefinition is used to compute the quality test. The quality test may be any
type of attractiveness measure (attractiveness ≡ reciprocal of error). For exam-
ple the accuracy or negation of the mean squared error. The resulting quality is
sent to the scenario, to inform it about the quality of the configuration adjust-
ments (line 12). Additionally, the resulting quality value and the comments on
the scenario’s adjustments are added to the queue ListOfChangeInfo.

Finally the test task is removed and the loop continues.
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When the PathToFinalConfigurationInTemplate is configured, the MPS builds
the machine resulting from the winner configuration—see code lines 16–22. The
type of the machine is not restricted in any way—it depends only on the config-
uration pointed by PathToFinalConfigurationInTemplate.

The MPS algorithm finishes by returning the final (the best) configuration
and the comments about the optimization process.

4.1 Examples of Scenarios

Intemi provides a number of predefined scenarios. At any time, the system may
be extended by new scenarios. Below, we present some simple, not nested sce-
narios and then, more complex, nested ones.

The most typical scenario, used for optimization of many learning machines’
parameters, is the StepScenario based on quite simple idea to optimize single
chosen element of a configuration. Such element is defined (not only in the case of
that scenario) by two paths which constitute the scenario configuration. The first
is the subconfiguration path, which goal is to define in which (sub-)configuration
the optimization parameter lies (at any depth). When the path is empty, it
points the main configuration. The second path is the property path, pointing
(in configuration pointed by first path) to the property (or sub-sub-. . . property)
which is the element to be optimized. The property path may not be empty
(something must be pointed!). The search strategy is very simple, it generates
configurations with the element set to values from a sequence defined by start
value, step value and the number of steps. Step-type of StepScenario may be
linear, logarithmic or exponential. This is very convenient because of different
behaviors of configuration elements. This scenario may be used with real or
integer value type. It may optimize, for example, the number of selected features
(for feature selection machine) or the SVM’s C parameter or the width of the
Gaussian kernels.

The SetScenario is powerful in the cases, when the optimized parameter is not
continuously valued. It can be used with every enumerable type (including real
or integer). Because this scenario is type independent, the examples of using it
are quite diverse. In the case of k nearest neighbors, the metric parameter may
be optimized by setting the configuration of metric to each of the elements of
a set of metrics, for example the set of Euclidean, Manhattan and Chebyshev
metrics. In cases where a few fixed values should be checked as the values of
given configuration element, the step scenario may be configured to the fixed set
of values, for example: 2, 3, 5, 8, 13, 21. The determination of the optimization
parameter is done in the same way as in the case of StepScenario: by two paths
which point the subconfiguration and the subproperty.

SetAndSetSubScenario is, in some way, a more general version of the previous
scenario. It also checks a set of enumerable values attached to given configura-
tion element, but additionally it is able to start sub-scenario declared for all or
selected values from the mentioned enumerable set. Configuration of this sce-
nario consists of a set of pairs: < valuek, scenariok >. For each pair, an element
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of configuration is set to value1 and the subscenario is started to optimize an-
other element of configuration by scenario1, if only scenario1 is not null. The
scenario can be used, for example, to chose metric (between some metric from a
set as before) and, in the case of Minkovsky metric, additionally tune (via nested
scenario) the parameter which represents the power in the Minkovsky metric.

Another very useful scenario is the StackedScenario which facilitates building
a sequence or a combination of scenarios. This scenario may be used in one two
modes. The first mode, the sequence mode, enables starting scenarios one by one,
according to the order in the sequence. In the grid mode each value generated by
the first scenario is tried against each value provided by second scenario and so
on. For example, assume that we need to optimize the C parameter of the SVM
and also the width of the Gaussian kernel. Using the sequence mode it is possible
to optimize the C first, and after that, the width or in the reversed order. Also,
it is possible to optimize the C first, then the width and then again the C, and so
on. In grid mode, every pair of parameters will be checked (every C against every
width). In general, the grid may be composed of more than two scenarios, then
such scenario will try each triple, each four and so on. Note that the stacked
scenario may be composed of any scenarios, including stacked scenario or set
scenario, however too complex optimizations are not recommended because of
growing complexity.

SimpleMaximumScenario may be used to look for maximum, assuming the
single maximum problem (or looking for local minimum), observing the quality
test returned to the scenario. When using this scenario it is recommended to put
a limit on the number of steps beside the limit on progress of optimization. Of
course this scenario may be extended in several simple ways to more sophisticated
versions.

4.2 Auto-scenario

If the optimization of given machine or its single chosen parameter is to be per-
formed typically it is done, in most cases, in the same way. This suggests that it
is not necessary (and not recommended) to rediscover the method of parameters
tuning in each optimization of given machine. The auto-scenarios is the idea to
“dedicate” the behavior of optimization for configuration parameters and whole
learning machines. In the presented system it is done using the scenario-comment
attributes which define the default way of optimization. Scenario-comments are
used with configuration elements and also with the whole configurations of learn-
ing machines. The difference is that, for the whole machine, it is responsible for
optimization of the whole machine configuration in possibly best way, while for
single configuration elements it is responsible to optimize the pointed element of
configuration without any change of other elements.

Such idea of auto-scenarios is very convenient, because it simplifies the process
of optimization without loss of quality. Nobody is obliged to know the optimal
way of parameter optimization for all machines. The scenario comments compose
a brilliant base of meta-knowledge created by experts—using auto-scenarios,
meta-learning does not have to rediscover the optimal way of optimization of
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Fig. 7. A meta parameter search project configuration.

each particular machine. In meta-learning auto-scenarios are used together with
machine generators to auto-generate optimization strategies of chosen machine
configuration. It is also possible to define a few default optimization ways for
one machine. This enables using a simpler and a deeper optimization scenarios
and depending on the circumstances, one may be chosen before the other. Auto-
scenarios can be attached to any machines, both the simple ones and the complex
hierarchical ones.

4.3 Parameter Search and Machine Unification

As mentioned in the preceding section, machine unification is especially advan-
tageous in meta-learning. Even one of the simplest meta-learning approaches, a
simple meta parameter search, is a good example. Imagine a project configura-
tion depicted in Figure 7, where the MPS machine is designed to repeat 5 times
2-fold CV of the test template scenario for different values of the SVM C and
kernel σ parameters. Testing the C parameter within the set {2−12, 2−10, . . . , 22}
and σ within {2−1, 21, . . . , 211} we need to perform the whole 5×2 CV process
8×7 times. As enumerated in Table 2, such a project contains (logically) 4538
machines. Thanks to the unification system, only 1928 different machines are
created saving both time and memory. The savings are possible, because we
perform exactly the same CV many times, so the data sets can be shared and
also the SVM machine is built many times with different C parameters and the
same kernel σ, which facilitates sharing the kernel tables by quite large number
of SVM machines.
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Table 2. Numbers of machines that exist in the project logically and physically.

Machine logical count physical count
Data loader 1 1
Meta parameter search 1 1

Repeater 56 56
Distributor scheme 280 5

CV distributor 280 5
Test scheme 560 560

Standardization 560 10
External transformation 560 10
SVM 560 560

Kernel provider scheme 560 80
Kernel provider 560 80

Classification test 560 560

Sum 4538 1928

5 Meta-Learning Algorithm Elements

This section provides description of all the parts of the presented meta-learning
algorithm. First, machine configuration generators, which represent and define
the functional form of meta-learning search space, are described. Next, a clear
distinction between the configuration of the algorithm and the main part of the
algorithm is stated. After that, other elements of the main part of the algorithm
will be presented.

5.1 Machine Configuration Generators and Generators Flow

In the simplest way, the machine space browsed by meta-learning may be realized
as a set of machine configurations. However such solution is not flexible and
strongly limits the meta-learning possibilities to fixed space. To overcome this
disadvantage the machine configuration generators (MCG) are introduced.

The main goal of MCGs is to provide/produce machine configurations. Each
meta-learning may use several machine configuration generators nested in a gen-
erators flow (a graph of generators). Each MCG may base on different meta-
knowledge, may reveal different behavior, which in particular may even change
in time (during the meta-learning progress). The simplest generators flow is
presented in Figure 8.

Each generator provides machine configurations through its output. Gener-
ators may also have one or more inputs, which can be connected to outputs
of other generators, similarly to machines and their inputs and outputs. If the
output of generator A is connected to an input number 3 of generator B, then
every machine configuration generated by the generator A will be provided to
the input 3 of the generator B. If a generator output is attached to more inputs,
then each of the inputs will receive the output machine configurations.
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Fig. 8. Example of simplest generator flow.

The inputs-outputs connections between generators, compose a generators
flow graph, which must be a directed acyclic graph. A cycle would result in in-
finite number of machine configurations. Some of the outputs of generators can
be selected as the output of the generators flow—the providers of configurations
to the meta-learning. In the run time of the meta-learning algorithm, the con-
figurations returned by the generators flow, are transported to a special heap,
before the configured machines are tested.

The streams of configurations provided by generators may be classified as
fixed or non-fixed. Fixed means that the generator depends only on its inputs
and configuration. The non-fixed generators depend also on the learning progress
(see the advanced generators below).

Another important feature of generators is that, when a machine configuration
is provided by a generator, information about the origin of configuration and
some comments about it are attached to the machine configuration. This is
important for further meta-reasoning. It may be useful to know information on
how the configuration was created in further meta-reasoning.

In general, generators behavior is not limited except the fact, that they should
provide a finite series of configurations. Below we describe some generators
examples.

Set-based Generators. The simplest and very useful machine generator is
based on the idea to provide just an arbitrary sequence of machine configurations
(thus the name set-based generator). Usually, it is convenient to have a few set-
base generators in single generators flow—a single set per a group of machines of
similar functionality like feature rankings or classifiers. An example of set-base
generator providing classifier machine configurations was presented in Figure 8.

Template-based Generators. Template-based generators are used to pro-
vide complex configurations based on given machine configuration template (de-
scribed in Section 3.1) and generators connected to them. For example, if a
meta-learner is to search through combinations of different data transformers
and kNN classifier, it can easily do it with a template-based generator. The
combinations may be defined by a machine template with a placeholder for data
transformer and fixed kNN classifier. Such a template-based generator may be
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connected to a set-based generator with a sequence of data transformations,
which would make the template-based generator provide a sequence of complex
configurations resulting from replacing the placeholder with subsequent data
transformation configurations. Please, note that, in the example, the machine
template is to play the role of a classifier. Because of that, we can use the Trans-
form and Classify machine template shown in Figure 9 on the left. This machine
learning process starts with learning the data transformation first and then the
classifier.

Transform and classify

Training Data Classifier

Transformation scheme

Data

Data

Transformation

Classifier scheme

Training data Classifier

kNN

Training data Classifier

Transform and classify

Training Data Classifier

Transformation scheme

Data

Data

Transformation

Classifier scheme

Training data Classifier

Fig. 9. A Transform and classify machine configuration template. LEFT: placeholder for
transformer and fixed classifier (kNN). RIGHT: two placeholders, one for the trans-
former and one for the classifier

The generator’s template may contain more than one placeholder. In such a
case the generator needs more than one input. The number of inputs must be
equal to the number of placeholders. The role of a placeholder is defined by its
inputs and outputs declarations. So, it may be a classifier, approximator, data
transformer, ranking, committee, etc. Of course the placeholder may be filled
with complex machine configuration too.

Replacing the kNN from the previous example by a classifier placeholder (com-
pare Figure 9 on the right), we obtain a template that may be used to configure
a generator with two inputs. One designated for a stream of transformers, and
the other one for a stream of classifiers.

The template-base generator can be configured in one of two modes: one-to-
one or all-to-all. In the case of the example considered above, mode ’one-to-one’
makes the template-based generator get one transformer and one classifier from
appropriate streams and put them into the two placeholders to provide a result
configuration. The generator repeats this process as long as both streams are not
empty. In ’all-to-all’ mode the template-based generator combines each trans-
former from the stream of transformers with each classifier from the classifiers
stream to produce result configurations.
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Fig. 10. A simple generator flow.

Figure 10 presents a simple example of using two set-based generators and
one template-based generator. The set-based generators provide transformers
and classifiers to the two inputs of the template-based generator, which puts
the configurations coming to its inputs to the template providing fully specified
configurations. Different mixtures of transformations and classifiers are provided
as the output, depending on the mode of the generator: one-to-one or all-to-all.
Please, note that the generator’s output gets configuration for both the set-based
classifiers generator and the template-based generator, so it will provide both
the classifiers taken directly from the proper set and the classifiers preceded by
the declared transformers.

Another interesting example of a template-based generator is an instance us-
ing a template of ParamSearch machine configuration (the ParamSearch machine
is described in Section 4). The template containing test scheme with a place-
holder for a classifier is very useful here. When the input of the template-based
generator is connected to a stream of classifiers, the classifiers will fill the place-
holder, producing new configurations of the ParamSearch machine. Configuring
the ParamSearch machine to use the auto-scenario option makes the meta-learner
receive configurations of ParamSearch to realize the auto-scenario for given clas-
sifier. It means that such a generator will provide configurations for selected
classifiers to auto-optimize their parameters.

An more complex generator flow using the generators presented above,
including template-based generator with ParamSearch machine is presented in
Figure 11. This generator flow contains three set-based generators, which pro-
vide classifiers, transformers and ranking configurations to other (template-based)
generators. Please, see that the classifier generator sends its output configurations
directly to the generator flow output and additionally to three template-based
generators: two combining transformations with classifiers and the ParamSearch
generator (MPS for Classifiers Generator). It means that each classifier configu-
ration will be send to the meta-learning heap and additionally to other generators
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Fig. 11. Example of generators flow.

to be nested in other configurations (generated by the Transform and Classify and
the MPS generators).

The two Transform and Classify generators combine different transformations
with the classifiers obtained from the Classifiers Generator. The configurations
of transformation machines are received by proper inputs. It is easy to see, that
the first Transform and Classify generator uses the transformations output by
the Transformer Generator while the second one receives configurations from an-
other template-based generator which generated feature selection configurations
with the use of different ranking algorithms received through the output-input
connection with the Ranking Generator. The combinations generated by the
two Transform and Classify generators are also sent to the meta-learning heap
through the output of the generators flow.

Additionally, the Transform and Classify Generator II sends its output config-
urations to the ParamSearch generator (MPS/FS of Transform & Classify gen-
erator). This generator produces ParamSearch configurations, where the number
of features is optimized for configurations produced by the Transform and Clas-
sify Generator II. The output of the ParamSearch generator is passed to the
output of the generators flow too.

In such a scheme, a variety of configurations may be obtained in a simple way.
The control of template-based generators is exactly convergent with the needs
of meta-search processes.

There are no a priori limits on the number of generators and connections
used in generator flows. Each generator flow may use any number of any kind
of generators. In some cases it is fruitful to separate groups of classifiers in
independent set-based generators to simplify connection paths in the generators
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flow graph. The same conclusion is valid also for transformations which grouped
into separate sets may facilitate more flexibility, for example when some machines
have to be preceded by a discretization transformation or should be used with
(or without) proper filter transformations.

Advanced Generators. Advanced generators are currently under develop-
ment. Their main advantage, over the generators mentioned above, is that they
can make use of additional meta-knowledge. A meta-knowledge, including the
experts’ knowledge, may be embedded in a generator for more intelligent filling
of placeholders in the case of template-based generators. For example, generators
may know that given classifier needs only continuous or discrete features.

Advanced generators are informed each time a test task is finished and ana-
lyzed. The generators may read the results computed within the test task and the
current machine configuration ranking (compare code line 68 in Section 5.5). The
strategy enables providing machine configurations derived from an observation of
the meta-search progress. Advanced generators can learn from meta-knowledge,
half-independently of the heart of the meta-learning algorithm, and build their
own specialized meta-knowledge. It is very important because the heart of meta-
learning algorithm can not (and should not) be responsible for specific aspects
of different kind of machines or other localized type of knowledge.

5.2 Configuring Meta-Learning Problem

It is crucial to see the meta-learning not as a wizard of everything but as a wizard
of consistently defined meta-learning task. The meta-learning does not discover
the goal itself. The meta-learning does not discover the constraints on the search
space. Although the search space may be adjusted by meta-learning. To define
a meta-learning algorithm that can be used for different kinds of problems and
that can be adjusted not by reimplementing but through configuration changes,
it must be designed very flexibly.

Stating of Functional Searching Space. A fundamental aspect of every
meta-learning is determination of the search space of learning machines. The
simplest solution is just a set of configurations of learning machines. Although it
is acceptable that the configurations can be modified within the meta-learning
process, a single set of configurations still offers strongly limited possibilities.
A functional form of configurations of learning machines is much more flexible.
This feature is realized by the idea of machine configuration generators and the
machine generators flow described in Section 5.1. Using the idea of machine con-
figuration generators and their flows, defining the search space for meta-learning
is much more powerful and intuitive. One of the very important features is, that
generators may describe non-fixed spaces of configurations. This means that the
space may continuously evolve during the meta-search procedure. The graph of
generators may be seen as continuously working factory of machine configura-
tions. Defining meta-search space by means of machines generators fulfill all or
almost all the needs of applications to miscellaneous types of problems.
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Defining the Goal of Meta-learning. Another very important aspect of con-
figuration of a meta-learner is the possibility of strict and flexible definition of
the goal. In the context of our general view of MLA (please look back at Fig-
ure 1), we focus on the step start some test tasks. Creation of test tasks is not
learning a machine according to the chosen configuration, but preparation of the
test procedure of the chosen configuration. From technical point of view, it is
nothing else than building another complex machine configuration, performing
the test procedure i.e. validating the chosen machine configuration. This is why
the definition of the test procedure may be encapsulated in a functional form of
machine configuration template (compare Section 3.1) with nested placeholder
for chosen configuration to be validated. The meta-learning takes the test ma-
chine template, fills the placeholder with the chosen machine configuration and
starts the test task. For example, when the MLA is to solve a classification prob-
lem, a classifier test must be defined as the test machine template—in particular
it may be the commonly used repeated cross-validation test.

After normal finish of a test task the MLA needs to evaluate the results i.e.
to determine a quantity estimating, in some way, the quality of the test results.
When the test task is finished, the MLA has the possibility to explore it. The
test task has a form of a tree of machines (compare Figure 3). In our approach,
to compute the quality of the results it is necessary to define:

– which nodes of the machine tree preserve the values with the source infor-
mation for computing the quality-test,

– which values at given nodes are the source of required information,
– how to use the values collected from the tree to measure the quality of given

test.

And this is exactly the same information type as those presented in Section 3.2,
where to define a query we had to define: the root machine (the root of the tree
to search—the test machine in this case), qualifier which selects the nodes of the
tree containing the information, the labeler which describes the selected nodes
with labels corresponding to the desired values and the series transformation,
which determines the final value of the quality estimate. The example of a query,
presented in Section 3.2, clearly shows that it is a simple and minimal mean to
compute qualities of given test tasks. Thanks to such a form of the quality test
definition, the MLA can be simply adapted to very different types of quality
tests, independently from the problem type.

Defining the Stop Condition. Another important part of the MLA config-
uration is the specification, when to stop. The stop condition can be defined in
several ways, for example:

– stop after given real time limit,
– stop when given CPU time limit is achieved,
– stop after given real time limit or no important progress in the quality test

is observed for given amount of time (defined by progress threshold and
progress tail length).
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Of course the meta-learning may be stopped in other ways—by implementing
another stop-function. An interesting extension may be intelligent stop functions,
i.e. functions, which make use of meta-knowledge in their decisions.

Defining the Attractiveness Module. If the attractiveness module is de-
fined, then the corrections to the complexity of machines will be applied, to give
additional control of the order of tests in the machine space exploration. It is
described in more detail in Section 6.1.

Initial Meta-knowledge. A meta-knowledge is almost always passed to the
MLA by means of the configuration items such as the machine configuration
generators, the attractiveness module or the complexity computation module.
It is very important include appropriate meta-information at the initialization
stage of the search process, since it may have very important influence on the
results of the meta-learning search.

Summing up the above section, beside the attractiveness module, all the con-
figuration elements, explained above, compose the minimal set of information
to realize the meta-learning search. It is impossible to search in undefined space
or search without strictly defined goal. All the parts of the configuration can
be defined in very flexible way. At the same time, defining the search space by
the machine configuration generators, specifying the goal by the query system,
determining the stop condition, are also quite simple and may be easily extended
for more sophisticated tasks.

5.3 Initialization of Meta-Learning Algorithm

The general scheme of Figure 1, can be written in a simple meta-code as:

25 procedure Meta learning;
26 initialization;
27 while(stopCondition != true)
28 {
29 start tasks if possible
30 wait for finished task or break delayed task
31 analyze finished tasks
32 }
33 finalize;
34 end

At the initialization step, the meta-learning is set up in accordance to the
configuration. Among others, the goal (testing machine template and query def-
inition) and search space and the stop-condition of meta-learning are defined.
The machine search space is determined by machine configuration generators
embedded in a generator flow. See lines 36–41 in the code below.

The machinesRanking serves as the ranking of tested machines according to
the quality test results obtained by applying the queryDefinition to the test
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task. machinesRanking keeps information about the quality of each configura-
tion, and about their origin (it is necessary to understand how it was evolv-
ing). The heap named machinesHeap (line 44) will keep machine configura-
tions organized according the complexity i.e. will decide about the order of
test tasks starting. The methods of complexity calculation are explained in
Section 6. The machineGeneratorForTestTemplate is constructed as a machine
generator based on the testing template. The goal of using this generator
is to nest each machine configuration provided by the generators flow inside
the testing machine template (see line 46) which is then passed through the
machineHeap to start, and later to test the quality of provided machine. This is
why machineGeneratorForTestTemplate has to be connected to the machinesHeap
(line 48) and in previous line machine generators flow made connection to the
machineGeneratorForTestTemplate.

35 procedure Initialization;
36 read configuration of ML and
37 set machineGeneratorsFlow
38 set testingTemplate
39 set queryDefinition
40 set stopCondition
41 set attractivenessModule
42 machinesRanking = {};
43 priority = 0;
44 machinesHeap = {};
45 machineGeneratorForTestTemplate =
46 MachineGenerator(testingTemplate);
47 machineGeneratorsFlow.ConnectTo(machineGeneratorForTestTemplate);
48 machineGeneratorForTestTemplate.ConnectTo(machinesHeap);
49 end

5.4 Test Tasks Starting

Candidate machine configurations are passed through a heap structure
(machineHeap), from which they come out in appropriate order, reflecting
machine complexity. The heap and complexity issues are addressed in de-
tail, in Section 6. According to the order decided within the heap, procedure
start tasks if possible, sketched below, starts the simplest machines first and
than more and more complex ones.

50 procedure startTasksIfPossible;
51 while (¬ machinesHeap.Empty() ∧ ¬ mlTaskSpooler.Full())
52 {
53 <mc, cmplx> = machinesHeap.ExtractMinimum();
54 timeLimit = τ · cmplx.time / cmplx.q
55 mlTaskSpooler.Add(mc, limiter(timeLimit), priority−−);
56 }
57 end
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Tasks are taken from the machinesHeap, so when it is empty, no task can be
started. Additionally, the task-spooler of meta-learning must not be full. MLAs
use the task spooler described in Section 3.3 but via additional spooler which
controls the width of the beam of tasks waiting for run.

If the conditions to start a task (line 51 of the code) are satisfied, then a pair
of machine configuration mc and its corresponding complexity description cmplx
is extracted from machinesHeap (see line 53).

The complexity is approximated for given configuration (see Section 6 for
details). Since it is only an approximation, the meta-learning algorithm must
be ready for cases when this approximation is not accurate or even the test
task is not going to finish (according to the halting problem or problems with
convergence of learning). To bypass the halting problem and the problem of (the
possibility of) inaccurate approximation, each test task has its own time limit for
running. After the assigned time limit the task is aborted. In line 54 of the code,
the time limit is set up according to predicted time consumption (cmplx.time) of
the test task and current reliability of the machine (cmplx.q). The initial value of
the reliability is the same (equal to 1) for all the machines, and when a test task
uses more time than the assigned time limit, the reliability is decreased (it can
be seen in the code and its discussion presented in Section 5.5). τ is a constant
(in our experiments equal to 2) to protect against too early test task braking.

The time is calculated in universal seconds, to make time measurements in-
dependent of the type of computer on which the task is computed. The time in
universal seconds is obtained by multiplication of the real CPU time by a factor
reflecting the comparison of the CPU power with a reference computer. It is
especially important when a cluster of different computers is used.

Each test task is assigned a priority level. The MLAs use the priorities to favor
the tasks that were started earlier (to make them finish earlier). Therefore the
tasks of the smallest complexity are finished as first. Another reason of using the
priority (see code line 55) is to inform the task spooler (compare Section 3.3)
to favor not only the queued task but also each child machine. This is very
important, because it saves memory resources. In the case of really complex
machines which MLAs have to deal with, it is crucial.

The while loop in line 51 saturates the task spooler. This concept works in
harmony with the priority system, yielding a rational usage of memory and CPU
resources.

It is a good place to point out, that even if the generators flow provides a test
task which has already been provided earlier, it will not be calculated the next
time. Thanks to the unification engine, described in Section 3.4, the machine
cache keeps all the computed solutions (if not directly in RAM memory, then in
a disc cache). Of course, it does not mean that the generators flow should not
care for the diversity of the test tasks configurations. The machine cache is also
important to save time when any sub-task is requested repeatedly.
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5.5 Analysis of Finished Tasks

After starting apropriate number of tasks, the MLA is waiting for a task to finish
(compare the first code in Section 5.3). A task may finish normally (including
termination by an exception) or halted by time-limiter (because of exceeding the
time limit).

58 procedure analyzeFinishedTasks;
59 foreach (t in mlTaskSpooler.finishedTasks)
60 {
61 mc = t.configuration;
62 if (t.status = finished normally)
63 {
64 qt = computeQualityTest(t, queryDefinition);
65 machinesRanking.Add(qt, mc);
66 if(attractivenessModule is defined)
67 attractivenessModule.Analyze(t, qt, machinesRanking);
68 machineGeneratorsFlow.Analyze(t, qt, machinesRanking);
69 }
70 else // task broken by limiter
71 {
72 cmplx = mc.cmplx;
73 cmplx.q = cmplx.q / 4;
74 machinesHeap.Quarantine(mc);
75 }
76 mlTaskSpooler.RemoveTask(t);
77 }
78 end

The procedure runs in a loop, to serve all the finished tasks as soon as possible
(also those finished while serving other tasks.

When the task is finished normally, the quality test is computed basing on
the test task results (see line 64) extracted from the project with the query
defined by queryDefinition. As a result a quantity qt is obtained. The machine
information is added to the machines ranking (machinesRank) as a pair of quality
test qt and machine configuration mc.

Later, if the attractiveness module is defined (see lines 66–67), it gets the
possibility to analyze the new results and, in consequence, may change the at-
tractiveness part of machines complexities. In this way, the MLA may change
the complexity of machines already deposited in the heap (machinesHeap) and
the heap is internally reorganized according to the new complexities (compare
Eq. 7). Attractiveness modules may learn and organize meta-knowledge basing
on the results from finished tasks.

Next, the generators flow is called (line 68) to analyze the new results. The flow
passes the call to each internal generator to let the whole hierarchy analyze the
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results. Generators also may learn by observation of results to provide new, more
interesting machine configurations (only in the case of advanced generators).

When a task is halted by time-limiter, the task is moved to the quarantine
for a period not counted in time directly but determined by the complexities.
Instead of constructing a separate structure responsible for the functionality of
a quarantine, the quarantine is realized by two naturally cooperating elements:
the machines heap and the reliability term of the complexity formula (see Eq.
7). First, the reliability of the test task is corrected—see code line 73, and after
that, the test task is resend to the machine heap as to quarantine—line 74.
The role of quarantine is very important and the costs of using the quarantine
are, fortunately, not too big. MLAs restart only these test task for which the
complexity was badly approximated. To better see the costs, assume that the
time complexity of a test task was completely badly approximated and the real
universal time used by this task is t. In the above scheme of the quarantine, the
MLA will spend, for this task, a time not greater than t+ t+ 1

4 t+ 1
16 t+ . . . = 7

3 t.
So the maximum overhead is 4

3 t, however it is the worst case—the case where we
halt the process just before it would be finished (hence the two t’s in the sum).
The best case gives only 1

3 t overhead which is almost completely insignificant.
The overhead is not a serious hamper, especially, when we take to the account
that the MLA with the quarantine is not affected by the halting-problem of
test-task. Moreover, the cost estimation is pessimistic also from another point of
view: thanks to the unification mechanism, each subsequent restart of the test
may reuse significant number of submachines run before, so in practice, the time
overhead is usually minimal.

5.6 Meta-Learning Results Interpretation

The final machine ranking returned by meta-learning may be interpreted in
several ways. The first machine configuration in the ranking is the best one
according to the measure represented by queryDefinition.

But the runners-up may not be significantly worse. Using statistical tests, like
McNemmar test, a set of machines of insignificant quality differences, can be
caught. Next, the final solution may be chosen according to another criterion,
for example, the simplest one from the group of the best solutions or the one
with the smallest variance etc.

The results may be explored in many different ways as well. For example, one
may be interested in finding solutions using alternative (to the best machine)
feature sets or using the smallest number of features or instances (in the case
of similarity based machines), etc. Sometimes, comprehensive models may be
preferred, like decision trees, if only they work sufficiently well.

In some cases it may be recommended to repeat some tests, but with little
“deeper” settings analysis, before the final decision is made.
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During the results ranking analysis, the commentary parts2 of the results can
also be used as a fruitful information to support the choice.

6 Machine Complexity Evaluation

Since the complexity has to determine the order of performing test tasks, its
computation is extremely important. The complexity can not be computed from
learning machines, but from configurations of learning machines and descrip-
tions of their inputs, because the information about complexity is needed before
the machine is ready for use. In most cases, there is no direct analytical way of
computing the machine complexity on the basis of its configuration. Therefore,
we introduce an approximation framework for automated complexity approxi-
mation.

6.1 Complexity in the Context of Machines

The Kolmogorov complexity definition is not very useful in real tasks especially in
computational intelligence problems. The problem of finding a minimal program
is unsolvable—the search space of programs is unlimited and the time of program
execution is unlimited. In the case of Levin’s definition (Eq. 3) it is possible to
realize the Levin Universal Search (LUS) [18,17] but the problem is that this
algorithm is NP-hard. This means that, in practice, it is impossible to find an
exact solution to the optimization problem.

The strategy of meta-learning is different than the one of LUS. Meta-learning
uses the functional definition of the search space, which is not infinite, in the
finite meta-learning process. This means that the search space is, indeed, strongly
limited. The generators flow is assumed to generate machine configurations which
are “rational” from the point of view of given problem P . Such solution restricts
the space to the most interesting algorithms and makes it strictly dependent on
the configuration of the MLA.

In our approach to meta-learning, the complexity controls the order of testing
machine configurations collected in machine heap. Ordering programs only on
the basis of their length (as it was defined in Kolmogorov Eq. 2) is not rational.
The problem of using Levin’s additional term of time, in real applications, is that
it is not rigorous enough in respecting time. For example, a program running
1024 times longer than another one may have just a little bigger complexity (just
+10) when compared to the rest (the length). This is why we use the following
definition, with some additions described later:

ca(p) = l(p) + tp/ log(tp). (5)

Naturally, we use an approximation of the complexity of a machine, because
the actual complexity is not known before the real test task is finished. The
2 Parts with information about derivation of configuration and other comments on

quality test.
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approximation methodology is described in Section 6. Because of this approxi-
mation and because of the halting problem (we never know whether given test
task will finish) an additional penalty term is added to the above definition:

cb(p) = [l(p) + tp/ log(tp)]/q(p), (6)

where q(p) is a function term responsible for reflecting an estimate of reliability
of p. At start the MLAs use q(p) = 1 (generally q(p) ≤ 1) in the estimations,
but in the case when the estimated time (as a part of the complexity) is not
enough to finish the program p (given test task in this case), the program p
is aborted and the reliability is decreased. The aborted test task is moved to
a quarantine according to the new value of complexity reflecting the change
of the reliability term. This mechanism prevents from running test tasks for
unpredictably long time of execution or even infinite time. Otherwise the MLA
would be very brittle and susceptible to running tasks consuming unlimited CPU
resources. More details on this are presented in Section 5.4.

Another extension of the complexity measure is possible thanks to the fact
that MLAs are able to collect meta-knowledge during learning. The meta-
knowledge may influence the order of test tasks waiting in the machine heap
and machine configurations which will be provided during the process. The op-
timal way of doing this, is adding a new term to the cb(p) to shift the start time
of given test in appropriate direction:

cm(p) = [l(p) + tp/ log(tp)]/[q(p) · a(p)]. (7)

a(p) reflects the attractiveness of the test task p.

Complexities of What Machines are We Interested in? As described
in Section 5.3, the generators flow provides machine configurations to
machineGeneratorForTestTemplate and after nesting the configurations inside the
test template, the whole test configurations are sent to the machinesHeap. The
machinesHeap uses the complexity of the machine of given configuration, as the
priority key. It is not accidental, that the machine configuration which comes
to the machinesHeap is the configuration of the whole test machine (where the
proposed machine configuration is nested). This complexity really well reflects
complete behavior of the machine: a part of the complexity formula reflects the
complexity of learning of given machine and the rest reflects the complexity of
computing the test (for example classification or approximation test). The costs
of learning are very important, because trivially, without learning there is no
model. The complexity of the testing part is also very important, because it
reflects the simplicity of further use of the model. Some machines learn quickly
and require more effort to make use of their outputs (like kNN classifiers), while
others learn for a long time and after that may be very efficiently exploited (like
many neural networks). Therefore, the test procedure should be as similar to the
whole life cycle of a machine as possible (and of course as trustful as possible).

To understand the needs of complexity computing we need to go back to the
task of learning. To provide a learning machine, regardless of whether it is a
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simple one, a complex machine or a machine constructed to help in the pro-
cess of analysis of other machines, its configuration and inputs must be specified
(compare Section 3). Complexity computation must reflect the information from
configuration and inputs. The recursive nature of configurations, together with
input–output connections, may compose quite complex information flow. Some-
times, the inputs of submachines become known just before they are started,
i.e. after the learning of other machines3 is finished. This is one of the most im-
portant reasons why determination of complexity, in contrary to actual learning
processes, must base on meta-inputs, not on exact inputs (which remain un-
known). Assume a simple scene, in which a classifier TC is built from a data
transformer T and a classifier C (compare Figure 9). It would be impossible to
compute complexity of the classifier C basing on its inputs, because one of the
inputs is taken from the output of the transformer T, which will not be known
before the learning process of T is finished. Complexity computation may not
be limited to a part of TC machine or wait until some machines are ready. To
make complexity computation possible we use proper meta-inputs descriptions.
Meta-inputs are counterparts of inputs in the “meta-world”. Meta-inputs contain
descriptions (as informative as possible) of inputs which “explain” or “comment”
every useful aspect of each input which could be helpful in determination of the
complexity.

Because machine inputs are outputs of other machines, the space of meta-
inputs and the space of meta-outputs are the same.

To facilitate recurrent determination of complexity—which is obligatory be-
cause of basing on a recurrent definition of machine configuration and recur-
rent structure of real machines—the functions, which compute complexity, must
also provide meta-outputs, because such meta-outputs will play crucial role in
computation of complexities of machines which read the outputs through their
inputs.

In conclusion, a function computing the complexity for machine L should be
a transformation

DL : KL ×M+ → R2 ×M+, (8)

where the domain is composed by the configurations space KL and the space of
meta-inputs M+, and the results are the time complexity, the memory complex-
ity and appropriate meta-outputs. It is important to see the similarity with the
definition of learning (Eq. 1), because computation of complexity is a derivative
of the behavior of machine learning process.

The problem is not as easy as the form of the function in Eq. 8. Finding the
right function for given learning machine L may be impossible. This is caused
by unpredictable influence of some configuration elements and of some inputs
(meta-inputs) to the machine complexity. Configuration elements are not always
as simple as scalar values. In some cases configuration elements are represented
by functions or by subconfigurations. Similar problem concerns meta-inputs. In
many cases, meta-inputs can not be represented by simple chain of scalar val-
ues. Often, meta-inputs need their own complexity determination tool to reflect
3 Machines which provide necessary outputs.
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their functional form. For example, a committee of machines, which plays a role
of a classifier, will use other classifiers (inputs) as “slave” machines. It means
that the committee will use classifiers’ outputs, and the complexity of using
the outputs depends on the outputs, not on the committee itself. This shows
that sometimes, the behavior of meta-inputs/outputs is not trivial and proper
complexity determination requires another encapsulation.

6.2 Meta Evaluators

To enable so high level of generality, the concept of meta-evaluators has been
introduced. The general goal of meta-evaluator is

– to evaluate and exhibit appropriate aspects of complexity representation bas-
ing on some meta-descriptions like meta-inputs or configuration4.

– to exhibit a functional description of complexity aspects (comments) useful
for further reuse by other meta evaluators5.

To enable complexity computation, every learning machine gets its own meta
evaluator.

Learning machine Meta evaluator

Because of recurrent nature of machine (and machine configuration) and be-
cause of nontriviality of inputs behavior (which sometimes have complex func-
tional form), meta evaluators are constructed not only for machines, but also for
outputs and other elements with “nontrivial influence” on machine complexity.

Evaluator for

Nontrivial objects

Output

Machine

Each evaluator will need adaptation, which can be seen as an initialization
and can be compared to the learning of machine. In such meaning the process
DL (Eq. 8) will be the typical adaptation of evaluator devoted on the machine
L. It means that before using given evaluator, it has to be adapted. Then, eval-
uator can be used to calculate aspects of complexity devoted for given evaluator
(compare, presented below, typical evaluators type and their functionality).

4 In case of a machine to exhibit complexity of time and memory.
5 In case of a machine the meta-outputs are exhibited to provide complexity informa-

tion source for their inputs readers.
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It is sometimes necessary to estimate complexity on the basis of machine
configuration and real inputs (not meta-inputs as in Eq. 8). In such case, we
would need an adaptation of machine evaluator in the form:

D′
L : KL × I+ → R2 ×M+, (9)

where I+ is the space of machine L inputs. Such approach would require con-
struction of two evaluators for each machine: for the forms presented in Eq. 8
and Eq. 9. But it is possible to resign from the Eq. 9 form. The solution is to
design output evaluators and their adaptation as:

Do : I1 → M1, (10)

where I1 is a space of (single) output and M1 is the space of meta-output. And
now we can seen that meta-input (or meta-output) is nothing else than special
case of evaluator, the output evaluator.

Using output evaluators, the “known” inputs can be transformed to meta-
inputs (KL × I+ → KL × M+), and after that, the machine evaluator of the
form of Eq. 8 can be used. This finally reduces the needs of adaptation in the
form of Eq. 9.

Sometimes, machine complexity depends on nontrivial elements (as it was
already mentioned), typically some parts of the configuration. Then, the behav-
ior of machine changes according to changes of nontrivial part of the machine
configuration. For example, configurations of machines like kNN or SVM are pa-
rameterized by metric. The complexity of metric (the time needed to calculate
single distance between two instances) does not depend on the kNN or SVM
machine, but on the metric function. Separate evaluators for such nontrivial
objects, simplify creation of machine evaluators, which may use subevaluators
for the nontrivial objects. Every evaluator may order creation of any number of
(nested) evaluators. Adaptation of evaluators for nontrivial objects may be seen
as:

Dobj : OBJ → Mobj , (11)

where OBJ is the space of nontrivial objects and Mobj is their evaluators space
(which is subspace of all evaluators, of course).

The adaptation process is the major functionality of each evaluator and de-
pends on the type of the evaluator and parameters of the adaptation function.
Adaptation is realized by EvaluatorBase method:

EvaluatorBase(object[] data);

In general, the goal of this method is to use the data as the “source of informa-
tion” for given evaluator.

The data are different in type, goal and other aspects, depending on the type
of evaluator (compare Eq. 8, 10, and 11):

– if an evaluator is defined for a machine, then the data may be a real machine
or a configuration and meta-inputs,
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– evaluators constructed for outputs, in the data get a real output,
– in other cases, data depend on the needs of particular evaluators.

When evaluators may be defined in analytical way (quite rare cases), the eval-
uators need only to be adapted via EvaluatorBase. In other cases, the approxima-
tion framework is used to construct evaluators (see Figure 12 and Section 6.3).
The precess of creation of evaluators is presented in Section 6.3.

Plain Evaluator

Ready to use evaluator

adaptation

Learnable Evaluator

data collection

evaluator learning

Ready to use evaluator

adaptation

Fig. 12. Creation of ready to use evaluator for plain evaluator and evaluator con-
structed with approximation framework.

Further functionality of meta evaluators depends on their types. Some exam-
ples are presented in the following subsections.

Machine Evaluator. In the case of any machine evaluator, the additional
functionality consists of:

Declarations of output descriptions:
If given machine provides outputs, then also the output evaluators, devoted
to this machine type, must provide meta-descriptions of the outputs. The
descriptions of outputs are meta evaluators of appropriate kind (for example
meta-classifier, meta-transformer, meta-data etc.). Output description may
be the machine evaluator itself or a subevaluator produced by the machine
evaluator or the evaluator provided by one of submachine evaluators con-
structed by the machine evaluator (machine may create submachines, evalu-
ator may create evaluators of submachines basing on their configuration and
meta-inputs).
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Time & Memory:
The complexities defined by Eq. 3, 5–7 make use of program length and
time. Here, the two quantities must be provided by each machine evaluator
to enable proper computation of time and memory complexity.

Child Evaluators:
for advanced analysis of complex machines complexities, it is useful to have
access to meta evaluators of submachines. Child evaluators are designed to
provide this functionality.

Classifier Evaluator. Evaluator of a classifier output, has to provide the time
complexity of classification of an instance:

real ClassifyCmplx(DataEvaluator dtm);

Apart from the learning time of given classifier, the time consumed by the in-
stance classification routine is also very important in calculation of complexities.
To estimate time requirements of a classifier test machine, one needs to estimate
time requirements of the calls to the machine classification function. The fi-
nal time estimation depends on the classifier and on the data being classified.
The responsibility to compute the time complexity of the classification function,
belongs to the meta classifier side (the evaluator of the classifier). Consider a
classification committee: to classify data, it needs to call a sequence of classifiers
to get the classification decisions of the committee members. The complexity of
such classification, in most natural way, is a sum of the costs of classification us-
ing the sequence of classifiers, plus a (small) overhead which reflects the scrutiny
of the committee members’ results to make the final decision. Again, the time
complexity of data classification is crucial to estimate the complexity and must
be computable.

Approximator Evaluator. Evaluator of an approximation machine has ex-
actly the same functionality as the one of a classifier, except that approximation
time is considered in place of classification time:

real ApproximationCmplx(DataEvaluator dtm);

Data Transformer Evaluator. Evaluator of a data transformer has to provide
two estimation aspects. The first one is similar to the functionality of the evalu-
ators described above. Here it represents the time complexity of transformation
of data instances. The second requirement is to provide a meta-description of
data after transformation: the data evaluator. It is of highest importance—the
quality of this meta-transformation of data-evaluator is transfered to the quality
of further complexity calculations.

Metric Evaluator. The machines that use metrics, usually allow to set the
metric at the configuration stage (e.g. kNN or SVM). As parameters of machine
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configurations, metrics have nontrivial influence on the complexity of the ma-
chine while not being separate learning machines. The most reasonable way to
enable complexity computation, in such cases, is to reflect the metric-dependence
inside the evaluators (one evaluator per one metric). The meta-evaluators for
metrics provide the functionality of time complexity of distance computation
and are used by the evaluators of proper machines or outputs:

real DistanceTimeCmplx();

Data Evaluators. Another evaluators of crucial meaning are data evaluators.
Their goal is to provide information about data structure and statistics. Data
evaluator has to be as informative as possible, to facilitate accurate complex-
ity determination by other evaluators. In the context of data tables, the data
evaluators should provide information like the number of instances, the num-
ber of features, descriptions of features (ordered/unordered, number of values,
etc.), descriptions of targets, statistical information per feature, statistical in-
formation per data and others that may provide useful information to compute
complexities of different machines learning from the data.

Other Evaluators. The number of different types of meta evaluators is not de-
termined. Above, only a few examples are presented of many instances available
in the system. During future expansion of the system, as the number of machine
types grows, the number of evaluators will also increase.

6.3 Learning Evaluators

Defining manually the functions to compute time and memory complexities in-
side evaluators for each machine (as well as other complexity quantities for eval-
uators of other types) is very hard or even impossible. Often, analytical equation
is not known, and even if it is known or determinable, there is still a problem with
conversion of the analytical formula or the knowledge about the dependencies
into estimation of real time measured in universal seconds.

In any case, it is possible to build approximators for elements of evaluators
which estimate complexity or help in further computation of such complexity.
We have defined an approximation framework for this purpose. The framework is
defined in very general way and enables building evaluators using approximators
for different elements like learning time, size of the model, etc. Additionally, every
evaluator that uses the approximation framework, may define special functions
for estimation of complexity (MethodForApprox). This is useful for example to
estimate time of instance classification etc. It was constructed to fulfill needs of
different kinds of evaluators.

The complexity control of task starting in meta-learning does not require very
accurate information about tasks complexities. It is enough to know, whether
a task needs a few times more of time or memory than another task. The dif-
ferences of several percent are completely out of interest here. Assuming such
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level of accuracy of complexity computation, we do not loose much, because
meta-learning is devoted to start many test tasks and small deviations from the
optimal test task order are irrelevant. Moreover, although for some algorithms
the approximation of complexity is not so accurate, the quarantine (see Section
5.5) prevents from capturing too much resources by a single long-lasting task.

Using the approximation framework, meta evaluator can learn as many
aspects of machine behavior as necessary. Evaluator using approximation frame-
work can estimate an unlimited set of quantities that may be useful for de-
termination of complexities of some elements or some quantities for further
computation of complexities. Typically, a single evaluator using the approxi-
mation framework creates several approximators. For example, evaluator of each
machine has to provide time and memory complexities. The evaluator will realize
it with two approximators. Additionally, in the case, when machine correspond-
ing to given evaluator is also a classifier, the classification time may be learned
as well, within the same framework (another dedicated approximator may be
constructed). The approximators are constructed, learned and used (called to
approximate) automatically, according to appropriate declarations in the evalu-
ators, as it will be seen later (in the examples of evaluators). There is no manual
intervention needed in the approximator building process.

Of course, before an evaluator is used by a meta-learning process, all its
approximators must be trained. The learning of all evaluators may be done once,
before the first start of meta-learning tasks. Typically, learned evaluators reside
in an evaluators project which is loaded before the MLA starts its job. If the
system is extended by a new learning machine and a corresponding evaluator,
the evaluator (if it uses the approximation framework) has to learn and also will
reside in the evaluators project for further use. This means that every evaluator
using the approximation engine, has to be trained just once.

Before learning of evaluator approximation models, appropriate data tables
must be collected (as learning data). This process will be described later. First
we will present the evaluator functionality extension, facilitating usage of the
approximation framework.

Approximation Framework of Meta Evaluators. The construction of a
learnable evaluator (an evaluator making use of approximation framework) dif-
fers from construction of a plain evaluator (compare Figure 12).

The approximation framework enables to construct series of approximators for
single evaluators. The approximators are functions approximating a real value on
the basis of a vector of real values. They are learned from examples, so before the
learning process, the learning data have to be collected for each approximator.

Figure 13 presents the general idea of creating the approximators for an
evaluator. To collect the learning data, proper information is extracted form
observations of “machine behavior”. To do this an “environment” for machine
monitoring must be defined. The environment configuration is sequentially ad-
justed, realized and observed (compare the data collection loop in the figure).
Observations bring the subsequent instances of the training data (correspond-
ing to current state of the environment and expected approximation values).
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Fig. 13. Process of building approximators for single evaluator.

Changes of the environment facilitate observing the machine in different cir-
cumstances and gathering diverse data describing machine behavior in different
contexts.

The environment changes are determined by initial representation of the en-
vironment (the input variable startEnv) and specialized scenario (compare Sec-
tion 4), which defines how to modify the environment to get a sequence of ma-
chine observation configurations i.e. configurations of the machine being exam-
ined nest in a more complex machine structure. Generated machine observation
configurations should be as realistic as possible—the information flow similar
to expected applications of the machine, allows to better approximate desired
complexity functions. Each time, a next configuration ‘oc’ is constructed, ma-
chines are created and run according to ‘oc’, and when the whole project is
ready, the learning data are collected. Full control of data acquisition is pos-
sible thanks to proper methods implemented by the evaluators. The method
EvaluatorBase is used to prepare the evaluator for analysis of the environment
being observed, while GetMethodsForApprox declares additional approximation
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tasks and ApproximatorDataIn, ApproximatorDataOut prepare subsequent input–
output vectors from the observed environment.

When generation of new machine observation configurations in the data col-
lection loop fails, the data collection stage is finished. Now each approximator
can be learned from the collected data and after that the evaluator may use
them for complexity prediction. Before the predicition, the evaluator is provided
with appropriate configuration and/or meta-inputs (depending on the evaluator
type)—this adaptation is performed by the EvaluatorBase method (see Eq. 8,
10, 11).

Note that the learning processes of evaluators are conducted without any
advise from the user (compare Section 6.3).

From the description given above, we may conclude that the approximation
framework gives two types of functionality:

– to define information necessary to collect training data for learning approx-
imators,

– to use learned approximators.

The latter enables using approximators (after they are built within the approx-
imation framework) by calling the function:

real[] Approximate(int level);

The input vector for given approximator is obtained by ApproximatorDataIn,
described in detail below. Note that ApproximatorDataIn is used to provide input
vectors to approximate and to collect learning input vectors. It is possible thanks
to the extended EvaluatorBase.

The following code presents an example of using the Approximate. It is used
to calculate time complexity of classification of data basing on their meta-input
(dtm is an evaluator of the data).

79 function ClassifyCmplx(Meta.Data.DataTable Meta dtm)
80 return Approximate(classifyCmplxLevel)[0] ∗ dtm.DataMetaParams.InstanceCount;
81 end

Line 80 calls the approximator with index 0, from level classifyCmplxLevel (0-th
element in the output vector is responsible for time complexity; the idea of levels
and layers is addressed below).

Extended EvaluatorBase. There are two roles of the EvaluatorBase functionality:

– To prepare the adaptation process (as it was presented in Section 6.2 and
in Eq. 8, 10 and 11), which has to provide necessary variables/quantities
to become ready to use complexity items inside the evaluator. Also to pre-
pare elements needed by ApproximatorDataIn to build the input vectors for
particular approximators,

– To provide elements necessary for data collection for approximator
learning basing on observed environments. EvaluatorBase has to provide
elements, necessary and sufficient to build learning in-out pairs with
ApproximatorDataIn, ApproximatorDataOut and GetMethodsForApprox.
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The approximators can be constructed to estimate:

– time and memory complexity of machine,
– time and memory complexity of particular machine methods (declared for

the approximation by GetMethodsForApprox),
– other quantities.

To embed the above three types of approximation, the approximator learners
are placed in separate levels in three layers:

Level Layer
level 1
. . .
level k

1 — Approximators of other quantities

level k + 1
. . .
level n − 1

2 — Approximators for specially defined methods

level n 3 — Approximators of time & memory complexity of machine

The order of levels reflects the order of data collection (in each iteration of data
collection loop) and of further learning of approximators after data collection.

Using of approximators from the first layer may be helpful for composing
input vectors for the next two layers. This functionality is used only for ad-
vanced evaluators (not too common, but sometimes very helpful) and will not
be described here in more detail.

For each of the three layers, another set of evaluator methods is used to
prepare the in-out learning pairs. In case of the first layer, two functions are
used:

real[] ApproximatorDataIn(int level) — provides the input vector for level level,
real[] ApproximatorDataOut(int level) — provides the output vector for level

level.

For the purpose of the second layer, we need:

real[] ApproximatorDataIn(int level) — provides the input vector for complexity
of the corresponding method,

MethodForApprox[] GetMethodsForApprox() — provides table of methods being
subjects to complexity checking.

To define approximation of the machine layer (the third one), there is only a
need for

real[] ApproximatorDataIn(int level).

Functions of each layer, have the same general goal: to collect a single input-
output pair of data for learning appropriation basing on the information ex-
tracted by EvaluatorBase from the observed environment.
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Collection of the learning data for the first layer is easy to interpret: the func-
tion ApproximatorDataIn composes the input vector and ApproximatorDataOut
composes the output vector.

The number of levels in the second layer is auto-defined by the number of
methods returned by the GetMethodsForApprox method. When empty sequence
is returned, the layer is not used by the evaluator. Otherwise, for each of the
returned methods, the approximation framework, automatically approximates
the time of execution and sizes of all the returned (by the method) objects.
Therefore, only the input part of the learning data (ApproximatorDataIn) must
be provided by the evaluator—the output is determined automatically by the
system. Each approximation method MethodForApprox is defined as function:

object[] MethodForApprox(int repetitionNr);

The parameter repetitionNr is used by the approximation framework to ask for
a number of repetitions of the test performed by the method (to eliminate the
problem of time measurement for very quick tests). For example, let’s see the
code shown below, where a classifier is called to classify repetitionNr instances.
The aim of the function is to measure time complexity of the classification rou-
tine.

82 function ClassifyTimeChecking(int repetitionNr)
83 IDataSet ds = mi.OpenInput(”Dataset”) as IDataSet;
84 IDataSet ds2 = RandomChainOfInstances(ds, repetitionNr);
85 IClassifier c = mi.OpenOutput(”Classifier”) as IClassifier;
86 IOneFeatureData d = c.Classify(ds2);
87 return null;
88 end

It is important to realize that the call of ClassifyTimeChecking is preceded by
a call to EvaluatorBase, which sets up the mi to facilitate opening appropriate
inputs (dataset and classifier).

The last layer is designed for learning time complexity and memory com-
plexity of the machine. This layer is used only for machine evaluators. In this
case, the approximation framework automatically tests the learning time and
memory usage. These quantities compose the output vectors, so that defini-
tion of ApproximatorDataOut is not used here (as in the case of the second
layer). The input vector is obtained, as for both previous layers, by calling the
ApproximatorDataIn function, which is the only requirement for this layer.

Very important is the role of EvaluatorBase, responsible for two types of
adaptation—during data collection and during complexity estimation by evalu-
ators. The method has to provide all the information necessary to collect proper
data with ApproximatorDataIn and ApproximatorDataOut methods, and to realize
the tests of each associated MethodForApprox.

The input vector for each level may be different and should be as useful as pos-
sible, to simplify the process of approximator learning. Any useful element of ma-
chine description which can help to learn the characteristics of complexity should
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be placed inside the input vector. The same ApproximatorDataIn method is called
also before the evaluator estimates the complexity of a machine. After the valua-
tor adapts to given machine configuration and meta-inputs, ApproximatorDataIn
prepares data for all the approximators to predict their targets and final com-
plexities are estimated.

Environments for approximators learning. As shown in Figure 13 and described
above, to build input data tables, necessary for training the approximators, the
machine is observed in changing environment. Each change in the environment
results in a single input–output pair of data for each of approximators. Therefore,
to construct successful complexity evaluators, apart from specification of the
necessary approximators, one needs to define the environment and the way of
its manipulation.

To share the ways of handling environments, some groups of common proper-
ties are defined and each evaluator has to assign itself to one of the groups or to
define a new group and assign to it. For example, to learn estimation of machine
complexities, the machine should be trained using different configurations with
different input data to explore the space of significantly different situations of
the machine training and exploitation of its model.

The machine observation configurations, generated in the data collection loop
are determined by the following items:

IConfiguration ApproximationConfig — defines the initial configuration of
the machine closest environment for observations, to be nested in
the ApproximationGroupTemplate defined for the group (see below).
ApproximationConfig is needed because not always, it is enough to learn and
observe a single machine. Sometimes it is necessary to precede the learning
of the machine by a special procedure (some necessary data transforma-
tion, etc.). However sometimes the machine may be used directly (then the
property is just a configuration instance of the machine).

int[] Path — determines the placement of the machine, being observed, in the
environment defined above. For machines, it points the machine. For outputs,
it points the machine which provides the output.

IScenario Scenario — defines the scenario (see Section 4), which goal is to provide
different configurations derived from the ApproximationConfig to explore the
space of machine observation configurations. For example, in the case of
the kNN machine, the scenario may browse through different values of the
number of neighbors k and different metric definitions.

MachineGroup Group; — encapsulates a few functionalities, which extend the
space of observed configurations. The groups of functionalities are shared
between evaluators of similar type, which simplifies the process of defining
evaluators. Each group is characterized by:
string[] DataFileNames; — defines file names of learning data which will be

used to observe behavior of the learning process.
IConfiguration ApproximationGroupTemplate; — defines the procedure of us-

ing given type of machines. For example, it may consist of two elements
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in a scheme: a data multiplier which constructs learning data as a ran-
dom sequence of instances and features from a dataset provided as an
input, and a placeholder for a classifier (an empty scheme to be replaced
by a functional classification machine).

int[] Path; — points the placeholder within the ApproximationGroupTemplate,
to be filled with the observed machine, generated by Scenario used on
ApproximationConfig (compare with the Path described above).

IScenario GroupScenario; — the scenario of configuration changes
(see Section 4) to the ApproximationGroupTemplate. The environment
is subject to changes of a data file DataFileNames and configuration
changes defined by the GroupScenario. For example, this scenario may
cooperate with a machine randomizing the learning data within the
ApproximationGroupTemplate as it was already mentioned.

All the functionalities described above, used together, provide very flexible
approximation framework. Evaluators can be created and functionally-tuned,
according to the needs, supplying important help in to successful complexity
computation.

The functions discussed above, are used in the meta-code of the next section,
to present some aspects of the proposed meta-learning algorithm.

Creation and Learning of Evaluators. After presenting the idea of the
approximation framework for evaluators, here, we present the algorithms con-
structing evaluators, in more detail.

Before any meta-learning algorithm is run, the function
CreateEvaluatorsDictionary builds a dictionary of evaluators which are con-
structed by the function CreateEvaluator. In fact, CreateEvaluatorsDictionary
creates the evaluators project, which is used inside any meta-learning task.

89 function CreateEvaluatorsDictionary(Type[] allMachineTypes);
90 foreach (machineType in allMachineTypes)
91 evalDict[machineType] = CreateEvaluator(machineType);
92 return evalDict;
93 end

Creation of an evaluator starts with the creation of an instance (object) of
given class corresponding to the type of given learning machine (machineType,
see code line 95).

94 function CreateEvaluator(Type machineType);
95 eval = getEvalutorInstanceFor(machineType);
96 if(eval is ApproximableEvaluator)
97 {
98 sequenceOfDatasets = CreateDataTablesForApprox(machineType);
99 listOfApprox = {};

100 for (level=1 to eval.LevelsCount)
101 {
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102 <TRS, TES> = GetTrainTestDataTablesFor(level);
103 approxTab = TrainApproximatorTab(<TRS, TES>);
104 listOfApprox.Append(approxTab);
105 }
106 eval.Approximators = listOfApprox;
107 }
108 return eval;
109 end

If the evaluator does not use the approximation framework, then it is ready (with-
out learning) and may be called to estimate complexities. Otherwise, learning
of appropriate approximators is performed. Line 98 calls a function (described
later) which creates a sequence of learning data tables, according to the meta-
description of the evaluator.

Next lines (100–105), for each level, prepare data tables and start learning of
a vector of approximators. The vector of approximators is appended to the list
listOfApprox and finally assigned to the evaluator (in line 106).

The function CreateDataTablesForApprox plays a crucial role in the complex-
ity approximation framework, as it constructs learning data tables for the ap-
proximators. To start with, it needs an instance (object) of the evaluator (line
112) and the meta-description of its requirements related to the approximation
framework.

110 function CreateDataTablesForApprox(Type machineType);
111 sequenceOfDatasets = {};
112 eval = getEvalutorInstanceFor(machineType);
113 machineGroup = eval.Group;
114 foreach (DataFileName in machineGroup.DataFileNames)
115 {
116 dataMachine = CreateDataLoader(DataFileName);
117 groupScenario = machineGroup.GroupScenario;
118 groupScenario.Init(machineGroup.ApproximationGroupTemplate);
119 foreach (gconfig in groupScenario)
120 {
121 scenario = eval.Scenario;
122 scenario.Init(eval.ApproximationConfig);
123 foreach (sconfig in scenario)
124 {
125 c = PlaceConfigInTemplate(gconfig, sconfig, machineGroup.Path);
126 t = StartTask(c, dataset);
127 m = t.GetSubmachine(machineGroup.Path + eval.Path);
128 eval.EvaluatorBase(m);
129 for (level=1 to eval.InnerApproximatorLevels) // layer 1 (other quantities)
130 {
131 dtIn[level].AddVector(eval.ApproximatorDataIn(level));
132 dtOut[level].AddVector(eval.ApproximatorDataOut(level));
133 }
134 foreach (meth in eval.GetMethodsForApprox()) // layer 2 (methods)
135 {
136 level++;
137 <time, objectsTab> = CheckMethod(meth, t);
138 objectsSizes = CheckSizes(objectsTab);
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139 dtIn[level].AddVector(eval.ApproximatorDataIn(level));
140 dtOut[level].AddVector(<time, objectsSizes>);
141 }
142 if (eval is assigned to a machine) // layer 3 (machine)
143 {
144 level++;
145 dtIn[level].AddVector(eval.ApproximatorDataIn(level));
146 dtOut[level].AddVector(<t.time, t.memorySize>);
147 }
148 }
149 }
150 }
151 sequenceOfDatasets = resplit(<dtIn, dtOut>);
152 return sequenceOfDatasets;
153 end

The observations are performed for each dataset (the loop in line 114), for
each group configuration gconfig generated by the group scenario (the loop in line
119), for each machine configuration sconfig generated by the scenario (the loop
in line 123). The scenarios are initialized before they provide the configurations
(see lines 118 and 122, and Section 4).

In line 125, the configuration sconfig is placed within the group configuration
gconfig in the location defined by machineGroup.Path. This composes a config-
uration c which defines the observation task t (next line). The following line
extracts a link to the observed machine m from the observation task.

Next, basing on the link m, the function EvaluatorBase is called to provide
information on the observed machine to ApproximationData(In/Out).

Then, new instances are added to the learning data tables for approximators
of subsequent levels (first those of the first layer, then the methods layer and
finally the machine layer).

As described before, the method ApproximationDataIn is called for each layer,
while ApproximationDataOut just for the levels of the first layer—the system
automatically prepares the output data for both methods layer (the outputs
are time and proper object sizes) and machine layer (the outputs are time and
memory complexities).

At the end (line 151), the input and target parts are transformed to appro-
priate data tables to be returned by the function.

6.4 Example of Evaluators

To better see the practice of evaluators, we present key aspects of evaluators for
some particular machines.

Evaluator for K Nearest Neighbors Machine. This evaluator is relatively
simple. Nevertheless, the requires functionality must be defined (according to
the description of the preceding sections).
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EvaluatorBase
In the case of kNN, in this function, the evaluator saves the kNN configu-
ration and the evaluator of the input data. Another goal is to prepare the
output description of the classifier’s evaluator.

154 function EvaluatorBase(object[] data);
155 Config = GetConfiguration(data);
156 Outputs Meta inputsMeta = GetOutput MetaFrom(data);
157 DataEvaluator = inputsMeta[”Dataset”][0];
158 DeclareOutputDescription(”Classifier”, this);
159 end

Time
kNN machines do not learn, so the time of learning is 0.

160 function Time()
161 return 0;
162 end

Memory
The model uses as much memory as the input data, i.e.
DataEvaluator.MemoryCmplx():

163 function Memory()
164 return DataEvaluator.MemoryCmplx();
165 end

ClassifyCmplx
This function approximates the complexity of classification using the ap-
proximator:

166 function ClassifyCmplx(DataEvaluator dtm);
167 return Approximate(classifyCmplxLevel)[0] ∗ dtm.InstanceCount;
168 end;

classifyCmplxLevel points appropriate approximators level.
ApproximatorDataIn

The method provides training data items for approximation of the classifi-
cation complexity (line 172) and of the machine learning process complexity
(line 175):

169 function ApproximatorDataIn(int level)
170 switch (level)
171 {
172 case classifyCmplxLevel:
173 return { Config.K,
174 DataEvaluator.InstanceCount ∗ Metric Meta.DistanceTimeCmplx };
175 case machineLevel:
176 return { Config.K, Metric Meta.DistanceTimeCmplx,
177 DataEvaluator.InstanceCount, DataEvaluator.FeatureCount };
178 }
179 end
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ApproximationConfig
For kNN, it is just the configuration of kNN machine.

180 function ApproximationConfig()
181 return new kNNConfig();
182 end

Scenario
The scenario manipulates the “k” (the numbers of neighbors) and the metric.

Path
The kNN configuration is not nested in another machine configuration (it
constitutes the ApproximationConfig itself), so the path does not need to
point any internal configuration, hence is empty.

183 function Path()
184 return null;
185 end

GetMethodsForApprox
Returns the function ClassifyTimeChecking devoted to computing the time
of classification with the kNN model:

186 function GetMethodsForApprox()
187 return new MethodForApprox[]{ ClassifyTimeChecking };
188 end

The kNN evaluator is assigned to a machine group prepared for classifiers. The
group definition includes:

ApproximationGroupTemplate
This template is a scheme configuration with two subconfigurations. The
first is the RandomSubset machine, which provides data sets consisting of
different numbers of randomly selected instances and features taken from
some source data set. The second subconfiguration is the placeholder for a
classifier. At runtime, the placeholder is filled with proper classifier (in this
case with the kNN configuration). The classifier gets data input from the
RandomSubset machine output.

GroupScenario
It randomizes the configuration of RandomSubset machine to obtain more
observations for learning the approximation targets.

Example of Evaluator for Boosting Machine. Boosting is an example of
machine using many submachines. Intemi implementation of boosting machine,
repeatedly creates triples of submachines consisting of data distributor machine,
classifier machine and a test of the classifier. All of the submachines have their
own influence on the complexity of the boosting machine.
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EvaluatorBase
Boosting evaluator requires more complex EvaluatorBase then the one of
kNN:

189 function EvaluatorBase(params object[] data)
190 Config = GetConfiguration(data);
191 Outputs Meta inputsMeta = GetOutput MetaFrom(data);
192 DataEvaluator = inputsMeta[”Dataset”][0];
193 Outputs Meta d = { {”Dataset”, DataEvaluator} };
194 boostDistributor = EvaluatorEngine.EvaluateMachine(
195 BoostingDistributor, d);
196 classifier = EvaluatorEngine.EvaluateMachine(
197 Config.Subconfigurations[0], d);
198 Outputs Meta d2 = new Outputs Meta();
199 d2.Add(”Dataset”, DataEvaluator);
200 d2.Add(”Classifier”, classifier.GetOutputDescription(”Classifier”));
201 classTest = EvaluatorEngine.EvaluateMachine(
202 new Intemi.Testing.ClassTestConfig(), d2);
203 DeclareOutputDescription(”Classifier”, this);
204 end

Lines 190 and 192 determine the configuration of boosting machine and
the data evaluator, similarly as for the evaluator of kNN. In line 194 the
data distributor evaluator is created using the EvaluatorEngine, which enables
creation of evaluators by other evaluators.
The classifier evaluator (see line 196) is constructed in a similar way to
the data evaluator. Here, the classifier configuration is extracted from the
structure of subconfigurations, because it may be any classifier defined as
the first subconfigration of the boosting configuration.
Line 201 constructs the evaluator of a classification test. The evaluator gets
meta-inputs descriptions of the data evaluator (DataEvaluator) and the clas-
sifier evaluator (classifier).
Because boosting is a classifier, the last line of the code of EvaluatorBase
declares output meta-description of the classifier.

Time
The time of boosting machine training is the sum of time amounts necessary
to build the sequence of distributors, classifiers and test machines plus the
time of the boosting-only part of learning:

205 function Time
206 return JustThisMachineTime + Config.NrOfClassifiers ∗
207 (boostDistributor.Time + classifier.Time + classTest.Time);
208 end
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Memory
Calculation of the occupied memory is analoguous to that of time
consumption:
209 function Memory
210 return JustThisMachineMemory + Config.NrOfClassifiers ∗
211 (boostDistributor.Memory + classifier.Memory + classTest.Memory);
212 end

ClassifyCmplx
The costs of classifying by boosting models are nearly equal to the sum of
classifying given data (dtm evaluator) by each of the subclassifiers:

213 function ClassifyCmplx(DataEvaluator dtm)
214 subclass = classifier.GetOutputDescription(”Classifier”);
215 return Config.NrOfClassifiers ∗
216 subclass.ClassifyCmplx(dtm) ∗ 1.1;
217 end

ApproximatorDataIn
The input data for the approximators is quite easy to determine. Boosting
complexity (excluding learning of submachines) depend mostly on the num-
ber of submachines (the cost of creation not of the learning) and on the size
of data. Thus:

218 function ApproximatorDataIn(int level)
219 return { Config.NrOfClassifiers, DataEvaluator.InstanceCount };
220 end

ApproximationConfig
The tested configuration is just a boosting configuration with proper classi-
fier configuration inside (here, the naive Bayes classifier):

221 function ApproximationConfig
222 BoostingConfig c;
223 c.ClassfierTemplate = NBCConfig();
224 return c;
225 end

The evaluator of boosting will work properly not only with naive Bayes,
because in code line 196, appropriate evaluator for inner classifier is con-
structed (at the time of complexity estimation, it is the evaluator of the
classifier defined in the configuration).

Scenario
The scenario, simply builds configurations with different numbers of subma-
chines.

226 function Scenario()
227 return new Meta.ParamSearch.StepScenario I(null,
228 new string[] { ”NrOfClassifiers” },
229 Meta.ParamSearch.StepScenario I.StepTypes.Linear, 10, 10, 3);
230 end
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Path and GetMethodsForApprox
These properties are exactly the same as in the evaluator of the kNN
machine.

Boosting machine is a classifier, so its evaluator is also attached to the group
devoted to classifiers. Therefore, the group items are the same as in the case of
kNN.

7 Meta-Learning in Action

Presented meta-learning algorithm, or rather meta-learning system, may be used
in variety of ways. Generators flow may be defined as a simple graph, but usually,
for advanced problems, it is quite nontrivial graph, which in effect produces many
test configurations. The goal of meta-learning which reflects the problem type
may also be defined in several ways, according to the needs. Similarly, the stop
criterion should reflect the preferences about the conditions of regarding the
meta-search as finished.

To present meta-learning in action, we have used a few well known problems
from the UCI Machine Learning repository [34]. All the benchmarks, presented
below, are classification problems. All the following results are computed using
the same configuration of meta-learning (obviously except the specification of
the benchmark dataset).

First, we have to present the meta-learning configuration, according to the
information presented in Sections 5.2 and 5.3. The configuration consists of sev-
eral elements: the meta-learning test template, query test, stop criterion and the
generators flow.

Meta-learning Test Template
The test template exhibits the goal of the problem. Since, the chosen benchmarks
are classification problems, we may use cross-validation as the strategy for esti-
mation of classifiers capabilities. The repeater machine may be used as the test
configuration with distributor set up to the CV-distributor and the inner test
scheme containing a placeholder for classifier and a classification test machine
configuration, which will test each classifier machine and provide results for fur-
ther analysis. Such a repeater machine configuration template is presented in
Figure 14. When used as the ML test template, it will be repeatedly converted
to different feasible configurations by replacing the classifier placeholder inside
the template with classifiers configurations generated by the generators flow.

Query test
To test a classifier quality, the accuracies calculated by the classification test
machines may be averaged and the mean value may be used as the quality
measure.
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Fig. 14. Meta-learning test template: Repeater machine configuration for cross-
validation test with placeholder for classifier.

Stop criterion
In the tests, the stop criterion was defined to become true when all the configu-
rations provided by the generators flow are tested.

Generators flow
The generators flow used for this analysis of meta-learning is rather simple, to
give the opportunity to observe the behavior of the algorithm. It is not the
best choice for solving classification problems, in general, but lets us better
see the very interesting details of its cooperation with the complexity control
mechanism. To find more sophisticated configuration machines, more complex
generators graph should be used. Anyways, it will be seen that using even so
basic generators flow, the results ranked high by the MLA, can be very good.
The generators flow used in experiments is presented in Figure 15. Very similar
generators flow was explained in detail in Section 5.1.

To know what exactly will be generated by this generators flow, the configura-
tions (the sets) of classifiers generator and rankings generator must be specified.
Here, we use the following:

Classifier set:
kNN (Euclidean) — k Nearest Neighbors with Euclidean metric,
kNN [MetricMachine (EuclideanOUO)] — kNN with Euclidean metric for or-
dered features and Hamming metric for unordered ones,
kNN [MetricMachine (Mahalanobis)] — kNN with Mahalanobis metric,
NBC — Naive Bayes Classifier
SVMClassifier — Support Vector Machine with Gaussian kernel
LinearSVMClassifier — SVM with linear kernel
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Fig. 15. Generators flow used in tests.

[ExpectedClass, kNN [MetricMachine (EuclideanOUO)]] — first, the Expect-
edClass6 machine transforms the original dataset, then the transformed data
become the learning data for kNN,
[LVQ, kNN (Euclidean)] — first, Learning Vector Quantization algorithm [35]
is used to select prototypes, then kNN uses them as its training data (neigh-
bor candidates),
Boosting (10x) [NBC] — boosting algorithm with 10 NBCs.

Ranking set:
RankingCC — correlation coefficient based feature ranking,
RankingFScore — Fisher-score based feature ranking.

The base classifiers and ranking algorithms, together with the generators flow
presented in Figure 15, produce 54 configurations, that are nested (one by one)
within the meta-learning test-scheme and sent to the meta-learning heap for
complexity controlled run.

All the configurations provided by the generators flow are presented in Table 3.
The square brackets, used there, denote submachine relation. A machine name
standing before the brackets is the name of the parent machine, and the machines
in the brackets are the submachines. When more than one name is embraced with

6 ExpectedClass is a transformation machine, which outputs a dataset consisting of
one “super-prototype” per class. The super-prototype for each class is calculated as
vector of the means (for ordered features) or expected values (for unordered features)
for given class. Followed by a kNN machine, it composes a very simple classifier, even
more “naive” than the Naive Bayes Classifier, though sometimes quite successful.
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the brackets (comma-separated names), the machines are placed within a scheme
machine. Parentheses embrace significant parts of machine configurations.

To make the notation easier to read, we explain some entries of the table. The
notation does not present the input–output interconnections, so it does not allow
to reconstruct the full scenario in detail, but shows machine structure, which is
sufficient, here, and significantly reduces the occupied space.

The following notation:

[[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]

means that a feature selection machine selects features from the top of a correla-
tion coefficient based ranking, and next, the dataset composed of the feature se-
lection is an input for a kNN with Euclidean metric—the combination of feature
selection and kNN classifier is controlled by a TransformAndClassify machine.

Notation:

[[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]

means nearly the same as the previous example, except the fact that between
the feature selection machine and the kNN is placed an LVQ machine as the
instance selection machine.

The following notation represents the ParamSearch machine which optimizes
parameters of a kNN machine:

ParamSearch [kNN (Euclidean)]

In the case of
ParamSearch [LVQ, kNN (Euclidean)]

both LVQ and kNN parameters are optimized by the ParamSearch machine.
However in the case of notation

ParamSearch [[[RankingCC], FeatureSelection], kNN (Euclidean)]

only the number of chosen features is optimized because this configuration is
provided by the MPS/FS of Transform & Classify Generator (see Figure 15),
where the ParamSearch configuration is set up to optimize only the parameters of
feature selection machine. Of course, it is possible to optimize all the parameters
of all submachines, but this is not the goal of the example and, moreover, the
optimization of too many parameters may provide to very complex machines
(sometimes uncomputable in a rational time).
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Table 3. Machine configurations produced by the generators flow of Figure 15 and the
enumerated sets of classifiers and rankings.

1 kNN (Euclidean)
2 kNN [MetricMachine (EuclideanOUO)]

3 kNN [MetricMachine (Mahalanobis)]

4 NBC
5 SVMClassifier [KernelProvider]

6 LinearSVMClassifier [LinearKernelProvider]

7 [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]]
8 [LVQ, kNN (Euclidean)]

9 Boosting (10x) [NBC]

10 [[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]
11 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]],

TransformAndClassify]

12 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]], Trans-
formAndClassify]

13 [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify]

14 [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]], Transfor-
mAndClassify]

15 [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKernelProvider]],
TransformAndClassify]

16 [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMachine (Eu-
clideanOUO)]], TransformAndClassify]

17 [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAndClassify]
18 [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClassify]

19 [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], TransformAndClassify]

20 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (EuclideanOUO)]],
TransformAndClassify]

21 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Mahalanobis)]],
TransformAndClassify]

22 [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify]
23 [[[RankingFScore], FeatureSelection], [SVMClassifier [KernelProvider]], Transfor-

mAndClassify]

24 [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [LinearKernel-
Provider]], TransformAndClassify]

25 [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [MetricMachine (Eu-
clideanOUO)]], TransformAndClassify]

26 [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)], TransformAnd-
Classify]

27 [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]], TransformAndClas-
sify]

28 ParamSearch [kNN (Euclidean)]

29 ParamSearch [kNN [MetricMachine (EuclideanOUO)]]

30 ParamSearch [kNN [MetricMachine (Mahalanobis)]]
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Table 3. (continued)

31 ParamSearch [NBC]
32 ParamSearch [SVMClassifier [KernelProvider]]

33 ParamSearch [LinearSVMClassifier [LinearKernelProvider]]

34 ParamSearch [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]]
35 ParamSearch [LVQ, kNN (Euclidean)]

36 ParamSearch [Boosting (10x) [NBC]]

37 ParamSearch [[[RankingCC], FeatureSelection], [kNN (Euclidean)], Transfor-
mAndClassify]

38 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Eu-
clideanOUO)]], TransformAndClassify]

39 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Maha-
lanobis)]], TransformAndClassify]

40 ParamSearch [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify]

41 ParamSearch [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]],
TransformAndClassify]

42 ParamSearch [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKer-
nelProvider]], TransformAndClassify]

43 ParamSearch [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMa-
chine (EuclideanOUO)]], TransformAndClassify]

44 ParamSearch [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], Trans-
formAndClassify]

45 ParamSearch [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], Transfor-
mAndClassify]

46 ParamSearch [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], Transfor-
mAndClassify]

47 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Eu-
clideanOUO)]], TransformAndClassify]

48 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Maha-
lanobis)]], TransformAndClassify]

49 ParamSearch [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify]
50 ParamSearch [[[RankingFScore], FeatureSelection], [SVMClassifier [Kernel-

Provider]], TransformAndClassify]
51 ParamSearch [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [Linear-

KernelProvider]], TransformAndClassify]
52 ParamSearch [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [Metric-

Machine (EuclideanOUO)]], TransformAndClassify]
53 ParamSearch [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)],

TransformAndClassify]
54 ParamSearch [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]],

TransformAndClassify]
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Data benchmarks
Table 4 summarizes the properties of data benchmarks (from the UCI repository)
used in the tests.

Table 4. Benchmark data used for the tests.

Dataset # classes # instances # features # ordered f.

appendicitis 2 106 7 7

german-numeric 2 1000 24 24

glass 6 214 9 9

mushroom 2 8124 22 0

splice 3 3190 60 0

thyroid-all 3 7200 21 6

Table 5 presents exact complexities (see Eq. 6 for each test machine config-
uration obtained for the vowel data. The table has three columns: the first one
contains the task id which corresponds to the order of configurations providing
by the generators flow (the same as the ids in Table 3), the second column is the
task configuration description, and the third column shows the task complexity.
The rows are sorted according to the complexity.

The results obtained for the benchmarks are presented in the form of dia-
grams. The diagrams are very specific and present many properties of the meta-
learning algorithm. The diagrams present information about the times of start-
ing, stopping and breaking of each task, about complexities (global, time and
memory) of each test task, about the order of the test tasks (according to their
complexities, compare Table 3) and about the accuracy of each tested machine.

In the middle of the diagram—see the first diagram in Figure 16—there is a
column with task ids (the same ids as in tables 3 and 5). But the row order in
diagram reflects the complexities of test task, not the order of machine creation.
It means that at the top, the most complex tasks are placed and at the bottom
the task of the smallest complexities. For example, in Figure 16, at the bottom,
we can see task ids 4 and 31 which correspond to the Naive Bayes Classifier and
the ParamSearch [NBC] classifier. At the top, task ids 54 and 45 are the most
complex ParamSearch test tasks of this benchmark.

On the right side of the Task id column, there is a plot presenting starting,
stopping and breaking times of each test task. As it was presented in Section 5.4
the tasks are started according to the approximation of their complexities, and
when a given task does not reach the time limit (which correspond to the time
complexity—see Section 6.1) it finishes normally, otherwise, the task is broken
and restarted according to the modified complexity (see Section 6.1). For an
example of restarted task please look at Figure 16, at the topmost task-id 54—
there are two horizontal bars corresponding to the two periods of the task run.
The break means that the task was started, broken because of exceeded allo-
cated time and restarted when the tasks of larger complexities got their turn.
The breaks occur for the tasks, for which the complexity prediction was too
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Table 5. Complexities of the tasks produced by the generators flow for vowel data.

4 NBC 4.77E+006

31 ParamSearch [NBC] 4.99E+006
13 [[[RankingCC], FeatureSelection], [NBC], TransformAndClassify] 5.25E+006

22 [[[RankingFScore], FeatureSelection], [NBC], TransformAndClassify] 5.26E+006

7 [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]] 5.29E+006
1 kNN (Euclidean) 5.78E+006

16 [[[RankingCC], FeatureSelection], [ExpectedClass, kNN [MetricMachine
(EuclideanOUO)]], TransformAndClassify]

5.81E+006

25 [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN [MetricMa-
chine (EuclideanOUO)]], TransformAndClassify]

5.81E+006

10 [[[RankingCC], FeatureSelection], [kNN (Euclidean)], TransformAndClas-
sify]

5.84E+006

19 [[[RankingFScore], FeatureSelection], [kNN (Euclidean)], TransformAnd-
Classify]

5.84E+006

2 kNN [MetricMachine (EuclideanOUO)] 7.82E+006
11 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Eu-

clideanOUO)]], TransformAndClassify]
8.09E+006

20 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Eu-
clideanOUO)]], TransformAndClassify]

8.09E+006

17 [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)], Transfor-
mAndClassify]

8.18E+006

26 [[[RankingFScore], FeatureSelection], [LVQ, kNN (Euclidean)], Transfor-
mAndClassify]

8.18E+006

12 [[[RankingCC], FeatureSelection], [kNN [MetricMachine (Maha-
lanobis)]], TransformAndClassify]

9.60E+006

21 [[[RankingFScore], FeatureSelection], [kNN [MetricMachine (Maha-
lanobis)]], TransformAndClassify]

9.60E+006

3 kNN [MetricMachine (Mahalanobis)] 9.70E+006
8 [LVQ, kNN (Euclidean)] 1.00E+007

6 LinearSVMClassifier [LinearKernelProvider] 1.19E+007
33 ParamSearch [LinearSVMClassifier [LinearKernelProvider]] 1.21E+007

15 [[[RankingCC], FeatureSelection], [LinearSVMClassifier [LinearKernel-
Provider]], TransformAndClassify]

1.46E+007

24 [[[RankingFScore], FeatureSelection], [LinearSVMClassifier [LinearKer-
nelProvider]], TransformAndClassify]

1.46E+007

14 [[[RankingCC], FeatureSelection], [SVMClassifier [KernelProvider]],
TransformAndClassify]

1.72E+007

23 [[[RankingFScore], FeatureSelection], [SVMClassifier [KernelProvider]],
TransformAndClassify]

1.72E+007

5 SVMClassifier [KernelProvider] 1.82E+007

18 [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]], Transfor-
mAndClassify]

4.20E+007
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Table 5. (continued)

27 [[[RankingFScore], FeatureSelection], [Boosting (10x) [NBC]], Transfor-
mAndClassify]

4.20E+007

9 Boosting (10x) [NBC] 4.31E+007

36 ParamSearch [Boosting (10x) [NBC]] 4.33E+007
34 ParamSearch [ExpectedClass, kNN [MetricMachine (EuclideanOUO)]] 5.27E+007

29 ParamSearch [kNN [MetricMachine (EuclideanOUO)]] 6.84E+007

30 ParamSearch [kNN [MetricMachine (Mahalanobis)]] 8.09E+007
40 ParamSearch [[[RankingCC], FeatureSelection], [NBC], TransformAnd-

Classify]
1.63E+008

49 ParamSearch [[[RankingFScore], FeatureSelection], [NBC], Transfor-
mAndClassify]

1.63E+008

37 ParamSearch [[[RankingCC], FeatureSelection], [kNN (Euclidean)],
TransformAndClassify]

1.78E+008

46 ParamSearch [[[RankingFScore], FeatureSelection], [kNN (Euclidean)],
TransformAndClassify]

1.78E+008

43 ParamSearch [[[RankingCC], FeatureSelection], [ExpectedClass, kNN
[MetricMachine (EuclideanOUO)]], TransformAndClassify]

1.79E+008

52 ParamSearch [[[RankingFScore], FeatureSelection], [ExpectedClass, kNN
[MetricMachine (EuclideanOUO)]], TransformAndClassify]

1.79E+008

38 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine
(EuclideanOUO)]], TransformAndClassify]

2.24E+008

47 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMa-
chine (EuclideanOUO)]], TransformAndClassify]

2.24E+008

44 ParamSearch [[[RankingCC], FeatureSelection], [LVQ, kNN (Euclidean)],
TransformAndClassify]

2.39E+008

53 ParamSearch [[[RankingFScore], FeatureSelection], [LVQ, kNN (Eu-
clidean)], TransformAndClassify]

2.39E+008

39 ParamSearch [[[RankingCC], FeatureSelection], [kNN [MetricMachine
(Mahalanobis)]], TransformAndClassify]

2.54E+008

48 ParamSearch [[[RankingFScore], FeatureSelection], [kNN [MetricMa-
chine (Mahalanobis)]], TransformAndClassify]

2.54E+008

42 ParamSearch [[[RankingCC], FeatureSelection], [LinearSVMClassifier
[LinearKernelProvider]], TransformAndClassify]

3.65E+008

51 ParamSearch [[[RankingFScore], FeatureSelection], [LinearSVMClassifier
[LinearKernelProvider]], TransformAndClassify]

3.65E+008

41 ParamSearch [[[RankingCC], FeatureSelection], [SVMClassifier [Kernel-
Provider]], TransformAndClassify]

4.36E+008

50 ParamSearch [[[RankingFScore], FeatureSelection], [SVMClassifier [Ker-
nelProvider]], TransformAndClassify]

4.36E+008

28 ParamSearch [kNN (Euclidean)] 4.52E+008

32 ParamSearch [SVMClassifier [KernelProvider]] 8.04E+008
35 ParamSearch [LVQ, kNN (Euclidean)] 9.46E+008

45 ParamSearch [[[RankingCC], FeatureSelection], [Boosting (10x) [NBC]],
TransformAndClassify]

1.30E+009

54 ParamSearch [[[RankingFScore], FeatureSelection], [Boosting (10x)
[NBC]], TransformAndClassify]

1.30E+009
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optimistic. A survey of different diagrams (in Figure 16–23) easily brings the
conclusion that the amount of inaccurately predicted time complexity is quite
small (there are quite few broken bars). Note that, when a task is broken, its
subtasks, that have already been computed are not recalculated during the test-
task restart (due to the machine unification mechanism and machine cache). At
the bottom, the Time line axis can be seen. The scope of the time is the interval
[0, 1] to show the times relative to the start and the end of the whole MLA com-
putations. To make the diagrams clearer, the tests were performed on a single
CPU, so only one task was running at a time and we can not see any two bars
overlapping in time. If we ran the projects on more than one CPU, a number
of bars would be “active” at almost each time, which would make reading the
plots more difficult.

The simplest tasks are started first. They can be seen at the bottom of the
plot. Their bars are very short, because they required relatively short time to be
calculated. The higher in the diagram (i.e. the larger predicted complexity), the
longer bars can be seen. It confirms the adequacy of the complexity estimation
framework, because the relations between the predictions correspond very good
to the relations between real time consumed by the tasks. When browsing other
diagrams a similar behavior can be observed—the simple tasks are started at
the beginning and then, the more and more complex ones.

On the left side of the Task-id column, the accuracies of classification test tasks
and their approximated complexities are presented. At the bottom, there is the the
Accuracy axis with interval from 0 (on the right) to 1 (on the left side). Each test
task has its own gray bar starting at 0 and finished exactly at the point corre-
sponding to the accuracy. So the accuracies of all the tasks are easily visible and
comparable. Longer bars show higher accuracies. However remember that the ex-
periments were not tuned to obtain the best accuracies possible, but to illustrate
the behavior of the complexity controlled meta-learning and the generators flows.

The leftmost column of the diagram presents ranks of the test tasks (the ranking
of the accuracies). In the case of the vowel data, the machine of the best perfor-
mance is the kNN machine (the task id is 1 and the accuracy rank is 1 too) ex
equo with kNN [MetricMachine (EuclideanOUO)] (task id 2). The second rank was
achieved by kNN with Mahalanobis metric which is a more complex task.

Between the columns of Task-id and the accuracy-ranks, on top of the gray
bars corresponding to the accuracies, some thin solid lines can be seen. The
lines start at the right side as the accuracy bars and go to the right according
to proper magnitudes. For each task, the three lines correspond to the total
complexity (the upper line), the memory complexity (the middle line) and the
time complexity (the lower line)7. All three complexities are the approximated
complexities (seeEq. 6 and 7). Approximated complexities presented on the left
side of the diagram can be easily compared visually to the time-schedule obtained
in the real time on the right side of the diagram. Longer lines mean higher
complexities. The longest line is spread to maximum width. The others are
proportionally shorter. So the complexity lines at the top of the diagram are

7 In the case of time complexity the t/ log t is plotted, not the time t itself.
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long while the lines at the bottom are almost invisible. It can be seen that
sometimes the time complexity of a task is smaller while the total complexity is
larger and vice versa. For example see tasks 42 and 48 again in Figure 16.

The meta-learning illustration diagrams (Figures 16–23) clearly show that
the behavior of different machines changes between benchmarks. Even the stan-
dard deviation of accuracies is highly diverse. When looking at accuracies within
some test, groups of machine of similar accuracy may be seen, however for other
benchmark, within the same group of machines the accuracies are very variant.
Of course the complexity of a test task for given configuration may change sig-
nificantly from benchmark to benchmark. However it can be seen that in the
case of benchmarks of similar properties, the permutations of task ids in the
diagrams are partially similar (e.g. see the bottoms of Figures 21 and 23).

The most important feature of the presented MLA is that it facilitates
finding accurate solutions in the order of increasing complexity. Simple solutions
are started before the complex ones, to maximize the probability that an ac-
curate solution is found as soon as possible. It is confirmed by the diagrams in
Figures 16–23. Thanks to this property, in the case of a strong stop-condition
(significant restriction on the running time) we are able to find really good
solution(-s) because of starting test tasks in proper order. Even if some tasks get
broken and restarted, it is not a serious hindrance to the main goal of algorithm.

For a few of the benchmarks, very simple and accurate models were found
just at the beginning of the meta-learning process. Please see Figure 16 task ids
1 and 2, Figure 17 task ids 1 and 2, Figure 19 task ids 1 and 2, Figure 22 task ids
4 and 31, Figure 23 task id 19. The machines of the first four diagrams, are all
single machines of relatively low complexities. But not only single machines may
be of small complexity. The most accurate machine (of the 54 machines being
analysed) for the thyroid data is the combination of feature selection based
on F-score with kNN machine (task id 19). Even nontrivial combinations of
machines (complex structures) may provide low time and memory complexity
while single machine do not guarantee small computational complexity. In the
case of very huge datasets (with huge number of instances and features) almost
no single algorithm works successfully in rational time. However classifiers (or
approximators) preceded by not too complex data transformation algorithms
(like feature selection or instance selection) may be calculated in quite short
time. The transformations may reduce the costs of classifier learning and testing,
resulting in significant decrease of the overall time/memory consumption.

In some of the benchmarks (see Figures 18, 20 and 21) the most accurate ma-
chine configurations were not of as small complexity as in the cases mentioned
above. For the german-numeric benchmark, the best machines are SVM’s with
linear and Gaussian kernels (task ids 6, 338 and 5). The winner machines, for

8 Note that 33 means ParamSearch [LinearSVMClassifier [LinearKernelProvider]] where
a linear SVM is nested within a ParamSearch, but the auto-scenario for linear SVM
is empty, which means that ParamSearch machine does not optimize anything and
indeed it is equivalent to the linear SVM itself. The small difference is a result of
additional memory costs for ParamSearch encapsulation.
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this benchmark, are of average complexity and are placed in the middle of the
diagram. For the ionosphere benchmark, the most accurate machine is the SVM
with Gaussian kernel but nested in a ParamSearch machine tuning the SVM pa-
rameters. This is one of the most complex test tasks. The MLA running on the
mushroom data, has found several alternative configurations of very good perfor-
mance: the simplest is a boosting of naive bayes classifier (task id 9), the second
is the kNN [MetricMachine (EuclideanOUO)], followed by SVM (with Gaussian
kernel), ParamSearch [kNN [MetricMachine (EuclideanOUO)]], other two configu-
ration of kNN and ParamSearch [SVMClassifier [KernelProvider]].

Naturally, in most cases, more optimal machine configuration may be found,
when using more sophisticated configuration generators and larger sets of clas-
sifiers and data transformations (for example adding decision trees, instance
selection methods, feature aggregation, etc.) and performing deeper parameter
search.

Note that the approximated complexity time is not in perfect compatibility
with real time presented on the right side of the diagrams. The differences are
due to not only the approximation inaccuracy, but also the machine unifications
and some deviations in real CPU time consumption which sometimes is different
even for two runs of the same task (probably it is caused by the .Net kernel, for
example by garbage collection which, from time to time, must use the CPU to
perform its own tasks).

Without repeating the experiments, one can think of the results obtained
with the stop criterion set to a time-limit constraint. For example, assume that
the time limit was set to 1/5 of the time really used by given MLA run. In
such a case, some of the solutions described above would not be reached, but
still, for several datasets the optimal solutions would be obtained and for other
benchmarks, some slightly worse solutions would be the winners. This feature
is crucial, because in real life problems the time is always limited and we are
interested in finding as good solutions as possible within the time limits.

8 Future and Current Research

The next step toward more sophisticated meta-learning is to design advanced
machine configuration generators, able to use and gather meta-knowledge of dif-
ferent kinds. We have already started some efforts in this direction. For example,
we are working on using meta-knowledge to advise composition of complex ma-
chines and to get rid of ineffective machine combinations. Meta-knowledge will
also help produce and advise new data transformations and check their influence
on the results of the meta-search. Advanced generators can learn and collect ex-
perience from information about the most important events of the meta-search
(starting, stopping and breaking test tasks). Using a number of specialized ma-
chine generators will facilitate composition of a variety of machine configurations,
while enabling smart control over the generators results, by means of the part
of complexity definition, responsible for machine attractiveness.
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9 Summary

The meta-learning algorithm presented in the paper opens new gates of compu-
tational intelligence. The algorithm may be used to solve problems of various
types, in the area of computational intelligence. Defining the goal is every flexible
and may fulfill different requirements.

Also the search space, browsed during meta-learning is defined by means of
a general mechanism of generators flow, which enables defining different com-
binations of base machines in a flexible way. As a result, the meta-learning
searches among simple machines, compositions of transformers and classifiers or
approximators, and also among more complex structures. It means that we look
for more and more optimal combinations of transformations and final classifiers
or approximators. What’s more, this meta-learning is able to find independent
(more optimal) transformations for different classifiers and then, use the complex
models in committees.

The criterion of choosing the best model may be defined up to the needs,
thanks to the query system. The focus may be put on accuracy, balanced accu-
racy or some result of a more complex statistical tests.

The most important job is made by the complexity control module which
organizes the order of test task analysis in the loop of meta-learning. In most
cases, the complexities are learned by approximation techniques. This approach
may and be used to any type of machines in the system. Even the machines that
will be added in future, may work as well with the scheme of complexity control.
The biggest advantage of complexity based test task order is its independence
of particular problem and used generators flow. Without such a mechanism,
meta-learning is condemned to a serious danger of yielding no results because of
starting a long lasting test task, which can not be finished in available time.

There is no problem to search for solutions among different complex machine
structures exploiting feature selection algorithms, instance selection algorithms,
other data transformation methods, classification machines, approximation ma-
chines, machine committees etc. MLAs do not need to know much about the
nature of different machine components, so as to be able to run the tasks from
the simplest to the most time and memory consuming. They can not loose simple
and accurate solution, even when they are given little time for the search.

Proposed methodology allows to collect meta-knowledge and use it in further
work (of the same MLA or other MLAs). Complexity estimation may be aug-
mented, in a variety of ways, by defining corrections based on the knowledge
gained during meta-learning.

Presented MLAs are able to autonomously and effectively search through
functional model spaces for close to optimal solutions which sometimes are simple
and sometimes really complex. They present very universal and powerful tools
for solving really non-trivial problems in computational intelligence.
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Abstract. The goal of instance selection is to identify which instances 
(examples, patterns) in a large dataset should be selected as representatives of 
the entire dataset, without significant loss of information. When a machine 
learning method is applied to the reduced dataset, the accuracy of the model 
should not be significantly worse than if the same method were applied to the 
entire dataset. The reducibility of any dataset, and hence the success of instance 
selection methods, surely depends on the characteristics of the dataset. However 
the relationship between data characteristics and the reducibility achieved by 
instance selection methods has not been extensively tested. This chapter adopts 
a meta-learning approach, via an empirical study of 112 classification datasets, 
to explore the relationship between data characteristics and the success of a 
naïve instance selection method. The approach can be readily extended to 
explore how the data characteristics influence the performance of many more 
sophisticated instance selection methods. 

Keywords: instance selection, meta-learning, data summarization, data reduction, 
classification, data characteristics, clustering. 

1   Introduction 

Classification problems in the real world, such as classifying likely taxation fraud in 
the large-scale databases of national taxation agencies, frequently operate on a 
completely different scale to the classification problems that most researchers use to 
develop and test their algorithms, such as the UCI Repository [1]. When dealing with 
such large-scale datasets, it is often a practical necessity to seek to reduce the size of 
the dataset, acknowledging that in many cases the patterns that are in the data would 
still exist if a representative subset of instances were selected. Further, if the right 
instances are selected, the reduced dataset can often be less noisy than the original 
dataset, producing superior generalization performance of classifiers trained on the 
reduced dataset. The goal of instance selection is to select such a representative subset 
of instances, enabling the size of the new dataset to be significantly reduced without 
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compromising the accuracy of a particular classification algorithm, and cleaning it of 
noisy data that may otherwise affect the performance of classification algorithms [2]. 

There have been many instance selection methods proposed over the last four 
decades or so [2-4], the broad classes of which will be reviewed in Section 2. With 
the existence of so many different approaches and algorithms for instance selection 
though, it is natural to wonder which method is likely to perform best for a given 
dataset. The No-Free-Lunch Theorem [5] suggests that it is unlikely that there is a 
single method that will perform best on all datasets regardless of their characteristics 
or properties. Indeed, the comparison on instance selection algorithms performed by 
Grochowski and Jankowski [6] confirms that even the average performance of 
instance selection methods across a group of 6 UCI classification problems varies 
considerably, and also depends on which classification algorithm is applied to the 
reduced dataset. Reinartz [4] provides a brief summary of some experiments 
performed to explore how the performance of various simple sampling methods 
varied with changing data characteristics. Each dataset is characterized by coarse and 
qualitative descriptions such as whether the number of instances and the number of 
attributes are few or many, whether there are many classes, and whether there are 
more qualitative or quantitative attributes. Such characteristics are not quantified 
precisely. Each sampling method is scored against these characteristics based on 
whether they performed well or poorly on datasets with those characteristics. Reinartz 
[4] acknowledged the need for more extended studies to “understand the relation 
between different instance selection techniques and to come up with reliable 
heuristics and guidelines … given a specific data mining environment”. The data 
mining environment naturally needs to consider both the nature of the dataset (its 
characteristics or features) and the particular algorithms that are to be applied to the 
reduced dataset.   

Reinartz’s identification of this open issue prompts the approach taken in this 
chapter. We ask the same question about suitability of various instance selection 
methods, but place it in the context of the Algorithm Selection Problem [7, 8], 
adopting a meta-learning approach. Just as meta-learning research has helped to 
identify which classification algorithm should be used for a certain dataset [9-12], we 
can extend the concepts here to explore the suitability of instance selection 
algorithms. In fact, adopting a meta-learning approach to assist with the design of 
many elements of the data mining process is a useful endeavor [13-15]. We present a 
methodology that can be used to learn the relationship between the characteristics of 
the data and the performance of instance selection methods. We explore the statistical 
properties of a classification datasets that enable a significant reduction in the size of 
the training data to be achieved without compromising classification accuracy. 

The aim of this chapter is thus to demonstrate how a meta-learning approach can 
be used to identify which datasets lend themselves to reducibility. We consider an 
extensive set of 112 classification problems from the UCI repository [1], and 
characterize each dataset with a clear set of statistical metrics. Using a naïve instance 
selection method together with a Naïve Bayes classifier, we evaluate the reducibility 
that can be achieved for each dataset, by finding the smallest subset of the training 
data that enables the accuracy to be not significantly worse than the accuracy obtained  
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with a Naïve Bayes classifier on the original training data. The relationship between 
the data characteristics and the performance of this naïve instance selection approach 
is then explored using both supervised and unsupervised learning methods. The 
proposed methodology can be readily extended to consider other instance selection 
methods from the major classes shown in Figure 1, and other classifiers.  

The remainder of this chapter is as follows: Section 2 discusses the instance 
selection problem in more detail, and reviews some of the existing approaches. The 
naïve method used in this chapter is presented in the context of these other methods. 
Section 3 describes how a meta-learning framework can be developed for algorithm 
selection, and to gain insights into the relationship between problem features and 
characteristics and the suitability of various algorithms. Section 4 presents the 
methodology used in this study, including a description of the datasets used, and how 
their features are measured. Section 5 presents the experimental results, where the 
relationships in the meta-data are learned using both supervised and unsupervised 
learning approaches. Section 6 concludes the chapter with a summary of the insights 
generated by this meta-learning process, and identifies opportunities to extend these 
ideas for future research. 

2   Instance Selection Methods 

Jankowski and Grochowski [3] classify instance selection approaches into three main 
types: i) noise filters [16-18] are decremental algorithms which remove instances 
whose class labels do not agree with the majority of their neighbours; ii) condensation 
algorithms [19-23] are typically incremental algorithms that add instances from the 
training data to a new dataset if they add new information, but not if they have the 
same class label as their neighbours; iii) prototype construction methods [24-26] do 
not focus on selecting which instances of the training data to include in the reduced 
dataset, but create new instances which are representative of the whole dataset via 
data squashing [27] or clustering methods [28, 29].   

According to Reinartz’s unifying view on instance selection [4] the first two types 
of instance selection methods (noise filters and condensation algorithms) can also be 
considered prototype selection methods (deciding which instances in the training data 
to include in the reduced dataset, using either incremental or decremental methods), 
while the third type are basically prototype construction approaches which seek to 
find new instances that can represent the whole dataset more compactly.  Added to the 
group of prototype selection methods are those based on random sampling [30, 31] 
which randomly select instances at first and then identify instances to swap based on 
goodness measures.  

Figure 1 provides a taxonomic summary of the related literature and the various 
approaches to instance selection. 

There are other instance selection methods which combine elements of clustering 
and prototype selection. Leader sampling [4] identifies prototypes (leaders) based on 
clustering, and these prototypes represent a set of instances that are close enough to 
the leader (within a similarity threshold). New leaders are identified to represent any 
instances which are not close enough to a leader. 

 



80 K.A. Smith-Miles and R.M.D. Islam 

Instance Selection Methods

Prototype Selection Prototype Construction 

Incremental
[19, 21, 22]

Decremental

Condensation
[20, 23, 33]

Noise Filtering
[16]

Random 
Sampling
[29, 30]

Data 
Squashing

[27]

LVQ
[24]

Cluster 
Classifier
[28, 29]

 
 

Fig. 1. Taxonomic summary of various instance selection approaches 

 

We adopt in this chapter another approach, related to leader sampling, but quite 
simpler. Prototype points (leaders) are identified through the k-means clustering 
algorithm [32]. The prototypes are not used for constructing new instances, but form 
the basis of a prototype selection process. From each cluster we select the closest 
(100-β)% of the cluster size measured as the Euclidean distance from the cluster 
centroid (leader). This is a form of stratified sampling based on the similarity of the 
instances, rather than the class labels, and thus is quite naïve since apriori knowledge 
about class probabilities is not being used. Of course, this strategy means that it is not 
being used as a noise filter based on class membership, and so it is closer to a 
condensation algorithm. The data reduction achieved is β%. We vary the value of β to 
explore the effectiveness of a classification algorithm on the reduced dataset, 
compared to the performance of the classification algorithm on the original dataset. 
Naturally, any of the instance selection methods discussed in this section could have 
been selected, but for the sake of demonstrating the meta-learning methodology, we 
have elected to focus on this naïve instance selection method working in partnership 
with a Naïve Bayes classifier. There is no doubt that many of the more sophisticated 
instance selection methods would yield improved accuracy for the classifier, but the 
point here is to explore how the performance on a given instance selection method 
varies with instance characteristics. The methodology is broadly applicable and 
extendable to other instance selection methods and classification algorithms. 

3   Meta-Learning about Algorithm Performance 

The No Free Lunch theorem [5] warns us against expecting a single algorithm to 
perform well on all classes of problems, regardless of their structure and characteristics. 
Instead we are likely to achieve better results, on average, across many different classes 
of problem, if we tailor the selection of an algorithm to the characteristics of the 
problem instance. This challenge is known as the Algorithm Selection Problem.  
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As early as 1976, Rice [7] proposed a framework for tackling the problem, 
consisting of four essential components:  

 
• the problem space P represents the set of problems within a problem class;  
• the feature space F contains measurable characteristics of the problems 

generated by a computational feature extraction process applied to P;  
• the algorithm space A is the set of all considered algorithms for tackling 

the problem; 
• the performance space Y represents the mapping of each algorithm to a 

set of performance metrics. 
 
In addition, we need to find a mechanism for generating the mapping from feature 

space to algorithm space.  The framework of Rice [7] is summarized in Figure 2. The 

Algorithm Selection Problem can be formally stated as: For a given problem x ∈ P, 

with features f(x) ∈ F, find the selection mapping S(f(x)) into algorithm space A, such 

that the selected algorithm α∗ ∈ A maximizes the performance mapping y(α∗, x) ∈ Y. 
The collection of data describing {P, A, Y, F} is known as the meta-data. 

 

 

Fig. 2. Schematic diagram of Rice’s [1976] Algorithm Selection Problem model. 

 

There have been many studies in the broad area of algorithm performance 
prediction, which is strongly related to algorithm selection in the sense that supervised 
learning or regression models are used to predict the performance ranking of a set  
of algorithms, given a set of features of the problems. Unfortunately, a variety of 
terms have been used by various communities, and a recent survey paper [8] seeks to 
unify the efforts found in the machine learning, artificial intelligence, operations  
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research, statistics, and other communities, based on the common framework of 
Rice’s model. 

Of most relevance to this chapter is the algorithm selection work done by the 
machine learning community over the last 15 years or so. The term meta-learning [9] 
has been used, since the algorithms they are focused on are learning algorithms, with 
the aim of learning about learning algorithm performance. The meta-data used by 
meta-learning researchers, particularly during the two large European projects of 
STATLOG and METAL, can be defined using Rice’s notation as: a set of 
classification problems (P), trained using typical machine learning classifiers such as 
decision trees, neural networks, or support vector machines (A), where supervised 
learning methods (S) are used to learn the relationship between the statistical and 
information theoretic measures of the classification problem (F) and the classification 
accuracy (Y).  Studies of this nature include [10-12] to name only three of the many 
papers published over the last 15 years. 

Clearly, Rice’s framework of learning from meta-data generalizes to any domain 
where we have sufficient meta-data: where we have a choice of algorithms, with the 
performance of the algorithms clearly measurable, and a collection of datasets whose 
characteristics (features) can be measured in some way. The extension of meta-
learning ideas beyond classification algorithm selection to broader goals, such as 
assisting with the selection of the optimal data mining process, is a useful pursuit [13-
15]. In fact, when we refer to algorithm selection, we can readily substitute the word 
‘algorithm’ with ‘parameter’ or ‘process’, and apply the same meta-learning ideas at a 
different scale. 

Beyond the goal of performance prediction also lies the ideal of greater insight into 
algorithm performance, and very few studies have focused on methodologies for 
acquiring such insights. Instead the focus has been on selecting the best algorithm for 
a given problem (dataset), without consideration for what implications this has for 
algorithm design or insight into algorithm behaviour. Even if the algorithm set consist 
of only one algorithm (and therefore the algorithm selection problem is not relevant), 
there is value to be found in gathering meta-data about its performance across a range 
of problems, and seeking to learn under what conditions this single algorithm 
performs well or poorly. The goal of this chapter is to demonstrate that knowledge 
discovery processes can be applied to a rich set of meta-data to develop, not just 
performance predictions, but visual explorations of the meta-data and learned rules, 
with the goal of learning more about the dependencies of algorithm performance on 
problem structure and data characteristics.  

4   Methodology 

In this section we describe the experimental meta-data used for learning the 
relationships between classification problem features and the reducibility achieved by 
the naïve instance selection method coupled with a Naïve Bayes classifier. We also 
provide a description of the machine learning algorithms applied to the meta-data to 
produce rules and visualizations of these relationships. 
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4.1   Generating Meta-Data  

Using the notation of Rice [7], the meta-data used in this study comprises a set of  
112 classification problems (P) selected from the UCI Repository [1] (see Appendix 
A); the set of algorithms (A) in this study comprises the combination of the naïve 
instance selection method described in Section 2 implemented with various values of 
β, with each one followed by the Naïve Bayes classifier; the performance metric (Y) 
is the maximum percentage reduction in data size possible while maintaining a 
classification accuracy that is not statistically significantly worse than the accuracy 
obtained on the original (complete) dataset; and the set of features (F) used to 
characterize the classification problems comprises a set of statistical metrics described 
below. 

Statistical Features 

Each data set can be described by simple, distance and distribution-based statistical 
measures [34]. Let Xik;j be the value of the jth attribute (column) in the kth instance 
(row) of dataset i. These three types of measures characterise the data set in different 
ways. Firstly, the simple classical statistical measures identify the data characteristics 
based on attribute to attribute comparisons (i.e. comparisons between columns of the 
dataset). These include various measures of the centre of the data for each variable 
(geometric, harmonic and trim means, median) and spread (standard deviations, 
interquartile range, range) as well as skewness, kurtosis, and maximum and minimum 
eigenvalues, correlation coefficient, and z-score. Then, the distance based measures 
identify the data characteristics based on instance to instance comparisons (between 
rows of the data set). These include Euclidean, Mahalanobis and city-block distances. 
Finally, the density-based measures consider the relationships between single data 
points and the statistical properties of the entire data matrix to identify the data set 
features. Distributions of pdf and cdf based on χ2, normal, binomial, discrete uniform, 
exponential, F, gamma, geometric, hypergeometric, lognormal, Poisson, Rayleigh and 
student t-test are all considered. All of these statistical measures, with complete 
formulae, have been summarised in [34]. The simple statistical measures are 
calculated within each column, and then averaged over all columns to obtain global 
measures of the data set. Likewise, the distance measures are averaged over all pair 
wise comparisons, and the density based measures are averaged across the entire 
matrix. For each dataset i, a total of 29 measures are calculated (11 statistical,  
3 distance-based, 15 density-based). The data set feature matrix is then assembled 
with the columns comprising the 29 features, and the rows comprising the 112 
datasets. A subset of 14 of these features were used in the analysis, and are shown in 
Table 1. 

Algorithm Implementation 

The algorithm used in this experimental study is a combination of the naïve instance 
selection method to build a reduced dataset coupled with the Naïve Bayes classifier. 
We start by reserving half of the available data for testing purposes. Based on the  
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training data (50%), we use the k-means algorithm to generate k clusters in feature 
space. For each cluster, we select only a subset of instances around the cluster 
centroid to create a reduced dataset. The reduced data set is used to train a Naïve 
Bayes classifier to predict class membership, and then the model is tested on the 
reserved 50% test set for accuracy. Experiments are conducted to determine, how 
much reduction can be achieved without degradation of the model accuracy compared 
to using all of the full training data. The details of the  algorithm are as follows: 

 
Step 1: Randomly divide original data set (containing N instances) into 50% for 

training (Dt) and 50% for testing or evaluation (De). Let the size of each dataset be 
denoted by Nt=Ne=0.5N; 

Step 2: Cluster the training data (Dt) using the k-means algorithm, for a given value 
of k, selecting 1≤k≤Nt. Cluster j contains Nj instances, for 1≤j≤k; 

Step 3: Identify each of the k cluster centroids as a “leader”, and build a new 
dataset by selecting for each cluster the closest ηj instances (in Euclidean space) 
around leader j, where ηj = Nj*(100-β)%, for a selected value of β. The new reduced 
dataset Dr(β) is β% smaller than the original training data Dt; 

Step 4: The reduced dataset Dr(β) is used to train a Naïve Bayes classifier (using 
the default parameter settings in Weka [35]) 

Step 5: The evaluation dataset De (50% of the original data) is applied to the 
classifier, and the accuracy of the classification is recorded as γr(β); 

Step 6: Repeat Steps 3-5 for varying values of β (0≤β≤100 in steps of 10), 
recording the accuracy of the classifier when using the entire dataset Dt (when β=0)  
as γ; 

Step 7: Identify the value of β, denoted by β*, when the difference between γ and 
γr(β) first becomes statistically significant (using a t-test with p=0.05). Clearly, this 
value of β∗ depends on the value of k, but also on the features of the dataset. 

Step 8: Repeat Steps 2-7 for varying values of k1. 
 
Based on an initial small study of randomly selected UCI repository problems, we 

found this approach to be quite robust to the value of k, with all problems following a 
similar contour when plotting how the test set accuracy varied with β (see Figure 3). 
Regardless of number of clusters (k-value), the point at which data reduction was no 
longer possible seems similar, but as expected, the rate of reduction in accuracy is 
faster for small numbers of clusters if the sampling around the cluster centre is more 
limited. The pattern shown in Figure 3 was similar for several randomly chosen 
datasets. Since we are only interested in identifying the smallest subset that retains the 
original accuracy of the model trained on all of the data, we arbitrarily set the number 
of clusters as 10% of the size of the training data, so that k=0.1Nt. Naturally, different 
values of k can be tested within this methodology though. Figure 4 shows the 
performance of several of the randomly selected subset of datasets, using k=0.1Nt. It is 
clear that even fixing the value of k based on the size of the dataset still reveals much 
differentiation in performance of the algorithm, and different optimal β∗ values for 
                                                           
1 This step could be eliminated with the use of a clustering method that does not require the number 

of clusters to be specified by the user, or using methods that seek to identify the number of natural 
clusters in a dataset [36]. 
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each dataset due to the different characteristics of the datasets. It is the relationship 
between these characteristics and the kind of performance results we observe in 
Figure 4, extended across all 112 problems, that we now seek to learn based on the 
meta-data. 
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Fig. 3. Effect of the number of clusters on the algorithm performance. 
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Fig. 4. Algorithm performance on a subset of problems using k=0.1Nt 
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4.2   Knowledge Discovery on the Meta-Data 

When exploring any data-set to discover knowledge, there are two broad approaches. 
The first is supervised learning (aka directed knowledge discovery) which uses 
training instances – sets of independent attributes (inputs) and dependent attributes 
(outputs or classes in the case of classification problems) - to learn a predictive model 
which is then generalized for new instances to predict the dependent attribute (output) 
based only on the independent attributes (inputs). This approach is useful for building 
models to predict which algorithm or heuristic is likely to perform best given only the 
feature vector as inputs. The second broad approach to knowledge discovery is 
unsupervised learning (aka undirected knowledge discovery) which uses only the 
independent attributes to find similarities and differences between the structure of the 
instances, from which we may then be able to infer relationships between these 
structures and the dependent attribute (class membership). This second approach  
is useful for our goal of seeking greater insight into why certain algorithms 
(combinations of instance selection methods and classification algorithms) might be 
better suited to certain datasets, rather than just building predictive models of 
algorithm performance. 

In this section we briefly summarise the methods we have used for knowledge 
discovery on the meta-data.  

Correlation and Regression Analysis 
In order to determine which of the 29 features [34] are most likely to be predictive of 
reducibility, we first perform a correlation analysis. Any feature with a correlation 
greater than 0.25 or less than -0.25 is selected in a reduced set of 14 features. These 
are: the number of instances; the harmonic mean; inter-quartile range; kurtosis; 
sample correlation coefficient; z score; Mahalanobis distance; probability density 
function for various distributions (Chi-squared, Normal, Binomial, Exponential, F, 
Rayleigh, and Student t distributions). 

This subset of 14 features was then used as inputs to a multiple regression model, 
to establish a baseline predictive model, with the output being the percentage 
reducibility achieved for each dataset (β*). An R2 (coefficient of determination 
calculated as the ratio of the sum of squared residuals to the total sum of squares, 
subtracted from 1) value of 0.87 was achieved. The residual errors of the regression 
model can be added as an additional feature to characterize each dataset, similar to  
the concept of landmarking [37] whereby the performance of simple methods is  
used as a feature to predict the performance of more sophisticated algorithms. 
However, this feature should not be used as an input to any predictive model of 
algorithm performance, since it relies on knowing the actual reducibility of the 
algorithm in order to generate the residual error. This final feature can only be used 
for exploring the relationships in the data, rather than developing predictive models. 
The final set of 15 features available to the knowledge discovery process are shown in 
Table 1. 
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Table 1. 15 features used in meta-data, showing correlation with β* 

 

Feature Description Abbreviation Correlation with β* 
Number of Instances N 0.8 
Harmonic Mean HM -0.25 
Inter-quartile Range IQR 0.33 
Kurtosis KURT 0.34 
Correlation Coefficient CC 0.35 
Z Score Z -0.25 
Mahalanobis Distance MD 0.25 
Chi-squared pdf C2pdf -0.32 
Normal pdf Npdf 0.32 
Binomial pdf Bpdf -0.26 
Exponential pdf Epdf -0.29 
F pdf Fpdf 0.32 
Rayleigh pdf Rpdf 0.37 
Student t pdf Tpdf 0.33 
Regression Residual Error ResErr 0.49 

Neural Networks 
As a supervised learning method [38], neural networks can be used to learn to predict 
the data reduction capability (β*) of a dataset using a certain algorithm (instance 
selection method and classifier). In the case of multiple competing algorithms, the 
neural network can be used to predict the relative performance of the algorithms, thus 
solving the Algorithm Selection Problem [7] via supervised learning. A training 
dataset is randomly extracted (80% of the 112 problems) and used to build a non-
linear model of the relationships between the input set (features F) and the output 
(metric Y). Once the model has been learned, its generalisation on an unseen test set 
(the remaining 20% of the datasets) is evaluated and recorded as percentage accuracy 
in predicting the performance of the algorithm. This process is repeated five times for 
different random extractions of the training and test sets, to ensure that the results 
were not simply an artifact of the random number seed. This process is known as five-
fold cross validation, and the reported results show the average accuracy on the test 
set across these five folds. 

For our experimental results, the neural network implementation within the Weka 
machine learning platform [35] was used with 14 input nodes (excluding ResErr), 18 
hidden nodes, and a single output node. The transfer function for the hidden nodes 
was a sigmoidal function, and the neural network was trained with the 
backpropagation (BP) learning algorithm with learning rate = 0.3, momentum = 0.2.  
The BP algorithm stops when the number of epochs (complete presentation of all 
examples) reaches a maximum training time of 500 epochs or the error on the test set 
does not decrease after a threshold of 20 epochs.  

Decision Tree 
A decision tree [39] is also a supervised learning method, which uses the training data to 
successively partition the data, based on one feature at a time, into classes. The goal is to 
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find features on which to split the data so that the class membership at lower leaves of 
the resulting tree is as “pure” as possible. In other words, we strive for leaves that are 
comprised almost entirely of one class only. The rules describing each class can then be 
read up the tree by noting the features and their splitting points. Five-fold cross 
validation is also used in our experiments to ensure the generalisation of the rules. 

In order to apply a decision (classification) tree to our problem, we first discretize 
the β* values into three categories: LOW corresponding to a β* value under 20% 
reducibility, HIGH corresponding to a β* value greater than 40%, and MEDIUM 
corresponding to a β* value between 20% and 40%. These bins were determined 
based on an examination of the frequency distribution to ensure a reasonable 
distribution of the datasets based on their relative reducibility. The J4.8 decision tree 
algorithm, implemented in Weka [35], was used for our experimental results based on 
the 14 features (excluding ResErr), with a minimum leaf size of 10 datasets. The 
generated decision tree is pruned using subtree raising with confidence factor = 0.25.  

Self-Organizing Maps 
Self-Organizing Maps (SOMs) are the most well-known unsupervised neural network 
approach to clustering. Their advantage over traditional clustering techniques such as 
the k-means algorithm lies in the improved visualization capabilities resulting from 
the two-dimensional map of the clusters. Often patterns in a high dimensional input 
space have a very complicated structure, but this structure is made more transparent 
and simple when they are clustered in a lower dimensional feature space. Kohonen 
[40] developed SOMs as a way of automatically detecting strong features in data sets. 
SOMs find a mapping from the high dimensional input space to low dimensional 
feature space, so any clusters that form become visible in this reduced dimensionality. 
The architecture of the SOM is a multi-dimensional input vector connected via 
weights to a 2-dimensional array of neurons. When an input pattern is presented to the 
SOM, each neuron calculates how similar the input is to its weights. The neuron 
whose weights are most similar (minimal distance in input space) is declared the 
winner of the competition for the input pattern, and the weights of the winning 
neuron, and its neighbours, are strengthened to reflect the outcome. The final set of 
weights embeds the location of cluster centres, and is used to recognize to which 
cluster a new input vector is closest. 

For our experiments we randomly split the 112 problems into training data (80%) 
and test data (20%). We use the Viscovery SOMine software (www.eudaptics.com) to 
cluster the instances based only on the 14 features (exclusing ResErr) as inputs. A 
map of 2000 nodes is trained for 41 cycles, with the neighbourhood size diminishing 
linearly at each cycle. After the clustering of the training data, the distributions of β* 
and ResErr values are examined within each cluster, and knowledge about the 
relationships between problem structure and algorithm performance is inferred and 
evaluated on the test data. 

5   Experimental Evaluation 

The neural network results demonstrate that the relationships between the features of 
the datasets and the reducibility of each dataset using the selected algorithm can 
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indeed be learned to a very high accuracy. Based on the five-fold cross validation 
testing procedure, an R squared value of 0.941 was obtained. These prediction results 
outperform the original regression model’s R squared value of 0.87. While the neural 
network can be expected to learn the relationships in the data more powerfully, due to 
its nonlinearity, its limitation is the lack of insight and explanation of those 
relationships.  

The decision tree results produced classification accuracy, on five-fold cross-
validation, of 87.5%, with most of the errors due to misclassification of some HIGH 
datasets as MEDIUM. The arbitrariness of the discretization bins may be contributing 
to this performance. Figure 5 shows the resulting decision tree rules from the best 
tree, with the confidence for each rule shown in brackets. These rules suggest that, 
based on the meta-data, if the number of instances in a dataset is too small (below 768 
instances) then the reducibility of the dataset using the chosen algorithm (naïve 
instance selection method combined with Naïve Bayes’ classifier) is likely to be low. 
This makes sense given the way the algorithm works, particularly the chosen value of 
k in the k-means clustering algorithm being a fraction (10%) of the number of training 
instances available. For datasets with a higher kurtosis and higher Normal pdf value 
the reducibility of the datasets in the meta-data tends to be higher, since more of the 
variance is due to infrequent extreme deviations which can be eliminated without as 
much impact. 

 

 

Fig. 5. Pseudo-code for the decision tree rule system, showing the accuracy of each rule 

 
The advantage of the Self-organizing Map is its visualization capabilities, enabling 

the exploration of visual correlations and patterns between features and clusters of 
datasets. After training the SOM based on the 14 input features (excluding ResErr and 
β* values), the converged map shows 7 clusters, each of which contains similar 
datasets defined by Euclidean distance in feature space (see Figure 6). Essentially, the 
14-dimensional input vectors have been projected onto a two-dimensional plane, with 
topology-preserving properties. The clusters can be inspected to see which datasets 
are most similar, and a statistical analysis of the features within each cluster can be 
performed to understand what the datasets within each cluster have in common.  

The distribution of the input features, and additional information including the 
distribution of β* values, can be visually explored using the maps shown in Figure 7 
(not all features have been included). A k-nearest neighbour algorithm (with k=7) is 
used to distribute additional data instances (from the test set) or extra variables (β* 
values) across the map. 

 

If (N  >=768) Then 
If (KU >=1.04) Then 

If (Npdf >=12.6) Then HIGH (100%) 
Else MEDIUM (83%) 

Else MEDIUM(89%) 
Else LOW (96%) 
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Fig. 6. Self-Organizing Map showing 7 clusters, with classification datasets labeled within each 
cluster (map generated based on training data, then labeled with training and test data). 

 

In addition to supporting the kind of rules generated by the decision tree (see 
Figure 5), this kind of visual exploration can be used to identify the group of datasets 
that are not very reducible using the chosen algorithm (clusters 1, 5 and 6), and to 
observe that it is not just the number of instances that creates this performance 
(although all analysis performed so far including the correlation analysis supports the 
number of instances as a primary determinant of the reducibility of the chosen 
algorithm). In fact there is significant variation within cluster 2 of the reducibility of 
the datasets, despite most datasets in cluster 2 being of similar size. The residual 
errors for these datasets is high suggesting that these datasets were not well modeled 
by the regression model, and may have some unique properties. The success of the 
SOM to assist with developing insights relies very heavily on the quality of the 

C1 
C2 

C3 

C4 

C5 
C6 

C7 



 Meta-Learning of Instance Selection for Data Summarization 91 

features selected to explore the relative differences between the datasets. A visual 
exploration of the distribution of the 14 features across these clusters suggests that 
none of the existing features can, on their own, explain well the behaviour of the 
datasets in the middle of map. The rules shown in Figure 5 are supported by the 
observation of cluster 3, 4, and 7. The benefit of the SOM is that if new features are 
derived, their values can easily be superimposed across the map to explore if they 
help to explain the performance of certain datasets. 

 

 
 

Fig. 7. The distribution of β* values (Fig. 6a) and several key features (Fig. 7b-7h) across the 
clusters. The colour scale shows each feature at its minimum value as blue, and maximum 
value as red. 

6   Conclusions and Future Research 

In this chapter we have generalized the meta-learning process to consider what can be 
learned about important data pre-processing steps such as instance selection. The 
performance of a classifier depends strongly on which instances are selected as 
representatives of the dataset. While we have not utilized any large-scale datasets in 
this study (our aim has been to utilize well benchmarked UCI repository datasets), the 
motivation for focusing on instance selection from the wide array of data pre-
processing steps we could have selected is due to its importance for many real world 
data mining tasks. 

We have couched the task of instance selection from within the framework of 
Rice’s Algorithm Selection Problem [7]. How do we know which instance selection 
method is likely to be best suited to a given dataset? How much reducibility can we 
expect from an instance selection method, given the features of the dataset? A meta-
learning approach for tackling these questions has been proposed, whereby meta-data 

a) β*                            b) N                               c) KU                            d) MD 

  e) Tpdf                      f)  Epdf                         g) C2pdf                        h) ResErr
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is generated containing experimental results of many problems (P), described by a set 
of features (F), tackled with algorithms (A), with the performance evaluated by 
metrics (Y). This meta-data set of {P, A, Y, F} can then be explored using both 
supervised and unsupervised learning methods to develop both predictive models of 
algorithm performance, as well as insights into dependence of algorithm performance 
on problem features. 

This methodology has been illustrated using only one algorithm, but can readily be 
extended to compare the relative performance of many algorithms. Here, an algorithm 
is a combination of an instance selection method followed by a classification 
algorithm. Given the vast number of algorithms available for both of these tasks, the 
combination creates a huge number of possible algorithms that can be evaluated. In 
this experimental study, we have illustrated the methodology using a naïve instance 
selected method based on clustering, and a Naïve Bayes classifier. The performance 
metric is the level of reducibility this algorithm managed to achieve on a dataset. 
Certainly the conclusions we can draw from the experimental study only relate to this 
particular algorithm, and it is clear that more sophisticated algorithms should be able 
to achieve higher reducibility than the method utilized in this chapter. If we were to 
adopt this methodology to consider a wider range of algorithms, then the performance 
metric becomes a ranking for each algorithm based on performance, as has been done 
in the meta-learning community [9-11]. 

It is clear from the experimental results that the selected features enabled the 
performance of the algorithm to be predicted to a high accuracy, and that rules can be 
generated to explain the conditions under which the algorithm performs well or 
poorly. The conclusions we can draw, however, are extremely limited by the chosen 
features. We have utilized a subset of the features used in previous meta-learning 
studies of classification problems, but in future research it is advisable that these 
features be re-examined. The Self-organising map visualizations revealed that while 
some of the algorithm performance can be explained by the decision tree rules, and 
visual observations were able to confirm these rules, there are clusters of datasets 
whose performance was not readily explained by the selected features. The 
construction of features to suitably characterize a dataset, and capture the diversity of 
problem difficulty that may enable the relative strengths and weaknesses of a range of 
algorithms to be exposed, remains one of the main challenges in meta-learning. 
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Appendix A: 112 datasets used in experimental study (from [34]) 
 

Dataset name # samples # attributes # classes Dataset Name # samples # attributes # classes
abalone 1253 8 3 Musk2 1154 15 2
adp 1351 11 3 nettalk_stress 1141 7 5
adult-stretch 20 4 2 new-thyroid 215 5 3
allbp 840 6 3 Page-blocks 1149 10 5
ann1 1131 6 3 pendigits-8 1399 16 2
ann2 1028 6 3 Pha 1070 9 5
aph 909 18 2 Phm 1351 11 3
art 1051 12 2 Phn 1500 9 2
australian 690 14 2 Pid 532 7 2
balance-scale 625 4 3 pid_noise 532 15 2
bcw 699 9 2 Pima 768 8 2
bcw_noise 683 18 2 Poh 527 11 2
bld 345 6 2 post-operative 90 8 3
bld_noise 345 15 2 primary-tumor 339 17 2
bos 910 13 3 Pro 1257 12 2
bos_noise 910 25 3 promoter 106 57 2
breast-cancer 286 6 2 Pvro 590 18 2
breast-cancer-wisconsin 699 9 2 Rph 1093 8 2
bupa 345 6 2 shuttle 1450 9 5
c 1500 15 2 shuttle-landing-control 15 6 2
cleveland-heart 303 13 5 sick-euthyroid 1582 15 2
cmc 1473 9 3 Sma 409 7 4
cmc_noise 1473 15 3 Smo 1429 8 3
crx 490 15 2 smo_noise 1299 15 3
dar 1378 9 5 Sonar 208 60 2
dhp 1500 7 2 splice 1589 60 3
dna 2000 60 3 switzerland-heart 123 8 5
dna_noise 2000 80 3 t_series 62 2 2
DNA-n 1275 60 3 Tae 151 5 3
dph 590 10 2 tae_noise 151 10 3
echocardiogram 131 7 2 Thy 1887 21 3
flare 1389 10 2 thy_noise 3772 35 3
german 1000 24 2 tic-tac-toe 958 9 2
glass 214 10 6 titanic 2201 3 2
hayes-roth 160 5 3 Tmris 100 3 2
h-d 303 13 2 Tqr 1107 11 2
hea 270 13 2 trains-transformed 10 16 2
hea_noise 270 20 2 Ttt 958 9 2
heart 270 13 2 va-heart 200 8 4
hepatitis 155 19 2 Veh 846 18 4
horse-23 368 22 2 veh_noise 761 30 4
house-votes-84 435 16 2 vot_noise 391 30 2
hypothyroid 1265 25 2 wdbc 569 30 2
ionosphere 351 33 2 Wine 178 13 3
iris 150 4 3 wpbc 199 33 2
khan 1063 5 2 Xaa 94 18 4
labor-neg 40 16 2 Xab 94 18 4
lenses 24 5 3 Xac 94 18 4
letter-a 1334 16 2 Xad 94 18 4
lymphography 148 18 8 Xae 94 18 4
mha 1269 8 4 Xaf 94 18 4
monk1 556 6 2 Xag 94 18 4
monk2 601 6 2 Xah 94 18 4
monk3 554 6 2 Xai 94 18 4
mushroom 1137 11 2 Yha 1601 9 2
musk1 476 166 2 Zoo 101 16 7  
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Abstract. One the earliest challenges a practitioner is faced with when using
distance-based tools lies in the choice of the distance, for which there often
is very few information to rely on. This chapter proposes to find a compro-
mise between an a priori unoptimized choice (e.g. the Euclidean distance) and a
fully-optimized, but computationally expensive, choice made by means of some
resampling method. The compromise is found by choosing distance definition ac-
cording to the results obtained with a very simple regression model – that is one
which has few or no meta-parameters – and then use that distance in some other,
more elaborate regression model. The rationale behind this heuristic is that the
similarity measure which best reflects the notion of similarity with respect to the
application should be the optimal one whatever model is used for classification
or regression. This idea is tested against nine datasets and five prediction mod-
els. The results show that this approach is a reasonable compromise between the
default choice and a fully-optimized choice of the metric.

1 Introduction

Many regression or classification models are build on some similarity (or dissimilarity)
measure which is used to compare how similar/dissimilar two data elements are. The
most typical example is the nearest neighbor prediction model which uses the distance
between data elements (or cases, instances) in the data space to determine the response
value of a fresh data element based on an average of the target value among its neighbors
– the elements which are closest to it.

Other tools transform the distance, which is intrinsically a dissimilarity measure,
into a similarity measure, most often through some decreasing function of the distance.
Support vector machines [1], but also Radial-Basis Function Networks [2], and many
Lazy-Learning methods [3] are based on this principle. Other kernels, like polynomial
kernels, are not based on distances, but they can be interpreted as well a similarity
measures.

One the earliest challenges the practitioner is faced with when using such tools in
the choice of the distance. Sometimes, the choice of the distance is obvious ; with 2-
dimensional, noise-free, data, the Euclidean distance is unquestionable. For other types
of data, specific distances can be designed incorporating prior knowledge [4].
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Sometimes the choice is much less obvious, especially when data show specific fea-
tures like a mix of continuous and categorical attributes, or when the data are highly-
dimensional, with strongly redundant attributes, or affected by non-Gaussian noise. The
distance metric should then be considered as a meta parameter to the model, which
should be chosen precisely [5]. Although the Euclidean distance might appear in many
cases as the optimal one, when the data are complex, there is a real need to check that
other distance do, or do not, perform better.

One of the following two approaches is consequently often adopted. Either the prac-
titioner uses the basic defaults – the Euclidean distance – even if it may not be the
optimal choice. Or, the practitioner adds the distance definition to the cross-validation
loop used to optimize other (meta-)parameters like the regularization parameters in sup-
port vector machines, or the number of centroids in radial-basis function networks, or
the number of neighbors in lazy learning methods. The former approach is definitely
not optimal, while the latter is very CPU intensive.

The idea proposed in this chapter is to find a compromise between both approaches
by optimizing the choice of the distance with a very simple regression model – that is
one which has few or no meta-parameters – and then use that distance in some other,
more elaborate regression model.

The rationale behind this idea is that the similarity measure which best reflects the
notion of similarity with respect to the application is the optimal one whatever model is
used for regression. This rationale is very similar to the one followed in filters methods
for feature selection [6] and landmarking methods for dataset characterization in meta
learning [7].

The main objective of this contribution is to show that the optimal metric for the
simpler model (the one nearest-neighbor regression model) is highly correlated with
the optimal metric for more elaborate models like support vector machines or neural
networks, consequently showing that optimizing the metric on simpler models to then
use it in more elaborate ones actually make sense.

The remaining of this chapter is organized as follows. Section 2 introduces the notion
of distance and provides some definitions. Section 3 describes the proposed approach,
while the results are reported in Section 4.

2 The Notion of Distance

Let X be a set of data elements living in some space Ω . To compute the distance
between any two points of X , we need to define a distance function, or metric, d
over Ω .

2.1 Definitions

A distance function d over the set Ω is defined on Ω ×Ω and takes values in IR+, the
set of non-negative reals. When evaluated between two identical points, it must return
zero, and must be symmetric and obey the triangle inequality.
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The most well-know distance definition is the Euclidean distance, defined over IRp,
with xi denoting the ith component of vector x, as

d (x,y) =
√

∑
i

(xi − yi)2 (1)

It corresponds to the usual notion of distance we use in the real (three-dimensional)
world.

The notion of distance is intrinsically linked to the notion of similarity referred to
when interpreting prediction models. While distances are often used for comparison
in prediction models like the k-nearest neighbors model, similarities are rather used
when the value is to be used for weighting in a sum, like in Support Vector Machines
(SVM) for instance. Distant objects are seen as different while objects that are close one
to another are deemed similar. A similarity function is thus a non-negative, bounded,
decreasing function of the distance.

One of the most used similarity function in kernel methods is the Gaussian kernel:

s(x,y) = e
−
(

d(x,y)
2σ

)2

, (2)

while other measure are also popular in lazy learning, such as

1
1 + d (x,y)

. (3)

In this chapter we will nevertheless focus exclusively on the on the Gaussian ker-
nel because it is used in prediction and classification models from statistics, machine
learning, pattern recognition, fuzzy logic, etc [1] .

2.2 Distance on Other Types of Data

The Euclidean distance is used when data can be expressed in a vector space, that is
basically when data are numerical, or when numeric features can be extracted form
them. Many other distance definition have been developed for non-numerical data, like
the now classical edit distance on strings [8], and the more recent commute distance on
graph nodes [9].

Edit distance (Levenshtein) on strings. Character strings are sequences of charac-
ters representing words in a written language, or in any other formal language based on
a finite alphabet, like DNA strings described by the four letters A C T and G. The idea
of the edit distance is to define how similar two strings are by the number of fundamen-
tal operations needed to transform one string into the other. Fundamental operations
are classically defined as: insertion, deletion, and substitution of a single character. The
distance is computed as the minimal number of such operations. The computations are
carried on using a dynamic computing algorithm requiring order the product of both
string lengths operations.
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Commute time distance between nodes in a graph. Graph data structures are often
used to represent communication networks (roads, phone calls, etc.) and preference re-
lationships (social networks, movie preferences, etc.). This latter kind of graphs is made
of nodes of two different types, often called users and items. The distance between for
instance a user and an item is computed as how easy it is to go from one to another by
’walking’ on the graph, moving from one node to another by following the edges. The
distance between two items measures how many users have used both at the same time,
while the distance between two users measures how many common items they have
used, and the distance between an item and a user measures how likely a user is to be
interested in that item.

Many other distance definition have been used in specific contexts, involving spe-
cific data types (images, sounds, etc.). A comprehensive review can be found in [4].
Although this chapter focusses on numerical, vectorial, data, the ideas can be trans-
posed for non numerical data as far as several distance metrics can be defined and no
hint is available about which one of them is to be used.

2.3 Extensions of the Euclidean Distance

While the Euclidean distance has been used extensively since the early days of multi-
variate data analysis, the last decade has shown the advent of a new kind of data. While
typical data used to be small and clean, data are now large and dirty. Data are described
by a large number of attributes, contains outliers, are redundant (collinear), polluted
by non-Gaussian noise, etc. This shift in data has led to investigation of extensions to
the Euclidean distance, in two main directions: weighted distances on the one end, and
Minkowski and fractional distances on the other end.

2.3.1 Weighted Distances
Weighted Euclidean distances are a family of distances where each component of the
feature vector is weighted to give it more or less importance relatively to the other
components. Without loss of generality, the Euclidean distance can be rewritten as

d (x,y) =
√

(x− y)tA(x− y) (4)

where A is the p× p identity matrix. This form allows an immediate extension by al-
lowing matrix A to be any semi-definite (with non-negative eigen-values) matrix. If A
is diagonal, this corresponds to giving each dimension a relative weight. Using a full
matrix A allows taking into account interaction between variables (dimensions).

Although this kind of extension is very interesting, it can be thought of as a pre-
processing of the data rather than a true questioning of the relevance of the Euclidean
distance. Indeed, using the Mahalanobis distance, defined using the inverse of the co-
variance matrix of the data as matrix A, would be equivalent as using the Euclidean
distance on the same data preprocessed with Principal Component Analysis.

In this chapter, we will rather focus on the other type of extension to the Euclidean
norm.
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2.3.2 Minkowski and Fractional Distances
The other way of extending the Euclidean norm is by allowing the exponent in the
definition to take any positive value. This leads to the Minkowski family of distances,
and to fractional distances.

The Euclidean distance can be written, with l = 2, as

d (x,y) =

(
∑

i

|xi − yi|l
) 1

l

. (5)

By allowing l to take any positive integer value, we define the Minkowski family of
norms, from which the most known are the Euclidean, of course, but also the Manhattan
distance (l = 1) and the Chebyshev distance (by letting l → inf), which is computed as

d (x,y) = max
i

|xi − yi| (6)

Allowing l to take any positive value leads to the so-called fractional norms, which
have been investigated in various contexts [10]. They will be denoted l-norms in the
following.

2.4 Distances in Prediction Models

Regression models are built from data having a continuous label, called a response
value, or a target. The objective is to build a function (or model) that associates a data
element with its response value. The model is built using data for which this label is
known, it is then applied to new data – for which the label is unknown – to obtain a
prediction of the correspondig response value.

Many prediction models fall in a category which we could label as ‘geometrical’
models because they rely on the definition of a metric over the data space. In such
models, the estimation of the value to predict is carried out by computing a weighted
average of the response values associated to known data lying in the neighborhoods of
the new value.

In such models, the predicted value ŷ for a new datum x is of the form:

ŷ = ∑
i

wi · s(Ci,x), (7)

where s(., .) denotes a similarity measure, such as (2) or (3) for instance, and the Ci are
vectors living in the same space as the data.

Different choices for s(., .), Ci and wi lead to different models structures. For in-
stance, by letting Ci be the original data points and wi their associated values, and by
defining s(., .) to be one if the distance between both arguments is less than a threshold,
and zero otherwise, we obtain a nearest-neighbor prediction model [3].

By letting Ci be centroids obtained by a clustering of the data and wi be optimised,
we obtain a radial-basis function network [11]. Such model can also be obtained by
letting Ci be data points choosen according to a forward procedure and the wi be set by
Orthogonal Least Squares [12].
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By letting Ci be some data points chosen as the results of a penalized quadratic opti-
mization problem, and wi be the response value of those specific points, called support
vectors, we recognize the support vector machine [1].

The least squares support vector machine [13], as well as the kernelized version of
the nearest neighbor prediction model [14] and many lazy-learning algorithm [3] can
also be expressed in a way very similar to Equation 7.

3 The Distance as a Meta Parameter

The Euclidean distance is often the default choice, mainly because of historical reasons.
When data was low-dimensional, described by two or three attributes, or sometimes
four, and the noise was close to white noise, nicely Gaussian, the Euclidean distance
was without a doubt the optimal choice.

Nowadays, as data become higher- and higher-dimensional, described by hundreds,
or thousands of attributes, various other noise scheme appear than the white noise, and
the Euclidean distance is more and more questioned as a relevant measure of similarity
[15].

3.1 Optimizing the Choice of the Distance

Still, the general practice is often to consider the Euclidean distance only. The optimal
way of choosing among alternative distance definitions would be to consider adding
an outer loop to the usual cross-validation of the hyper parameters of the prediction or
classification model in which they appear. Considering most nonlinear models depend
on at least two hyper parameters, which must be optimized through some resampling
method, this would of course multiply the time needed in the optimization of the models
by the number of distinct distance functions that are considered, making this approach
computationally too heavy in practice.

3.2 The General Idea: An a Priori Choice of the Distance

The former approach for choosing the distance could be thought of as an instance of a
wrapper methodology for metric selection, by similarity with such approach in a feature
selection context [16]. Note that feature selection can be thought of as a way of changing
the metric so that only few dimensions are taken into account in the distance definition,
or, in other words, a case of weighted distance where the weights are binary.

Feature selection offers another methodology, often referred to as filter [17], where
the idea is to choose the features according to some method before any prediction model
is built. Filters are often based on statistical or entropy-related criteria such as correla-
tion, Mutual Information [6], or the non-parametric noise variance estimator Gamma
Test [18] . Both the gamma test and the most efficient estimator of mutual information
in higher dimensional-spaces are based on nearest neighbors [19].

In the field of meta learning for data mining, the concept of landmarking [7] is similar
in the sense that the idea is to characterize a dataset by the performances of simple
models on the data, from which information is ultimately extracted to find, beforehand,
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the optimal model that would perform best on that particular dataset. Besides the linear
model, the simple nearest neighbor model, is often used.

As the idea in this chapter is to choose the optimal distance, we suggest to use the
performances of a nearest neighbor model (k-NN) to choose the most relevant metric in
a reasonable time.

3.3 The Criterion: The Performances of a k-NN

The performances of a k-nearest neighbor regression model can be estimated using
the Leave-One-Out normalized Median Squared Error of the model on the data, as
explained hereafter.

The leave-one-out procedure is used so as to avoid potential biases due to over fit-
ting, especially in the case of low values of k. Allowing k = 1, without leave-one-out
procedure, would indeed lead to perfect (and useless) prediction in all cases if no leave-
one-out procedure is assumed.

Normalizing, in the present context, means dividing the median squared error by the
variance of the response value so that the resulting figure is normalized by the range of
the target. A value of zero means perfect prediction while a value larger than one means
a completely useless model performing no better than a constant model. The value can
be interpreted as a percentage of the variance of the target which can be explained by
the model.

The rationale behind the use of the median squared error rather than the more com-
mon mean squared error is to avoid problems due to potential outliers in the data. Out-
liers often lead to normalized mean squared errors reaching values higher than one in
such context when outliers have not been identified yet.

3.4 The Proposed Method: Randomized Subsamples with Optimized Number of
Neighbors

The nearest-neighbor prediction model depends on one parameter, namely the number
of neighbors k to be considered in the evaluation of the predicted response value. One
option would be to choose a reasonable default value beforehand, sufficiently high so
that the variance of the estimation is low enough. Nevertheless, the structure of the
nearest neighbor model is such that getting the results for one particular value of k is
nearly as costly as getting them all up to some bound K. Therefore, it is suggested to
take the performance associated to one particular distance definition as the maximum
over all values 1 ≤ k ≤ K of the number of nearest neighbors, and taking K to be a
reasonable value depending on the total size of the dataset.

Even though the nearest neighbor approach requires virtually no computer time in
building the model, since it belongs to the so called lazy learners, the time needed for
prediction can be rather large when the dataset size grows. In such cases, an indexing
structure can be of some help, like the kd-tree. However these trees have shown their
limits on high-dimensional data [20]. Approximate nearest neighbors, or randomized
nearest neighbors can the be used to reduce the computational time. Here, we suggest
to consider a random subset of the observations, or cases, whose size is kept small
enough to allow reasonable computation times.



104 D. François, V. Wertz, and M. Verleysen

Because of that random subsampling, and to robustify the method against the vari-
ance of the nearest neighbor model and of the leave-one-out procedure, it is suggested
to draw several subsamples and to repeat the evaluation of each distance definition sev-
eral times. The suggested policy is to choose the distance function that outperforms the
other, if such exists, or to default to the Euclidean distance in case of ties.

Finally, we suggest considering a limited subset among all possible Minkowski and
fractional distances, namly: the 1/2-norm distance, the Manhattan distance, the Eu-
clidean distance and the Chebyshev distance. A larger number of values could of course
be tested, but our experience is that values larger than 2 often lead to results compara-
ble to the Chebyshev distance, while values lower than 1/2 lead either to results close
to those of the 1/2-norm, or to severe numerical instabilities [15].

4 Experiments

The suggested approach is tested against nine datasets and five prediction models based
on a distance definition.

4.1 Datasets

The datasets were chosen so as to encompass a rather large variety of data. They are
all concerned with regression problems. In the experiments, no domain knowledge has
been used to pre process the data ; this of course may harm the results, but it allows fair
comparison.

Friedman. This artificial dataset is generated from five random X1...X5 variables uni-
formly distributed over [0,1]. The target is computed as

Y = 10sin(X1X2) + 20(X3 −0.5)2 + 10X4 + 5X5 + ε.

where ε is a random Gaussian noise whose variance is chosen to obtain a Signal to
Noise Ratio (SNR) of 10. The sample size is 200. This data was originally used by
Friedman to illustrate the MARS algorithm [21]. It originally contained five more vari-
ables carrying solely noise. These have been ignored here as distance-based models are
highly sensitive to noise-variables and the objective here is to assess the relevance of
the method rather than the relevance of the models.

Tecator. Tecator is a set of meat near-infrared spectra, discretized from 850 nm to 1050
nm into 100 values. The objective is to predict the amount of fat in the meat sample and
the sample size is 215. Variables in this dataset are highly correlated, leading to highly
redundant features. This dataset is available from http://lib.stat.cmu.edu/
datasets/tecator. This data are known to be rather linear [22].

Housing. The Housing dataset comprises 7 real values describing some demographic
information about a small area in the suburbs of Houston, in the USA [23]. The target

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator
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is the median house price in that area. The sample size is 506. This dataset is available
from the UCI repository. This dataset originally comprises additional categorical vari-
ables which are not being considered here.

Forest. The Forest dataset is available from the UCI repository [23]. The aim is to es-
timate the size of the burned area in forest fires in Portugal, from meteorological and
spatial data. The dimensionality of the dataset is 13 while the sample size is 517.

Hardware. The Computer Hardware data set comprises nine variables describing com-
puter hardware[23] ; the target is a measure of the performance of the hardware in terms
of some benchmark. Most of the values are integer ; the sample size is 209. This dataset
is available from the UCI repository.

Concrete. The Concrete Compressive strength dataset is a highly nonlinear function of
nine attributes describing concrete composition and age. It comprises 1030 instances
and is available from the UCI repository [23].

Housingburst. This dataset is the same as the Housing dataset except that it has been
artificially altered with burst noise, that is noise which affects only some of the val-
ues, but alters them dramatically. Such noise scheme can be related to outliers and to
multiplicative noise in signal processing. Input errors in human-encoded data often also
follow that noise scheme (a misplaced comma leading to a 10-fold error in the value,
etc. ) This type of data has been found to be better handled by fractional metrics.

Tecatorburst. This dataset is the same as the Tecator dataset except that is was given
the same treatment as Housingburst to artificially favor fractional distance.

Delve. This dataset is actually a subset of the Census-House dataset1 where only con-
tinuous variables have been considered, because introducing binary or categorical vari-
ables in a distance function requires treatments that are outside the scope of this study.

4.2 Models

All the models used are based on the Gaussian kernel. The prediction function they al-
ways follow the form of (7). The differences between those models lie in the algorithm
used to determine the parameters. Here follows a list of the mnemonics for each model
along with a short description and references for a more complete description.

LLWKNN. This model is taken from the field of Lazy Learning [3]. It is similar to a
nearest-neighbor model except that the influence of each neighbor is weighted by the
similarity between that neighbor and the new data for which an estimation of the label
must be found. It has two meta parameters : the number of neighbors and the width of
the kernel used as similarity measure.

1 http://www.cs.toronto.edu/ delve/data/datasets.html
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KKNN. This is the kernelized version of the nearest-neighbor [14]. The distance be-
tween the data elements is computed in the induces feature space rather than in the data
space. The meta parameters of this model are the same as for the previous one.

RBFNOrr. This model corresponds to the radial-basis function networks trained using
Orr’s orthogonal least squares with forward selection of the centers. Centers here are
taken amongst the elements of the training set. This model has two meta parameters;
the width of the Gaussian functions, and a regularization parameter [12].

LSSVM. Least Squares-Support Vector Machines [13] are defined in a way very simi-
lar to ridge regression, but the learning scheme approaches the one of the support vector
machine. As for the previous model, two meta parameters must be optimized; the width
of the kernel and a regularization parameter.

SVM. Support vector machines are built by solving a quadratic programming problem
which identifies support vectors among the data [1]. The Gaussian kernel is used here.
SVM’s rely on two parameters; the width of the kernel and a regularization parame-
ter expressing an upper bound on the number of support vectors allowed in the model.
Support vector machines for regression furthermore have a third parameter which is the
width of the so called ε-insensitive tube where the prediction error is considered to be
null. In this work, that parameter is chosen a priori according to a simple heuristic based
on the variance of the target.

It is important to note that kernels based on a distance other than the Euclidean
norm are not necessarily Mercer kernels [1] and therefore should be used in SVM-like
methods with caution. However, is has become an accepted practice to use non-Mercer
kernels in support vector machines. The convexity of the problem is lost, but sufficiently
good models are often built despite this drawback [24].

4.3 Methodology

The methodology as follows. First, the proposed methodology is followed to estimate
the distance relevance. Four choices for the distances are considered : the 1/2-norm
distance, the Manhattan distance, the Euclidean distance and the Max-norm distance.
The number of neighbors is optimized in the range 1..21, and the number of repetitions
is 30, while the number of cases kept in each repetition is 100.

Then, the performances of the selected models are evaluated. Those models are op-
timized using a 10-fold cross-validation procedure, and results on an independent test
set are reported (normalized median squared error). This whole procedure is repeated
ten times with random splitting into training and test set.

Finally, the correspondence between the results of the nearest neighbor model and
the selected models is investigated.

4.4 Results for the Nearest Neighbor Model

The results of the nearest neighbors model are given in Figure 1. All 30 runs are sum-
marized in a box plot. The horizontal axis represents the distance, from left to right:
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Fig. 1. Box plot of the Normalized Median Squared Error of the nearest neighbor for estimating
distance function relevance. The horizontal axis represents the exponent of the distance; in order,
1/2-norm, Manhattan distance, Euclidean distance and Chebyshev distance
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1/2-norm, Manhattan distance, Euclidean distance and Chebyshev distance. The boxes
represent the inter-quartile range, the horizontal line inside the box is the median, and
the tails represent the fifth and 95th percentile respectively. The plusses represent single
outliers. Table 1 provides with the mean and standard deviation of those distributions.

For Friedman and Hardware, the visual inspection of the plots seems to favor the
Euclidean distance, at least in terms of median results, although the difference, might
not be statistically significant.

As far as dataset Tecator is concerned, the Chebyshev metric seems to be the favorite
choice. The same conclusion can be seen for Delve, although this is much less obvious.
For both Housingburst and Tecatorburst, the 1/2-norm seems to be preferable. The same
conclusion can be drawn about Concrete while it is not as clear as for the latter.

The results for Housing seem to point out the Manhattan norm as most relevant; it
nevertheless does not outperform the 1/2-norm and the Euclidean norm significantly,
while for the Forest dataset, all distances seem to perform equally. For those datasets,
defaulting to the Euclidean distance seems also reasonable.

Table 1. Mean, (and standard deviation) of the Normalized Median Squared error of the k-nearest
neighbor model with four different distance definitions, over 30 runs.

Dataset 1/2-norm 1-norm 2-norm ∞-norm
Friedman 0.1148 (0.023) 0.0973 (0.019) 0.0928 (0.013) 0.1049 (0.017)
Tecator 0.1464 (0.043) 0.1263 (0.036) 0.1198 (0.033) 0.0753 (0.020)
Housing 0.0588 (0.104) 0.0543 (0.012) 0.0597 (0.014) 0.0734 (0.020)
Forest 0.0176 (0.027) 0.0179 (0.026) 0.0161 (0.022) 0.0167 (0.020)
Hardware 0.0008 (0.0002) 0.0007 (0.0002) 0.0007 (0.0002) 0.0010 (0.0004)
Concrete 0.1724 (0.042) 0.1804 (0.044) 0.1904 (0.046) 0.2158 (0.046)
Housingburst 0.1199 (0.038) 0.1721 (0.044) 0.2164 (0.058) 0.2532 (0.058)
Tecatorburst 0.1729 (0.080) 0.3322 (0.089) 0.4435 (0.125) 0.7319 (0.127)
Delve 0.1575 (0.064) 0.1554 (0.063) 0.1488 (0.070) 0.1523 (0.081)

4.5 Results for the Selected Prediction Models

The results of 10 runs of the random splitting are shown in Figure 2. Most of the time,
the results of the different models are comparable. No model outperforms all other over
all datasets. Sometimes, however, one model performs worse than the others. It is the
case for instance with the RBFNOrr model on Tecator and Hardware. For Friedman
and Concrete, the KKNN performs really badly with the 1/2-norm while for Delve, the
SVM performs worse with the Euclidean norm than any other model on those data.
Note that some models deliver poor performances (around 0.6 and above) with spe-
cific distances measures ; in those cases, the choice of the correct distance measure is
crucial.
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Fig. 2. Mean (plain) and standard deviation (dotted around the mean) of the Median squared error
in test of all models for four distance definitions, over 10 runs. Blue: LLNKWW, Green: KKNN,
Red: RBFNOrr, Cyan: LSSVM, Pink: SVM
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Friedman dataset. The results for the Friedman dataset are given Table 2. The re-
sults show that for most models, the Euclidean distance is the optimal one, although the
Manhattan distance performs nearly as well as the Euclidean one.

Table 2. Results for the selected models on the Friedman dataset.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN 0.11228 (0.008) 0.09209 (0.009) 0.08555 (0.013) 0.08838 (0.010)
KKNN 0.43597 (0.044) 0.09950 (0.011) 0.09144 (0.009) 0.09821 (0.012)
RBFNOrr 0.21901 (0.029) 0.18788 (0.023) 0.14174 (0.016) 0.41353 (0.047)
LSSVM 0.06422 (0.007) 0.03438 (0.006) 0.02466 (0.003) 0.16650 (0.020)
SVM 0.15259 (0.018) 0.12033 (0.011) 0.02298 (0.003) 0.21535 (0.045)

Tecator dataset. The results are presented in Table 3. Except for the RBFNOrr
model, the Chebyshev distance performs well. It is outperformed by the Euclidean dis-
tance with the LSSVM and SVM, but not by far.

Table 3. Results for the selected models on the Tecator dataset. Both the 1/2 and the ∞ norms
were found most relevant for this dataset by the nearest neighbour approach.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN :0.11121 (0.035) 0.09388 (0.021) 0.07496 (0.014) 0.04611 (0.011)
KKNN 0.47489 (0.084) 0.40867 (0.085) 0.08167 (0.016) 0.06504 (0.012)
RBFNORR 0.63766 (0.045) 0.65640 (0.048) 0.65381 (0.064) 0.78148 (0.049)
LSSVM 0.13403 (0.025) 0.11551 (0.027) 0.01635 (0.003) 0.05884 (0.007)
SVM 0.19250 (0.039) 0.12456 (0.028) 0.01939 (0.002) 0.08696 (0.028)

Housing dataset. As shown in Table 4, the Euclidean distance performs best in most
of the cases. For some models, the Manhattan distance performs equally to the Eu-
clidean one.

Table 4. Results for the selected models on the Housing dataset. The Euclidean distance was
found to be the most relevant for this dataset by the nearest neighbour approach.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN 0.07142 (0.006) 0.06442 (0.006) 0.06501 (0.004) 0.08863 (0.014)
KKNN 0.25540 (0.021) 0.07839 (0.007) 0.07490 (0.006) 0.10903 (0.011)
RBFNORR 0.20883 (0.011) 0.11742 (0.013) 0.09826 (0.006) 0.29778 (0.014)
LSSVM 0.10279 (0.008) 0.08691 (0.007) 0.04797 (0.003) 0.10732 (0.008)
SVM 0.22720 (0.035) 0.20255 (0.036) 0.04456 (0.004) 0.20638 (0.034)
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Forest dataset. The results on this dataset are very good in general. All distance def-
initions provide similar results except for the Chebyshev distance with the LSSVM and
the RBFNOrr.

Table 5. Results for the selected models on the Forest dataset.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN 0.00711 (0.001) 0.00772 (0.002) 0.00656 (0.001) 0.00580 (0.001)
KKNN 0.00008 (0.000) 0.00007 (0.000) 0.00017 (0.000) 0.00470 (0.001)
RBFNORR 0.02217 (0.003) 0.01724 (0.004) 0.01772 (0.003) 0.04156 (0.005)
LSSVM 0.02546 (0.004) 0.02334 (0.002) 0.01654 (0.003) 0.02535 (0.003)
SVM 0.00043 (0.000) 0.00160 (0.000) 0.00251 (0.001) 0.00161 (0.000)

Hardware dataset. The results are given in Table 6. The euclidean norm appears to
be the optimal choice for all models. The other distances perform nearly as well though.
The model RBFNOrr performs really worse than the others ; for him the Euclidean dis-
tance is clearly the most relevant one.

Table 6. Results for the selected models on the Hardware dataset.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN 0.00066 (0.000) 0.00064 (0.000) 0.00071 (0.000) 0.00093 (0.000)
KKNN 0.00243 (0.001) 0.00083 (0.000) 0.00075 (0.000) 0.00129 (0.000)
RBFNORR 0.20447 (0.030) 0.18521 (0.039) 0.12617 (0.025) 0.20857 (0.039)
LSSVM 0.02503 (0.006) 0.00685 (0.002) 0.00040 (0.000) 0.02558 (0.006)
SVM 0.01465 (0.005) 0.01041 (0.004) 0.00117 (0.000) 0.01444 (0.004)

Concrete dataset. On this dataset, all models agree that the Euclidean norm gives
the best results, although for some models, those are not significantly better than those
obtained with the 1/2-norm. See Table 7 for detailed results.

Table 7. Results for the selected models on the Concrete dataset.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN 0.09023 (0.011) 0.09468 (0.008) 0.09721 (0.008) 0.12322 (0.010)
KKNN 0.73774 (0.045) 0.09357 (0.007) 0.09453 (0.008) 0.15029 (0.019)
RBFNORR 0.31822 (0.013) 0.25667 (0.010) 0.16228 (0.006) 0.49396 (0.015)
LSSVM 0.13310 (0.004) 0.13886 (0.008) 0.05614 (0.002) 0.18750 (0.012)
SVM 0.20152 (0.030) 0.19531 (0.017) 0.06034 (0.004) 0.21536 (0.016)

Housingburst dataset. For all models, best results are obtained using the 1/2-norm.
Although all differences might not be statistically significant, there seem to be a clear



112 D. François, V. Wertz, and M. Verleysen

tendency to decrease the results when the exponent in the distance definition increases
(Table 8).

Table 8. Results for the selected models on the Housingburst dataset.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN 0.18671 (0.028) 0.27868 (0.032) 0.29941 (0.033) 0.33561 (0.047)
KKNN 0.21145 (0.015) 0.26135 (0.021) 0.30078 (0.032) 0.32621 (0.030)
RBFNORR 0.29017 (0.043) 0.29494 (0.036) 0.30390 (0.035) 0.29473 (0.032)
LSSVM 0.22618 (0.016) 0.20318 (0.012) 0.19373 (0.023) 0.26322 (0.019)
SVM 0.18102 (0.023) 0.19860 (0.032) 0.19655 (0.018) 0.27359 (0.026)

Tecatorburst. Although less convincingly than with the Housingburst dataset, the
results tend to show a decrease in performances as the exponent increases. The sole
RBFNOrr behaves differently, as for this model, the 1/2-norm is the worst performing
one (Table 9).

Table 9. Results for the selected models on the Tecatorburst dataset.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN 0.14339 (0.044) 0.42972 (0.056) 0.55222 (0.070) 0.80076 (0.088)
KKNN 0.41087 (0.033) 0.44195 (0.082) 0.40912 (0.062) 0.44132 (0.061)
RBFNORR 0.69896 (0.082) 0.49272 (0.043) 0.54690 (0.083) 0.76273 (0.047)
LSSVM 0.35721 (0.040) 0.44292 (0.082) 0.47213 (0.050) 0.73222 (0.067)
SVM 0.35293 (0.048) 0.31233 (0.034) 0.38794 (0.047) 0.44586 (0.115)

Delve. For each model, except for the LSSVM, all distance measures perform equally
good. It is worth noting that for the LSSVM model, both the Manhattan metric and the
Chebyshev distance perform better than any other combination of model and distance
definition. By contrast, the LSSVM with the Euclidean distance perform worse than all
others. (Table 10).

Table 10. Results for the selected models on the Delve dataset.

Model 1/2-norm 1-norm 2-norm ∞-norm
LLWKNN 0.13492 (0.011) 0.12886 (0.009) 0.14356 (0.014) 0.14207 (0.009)
KKNN 0.15991 (0.054) 0.12507 (0.077) 0.13853 (0.066) 0.12023 (0.039)
RBFNORR 0.18417 (0.012) 0.18917 (0.007) 0.18426 (0.007) 0.19852 (0.007)
LSSVM 0.18191 (0.009) 0.18458 (0.009) 0.18430 (0.009) 0.18631 (0.011)
SVM 0.11346 (0.068) 0.06793 (0.024) 0.23471 (0.032) 0.07827 (0.044)



Choosing the Metric: A Simple Model Approach 113

4.6 Summary

Following the suggested policy (Cfr Sec 3.4), the distance functions were chosen for
each dataset as follows:

Dataset 1/2-norm 1-norm 2-norm ∞-norm
Friedman �
Tecator �
Housing �
Forest �
Hardware �
Concrete �
Housingburst �
Tecatorburst �
Delve �

To better grasp the relevance of those choices, we compute the differences in Normal-
ized Median Squared Error between that choice and the optimal choice over all distance
definitions. The larger the difference, the worse the choice is. If the difference is zero,
it simply means that the optimal choice was made. The differences are computed for
all experiments ; 9 datasets, 5 models, 10 repetitions, for a total of 450 experiments.
They are then sorted and plotted, to obtain a curve resembling a lift curve. The larger
the area under the curve, the better are the results. Figure 3 shows such curve for the
suggested policy, but also for a simpler policy that would choose the Euclidean distance
by default, and a random choice policy.

The proposed policy achieves better results than defaulting to the Euclidean norm. It
is worth mentioning that the computational costs for obtaining the results of the nearest
neighbor model were neglectable compared to the time needed for optimizing one single
prediction model.

Fig. 3. Ordered differences between the chosen distance and the optimal one according to the
suggested policy, compared with the default Euclidean distance and a random choice.
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5 Conclusions and Perspectives

The choice of an optimal metric is a choice more and more important to make in mod-
eling, especially when the practitioner is facing complex data. When no prior infor-
mation is available to choose the most relevant distance measure, the choice can be
optimized by resorting to resampling methods, adding a layer of complexity to the
usual cross-validation loops needed to learn complex models which depend on some
meta-parameters, or, most often, it is defaulted to the Euclidean distance.

The approach which was developed in this chapter aims at finding a compromise
between both extremes, using ideas similar to the ones developed in filters methods for
feature selection and landmarking approaches to meta learning. The idea is to assess
each candidate distance metric using the performances of a simple nearest-neighbor
model priori to building a more elaborate model based on distances (support vector
machines with Gaussian kernels, radial basis function networks, and other lazy learning
algorithms.) Ties are resolved by defaulting to the Euclidean distance.

The experiments show that, although this approach does not allow finding the optimal
metric for all datasets and all models, it proves being a reasonable heuristic providing,
at a reasonable cost, hints and information about which distance metric to use. The
experiments furthermore show that the choice of the optimal metric is rather constant
across distance-based models, with maybe the exception of the support vector machine
whose learning algorithm may suffer drawbacks from not using the Euclidean distance
because not all metrics lead to Mercer kernels.

In most cases, when the optimal metric was not found using the suggested approach,
the results obtained using the suggested metric were close enough to the optimal ones
to justify relying on the the method.

Although the approach was tested in this study only for Minkowski and fractional
metrics, it could be extended for other choices of the metric, and future work will consist
in developing a similar approach for the choice of the kernel in kernel-based methods,
a problem which is very closely related to the choice of the distance measure.
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1 Introduction

While a valid intellectual challenge in its own right, meta-learning finds its real
raison d’être in the practical support it offers Data Mining practitioners [20].
Indeed, the whole point of understanding how to learn in any given situation is
to go out in the real world and learn as much as possible, from any source of
data we encounter! However, almost any type of raw data will initially be very
hard to learn from, and about 80% of the effort in discovering useful patterns lies
in the clever preprocessing of data [47]. Thus, for machine learning to become
a tool we can instantly apply in any given situation, or at least to get proper
guidance when applying it, we need to build extended meta-learning systems
that encompass the entire knowledge discovery process, from raw data to finished
models, and that keep learning, keep accumulating meta-knowledge, every time
they are presented with new problems.

The algorithm selection problem is thus widened into a workflow creation
problem, in which an entire stream of different processes needs to be proposed
to the end user. This entails that our collection of meta-knowledge must also be
extended to characterize all those different processes.

In this chapter, we provide a survey of the various architectures that have been
developed, or simply proposed, to build such extended meta-learning systems.
They all consist of integrated repositories of meta-knowledge on the KD process
and leverage that information to propose useful workflows. Our main observation
is that most of these systems are very different, and were seemingly developed
independently from each other, without really capitalizing on the benefits of prior
systems. By bringing these different architectures together and highlighting their
strengths and weaknesses, we aim to reuse what we have learned, and we draw
a roadmap towards a new generation of KD support systems.

Despite their differences, we can classify the KD systems in this chapter in
the following groups, based on the way they leverage the obtained meta-data:

Expert systems: In expert systems, experts are asked to express their reason-
ing when tackling a certain problem. This knowledge is then converted into a
set of explicit rules, to be automatically triggered to guide future problems.

Meta-models: The goal here is to automatically predict the usefulness of work-
flows based on prior experience. They contain a meta-model that is updated
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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as more experience becomes available. It is the logical extension of meta-
learning to the KD process.

Case-based reasoning: In general terms, case-based reasoning (CBR) is the
process of solving new problems based on the solutions of similar past prob-
lems. This is very similar to the way most humans with some KD experience
would tackle the problem: remember similar prior cases and adapt what you
did then to the new situation. To mimic this approach, a knowledge base
is populated by previously successful workflows, annotated with meta-data.
When a new problem presents itself, the system will retrieve the most similar
cases, which can then be altered by the user to better fit her needs.

Planning: All possible actions in a KD workflow are described as operations
with preconditions and effects, and an AI planner is used to find the most
interesting plans (workflows).

Querying: In this case, meta-data is gathered and organized in such a way that
users can ask any kind of question about the utility or general behavior of
KD processes in a predefined query language, which will then be answered
by the system based on the available meta-data. They open up the available
meta-data to help users make informed decisions.

Orthogonal to this distinction, we can also characterize the various systems
by the type of meta-knowledge they store, although in some cases, a combination
of these sources is employed.

Expert knowledge: Rules, models, heuristics or entire KD workflows are en-
tered beforehand by experts, based on their own experience with certain
learning approaches.

Experiments: Here, the meta-data is purely empirical. They provide objec-
tive assessments of the performance of workflows or individual processes on
certain problems.

Workflows: Workflows are descriptions of the entire KD process, involving
linear or graph-like sequences of all the employed preprocessing, transfor-
mation, modeling and postprocessing steps. They are often annotated with
simple properties or qualitative assessments by users.

Ontologies: An ontology is a formal representation of a set of concepts within
a domain and the relationships between those concepts [9]. They provide
a fixed vocabulary of data mining concepts, such as algorithms and their
components, and describe how they relate to each other, e.g. what the role
is of a specific component in an algorithm. They can be used to create
unambiguous descriptions of meta-knowledge which can then be interpreted
by many different systems to reason about the stored information.

While we cover a wide range of approaches, the landscape of all meta-learning
and KD solutions is quite extensive. However, most of these simply facilitate
access to KD techniques, sometimes offering wizard-like interfaces with some
expert advice, but they essentially leave the intelligent selection of techniques
as an exercise to the user. Here, we focus on those systems that introduce new
ways of leveraging meta-knowledge to offer intelligent KD support. We also skip
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KD systems that feature some type of knowledge base to monitor the current
workflow composition, but that do not use that knowledge to advise on future
problems, such as the INLEN system [44,33,34]. This overview partially overlaps
with previous, more concise overviews of meta-learning systems for KD [7,20].
Here, however, we provide a more in-depth discussion of their architectures,
focussing on those aspects that can be reused to design future KD support
systems.

In the remainder of this chapter, we will split our discussion in two: past and
future. The past consists of all previously proposed solutions, even though some
of these are still in active development and may be extended further. This will
cover the following five sections, each corresponding to one of the five approaches
outlined above. For each system, we consecutively discuss its architecture, the
employed meta-knowledge, any meta-learning that is involved and finally its
benefits and drawbacks. Finally, in Section 7, we provide a short summary of
all approaches, before looking towards the future: we outline a platform for the
development of future KD support systems aimed at bringing the best aspects
of prior systems together.

2 Expert Systems

2.1 Consultant-2

One of the first inroads into systematically gathering and using meta-knowledge
about machine learning algorithms was Consultant-2 [14,57]: an expert system
developed to provide end-user guidance for the MLT machine learning toolbox
[46,37]. Although the system did not learn by itself from previous algorithm runs,
it did identify a number of important meta-features of the data and the produced
models, and used these to express rules about the applicability of algorithms.

Architecture. A high-level overview of the architecture of Consultant-2 is
shown in Figure 1. It was centered around a knowledge base that stored about
250 rules, hand-crafted by machine learning experts. The system interacted with
the user through question-answer sessions in which the user was asked to provide
information about the given data (e.g. the number of classes or whether it could
be expected to be noisy) and the desired output (e.g. rules or a decision tree).
Based on that information, the system then used the stored rules to calculate
a score for each algorithm. The user could also go back on previous answers
to see how that would have influenced the ranking. When the user selected an
algorithm, the system would automatically run it, after which it would engage
in a new question-answer session to assess whether the user was satisfied with
the results. If not, the system would generate a list with possible parameter
recommendations, again scored according to the stored heuristic rules.
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Fig. 1. The architecture of Consultant-2. Derived from Craw et al. [14]

Meta-knowledge. The rules were always of the form if(An) then B, in which
An was a conjunction of properties of either the task description or the produced
models, and B expressed some kind of action the system could perform. First, the
task description included qualitative measures entered by the user, such as the
task type, any available background knowledge and which output models were
preferable, as well as quantitative measures such as the number of classes and
the amount of noise. Second, the produced models where characterized by the
amount of time and memory needed to build them and model-specific features
such as the average path length and number of leaf nodes in decision trees, the
number and average center distance of clusters and the number and significance
of rules.1 The resulting actions B could either adjust the scores for specific
algorithms, propose ranges for certain parameter values, or transform the data
(e.g. discretization) so as to suit the selected algorithm. Illustrations of these
rules can be found in Sleeman at al. [57].

Meta-learning. There is no real meta-learning process in Consultant-2, it just
applied its predefined ‘model’ of the KD process. This process was divided into a
number of smaller steps (selecting an algorithm, transforming the data, selecting
parameters,...), each associated with a number of rules. It then cycles through
that process, asking questions, executing the corresponding rules, and triggering
the corresponding actions, until the user is satisfied with the result.

Discussion. The expert advice in Consultant-2 has proven to be successful in
a number of applications, and a new version has been proposed to also provide
guidance for data preprocessing. Still, to the best of our knowledge, Consultant-
3 has never been implemented. An obvious drawback of this approach is the
fact that the heuristic rules are hand-crafted. This means that for every new
1 These were used mostly to advise on the perspective algorithm’s parameters.
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algorithm, new rules have to be defined that differentiate it from all the existing
algorithms. One must also keep in mind that MLT only had a limited set of
10 algorithms covering a wide range of tasks (e.g. classification, regression and
clustering), making it quite feasible to select the correct algorithm based on the
syntactic properties of the input data and the preferred output model. With
the tens or hundreds of methods available today on classification alone, it might
not be so straightforward to make a similar differentiation. Still, the idea of a
database of meta-rules is valuable, though instead of manually defining them,
they should be learned and refined automatically based on past algorithm runs.
Such a system would also automatically adapt as new algorithms are added.

3 Meta-Models

3.1 STABB and VBMS

The groundwork for many meta-learning systems were laid by two early precur-
sors. STABB [61] was a system that basically tried to automatically match a
learner’s bias to the given data. It used an algorithm called LEX with a specific
grammar. When an algorithm could not completely match the hidden concept,
its bias (the grammar) or the structure of the dataset was changed until it could.
VBMS [52] was a very simple meta-learning system that tried to select the best
of three learning algorithms using only two meta-features: the number of training
instances and the number of features.

3.2 The Data Mining Advisor (DMA)

The Data Mining Advisor (DMA) [19] is a web-based algorithm recommenda-
tion system that automatically generates rankings of classification algorithms
according to user-specified objectives. It was developed as part of the METAL
project [43].

Foundations: StatLog. Much of the theoretical underpinning of the DMA was
provided by the StatLog project [45], which was aimed to provide a large-scale,
objective assessment of the strengths and weaknesses of the various classification
approaches existing at the time. Its methodology is shown in Figure 2.

First, a wide range of datasets are characterized with a wide range of newly
defined meta-features. Next, the algorithms are evaluated on these datasets. For
each dataset, all algorithms whose error rate fell within a certain (algorithm-
dependent) margin of that of the best algorithms were labeled applicable, while
the others were labeled non-applicable. Finally, decision trees were built for each
algorithm, predicting when it can be expected to be useful on a new dataset.
The resulting rules, forming a rule base for algorithm selection, can be found in
Michie et al. [45].
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Fig. 2. The StatLog approach.

Architecture. The architecture of the DMA is shown in Figure 3. First, the tool
is trained by generating the necessary meta-data, just as in StatLog. However,
instead of predicting whether an algorithm was applicable or not, it ranked all
of them. New datasets can be uploaded via a web-interface, its meta-features
automatically computed (below the dotted line in Figure 3). Bearing privacy
issues in mind, the user can choose to keep the dataset, the data characterizations
or both hidden from other users of the system. Next, the DMA will use the
stored meta-data to predict the expected ranking of all algorithms on the new
dataset. Finally, as a convenience to the user, one can also run a number of
algorithms on the new dataset, after which the system returns their true ranking
and performance. Figure 4 shows an example of the rankings generated by DMA.
The meaning of the ‘Predicted Score’ is explained in Section 3.2.

Meta-knowledge. While the METAL project discovered various new kinds of
meta-features, these were not used in the DMA tool. In fact, only a set of 7
numerical StatLog-style characteristics was selected2 for predicting the relative
performance of the algorithms. This is most likely due to the employed meta-
learner, which is very sensitive to the curse of dimensionality.

At its inception, the DMA tool was initialized with 67 datasets, mostly from
the UCI repository. Since then, an additional 83 tasks were uploaded by users
[19]. Furthermore, it operates on a set of 10 classification algorithms, shown in
Figure 4, but only with default parameter settings, and evaluates them based
on their predictive accuracy and speed.

Meta-learning. DMA uses a k-nearest neighbors (kNN) approach as its meta-
learner, with k=3 [8]. This is motivated by the desire to continuously add new
meta-data without having to rebuild the meta-model every time.
2 Some of them were slightly modified. For instance, instead of using the absolute

number of symbolic attributes, DMA uses the ratio of symbolic attributes.
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Fig. 3. The architecture of DMA. Adapted from Brazdil at al. [7].

Fig. 4. An illustration of the output of the DMA. The first ranking favors accurate
algorithms, the second ranking favors fast ones. Taken from Giraud-Carrier [19].
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A multi-criteria evaluation measure is defined (the adjusted ratio of ratios)
which allows the user to add emphasis either on the predictive accuracy or the
training time. This is done by defining the weight AccD of the training time ratio.
This allows the user to trade AccD% accuracy for a 10-time increase/decrease
in training time. The DMA interface offers 3 options: AccD=0.1 (focus on ac-
curacy), AccD=10 (focus on speed) or AccD=1 (equal importance). The user
can also opt not to use this measure and use the efficiency measure of Data
Envelopment Analysis (DEA) instead [19]. The system then calculates a kind
of average over the 3 most similar datasets for each algorithm (the ‘predicted
score’ in Figure 4) according to which the ranking is established.

Discussion. The DMA approach brings the benefits of meta-learning to a larger
audience by automating most of the underlying steps and allowing the user to
state some preferences. Moreover, it is able to continuously improve its predic-
tions as it is given more problems (which are used to generate more meta-data).
Unfortunately, it has a number of limitations that affect the practical usefulness
of the returned rankings. First, it offers no advice about which preprocessing
steps to perform or which parameter values might be useful, which both have
a profound impact on the relative performance of learning algorithms. Further-
more, while the multi-criteria ranking is very useful, the system only records
two basic evaluation metrics, which might be insufficient for some users. Finally,
using kNN means no interpretable models are being built, making it a purely
predictive system. Several alternatives to kNN have been proposed [50,3] which
may be useful in future incarnations of this type of system.

3.3 NOEMON

NOEMON [31,32], shown in Figure 5, follows the approach of Aha [1] to compare
algorithms two by two. Starting from a meta-database similar to the one used in

Fig. 5. NOEMON’s architecture. Based on Kalousis and Theoharis [32].
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DMA, but with histogram-representations of attribute-dependent features, the
performance results on every combination of two algorithms are extracted. Next,
the performance values are replaced with a statistical significance tests indicating
when one algorithm significantly outperforms the other and the number of data
meta-features is reduced using automatic feature selection. This data is then fed
to a decision tree learner to build a model predicting when one algorithm will
be superior or when they will tie on a new dataset. Finally, all such pairwise
models are stored in a knowledge base.

At prediction-time, the system collects all models concerning a certain al-
gorithm and counts the number of predicted wins/ties/losses against all other
algorithms to produce the final score for each algorithm, which is then converted
into a ranking.

4 Planning

The former two systems are still limited in that they only tackle the algorithm
selection step. To generate advice on the composition of an entire workflow, we
need additional meta-data on the rest of the KD processes. One straightforward
type of useful meta-data consists of the preconditions that need to be fulfilled
before the process can be used, and the effect it has on the data it is given. As
such, we can transform the workflow creation problem into a planning problem,
aiming to find the best plan, the best sequence of actions (process applications),
that arrives at our goal - a final model.

4.1 The Intelligent Discovery Electronic Assistant (IDEA)

A first such system is the Intelligent Discovery Electronic Assistant (IDEA) [5].
It regards preprocessing, modeling and postprocessing techniques as operators,
and returns all plans (sequences of operations) that are possible for the given
problem. It contains an ontology describing the preconditions and effects of each
operator, as well as manually defined heuristics (e.g. the speed of an algorithm),
which allows it to produce a ranking of all generated plans according to the
user’s objectives.

Architecture. The architecture of IDEA is shown in Figure 6. First, the
systems gathers information about the given task by characterizing the given
dataset. Furthermore, the user is asked to provide additional metadata and to
give weights to a number of heuristic functions such as model comprehensibility,
accuracy and speed. Next, the planning component will use the operators that
populate the ontology to generate all KD workflows that are valid in the user-
described setting. These plans are then passed to a heuristic ranker, which will
use the heuristics enlisted in the ontology to calculate a score congruent with
the user’s objectives (e.g. building a decision tree as fast as possible). Finally,
this ranking is proposed to the user which may select a number of processes
to be executed on the provided data. After the execution of a plan, the user is
allowed to review the results and alter the given weights to obtain new rankings.
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Fig. 6. The architecture of IDEA. Derived from Bernstein et al. [5].

Fig. 7. Part of IDEA’s ontology. Taken from Bernstein et al. [5].

For instance, the user might sacrifice speed in order to obtain a more accurate
model. Finally, if useful partial workflows have been discovered, the system also
allows to extend the ontology by adding them as new operators.

Meta-knowledge. IDEA’s meta-knowledge is all contained in its ontology. It
first divides all operators into preprocessing, induction or postprocessing op-
erators, and then further into subgroups. For instance, induction algorithms
are subdivided into classifiers, class probability estimators and regressors. Each
process that populates the ontology is then described further with a list of prop-
erties, shown in Figure 7. It includes the required input (e.g. a decision tree for
a tree pruner), output (e.g. a model), preconditions (e.g. ‘continuous data’ for
a discretizer), effects (e.g. ‘removes continuous data’, ‘adds categorical data’ for
a discretizer), incompatibilities (e.g. not(continuous data) for näıve Bayes) and
a list of manually defined heuristic estimators (e.g. relative speed). Addition-
ally, the ontology also contains recurring partial plans in the form of composite
operators.

Meta-learning. Though there is no actual meta-learning involved, planning can
be viewed as a search for the best-fitting plan given the dataset, just as learning
is a search for the best hypothesis given the data. In the case of IDEA, this is
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achieved by exhaustively generating all possible KD plans, hoping to discover
better, novel workflows that experts never considered before. The provided meta-
data constitute the initial state (e.g. ‘numerical data’) and the user’s desiderata
(e.g. ‘model size small’) make up the goal state.

Discussion. This approach is very useful in that it can provide both experts
and less-skilled users with KD solutions without having to know the details of
the intermediate steps. The fact that new operators or partial workflows can
be added to the ontology can also give rise to network externalities, where the
work or expertise of one researcher can be used by others without having to
know all the details. The ontology thus acts as a central repository of KD op-
erators, although new operators can only be added manually, possibly requiring
reimplementation.

The limitations of this approach lie first of all in the hand-crafted heuristics
of the operators. Still, this could be remedied by linking it to a meta-database
such as used in DMA and learning the heuristics from experimental data. Sec-
ondly, the current implementation only covers a small selection of KD operators.
Together with the user-defined objectives, this might constrain the search space
well enough to make the exhaustive search feasible, but it is unclear whether
this would still be the case if large numbers of operators are introduced. A final
remark is that most of the used techniques have parameters, whose effects are
not included in the planning.

4.2 Global Learning Scheme (GLS)

The ‘Global Learning Scheme’ (GLS) [73,71,72] takes a multi-agent system ap-
proach to KDD planning. It creates an “organized society of KDD agents”, in
which each agent only does a small KDD task, controlled by a central planning
component.

Architecture. Figure 8 provides an overview of the system. It consists of a pool
of agents, which are described very similarly to the operators in IDEA, also using
an ontology to describe them formally. However, next to base-level agents, which
basically envelop one DM technique each, there also exist high-level agents, one
for each phase of the KD process, which instead point to a list of candidate agents
that could be employed in that phase. The controlling ‘meta-agent’ (CMA) is the
central controller of the system. It selects a number of agents (high-level agents at
first) and sends them to the planning meta-agent (PMA). The PMA then creates
a planning problem by transforming the dataset properties and user objectives
into a world state description (WSD) for planning and by transforming the
agents into planning operators. It then passes the problem to a STRIPS planner
[17]. The returned plans are passed back to the CMA, which then launches
new planning problems for each high-level agent. For instance, say the data has
missing values, then the returned plan will contain a high-level missing value
imputation agent: the CMA will then send a range of base-level agents to the
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Fig. 8. The architecture of GLS. Adapted from Zhong et al. [72].

PMA to build a plan for filling in the missing values. The CMA also executes the
resulting sub-plans, and calls for adaptations if they do not prove satisfactory.

Meta-knowledge. GLS’s meta-knowledge is similar to that of IDEA. The on-
tology description contains, for each agent, the data types of in- and output,
preconditions and effects. In the case of a base-level agent, it also contains a KD
process, otherwise, a list of candidate sub-agents. However, the same ontology
also contains descriptors for the data throughout the KD process, such as the
state of the data (e.g. raw, clean, selected), whether or not it represents a model
and the type of that model (e.g. regression, clustering, rule). This information
is used to describe the world state description. Finally, the CMA contains some
static meta-rules to guide the selection of candidate agents.

Meta-learning. In Zong et al. [72], the authors state that a meta-learning
algorithm is used in the CMA to choose between several discretization agents
or to combine their results. Unfortunately, details are missing. Still, even if the
current system does not learn from previous runs (meaning that the CMA uses
the same meta-rules every time), GLA’s ability to track and adapt to changes
performed by the user can definitely be regarded as a form of learning [7].

Discussion. Given the fact that covering the entire KD process may give rise to
sequences of tens, maybe hundreds of individual steps, the ‘divide and conquer’
approach of GLS seems a promising approach. In fact, it seems to mirror the
way humans approach the KD process: identify a hierarchy of smaller subprob-
lems, combine operators to solve them and adapt the partial solutions to each
other until we converge to a working workflow. Unfortunately, to the best of our
knowledge, there are no thorough evaluations of the system, and it remains a
work in progress. It would be interesting to replace the fixed rules of the CMA
with a meta-learning component to select the most promising agents, and to use
IDEA-like heuristics to rank possible plans.
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4.3 The Goal-Driven Learner (GDL)

The Goal-Driven Learner3 [62], is a quite different planning approach, mainly
because it operates on a higher level of abstraction. Its task is to satisfy a pre-
defined goal, given a number of knowledge bases, a group of human experts, and
a collection of KD tools. Each of these (including the experts) are described in
a Learning Modeling Language (LML) which describes properties such as their
vocabulary (e.g. the attribute names in a decision tree or the expert’s field of
expertise), solutions (e.g. classes predicted by the tree or medical treatments)
or the time it takes them to provide a solution (which is obviously higher for an
expert than for a decision tree). Its goal and subgoals are also described in LML,
e.g. expressing that a simple model must be built within a given timeframe. The
GDL then executes a search, using the ‘distance’ to each of the subgoals as a
heuristic and applications of the KD tools as actions. During this process, it se-
lects useful knowledge systems (e.g. based on their vocabulary), combines them
(e.g. after conversion to Prolog clauses), applies KD tools (e.g. to build a new
decision tree) or petitions an expert to provide extra information (e.g. if part
of the vocabulary cannot be found in the available knowledge systems). It is
a very useful approach in settings were many disparate knowledge sources are
available, although the LML description is probably still too coarse to produce
fine-grained KDD plans.

4.4 Complexity Controlled Exploration (CCE)

Complexity Controlled Exploration [22] is also a high-level system that consists
of a number of machine generators, which generate KD workflows, and a search
algorithm based on a measure for the complexity of the proposed KD workflows.
While not performing planning per se, many of the generators could be planners
such as IDEA and GLS. Alternatively, they may simply consist of a list of prior
solutions, or meta-schemes : partial workflows in which certain operators are left
blank to be filled in with a suitable operator later on (also see ‘templates’ in
Section 6.1).

The algorithm asks all generators to propose new KD processes, and to rank
them using an adapted complexity measure [39,40] defined as c(p) = [l(p) +
log(t(p))] · q(p), in which p is a program (a KD workflow), l(p) the length of that
program, t(p) the estimated runtime of the program, and q(p) the inverse of
the reliability of the program, which reflects their usefulness in prior tasks. For
instance, if a certain combination of a feature selection method and a classifier
proved very useful in the past, it may obtain an improved reliability value. If
the complexity cannot be estimated, it is approximated by taking the weighted
average of past observations of the program on prior inputs. Note that a ‘long’

3 Goal-driven learning is also a more general AI concept, in which the aim is to use the
overall goals of an intelligent system to make decisions about when learning should
occur, what should be learned, and which learning strategies are appropriate in a
given context.
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program can still be less complex than a ‘short’ one, e.g. if a feature selection
step heavily speeds up the runtime of a learning algorithm.

The CCE algorithm then takes the least complex solution from each generator,
adds the least complex of those to a queue (until it is full), and updates the
complexity threshold, the maximum of all proposed workflows. The workflows
in the queue are then executed in parallel, but are aborted if they exceed the
complexity threshold and are added, with an increased complexity value, to the
‘quarantine generator’, which may propose them again later on. The algorithm’s
stopping criterion is set by the user: it may be the best solution in a given time,
below a given complexity threshold, or any custom test criterion.

The CCE turns KD workflow selection into an adaptive process in which a
number of other systems can be used as generators, and in which additional meta-
data can be added both in the generators (e.g. new meta-schemes) as well as in
the complexity estimation procedure. Instead of proposing workflows and leaving
it to the user to decide which ones to try next, it also runs them and returns
the optimal solution. Its success is thus highly dependent on the availability of
good generators, and on how well its complexity controlled exploration matches
the choices that the user would make.

5 Case-Based Reasoning

Planning is especially useful when starting from scratch. However, if successful
workflows were designed for very similar problems, we could simply reuse them.

5.1 CITRUS

CITRUS [16,68] is built as an advisory component of Clementine, a well-known
KDD suite. An overview is shown in Figure 9. It contains a knowledge base of
available ‘processes’ (KD techniques) and ‘streams’ (sequences of processes), en-
tered by experts and described with pre- and postconditions. To use it, the user
has to provide an abstract task description, which is appended with simple data
statistics, and choose between several modi of operation. In the first option, the
user simply composes the entire KDD process (stream) by linking processes in
Clementine’s editor, in which case CITRUS only checks the validity of the se-
quence. In the second option, case-based reasoning is used to propose the most
similar of all known streams. In the third option, CITRUS assists the user in
decomposing the task into smaller subtasks, down to the level of individual pro-
cesses. While pre- and postconditions are used in this process, no planning is
involved. Finally, the system also offers some level of algorithm selection assis-
tance by eliminating those processes that violate any of the constraints.

5.2 ALT

ALT [41] is a case-based reasoning variation on the DMA approach. Next to
StatLog-type meta-features, it adds a number of simple algorithm characteriza-
tions. It has a meta-database of ‘cases’ consisting of data meta-features, algorithm
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Fig. 9. The architecture of CITRUS. Derived from Wirth et al. [68].

meta-features and the performance of the algorithm. When faced with a new prob-
lem, the user can enter application restrictions beforehand (e.g. ‘the algorithm
should be fast and produce interpretable models’), and this information is then
appended to the data meta-features of the new dataset, thus forming a new case.
The system then makes a prediction based on the three most similar cases. The
meta-data consists of 21 algorithms, 80 datasets, 16 StatLog data characteristics,
and 4 algorithm characteristics.

The two previous approaches share a common shortcoming: the user still faces
the difficult task of adapting it to her specific problem. The following systems
try to alleviate this problem by offering additional guidance.

5.3 MiningMart

The MiningMart project [47] is designed to allow successful preprocessing work-
flows to be shared and reused, irrespective of how the data is stored. While most
of the previously discussed systems expect a dataset in a certain format, Min-
ingMart works directly on any SQL database of any size. The system performs
the data preprocessing and transformation steps in the (local) database itself,
either by firing SQL queries or by running a fixed set of efficient operators (able
to run on very large databases) and storing the results in the database again.
Successful workflows can be shared by describing them in an XML-based lan-
guage, dubbed M4, and storing them in an online case-base. The case description
includes the workflow’s inherent structure as well as an ontological description
of business concepts to facilitate searching for cases designed for certain goals or
applications.

Architecture. The architecture of the system is shown in Figure 10. To map
uniformly described preprocessing workflows to the way data is stored in specific
databases, it offers three levels of abstraction, each provided with graphical ed-
itors for the end-user. We discuss them according to the viewpoint of the users
who wish to reuse a previously entered case. First, they use the business on-
tology to search for cases tailored to their specific domain. The online interface
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Fig. 10. MiningMart architecture. Derived from Morik and Scholz [47].

then returns a list of cases (workflows). Next, they can load a case into the case
editor and adapt it to her specific application. This can be done on an abstract
level, using abstract concepts and relations such as ‘customer’, ‘product’ and
the relation ‘buys’. They can each have a range of properties, such as ‘name’
and ‘address’, and can be edited in the concept editor. In the final phase, these
concepts, relations and properties have to be mapped to tables, columns, or sets
of columns in the database using the relation editor. All details of the entire pro-
cess are expressed in the M4 language4 and also stored in the database. Next,
the compiler translates all preprocessing steps to SQL queries or calls to the
operators used, and executes the case. The user can then adapt the case further
(e.g. add a new preprocessing step or change parameter settings) to optimize its
performance. When the case is finished, it can be annotated with an ontological
description and uploaded to the case-base for future guidance.

Meta-knowledge. MiningMart’s meta-knowledge can be divided in two groups.
First, there is the fine-grained, case-specific meta-data that covers all the meta-
data entered by the user into the M4 description, such as database tables, con-
cepts, and workflows. Second, there is more general meta-knowledge encoded
in the business ontology, i.e. informal annotations of each case in terms of its
goals and constraints, and in the description of the operators. Operators are
stored in a hierarchy consisting of 17 ‘concept’ operators (from selecting rows
to adding columns with moving windows over time series), 4 feature selection
operators, and 20 feature construction operators, such as filling in missing val-
ues, scaling, discretization and some learning algorithms used for preprocessing:
decision trees, k-means and SVMs. The M4 schema also captures known precon-
ditions and assertions of the operators, similar to the preconditions and effects of

4 Examples of M4 workflows can be downloaded from the online case-base:
http://mmart.cs.uni-dortmund.de/caseBase/index.html
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IDEA and GLS. Their goal is to guide the construction of valid preprocessing
sequences, as was done in CITRUS. The case-base is available online [47] and
currently contains 6 fully-described cases.

Meta-learning. While it is a CBR approach, there is no automatic recommen-
dation of cases. The user can only browse the cases based on their properties
manually.

Discussion. The big benefit of the MiningMart approach is that users are
not required to transform the data to a fixed, often representationally limited
format, but can instead adapt workflows to the way the source data is actually
being stored and manipulated. Moreover, a common language to describe KD
processes would be highly useful to exchange workflows between many different
KD environments. Pooling these descriptions would generate a rich collection of
meta-data for meta-learning and automated KD support. M4 is certainly a step
forward in the development of such a language.

Compared to IDEA, MiningMart focusses much more on the preprocessing
phase, while the former has a wider scope, also covering model selection and
postprocessing steps. Next, while both approaches describe their operators with
pre- and postconditions, MiningMart only uses this information to guide the
user, not for automatic planning. MiningMart could, in principle, be extended
with an IDEA-style planning component, at least if the necessary meta-data can
also be extracted straight from the database.

There are also some striking similarities between MiningMart and GLS. GLS’s
agents correspond to MiningMart’s operators and its controller (CMA) corre-
sponds to MiningMart’s compiler. Both systems use a hierarchical description of
agents/operators, which are all described with pre- and postconditions. The dif-
ferences lie in the scope of operators (MiningMart focuses of preprocessing while
GLS wants to cover the entire KD process), the database integration (Min-
ingMart interfaces directly with databases while GLS requires the data to be
prepared first) and in storing the meta-data of the workflows for future use,
which MiningMart supports, but GLS doesn’t.

5.4 The Hybrid Data Mining Assistant (HDMA)

The Hybrid Data Mining Assistant5 (HDMA) [11,12,13] also tries to provide ad-
vice for the entire knowledge discovery process using ontological (expert) knowl-
edge, as IDEA does, but it does not provide a ranking of complete processes.
Instead, it provides the user with expert advice during every step of the dis-
covery process, showing both the approach used in similar cases and more spe-
cific advice for the given problem triggered by ontological knowledge and expert
rules.

5 This is not the official name, we only use it here to facilitate our discussion.
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Fig. 11. The architecture of HDMA. Adapted from Charest et al. [13].

Architecture. An overview of the system is provided in Figure 11. The provided
advice is based on two stores of information. The first is a repository of KDD
‘cases’, detailing previous workflows, while the second is an ontology of concepts
and techniques used in a typical KDD scenario and a number of rules concerning
those techniques. Furthermore, the system is assumed to be associated with a
DM toolkit for actually running and evaluating the techniques.

The user first provides a dataset, which is characterized partly by the system,
partly by the user (see below). The given problem is then compared to all the
stored cases and two scores are returned for each case, one based on similarity
with the current case, the other based on the ‘utility’ of the case, based on scores
provided by previous users. After the user has selected a case, the system starts
cycling through five phases of the KDD process, as identified by the CRISP-
DM [10] model. At each phase the user is provided with the possible techniques
that can be used in that phase, the techniques that were used in the selected
case, and a number of recommendations generated by applying the stored rules
in the context of the current problem. The generated advice may complement,
encourage, but also advice against the techniques used in the selected case. As
such, the user is guided in adapting the selected case to the current problem.

Meta-knowledge. In the case base, each case is described by 66 attributes.
First, the given problem is described by 30 attributes, including StatLog-like
meta-features, but also qualitative information entered by users, such as the type
of business area (e.g. engineering, marketing, finance,...) or whether the data can
be expected to contain outliers. Second, the proposed workflow is described by 31
attributes, such as the used preprocessing steps, how outliers were handled, which
model was used, which evaluation method was employed and so on. Finally, 5
more attributes evaluate the outcome of the case, such as the level of satisfaction
with the approach used in each step of the KD process. A number of seed cases
were designed by experts, and additional cases can be added after evaluation.

The ontology, on the other hand, captures a taxonomy of DM concepts, most
of which where elicited from CRISP-DM. A small part is shown in Figure 12.
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Fig. 12. Part of the HDMA ontology. Adapted from Charest et al. [13].

For instance, it shows that binarization and discretization are two data transfor-
mation functions, used to make the data more suitable to a learning algorithm,
which is part of the data preparation phase of the CRISP-DM model. The dashed
concepts are the ones for which exist specific KD-techniques (individuals). These
individuals can be annotated with textual recommendations and heuristics, and
also feature in expert rules that describe when they should be used, depending
on the properties of the given problem. Some of these rules are heuristic (e.g.
“use an aggregation technique if the example count is greater than 30000 and
the data is of a transactional nature”), while others are not (e.g. “if you select
the Naive Bayes technique, then a nominal target is required”). In total, the
system contains 97 concepts, 58 properties, 63 individuals, 68 rules and 42 tex-
tual annotations. All knowledge is hand-crafted by experts and formalized in the
OWL-DL ontology format [15] and the SWRL rule description language [28].

Meta-learning. The only meta-learning occurring in this system is contained
in the case based reasoning. It uses a kNN approach to select the most similar
case based on the characterization of the new problem, using a feature-weighted,
global similarity measure. The weight of each data characteristic is pre-set by
experts.

Discussion. HDMA is quite unique in that it leverages both declarative infor-
mation, viz. concepts in the ontology and case descriptions, as well as procedural
information in the form of rules. Because of the latter, it can be seen as a welcome
extension of Consultant-2. It doesn’t solve the problem of (semi-)automatically
finding the right KD approach, but it provides practical advice to the user dur-
ing every step of the KD process. Its biggest drawback is probably that it relies
almost entirely on input from experts. Besides from the fact that the provided
rules and heuristics may not be very accurate in some cases, this makes it hard
to maintain the system. For every new technique (or just a variant of an existing
one), new rules and concepts will have to be defined to allow the system to re-
turn proper advice. As with Consultant-2, some of these issues may be resolved
by introducing more meta-learning into the system, e.g. advice on the proper
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weights for each data characteristic in the case based reasoning step, to update
the heuristics in the rules and to find new rules based on experience. Finally, the
case-based advice, while useful in the first few steps, may lose its utility in the
later stages of the KD process. More specifically, say the user chooses a different
preprocessing step as applied in the proposed case, then the subsequent stages
of that case (e.g. model selection) may lose their applicability. A possible solu-
tion here would be to update the case selection after each step, using the partial
solution to update the problem description.

5.5 NExT

NExT, the Next generation Experiment Toolbox [4] is an extension of the IDEA
approach to case-based reasoning and to the area of dynamic processes, in which
there is no guarantee that the proposed workflow will actually work, or even that
the atomic tasks of which it consists will execute without fault. First, it contains
a knowledge base of past workflows and uses case-based reasoning to retrieve
the most similar ones. More often than not, only parts of these workflows will
be useful, leaving holes which need to be filled with other operators. This is
where the planning component comes in: using the preconditions and effects of
all operators, and the starting conditions and goals of the KD problem, it will
try to find new sequences of operators to fill in those holes.

However, much more can go wrong when reusing workflows. For instance, a
procedure may have a parameter setting that was perfect for the previous setting,
but completely wrong for the current one. Therefore, NExT has an ontology of
possible problems related to workflow execution, including resolution strategies.
Calling a planner is one such strategy, other strategies may entail removing
operators, or even alerting the user to fix the problem manually.

Finally, it does not start over each time the workflow breaks. It records all
the data processed up to the point where the workflow breaks, tries to resolve
the issue, and then continues from that point on. As such, it also provides an
online log of experimentation which can be shared with other researchers willing
to reproduce the workflow.

NExT has only recently been introduced and thorough evaluations are still
scarce. Nevertheless, its reuse of prior workflows and semi-automatic adaption
of these workflows to new problems seems a very promising.

6 Querying

A final way to assist users is to automatically answer any kind of question they
may have about the applicability, general utility or general behavior of KD
processes, so that they can make informed decisions when creating or altering
workflows. While the previous approaches only stored a selection of meta-data
necessary for the given approach, we could collect a much larger collection of
meta-data of possible interest to users, and organize all this data to allow the
user to write queries in a predefined query language, which will then be answered
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by the system based on the available meta-data. While this approach is mostly
useful for experts knowing how to ask the questions and interpret the results,
frequently asked questions could be wrapped in a simpler interface for use by a
wider audience.

6.1 Advanced Meta-Learning Architecture (AMLA)

One example of this approach is the Advanced Meta-Learning Architecture6

(AMLA) [21]. It is a data mining toolbox architecture aimed at running ML
algorithms more efficiently whilst inherently supporting meta-learning by col-
lecting all meta-data from every component in the system and allowing the user
to query or manipulate it.

Architecture. An overview of the system is provided in Figure 13. It encap-
sulates all standard KD operations with modules which can then be used as
building blocks for KD processes. Each module has a set of inputs and outputs,
each of which is a ‘model’, i.e. an actual model (e.g. a decision tree) or a dataset.
It also has a special ‘configuration’ input which supplies parameter settings, and
a special ‘results’ output, which produces meta-data about the process. For in-
stance, in the case the process encapsulates a decision tree learner, the input
would be training data, the configuration would state its parameters, the output
would provide a decision tree model and the results would state, for instance,
the number of nodes in the tree. All results are represented as name-value pairs
and stored in a repository, which collects all results generated by all modules.
The modules are very fine grained. For instance, there are separate modules for
testing a model against a dataset (which export the performance evaluations
to the repository) and for sub-components of certain techniques, such as base-
learners in ensembles, kernels in SVMs and so on. Modules often used together
can be combined in ‘schemes’, which again have their own inputs, outputs, con-
figurations and results. Schemes can also contain unspecified modules, to be
filled in when used, in which case they are called templates. There also exist
‘repeater’ modules which repeat certain schemes many times, for instance for
cross-validation. This compositionality allows to build arbitrarily complex KD
workflows, quicker implementation of variants of existing algorithms, and a more
efficient execution, as modules used many times only have to be loaded once. The
result repository can be queried by writing short scripts to extract certain values,
or to combine or filter the results of previous queries. Finally, ‘commentators’
can be written to perform frequently used queries, e.g. statistical significance
tests, and store their results in the repository.

Meta-knowledge. The stored meta-data consists of a large variety of name-
value pairs collected from (and linked to) all previously used modules, templates
and schemes. They can be of any type.

6 This is again not the officially coined name of the system.
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Fig. 13. The architecture of AMLA. Derived from Grabczewski and Jankowski[21].

Meta-learning. Meta-learning is done manually by programming queries. The
query’s constraints can involve the modules having generated the meta-data or
the type of properties (the name in the name-value pairs). As such, previously
obtained meta-data can be extracted and recombined to generate new meta-
knowledge. Secondly, templates with missing modules can also be completed
by looking up which were the most successful completed templates in similar
problems.

Discussion. This is indeed a very fundamental approach to meta-learning, in
the sense that it keeps track of all the meta-data generated during the design
and execution of KD processes. On the other hand, each query has to be written
as a small program that handles the name-value pairs, which might make it a
bit harder to use, and the system is still very much under construction. For
instance, at this stage of development, it is not entirely clear how the results
obtained from different workflows can be compared against each other. It seems
that many small queries are needed to answer such questions, and that a more
structured repository might be required instead.

6.2 Experiment Databases

Experiment databases (ExpDBs) [6,65,67,66,64] provide another, although much
broader, user-driven platform for the exploitation of meta-knowledge. They aim
to collect the thousands of machine learning experiments that are executed every
day by researchers and practitioners, and to organize them in a central repository
to offer direct insight into the performance of various, state-of-the-art techniques
under many different conditions. It offers an XML-based language to describe
those experiments, dubbed ExpML, based on an ontology for data mining exper-
imentation, called Exposé, and offers interfaces for DM toolboxes to automati-
cally upload new experiments or download previous ones. The stored meta-data
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can be queried extensively using SQL queries, or mined to build models of algo-
rithm performance providing insight into algorithm behavior or to predict their
performance on certain datasets. While most of the previously discussed systems
are designed to be predictive, ExpDBs are mainly designed for declarative meta-
learning, offering insights into why algorithms work or fail on certain datasets,
although it can easily be used for predictive goals as well.

Architecture. A high-level view of the system is shown in Fig. 14. The five
boxed components include the three components used to share and organize the
meta-data: an ontology of domain concepts involved in running data mining
experiments, a formal experiment description language (ExpML) and an experi-
ment database to store and organize all experiments (ExpDB). In addition, two
interfaces are defined: an application programming interface (API) to automati-
cally import experiments from data mining software tools, and a query interface
to browse the results of all stored experiments.

Interface. First, to facilitate the automatic exchange of data mining experiments,
an application programming interface (API) is provided that builds uniform,
manipulable experiment instances out of all necessary details and exports them
as ExpML descriptions. The top of Fig. 14 shows some of the input details:
properties (indicated by tag symbols) of the involved components, from download
urls to theoretical properties, as well as the results of the experiments: the models
built and their evaluations. Experiments are stored in full detail, so that they
can be reproduced at any time (at least if the dataset itself is publicly available).

Software agents such as data mining workbenches (shown on the right in Fig.
14) or custom algorithm implementations can simply call methods from the API
to create new experiment instances, add the used algorithms, parameters, and
all other details as well as the results, and then stream the completed experi-
ments to online ExpDBs to be stored. A multi-tier approach can also be used: a
personal database can collect preliminary experiments, after which a subset can
be forwarded to lab-wide or community-wide databases.

ExpML. The XML-based ExpML markup language aims to be an extensible,
general language for data mining experiments, complementary to PMML7, which
allows to exchange predictive models, but not detailed experimental setups nor
evaluations. Based on the Exposé ontology, the language defines various kinds
of experiments, such as ‘singular learner evaluations’, which apply a learning al-
gorithm with fixed parameter settings on a static dataset, and evaluate it using
a specific performance estimation method (e.g. 10-fold cross validation) and a
range of evaluation metrics (e.g. predictive accuracy). Experiments are described
as workflows, with datasets as inputs and evaluations and/or models as outputs,
and can contain sub-workflows of preprocessing techniques. Algorithms are han-
dled as composite objects with parameters and components such as kernels,
distance functions or base-learners. ExpML also differentiates between general
7 See http://www.dmg.org/pmml-v3-2.html
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algorithms (e.g. ‘decision trees’), versioned implementations (e.g. weka.J48) and
applications (weka.J48 with fixed parameters). Finally, the context of sets of
experiments can also be added, including conclusions, experimental designs, and
the papers in which they are used so they can be easily looked up afterwards.
Further details can be found in Vanschoren et al. [66], and on the ExpDB website.

Exposé. The Exposé ontology provides a formal domain model that can be
adapted and extended on a conceptual level, thus fostering collaboration between
many researchers. Moreover, any conceptual extensions to the domain model can
be translated consistently into updated or new ExpML definitions and database
models, thus keeping them up to date with recent developments.

Exposé is built using concepts from several other data mining ontologies. First,
OntoDM [49] is a general ontology for data mining which tries to relate various
data mining subfields. It provides the top-level classes for Exposé, which also fa-
cilitates the extension of Exposé to other subfields covered by OntoDM. Second,
EXPO [58] models scientific experiments in general, and provides the top-level
classes for the parts involving experimental designs and setups. Finally, DMOP
[26] models the internal structure of learning algorithms, providing detailed con-
cepts for general algorithm definitions. Exposé unites these three ontologies and
adds many more concepts regarding specific types of experiments, evaluation
techniques, evaluation metrics, learning algorithms and their specific configura-
tions in experiments.

ExpDB. The ExpDB database model, also based on Exposé, is very fine-grained,
so that queries can be written about any aspect of the experimental setup,
evaluation results, or properties of involved components (e.g. dataset size). When
submitted to an ExpDB, the experiments are automatically stored in a well-
organized way, associating them with all other stored experiments and available
meta-level descriptions, thus linking empirical data with all known theoretical
properties of all involved components.

All further details, including detailed design guidelines, database models, on-
tologies and XML definitions, can be found on the ExpDB website, which can
be found at http://expdb.cs.kuleuven.be.

It also hosts a working implementation in MySQL which can be queried online
through two query interfaces: an online interface on the homepage itself and an
open-source desktop application. Both allow to launch queries written in SQL,
or composed in a graphical query interface, and can show the results in tables
or graphical plots. The database has been extended several times based on user
requests, and is frequently being visited by over 400 users.

Meta-knowledge. The ExpML language is designed not only to upload new ex-
periments, but also to add new definitions of any new component, such as a new
algorithm or a new data characteristic. As such, the meta-knowledge contained
in the database can be dynamically extended by the user to be up to date with
new developments. Algorithms, datasets, preprocessing algorithms and evalua-
tion methods are first of all described with all necessary details (e.g. version
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Fig. 14. The architecture of experiment databases.

numbers) to allow unique identification, as well as more informational descrip-
tions of their use. Furthermore, they can be described with an arbitrary number
of characterizations, and new ones can be added at any time, preferably with a
description of how they are computed, and immediately be used to see whether
they improve meta-learning predictions. Attribute-specific data characteristics
can be stored as well. Parameter settings are also stored, and each parameter
can be described with additional meta-data such as default values, suggested
ranges and informal descriptions of how to tune them. Furthermore, an arbi-
trary number of performance evaluations can be added, including class-specific
metrics such as AUROC, and entire contingency matrices. In principle, the pro-
duced models could also be stored, e.g. using the PMML format, although in the
current version of the system only the predictions for all instances are stored8.
At the time of writing, the database contained over 650,000 experiments on 67
classification and regression algorithms from WEKA [23], 149 different datasets
from UCI [2], 2 data preprocessing techniques (feature selection and sampling),
40 data characteristics [29] and 10 algorithm characterizations [25]. In its current
implementation, it covers mostly classification, and some regression tasks, natu-
rally extending to more complex settings, such as kernel methods, ensembles or
multi-target learning.

Meta-learning. The bottom half of Figure 14 shows the different ways the
stored meta-data can be used. First of all, any hypothesis about learning behavior

8 This allows computation of new evaluation metrics without rerunning experiments.
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Fig. 15. The effect of parameter gamma of
the RBF-kernel in SVMs.

Fig. 16. A meta-decision tree predict-
ing J48’s superiority over OneR.

Fig. 17. The average percentage of bias-related error for each algorithm.

can be checked by translating it to an SQL query and interpreting the returned
results. Adding and dropping constraints from the query provides an easy and
effective means of thoroughly browsing the available meta-data. For instance,
we could ask for the ‘predictive accuracy’ of all support vector machine ‘SVM’
implementations, and for the value of the ‘gamma’ parameter (kernel width) of
the ‘RBF’ kernel, on the original (non-preprocessed) version of dataset ‘letter’.
The result, showing the effect of the gamma parameter, is shown in Fig. 15 (the
curve with squares). Adding three more datasets to the query generates the other
curves. Just as easily, we could have asked for the size of all datasets instead, or
we could have selected a different parameter or any other kind of alteration to
explore the meta-data further. SQL queries also allow for the meta-data to be
rearranged or aggregated to answer very general questions directly, such as al-
gorithm comparisons, rankings, tracking the effects of preprocessing techniques
(e.g. learning curves), or building profiles of algorithms based on many experi-
ments [6,67]. An example of the latter is shown in Fig. 17: since a large number
of bias-variance decomposition experiments are stored, we can write a query that
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reorganizes all the data and calculates the average percentage of bias error (as
opposed to variance error) produced by each algorithm. Such algorithm profiling
can be very useful for understanding the performance of learning algorithms.

As shown in Fig. 14, querying is but one of the possible meta-learning appli-
cations. First of all, insights into the behavior of algorithms could lead to algo-
rithm refinement, thus closing the algorithm design loop. As a matter of fact,
the results in Fig. 15 suggested a correlation between the useful range of the
gamma parameter and the number of attributes (shown in parentheses), which
led to a refinement of WEKA’s SVM implementation [67]. Furthermore, instead
of browsing the meta-data, we could also construct meta-models by downloading
parts of the meta-data and modeling it. For instance, we could build decision
trees predicting when one algorithm outperforms another, as shown in Fig. 16
for algorithms J48 and OneR, or how different parameters interact on certain
datasets [63]. Finally, the meta-data can also be used to provide the necessary
meta-data for other DM assistance tools, as shall be discussed in Section 7.

Discussion. For researchers developing new algorithms, or practitioners try-
ing to apply them, there are many benefits to sharing experiments. First, they
make results reproducible and therefore verifiable. Furthermore, they serve as
an ultimate reference, a ‘map’ of all known approaches, their properties, and
results on how well they fared on previous problems. And last but not least,
it allows previous experiments to be readily reused, which is especially useful
when benchmarking new algorithms on commonly used datasets, but also makes
larger, more generalizable studies much easier to perform. As such there is a real
incentive to share experiments for further reuse, especially since integration in
existing DM toolboxes is relatively easy. Such integration can also be used to
automatically generate new experimental runs (using, for instance, active learn-
ing principles) based on a query or simply on a lack of experiments on certain
techniques. There are also numerous network effects in which advancements in
learning algorithms, pre-processing techniques, meta-learning and other subfields
all benefit from each other. For instance, results on a new preprocessing tech-
nique may be used directly in designing KD workflows, new data characteristics
can highlight strengths and weaknesses of learning algorithms, and the large
amounts of experiments can lead to better meta-learning predictions. Possible
drawbacks are that, unless integrated in a toolbox, the system cannot execute
algorithms or KD workflows on demand (although code or urls to executables are
always stored) and that, while results received from toolboxes can be assumed
to be accurate, results from individual users may have to be verified by referees.

Compared to DMA, one could say that DMA is a local, predictive system,
while an ExpDB is a community-based, descriptive system. DMA also employed
a database, but it was much simpler, consisting of a few large tables with many
columns describing all different kinds of data characterizations. In ExpDBs, the
database is necessarily very fine-grained to allow very flexible querying and to
scale to millions of experiments from many different contributors. The main dif-
ference though is that, while DMA is a system designed for practical algorithm
selection advice, ExpDBs offer a platform for any kind of meta-learning study
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and for the development of future meta-learning systems. It is also quite comple-
mentary to MiningMart. While ExpDBs do store preprocessing workflows, Min-
ingMart is much more developed in that area. Finally, compared to AMLA, the
repository in ExpDBs is much more structured, allowing much more advanced
queries in standard SQL. On the other hand, while ExpDBs can be integrated in
any toolbox, AMLA offers a more controlled approach which gathers meta-data
from every component in a KD workflow.

7 A New Platform for Intelligent KD Support

7.1 Summary

An overview of the previously discussed architectures is shown in Table 1. The
columns represent consecutively the portion of the KD process covered, the sys-
tem type, how it interacts with the user, what type of meta-information is stored,
the data it has been trained on, which KD processes it considers, which evalua-
tion metrics are covered, which meta-features are stored and which meta-learning
techniques are used to induce new information, make predictions or otherwise
advise the user.

As the table shows, and the systems’ discussions have indicated, each sys-
tem has its own strengths and weaknesses, and cover the KD process to various
extents. Some algorithms, like MiningMart and DMA provide a lot of support
and gather a lot of meta-information about a few, or only one KD step, while
others try to cover a larger part of the entire process, but consider a smaller
number of techniques or describe them with less information, usually provided
by experts. All systems also expect very different things from their users. Some,
especially CITRUS, GDL and AMLA, put the user (assumed to be an expert)
firmly in the driver’s seat, leaving every important decision to her. Others, like
Consultant-2, GLS, MiningMart, HDMA and NExT allow the user to interfere
in the workflow creation process, often explicitly asking for input. Finally, the
meta-model systems and IDEA almost completely automate this process, offer-
ing suggestions to users which they may adopt or ignore. Note that, with the
exception of Consultant-2, none of the systems performing algorithm selection
also predict appropriate parameters, unless they are part of a prior workflow.

A few systems obviously learned from each other. For instance, DMA, NOE-
MON and ALT learned from StatLog, NExT learned from IDEA and HDMA
learned from prior CBR and expert system approaches. Still, most systems are
radically different from each other, and there is no strong sense of convergence
to a general platform for KD workflow generation.

7.2 Desiderata

We now look forward, striving to combine the best aspects of all prior systems:

Extensibility: Every KD support system that only covers a limited number of
techniques will at some point become obsolete. It is therefore important that
new KD techniques can be added very easily. (GLS, AMLA, ExpDBs)
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Integration: Ideally, the system should be able to execute the workflow, in-
stead of just offering an abstract description. Keeping extensibility in mind,
it should also be able to call on some existing KD tools to execute processes,
instead of reimplementing every KD process in a new environment. Indeed,
as new types of algorithms are created, new data preprocessing methods are
developed, new learning tasks come about, and even new evaluation proce-
dures are introduced, it will be infeasible to re-implement this continuously
expanding stream of learning approaches, or to run all the experiments nec-
essary to learn from them. (Consultant-2, HDMA, ExpDBs)

Self-maintenance: Systems should be able to update their own meta-knowledge
as new data or new techniques become available. While experts are very use-
ful to enrich the meta-knowledge with successful models and workflows, they
cannot be expected to offer all the detailed meta-data needed to learn from
previous KD episodes. (DMA, NOEMON, ALT, AMLA, ExpDBs)

Common language: Effective KD support hinges on a large body of meta-
knowledge. As more and more KD techniques are introduced, it becomes
infeasible to locally run all the experiments needed to collect the necessary
meta-data. It is therefore crucial to take a community-based approach, in
which descriptions of KD applications and generated meta-data can be gen-
erated by, and shared with, the entire community. To achieve this, a common
language should be used to make all the stored meta-data interchangeable.
This could lead to a central repository for all meta-data, or a collection of
different repositories interfacing with each other. (MiningMart, ExpDBs)

Ontologies: Meta-knowledge should be stored in a way that makes it machine-
interpretable, so that KD support tools can use it effectively. This is reflected
by the use of ontologies in many of the discussed systems. Ideally, such an
ontology should also establish a common vocabulary for the concepts and
relations used in KD research, so that different KD systems can interact.
This vocabulary could be the basis of the proposed common description
language. (IDEA, GLS, MiningMart, HDMA, NExT, ExpDBs)

Meta-data organization: The stored meta-data should also be stored in a
way that facilitates manual querying by users. Indeed, we cannot foresee
all the possible uses of meta-data beforehand, and should therefore enable
the user to perform her own investigations. Moreover, when extending KD
support tools with new ways of using meta-data, such a structured repository
will drastically facilitate this extension. (AMLA, ExpDBs)

Workflow reuse and adaptation: Since most KD applications focus on a
limited number of tasks, it is very likely that there exist quite a few prior
successful workflows that have been designed for that task. Any intelligent
KD support system should therefore be able to return similar workflows,
but also offer extensive support to adapt them to the new problem. For in-
stance, if a prior workflow can only partially be reused, new solutions should
be proposed to fill in the missing pieces. (MiningMart, HDMA, NExT)

Planning: When no similar workflows exist, or when parts of workflows need to
be redesigned, using the KD processes’ preconditions and effects for planning
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is clearly a good approach, although care should be taken that the planning
space is not prohibitively large. (IDEA,GLS,NExT)

Learning: Last but not least, the system should get better as it gains more
experience. This includes planning: over time, the system should be able to
optimize its planning approach, e.g. by updating heuristic descriptions of the
operators used, instead of generating the same plan every time it encounters
the same problem. (DMA, NOEMON, GLS, all CBR approaches)

7.3 Architecture

These aspects can be combined in the KD support platform shown in Figure 18.
It is based on both our analysis here and on the description of a proposed DM
laboratory in Kalousis et al. [30].

A community-based approach. This platform is set in a community-based
environment, with many people using the same KD techniques. It could cover
a very general domain, such as KD as a whole, or a more specific one, such as
bio-technology, which may result in more specific types of meta-data and more
specific ontologies.

Notice that first of all, a common language is used to exchange meta-data
between the KD assistant and the tools with which it interacts. First, on the
right, there are the many DM/KD toolboxes that implement a wide variety of
KD processes. They exchange workflows, descriptions of algorithms and datasets,
produced models and evaluations of the implemented techniques.

On the left, there are web services. In the last couple of years, there has been
a strong movement away from locally implemented toolboxes and datasets, and
towards KD processes and databases offered as online services. These Service
Oriented Architectures (SOAs) [18] define standard interfaces and protocols that
allow developers to encapsulate tools as services that clients can access without
knowledge of, or control over, their internal workings. In the case of a database,
this interface may offer to answer specific queries, e.g. a database of airplane
flight may return the flight schedule for a specific plane. In the case of a learning
algorithm, the interface may accept a dataset (or a database implemented as a
web service) and return a decision tree.

While we did not explicitly include experts as a source of meta-knowledge,
we assume that they will build workflows and models using the available web
services and toolboxes.

When the KD assistant interacts with these services, it will exchange work-
flows, descriptions of the web services (where to find them and how to interact
with them), produced models and evaluation results. Given the rise of web ser-
vices, XML is a very likely candidate as the modeling language for this common
language. Web services interact with each other using SOAP (Simple Object
Access Protocol) messages, and describe their interface in WSDL (Web Services
Description Language), both of which are described in XML. XML is also used
by many KD/DM toolboxes to serialize their data and produced models.
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Fig. 18. A proposed platform for intelligent KD support.

A DM/KD ontology. The vocabulary used for these descriptions should be
described in a common ontology. Despite many proposed ontologies, there is
of yet no consensus on an ontology for DM or KD, but we hope that such an
ontology will arise over the coming years. Imagine the internet without HTML,
and it is obvious that a common language for KD is essential for progress in this
field. The ontology should also provide detailed descriptions of KD processes,
such as their place in the hierarchy of different processes, the internal structure
of composite learning algorithms, preconditions and effects of all known KD
operators, and the parameters that need to be tuned in order to use them.
Additional information can be added to extend the ontology to engender further
KD support (such as the list of KD issues and solutions in NExT).

A meta-data repository. All generated meta-data is automatically stored and
organized in a central repository, such as an ExpDB. It collects all the details
of all performed experiments, including the workflows used and the obtained
results, thus offering a complete log of the experimentation which can be used to
reproduce the submitted studies. Moreover, using the ontology, it automatically
organizes all the data so it can be easily queried by expert users, allowing it to
answer almost any kind of question about the properties and the performance
of the used KD techniques, using the meta-data from many submitted studies.
It serves as the long-term memory of the KD assistant, but also as that of the
individual researcher and the community as a whole. It will be frequently polled
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by the KD assistant to extract the necessary meta-data, and should contain
a query interface for manual investigations as well. The database itself can be
wrapped as a web service, allowing automatic interaction with other tools and
web services.

Planning and execution. The KD assistant interacts with two more com-
ponents: an AI planner used to solve any planning problems, and an executer
component which runs the actually implemented KD algorithms in KD/DM tool-
boxes or web services to execute workflows, or perhaps to do other calculations
such as computing meta-features if they are not implemented in the KD assis-
tant itself. The executer polls the ExpDB to obtain the necessary descriptions
and locations of the featured web services, algorithms or datasets.

As for the output generated by the KD assistant, we foresee two important
types of advice (beyond manual querying), although surely many more kinds of
advice are possible. The first is a ranked list of workflows produced by the KD
assistant (even if this workflow only consists of a single learning algorithm). The
second, possibly more useful approach is a semi-automatic interactive process in
which the user actively participates during the creation of useful workflows. In
this case, the KD assistant can be associated with a workflow editing tool (such
as Taverna), and assist the users as they compose workflows, e.g. by checking the
correctness of a workflow, by completing partial workflows using the planner, or
by retrieving, adapting or repairing previously entered workflows.

7.4 Implementation

ExpDBs and ontologies. While such a KD support system may still be some
way off, recently, a great deal of work has been done that brings us a lot closer
to realizing it.

First of all, repositories organizing all the generated meta-data can be built
using the experiment databases discussed in Section 6.2. Its ontology and XML-
based language for exchanging KD experiments can also be a good starting
point. However, building such ontologies and languages should be a collaborative
process, so we should also build upon some other recently proposed ontologies
in DM, such as OntoDM [48,49], DMOP [30,26], eProPlan [35], KDDONTO [24]
and KD ontology [69,70].

Planning. Concerning planning, several approaches have been outlined that
translate the ontological descriptions of KD operators to a planning descrip-
tion based on the standard Planning Domain Description Language (PDDL)
by using an ontological reasoner to query their KD ontologies before starting
the actual planning process [36,42,56]. Other approaches integrate a reasoning
engine directly in the planner, so that the planner can directly query the ontol-
ogy when needed [35,69,70]. For instance, eProPlan[35] covers the preconditions
and effects of all KD operators, expressed as rules in the Semantic Web Rule
Language (SWRL) [28].
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Klusch et al. [36] and Liu et al. [42] use a classical STRIPS planner to produce
the planning, while Sirin et al. [56] and Kietz et al. [35] propose an Hierarchical
Task Network (HTN) planning approach [55], in which each task has a set of
associated methods, which decompose into a sequence of (sub)tasks and/or oper-
ators that, when executed in that order, achieve the given task. The main task is
then recursively decomposed until we obtain a sequence of applicable operators.
Somewhat similar to GLS, this divide-and-conquer approach seems an effective
way to reduce the planning space.

Zakova et al. [70] uses an adaptation of the heuristic Fast-Forward (FF) plan-
ning system [27]. Moreover, it allows the completed workflows to be executed
on the Orange DM platform, and vice-versa: workflows composed in Orange are
automatically annotated with their KD ontology so that they can be used for
ontology querying and reasoning. It does this by mapping their ontology to the
ontology describing the Orange operators.

Finally, Kalousis et al. [30] propose a system that will combine planning and
meta-learning. It contains a kernel-based, probabilistic meta-learner which dy-
namically adjusts transition probabilities between DM operators, conditioned on
the current application task and data, user-specified performance criteria, qual-
ity scores of workflows applied in the past to similar tasks and data, and the
users profile (based on quantified results from, and qualitative feedback on, her
past DM experiments). Thus, as more workflows are stored as meta-knowledge,
and more is known about the users building those workflows, it will learn to
build workflows better fit to the user.

Web services. The development of service oriented architectures for KD, also
called third-generation DM/KD, has also gathered steam, helped by increasing
support for building workflows of web services.

Taverna [53], for instance, is a system designed to help scientists compose
executable workflows in which the components are web services, especially for
biological in-silico experiments. Similarly, Triana [60] supports workflow execu-
tion in multiple environments, such as peer-to-peer (P2P) and the Grid. Discov-
ery Net [54] and ADMIRE [38] are platforms that make it easier for algorithm
designers to develop their algorithms as web services and Weka4WS [59] is a
framework offering the algorithms in the WEKA toolkit as web services.

Finally, Orange4WS [51] is a service-oriented KD platform based on the Or-
ange toolkit. It wraps existing web services as Orange workflow components,
thus allowing to represent them, together with Orange’s original components
as graphical ‘widgets’ for manual workflow composition and execution. It also
proposes a toolkit to wrap ‘local’ algorithms as web services.

8 Conclusions

In this chapter, we have provided a survey of the different solutions proposed
to support the design of KD processes through the use of meta-knowledge and
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highlighted their strengths and weaknesses. We observed that most of these sys-
tems are very different, and were seemingly developed independently from each
other, without really capitalizing on the benefits of prior systems. Learning from
these prior architectures, we proposed a new, community-based platform for KD
support that combines their best features, and showed that recent developments
have brought us close to realizing it.
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Abstract. The common practices of machine learning appear to be frus-
trated by a number of theoretical results denying the possibility of any
meaningful implementation of a “superior” learning algorithm. However,
there exist some general assumptions that, even when overlooked, pre-
side the activity of researchers and practitioners. A thorough reflection
over such essential premises brings forward the meta-learning approach
as the most suitable for escaping the long-dated riddle of induction claim-
ing also an epistemologic soundness. Several examples of meta-learning
models can be found in literature, yet the combination of computational
intelligence techniques with meta-learning models still remains scarcely
explored. Our contribution to this particular research line consists in
the realisation of Mindful, a meta-learning system based on the neuro-
fuzzy hybridisation. We present the Mindful system firstly situating it
inside the general context of the meta-learning frameworks proposed in
literature. Finally, a complete session of experiments is illustrated, com-
prising both base-level and meta-level learning activity. The appreciable
experimental results underline the suitability of the Mindful system for
managing past accumulated learning experience while facing novel tasks.

1 Introduction

The applied research in the field of artificial intelligent systems is often addressed
to the empirical evaluation of learning algorithms with the aim of proving the
(selective) superiority of a particular learning model. This kind of strategy is
typical of a “case-study” approach, in which different learning models are eval-
uated on several datasets in order to identify the best algorithm for a specific
problem [1, 2]. The selective pre-eminence exhibited by a learner in the con-
text of a case-study application reflects the intrinsic character of the so-called
base learning strategies, where data driven models are involved showing gen-
eralisation capabilities when applied to solve particular tasks. More precisely,
base learning approaches are connected with the use of a fixed bias representing
the whole hypotheses, limitations and choices at the basis of the behaviour of
a learner. A fixed bias learner is therefore characterised by a restricted domain
of expertise and a limited area of application. Some theoretical results estab-
lished the intrinsic limitations of base-learning strategies. The “No Free Lunch”
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theorem states the fundamental equality in terms of performance of any pair of
learners (when all possible tasks are considered) and rejects the superiority of
some particular learning model beyond the “case-study” dimension. In opposi-
tion to base-learning, recent researches on meta-learning mechanisms propose to
increase the possibilities of inductive learning algorithms by adapting their work-
ing mechanisms to the considered task domain. In this way, it can be possible to
develop a dynamic search of the most appropriate bias for each task [3, 4, 5, 6].

In this context, the research community is ultimately showing an increasing
interest for the adoption of computation intelligence techniques to foster meta-
learning activity. In this chapter we propose an original meta-learning system
called Mindful which is based on the neuro-fuzzy hybridisation: to best of our
knowledge it represents one of the few examples in literature of this particular
instantiation of meta-learning models. We believe that the neuro-fuzzy paradigm
lends itself well to be exploited for meta-learning purposes, since it provides a
formal apparatus where knowledge can be properly extracted from data and
organised in structured form by means of linguistic rules. The reported results of
a complete session of experiments testify the suitability of the Mindful system
for accumulating and exploiting past experience in novel learning tasks.

The chapter is organised as follows. A preliminary discussion about the lim-
itations of base-learning strategies is carried out in the next session together
with the presentation of some theoretical results. In section 3 we provide an
introduction to the meta-learning approach discussing its intrinsic potentiali-
ties. A general framework of meta-learning is presented in section 4, including
some comments and a brief review of different implementations of meta-learning
proposed in literature. Section 5 is devoted to the illustration of the Mindful
system and section 6 shows in details the results of a complete experimental ses-
sion articulated in base-level and meta-level activities. Section 7 closes the paper
with a broad discussion, pointing out the ensemble of critical topics debated and
drawing some conclusive remarks.

2 Theoretical Arguments

Induction is one of the most powerful tools in human reasoning, yet it is also a
very fragile one. What can be said about the validity of induction? A number
of considerations are involved in the analysis of this question, pertaining to the
fields of philosophy, mathematical logics, machine learning. In this respect, the
words of Hume are often quoted [7]:

There can be no demonstrative arguments to prove, that those instances,
of which we have had no experience, resemble those, of which we have had
experience. [. . . ] Thus not only our reason fails us in the discovery of the
ultimate connexion of causes and effects, but even after experience has
informed us of their constant conjunction, it is impossible for us to satisfy
ourselves by our reason, why we should extend that experience beyond
those particular instances, which have fallen under our observation.
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The Scottish philosopher deprived of necessity the causality principle: the state-
ment “A causes B” should be corrected by “in our experience A and B appeared
together frequently”, but although several examples have been observed, there
is no reason to expect A and B joined in future circumstances. Therefore from
a purely rational point of view our inductive practice has no more justification
than random guessing.

Quite surprisingly, the same conclusions can be drawn from the so-called “No
Free Lunch” (NFL) theorem [8, 9], popularised in the field of machine learning
also as the law of conservation for generalisation performance [10], stating that
the generalisation performance of any learner has zero sum when averaged on
all possible learning tasks. For several years this kind of results stood as a blind
alley for any researcher looking for the way of designing a “universal” learning
algorithm.

The following elementary illustration (originally reported in [11]) provides an
insight into the NFL theorem. Table 1 reports the input vectors consisting of
three binary features (in column x) and the values of a target function F (x)
which must be learned by means of some learning algorithm: h1 and h2 stand
as a couple of hypotheses produced by two trivial algorithms assigning to any
input the value 1 and −1 respectively, unless trained otherwise.

Table 1. Output values of a target function F and two hypotheses h1, h2 corresponding
to 3-digits binary input vectors.

x F h1 h2

000 1 1 1
D 001 −1 −1 −1

010 1 1 1

011 −1 1 −1
100 1 1 −1
101 −1 1 −1
110 1 1 −1
111 1 1 −1

If we consider the set D as a training set, it is possible to assess the hypotheses
behaviour over the remaining input vectors, thus enabling an off-training set
(OTS) evaluation (which is the one adopted in the NFL scenario). With respect
to the particular target function F , algorithm 1 (yielding hypothesis h1) is better
than algorithm 2 (yielding hypothesis h2). Yet, since the target function is a-
priori unknown, the algorithms must be compared in the overall, i.e. by averaging
over all the 25 possible target functions consistent with D. It is easy to observe
that, in this overall evaluation, no difference emerges the in off-training set errors
between the two algorithms. In fact, for each distinct target function there is
another one whose output is inverted with respect to all the off-training set input
vectors, therefore performances of algorithms 1 and 2 will be ultimately the same.
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In sum, the NFL theorem states that, if all target functions are equally likely,
any effort at selecting the “best” learning algorithm is frustrated, and averaged
OTS generalisation does not draw away from random guessing (no “rational”
motivation supports the choice of an inductive algorithm over others).

How to conciliate the restrictive results of the NFL theorem with the ongoing
research in machine learning? Firstly, the main hypotheses of the theorem should
be highlighted:

1. all the target functions (namely, all the learning tasks) are equally probable,
being characterised by a uniform probability distribution;

2. performance of learning algorithms are evaluated under the OTS regime.

Admittedly, the analysis of instances which have not been encountered during
training is the most relevant, however focus should be addressed to the expected
generalisation performance of a learner, thus suggesting that some OTS instances
are more likely than others. On a broader plane, a purely empirical consideration
lets us assert that some learning tasks are more likely than others, in contrast
with hypothesis 1. of the NFL theorem. This kind of empirical arguments have
been properly formalised in [12]: the point is to make clear some assumptions
that are usually taken for grant in the machine learning community.

Remark 1. The weak assumption of machine learning is that there exists a learn-
ing task selection process Ω inducing a non-uniform probability prΩ over the
learning task space.

In other words, it is commonly assumed that some tasks are more likely than
others, hence the possibility of defining a “better” algorithm.

Remark 2. The strong assumption of machine learning is that the probability
distribution prΩ is implicitly or explicitly known (at least to a certain degree of
approximation).

The strong assumption constitutes the basis for the definition of the bias of a
learning algorithm.

Definition 1. The bias constitutes the ensemble of factors influencing a learn-
ing process (apart from the instances of the task being learned). These factors
include the criteria adopted to perform the search inside the space of the task
solutions and the specific configuration of the learning algorithm.

The concept of bias can be regarded as the material representation of the strong
assumption and the probability distribution prΩ defines the area of expertise of
each learning algorithm [13].

3 Introducing the Meta-Learning Approach

On the basis of the previous argumentations, it is possible to say that each
learner starts from the analysis of data to induce a particular model producing
its own probability distribution pr over the space of the learning tasks. The main
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concern in machine learning, therefore, is to derive a learning algorithm whose
corresponding model is able to produce a probability distribution pr being as
near as possible the actual probability distribution prΩ .

To tackle this problem the usual way of proceeding consists in building up a
particular learner from scratch in a manual designing fashion. In other words,
every practitioner, when dealing with a learning task for which no existing al-
gorithm applies sufficiently well, builds up his own learning model after a trial
and error session of experiments. This is the so-called “case-study” dimension,
where specific learning models are empirically evaluated on a restricted number
of datasets in order to prove their “superiority” which is intrinsically selective
in its essence. What does it mean in terms of the previously reported theoretical
analysis? The strong assumption of machine learning implicitly plays a pivotal
role since the case-study dimension pretends a thorough knowledge of the dis-
tribution prΩ , so that it can be embedded into the (fixed) bias of the proposed
learning algorithm. On a broader plane, this kind of base-learning mechanism
is supposed to enable an accretion of the overall learning knowledge, with each
practitioner adding his contribution to the community of the machine learning
researchers.

The study of meta-learning strategies has been consolidated during the last
decade to set up an ensemble of approaches contrasting the “classical” base-
learning mechanisms (commonly adopted in the manual design of learning al-
gorithms). Various meanings can be found in literature coupled with the meta-
learning catchword [14, 15, 16, 17]. The wholeness of references, however, agrees
to consider the meta-learning approach as a research apparatus for discovering
learning algorithms that improve their efficiency through experience. While base-
learning focuses on the accumulated experience related to single learning tasks,
meta-learning focuses on the accumulated experience related to the repeated
applications of learning algorithms, thus configuring as a dynamical strategy
oriented to catching the correspondence between tasks (or task domains) and
classes of learners [5, 6, 18, 19].

Formally, we can state the following definition for a meta-learning process.

Definition 2. Let A be a set of learning algorithms and T a set of tasks. Let
aA(t) be the best algorithm in A applicable to a specific task t, for each t ∈ T ,
and c(t) a characterisation of the chosen task t. Then a meta-learning process
is an automatic mechanism that starting from the meta-training set:

{< c(t), aA(t) > : t ∈ T }, (1)

induces a meta-model which is able to predict, for any new task, the best model
in A.

It should be highlighted that meta-learning goes halfway through the weak and
the strong assumptions (see remarks 1, 2). In fact, even though the existence
of a probability distribution prΩ is admitted, there is no pretension of knowing
it. That is different from the “manual design” approach which is based on the
availability of a priori knowledge about prΩ to be incorporated into the learning
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algorithm. A meta-learning process, instead, aims at estimating prΩ: in this case,
the assumption is that the meta-data in the meta-training set (1) are suitable
to approximate (learn) prΩ.

The meta-learning assumption appears to be more plausible than the one
adopted in the “case-study” formulation. Moreover, it allows to provide some
kind of reply to Hume’s scepticism about induction. In fact, even admitting our
impossibility to establish a rational foundation for the inductive mechanisms,
yet they are considered valid generalisation tools in the way they are employed
to face the physical world around us. Generalising from what we have seen to
whatever is yet to be encountered is the common practice in our everyday life1

and it represents also the fundamental assumption of science as we practice
it [20].

4 A General Framework for Meta-Learning

In order to discuss the main characteristics a meta-learning system should ex-
hibit, we refer to a general framework originally introduced in [21] which has
been reconsidered in recent times since it lends itself to the meta-learning for-
malisation [22].

Here the framework is adopted with the twofold aim of presenting the state
of art on meta-learning systems proposed in literature and introducing an orig-
inal meta-learning system developed in the specific context of computational
intelligence.

Fig. 1. A general framework for meta-learning.

As shown in figure 1, the notation adopted is coherent with the formalisation of
the meta-learning process (1) expressed in definition 2. In particular, for a given
1 To some extent, this argumentation resembles the ultimate conclusions of Hume:

only habit (namely, repeated observation of regularities) is responsible for the gen-
eralisation practice [7].
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learning task t inside the learning task space T , with features c(t) inside the
meta-feature space C, the framework is oriented to find the selection mapping
S(c(t)) into the algorithm space A, such that the selected algorithm a ∈ A
maximises a performance measure p inside the performance space P .

The definition of such a general framework paves the way for the analysis of
a number of issues concerning:

1. the arrangement of the spaces T and A;
2. the meta-feature extraction procedure c(t);
3. the selection mapping S(c(t));
4. the performance measure p.

We are going to discuss each of them in the following sections, taking the op-
portunity also for reviewing some meta-learning strategy proposed in literature.

4.1 About the T and A Spaces

The definition of the spaces T and A is based on the coverage of the largest
number of cases and on the size of the two sets. As concerning T , this is a vir-
tually infinite set encompassing the whole range of learning tasks. Actually, the
number of accessible, documented, real-world classification tasks is quite scarce
(less than a couple hundreds) [23]. To overcome this problem some strategies
have been proposed. On the one hand, the cardinality of T can be increased
through the generation of synthetic tasks, as in [24]. On the other hand, the
meta-learning process can be re-organised in order to produce a kind of incre-
mental learning where a stream of learning tasks are faced in a life-long learning
scenario to gradually tune the bias (mimicking human learning) [25, 26].

As concerning the algorithm space, the strong assumption (see remark 2)
associates a single bias to each algorithm in A. The latter, therefore, should en-
compass a reduced number of learning models, yet ensuring a reasonable variety
of inductive biases. In this sense, the algorithm selection process is assimilated
to a dynamic selection of the proper bias through the analysis of several learning
tasks by different learning models. However, in a more general formulation of
the meta-learning framework, the set A can be assimilated to the set of biases
referring to a single learning model. In this way, the algorithm selection process
would assume the role of a parameter selection function, aiming at the identifi-
cation of the best parameter configuration (bias) pertaining to a single learning
algorithm during its application in several different leaning tasks [27, 28].

4.2 About the Meta-Feature Extraction

The meta-features should be defined in order to describe the main properties
of a specific task and should be data-driven computed. However, they should
convey some different pieces of information with respect to the mere instances
available for the task at hand. Moreover, an adequate set of meta-features must
satisfy mainly two basic conditions. Firstly, they should prove to be useful in
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Table 2. Some commonly employed meta-features.

General meta-features

Number of observations
Number of attributes
Number of output values
Dataset dimensionality ( attribute

observations
)

Statistical meta-features

(Mean) standard deviation
(Mean) coefficient of variation
(Mean) covariance
(Mean) linear correlation coefficient
(Mean) skewness
(Mean) kurtosis
1-D variance fraction coefficient

Information-theoretic meta-features

(Normalised) Class entropy
(Mean normalised) Attribute entropy
(Mean) Joint entropy class/attribute
(Mean) Mutual information class/attribute
Equivalent number of attributes
Noise-signal ratio

determining the relative performance of individual learning algorithms. Secondly,
their computation should not be too difficult and burdensome.

Tasks characterised by similar meta-features are supposed to map to the same
learning algorithms which, in turn, should exhibit similar performance results.
A number of morphological measures have been proposed to characterise data
related to a learning problem: a common practice has been established in focusing
over general, statistical and information-theoretic measures. Meta-features have
been commonly employed in several works [29, 30, 31, 32] and projects, such as
StatLog and METAL. Table 2 reports a selection of meta-features; for a thorough
description of those measures the interested reader is addressed to [33].

In literature can be found some other different strategies for extracting meta-
features from data. In [34,35,36] meta-characteristics are extracted by the anal-
ysis of a decision tree obtained from the data of the learning task at hand. The
properties extracted from the tree (such as nodes per feature, maximum tree
depth, shape and tree imbalance) serve as a basis to explain the performance of
other learning algorithms applied to the same task. In [13,37] the proposed meta-
learning strategy characterises the task by means of landmarking. In this case,
the recourse to meta-feature evaluation is avoided by employing simple learners,
called landmarkers, whose cross-tasks performances is referred to characterise a
learning domain.
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4.3 About the Selection Mapping

The selection mapping S is devoted to the identification of the best algorithm
to be associated to the meta-characteristics c(t) extracted by a given task t ∈ T .
Chronologically, the very first approaches for the implementation of S required
a human expert to manually build a set of meta-rules defined for associating
the task domain characteristics to the learning algorithms [2, 38]. In the fol-
lowing, every effort has been paid to develop some automatic mechanism in
order to overcome the limitations exhibited by the manual rule construction ap-
proach. The general idea consists in the application of a base-learning algorithm
to the meta-training set, so that the mapping between the input and the out-
put components in (1) can be automatically revealed. In this way, the learning
experience acquired during several sessions of base-learning (and stored in the
meta-training set) induces a generalisation hypothesis concerning the mapping
established between different tasks and learning algorithms. The choice provided
by the selection process S can be single or multiple, depending on the expected
output results. In fact, a single base-learning algorithm can be chosen among
a pool of candidates in A; alternatively, a ranking of several algorithms can be
provided [39, 40, 41].

4.4 About the Performance Measure

As concerning the performance measure p, predictive accuracy is the most widely
adopted criterion in literature. A number of motivations support this choice,
ranging from the relative easiness in computing accuracy values, to the possibil-
ity of establishing a ranking of different hypotheses in terms of predictive accu-
racy. However, some other factors inside the space P can be taken into account
to assess the performance of a learning algorithm (including, for instance, ex-
pressiveness, compactness, computational complexity, comprehensibility). In [42]
several alternative measures of performance are purposely discussed.

5 Computational Intelligence for Meta-Learning:
An Original Proposal

In our excursus concerning different proposal of meta-learning strategies, we have
not mentioned Computational Intelligence (CI) approaches. Actually, it appears
that the connection between meta-learning and computation intelligence was not
deeply explored in the last decade2, yet we consider that such a marriage repre-
sents a promising avenue of research (as witnessed also by this edited book). In
some previous works we have investigated the rationale behind the organisation
of a meta-learning framework on the basis of hybrid integration strategies [27,44]

2 A remarkable exception is represented by the work of Abraham [43] proposing an
automatic computational framework, intended to adaptively define the architecture,
connection weights and learning algorithm parameters of a neural network, with
recourse to evolutionary algorithms.
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and we have proposed a theoretical analysis oriented to assess the potentiality of
meta-learning methods versus the common base-learning practices using the field
of connectionist learning as a research laboratory, exploring the meta-learning
possibilities of neural network systems [45]. Here we intend to present an origi-
nal meta-learning system based on the neuro-fuzzy integration. The name of the
system is Mindful (Meta-INDuctive neuro-FUzzy Learning) and we are going
to illustrate both its working engine and a complete session of experiments.

The Mindful system is based on the employment of a single learning scheme:
a neuro-fuzzy system plays the twofold role of base-learner (to tackle ordinary
predictive learning tasks) and meta-learner (to produce some form of meta-
knowledge). With reference to the general framework for meta-learning presented
in section 4, here we deal with an algorithm selection process assuming the role
of a parameter selection function, oriented to identify the best parameter con-
figuration pertaining to the single learning scheme of the Mindful system (the
set A actually represents the set of biases referring to the neuro-fuzzy model). In
this way, we are able to characterise our approach on the following key points:

– the meta-learning strategy is translated to a more qualified level: it is not
intended as simply picking a learning procedure among a pool of candidates,
but it focuses on a deeper analysis of the learning model behaviour, in order
to understand and possibly to improve it;

– the choice for a single learning model should be suitable to preserve the
uniformity of the whole system and to reduce its complexity, even in terms
of comprehensibility;

– the adoption of a neuro-fuzzy strategy, applied both at base- and meta-level,
endows also the meta-learning procedure with the benefits deriving from the
integration of the connectionist paradigm with fuzzy logic.

As known, the neuro-fuzzy hybridisation is one of the most productive approach
in the context of CI. On the one hand, fuzzy logic provides a formal apparatus
that enables a rigorous treatment of reasoning processes typical of human cog-
nitive patterns [46]. It promotes also a form of “computing with words” where
natural language can be adopted to set up a linguistic representation of knowl-
edge [47]. On the other hand, neural networks provide a powerful means for
learning and extracting knowledge from data. In this way, the neuro-fuzzy in-
tegration combines complementary aspects of machine learning, allowing fuzzy
inference systems to adjust linguistic information using numerical data and neu-
ral networks to manage interpretable knowledge [48, 49, 50].

5.1 The Working Engine of the Mindful System

The neuro-fuzzy strategy constituting the kernel of the Mindful system adopts
a working scheme similar to the Anfis model [51] to codify knowledge in form
of fuzzy rules:

IF x1 is Ar
1 AND . . . AND xm is Ar

m

THEN y1 is br
1 AND . . . AND yn is br

n,
(2)
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where the index r = 1, . . . , R indicates the r-th rule among the R comprised
into the rule base; Ar

i are fuzzy sets (defined over the input components xi,
i = 1, . . . , m) expressed in terms of Gaussian membership functions; br

j are fuzzy
singletons (defined over the output components yj, j = 1, . . . , n). The fuzzy
inference system is comparable to the Takagi-Sugeno-Kang (TSK) method of
fuzzy inference [52]: the fulfilment degree of each rule is evaluated using the
product operator as the particular T-norm interpreting the AND connective. The
components of the output vector inferred by the fuzzy rule base are evaluated
as the weighted average values of the rule activation strengths with respect
to the singletons. The fuzzy inference system is translated into a three-layer
feed-forward neural network (the neuro-fuzzy network), which reflects the rule
base in its parameters and topology, and the learning scheme of the Mindful’s
kernel module is articulated in two successive steps, intended to firstly initialise a
knowledge structure and then to refine the obtained fuzzy rule base. During the
first step, a clustering of the input data is performed by an unsupervised learning
process of the neuro-fuzzy network: this clustering process is able to derive the
proper number of clusters starting from a guessed number R̃. In this way, an
initial knowledge is extracted from data and expressed in form of base of rules.
The obtained knowledge is successively refined during the second step, where a
supervised learning process of the neuro-fuzzy network is accomplished (based
on a standard gradient descent technique), in order to attune the parameters of
the fuzzy rule base to the numerical data. (Further details about the learning
scheme of the neuro-fuzzy network can be retrieved in some other publication of
ours [53].)

The main factors involved in the first step of learning are represented by the
initial number R̃ of rules and the learning rates αω and αρ associated to the
rival penalised learning. The learning rate η of the back-propagation algorithm
can be identified as the main factor involved in the second step of learning.

The scheme of the meta-learning strategy performed by the Mindful sys-
tem is illustrated in figure 2. The overall activity of Mindful is based on the
previously described neuro-fuzzy model acting as base-learner (when tackling
ordinary predictive learning tasks) and as meta-learner (to produce some kind
of meta-knowledge). The difference is in the dataset to be handled: when dealing
with base-learning tasks the dataset contains observational data related to the
problem at hand. We assume that the available instances are expressed as a set
of samples, each of them being a couple of input-output vectors, respectively in-
dicated by x = (x1, . . . , xm) and y = (y1, . . . , yn). The (base-) knowledge derived
from the base-learning activity obviously concerns only the particular task under
study. The meta-learning process, instead, is based on the analysis of a meta-
level dataset where information is expressed as in (1) (see section 3), where the
task characterisation c(t) is a vector of meta-features extracted from the base-
level datasets, and the best bias a(t) ∈ A is meant as a parameter configuration
of the neuro-fuzzy learning scheme. The end product of the meta-learning activ-
ity is the formulation of a (meta-) knowledge describing the correlation between
each specific task and the proper parametrisation to be used while base-learning
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Fig. 2. The meta-learning strategy performed by the Mindful system

the task. Since the learning activity at base- and meta-level is performed by the
same neuro-fuzzy model, both the base-knowledge and the meta-knowledge are
ultimately expressed in form of fuzzy rule base, where every rule is formalised
as in (2).

As shown in figure 2, the overall activity of the Mindful system is supported
by a couple of additional components: the Meta-Feature Extractor (MFE) mod-
ule, which extracts a set of features needed to characterise the base-level tasks
under analysis, and the Performance Assessment (PA) module, which identifies
a specific parameter configuration for each particular task. Hence, the two mod-
ules are devoted to assemble the meta-training set that will be investigated by
the Mindful’s kernel module during the meta-learning practice. In particular,
the MFE module computes a subset of the meta-features reported in table 2,
namely: number of attributes, number of output values, mean linear correla-
tion coefficient, mean skewness, mean kurtosis, 1-D variance fraction coefficient,
normalised class entropy, mean normalised attribute entropy, normalised mu-
tual information class/attribute, equivalent number of attributes, noise-signal
ratio (all of them have been selected as a result of a focused analysis discussed
in [27, 33]). The PA module associates to each task characterisation the most
suitable parameter configuration of the neuro-fuzzy learning process (in the way
it can be identified while experimenting at base-learning level). In practice, the
parametrisation refers to the configurations of parameters presiding over the
general learning process (i.e. the previously mentioned learning rates and the
initial number R̃ of rules). It must be highlighted that the performance crite-
rion adopted by the PA module to identify the best parameter configuration
to be associated to each task consists in a trade-off between the accuracy and
the complexity of the derived knowledge (namely, the final learning error and
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the number of rules of the fuzzy rule base). In other words, the MFE and the
PA modules stand as the meta-feature extraction procedure c and the selection
mapping S reported in figure 1, respectively.

6 Experiments with the Mindful System

For the sake of illustration we report a complete session of experiments performed
by the Mindful system into the Matlab c© environment. However, a more de-
tailed experimentation (involving some preliminary testing with synthetic tasks
and a thorough session of experiments performed on real-world datasets) can be
found in [54].

The overall strategy consists in performing a preliminary set of base-learning
experiments, useful to determine the best bias configurations in correspondence
with various types of tasks. Then, a meta-training set is established, properly
organising the information provided by the MFE and the PA modules. On the
basis of the meta-training set, the meta-learning process is accomplished, in order
to derive a fuzzy rule base embedding the extensively extracted meta-knowledge.
Finally, different cases of meta-knowledge exploitation are shown to demonstrate
how the meta-learning strategy can be useful in enhancing the performance of
novel base-learning processes.

A total number of 10 datasets are involved in the experimental session, 9 of them
directly contributed to the construction of the meta-training set. Table 3 reports
a brief description for each dataset. They have been chosen to represent differ-
ent classification tasks, where only numerical attributes are involved3. Moreover,
some of them have been subjected to a pre-processing phase, to remedy particular
problems, such as missing values and excessive number of input features.

Table 3. Description of the involved datasets (m denotes the number of input features,
n the number of classes, K the number of instances).

Code Dataset m n K Source

BCW Breast-Cancer Wisconsin 9 2 683 UCI [23]
BLS Balance Scale 4 3 625 UCI [23]
GLS Glass Identification 9 2 214 UCI [23]
GT0 Geometric Task 2 2 1000 Synthetic
ION Ionosphere 18 2 351 UCI [23]
IRS Iris 4 3 150 UCI [23]
MT0 Medical Task 9 2 1000 Synthetic
PID Pima Indians Diabetes 8 2 768 UCI [23]
SEG Image Segmentation 18 7 2310 UCI [23]
WIN Wine 12 3 178 UCI [23]

3 It has been chosen to perform the base-learning activity of the Mindful system on
classification tasks only, hence the output components of the task instances are made
up of binary vectors indicating the membership of each instance to a particular class.
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Table 4. The adopted bias configurations.

Bias conf. αω αρ η R̃

Bias1 0.90 0.0001 0.85 3
Bias2 0.09 0.0001 0.90 5
Bias3 0.01 0.0010 0.50 7
Bias4 0.01 0.0001 0.50 10
Bias5 0.09 0.0100 0.25 13

Table 5. The summary of the base-learning session of experiments (Bias1, and Bias2

were not employed with the SEG dataset, since they are characterised by an inadequate
number of rules to tackle a task with 7 output classes).

Dataset Bias1 Bias2 Bias3 Bias4 Bias5

BCW 0.0364 0.0408 0.0363 0.0349 0.0365
GLS 0.0762 0.1088 0.1190 0.0714 0.0937
GT0 0.2650 0.0840 0.0470 0.0510 0.0530
ION 0.0900 0.0647 0.0882 0.0677 0.0900
IRS 0.0410 0.0533 0.0473 0.0533 0.0533
MT0 0.1370 0.0820 0.0680 0.0480 0.0380
PID 0.3100 0.2915 0.2590 0.2915 0.2967
SEG - - 0.2658 0.2398 0.1865
WIN 0.1618 0.0736 0.0666 0.0673 0.1403

The neuro-fuzzy learning strategy has been applied to conduct the base-level
activity on the basis of the datasets described in table 3 (excepting the BLS
dataset, which has been kept for the subsequent phase of meta-knowledge as-
sessment). In this way, we accumulated a learning experience that could be
successively encoded into the meta-training set. Relying on the past usage of
the hybrid learning strategy [53], we identified the 5 parameter configurations
reported in table 4 which appeared to be quite discriminatory for the obtain-
able performance results (in [54] the problem of evaluating a reduced subset of
parameters among infinite possibilities is discussed in details).

A 10-fold cross-validation procedure was conducted for investigating each of
the 9 datasets with the kernel of the Mindful system, in order to recognise the
configuration providing the best performance results for each classification task.
It should be underlined that, although the obtained results can be considered
satisfactory for almost every examined problem, the main objective of these
experiments was to accumulate learning experience, instead of simply obtaining
the most accurate outcomes possible.

Table 5 sums up the average classification error values achieved for each classi-
fication task during the 10-fold cross-validation sessions. The values emphasised
in bold characters refer to the bias configurations yielding the best results (deter-
mined by the PA module in terms of trade-off between accuracy and complexity
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Fig. 3. Box and whiskers plots describing the variation of the classification errors,
according to the selected bias configuration. (a) GLS dataset, (b) PID dataset, (c)
SEG dataset.

of the derived fuzzy rule base). Correspondingly, figure 3 shows the 10-fold cross-
validation results for three sample datasets, for each of the applied bias config-
urations. By analysing the figure and the table, it can be argued that Bias1,
Bias3 and Bias5 stand as the best parameter configurations to be adopted for
the GLS, PID and SEG datasets, respectively.

The accumulated learning experience has been codified into a meta-training
set by simply correlating the pieces of information deriving from the MFE and
PA modules. By considering each dataset analysed during the 10 fold cross-
validation procedure, the meta-training set is composed by 90 samples.

To extract meta-knowledge from the accumulated base-level experience, the
same neuro-fuzzy strategy performed by the kernel of the Mindful system has
been replied over the meta-training set. In this case, the particular task to be
faced consists in a regression problem, where the output values are represented by
the numerical bias parameters. During the meta-learning sessions of experiments,
the hybrid learning procedure has been performed over the meta-training set
by adopting the same five bias configurations described in table 4 (with the
exclusion of Bias1). In the end, the best parameter configuration to be applied
on the meta-training set resulted to be Bias3, as demonstrated by table 6, where
the error values are reported in terms of Mean Squared Error, together with the
final number of rules of the obtained fuzzy rule bases. In this way, the fuzzy rule
base eventually embedding the meta-knowledge is composed by 6 fuzzy rules.
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Table 6. Results obtained during the meta-learning experimental sessions, employing
four out of the five bias configurations.

Bias
configuration

Final number
of rules

MSE
accuracy

Bias2 5 0.7772
Bias3 6 0.1828
Bias4 10 0.2964
Bias5 11 0.2317

bias1 bias2 bias3 bias4 bias5 bias

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

suggested

Fig. 4. Box and whiskers plot related to the experiments on the BLS dataset.

In order to functionally evaluate the appropriateness of the derived meta-
knowledge in capturing the experience accumulated during the past sessions
of experiments, we dealt with new base-level situations, supported by the bias
suggestions provided by the meta-knowledge. In our simulation, we resolved to
investigate the BLS dataset (as previously specified, it was left out from the
number of datasets employed to derive the meta-training set). In detail, the
meta-features extracted from the BLS dataset have been used as input values
for the fuzzy meta-rule base to infer a configuration of bias parameters. In order
to evaluate the suggested parameter setting, a 10-fold cross-validation has been
executed both on the previously adopted ensemble of bias configurations, and on
the newly inferred bias configuration. The results of these experimental sessions
are summarised by the box and whiskers plot depicted in figure 4. As it can be
easily observed, all the employed bias configurations yield satisfactory outcomes
when applied to tackle the BLS dataset. However, the suggested bias is able to
produce excelling results when compared with the other parameter settings.
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Fig. 5. Comparison of the learning results obtained at the end of the 10-fold cross-
validation procedure performed over the MT0 dataset using (a) the complete dataset
(1000 instances) and (b) the impoverished dataset set (100 instances). The horizontal
lines indicate the mean error values.

For further evaluating the meta-knowledge, we planned to re-analyse some
of the classification tasks already tackled during the base-learning session of
experiments. In this way, it is possible to verify how the meta-knowledge may
help to remedy a reduced amount of information concerning a particular task,
simulated by the employment of an impoverished training set. As an example, we
can consider the re-investigation of the MT 0 dataset, where a number of only
100 instances have been used as training set (sampled from the original 1000
instances). Again, the meta-features extracted from the newly adapted dataset
were useful to infer a suggested bias configuration from the fuzzy meta-rule
base and a complete session of 10-fold cross-validation has been performed for
the sake of evaluation. On average, the performance results obtained with the
inferred bias are comparable with those produced by the previous session of base-
learning experiments (proportionally to the impoverishment rate of the dataset).
As demonstrated by the graphs reported in figure 5, a restrained increase of the
classification error corresponds to a drastic reduction of the training set (of the
order of 90% of the training samples).

7 Conclusions

The majority of artificial learning activity traditionally aims at developing learn-
ing models on the basis of a tabula rasa approach, where a particular task is
tackled by examining a number of training examples. In this way, often the lit-
erature panorama draws attention to the realisation of intelligent systems which
prove their efficiency over specific tasks, in a kind of “case-study” evaluation.
Invariably, some algorithms are reported to excel others in a more or less signif-
icant way, mostly by means of empirical evaluations, instead of more appropri-
ated formal analysis. Although the pragmatic focus on the obtained results for
a problem at hand may be acceptable (or even desirable) in some engineering
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contexts, it appears that a more extensive analysis is often necessary. Actually,
the tabula rasa approach necessarily implies that each learning algorithm ex-
hibits a selective superiority, leading to a good fit for some learning tasks and
a poor fit for others. In fact, a model induced from a particular set of obser-
vations is unlikely to extend its capabilities on unseen cases, without resorting
to a new set of training samples. Even, a learning model is not capable to trea-
sure past accumulated knowledge, in order to face related tasks with a better
degree of efficiency. It appears that the widest gap to fill between artificial and
human learning consists in the unsatisfactory aptitude of the machines in im-
proving their ability to learn tasks, just like common people do during their life.
Moreover, from a practical perspective, an adequate disposition in retaining and
exploiting past experience would be helpful also to overcome the deficiency of
training samples suffered in many real world applications. The limitations of
base-learning strategies can be stated even by referring to some theoretically
established results: the “No Free Lunch” theorem expresses the fundamental
performance equality of any chosen couple of learners (when averaged on every
task), and denies the superiority of specific learning models outside the case-
study dimension. In this chapter the meta-learning approach has been proposed
as the most natural way of performing a dynamical bias discovering. Starting
from the analysis of a general meta-learning framework, which offered the op-
portunity for reviewing some basic techniques in meta-learning literature, we
brought forward the proposal of a particular meta-inductive neuro-fuzzy learn-
ing system, the Mindful system, based on the neuro-fuzzy integration. Actually,
it is not so common to find in literature examples of computational intelligence
techniques employed inside meta-learning scenarios. Yet, we believe that such a
combination can prove to be very fruitful and a growing interest is registered
toward this specific issue (as demonstrated also by the present edited publica-
tion). The results of the experimental sessions demonstrate the capability of the
Mindful system in retaining base-learning experience and exploiting it during
meta-level activity. Future work should be addressed in further assessment of the
system, while studying also mechanisms for implementing some kind of life-long
learning strategies based on incremental improvement of the meta-training set.
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Department of Computer Science, FIT,
Czech Technical University, Prague, Czech Republic

kordikp@fit.cvut.cz

1 Introduction

The cornerstone of successful data mining is to choose a suitable modelling
algorithm for given data. Recent results show that the best performance can be
achieved by an efficient combination of models or classifiers.

The increasing popularity of combination (ensembling, blending) of diverse
models has been significantly influenced by its success in various data mining
competitions [8,38].

The superior generalization performance of the ensemble can be explained
by the bias-variance error decomposition [31]. Well established methods such
as Bagging, Boosting or Stacking have been applied to combine the most of
the existing data mining algorithms. Ensembles such as Random Forests, neural
network ensembles or classifier ensembles are also widely used. Ensembling of-
ten increases the plasticity of weak learners and improves the generalization of
overfitted base models.

Recent classifier combination methods are summarized in [9,39]. The related
problem of regression model combination has been targeted by individual stud-
ies, but no comprehensive summarization is available. In this study, we target
primary algorithms that combine (aggregate) regression models.

When we combine identical models, no improvement can be achieved. Member
models have to be diverse (e.g. demonstrate diverse errors) in order to get more
accurate results. In this chapter, we study the role of diversity in the ensemble
and try to find a balance between the diversity and the accuracy of models within
ensembles.

The motivation of our research is to develop a data mining algorithm, that
provides reasonable results for a large range of different data sets which can
be used in our Fully Automated Knowledge Extraction (FAKE) framework [2].
For this task, we developed the Group of Adaptive Models Evolution (GAME)
algorithm [35] combining several different base models within a cascade-like en-
semble. In this chapter, we examine the diversity of base models within our
GAME ensembling algorithm and find that the optimal parameter setting is
very data dependent. Furthermore, the GAME algorithm fails to produce en-
sembles of reasonable quality for complex one-dimensional data sets [16]. The
reason is that data distribution to base models and the combination of their
results were designed primarily for multivariate noisy data. In order to get a
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more versatile solution and produce accurate models for data sets with differ-
ent properties, we propose an alternative algorithm, SpecGen, described later
in this chapter. SpecGen combines models in a hierarchical manner, utilizing
well-known ensembling techniques such as Bagging, Boosting, Stacking etc.

Firstly, we evaluated individual ensembling techniques with elementary mod-
els on several benchmarking problems. Again, we found that the performance of
techniques is data dependent. Based on the results, we propose an evolutionary
strategy that combine ensemble methods and base models in a hierarchical tree-
like structure. This structure is evolved for every data set by means of genetic
programming. Evolved hierarchical ensembles demonstrate not only versatility,
but also increased accuracy for all the data sets we have been experimenting
with.

Before we start to deal with ensembling techniques, elementary base models
and their optimization will be described.

2 Elementary Regression Models

The simplest models that cannot be further decomposed are typically elementary
functions. The functions transfer input signals x1, x2, ..., xn to their output y, us-
ing parameters a0, a1, ..., an. The parameters (also called weights) are optimized
during the training - typically by a gradient-based method.

x1

xn

x2

...

Linear model x1

xn

x2

...

Polynomial model x1

xn

x2

...

Gaussian model

x1

xn

x2

...

Sine modelx1

xn

x2

...

Sigmoid model x1

xn

x2

...

Exponential model

Fig. 1. Base models used in our experiments.

The base models used in our experiments are described below. In this article,
we refer to base models also as neurons1.
1 This is not always correct, because base models do not always have a nonlinear

transfer function at the output and some models are more likely an ensemble of
single input neurons. However base models are elementary terminal elements within
ensembles and networks and we call them neurons in this sense.
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2.1 Linear Model

The linear combination is frequently used in ensemble methods, therefore we
supply independent base models implementing this function.

y =
n∑

i=1

aixi + a0, (1)

where n is the number of input variables, a0 is the bias and ai is the slope of
linear function in each input dimension.

2.2 Polynomial Model

The most important parameter influencing the plasticity of the polynomial mod-
els is the maximum degree m. When this parameter equals 1, this model is
equivalent to the linear model.

y =
n∑

i=1

m∑
j=1

aijx
j
i + φ (2)

As you can see, the number of model parameters is equal to n ∗ m + 1, so the
maximum degree should be small for high-dimensional data.

2.3 Sigmoid Model

The sigmoid transfer function is the most popular activation function of neurons
in the neural network (NN) domain. The sigmoid shape is ideal in expressing
decision boundaries and it is therefore used in classifiers.

y =
an+1

1 + e−(
∑n

i=1 aixi+a0)
+ an+2 (3)

For regression purposes, we added two coefficients an+1, an+2 giving the model
the ability to scale and shift to data that have not been normalized.

2.4 Sine Model

The sine model can fit periodic functions well. For other data, the behaviour of
the sine model will be similar to low-degree polynomials. The transfer function
should be able to fit data independently in each dimension.

y =
n∑

i=1

a2n+i sin(aixi + an+i) + a0 (4)

Therefore the transfer function is in fact the weighted average of one-dimensional
sine functions.
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2.5 Exponential Model

The exponential transfer function with scale an+1 and shift an+2 parameters has
a limited plasticity.

y = an+1e
an+1(

∑n
i=1 aixi+a0) + an+2 (5)

2.6 Gaussian Model

The Gaussian function describes the normal distribution. Parameters adjust the
shift and spread of the blob in each dimension.

y = e

∑n
i=1 − (xi−ai)

2

a2
n+i (6)

In this version, the model can fit normalized data only. This problem can be
solved by adding the shift and scale parameters (as in the Equation 5). On the
other hand, these parameters increase the complexity of the parameter estima-
tion task.

2.7 Parameter Estimation

Parameters of linear or polynomial models can be estimated directly from data in
one step (linear least squares method). For example the parameters of the linear
model (Equation 1) can be computed using the training data set, containing l
samples in the form x1, x2, . . . , xn; y (input vector; target output).

Then the model can be written as a system of linear equations:

⎡
⎢⎢⎢⎣
y1

y2

...
yl

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 x11 x12 . . . x1n

1 x21 x22 . . . x2n

...
...

...
...

1 xl1 xl2 . . . xln

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

a2

...
am

⎤
⎥⎥⎥⎥⎥⎦ (7)

The vector a of parameters can be estimated using the following matrix opera-
tions:

â = (XTX)−1 XT Y. (8)

For polynomial models, the matrix of inputs will be modified in the following
manner: each element xij will be expanded to m elements xij , x

2
ij , . . . , x

m
ij . Also,

the number of parameters (length of the vector a) increases to m ∗ n.
To estimate parameters of other base models (sigmoid, sine, exponential and

Gaussian), we use the general purpose continuous optimization algorithm de-
scribed below. We also implement non-linear least squares [46] and maximum
likelihood estimates [18] for individual models, and we will use this in the future.

The process of parameter optimization is depicted in Figure 4. Based on
the error of the model with the initial parameters, the optimization method
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Fig. 2. Parameters a0, a1, ..., an of the model can be optimized by a general purpose
optimization method.

iteratively estimates new parameters and gets feedback from the model (error
on the training data set).

The number of iterations (error evaluations) can be significantly reduced when
global optimization methods are supplied with an analytic gradient (and pos-
sibly also Hessian) of the error function. Examples of how to compute analytic
gradients of the base models can be found in [34]. In [36], we show that the most
universal optimization methods for this purpose are the quasi-Newton method
and the Covariance Matrix Adaptation Evolution Strategy. We also propose to
combine them within a single network.

Our base models are very simple and often have a limited capacity to fit
the true relationship in the data set (weak learners). Except in the case of the
polynomial model with a high degree, it is not necessary to be concerned about
data overfitting. On the other hand, the models are able to model only very
simple relationships and their bias is high.

3 Combination of Models

3.1 Neural Networks

The combination of simple models with a sigmoid transfer function (called neu-
rons) in a neural network dramatically reduced bias and improved the accuracy
over individual models. The most popular neural network is MultiLayered Per-
ceptron (MLP), which can be trained by means of a gradient method called
back-propagation of error or using an evolutionary strategy [45].

Sigmoid models (neurons) can also be combined into a cascade network struc-
ture by means of the Cascade Correlation Algorithm [20].

The Radial Basis Function Network (RBFN) combines Gaussian models [50].
The Multilayered Iterative Algorithm (MIA GMDH) [30] or Polynomial Neural
Networks (PNN) [51] combine polynomial models.

There are hundreds of possible combination techniques (learning paradigms)
and many of them can model an universal function [42], when enough neurons
are used. Therefore, it is necessary to prevent data overfitting (eg. by using a
validation data set).
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Note that a neural network would not be more efficient than a single (e.g.
sigmoid) model, if it uses identical neurons. Therefore the diversity of neurons -
in terms of their behaviour - plays a critical role in the accuracy improvement
over individual neurons. Mechanisms enforcing the diversity in neural networks
will be described and categorized in the next section.

3.2 Ensemble Methods

Combination (ensembling, blending) of diverse models (classifiers, regression
models) is becoming main stream in data mining.

Where neural networks are algorithms combining predefined neurons into
(mostly) fixed topologies in order to reduce their bias, the general ensemble
methods described below can combine base models of any transfer function. En-
semble methods often improve the generalization performance of base models.
The bias-variance error decomposition [31] shows that both bias and overfitting
of base models are often reduced by ensemble methods. In our experiments, we
use the most popular ensemble methods, a short description of which follows.

Bagging algorithm creates several training ”bootstrap” subsets from the original
training set. A model is created for each subset. The result for an unknown
instance presented to ensemble is calculated as an average of their responses
[22,10,9].

Boosting [58,9] algorithm produces a single model in the beginning. In regions
where it fails to respond correctly, the instances are boosted - their weight is
increased and a second model is created. The second model is more focused on
instances where the first model failed. In the regions where the second model
failed, weights of instances are increased again, the third model is introduced
and so on. Output for an unknown instance is given by weighted average. The
weight of each model is calculated from its performance (the better the model,
the greater the weight).

Stacking [67,9] uses several different models trained on a single training set. The
responses of these models represent meta-data which are used as inputs of a
single final model which is used for calculating output for unknown instances.

Cascade Generalization [24,9] presents a sequential approach to combination of
models. In Cascade Generalization a sequence of learners is created. The inputs
of learner Ai consist of input base-data and also outputs of previous models
Ai−1. Thus each model in the sequence is partially base-learner and partially
meta-learner. Unknown instances pass through the sequence, and the output of
the last model becomes the output of the whole ensemble.

Cascading [32,4,9] in a similar way to Boosting changes the distribution of train-
ing instances. The difference is that the distribution is changed with regard for
the confidence of the previous model. Models are built in cascade. When recalling
an instance, the output is produced by the first model in the cascade exceeding
a confidence threshold.
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Delegating [21,9] resembles Stacking, with the difference that the next models are
trained on delegated instances, where previous models do not reach a minimum
confidence. The number of instances in the training set decreases for the next
models. For a new instance, the output is the first model with higher confidence
than a given threshold.

We have also designed and implemented two local ensemble methods - Area
Specialization and Divide Ensemble.

Area Specialization uses the same learning method as Boosting, but it can pos-
sibly use any other method. The essence of Area Specialization is in output
computation for unknown instances. In short, it gives the output of that model
which is best for the area where the unknown vector is. First, the distance from
the unknown vector to all learning vectors is calculated and the closest N vectors
are taken into the next step (N identifies the algorithm parameter called area,
which determines how smooth the transitions will be between areas of output
of different models). Then the best model is chosen for every learning vector
selected in the first phase. Next, model weights are calculated as the difference
of target value of the learning vector and the output of the best model for the
unknown vector. The weight values are inverted using Gaussian function and
summed up for all N learning vectors to corresponding models. Model weights
are used in weighted average output.

Algorithm 1. AreaSpecialization.getOutput(unknownVector)
{Compute Euclidean distance of learning vectors to unknownVector.}
distance[] ⇐ computeDistanceToLearningV ectors(unknownV ector)
{Get indexes of sorted learning vectors by distance.}
indexes ⇐ sort(distance)
for i = 0 to area do

{Take ith closest learning vector and find model with smallest error on that learn-
ing vector.}
bestModelIndex ⇐ getBestModelIndex(learningV ectors[indexes[i]])
{Compute difference between target value of closest learning vector and output of
model for unknownVector which is best for that learning vector.}
diff ⇐ targetOutput[indexes[i]]−model[bestModelIndex].getOutput(unknowV ector)
{Compute model weights from how well model performs on learning vector.}
modelWeights[bestModelIndex] ⇐ +Gaussian(diff)

end for
modelWeights ⇐ normalize(modelWeights)
ensembleOutput ⇐ 0
{Weighted average.}
for i = 0 to modelsNumber do

ensembleOutput ⇐ +model[i].getOutput(uknownV ector) ∗ modelWeights[i]
end for
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Divide ensemble divides learning data into clusters (for example using k-means
algorithm) and assigns one model to each cluster. Response to unknown instance
is given by the model which is in charge of the cluster to which the unknown
instance belongs.

There are two main advantages of this approach. Firstly, the model will prob-
ably perform better on a smaller area of learning data and has a higher chance of
adapting to it. Secondly, dividing data into smaller training sets for models may
cause boost in learning speed (if the learning algorithm has more than linear
complexity in relation to learning vectors).

To reduce the model’s unexpected behaviour near the edge of the cluster,
where there are usually little or no learning vectors, we use clustering modifica-
tion to enlarge all clusters by a certain amount. Function 2 describes the process.
Its inputs are coordinates of cluster centroids and an array containing indexes
of vectors for each cluster. Each vector is checked comparing the distance to the
other centers with the distance to it’s own center. If the ratio of distances is
above a certain threshold, the vector is added to the cluster belonging to the
other center (this means the vector can be in more than one cluster simulta-
neously). This feature improves model error, reduces outline values and makes
transition between models (clusters) smoother.

Algorithm 2. DivideEnsemble.roughClustering(clusterCenters[], clus-
terIndexes[][])

for each vector in data do
distance[] ⇐ computeDistanceToCenters(vector)
{Get indexes of sorted learning vectors by distance.}
indexes[] ⇐ sort(distance)
closestDistance ⇐ distance[indexes[0]]
for i = 1 to clusterCenters.length do

currentDistance ⇐ distance[indexes[i]]
if distance[indexes[i]] > centerDistance[indexes[0]][indexes[i]] then

{If the distance of the vector to the other center is greater than the distance
between centers, do not skip that vector (it means the vector is located in the
half of the cluster that is behind its center).}
continue

end if
{clusterSizeMultiplier is algorithms parameter which determines how much clus-
ters will be resized.}
if currentDistance/closestDistance < clusterSizeMultiplier then

addV ectorToCluster(i, vector)
end if

end for
end for

Ensembles can be used to combine any models. Base models are often collec-
tions of models themselves. Very popular are ensembles of neural networks.
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3.3 Neural Network Ensembles

Research in the area of neural network ensembles [69] revealed that the gener-
alization of neural network models (or classifiers) can be further improved by
their combination.

Neural network ensemble is a learning paradigm where a collection of a finite
number of neural networks is trained for the same task. It originates from Hansen
and Salamons work [27], which shows that the generalization ability of a neural
network system can be significantly improved through ensembling a number of
neural networks, i.e., training many neural networks and then combining their
predictions.

In general, a neural network ensemble is constructed in two steps, i.e., training
a number of component neural networks and then combining the component out-
puts. As for training component neural networks, the most prevalent approaches
are Bagging and Boosting [26]. Bagging is based on bootstrap sampling [28]. It
generates several training sets from the original training set and then trains a
component neural network from each of those training sets. Boosting generates
a series of component neural networks whose training sets are determined by the
performance of former ones. Training instances that are wrongly predicted by
former networks will play more important roles in the training of later networks.

In [3], MLP neural network committees proved to be superior to individual
MLP networks. The committee of GMDH networks generated by the Abduc-
tory Inductive Mechanism (AIM) gave better performance just when individual
networks varied in complexity.

For combining the networks, several strategies can be used. The simple en-
semble strategy computes the mean output of individual networks and weighted
ensemble computes the weighted average. The idea of neural network stacking
is to create a meta-data set containing one row for each row of the original data
set. However, instead of using the original input attributes, it uses outputs of
individual networks as the input attributes. The target attribute remains as in
the original training set. Test instance is first evaluated by each of the base
networks. Then responses are fed into a meta-level training set from which a
meta-model is produced. This meta-model combines the different outputs into a
final one [57].

General ensembling strategies can be applied multiple times. Some of them
are designed to reduce the bias part of error, others reduce the variance part.
Ensemble of ensembles can therefore combine strengths of multiple ensembling
strategies.

3.4 Combination of Ensembles

Multi-boosting [66] combines ensemble learning techniques that have the ca-
pacity to effectively manage trade off between diversity and individual error. It
leads to further increases in internal diversity without undue increases in individ-
ual error and results in improved accuracy. Multi-boosting combines AdaBoost,
and a variant of Bagging called Wagging (weighted Bagging). It was demon-
strated to attain most of Boostings superior bias reduction together with most
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of Waggings superior variance reduction. Stratified gradient boosting [23] boosts
stratified samples, and the experimental results indicate that Bagging increases
robustness of Boosting for some data sets.

Combining Stacking and Bagging [68] also showed good results (with partic-
ular base learners on particular data sets).

The problem of these methods is that they bring improved generalization
for some data sets only, and it is not clear when to use them. Basic ensemble
strategies such as Bagging or Boosting should be used for overfitted base models
or for weak learners. The appropriate combination of ensemble methods is the
subject of a trial and error strategy.

Below, we discuss principles that may help us to build unbiased ensembles
with the capacity to adapt to a particular data set.

4 Diversity and Self-organization

In this section, we give examples of how to promote diversity in ensembles and
we discuss how ensembles can be self-organized in order to match required model
complexity for a particular data set.

4.1 Diversity in Ensembles

As already stated above, diversity of individual models is highly important in
all levels of combination. However we are far from the statement that higher
diversity always means higher accuracy. The diversity can be increased by adding
models with low accuracy and this will likely cause a decrease in accuracy of
the combined solution. It is necessary to find a trade-off between diversity and
individual error.

The diversity in the lowest level of combination can be regulated by

– dataset manipulation:
• employed input features,
• set of instances used for training;

– model manipulation:
• distance of model parameters,
• type and complexity of transfer function.

For combination of networks and ensembles, data set can be manipulated in
the same way. The goal is to get a collection of networks or ensembles that
exhibit diverse errors.

Randomization of decision trees [15] or GMDH MIA use a different set of
input features for neurons (nodes, units).

Bagging introduces diversity by a varying set of instances used for training
of individual models. In [25] bagging produces diverse models, then Principal
Component Analysis (PCA) is applied to their outputs. This approach further
increases the diversity and reduces noise in the network.
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In [56], genetic programming is used to a design multilayered perceptron net-
work. The article also suggests promoting diversity among individual solutions
by means of the island strategy. This is consistent with [60], where fitness shar-
ing is used to protect newly emerged diverse networks while they evolve their
weights. In [13] a multiobjective evolutionary algorithm increases accuracy and
diversity of individual models within an ensemble. Experimental results indi-
cate that the evolved ensemble is more accurate than ensembles produced by
strategies focused on accuracy only.

Bakker [6] clusters models in the ensemble and selects only a representative
subset - which performs better than if all models are used. Here clustering allows
increasing diversity in the ensemble.

The DECORATE algorithm [47] constructs artificial data samples within es-
timated data distribution in order to increase diversity in the ensemble. Exper-
iments showed that DECORATE outperforms both Bagging and Boosting on a
wide range of real world data sets.

A very efficient strategy is to enforce diversity of base models during training.
Negative correlation network ensemble learning algorithm [43] uses a penalty
term that biases the error of individual base models. The produced models are
diverse and biased towards an optimal model, however their combination is close
to the optima. Several later studies [12,29,19] demonstrated the usefulness of NC
learning method for active promotion of diversity in ensembles.

The important question is how the diversity can be measured in the ensemble.
Various diversity measures for classifiers can be found in [40,65,11]. Some of them
can be adopted for regression ensembles.

Many articles [41] studied the connection of diversity and accuracy in the
ensemble. In [41], several diversity measures were evaluated and found to be very
similar. Experiments showed that there is no clear relationship between diversity
and the averaged individual accuracy in the ensemble. The general motivation
for designing diverse classifiers is correct but the problem of measuring this
diversity, and thus using it effectively for building better ensembles, is still to be
solved.

A very efficient and straightforward solution is to train individual models using
varied architectures, instances and features in order to obtain implicit diversity.

4.2 Self-organization

Self-organization [49] is another important principle that can help us to build
unbiased models of diverse data sets. The self-organized model, in our sense, is
able to adapt itself to a data set complexity without any external information.
Self-organizing models are constructed inductively from data. The induction
means gathering small pieces of information, combining it and using already
collected information in the higher abstraction level to get a complex overview
of the studied object or process.
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The construction process often starts from a minimal form and the model
grows until a system complexity is matched.

Input features

Output

Neurons
      or
base models

Networks
      or
Ensembles

Fig. 3. An example of a self-organized model decomposing the problem and using
diverse subsolutions to get a global unbiased model.

A problem is decomposed into small subproblems; combining subsolutions we
get higher level solution and so on. A modelling problem can be decomposed
into subproblems by scaling:

– Input features - the number of input features used by the model can be
limited

– Instances - the subset of instances used by the model can be limited
– Transfer function complexity - complexity of transfer function can be limited
– Parameters maximum - the maximal values of parameters can be limited

(weight decay)
– Acceptable error - parameter optimization can be stopped prematurely.

Figure 3 shows a hierarchical model consisting of neurons, networks and en-
sembles. It decomposes the problem by scaling the number of input features
(maximum 1 input for neurons in the first layer of the network). Also complex-
ity of the transfer function increases with increasing number of layer. The subset
of instances used for training can be increased with the network layer. Acceptable
accuracy can be varied within the ensemble layers. There are many more ways
of decomposing the problem and building a self-organized model. The question
is whether it is more efficient to scale all items (from the list above) at once and
finish with a single network, or to scale them one-by-one finishing e.g. with an
ensemble of ensembles of networks of models.

The following section describes how a self-organized network of models can
be built in order to respect the principles mentioned above. We present two
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different methods - the first combines models in a feedforward layered ensemble,
the second combines models hierarchically using several ensembling strategies.

5 Group of Adaptive Models Evolution

The first method, called Group of Adaptive Models Evolution (GAME), was
originally proposed in [34]. It combines base models in a feedforward layered
manner. It uses many principles from the last chapter. It starts from a minimal
form and scales the number of input features and transfer function complexity
of models. At the same time it promotes the diversity of base models by boot-
strapping training data, using different subsets of input features for base models
that differ also in the transfer function employed.

5.1 The Pseudocode of the Algorithm

The GAME algorithm is a supervised method. For training, it requires a data
set with input variables (features) and the output variable (target). The GAME
algorithm, in summary, is described below:

1. Separate the validation set from the training data set (50% random subset)
2. Initialize first population of base models – input connections, transfer func-

tions and optimization methods chosen randomly
3. Optimize parameters of models’ transfer functions by assigned optimization

method – error and gradients computed on the training data set
4. Compute fitness of models by summarizing their errors on the validation set
5. Select parents, apply crossover and mutation operators to generate popula-

tion of offspring
6. Merge populations of parents and offspring (methods based on fitness and

distance of models)
7. Go to 3), until diversity level is too low or the maximum number of epochs

(generations) is reached
8. Select the best model from each niche – based on fitness and distance, freeze

them to make up the layer and delete the remaining neurons
9. Until the validation error of the best model is significantly lower than the

best model from the previous layer, proceed with the next layer and go to
2)

10. Mark the model with the lowest validation error as the output of the network
and delete all models not connected to the output.

5.2 An Example of the GAME Algorithm on the Housing Data Set

We will demonstrate our algorithm on the Housing data set that can be obtained
from the UCI repository [1]. The data set has 12 continuous input variables and
one continuous output variable. In Fig. 4 you can find the description of the
most important variables.
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CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTA

MEDV

Per capita crime rate by town

Proportion of owner-occupied 
units built prior to 1940

Weighted distances to five 
Boston employment centers

Input variables

Output variable

Median value of owner-occupied 
homes in $1000's

Fig. 4. Housing data set: the description of the most important variables.

Firstly, we split the data set into a subset used for training (A+B) and a test
set to get an unbiased estimate of the model’s error (see Fig. 22). Alternatively,
we can perform k-fold crossvalidation [33].

Then we run the GAME algorithm, which separates out the validation set
(B) for the fitness computation and the training set (A) for the optimization of
parameters.

In the second step, the GAME algorithm initializes the population of neurons
(the default number is 15) in the first layer. For instant GAME models, the
preferable option is growing complexity (number of input connections is limited
to index of layer). Under this scheme, neurons in the first layer cannot have more
than one input connection, as shown in Fig. 6. The type of the transfer function
is assigned randomly to neurons, together with the type of method to be used
to optimize the parameters of transfer function.

The type of transfer function can be sigmoid, Gaussian, linear, exponential,
sine and many others (a complete, up-to-date list of implemented transfer func-
tions is available in the FAKEGAME application [2]), see Fig. 7. If the sigmoid
transfer function is assigned to a neuron, the output of this neuron can be com-
puted, for example as MEDV=1/(1-exp(-a1*CRIM+ a0)), where parameters a0

and a1 are to be determined.
To determine these parameters, an external optimization method is used. The

optimization method is chosen from a list of available methods (Quasi-Newton,
Differential Evolution, PSO, ACO etc.). Note that linear and polynomial neurons
are optimized by the least squares method by default as explained in Section 2.
For other neurons, analytic gradient of the error surface is supplied to enhance
the convergence of general optimization methods.
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CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTA MEDV

Input variables Output variable

24 0.00632 18 2.31 53.8 6.575 65.2 4.09 1 296 15.3 396.9 4.98
21.6 0.02731 0         7.07 46.9 6.421 78.9 4.9671 2 242 17.8 396.9 9.14 

… … …A

B

C

A = Training set  … to adjust weights and coefficients of neurons 

B = Validation set … to select neurons with the best generalization

C = Test set … not used during training

Fig. 5. Splitting the data set into the training and the test set; the validation set is
separated from the training set automatically during GAME training.

CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTA

MEDV

sigmoid gauss

?

sigmoidexp linearlinear… … …

MEDV=a1*PTRATIO+ a0MEDV=1/(1-exp(-a1*CRIM+ a0))

Fig. 6. Initial population of neurons in the first GAME layer.

CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTA

MEDV

sigmoid sigmoidValidation error: 0.13 Validation error: 0.21

MEDV=1/(1-exp(-5.724*CRIM+ 1.126)) MEDV=1/(1-exp(-5.861*AGE+ 2.111))

?

Fig. 7. Two individuals from different niches with parameters optimized on set A and
validated on set B. The neuron connected to the AGE feature has a much higher
validation error than neurons connected to CRIM and survives thanks to niching.
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The fitness of each individual (neuron) is computed as the inverse of its vali-
dation error. The genetic algorithm performs selection, recombination and mu-
tation and the next population is initialized. After several epochs, the genetic
algorithm is stopped and the best neurons from individual niches are frozen in
the first layer (Fig. 8).

CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTA

MEDV

sigmoid sigmoid

Error: 0.13 Error: 0.21

sigmoid

Error: 0.26

linear

Error: 0.24

polyno
mial

Error: 0.10

MEDV=0.747*(1/(1-exp(-5.724*CRIM+ 1.126))) 
+0.582*(1/(1-exp(-5.861*AGE+ 2.111)))2+0.016

Fig. 8. In our example, the best individual evolved in the second layer combines the
outputs of neurons frozen in the first layer (feature detectors).

Then the GAME algorithm proceeds with the second layer. Again, an initial
population is generated with random chromosomes, evolved by means of the
niching genetic algorithm, and then the best and diverse neurons are selected to
be frozen in the second layer.

The algorithm creates layer by layer, until the validation error of the best
individual decreases significantly. Fig. 9 shows the final model of the MEDV
variable.

5.3 Genetic Algorithm Optimizing Connections of Base Models

In this section, we analyze the internal behaviour of the GAME algorithm in
terms of diversity and accuracy of neurons. We start with the genetic algorithm
employed to evolve individual neurons or base models.

The genetic algorithm is frequently used to optimize a topology of neural
networks [45,59,61]. Also in GMDH related research, recent papers [52] report
improving the accuracy of models by employing the genetic search to look for
their optimal structure.

In the GAME algorithm, we also use genetic search to optimize the topology
of models and also the parameters and shapes of transfer functions within their
models. The individual in the genetic algorithm represents one particular neuron
(or model) of the GAME network. Inputs of a neuron are encoded into a binary
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CRIM ZN INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTA

MEDV

sigmoid sigmoid sigmoid linear

polyno
mial

polyno
mial

linear

expo
nential

Validation error: 0.08

Fig. 9. The GAME model of the MEDV variable is finished when new layers do not
decrease the validation error significantly.
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Niching
GA

Linear transfer unit (LinearNeuron)

1234567
1001000 not implemened n.i.

Polynomial trasfer unit (CombiNeuron)

Settings

Inputs

1234567
0000110

Transfer function
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2115130

1234567
1203211

Transfer function
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3
211 axxaxxay ++=

02211 axaxay ++=

Fig. 10. If two models of different types are crossed, just the ”Inputs” part of the
chromosome come into play. If two Polynomial models cross over, also the second part
of the chromosome is involved.
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string chromosome. The transfer function can be also encoded into the chromo-
some (see Figure 10). The chromosome can also include configuration options
such as strategies utilized during optimization of parameters. The length of the
”inputs” part of the chromosome equals to the number of input variables plus
the number of models from previous layers, particular neuron can be connected
to. The existing connection is represented by ”1” in the corresponding gene.

Note that parameters of the transfer functions (a0, a1, · · · , an) are not en-
coded in the chromosome (Figure 10. These parameters are set separately by
optimization methods. This is crucial difference from the Topology and Weight
Evolving Artificial Neural Network (TWEANN) approach [61]. The fitness of
the individual (e.g. f(p1)) is inversely proportional to the error on the validation
set. The application of the genetic algorithm in the GAME algorithm is depicted
in the Figure 11. The left schema describes the process of single GAME layer
evolution when the standard genetic algorithm is applied.

Models randomly initialized and encoded into chromosomes. Then the ge-
netic algorithm is run. After several epochs of the evolution, individuals with
the highest fitness (models connected to the most significant input) dominate
the population. The best solution represented by the best individual is found.
The other individuals (models) have very similar or the same chromosomes as
the winning individual. This is also the reason why all models surviving in the
population (after several epochs of evolution by the regular genetic algorithm)
are highly correlated. The regular genetic algorithm found one best solution. We
want to find also multiple suboptimal solutions (e.g. models connected to the
second and the third most important input). By using less significant features we
can further get more additional information than by using several best individu-
als connected to the most significant feature, which are in fact highly correlated

Regular Genetic 
Algorithm (GA)

(no niching)

Niching GA with 
Deterministic

Crowding

0 0 1 0 P trans.fn.
P

Inputs    Type     Other

Select the best 
individual from 
each niche P SP

0 0 1 0 P trans.fn.
P

Inputs    Type     Other

Select N best 
individuals

P PP

Regular Genetic 
Algorithm (GA)

(no niching)

Niching GA with 
Deterministic

Crowding

0 0 1 0 P trans.fn.
P

Inputs    Type     Other

Select the best 
individual from 
each niche P SP

0 0 1 0 P trans.fn.
P

Inputs    Type     Other

Select N best 
individuals

P PP

Fig. 11. GAME models in the first layer are encoded into chromosomes, then GA
is applied to evolve the best performing models. After few epochs all models will be
connected to the most significant input and therefore correlated. When the Niching
GA is used instead of the basic variant of GA, models connected to different inputs
can survive.
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f (C)

Z

X Y

f (A) = 8 f (B) = 7.99 f (X) = 8 f (Y) = 5

f (C) = 8 f (Z) = 9

f (Z)<

Fig. 12. Fitness of the model Z is higher than that of model C, although Z has less fit
inputs.

(as shown on Figure 12.). Therefore we employ a niching method described be-
low. It maintains diversity in the population and therefore models connected to
less significant inputs are allowed to survive, too (see Figure 11 right).

5.4 Niching Methods

The major difference between the regular genetic algorithm and a niching genetic
algorithm is that in the niching GA the distance among individuals is defined.
The distance of two individuals can be based on the phenotypic or genotypic dif-
ference of models. In the GAME algorithm, the distance of models is computed
from both differences. Figure 13 shows that the distance of models is partly
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Other 123456

Transfer function
Other
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Fig. 13. The distance of two models in the GAME algorithm.
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computed from the correlation of their errors and partly from their genotypic
difference. The genotypic difference consists the obligatory part ”difference in
inputs”, then some models add ”difference in transfer functions” and also ”dif-
ference in configurations” can be defined.

Models that survive in layers of GAME networks are chosen according to the
following algorithm. A model with the lowest RMS error is selected to survive.
Remaining models are sorted according to their RMSE and distance from already
selected models2. Surviving models should have low RMS errors, high mutual
distances and low correlations of errors.

Niches in GAME are formed by models with similar inputs, similar transfer
functions, similar configurations and high correlation of errors.

We have experimented with the following niching genetic algorithms:

– Deterministic crowding
– Fitness sharing
– Clearing
– Probabilistic Crowding

The Deterministic Crowding (DC) [44] assumes that parents and their off-
springs are similar. A parent and its less distant offspring compete to be present
in the next generation. A model with higher fitness (better generalization) wins
the competition.

In Fitness Sharing (FS) [44] similar individuals have to share fitness. It means,
that models are penalized for being similar. The problem is to estimate the right
penalty factor for given problem.

Clearing [54] preserves just the elite individual for each niche. Fitness of indi-
viduals similar (more than a threshold) to elite individuals become zero. Again,
the threshold is data dependent.

Probabilistic Crowding (PC) [48] improves the DC by probabilistic selection
of the winner. A model with higher fitness is more likely to be present in the
next generation.

In order to decide which niching scheme is the most appropriate, one has
to analyze the convergence of the genetic algorithm and monitor the diversity
development.

5.5 Monitoring the Development of Diversity

At first, we have analyzed the behavior of the Deterministic Crowding (DC)
algorithm. In the Figure 14, we compared the DC algorithm with the regular
genetic algorithm (GA), where the distance is not taken into account. The data
set used to model the output variable (Mandarin tree water consumption) has
eleven input features. Models in the first layer of the GAME network are con-
nected to a single feature. The population of 200 models in the first layer was

2 Our experimental results shows that a reasonable ratio is 80% weight on inverted
RMSE and 20% weight on distance, but the ratio is very data dependent
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Fig. 14. The experiment shows that the regular Genetic Algorithm approaches the
optimum relatively quickly. Niching preserves different models for many more iterations
so we can chose the best model from each niche at the end. Niching also reduces possible
premature convergence.

initialized randomly (genes are uniformly distributed - approx. the same num-
ber of models connected to each feature). After 250 epochs of the regular genetic
algorithm the fittest individuals (models connected to the most significant fea-
ture) dominated the population. On the other hand the niching GA with DC
maintained diversity in the population. Individuals of three niches survived. As
Figure 14 shows, the difference between the niching genetic algorithm and the
algorithm without the distance based selection is clear. The results for all other
niching methods can be found in [53].

The number of individuals (models) in each niche is proportional to the sig-
nificance of the feature, models are connected to. From each niche the fittest in-
dividual is selected and the construction goes on with the next layer. The fittest
individuals in next layers of the GAME network are these connected to features
which brings the maximum of additional information. Individuals connected to
features that are significant, but highly correlated with features already used,
will not survive. By monitoring which individuals endured in the population we
can estimate the significance of each feature for the output variable modelling.
This can be subsequently used for the feature ranking [55].

5.6 Monitoring the Diversity of Models

Our software enables the visual inspection of complex processes that are normally
hard to control. One of these processes is the development of models diversity
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during their evolution and it is displayed in the Figure 15. From left we can
see the matrix of genotypic distances computed from chromosomes of individual
models during the evolution of the GAME layer. Note that this distance is
computed as a sum of three components: distance of inputs, transfer functions
and configuration variables, where last two components are optional. The darker
color of background signifies the higher distance of corresponding individuals and
vice versa. The next matrix visualize distances of models based on the correlation
of their errors. Darker background signifies less correlated errors. The next graph
shows deviations of models output from the target value of individual training
vectors. From these distances the correlation is computed. The most right graph
of the Figure 15 shows the normalized RMS error of models on the training data.

Epoch 1

Epoch 30

Sorted

Chromos. dist.  Correlation    Error on training vectors   RMSE

Start of the niching Genetic
Algorithm, units are randomly
initialized, trained and their
error is computed,

after 30 epochs the niching
Genetic Algorithm terminates,

finally units are sorted
according to their RMSE,
chromosome difference
and the correlation.

Fig. 15. During the GAME layer evolution, distances of models can be visually in-
spected. The first graph shows their distance based on the genotypic difference. The
second graph derives distance from their correlation. Third graph shows deviations of
models on individual training vectors and the most right graph displays their RMS
error on the training data.

Simple visualization of distance matrices is not efficient for more models. Also
clusters of similar models are not visible in the matrix visualization.

We used a projection technique [17] to map genotypic distances and correla-
tion matrices into two dimensional scatterplots.

In the left part of Figure 16, models from the first layer are allowed to have only
one input. We modelled the E-coli data set that has 8 input features therefore
8 clusters can be observed. Figure 16 shows ninth generation of the genetic
algorithm and we can observe that numbers of models in the clusters are not
equal. Models connected to insignificant input features have lower fitness than
models connected to important features. Some models connected to the most
significant feature are trained better (black crosses) than the other models (red
crosses). The projection of the correlation matrix shows that there are only
5 clusters of models having similar outputs on the training data. It suggests
that just 4 input features are relevant for the classification of the imU class
(one class found in E-coli database). Again, we can observe the cluster with a
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to the same input

Some of them
are well trained

Clusters are
not apparent
in the matrix

Each unit
has different
genotype
(units are
connected
to diverse
inputs)

Half of units
are better
trained than
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Fig. 16. For 50 models in the population, the direct visualization of the genotypic
distances matrix and the correlation matrix are not informative any more (as shown
on the top of this picture). The better way is to use projection into two dimensional
space.

half models trained better than the other half. The right part of the Figure 16
shows genotypic distances and a correlation matrix of models in 10th layer of the
GAME network. Here, number of possible inputs is very high and the probability
that two models have the same set of inputs is low. As we can see from both
the matrix of genotypic distances and from the projection of this matrix, models
have diverse chromosomes and uniformly distributed in the space (no apparent
clusters). The surprising information is carried by the correlation matrix and its
projection. Again, one half of models have better fitness than the other half. The
reason for this behaviour we found in the configuration of the GAME method.
One half of models had linear transfer function whereas the second half of models
were initialized with the sigmoid transfer function. The evolution of the transfer
function was not used therefore many newly generated models were assigned the
linear transfer function, that is not effective for the classification of the PP class.
Visualization techniques helped us to find and remove this inefficiency.

All projections are updated as the evolution proceeds from epoch to epoch.
Using this visual inspection tool, we have evaluated and tuned the distance
computation used by niching genetic algorithms.

5.7 Experimental Evaluation of Niching Methods

The next goal was to evaluate if the distance metric is well defined. The re-
sults in Figures 17, 18 and 19 show that the difference between various methods
of distance computation is not very significant. It is not only data set depen-
dent, but also algorithm dependent. For some data, we got worse performance,
when the distance of models is taken in account (”genetic” algorithm is supe-
rior). For some data, the best performance is achieved by the phenotypic dis-
tance (”pheno”) only - it means that the distance of two models is computed as
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difference of their errors. Genotypic (”geno”) distance alone is seldom better
than the phenotypic and combined (”combi”) distance.
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genetic DC geno DC pheno DC combi PC geno PC pheno PC combi Clearing
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Fig. 17. The error of GAME networks with different niching algorithms optimizing
connections of base models on Boston housing data.

To demonstrate the data and algorithm dependency, we include comparison of
the Genetic algorithm, Deterministic (DC) and Probabilistic (PC) crowding and
Clearing applied to optimize models in GAME network modelling the Boston
housing data set (Figure 17). In this case, the Probabilistic crowding algorithm
is superior to other algorithms in all its three variants (genotypic, phenotypic
distance and their combination). For the Horse colic classification problem, one
GAME network is build for each class, separating it from others. The final class
is determined as the network with the highest activation. Again (see Figure
18), the models optimized by the probabilistic crowding shows slightly better
performance, than other models.

We run exhaustive experiments, where we compared the performance of the
GAME networks using the above described niching techniques.

Each boxplot in experiments is computed from 10 values - results of ten-fold
crossvalidation of models. Therefore for regression tasks, 100 models has been
built for each boxplot. For classification data, this number has to be multiplied
by number of classes.

In Figure 19, the Deterministic crowding with combined distance was com-
pared to the Genetic algorithm (selecting models to new generation based on
their fitness) and to the Random selection algorithm (selecting models ran-
domly). In this case, each boxplot was generated from 150 models (15 times
10fold CV). As you see, the results are still not very significant. For Horse colic
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Fig. 18. Performance of GAME networks with different niching algorithms optimizing
connections of base models on Horse colic data.
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Fig. 19. The classification accuracy of GAME models on several data sets from UCI
repository. Deterministic Crowding (DC), Genetic Algorithm (GA) and Random Se-
lection (RS) was used for evolution of models in layers.

data set, the DC seems to evolve best models and RE is significantly worse.
However for the Breast Cancer Wisconsin data set it is just the opposite.

By default, we recommend to use the Probabilistic Crowding strategy with
the combination of genotypic and phenotypic distances.

5.8 Benchmarking GAME Algorithm

In [37] we compare the regression and classification performance of the GAME
method against the performance of methods implemented in the Weka machine
learning environment. For the A-EGM data set described in [37], the GAME al-
gorithm outperformed well established methods in both classification and regres-
sion accuracy. It outperformed not only following algorithms: Linear regression
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with embedded feature selection algorithm, MLP, RBFN, J48 decision trees, but
also their ensembles produced by bagging and boosting.

However, although we got significant results, the comparison was conducted
for single data set only and cannot be generalized. Also, for benchmarking pur-
poses, the ensembling algorithms and the GAME algorithm should use the same
base models. Recently, we have implemented all described ensembling algorithms
into our FAKE GAME environment and made such experiments possible.

In the next section we present results of ensembles preformed in our new
environment [fakegame].

6 Experimental Results of Ensemble Methods

At first, we look for optimal parameter settings of implemented methods, then
we examine the performance of ensemble methods with elementary base mod-
els. Finally, we experiment with simple polynomial models only. The advantage
is that the plasticity can be easily adjusted for polynomial models and their
learning is very fast (see Section 2).

6.1 Ensemble Methods Parameters Setting

The parameter common to all ensemble methods is the number of base models.
Clearly, the optimal setting of this parameter is data dependent.
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Fig. 20. The normalized error of the AS ensemble based on the number of gaussian
base models.
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Figure 20 shows the performance of the Area specialization ensemble for in-
creasing number of gaussian base models. We averaged the results for all signals
from the Donojo-Johnstone benchmarks (for none and medium noise extra) and
for several data sets from the UCI repository (Heart, Flare, Buildings, Bost-
house). For the artificial complex signals without any noise, an increasing num-
ber of base models leads to the better accuracy. For the same signal with noise
added, the overfitting leads to poor results for AS ensembles with more than
hundred models (in average). Averaged results on UCI repository indicate that
for chosen data sets the number of base model needed is much smaller.

Ensemble methods can have also specific parameters, such as the threshold
parameter in Boosting RT. This parameter influences specialization of base mod-
els within the ensemble. For each data set, we identified its value maximizing
the generalization performance of generated ensemble models. As you see in the
Table 1, the universal optimal setting of the parameter does not exists. Each
data set requires different threshold for model specialization. For comprehensive
results regarding parameter setting of ensemble methods please refer to [64].

Table 1. For each data set, the optimal threshold of the Boosting RT ensemble can
be different.

Threshold Best performing data sets for given threshold

0 bosthouse, buildings 2

0.05 heavysine, buildings 3, flare 3

0.1 doppler, flare 2, heart

0.2 buildings 1

0.4 block

0.5 bump, flare 1

6.2 Summarized Results of Ensembles with Elementary Base
Models

In this section, we present results of implemented ensemble methods with the
base models described in the Section 2. We used the following benchmarking
data sets:

– Donoho-Johnstone: Block, Bump, Doppler, Heavysine
– Proben1 :

• Regression: Buildings
• Classification: Glass, Card, Cancer, Diabetes

– UCI Machine Learning Repository:
• Regression: Heart, Flare
• Classification: Iris

– Statlib: Bosthouse
– Others, see [34] : Mandarin, Antro
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Results of experiments with ensembles of elementary regression models are
summarized in the Table 2. We have experimented with ensembles listed in the
Table 3, using all possible base models on all data sets above. Each ensembling
algorithm contained 10 base models of uniform type. The type with lowest testing
error is appended to the RMSE value in each cell of the Table 2.

Table 2. In each cell, there is the best performing base model type and achieved testing
error for given data set. Best performing ensembles are in bold.

RMSE, type of best performing base models
Data\Model AS BAG BST CG DIV ST base

Block 1.21 G 6.6 G 6 G 4.02 SI 3.23 SG 5.76 SI,SG 6.6 P

Bump 1.39 P 6.69 G 6.44 G 6.7 SG 4.8 G 6.82 G,P 6.85 G

Doppler 1.24 G 6.25 G 6.55 SG 5.24 SI 3.21 G 5.94 SG,SI 6.32 G

Heavysine 0.52 G 5.1 G 4.6 G 2.19 SG 0.4 SI 3.35 SI,SG 5.1 G

Block noise 2.88 L 6.92 G 6.02 G 4.9 SI 4.08 P 6.56 SI,SG 5.1 G

Bump n. 3.07 SG 7.14 SI 11.5 G 7.04 SG 5.41 G 7.04 G,P 7.12 G

Doppler n. 2.87 G 6.67 G 6.84 G 5.75 SI 4.02 P 6.37 SG,SI 6.68 G

Heavysine n. 2.51 G 5.71 SG 4.67 G 3.39 SI 2.29 P 4.37 SI,SG 5.75 SG

Bosthouse 3.59 SI 3.33 SG 3.47 SG 3.34 SG 4.03 SI 3.42 SG,P 3.31 SG

Buildings 1 115.4 G 121.4 P 121.3 P 119.6 SG 118.4 SG 120.8 SI 121.2 P

Buildings 2 0.517 SI 0.526 SI 0.527 P 0.524 SI 0.517 SI 0.52 SI 0.525 P

Buildings 3 0.597 P 0.624 SG 0.623 SG 0.613 SI 0.604 P 0.616 SI,SG 0.63 P

Flare 1 0.103 G 0.095 SI 0.095 G 0.095 SI 0.0976 SI 0.094 SI,SG 0.094 SI

Flare 2 0.034 L 0.0325 P 0.0318 L 0.0325 G 0.034 L 0.033 G,P 0.0327 SI

Flare 3 0.025 L 0.026 G 0.024 L 0.026 L 0.026 L 0.028 G,P 0.026 L

Heart 0.218 G 0.202 SG 0.196 SG 0.205 SI 0.237 SI 0.206 E,P 0.207 SI

Mandarin 0.102 E 0.102 SI 0.124 SI 0.103 SI 0.104 SI 0.097 E,P 0.103 SI

Antro age 12.83 SI 11.78 SI 11.74 SI 11.84 E 12.99 SG 11.77 SI 11.86 SI

For some data sets (Bosthouse, Flare 1), ensembling does not bring improved
accuracy, because the input-output relationship is quite simple and can be ex-
pressed by a single function (sigmoid, sine). The Area Specialization ensemble
has reasonable accuracy for several data set, but poor accuracy for data sets
with simple relationships (Antro, Bosthouse). The results indicate, that the per-
formance of ensemble algorithms is data dependent. Also, the type of the best
base model differs across data sets, as expected.

6.3 Experiments with Models of Increasing Plasticity

We can use the parameter degree of polynomial base model to change the plas-
ticity of the base model. In this section, we are exploring the effect of ensembling
on base models with increasing plasticity.

The methodology was the following. Five base models was used in ensembles,
ten fold cross validation was repeated three times. Each value in the graph,
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is therefore averaged over 30 measurements (10 CV * 3 repetitions). Most of
the ensembles were explained in the Section 3.2 and their abbreviations are
summarized in the Table 3. The P is the performance of single polynomial model
with given maximum degree. The ST[P,L] states for polynomial models stacking
using the linear combination. The EVOL[p] is a simple ensemble evolving inputs
of 5 base models for 8 generations. Up to three models (niche leaders - see Section
5.4) are selected form the final population based on their fitness. The output of
the ensemble is their average, however in most cases, only single model is selected,
because the population is too small to maintain stable niches. The GAME[p]
algorithm in the following experiments is limited to 5 layers maximum, in each
layer only one base model survives (after 8 generations of evolution), therefore
the final ensemble can have up to 5 models (connected in cascade-like style). The
AS[DIV[P]] ensemble is a hierarchical combination of two ensemble methods
and will be explained later.

Table 3. Abbreviations of ensembles and models, their parameters.

Ensemble Parameters

area Area size
AS AreaSpecialization spec Models spec.

BAG Bagging
BST Boosting tr Threshold
CG Cascade Generalization

DIV Divide mult Cluster size multiplier
ST Stacking

Models Parameters

E Exponential
G Gaussian
L Linear
P Polynomial degree Maximal degree

SG Sigmoid
SI Sine

High degree polynomials can highly overfit the data, making the resulting
error extremely high. Therefore we have rounded maximal error to three times
the standard deviation of error for a few cases, that were observed.

For linear base models (deg = 1 in Figure 21) most of the ensembles have
the same error as the single polynomial model. The reason is obvious - linear
combination of linear models is still a linear model. Two local ensembles (DIV
and AS[DIV]) with lower error use specialization and reduce bias by segmenting
the linear output function. The performance of local ensembles worsens with
increasing polynomial degree of base models.

The relationship in this data set can be sufficiently modelled by a single
polynomial function of degree four. However even polynomials with the degree



208 P. Kord́ık and J. Černý
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Fig. 21. Error of individual ensembles for base models with increasing polynomial
degree on the medium noise Donoho-Johnstone time series (results averaged).

20 do not overfit the data and therefore the reduction of variance part of the
error by ensemble methods is not observed.

The Boosting significantly worsens the accuracy of individual models. The
behaviour of CG method is rather strange and we have to analyze it in more
details. For higher number of polynomial degree (15+) the variance is reduced,
but for less plastic models, the error is much higher than that of the single base
model.

The graph on the Figure 22 shows the performance of ensembles on a data set
with significantly different properties. Also, the results are significantly different.

Bagging, Boosting and Stacking have similar performance as single polynomial
model and it is not worth to use them for this data set. The performance of the
Area Specialization ensemble improves with increasing degree of polynomial. For
the Divide ensemble, the optimal degree of base models for this data set is 4.
For models with higher plasticity, the accuracy decreases. We found that the
hierarchical combination 3 of the AS and DIV ensemble methods demonstrates
superior results on this data set. In total, there are 25 polynomial models in this
hierarchical ensemble. We compared the performance of this ensemble to AS and
DIV ensembles with 25 base models and the hierarchical combination was still
significantly more accurate.

3 There are 5 models in the AS ensemble and each base model consists of the DIV
ensemble of 5 polynomial models.
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Fig. 22. Error of individual ensembles for base models with increasing plasticity on
the Heart dataset from the UCI machine learning repository [1].

For both data set, the GAME algorithm performs reasonably well with all
tested degrees of polynomial models. However we have experimented with many
more data sets and in some cases, the performance of GAME ensembles was
worse.

The conclusion from these experiments is that the performance of ensem-
bles is data and base model dependent. We found a hierarchical combination
of ensemble methods that significantly outperformed all other methods for the
Donojo-Johnstone benchmarks. However this particular combination performs
worse, when applied to the data set with different properties (see Figure 21).

7 Specialization-Generalization Ensemble (SpecGen)

Recently, aggregation or hierarchical combination of ensembles has also been
studied [5,14,62]. In particular, gradient boosting [23] and multi-level stacking
of neural networks [7] were part of the winning solution in the Netflix competition
[63].

There are many more ways in which ensembles can be efficiently combined
(or aggregated) into a hierarchical (tree-like) structure. Our experiments in the
previous section show that the structure in which models are combined is highly
data dependent. In this section, we propose to evolve such structures in order to
adapt the model to the complexity of a data set.

Figure 23 shows an example of ensemble combination in a hierarchical way.
Here, the full training data set is passed to a top level bagging that generates 4
bootstrap training data sets for members of the ensemble. The second bootstrap
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Fig. 23. An example of hierarchical combination of ensembles. Using this template, a
model can be produced (see Figure 24).

training data set is used by boosting to train a sigmoid model and samples
where the sigmoid model demonstrates high error are more likely to be used in
the training set for the second member model of the boosting: the bagging of
polynomial and exponential models. The resulting model is depicted in Figure 24.
Input attributes are presented to leaf nodes of the hierarchical ensemble. The
outputs of these base models are combined to produce the final output.

In general, the leaf nodes of the tree are the base models with elementary
transfer function described in Section 2.
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Fig. 24. The model produced by the hierarchical combination of ensembles depicted
in Figure 23.
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8 Optimization of the SpecGen Ensemble

SpecGen ensemble can be optimized by an algorithm specially designed to evolve
tree structures of objects. It consists of two main parts: the first is the evolu-
tionary algorithm itself, which is problem independent. The second part is called
Context and represents problem-dependent computations (for example data pre-
processing and fitness computation). These two parts will be described in detail
in the next two sections.

8.1 Evolutionary Algorithm

To understand how the individual is represented in the algorithm, we need to
know first how the algorithm operates without knowing anything at all about
the optimized objects. It uses a template system where each template represents
one elemental construction block for the algorithm. It can be a single ensemble
or base model configuration or even a tree which is then regarded as an elemental
block. Because the type of the object is not known, we need to create reference to
the corresponding template from which the object originated. The template then
has auxiliary variables such as references to templates to which it can mutate,
methods which are used to change and optimize objects attributes and so on.

Next we are going to explain how the algorithm runs and evolves the con-
figuration structures. The first thing that is done is evaluation of the current
generation. This is because we need to supply the initial generation and it needs
to be evaluated before any evolution operations can influence it. This is one way
to guide the algorithm, by generating non-trivial solutions to initial generation.
For checking individual surviving capabilities, we must know its fitness, which
is represented by the inverse of the root mean squared error on validation data.
There are certain situations that can occur depending on the current object fit-
ness before it is determined whether it survives. In this stage the Context is used
to compute object fitness and related operations such as returning the so-far best
fitness (see Figure 25).

1. Global fitness is improved and the structure of the best solution changes.
This means that we have found a new, better solution. This clears the con-
vergency counter, which represents the number of generations without any
improvement to the best solution. Also, if there is a variable in the best
solution which has a value more than 50% of its maximum allowed value,
that maximum in the given template is doubled. This approach is inspired
by evolving from minimal form, which tries to keep state space size to a
minimum and expand the parts of the space that look promising.

2. Global fitness is worsened and structure of the best solution changes. This
indicates that more calculations were made to make the best solution more
precise and it has turned out that its fitness is actually lower. Another solu-
tion that was already computed during evolution beforehand, had a greater
value of fitness and was chosen as best. This lowers the convergency counter
by half, because even if we did not find a better solution, this change is quite
important to give it some time to stabilize.
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Fig. 25. The SpecGen templates are evolved from a minimal form. Structural mutation
can change the type of base model or replace it by an ensemble.

3. Global fitness is improved, but the best solution stays the same. This rep-
resents a situation where the best solution is computed again to increase
its precision, by which the fitness improves. The convergency counter is not
affected in this situation, because we did not gain any new information re-
garding the best solution.

After this, a survival check is made. It determines the selection pressure in the
evolution and also implements an elitism principle (best solutions are protected
and cannot die). Survival capabilities of an individual is determined by three
things:

– its own fitness,
– fitness of the best solution,
– its age, measured in generations.

That means that in the beginning, when the best solution is poorer, the
lifespan of an average individual is quite high. On the other hand, when we have
very good best solution in the end, the lifespan of poor individuals is very short.
This guides the algorithm to try to improve the best solution more, rather than
trying to find a new, different solution.

Next, the stop conditions are checked, which can be a fixed number of max-
imum generations or the convergency criterion. The convergency criterion also
has another meaning in the algorithm. In employing the growth from minimal
form principle, the tree depth is limited in the beginning. If the convergency
starts to kick in, the depth of the tree is increased and the convergency crite-
rion is reset. The more depth there is, the more generations without change of
the best solution can pass before deeper trees are enabled. This goes on to the
maximum tree depth. If the convergency criterion is met at the maximum tree
depth, the evolution ends.

Lastly the evolution operations are performed. The algorithm uses the three
independent types of mutations described below.
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Node mutation. The node is changed to some other, randomly chosen node.
Nodes to which the object can mutate can be controlled via templates. During
the replacement, the following situations may happen, depending on the type of
the current and new node.

– leaf → inner node - Leaf becomes descendant of the new inner node.
– inner node → leaf - Inner node is replaced with leaf. Whole subtree below

inner node is deleted.
– leaf → leaf - Old leaf is replaced by new one.
– inner node → inner node - Old node is replaced by new and all successors

of the old node are connected to the new node.

Successor add mutation. New leaf is added to the current successors of the inner
node.

Variable mutation. The evolutionary algorithm can also optimize variable values
by variable mutation. Gaussian noise is added to the variable value as its ap-
pearance in equation 9. The function randomGaussian returns a random value
from Gaussian distribution with average 0 and standard deviation 1. If the out-
put value is outside the allowed interval defined by min and max values, it gets
trimmed to the border values of the interval. This dynamic noise size is imple-
mented to achieve the same behaviour and to explore the interval similarly each
time, irrespective on the interval size.

value = value +
randomGaussian() ∗ (max − min)

2
(9)

After the main evolution ends, we have a pretty good individual, but still there
is not enough time in the main evolution to refine the individual perfectly and
optimize all its variables. For this purpose (ie detailed variable optimization), a
second evolution is run with all the individuals cloned from the best solution.
The generation size and convergency criterion is halved to reduce the time of
that evolution. This is no change in the structure of the final solution during
this part of the evolution. This means that node mutation and add mutation are
both set to zero. On the other hand, the attributes for variable mutations are all
boosted implying that intervals of allowed values are all stretched and variable
mutation probability is increased.

This second evolution increases the fitness of the final output greatly, because
optimizing variables alone is relatively easy and also due to the fact that more
values are involved which were not accessible in the previous evolution. But it
is still a complex optimization problem because, the tree can be quite large,
and every node in the tree can have several variables and the variables are not
always independent of each other. This means that if, for example, we were to
ran a faster gradient method for every variable, we could miss a lot of potential
good solutions: firstly due to the complexity of the fitness function for a given
variable, because it can have multiple local maximums and gradient methods
can be easily trapped in the local extremes; and secondly due to the variable
being dependent on another variable even on a different node.
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8.2 Context

Context is the problem-dependant part of the evolutionary algorithm and most
of the computing time is spent here. Fitness computation, which means model
creation and learning is the most time-consuming operation in the whole algo-
rithm due to that fact that it is essential to make that computation as efficient
as possible. This is done by using cache. It combines the accuracy of multiple
model learning and averaging output with a speed almost the same as that of
the learning model only once.

When a fitness of any configuration is demanded, context checks its cache
first. If there is a record that is accurate enough (it has been computed enough
times and the RMSE values do not vary too much from its average RMSE) it is
simply returned and no other computations are made. If the record is not present
or is not accurate enough, the model is created and its RMSE is computed. The
result is added onto the average and a more accurate average is returned. The
exact values of deviations from average that distinguish different situations are
described below.

– Deviation less than 10% implies stable output of the models and counts as
two values towards the average computation.

– Deviation 10-50% is considered normal and counts as one towards average.
– Deviation greater than 50% shows large variation in the model output. The

value counts into the average, but the number of needed computations to
gain a sufficiently accurate result is increased by one.

There is also a another thing that controls the number of models and prevents
creation of trees that have too many models to compute. This can happen very
quickly in such hierarchical structures. For example a tree with depth 3 and
a maximum of 50 models can have up to 125,000 models. If we increase the
depth of the tree by one, the new tree can have up to 6 million models, which
is not reasonably computable for one individual. But we cannot simply limit
the number of models to a lesser number to prevent this, because in that case
we would make it impossible to create simple models with lower tree depth. If
we, say, limit the number of models to 5, this would prevent us from creating a
solution with a depth of 1 and 50 models, which is quite easy to compute. So
we would be forbidding simple solutions with our anti-complex rule, which is
counter productive.

8.3 Tuning the SpecGen Evolution

We have implemented the above described algorithm and in this section we look
for efficient parameter settings in order to minimize the computational expenses
without harming the robustness of the algorithm at the same time.

To evaluate the functionality of the evolutionary algorithm, we prepared an
artificial data sets [64] simple enough to save computational resources and com-
plex enough not to be solved by a single base model.
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Fig. 26. Standard deviation of RMS errors indicate that the ensemble should be built
three times using the same template and the average error is used as the fitness function
for the template. Six is the sufficient number of generations.

The first concern is the stability of the fitness function computation. Most of
our algorithms are stochastic so we can get different SpecGen ensembles for a
single template. We can increase the stability and filter out the noise by building
more ensembles for one template and averaging their results on the validation
set. Figure 26 shows the standard deviation of fitness value for a single SpecGen
ensemble based on the number of ensembles being averaged. As you can see,
averaging three SpecGen ensembles stabilizes the fitness function enough.

The second concern (Figure 26 right) was the population size (number of
SpecGen templates in one generation). This parameter is problem-dependent,
but our experiments show that 6 individuals are sufficient for all the data sets
we have been experimenting with so far.

8.4 Evaluation of Improvements

Next experiments evaluate the functionality of the evolutionary algorithm and
the usefulness of the parameter evolution and growing complexity scheme.

When we disabled the selection pressure (and the elitism), the error of ensem-
bles produced by the best template evolved increased significantly. In this case,
the evolution degraded to the random search.

Table 4. The error of SpecGen ensembles produced by templates evolved with different
options.

RMSE Decline[%]

All options enabled 0.29 -
Selection pressure disabled 0.44 34.1%

Parameter evolution disabled 0.49 40.8%
Growing complexity disabled 0.38 23.7 %
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As you can see in the Table 4, the evolution of parameters (e.g. number of
base models or degree of polynomial base models) is particulary important.

Increasing the complexity of templates during the evolution has also proved
to be advantageous.

8.5 Ensembles versus Templates

During the evolution, the fitness of a template is computed by building 3 ensem-
bles using the template and averaging their performance on the validation data.
We compared the generalization performance of models produced by the best
template and the ensemble best performing on the validation data discovered
during the evolution. Results in the Table 5 are summarized from 20 runs of the
evolution on the artificial data set. For this data set, it is better to use the best
ensemble found during the evolution. However, the advantage of using the best
template is that the generalization performance of models generated using the
template is more stable. Experiments on more data sets are needed to evaluate
whether best performing ensembles overfit the data. We also plan to build a
knowledge base of templates and use it with meta-data to enhance the evolution
process.

Table 5. The best ensembles versus the best templates evolved. When generating
models using evolved templates, their generalization performance is worse than that of
the best ensemble found during the evolution, but more stable.

Validation data Testing data
average median std average median std

Ensembles 0.113 0.117 0.0014 0.272 0.172 0.0546
Templates 0.17 0.163 0.0023 0.295 0.234 0.0288

8.6 Benchmaring the SpecGen templates

Finally, we compare the performance of evolved hierarchical ensembles with state-
of-the-art ensembles on benchmarking problems used in the previous section.

Table 7 summarizes the setup of the evolutionary algorithm for the bench-
marks. The evolution was run three times for each data set and the template with
lowest error on testing data was compared to the best ”traditional” ensemble
from the Table 2.

The overall comparison is presented in the Table 6, best templates are then
listed in the separate Table 8. For data sets, where the complexity of input-output
relationship is lower, the improvement is not very significant. Remarkable results
were obtained for data with complex relationship (e.g. Donojo-Johnstone), where
evolved hierarchical ensembles greatly reduced bias of base models.
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Table 6. Errors of hierarchical ensembles produced by evolved templates are compared
to best performing basic ensembles from the Table 2. The evolved templates alone are
listed in the separate Table 8 due to lack of space.

Traditional ensemble SpecGen
Data RMSE config RMSE Improvement [%]

Block 1.21 AS[10*G] 0.0015 99.9

Bump 1.39 AS[10*P] 0.678 51.2

Doppler 1.24 AS[10*G] 0.65 47.6

Heavysine 0.4 DIV[10*SI] 0.0116 97.1

Block noise 2.88 AS[10*L] 2.44 15.3

Bump n. 3.07 AS[10*SG] 2.45 20.2

Doppler n. 2.87 AS[10*G] 2.61 9.1

Heavysine n. 2.29 DIV[10*P] 2.23 2.6

Bosthouse 3.31 SG 3.23 2.4

Buildings 1 115.4 AS[G] 112.4 2.6

Buildings 2 0.517 AS[SI] 0.46 11

Buildings 3 0.597 AS[P] 0.52 12.9

Flare 1 0.941 SI 0.845 10.2

Flare 2 0.0318 BST[L] 0.0183 42.5

Flare 3 0.024 BST[L] 0.0127 47.1

Heart 0.196 BST[SG] 0.192 2

Mandarin 0.097 ST[E,P] 0.081 16.5

Antro Age 11.74 BST[SI] 11.48 2.2

Table 7. The setup of the evolutionary algorithm for overall benchmarks.

RMSE

Maximal number of generations 200
Maximal tree depth 3

Population size 6
Training data percentage 60%

Validation data percentage 20%
Testing data percentage 20%

Maximal number of vectors 700

For some data (Antro Age, Flare 1, Building 3, Bosthouse) the evolution-
ary algorithm consistently produces very simple ensembles (or just elementary
models) because the relationship in data can be expressed easily. On the other
hand, some data require complex hierarchical structures and also for these data,
the evolutionary algorithm finds the appropriate solution. Templates are vary-
ing, when the evolution is run multiple times on a single data set, but the type
of utilized ensembles and base models is often the same. We plan to build a
knowledge base of efficient templates for wide range of data sets represented by
meta-data.
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Table 8. SpecGen templates evolved for benchmarking data sets. Abbreviations of
ensembles and their parameters are summarized in the Table 3.

Data Evolved template of the SpecGen ensemble

Block AS(area=1,spec=6.78)[ 145x AS(area=16,spec=4.97)[ 2x E ], SI,
DIV(mult=1)[ 6x P(degree=2) ] ]

Bump AS(area=7,spec=5)[ 8x BST(tr=0)[ 4x E, P(degree=4) ], SG,
AS(area=26,spec=1)[ 20x AS(area=7,spec=14)[ 2x SG ] ] ]

Doppler AS(area=3,spec=20.8)[ 72x BAG[ 2x BAG[ 5x L, G ], E ] ]

Heavysine AS(area=1,spec=9.1)[ 178x BAG[ 2x G ], G, BAG[ 2x P(degree=15) ]
]

Block noise ST[ 12x AS(area=25,spec=1)[ 30x AS(area=1,spec=3.48)[ 2x SI ] ], L,
AS(area=21,spec=3.64)[ 2x DIV(mult=3.86)[ 2x E, SI ] ] ]

Bump n. BAG[ 5x AS(area=6,spec=5)[ 56x SI ] ]

Doppler n. AS(area=20,spec=1)[ 19x DIV(mult=1.48)[ 16x L, SI ] ]

Heavysine n. DIV(mult=7.59)[ 18x DIV(mult=6.86)[ 2x P(degree=2), G ] ]

Bosthouse DIV(mult=60)[ 10x SG ]

Buildings 1 AS(area=10,spec=7)[ 5x DIV(mult=3.09)[ 5x E ] ]

Buildings 2 BST(tr=0)[ 6x AS(area=1,spec=28.25)[ 2x E, BAG[ 5x P(degree=2) ]
], L ]

Buildings 3 P(degree=6)

Flare 1 ST[ 2x BST(tr=0.1)[ 5x SG ], P(degree=2) ]

Flare 2 BST(tr=0.28)[ 33x SI, BST(tr=0)[ 2x L, SG ] ]

Flare 3 AS(area=7,spec=17.98)[ 8x BAG[ 10x P(degree=5) ], CG[ 10x SI ],
AS(area=1,spec=14.12)[ 18x L ], L ]

Heart BAG[ 13x CG[ 2x P(degree=2), BAG[ 2x SG, P(degree=6) ] ] ]

Mandarin AS(area=13,spec=13.15)[ 7x DIV(mult=8.21)[ 5x G,
AS(area=4,spec=11.86)[ 5x SG ] ], AS(area=3,spec=1)[ 2x E ],
G ]

Antro Age BST(tr=0.06)[ 2x SG ]

9 Conclusion

In this chapter we focused on regression models for data mining purposes. These
models are not so frequently used as classifiers, but many interesting real-world
problems involve a continuous output variable. Our study starts with elemen-
tary regression models and their learning. Then we present the GAME algorithm
combining these models into a layered structure. In each layer, inputs and trans-
fer functions of base models are evolved, while their diversity is preserved. We
inspect the diversity and accuracy of base models and experiment with several
niching strategies. Probabilistic Crowding was identified as the best performing
strategy. However, results are very data dependent and often insignificant. Our
ambition to use the GAME algorithm as a universal automated model selec-
tion approach was inhibited by its poor performance when modelling complex
one-dimensional signals (Donojo-Johnstone benchmarks). The reason is that the
data manipulation and model combination used in GAME (Bootstrap sampling
and Stacking) is inefficient for this type of problem.
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We are also studying regression variants of metalearning algorithms to com-
bine our elementary regression models. We measure their performance for several
benchmarking problems and look for the best setting of their parameters and for
the appropriate type of base models. The results confirmed our expectations -
the performance, parameters and appropriate base model type are heavily data-
dependent.

During our experiments with base models of increasing plasticity, we found
that a certain hierarchical combination of ensemble techniques (metalearning
algorithms) can produce models with superior results. Again, the optimal com-
bination is data-dependent.

In the second part of the chapter, we introduce the Specialization-
Generalization (SpecGen) ensembling algorithm. It combines metalearning
algorithms in a hierarchical manner. For each data set, we evolve a special
ensembling template, which tells us how to distribute data to base models and
how to combine them. Each base model can be specialized to certain data vec-
tors and its output is generalized through the hierarchy into the final prediction.
We evolved SpecGen templates for several benchmarking problems. These tem-
plates were used to build models, and the generalization accuracy of these models
outperformed the model produced by all ensembling strategies for all data sets.

Our future work is to build a knowledge base of evolved SpecGen templates
for several data sets and preselect efficient combination strategies based on meta
data describing data sets.

We also plan to deal with the evolution of base model connections and transfer
function structure.

The proposed SpecGen algorithm and its evolutionary framework is now being
applied to classifiers with similar results as for the regression models presented
in this chapter.
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Abstract. In this work, we present the use of Ranking Meta-Learning
approaches to ranking and selecting algorithms for problems of time se-
ries forecasting and clustering of gene expression data. Given a problem
(forecasting or clustering), the Meta-Learning approach provides a rank-
ing of the candidate algorithms, according to the characteristics of the
problem’s dataset. The best ranked algorithm can be returned as the
selected one. In order to evaluate the Ranking Meta-Learning proposal,
prototypes were implemented to rank artificial neural networks models
for forecasting financial and economic time series and to rank clustering
algorithms in the context of cancer gene expression microarray datasets.
The case studies regard experiments to measure the correlation between
the suggested rankings of algorithms and the ideal rankings. The results
revealed that Meta-Learning was able to suggest more adequate rankings
in both domains of application considered.

1 Introduction

One of the major challenges in many domains of Computational Intelligence,
Machine Learning, Data Analysis and other fields is to investigate the capabili-
ties and limitations of the existing algorithms in order to identify when one algo-
rithm is more adequate than another to solve particular problems [1]. Traditional
approaches to selecting algorithms involve, in general, costly trial-and-error pro-
cedures, or require expert knowledge, which is not always easy to acquire [2].
Meta-Learning for algorithm selection arises in this context as an effective solu-
tion, capable of automatically predicting algorithm’s performance, thus assisting
users in the choice of the most adequate techniques for dealing with the problems
at hand [2,3,4,5,6].

In Meta-Learning, each meta-example is related to a learning problem and
stores: (1) the features describing the problem, called meta-features; and (2)
the performance information about one or more algorithms when applied to the
problem. By receiving a set of such meta-examples, another learning system (the
meta-learner) is applied to acquire knowledge relating the performance of the
candidate algorithms and the descriptive features of the problems. The acquired

N. Jankowski et al. (Eds.): Meta-Learning in Computational Intelligence, SCI 358, pp. 225–243.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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knowledge can then be used to predict algorithm performance for new prob-
lems not seen during the Meta-Learning process and to recommend algorithms.
Different authors in Meta-Learning have developed techniques to suggest either
one single algorithms or a small group of algorithms among the set of candi-
date ones. A more informative and flexible solution for algorithm selection is to
provide a ranking of the candidate algorithms, since alternative algorithms can
be eventually chosen by the users according to particular interests [7]. Rank-
ing Meta-Learning approaches have been investigated in different case studies,
mainly focused on classification and regression problems [1,6,7].

In this chapter, based on our previous works, we present the use of Meta-
Learning for ranking algorithms in two different classes of problems: time series
forecasting and clustering of gene expression data. Both domains are charac-
terized by the existence of a variety of algorithms to be applied and a lack of
useful guidelines to support algorithm selection. The Meta-Learning techniques
originally proposed for classification and regression problems were extrapolated
in our previous work to rank time series models and clustering techniques. The
application of Meta-Learning in these domains was not deeply investigated yet.
In a first case study, the Zoomed-Ranking approach was used to rank Artificial
Neural Network models for forecasting financial and economic time series [8]. In
a second case study, a Meta-Regression approach was used to rank clustering
techniques for cancer gene expression [9].

The remaining of this paper is organized as follows. Section 2 presents a
brief introduction on the topic of Meta-Learning. Section 3 presents the general
architecture of our solution as well as some implementation issues. Section 4
brings a case study (implementation and experiments) performed in the domain
of time series forecasting, followed by section 5 which presents a case study in
the domain of clustering gene expression. Finally, section 6 concludes the paper
with some final considerations.

2 Meta-Learning

There are different interpretations of the term Meta-Learning in the literature
[3,6,10]. In our work, we focused on the definition of Meta-Learning as the au-
tomatic process of acquiring knowledge that relates the performance of learning
algorithms to the features of the learning problems [2]. The acquired knowl-
edge supports the task of algorithm selection, which has shown to be a difficult
problem in many contexts [11].

The knowledge in Meta-Learning is commonly represented considering meta-
features which describe learning problems. The meta-features are, in general,
statistics describing the training dataset of the problem, such as number of
training examples, number of attributes, correlation between attributes, class
entropy, among others [7,12,1]. An alternative strategy to define meta-features
is the Landmarking proposal [13]. This approach tries to relate the performance
of the candidate algorithms to the performance obtained by simpler and faster
designed learners, called landmarkers. Landmarking claims that some widely
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used meta-features are very time consuming, and hence, landmarking would be
an economic approach to the characterization of problems and to provide useful
information for the Meta-Learning process.

Regarding the performance information (the target in the Meta-Learning
task), each meta-example may store a class attribute which indicates the best
algorithm for the problem, among a set of candidates [14,15,16,17,18]. In this
strict formulation of Meta-Learning, the class label for each meta-example is
defined by performing a cross-validation experiment using the available dataset.
The meta-learner is simply a classifier which predicts the best algorithm based
on the meta-features of the problem.

In [19], the authors used an alternative approach to defining the performance
information and hence to labeling meta-examples. Initially, 20 algorithms were
evaluated through cross-validation on 22 classification problems. For each algo-
rithm, the authors generated a set of meta-examples, each one associated either
to the class label applicable or to the class label non-applicable. The class label
applicable was assigned when the classification error obtained by the algorithm
fell within a pre-defined confidence interval, and non-applicable was assigned
otherwise. Each problem was described by a set of 16 meta-features and, fi-
nally, a decision tree was induced to predict the applicability of the candidate
algorithms.

In [1], the authors performed the labeling of meta-examples by deploying a
clustering algorithm. Initially, the error rates of 10 algorithms were estimated
for 80 classification problems. From this evaluation, they generated a matrix
of dimension 80 X 10, in which each row stored the ranks obtained by the al-
gorithms in a single problem. The matrix was given as input to a clustering
algorithm, aiming to identify groups (clusters) of problems in which the algo-
rithms obtained specific patterns of performance (e.g. a cluster in which certain
algorithms achieved a considerable advantage relative to the others). The meta-
examples were then associated to the class labels corresponding to the identified
clusters. Hence, instead of only predicting the best algorithm or the applicability
of algorithms, the meta-learner can predict more complex patterns of relative
performance.

Different approaches have been proposed in order to add new functionalities in
the Meta-Learning process, especially to provide rankings of algorithms instead
of recommending a single one. In [20,21], for instance, a combination of strict
meta-learners is used to recommend rankings of algorithms. In this approach, a
strict meta-learner is built for each different pair (X, Y) of algorithms. Given a
new learning problem, the outputs of the meta-learners are collected and then,
points are credited to the algorithms according to the outputs. For instance, if
’X’ is the output of meta-learner (X, Y) then the algorithm X is credited with one
point. The ranking of algorithms is recommended for the new problem directly
from the number of points assigned to the algorithms.

The Meta-Regression approach [22,23] tries to directly predict the accuracy
(or alternatively the error) of each candidate algorithm. The meta-learner in
this case may be used either to select the algorithm with the highest predicted
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accuracy or to provide a ranking of algorithms based on the order of predicted
accuracies. In [22], for instance, the authors obtained good results when a linear
regression model was used to predict the accuracy of 8 different classification
algorithms.

In the Zoomed-Ranking approach [24], the authors proposed to use instance-
based learning in order to produce rankings of algorithms taking into account
accuracy and execution time. In this approach, each meta-example stores the
meta-features describing a learning problem, as well as the accuracy and exe-
cution time obtained by each candidate algorithm in the problem. Given a new
learning problem, the Zoomed-Ranking retrieves the most similar past prob-
lem based on the similarity of meta-features. The ranking of algorithms is then
recommended for the new problem by deploying a multi-criteria measure that
aggregates the total accuracy and execution time obtained by the algorithms in
the similar problems. More recently, the authors provided a deeper investigation
of these ideas [7].

The concepts and techniques of meta-learning were mainly evaluated to select
the best algorithms for classification and regression problems. In recent years,
Meta-Learning has been extrapolated to other domains of application, such as
in the selection of time series forecasting models [18], design of planning systems
[25], combinatorial optimization [26], software engineering [27] and bioinformat-
ics [9,28,29]. In such domains, Meta-Learning can be seen as tool for analysis
of experiments performed by using a number of algorithms on a large set of
problems that can be solved by these algorithms. The knowledge acquired from
this analysis can be used to select algorithms for new problems. As highlighted
in [5], Meta-Learning can be useful to a potentially large number of fields, since
its developments can be extrapolated to learn about the behavior of algorithms
on different classes of problems.

3 System Architecture and Implementation Issues

In this paper we present the use of Ranking Meta-Learning approaches in two
different domains: time series forecasting and clustering of gene expression data
[8,9]. For each domain, we implemented a specific prototype in order to perform
experiments and evaluate the usefulness of the Meta-Learning solution. In this
section, we introduce a general architecture of Meta-Learning systems, as well as
some implementation issues that guided us in the construction of the prototypes.

3.1 General Architecture

Figure 1 shows the general architecture of systems employed for, given a dataset,
ranking the candidates algorithms. As it is common in Machine Learning, the
system has two phases: training and use. In the training phase, the Meta-Learner
(ML) extracts knowledge from the set of meta-examples stored in the Database
(DB). Such a knowledge relates characteristics of the data to the performance
of the candidate algorithms. In the case studies presented, these algorithms are
either time series models or clustering techniques.
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Fig. 1. System’s architecture.

In the phase of use, given a new dataset, the Feature Extractor (FE) pro-
duces the values of the meta-features that describe these data. According to
such values, the Meta-Learner (ML) module outputs a ranking of the available
candidate algorithms. In order to do so, the ML module uses the knowledge
previously provided as a result of the training phase.

The DB stores descriptions of datasets (i.e., meta-examples) used in the train-
ing phase. This set of meta-examples is semi-automatically created: (1) the choice
of datasets and algorithms to be considered is a manual task; (2) the generation
of the meta-features is automatically accomplished by the FE module; and (3)
the performance of the candidate algorithms in each dataset is empirically ob-
tained by directly applying each algorithm to the data and assessing the result
yielded.

The ML module implements the chosen meta-learning approach to extracting
knowledge (training phase) to be utilized in the choice or ranking of the candidate
algorithms (use phase). As seen in Section 2, the Meta-Learning approaches
implement one or more machine learning algorithms to execute such tasks. In
this context, one could employ a learning technique to recommend one single
algorithm from the set of candidate ones. Although this is a worthwhile approach,
a more informative and flexible solution for algorithm selection is to output a
ranking of the candidate algorithms to each dataset under analysis [7]. In this
context, if enough resources are available, more than one algorithm could be
employed with the data. Furthermore, if the one has some preference for a given
subset of candidate algorithms, one can choose the algorithms that presented
the best rank among the algorithms of interest.

3.2 Implementation Issues

To implement a system according to the architecture introduced in the previous
section, one has to consider some important questions. Since the kind of dataset
to be considered will have an impact on all the other aspects in the system’s
implementation, this is the first question to be addressed. Datasets are often
collected from benchmarking repositories (e.g., the UCI repository in the case of
classification and regression tasks) or artificially generated as performed in [30].
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Then, one needs to specify which algorithms will be considered to form the set
of candidate algorithms. The candidate algorithms should be selected in such a
way to provide a wide range of characteristics, as well as to give some generality
to the results.

The third question to be approached is which features will be employed by the
FE module to describe the datasets. This decision depends on the kind of dataset
being analyzed. For instance, in the context of classification problems, one can
find standard sets of meta-features that have been used in the meta-learning
field. This is the case of the Data Characterization Tool, developed within the
METAL project1. In contrast, for time series forecasting and cluster analysis,
since the application of meta-learning to these domains is relatively new, there
is no such standard set of attributes. Nevertheless, one can follow some general
guidelines to define them. For example, one should choose meta-features that can
be reliably identified, preventing subjective analysis, such as visual inspection of
plots. Subjective feature extraction is time consuming, requires expertise, and
has a low degree of reliability [31]. One should also employ a manageable number
of features in order to avoid a time consuming selection process.

4 Ranking Models for Time Series Forecasting

Time series forecasting has been used in several real world problems in order to
eliminate losses resultant from uncertainty, as well as to support the decision-
making process [32]. Several models can be used to forecast a time series. Se-
lecting the most adequate model for a given time series, from a set of available
models, may be a difficult task depending on the candidate models and the time
series characteristics.

A straightforward solution to model selection is to perform an empirical evalu-
ation (e.g. hold-out, cross-validation,...) using the available time series data, and
compare the estimated performance obtained by the candidate models [33]. De-
spite its simplicity, this solution is costly for a large amount of series to forecast
or several candidate models to evaluate [34].

A more efficient approach to selecting models is based on the development of
expert systems [31], in which rules are designed to relate time series features (e.g.
length, basic trend, autocorrelations...) and the candidate models performance.
A landmarking work in this approach is the Rule-Based Forecasting system [31],
in which an expert system with 99 rules was used to weight four forecasting
methods. In the experiments performed using the expert system, the improve-
ment in accuracy has shown to be significant. The main limitation of the expert
system approach, however, is the difficulty in acquiring knowledge, since that
good experts in time series forecasting are expensive and not always available
[35]. This limitation may be even more drastic in the case of more complex
models.

1 http://www.cs.bris.ac.uk/˜cgc/METAL
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In order to minimize the above difficulty, in [18], the authors developed an
original work which treats the model selection problem via Meta-Learning ap-
proaches. This solution is able not only to select the best model to forecast a
given series, but also to provide more informative results, such as a ranking of the
candidate models according to their performance in forecasting the given series.
The viability of using Meta-Learning in the context of time series forecasting
was confirmed in a number of different experiments [18,17,8,36].

In this section, we reviewed the use of a specific Meta-Learning approach, the
Zoomed-Ranking (ZR), to rank Artificial Neural Networks (ANNs) forecasting
models [8]. The motivation was that, although ANNs represent a powerful ap-
proach to forecasting, there is not much knowledge to guide its usage, compared
to the existing knowledge that supports the use of simpler linear models [34].
Hence, the investigation of ZR for ANN model selection contributes both to the
research on Meta-Learning and to research on ANNs for time series forecasting.

In order to verify the viability of Meta-Learning, a prototype was implemented
following the general architecture presented in section 3. The implemented pro-
totype was used to select the following ANN models:

1. TDNN (Time Delay Neural Network) [37]: it corresponds to a feedforward
network with time delays in the connections. The input layer receives a fixed
time window of the series at hand (i.e. a fixed number of past values of the
series), in order to forecast future values of the series. In our work, the time
window size was defined by verifying the number of statistical significant
autocorrelations in the series up to the limit of 3 past values. The number of
hidden neurons was defined by deploying an out-of-sample experiment [33].
In this experiment, we evaluated the TDNN with 1, 2 and 3 hidden neurons
on a series sample left out and depicted the best on in terms of forecasting
accuracy. The network weights were trained using the Levenberg-Marquardt
algorithm [38];

2. Time-Lagged RBF (Radial Basis Function) [39]: it corresponds to a tradi-
tional RBF neural network in which the input layer receives a time window
of the series at hand (as in the TDNN model). The methodology adopted
to define the time window size and the number of hidden neurons was the
same one adopted for the TDNN;

3. SOMTAD (SOM with Temporal Activity Diffusion) [40]: it corresponds to
a SOM network that creates temporally correlated neighborhoods in the
output space. We defined the input layer of the SOM as the past 3 values
of the series. In the SOM training, a 10x10 bi-dimensional map was adopted
with learning rate of 0.3.

The candidate ANN models were used to forecast benchmarking time series
related to financial, micro and macro-economic domains, available in the Time
Series Data Library (TSDL) repository2. In the following sections, we provide
more details of the implemented prototype.

2 http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL
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4.1 Feature Extractor

In this case study, we used in the FE module 5 different features to describe the
TSDL series:

1. Length of the time series (L): number of observations of the series;
2. Basic Trend (BT): slope of the linear regression model. As higher this feature

value, higher is the global trend of the series;
3. Test of Turning Points (TP): Zt is a turning point if Zt−1 < Zt > Zt+1 or

Zt−1 > Zt < Zt+1. The presence of a very large number or a very small
number of turning points indicates that the series is not generated by a
purely random process;

4. Average Coefficient of Autocorrelation (AC): average of the first 5 autocor-
relation coefficients. Large values of this feature suggest a strong correlation
between adjacent points in the series;

5. Type of the time series (TYPE): it is represented by 3 categories indicating
the series domain, finances, micro-economy and macro-economy.

The first four features are directly computed using the series data and TYPE
in turn is an information provided by the TSDL repository.

4.2 Database

In the construction of the Database, meta-examples were generated from the
empirical evaluation of the three candidate models on different time series fore-
casting problems. Each meta-example for the ZR is related to a time series and
stores: (1) the descriptive features of the series (as defined in the FE module);
and (2) the forecasting error and the execution time obtained by each candidate
model, when used to forecast the series.

In this case study, the accuracy and execution time of each model were col-
lected by performing a hold-out experiment using the available time series data.
Initially, the time series data is divided in two parts: the fit period and the test
period. The test period in our prototype corresponds to the last observations of
the series and the fit period corresponds to the remaining data. The fit period
is used to train the ANN models. The trained models are then used to generate
its individual forecasts for the test period. Finally, each meta-example is then
composed by: the time series features extracted for describing the fit period, the
mean absolute forecasting error obtained by the models in the test period and
the time execution recorded during the ANN models training.

The process described above was applied to 80 different time series, and hence,
a set of 80 meta-examples was generated. We highlight that such set of meta-
examples actually stores the experience obtained from empirically evaluating the
ANN models to forecast a large number of different time series. A Meta-Learning
approach (as the ZR) will be able to use this experience to recommend rankings
of models for new series only based on the time series features, without the need
of performing new empirical evaluations.
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4.3 Meta-Learner

The Zoomed-Ranking (ZR) meta-learning approach was used in the Meta-Learner
module in order to rank the three ANN models. This approach is composed
by two distinct phases: the Zooming and the Ranking phases, described here.
Given a new time series to forecast, in the Zooming phase, a number of m meta-
examples are retrieved from the training set according to a distance function
that measures the similarity between time series features. The distance function
implemented in the prototype was the L1-norm defined as:

dist(x, xi) =
p∑

j=1

|xj − xj
i |

maxl(x
j
l ) − minl(x

j
l )

(1)

In this equation, x is the description of the input series to be forecasted , xi

is the description of the i-th series in the training set and p is the number of
meta-features. We used in the implemented prototype the L1-norm as originally
proposed in the ZR approach [24].

In the Ranking phase, a ranking of models is suggested, by aggregating the
forecasting error and execution time stored in the m retrieved meta-examples.
This is performed by deploying the Adjust Ratio of Ratios (ARR) measure [7],
as defined in the equation:

ARRi
k,k′ =

Sk′
i

Sk
i

1 + AccD ∗ log( T k
i

T k′
i

)
(2)

In the above equation, Sk
i and T k

i are respectively the forecasting error and
execution time obtained by the model k on series i. The metric ARRi

k,k′ combines
forecasting error and execution time, to measure the relative performance of the
models k and k′ in the series i. The parameter AccD is defined by the user and
represents the relative importance between forecasting accuracy and execution
time. AccD assumes values between 0 and 1. The lower is the AccD parameter,
the higher is the importance given to accuracy relative to execution time.

The ratio of forecasting errors Sk′
i /Sk

i can be seen as a measure of advantage
of the model k in relation to model k′, that is, a measure of relative benefit
of model k (the higher is Sk′

i /Sk
i , the lower is the forecasting error of model k

relative to model k′). In turn, the ratio of execution times T k
i /T k′

i can be seen
as a measure of disadvantage of the model k in relation to model k′, that is, as
measure of relative cost of model k. The ARR measure uses the ratio between
a benefit and a cost measure to compute the overall quality of the candidate
model k related to k′.

An aspect that should be observed regarding the time ratio is the fact that
this measure has a much wider range of possible values than the ratio of accuracy
rate. Therefore, if simple ratios of time were used, it would dominate the ARR
measure. In this way, the effect of this range could be diminished by using the log
of time ratios. We highlight that the use of log of time ratios was also adopted
in [24,7].
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Finally, the ranking of models suggested to the input series is generated by
aggregating the ARR information across the m retrieved meta-examples and K
candidate models, as follows:

ARRk =

∑
k′ �=k

m

√∏
i∈Zoom ARRi

k,k′

K − 1
(3)

In the above equation, the Zoom set represents the m retrieved meta-examples.
The geometric mean in ARR is computed across the retrieved meta-examples
and then the arithmetic mean across the candidate models. The ranking is sug-
gested directly from ARRk (the higher is the ARRk value, the higher is the
rank of model k). The geometric mean was used in order to satisfy the following
property: ARRk,k′ = 1/ARRk′,k.

4.4 Experiments and Results

In the performed experiments, we collected 80 time series from the TSDL repos-
itory. Hence, a set of 80 meta-examples were generated by applying the proce-
dure described in the section 4.2. This set was divided into 60 meta-examples
for training and 20 meta-examples for testing the ZR approach.

The experiments were performed for different values of: (1) AccD parameter
(0, 0.2, 0.4 and 0.6), which controls the relative importance of accuracy and
time; and (2) the parameter m (1, 3, 5, 7, 9, 11 and 13 neighbors), which defines
the neighborhood size in the Zooming phase.

In order to evaluate the performance of ZR, we deployed the Spearman Rank-
ing Correlation coefficient (SRC). Given a series i, the SRC coefficient measures
the similarity between the recommended ranking of models and the ideal rank-
ing (i.e. the correct ordering of models taking into account the ARR measure
computed in the series). The SRC for a series i is computed as:

SRCi = 1 − 6 ∗
∑K

k=1(rrk,i − irk,i)2

K3 − K
(4)

In the equation, rrk,i and irk,i are respectively the rank of model k in the
recommended ranking and the ideal ranking for the series i and K is the number
of candidate models. SRCi assumes values between -1 and 1. Values near to 1
indicate that the two rankings have many agreement positions and values near to
-1 indicate disagreement between the rankings. In order to evaluate the rankings
generated for the 20 series in the test set, we calculated the average of SRC
across these series.

The ZR approach was compared to a default ranking method [18], in which
the ranking is suggested by aggregating the performance information for all
training meta-examples, instead of using only the most similar ones. Despite its
simplicity, the default method has been used as a basis of comparison in different
case studies in the literature of Meta-Learning [7,18,8].
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Table 1 shows the average values of SRC across the test series, considering
the ZR approach and the default ranking. As it can be seen, the rankings rec-
ommended by ZR were in average more correlated to the ideal rankings when
compared to the default method. The SRC average values for the default ranking
are near to zero, indicating neutrality related to the ideal rankings. In fact, the
average performance of each candidate model was very similar across the 20 test
series, and then there was no clear preference among the models by default. In
this way, the default ranking had a quality which was similar to a random choice
of models. The ZR in turn obtained SRC values from 0.45 to 0.70, for all different
experimental settings, indicating positive correlation to the ideal rankings.

Table 1. Average SRC coefficient across the 20 series in the test set.

Average SRC

AccD = AccD = AccD = AccD =
0.0 0.2 0.4 0.6

m = 1 0.45 0.47 0.50 0.45

m = 3 0.47 0.50 0.52 0.50

m = 5 0.47 0.50 0.52 0.50

m = 7 0.47 0.50 0.52 0.50

m = 9 0.62 0.50 0.52 0.50

m = 11 0.67 0.70 0.67 0.50

m = 13 0.67 0.65 0.62 0.45

Default 0.02 0.05 0.07 0.05

5 Ranking Clustering Techniques for Gene Expression
Data

As previously mentioned, Meta-Learning had been used mostly for ranking and
selecting supervised learning algorithms. Motivated by this, we extended the use
of Meta-Learning approaches for clustering algorithms. We developed our case
study in the context of clustering algorithms applied to cancer gene expression
data generated by microarray [9].

Cluster analysis of gene expression microarray data is of increasing interest
in the field of functional genomics [41,42,43]. One of the main reasons for this
is the need for molecular-based refinement of broadly defined biological classes,
with implications in cancer diagnosis, prognosis and treatment. Although the
selection of the clustering algorithm for the analysis of microarray datasets is a
very important question, there are in the literature few guidelines or standard
procedures on how these data should be analyzed [44,45].

The selection of algorithms is basically driven by the familiarity of biological
experts to the algorithm rather than the features of the algorithms themselves
and of the data [44]. For instance, the broad utilization of hierarchical clustering
techniques is mostly a consequence of its similarity to phylogenetic methods,
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which biologists are often used to. Hence, in this context, by employing a Meta-
Learning approach, our aim was to provide a framework to support non-expert
users in the algorithm selection task [9].

In this section, we present a case study originally proposed in [9] in which a
Meta-Regression approach was used to rank seven different candidate clustering
methods: single linkage (SL), complete linkage (CL), average linkage (AL), k-
means (KM), mixture model clustering (M), spectral clustering (SP), and Shared
Nearest Neighbors algorithm (SNN) [46,47,48]. As it will be seen, meta-examples
were generated from the evaluation of these clustering methods on 32 microar-
ray datasets of cancer gene expression. the next sections provide the details of
implementation for this case study, as well as the performed experiments.

5.1 Feature Extractor

In this case study, we used a set of eight descriptive attributes (meta-features).
Some of them were first proposed for the case of supervised learning tasks.

1. LgE: log10 of the number of examples. A raw indication of the available
amount of training data.

2. LgREA: log10 of the ratio of the number of examples by the number of
attributes. A rough indicator of the number of examples available to the
number of attributes.

3. PMV: percentage of missing values. An indication of the quality of the data.
4. MN: multivariate normality, which is the proportion of T 2 [49](examples

transformed via T 2) that are within 50% of a Chi-squared distribution (de-
gree of freedom equals to the number of attributes describing the example).
A rough indicator on the approximation of the data distribution to a normal
distribution.

5. SK: skewness of the T 2 vector. Same as the previous item.
6. Chip: type of microarray technology used (either cDNA or Affymetrix).
7. PFA: percentage of the attributes that were kept after the application of the

attribute selection filter.
8. PO: percentage of outliers. In this case, the value stands for the proportion

of T 2 distant more than two standard deviations from the mean. Another
indicator of the quality of the data.

5.2 Database

Meta-examples in this case study are related to cancer gene expression microar-
ray datasets. Each meta-example has two parts: (1) the meta-features describing
a gene expression dataset; and (2) a vector with the ranking of the clustering al-
gorithms for that dataset. A meta-regressor will use a set of such meta-examples
to predict the algorithms’ ranks for new datasets.

In order to assign this ranking for a dataset, we executed each of the seven
clustering algorithms with a given dataset to produce the respective partitions.
The number of clusters was set to be equal to the true number of the classes in
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the data. The known class labels was not used in any way during the clustering.
As in other works, the original class labels constitute the gold standard against
which we evaluate the clustering results [41,46,50].

For all non-deterministic algorithms, we ran the algorithm 30 times and picked
the best partition. More specifically, in terms of the index to assess the success
of the algorithm in recovering the gold standard partition of the dataset and
building the ranking, we employed the corrected Rand index (cR) [46,50]. The
maximum value of the cR is 1, indicating a perfect agreement between the par-
titions. A value near 0 corresponds to a partition agreement found by chance. A
negative value indicates that the degree of similarity between the gold standard
partition and the partition yielded by the clustering algorithm is inferior to the
one found by chance.

The cluster evaluation we adopt is mainly aimed at assessing how good the
investigated clustering method is at recovering known clusters from gene expres-
sion microarray data. Formally, let U = {u1, . . . , ur, . . . , uR} be the partition
given by the clustering solution, and V = {v1, . . . , vc, . . . , vC} be the partition
formed by an a priori information independent of partition U (the gold stan-
dard). The corrected Rand is defined as:
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where (1) nij represents the number of objects in clusters ui and vj ; (2) ni· indi-
cates the number of objects in cluster ui; (3) n·j indicates the number of objects
in cluster vj ; (4) n is the total number of objects; and (5)

(
a
b

)
is the binomial

coefficient a!
b!(a−b)! .

Based on the values of the cR, the ranking for the algorithms is generated
as follows. The clustering algorithm that presents the highest cR come higher
in the ranking (i.e., the ranking value is equal to 1). Algorithms that generate
partition with the same cR receive the same ranking number, which is the mean
of what they would have under ordinal rankings.

5.3 Meta-Learner

Our system generates a ranking of algorithms for each dataset given as input.
In order to create a ranking of K candidates (clustering algorithms), we use K
regressors, each one responsible for predicting the ranking of a specific algorithm
for the dataset given as input.

For building the regressor associated to a given algorithm k, we adopt the fol-
lowing procedure. First, we defined a set of meta-examples. Each meta-example
corresponded to a dataset, described by a set of meta-features, with one of
them representing the desired output. The value of the meta-attribute repre-
senting the desired output is assigned according to the ranking of the algorithm
among all the seven ones employed to cluster the dataset. Next, we applied a
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supervised learning algorithm to each of the K regressors, which will be respon-
sible for associating a dataset to a ranking.

As previously mentioned, we took into account seven clustering algorithms:
SL, AL, CL, KM, M, SP and SNN. This led to construction seven regressors,
R1, . . . , R7, associated to, respectively, SL, AL, CL, KM, M, SP and SNN. For
example, suppose that the outputs of the seven regressors for a new dataset
are, respectively, 7, 5, 6, 1, 2, 4 and 3. Such an output means that model SL is
expected to be the worst model (it is the last one in the ranking), AL is fifth
best model model, CL the fourth one, KM is supposed to be better than all the
others, as it is placed as first one in the ranking.

In our implementation, we employed the regression Support Vector Machine
(SVM) algorithm, implemented in LIBSVM: a library for support vector ma-
chines [51]. A reason for this choice is that, in our preliminary results, SVMs
showed a better accuracy than models such as artificial neural networks and
k-NN.

5.4 Experiments and Results

We describe here the experiments that we developed in order to evaluate the
performance of our prototype. Thirty two microarray datasets3 (see Table 2).
They are a set of benchmark microarray data presented in [52]. These datasets
present different values for characteristics such as type of microarray chip (second
column), number of patterns (third column), number of classes (fourth column),
distribution of patterns within the classes (fifth column), dimensionality (sixth
column), and dimensionality after feature selection (last column).

In terms of the datasets, it is worthwhile to point out that microarray tech-
nology is in general available in two different platforms, cDNA and Affymetrix
[41,42,43]. Measurements of Affymetrix arrays are estimates on the number of
RNA copies found in the cell sample, whereas cDNA microarrays values are
ratios of the number of copies in relation to a control cell sample.

In order to remove uninformative genes for the case of Affymetrix arrays, we
applied the following procedure. For each gene j (attribute), we computed the
mean mj . But before doing so, in order to get rid of extreme values, we discarded
the 10% largest and smallest values. Based on this mean, we transform every
value x∗

ij of example i and attribute j to:

yij = log2(x∗
ij/mj)

After the previous transformation, we chose for further analysis genes whose
expression level differed by at least l-fold, in at least c samples, from their mean
expression level across samples. With few exceptions, the parameters l and c were
selected in such a way as to produce a filtered dataset with around at least 10% of
the original number of genes (features). It is important to point out that the data
transformed with the previous equation is only used in the filtering step.
3 http://algorithmics.molgen.mpg.de/Supplements/CompCancer/ are included in this

analysis
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Table 2. Dataset description

Dataset Chip n Nr Dist. Classes d Filtered
Classes d

Alizadeh-V1 cDNA 42 2 21,21 4022 1095

Alizadeh-V2 cDNA 62 3 42,9,11 4022 2093

Armstrong-V1 Affy 72 2 24,48 12582 1081

Armstrong-V2 Affy 72 3 24,20,28 12582 2194

Bhattacharjee Affy 203 5 139,17,6,21,20 12600 1543

Bittner cDNA 38 2 19, 9 8067 2201

Bredel cDNA 50 3 31,14,5 41472 1739

Chen cDNA 180 2 104,76 22699 85

Chowdary Affy 104 2 62,42 22283 182

Dyrskjot Affy 40 3 9,20,11 7129 1203

Garber cDNA 66 4 17,40,4,5 24192 4553

Golub-V1 Affy 72 2 47,25 7129 1877

Gordon Affy 181 2 31,150 12533 1626

Khan cDNA 83 4 29,11,18,25 6567 1069

Laiho Affy 37 2 8,29 22883 2202

Lapoint-V1 cDNA 69 3 11,39,19 42640 1625

Lapoint-V2 cDNA 110 4 11,39,19,41 42640 2496

Liang cDNA 37 3 28,6,3 24192 1411

Nutt-V1 Affy 50 4 14,7,14,15 12625 1377

Nutt-V2 Affy 28 2 14,14 12625 1070

Nutt-V3 Affy 22 2 7,15 12625 1152

Pomeroy-V1 Affy 34 2 25,9 7129 857

Pomeroy-V2 Affy 42 5 10,10,10,4,8 7129 1379

Ramaswamy Affy 190 14 11,10,11,11,22,10,11 16063 1363
10,30,11,11,11,11,20

Risinger cDNA 42 4 13,3,19,7 8872 1771

Shipp Affy 77 2 58,19 7129 798

Singh Affy 102 2 58,19 12600 339

Su Affy 174 10 26,8,26,23,12,11,7,27,6,28 12533 1571

Tomlins-V1 cDNA 104 5 27,20,32,13,12 20000 2315

Tomlins-V2 cDNA 92 4 27,20,32,13 20000 1288

West Affy 49 2 25,24 7129 1198

Yeoh-V1 Affy 248 2 43,205 12625 2526
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A similar filter procedure was applied for the case of cDNA microarray, but
without the need to transform the data. In the case of cDNA microarray datasets,
whose attributes (genes) could present missing values, we discarded the ones with
more than 10% of missing values. The attributes that are kept and still present
missing values have the values replaced for the respective mean value of the
attribute.

For a given dataset, in order to generate the ranking, we took into account
the configuration that obtained the best corrected Rand (see the second and
third paragraphs in Section 5.2). We ran the algorithms with Euclidean distance,
Pearson correlation and Cosine, but always with the number of clusters equal to
the real number of classes in the dataset.

We assessed the performance of the meta-learners using the leave-one-out
procedure. At each step, 31 examples are employed as the training set, and the
remaining example is used to test the SVMs created. This step is repeated 32
times, utilizing at each time a different test example. The quality of a suggested
ranking for a given dataset is evaluated by employing the average SRC, as de-
scribed in equation 4, to measure the similarity between the suggested and the
ideal rankings.

The result of our approach was compared to a default ranking method, in
which the average ranking is suggested for all datasets. In our case, the de-
fault ranking was: SL=6.41, AL=4.60, CL=3.84, KM=2.31, M=3.40, SP=3.07,
SNN=4.36. In Table 3, we illustrate the mean and standard deviation for the
Spearman coefficient for the rankings generated by our approach and for the
default ranking.

Table 3. Mean of the Spearman coefficient

Method SRC

Default 0.59 ± 0.37

Meta-Leaner 0.75 ± 0.21

As it can be seen, the rankings generated by our method were more correlated
to the ideal ranking. In fact, according to a hypothesis test, at a significance level
of 0.05, the mean of the correlation value found with our method was significantly
higher than that obtained with the default ranking.

6 Conclusion

In this paper, we present the results of using Ranking Meta-Learning approaches
in two different domains of application: time series forecasting and clustering of
gene expression. In the performed experiments, we observed that the rankings
suggested by Meta-Learning were similar to the ideal rankings of algorithms
observed in the available problems.

We can point out specific contributions of our work in the fields of time series
forecasting and clustering of gene expression, which are domains of particular
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interest of many researchers. Different improvements can be considered in fu-
ture work, such as increasing the number of meta-features (including the use of
landmarking), investigating the viability of using artificial datasets in order to
generate a larger database of meta-examples and performing experiments with
other Meta-Learning approaches.

Finally, we highlight that Meta-Learning brings opportunities to researchers
in different fields by providing general techniques that can be extrapolated to
other algorithm selection tasks. Although the use of Meta-Learning in different
domains has been increasing in recent years, there is still a large number of
contexts in which it has not yet been investigated.
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Abstract. There is a need for methods and tools that facilitate the systematic 
exploration of novel artificial neural network models. While significant pro-
gress has been made in developing concise artificial neural networks that im-
plement basic models of neural activation, connectivity and plasticity, limited 
success has been attained in creating neural networks that integrate multiple di-
verse models to produce highly complex neural systems.  From a problem-
solving perspective, there is a need for effective methods for combining differ-
ent neural-network-based learning systems in order to solve complex problems.  
Different models may be more appropriate for solving different subproblems, 
and robust, systematic methods for combining those models may lead to more 
powerful machine learning systems.  From a neuroscience modelling perspec-
tive, there is a need for effective methods for integrating different models to 
produce more robust models of the brain.  These needs may be met through the 
development of meta-model languages that represent diverse neural models and 
the interactions between different neural elements. A meta-model language 
based on attribute grammars, the Network Generating Attribute Grammar En-
coding, is presented, and its capability for facilitating automated search of com-
plex combinations of neural components from different models is discussed. 

1   Introduction 

Since the resurgence of the neural networks field in the mid-1980’s, thousands of dif-
ferent neural network models have been produced.  These models vary along many 
different dimensions, including the basic elements and properties of a neuron or syn-
apse, properties of connections, patterns of connectivity, the degree of structural and 
functional modularity, temporal and spatial properties of network behaviour, mecha-
nisms used to propagate information, and mechanisms used to adapt the network be-
haviour over time [1].  Despite significant progress in the field, models developed to 
date have tended to be relatively limited in scale and complexity.  For example, neural 
networks for learning tend to use simple learning rules and relatively small structures 
with limited modularity, while neural networks for biological modeling tend to focus 
on detailed models of small numbers of neurons or small areas of the brain.  These 
limitations have been largely due to the general use of manual methods for creating 
new models and the lack of automated methods for adapting and combining available 
model capabilities.   



246 T.S. Hussain 

While there are many software tools available for assisting researchers in the crea-
tion of neural networks, these tools have historically been of limited use in the devel-
opment of new, large complex models.  Neural network simulation environments  
[2-11] and specification languages [12-19] offer the researcher the capability to spec-
ify a wide range of neural architectures, but variations in those architectures must 
generally be explored in a highly manual fashion. Genetic encodings of neural net-
works [20-32] offer the researcher the capability to specify a variety of neural proper-
ties and to use evolutionary search to systematically explore new networks that  
combine those properties in novel ways, but are generally limited to a small number 
of structural or functional dimensions [20-28].   

Most model specifications lack explicit, formal descriptions of the roles of the differ-
ent neural components.  In creating a model, researchers often make design decisions 
based on the roles that certain components may play.  Certain types of neurons may be 
chosen to play a supervisory role for other neurons.  One neural component based on a 
particular model may be chosen to process the input data in a certain way, such as clus-
tering it, to allow a second neural component to perform more efficiently in a different 
role, such as classifying the data.  A specific feature may be incorporated into a model 
to play an analogous role to a particular structure in the brain.  While researchers under-
stand that the neural elements are intended to perform certain roles, those roles are 
rarely explicitly captured in the model itself.  Rather, they are buried in the prose that 
describes the model (if at all).  Thus, when we have two different neural components 
that play the same or similar roles in two different network models, it requires a manual 
to recognize that overlap, and further manual effort to determine how to adapt one com-
ponent (or interchange them) in order to explore whether one model can be improved by 
adopting techniques or principles from the other.  

The author proposes that there is a need for representations that explicitly describe 
the roles of different elements of a model, and a new perspective on how to develop 
novel models by exploiting those roles in a systematic manner.  In particular, it is 
proposed that there is a need for general, hierarchical methods for representing arbi-
trary, pertinent elements of a neural network model at sufficient levels of detail to 
permit exploration of model variations based on those elements.  These methods 
should allow a single hierarchical representation to capture low-level details such as 
the internal functioning of a single neuron, mid-level details such as how neurons and 
neural components are organized structurally and functionally within a network, and 
high-level details such as how different network components interact with each other, 
what roles they play, and how they interact with their environment. 

This chapter introduces a meta-model perspective on model creation, and presents 
the Network Generating Attribute Grammar Encoding (NGAGE) [29-32] as a meta-
model representation method based on attribute grammars [33].  NGAGE supports the 
representation of diverse neural network models and enables the systematic explora-
tion of new models. 

2   Background 

The wealth of existing neuron models and neural network architectures, and the func-
tional and structural elements that make up those models provide a rich foundation of 



 A Meta-Model Perspective and Attribute Grammar Approach 247 

material and techniques for creating new models.  Many software tools and represen-
tation methods have been developed to support research on neural network modelling.  
These have typically fallen into one of four categories.   

Single-model focus: Many software tools provide support for creating a single type 
of neural network model.  In these tools, the researcher is limited to varying parame-
ters of the model and little else.   Many genetic encoding approaches [20-22] fall into 
this category.  A number of techniques for the genetic encoding of neural networks 
have been developed with the aim of providing the capability to represent some prop-
erties of a neural network model in a manner that enables an evolutionary algorithm 
to automatically manipulate those properties in interesting ways.  Early genetic en-
codings used highly static and limited representations that enabled the exploration of 
few neural properties and simple networks.  For instance, direct encoding [20] speci-
fies only the weight values of a network, while all other aspects of the network, in-
cluding topology, are kept fixed.  A parametric encoding [21, 22] may specify a wide 
variety of network properties, but usually these are limited in number and to high-
level properties.   

Specification focus: Some approaches provide the ability to create very detailed 
models of neural elements from first principles [9-11, 17-18, 36], or to specify a vari-
ety of elements from an underlying language of neural components [12-14].  This 
provides strong modelling power to the researcher to create new models, but requires 
significant manual effort (e.g., coding or visual coding).  

Generative focus: Some tools provide a simple set of basic neural building blocks, 
usually a single neuron model with limited parameters, a single type of connection, 
and a limited set of variations on a learning rule [15].  In these tools, the researcher is 
free to systematically compose new networks within a limited family.  These tools 
can be very useful in generating new solutions to problems, but typically offer few 
new insights into learning or biology, and often do not scale to large solutions due to 
limitations in the underlying neural model.  Most remaining genetic encodings ap-
proaches [23-28] fall into this category.  For instance, developmental rule encoding 
[23, 24] and cellular encoding [25] represent a network as a set of re-write rules that 
may be applied to an initial network configuration to produce a final topology that 
may range from sparse to dense and highly irregular to highly regular or modular; 
functional aspects of the neurons generally remain fixed.  Standard tree-based, genetic 
programming encoding has been used to evolve the form of the learning rule from 
simpler functional elements, but assumes a fixed network topology [26]. 

Model toolbox focus: A number of tools provide the researcher with the ability to 
create many different types of neural networks, typically based heavily on popular 
neural network models in the field [3-7], or, more generally, arbitrary machine learn-
ing algorithms [8].  While some of these suffer the same limitations as single-model 
tools (i.e., no ability to move beyond the original models), many provide the ability to 
combine different models in their entirety (e.g., connect them in sequence) or to com-
bine certain parts of models (e.g., select learning rule from available set).  This per-
mits an exploration of new models by combining and varying different elements from 
different models.  In most such tools, however, researchers are required to manually 
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explore the space of model variations (e.g., by creating models via a visual interface, 
writing a specific script or programming).  

Generally, creating new neural network models is an ad-hoc endeavour, with the 
focus being more on using consistent approaches to empirically verify the effective-
ness of a given model than on the process of creating the model.  In the area of neural 
networks for learning, the practices followed in creating a new, useful neural model 
are rarely addressed as a topic in their own right.  Some researchers do use ongoing 
developments in computational neuroscience or theories from related fields to guide 
the choice of model variations [57,58], but many simply make minor changes to acti-
vation functions, structure or learning rules.  Researchers on the evolution of neural 
networks have paid a high degree of explicit attention to representing not only the 
structure and functions of neural networks, but also the rules by which they may de-
velop [20-27].  Most of these genetic encodings facilitate the programmatic explora-
tion of model variations, but ultimately, support the search only of limited families of 
networks. In the area of neural networks for biological modelling, there is a greater 
explicit attention paid to the methods used for creating new models [49-50].  Further, 
advances in neuroscience quickly inform the types of model variations that are worthy 
of exploration.  However, the process is almost exclusively manual in nature, and the 
intricate models developed by one researcher are generally not compatible with mod-
els developed by another researcher, nor easily shared among researchers [17,18].   

Model sharing focus: Several efforts have been made to define standard description 
languages to address the difficulty in sharing models among researchers.  The Predic-
tive Model Markup Language (PMML) [19] is intended to specify data mining mod-
els using a wide variety of machine learning approaches so that researchers may de-
velop models within one modeling application and use the models in another 
application.  PMML defines the data requirements and pre-processing, model specif-
ics, data mining schema and output post-processing used by a data mining model.  
Much of the specification describes how to apply a known machine learning algo-
rithm in context.  In a similar manner to a model toolbox, model-specific structural 
and functional details are defined based on the parameters expected by an underlying 
algorithm-specific module.  For instance, in PMML, a multi-layer feedforward net-
work is represented by its activation function, number of layers, connections and 
weights.   

The Network Interchange format for Neuroscience Markup Language (NineML) is 
intended to specify networks of biological neural models so that different researchers 
may be able to replicate the results of others [17,18].  NineML is comprised of two 
semantic layers – an abstraction layer that provides the “the core concepts, mathemat-
ics and syntax with which model variables and state update rules are explicitly de-
scribed” [18] and the user layer that “provides syntax to specify the instantiation and 
parameterization of a network model in biological terms”.  NineML is under devel-
opment for the limited domain of spiking networks, and is intended to be extensible 
and to cover a range of modelling scales. However, since NineML is not yet available, 
its strengths and limitations are not known. 

Thus, while there is support for the systematic exploration of relatively simple neu-
ral network models and for the manual creation of highly complex models, few re-
searchers have considered how to support the automated search of complex, hetero-
genous networks.  Specifically, a key issue is how to represent neural elements at 
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multiple levels of complexity in such a way that a search can meaningful substitute 
certain elements for others and/or compose certain elements with others.  In other 
words, there is a lack of representations that identify neural elements based on a meta-
level understanding of their role in the system, thereby allowing those elements with 
similar roles to be interchanged, and elements with complementary capabilities to be 
integrated together into a larger component.   

3   Meta-Perspective on Model Creation 

The author proposes that we need to develop and espouse a common meta-perspective 
on model creation.  The perspective should address questions such as: 
 

• What is the process involved in developing a new neural-based model?   
• What should we consider when trying to enhance an existing model? 
• What are the different ways in which neural components may interact within 

a model? 
• How do we identify and characterize the common elements of different 

models? 
• What are the dimensions along which we can change a given model? 
• How do we formally define the meta-description of a model to capture the 

basic reasoning and process followed in creating that model?  
• How do we relate one level of abstraction in a model to another level? 
 

As a step towards a common meta-perspective, the following multi-level approach 
to understanding and describing the neural modelling process is proposed.  In particu-
lar, we define six levels of specification which may be used to interpret a given neural 
element: Environmental, Behavioural, Developmental, Structural, Functional and Me-
chanical.  The subtle aspect regarding such levels is to recognize that they may apply 
in a hierarchical fashion throughout a neural model.  While all levels may not apply to 
all neural elements, most neural elements may be viewed on at least three levels.  In 
using the term ‘neural element’, we allow it to refer to any part of a neural model that 
may be defined and hence manipulated by the researcher.  The levels are defined be-
low, together discussions of how they may be used as part of an explicit modeling 
representation. 

3.1   Environmental Level 

At the highest level of specification, a neural element may be regarded in terms of the 
environment in which it exists and with which it interacts.  This environment should 
define the context in which the neural element operates, and should ground the moti-
vation for the design of the neural element.  Typically, for most models the environ-
mental level is considered only in terms of the most general context (which we shall 
term the “external environment”). For example, a neural network for learning may be 
defined to solve a classification problem and a description of the inputs and outputs 
may be given.  Moreover, that environmental context may not be explicit in the model 
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definition, and hence the specific relationship between the “problem” and the choice 
of neural elements is not captured.  

The author proposes that the environmental context of a neural element should be 
explicitly defined for all meaningful parts of a neural model.  For example, a module 
within a larger neural system has a context in which it is operating.  This context may 
not be the same as the external environment.  It may differ in complexity (e.g., the 
number of inputs may have been reduced by another module), time properties (e.g., 
external signals may be infrequent, but internal signals provided to the module may 
be very frequent), nature (e.g., external signals may be real-valued, while internal sig-
nals to the module may be binary), or stability (e.g., the external patterns may vary 
dramatically over time, but the internal patterns to the module may remain relatively 
similar). 

The nature of the context in which a neural element is operating greatly informs the 
choices made at more detailed levels of specification.  Explicitly capturing this con-
text for arbitrary neural elements in the model allows enhanced programmatic com-
parison of elements.  Programmatic exploration methods could then determine 
whether two elements can be meaningfully interchanged (e.g., because of similarities 
in underlying environmental assumptions, such as a given hormone concentration).  
Those methods could also automatically determine how a given context would need 
to be adapted if the assumptions were different in order to support an effective inter-
change (e.g., through the use of yet another neural element to modulate a hormone). 

3.2   Behavioural Level 

A given model operating within a given environment is designed to satisfy a certain 
set of goals.  These may be intrinsic to the model, such as performance goals (e.g., the 
purpose of a learning network may be to produce an answer with minimal error, or it 
may be to process inputs in minimal time), or they may be extrinsic, such as a re-
search goal (e.g., the goal of designing a complex neuron model may be to emulate 
particular known neural behaviour as closely as possible).  Moreover, different neural 
elements may be incorporated into a model in order to serve different purposes and 
accomplish different goals.  Ultimately, every neural element in a model is chosen for 
a reason, even if that reason is simply tradition.  

When developing a model, the goal of a given element may be captured explicitly 
in terms of its intended role or behaviour.  How does one neural component interact 
with or impact another?  What role does it play in determining the behaviour of the 
larger system?  At this level of specification, the researcher defines the roles for a 
given network and its components, and organizes those roles as appropriate to provide 
a general specification of the processing that will occur in the network.  The behav-
ioural level is given here as a higher level than the developmental level, though there 
may be cases in which a researcher may wish for the role of a neural element to 
change over time as the network adapts.  In such a case, a robust behavioural level 
representation should cover all possible roles the neural element may adopt over time. 

3.3   Developmental Level 

Given a certain role with certain goals in a certain environment, a model must specify 
how all neural elements will form or adapt to achieve those goals.  Even for rigid, 
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static network models, there are generally basic heuristics that govern the formation 
of and changes to the network.  The developmental level is captured explicitly in most 
models for certain neural elements.  For example, a connection pruning algorithm or a 
network growing rule.  It is important to realize, though, that all neural elements po-
tentially have their own approaches to formation and change over time.  This becomes 
especially true as we begin to explore complex networks of complex and varied neu-
rons.  Simple learning rules, such a weight adaptation rule, conceptually fall in the 
developmental level, though they reflect a simple application of a function and a 
memory store. 

3.4   Structural Level 

A neural element may be regarded as a particular configuration of multiple simpler 
neural elements.  These may be arranged in a particular structural and/or functional 
manner to produce the aggregate component.  The structural level is one of the central 
levels of representation used when specifying neural models, and is often applied in a 
hierarchical manner, such as in modular networks.  Note that a neural element may be 
specified in a highly abstract manner (e.g., a basic Hebbian neuron model [59]) or in a 
highly detailed structural and functional manner (e.g., a complex biological neuron 
model) [60-62].  A robust meta-modelling language should support either level of de-
tail for different elements in the model. 

3.5   Functional Level 

Within any neural model, we may view a given neural element as performing a basic 
function.  Thus, a neuron may have a particular activation function.  A synapse may 
be governed by a particular set of functions.  At this level, making a change to a 
model must address the specific types of processing that will occur, and what compu-
tations will be made.  Issues of timing and transmission of information are addressed 
at this level.  The basic functionality of a neural element may generally be specified in 
a highly localized manner.  However, it can also be regarded in a hierarchical manner 
(e.g., a basis function lies within another function).  Despite its local specification, the 
impact of a change in functionality may have far-reaching effects on the high-level 
behaviour of a larger neural component.  The functional level is one of the common 
levels of representation used when specifying neural models, though it is usually used 
only to describe the functionality of single neurons. 

3.6   Mechanical Level 

At the lowest level, a neural element may be regarded as executing some basic me-
chanical operation.  In most existing models, this operation is described as a set of 
mathematical equations or an algorithm, and changes to the operation may include 
varying specific values in an equation (e.g., constants or coefficients) or trying a new 
way of computing a function. At this level, the key concern of the modeller is to en-
sure that the operation is described correctly so that it performs the intended function 
specified at the higher level. 
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As an example of applying these levels of specification in defining a model, con-
sider the representation of a connection in a neural network for learning. 

 
Environmental: The connection’s environment may be stable so that the neurons it 

is connecting never change, or it may be dynamic with its neurons changing 
over time.  If the connection is modulated by external factors, such as a hormone 
or modulating connection, those elements would form part of the connection’s 
environment. 

Behavioural: A connection’s role may be to transmit a particular type of signal 
from one neuron to another with a certain degree of attenuation based on dis-
tance, and then to be quiescent for a period of time.  Or, its role may be to emu-
late a specific connectivity behaviour identified by neuroscientists. 

Developmental: A connection may be formed at the beginning and never change.  
Or, it may change its transmission characteristics over time.  A typical weight 
learning rule may be considered as part of the developmental level since it 
changes the properties of the connection over time. 

Structural: A connection’s structure may be the specific source and destination 
neurons of a connection, along with its weight.  In another model, characteristics 
such as length or transmission speed may also be part of its structure. 

Functional: The function used to determine a connection’s transmitted signal may 
be specified at this level.  For instance, a connection may use its weight value to 
modulate the signal. 

Mechanical: The specific weighting equation may be specified at this level. 
 
Many software tools and representation methods have described neural models, in 
varying degrees of detail, on the four lowest levels.  Explicit representation of the two 
highest levels is rare.  In particular, capturing the role of neural components is an im-
portant capability that requires attention if we are to facilitate robust automated search 
of diverse model variations. 

4   Roles in Neural Networks 

There are several lines of research from which we may draw inspiration in identifying 
the different types of roles that neural components may play within a neural network 
model.  Researchers on hybrid symbolic-neural approaches [37,38], high-level de-
scriptions of neural networks [35] and modular neural networks [43-45] have made 
various forays into defining and/or representing different roles that may be played by 
neural components within a larger system.  Researchers interested in interoperability 
of diverse neural models [29-32, 39-42] and diverse machine learning methods [46-
48] have identified additional roles that may be played by different components.  
These roles include: 
 
Encode a decision rule provided by another component: In hybrid methods such 

as the Knowledge-Based Artificial Neural Network [38], a neural component may 
encode a rule provided by another component. 

Transform inputs into higher-level representation: [37] describes several hybrid 
systems in which a neural component transforms its inputs into a higher-level 
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(usually symbolic) representation, which is then used by other components in the 
system.  For example, producing the antecedent and/or consequent of a higher-
level rule, or transforming a lower-level input pattern into its corresponding 
higher-level concept. 

Store knowledge for other components: A neural component may be a memory 
store for other components [37,52]. 

Assign confidence to another module; Determine when another module learns; 
Specialize on subset of input patterns: In the Minos modular neural network 
model [43], neural components play three distinct roles. A worker submodule per-
forms the role of specializing by learning certain input patterns (using back-
propagation learning upon the input).  An authority module performs the role of 
helping a Minos module specialize by selecting only one module to undergo train-
ing (based on the module with the lowest error).  A monitor submodule performs 
the role of assigning confidence ratings to its associated worker module.  During a 
recall event for a pattern, every module is activated upon the pattern and the au-
thority selects the response of the Minos module with the highest self-confidence 
measure as the output of the network. 

Combine functions of sub-components into a higher-level function or role: [33] 
describes a perspective that may be taken on how neural network elements may be 
represented hierarchically.  As neural components are combined, they may come 
to represent something meaningful at a higher-level of abstraction.  While this is 
somewhat obvious, it allows us to capture, for example, the notion of an ‘optic 
nerve’ at a high-level level, compared with individual axons at a low-level. 

Modulate the output of other modules; Integrate outputs of modules: In a Mix-
ture of Experts network [44], components play three different roles (see Figure 1).  
The expert modules perform a traditional learner role (using back-propagation 
learning upon the input).  The gating module performs a modulating role by out-
putting a probability for each expert module indicating whether it represents the 
correct output of the network.  The integrator node performs the role of integrat-
ing the outputs of the other modules (by computing the sum of the outputs of  
expert modules weighted by probabilities from the gating module). 
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Fig. 1. Mixtures of Experts Network 
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Cluster data for another module; Simplify inputs for another module; Classify 
the outputs of another module: The counter-propagation network [45] consists 
of two modules connected serially. A self-organizing map module performs the 
roles of clustering the data (into equiprobable sections) and, usually, reducing the 
dimensionality of that input to simplify the learning required by the instar module.  
The instar module classifies each cluster by associating it with a vector represent-
ing the average desired response for that cluster. 

Decompose problem; solve sub-problem: As problems get complex, it becomes im-
portant to decompose them into manageable sub-problems, and to solve those 
sub-problems using specialized modules.  Problem decomposition is generally 
performed through partitioning of the input vector, specialization on a portion of 
the input space [43], or via explicit choices of the models used and explicit ar-
rangement (e.g., sequencing) of those models [45].  [31] presents a generative 
technique in which the problem is decomposed by using a genetic search to both 
partition the input vector and to determine the modular arrangement for each  
partition.   

Solve a step in a problem-solving process: [47, 48] presents an approach in which 
different machine learning algorithms solve certain steps within a larger problem-
solving process.  The results of applying a given learning algorithm at a given part 
of the process are made available for subsequent steps.  The process may be rig-
idly defined (e.g., a fixed sequence of steps are followed) or may be open-ended 
(e.g., processing continues through iterative refinement until a solution is 
reached). 

One component provides explicit instruction to another: Neural models often have 
some structures which modulate the learning of other elements.  For instance, the 
output layer in a back-propagation network provides supervisory feedback to the 
hidden layer.  [39] posits that neural methods may benefit from considering neural 
analogues of the wide variety of learning relationships that exist among intelligent 
creatures in nature.  For instance, one neural module may learn from observing 
the behaviour of a different module.  A module may pass on its mistakes to an-
other module to assist it in avoiding them.  Other forms of explicit learning rela-
tionships among neural components could include analogues of mentoring, mim-
icry, parenting, collaborative learning, and more.  [46] posits that advanced 
learning systems may be achieved by developing new approaches that enable dif-
ferent machine learning components to learn from each other through the use of 
‘natural instruction’ methods, such as instructing by demonstration, by worked 
example, or by analogy. 

Hypothesis formation, evaluation and integration: In a framework presented by 
[47, 48], multiple machine learning paradigms are integrated by casting different 
algorithms into one of three different roles.  Hypothesis formers generate hy-
potheses to explain some part of the problem being learned.  Hypotheses evalua-
tors test the validity of those hypotheses as best as possible according to their  
capabilities, so long as they are able to process a given hypothesis.  Given a set of 
verified or partially verified hypotheses, other algorithms perform the role of inte-
grating those hypotheses and resolving any ambiguities to produce a solution. 
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Role: Regulate the behaviour of other components: A variety of neural elements 
play the role of changing the behaviour of other neural elements.  In [53], certain 
elements interpret the novelty of an input and, in turn, adapt the learning behav-
iour of other elements – learning is increased for new patterns and decreased for 
previously learned patterns.  [54,55] explore how neural and control behaviour 
may be moderated using a hormone-based mechanism. In some computational 
neuroscience models (e.g., [56]), changes to one neural element (e.g., density and 
distribution of ion channels) can significantly change the behaviour of a larger 
neural element (e.g., change a neuron from non-spiking to spiking, and with dif-
ferent firing patterns). 

 
The roles above are only some of those that neural elements may play within a 

complex network.  Further, as we progress from the lowest levels of neural elements 
to the highest level of complex neural structures within a network, roles that may be 
played at a given level may vary from roles at other levels, even if based upon similar 
principles.  For example, neural inhibition at the level of a small number of neurons 
may play a simple role (e.g., ensuring convergence in a neural map), whereas inhibi-
tion of one high-level component over another may have a different behavioural  
interpretation (e.g., selecting the appropriate modality to use to process the input).   

5   Network Generating Attribute Grammar Encoding (NGAGE) 

The Network Generating Attribute Grammar Encoding (NGAGE) [29-32] is a model 
representation method that explicitly attempts to broaden the scope of programmatic 
search of model variations.  The central premise of NGAGE is that an arbitrarily rich 
family of neural models may be explored if we define a searchable language that can 
describe all key structural and functional aspects of multiple neural network models, 
and that can identify similar elements across different models.  The basic NGAGE 
approach is presented, and its capabilities and techniques for supporting all six levels 
of specification for meta-modelling are described.  In particular, the ability of 
NGAGE to support explicit specification of the roles of neural elements at the behav-
ioural level is discussed. 

NGAGE uses several tiers of representation and interpretation to accomplish its 
goals, as illustrated in Figure 2   

 
1. An attribute grammar [33] is used to define the architectural elements - the 

structural, functional and learning behaviours – of a family of models in a 
highly modular and hierarchical manner, and the rules for creating those mod-
els from those elements.   

2. A context-free parse tree generated from the attribute grammar is used to rep-
resent a particular instance of a neural architecture from the family of possible 
architectures the grammar defines.   

3. The attributes of the productions are used to compute a complete specification 
of a neural network for a given parse tree.   

4. The specification of the network is defined in the Generic Neural Markup 
Language (GNML) [32], an XML-based representation [63].   
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5. The GNML specification is executed by an interpreter to produce a functional 
neural network. 

 
An attribute grammar consists of a context-free grammar in which each symbol in 

a grammar production has a set of attributes associated with it, and each production 
has a set of attribute evaluation rules that specify how the attributes of its right hand 
symbols and/or left hand symbol are to be computed. The attributes of a given symbol 
may be partitioned into two disjoint sets: inherited and synthesized.  For a given pro-
duction, the attribute evaluation rules compute the synthesized attributes of the left-
hand symbol of the production and the inherited attributes of the right-hand symbols.  
The use of attributes provides an attribute grammar with the formal representational 
power of a Turing machine [33,34]. 

Within NGAGE, the productions of an attribute grammar define a space of possi-
ble neural network architectures.  The context-free portion of a production defines a 
functional, topological and/or behavioural rule for how to create part of a neural net-
work.  The attributes of a production serve several purposes.  They may impose con-
straints, provide values, specify neural functions, define neural structures, share par-
tial specifications, aggregate model details, Ultimately, the attributes of the root 
symbol will contain a complete specification of a neural network (in GNML).  To  
enable  a  single  grammar  to  specify  both functional  and  structural  neural  proper-
ties,  the  attribute  evaluation  rules  use string  and  set  operations  to  compose 
GNML  specifications within  the  attributes  directly.    Through the process of 
evaluating the attributes of the parse tree, a complete GNML specification of a single 
neural network is produced. 

For instance, Figure 3 presents several productions within an NGAGE grammar 
that produce networks with different types of modules.  Each production is numbered 
for identification, and each grammar symbol is given a meaningful name (e.g., Mod-
ule).  Each attribute of a symbol is also given a meaningful name and is indicated in 
lower-case italics and in reference to the symbol (e.g., Module.nodes). Each NGAGE  
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Fig. 2. NGAGE representation and interpretation method 
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production consists of a context-free production (e.g., Module  Grid), attribute 
evaluation rules for synthesized attributes, indicated by a lower-case roman numeral 
(e.g., i. Module.nodes = Recurrent-Layer.nodes), and attribute evaluation rules for in-
herited attributes, indicated by a lower case letter (e.g., c. Recurrent-Layer.id = Mod-
ule.id + “.1”).  If the same grammar symbol appears multiple times within a production, 

1. Network   { in-port }  Module  { out-port } 
i Network.spec = finalize(Network.inputs, Network.outputs, Network.nodes, 

Network.connections) 
ii. Network.nodes = Module.nodes 
iii Network.connections = Module.connections ∪  

   Network.inputs × Module.input_nodes ∪  
   Module.output_nodes • Network.outputs 

iv Network.inputs = create_set(Network.INPUT_SIZE, in-port.spec) 
v Network.outputs = create_set(Network.OUTPUT_SIZE, out-port.spec) 
vi Network.id = “1” 
a. Module.id = Network.id + “.1”  

2. Module1  sequential_full ( Module2 , Module3 ) 
i Module1.nodes = Module2.nodes ∪ Module3.nodes 
ii Module1.connections = Module2.connections ∪ Module3.connections ∪ 
                 Module2.output_nodes × Module3.input_nodes 
iii Module1.input_nodes = Module2.input_nodes 
iv Module1.output_nodes = Module3.output_nodes 
a. Module2.id = Module1.id + “.1” b.  Module3.id = Module1.id + “.2” 

3. Module1  sequential_1to1 ( Module2 , Module3 ) 
i, iii, iv, a, b  – as in production 2 
ii Module1.connections = Module2.connections ∪ Module3.connections ∪ 
    Module2.output_nodes • Module3.input_nodes 

4.  Module1  parallel ( Module2 , Module3 ) 
i, a, b  – as in production 2 
ii Module1.connections = Module2.connections ∪ Module3.connections  
iii Module1.input_nodes = Module2.input_nodes ∪ Module3.input_nodes 
iv Module1.output_nodes = Module2.output_nodes ∪ Module3.output_nodes 

5. Module  Recurrent-Layer  
 i Module.nodes = Recurrent-Layer.nodes 
ii Module.input_nodes = Recurrent-Layer.nodes 
iii Module.output_nodes = Recurrent-Layer.nodes 
iv Module.connections = Recurrent-Layer.connections 
a.  Recurrent-Layer.id = Module.id + “.1” 

6.  Module  Grid 
i Module.nodes = Grid.nodes 
ii Module.input_nodes = Grid.input_nodes 
iii Module.output_nodes = Grid.output_nodes 
iv Module.connections = Grid.connections 
a.  Grid.id = Module.id + “.1” 

Fig. 3. NGAGE productions for heterogeneous modular networks 
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each instance is distinguished by a lower-case number (e.g., Module1  parallel ( Mod-
ule2 , Module3 ) ). 

Attribute evaluation rules may perform various operations, such as set, mathemati-
cal, string or logical operations.  A special attribute, id, is used to uniquely identify all 
elements of a network.  A top-level parameter value is indicated as an attribute on the 
root symbol and written in capital letters (e.g., Network.INPUT_SIZE).  An attribute 
may contain arbitrary levels of detail.  For instance, Network.spec may contain a 
complete GNML specification of the functionality of an entire network, Network.id 
contains a single string value, and Network.connections may contain an arbitrarily 
large set of connections among neurons.  Attribute evaluation functions may use 
helper functions (e.g., create_set(), which copies the given object to form a set of the 
given size with unique ids, or finalize() which converts the node and connection sets 
into a complete GNML specification). 

Within an NGAGE grammar, information may flow both up the parse tree (via 
synthesized attributes) as well as down (via inherited attributes) when evaluating at-
tributes.  For instance, the id attribute passes identity information down the tree, while 
the nodes and connections attributes pass node and connection details up the tree to 
produce a complete specification at the root of both the graph formed by the connec-
tions and the functionality of each neuron.  The operator ‘×’ is used as a shorthand for 
fully connecting two sets of nodes, and the operator ‘•’ is used as a shorthand for one-
to-one connectivity between two sets of nodes.  These operations produce GNML 
specifications of the connections using references to the associated nodes. 

The productions in all sample grammars presented in the figures are numbered so 
that, when they are combined together as a single grammar, symbols representing 
similar elements are grouped together. 

5.1   Structural Level 

A key capability of an NGAGE grammar is the use of productions to specify the 
structure of a neural network model.  A grammar may specify simple, regular struc-
tures as well as highly complex ones.  For instance, Figure 3 defines networks with 
two types of modules connected in parallel or sequence with arbitrary hierarchical 
nesting and potentially complex inter-module connectivity.  Figure 4 by contrast pre-
sents productions that specify a family of simple multi-layer modules with highly 
regular connectivity.  

The attributes of a set of productions may be used to impose structural constraints 
that effectively limit the otherwise unbounded expansion of the context free produc-
tions. For instance, in Figure 4 the Multi-Layer.max_layers attribute and associated 
attribute evaluation rules impose a limit of 5 layers upon the multi-layer modules re-
gardless of the depth of expansion of the Multi-Layer symbol, while the Layer pro-
ductions are unbounded by their attributes and each layer may specify an arbitrary 
number of neurons.  
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5.2   Sharing Elements across Models 

NGAGE allows components of similar type from different models to be specified us-
ing common elements where appropriate.  For instance, Figure 5 shows productions 
that expand the Recurrent-Layer and Grid symbols from Figure 3 to define the corre-
sponding neural modules structures.  These productions re-use the grammar symbols 
Layer and Neuron from Figure 4, thereby enabling the three different module-types 
(Grid, Recurrent-Layer and Multi-Layer) to be described using the same basic build-
ing blocks. 

Through the use of common symbols representing common elements, novel struc-
tures may be generated through interchanges.  For instance, all expansions of the pro-
duction symbol Module in Figure 3 may be regarded by a search mechanism as inter-
changeable, and likewise the symbol Layer.   

 
 

7.  Module  Multi-Layer 
i Module.nodes = Multi-Layer.nodes 
ii Module.input_nodes = Multi-Layer.input_nodes 
iii Module.output_nodes = Multi-Layer.output_nodes 
iv Module.connections = Multi-Layer.connections 
a Multi-Layer.id = Module.id + “.1” 
b Multi-Layer.max_layers = 5 

8. Multi-Layer1  Multi-Layer2  Layer 
i Multi-Layer1.nodes = Multi-Layer2.nodes ∪ Layer.nodes 
ii Multi-Layer1.input_nodes = if Multi-Layer1.max_layers > 1,   
     Multi-Layer2.input_nodes else Layer.nodes 
iii Multi-Layer1.output_nodes = Layer.nodes 
iv Multi-Layer1.connections = Multi-Layer2.connections ∪ 

   Multi-Layer2.output_nodes × Layer.nodes 
a Multi-Layer2.id = Multi-Layer1.id + “.1” 
b Layer.id = Multi-Layer1.id + “.2” 
c Multi-Layer2.max_layers = max (Multi-Layer1.max_layers – 1, 0) 

9. Multi-Layer  Layer 
i Multi-Layer.nodes = if Multi-Layer.max_layers > 0, Layer.nodes else {} 
ii. Multi-Layer.input_nodes = if Multi-Layer.max_layers > 0, Layer.nodes else {} 
iii Multi-Layer.output_nodes = if Multi-Layer.max_layers > 0, Layer.nodes else {} 
iv Multi-Layer.connections = {} 
a Layer.id = Multi-Layer.id + “.1” 

10. Layer1  Layer2  Neuron   
i  Layer1.nodes = Layer2.nodes ∪ Neuron.spec 
a Layer2.id = Layer1.id + “.1” 
b Neuron.id = Layer1.id + “.2” 

11. Layer   Neuron 
i Layer.nodes = Neuron.spec 
a Neuron.id = Layer.id + “.1” 

Fig. 4. NGAGE grammar productions for multi-layer module 
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Fig. 5. Additional productions showing definition of different types of modules using common 
grammar symbols 

 

5.3   Programmatic Search of Models 

Through the explicit representation of the derivation of neural structure and functions, 
NGAGE provides support for the programmatic exploration of diverse neural archi-
tectures. Figure 6 illustrates a portion of parse tree that may be generated using the 
productions of Figures 3 and 4.  Figure 7 illustrates the potential network for that 
parse tree, assuming a full expansion of all modules, where INPUT_SIZE is 3 and 
OUTPUT_SIZE is 4.   

Because the parse trees of an attribute grammar are equivalent to a simple context-
free parse tree, an evolutionary algorithm based on genetic programming may be used 
to automatically explore the large space of potential network variations. Genetic  
manipulations may include exchanging of subtrees rooted by identical symbols (e.g., 
exchanging Module subtrees), as well as the replacement of a subtree with a new  
random expansion of the subtree’s root symbol. The meta-model search may be  
constrained to explore only certain subsets of possible architectures by limiting the 
symbols upon which genetic manipulations may occur [31]. 

 
 
 

12. Recurrent-Layer  Layer  
i Recurrent-Layer.nodes = Layer.nodes 
ii Recurrent-Layer.connections = Layer.nodes × Layer.nodes – 
     Layer.nodes • Layer.nodes 
a. Layer.id = Recurrent-Layer.id + “.1” 

13. Grid1  Grid2  side-corner-bottom ( Neuron ) 
 i Grid1.nodes = Grid2.nodes ∪ Grid1.bottom_nodes ∪ 
   Grid1.side_nodes ∪ Grid1.corner_node 
ii Grid1.connections = Grid2.connections ∪ 
  Grid1.bottom_nodes  •  (Grid2.bottom_nodes ∪ Grid2.corner_node) ∪ 
  (Grid2.bottom_nodes ∪ Grid2.corner_node) •  Grid1.bottom_nodes  ∪ 
  Grid1.side_nodes  •  (Grid2.side_nodes ∪ Grid2.corner_node) ∪ 
  (Grid2.side_nodes ∪ Grid2.corner_node) •  Grid1.side_nodes  ∪ 
  double_link(Grid1.side_nodes ∪ Grid1.corner_node) ∪ 
  double_link(Grid1.bottom_nodes ∪ Grid1.corner_node) 
iii Grid1.bottom_nodes = create_set(Grid2.size, Neuron.spec) 
iv Grid1.side_nodes = create_set(Grid2.size, Neuron.spec) 
v Grid1.corner_node = create_set(1, Neuron.spec) 
vi Grid1.size = Grid2.size + 1 
a. Grid2.id = Grid1.id + “.1” 

14. Grid  Neuron  
 i Grid.nodes = Grid.corner_node 
ii Grid.connections = {} 
iii Grid.bottom_nodes = {} 
iv Grid.side_nodes = {} 
v Grid.corner_node = Neuron.spec 
vi Grid.size = 1 
a.  Neuron.id = Grid.id + “.1”
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Fig. 6. Partial context-free parse tree generated from NGAGE grammar  

 

 
 

Fig. 7. Network architecture generated from parse tree   
 

5.4   Mechanical Level 

NGAGE allows the explicit specification of a wide range of neural functions. To  
accomplish this, it adopts a generic neuron model (see Figure 8) in which a neuron is 
regarded as an arbitrary sequence of (nested) functions with access to several memory 
stores – one for incoming connections, one for outgoing connections, and a general 
memory store.  The neuron can receive multiple types of input signals and produce  

Network 

Module 

Multi-Layer Recurrent-Layer 

Module Module sequential-1to1 ( ), 

Multi-Layer Module Module sequential-full ( ) , 

Grid Module Module parallel ( ), 

in-port { } out-port { } 

sequential-1to1 

Multi-Layer 

Grid 

sequential-full 

parallel Recurrent-Layer 

Multi-Layer 

{ in-port } 

{ out-port } 
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multiple types of output signals.  The GNML specification format (see Figure 9) repre-
sents the network as a list of the input and output ports of the network, followed by a list 
of the neurons, each with a unique identifier and a nested specification of its functional-
ity (i.e., <NeuronSpec> block), and a list of all the connections in the network, where 
each connection indicates its source and target and the type of signal it transmits. 

 
 

 
 

Fig. 8. Generic neuron model used in NGAGE 
 
 

The GNML specification is executed by an interpreter that computes all neural 
functions in the order specified and cycles through the network over time.  Changes to 
memory and to signal values are performed as specified to produce a functional neural 
network system. 

 

 
 

Fig. 9. Sample GNML specification of a network 

Output Signal 
Type 3 Multiple outgoing signal types 

Incoming signal memory  
(e.g., Weights on Type 2 connections) 

Multiple internal functions 

Output Signal 
Type 1 

 

Input Signal 
Type 1 

Input Signal 
Type 2 Multiple incoming signal types 

f1 

General memory 
(e.g., Learning rate, inhibit flag) 

f3 f2 f4 

- Read/write to local memory stores 
- Specific nested and sequential order 

Outgoing signal memory 
(e.g., Previous value) 

<Network> 
 <InPort id=’i1’ signalType=’Activation’ /> 
  . . . 
 <OutPort id=’o1’ signalType=’Activation, Feedback’ /> 
 <Neuron id=’1.1.1’> 
  <NeuronSpec> 
   <FunctionSpec> . . . </FunctionSpec> 
   <FunctionSpec> . . . </FunctionSpec> 
   <GeneralMemorySpec> . . . </GeneralMemorySpec> 
   . . . 
  </NeuronSpec> 
 </Neuron> 
 <Neuron id=’1.1.2’> 
  <NeuronSpec> . . . </NeuronSpec> 
 </Neuron> 
 . . . 
  <Connection source=’i1’ target=’1.1.1’ signalType=’Activation’/> 
. . . 
 <Connection source=’o1’ target=’1.1.2’ signalType=’Feedback’/> 
</Network>
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5.5   Functional Level 

NGAGE productions compose specifications at the functional level primarily through 
the use of GNML templates, string substitution and concatenation.  Figure 10 illus-
trates some sample productions that may be used to compose the specification of a 
neuron.  Productions may include arbitrary scalar and vector operations.  
 

 

 
 

Fig. 10. Productions for determining the functionality of a neuron 
 

5.6   Developmental Level 

At the developmental level, NGAGE allows the explicit specification of learning 
rules.  Figure 11 shows productions that replace (e.g., production 7’ replaces produc-
tion 7) or augment the productions of Figures 3 and 10.  A specific symbol indicative 
of the role of the neural element (e.g., LearningRule) is used.  The attributes of the 
productions for the module are used to ensure that the same learning rule is applied at 
all neurons in the module.  A different set of productions could impose a different de-
gree of regularity (in the extreme allowing every neuron to apply its own distinct 
learning rule). 
 
 

15.  Neuron  general-neuron ( FunctionSequence ) 
i Neuron.spec = substitute(general-neuron.template, “SUBFUNCTIONS”,  
  FunctionSequence.spec) 

16.  FunctionSequence1  FunctionSequence2 Function 
i FunctionSequence1.spec = FunctionSequence2.spec + Function.spec 

17.  FunctionSequence  Function 
i FunctionSequence.spec = Function.spec 

18.  Function  dot-product ( VectorParameter1 , VectorParameter2 ) 
i Function.spec = substitute(substitute(dot-product.template, “SUBPARAM1”,   

VectorParameter1.spec), “SUBPARAM2”, VectorParameter2.spec) 
19. VectorParameter  memory ( weight ) 

i VectorParameter.spec = “<GeneralMemoryVector name=’weight’ />” 
20. VectorParameter  input-signal (activation) 

i VectorParameter.spec = “<InputSignalVector name=’currentValue’ 
type=’Activation’ />” 

where 
 general-neuron.template = “<NeuronSpec> SUBFUNCTIONS </NeuronSpec>” 
 dot-product.template = “<FunctionSpec nativeCode=’dotProduct’ 

    returnType=’scalar’> 
  <VParam>  SUBPARAM1  </VParam> 
  <VParam>  SUBPARAM2  </VParam> 

 </FunctionSpec>” 
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Fig. 11. Productions showing the specification and sharing of a learning rule 
 

5.7   Behavioural Level 

NGAGE provides the capability to define productions that capture the behaviour of a 
neural element, as well as the relationship among elements. Several different methods 
may be used to specify behaviours within an NGAGE grammar.  Any or all of these 
methods may be used in a single grammar as needed. 

 
Explicit symbol for a role: A grammar may use a specific symbol to denote a type of 
role. That symbol, in turn, may be expanded by other productions into neural struc-
tures and functions that support that role.  In this method, the choice of a role is  
primary, and the choice of architecture to fill that role is secondary.  For example,  
ActivationFunction and LearningRule in Figure 11 may be interpreted as symbols that 
identify roles rather than specific functions.  Those symbols may, in principle, be  
expanded into a variety of functions.  Figure 12 illustrates the use of a symbol (Classi-
fierRole or ClusteringRole) to distinguish neural architectures by the role they play.  
In this method, the attribute evaluation functions typically copy key structural and 
functional specifications of children to the parent. 

7’. Module  uniform-learning ( Multi-Layer , LearningRule ) 
a Multi-Layer.sharedLearningRule = LearningRule.spec 

8’.  Multi-Layer1  Multi-Layer2 Layer 
 a  Multi-Layer2.sharedLearningRule = Multi-Layer1.sharedLearningRule 

b  Layer.sharedLearningRule = Multi-Layer1.sharedLearningRule 
9’. Multi-Layer  Layer 

a Layer.sharedLearningRule = Multi-Layer.sharedLearningRule 
10’. Layer1  Neuron Layer2 

a Neuron.sharedLearningRule = Layer1.sharedLearningRule 
b Layer2.sharedLearningRule = Layer1.sharedLearningRule 

11’. Layer   Neuron  
a Neuron.sharedLearningRule = Layer.sharedLearningRule 

15’. Neuron  general-neuron (ActivationFunction ) 
i  Neuron.spec = substitute(general-neuron.template, “SUBFUNS”, 
   ActivationFunction.spec + Neuron.sharedLearningRule) 

21. LearningRule  update ( FunctionSequence, weight ) 
i  LearningRule.spec = substitute(substitute(update.template, “SUBFUNS”, 
   FunctionSequence.spec), “SUBMEM”,  
   “<GeneralMemoryVector name=’weight’ />”) 

22. ActivationFunction  FunctionSequence 
i  ActivationFunction.spec = FunctionSequence.spec 

where 
 update.template =  ”<FunctionSpec nativeCode=’update’ 

    returnType=’vector’> 
  <VParam>  SUBFUNS </VParam> 
  <VParam>  SUBMEM  </VParam> 

 </FunctionSpec>” 
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Fig. 12. Use of production symbols to explicitly identify roles that may be filled by different 
neural architectures 

 

 
Composition of behaviours: A grammar may include a set of productions that define 
and expand a variety of behaviours.  This expansion provides a basic description of all 
the roles in the network and how they are related.  In this method, the choice of how 
different roles are organized within the network is primary.  These productions are 
largely independent of the typical developmental, structural and functional produc-
tions, and form a largely distinct high-level description of the network.  In this 
method, attribute evaluation functions play their usual role of aggregating component 
specs.  However, they also pass-down constraints and details that may influence how 
subsequent productions will specify the relevant structures and functions.  Figure 13 
illustrates productions that explicitly identify a sequence of roles that will be the basis  
 

 

 
Fig. 13. Productions that define roles in a network and how they are organized 

 

23.  ClassifierRole  BackPropagationModule 
 i.  ClassifierRole.nodes = BackPropagation.nodes 
 ii ClassifierRole.connections = BackPropagation.connections 
 iii ClassifierRole.input_nodes = BackPropagation.input_nodes 
 iv ClassifierRole.output_nodes = BackPropagation.output_nodes 
24.  ClassifierRole  MixturesOfExpertsModule 
 Analogous attribute evaluation rules to production 23 
25.  ClusteringRole  SelfOrganizingFeatureMapModule 
 Analogous attribute evaluation rules to production 23 
26.  ClusteringRole   ARTModule 
 Analogous attribute evaluation rules to production 23 

27.  Role1  FilterRole feed-into Role2 
 i.  Role1.nodes = FilterRole .nodes ∪ Role2.nodes 
 ii Role1.connections  = FilterRole.connections  ∪ Role2.connections 
 iii Role1.input_nodes = FilterRole.input_nodes ∪ Role2.input_nodes 
 iv Role1. output_nodes = FilterRole.output_nodes ∪ Role2.output_nodes 

a FilterRole.nodes_to_feed_into = Role2.input_nodes 
28.  Role1  ReduceDimensionsRole feed-into Role2 
 Analogous attribute evaluation rules for production 27 
29.  Role1  ClusteringRole feed-into Role2 

Analogous attribute evaluation rules for production 27 
30.  Role1  ClassifierRole feed-into Role2 

Analogous attribute evaluation rules for production 27 
31.  ReduceDimensionsRole  ClusteringRole 
 Analogous attribute evaluation rules for production 27 (i – iv) 
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Fig. 14. Productions that explicitly identify interactions among components 

 
for the model.  The attribute FilterRole.nodes_to_feed_into is used in subsequent pro-
ductions to create the appropriate connections from the output elements of the struc-
ture performing the FilterRole to the input elements of the structure performing the 
subsequent role. 

 
Explicit interactions among components: A production may specify how one com-
ponent is intended to interact with another.  These are often accomplished via descrip-
tive terminal symbols and attribute evaluation functions that specify the appropriate 
structural or functional neural elements needed to support the interactions.  Figure 14 
illustrates simplified productions of a grammar for specifying a Mixtures of Experts 
network. The terminal symbols ‘gated-by’ and ‘integrated-by’ are explicit indications 
of the relationship between neural components.  The attributes of the productions, in 
addition to collecting the sets of nodes and connection specifications (not shown) and 
constraints (e.g., number_gates), also specify which nodes in one component (e.g., the 
integrator nodes) are influenced by which nodes in another component (e.g., the gat-
ing module) so that they may be connected appropriately.  Subsequent productions 
expand the structural and functional details for these components.  Explicitly identify-
ing influenceable nodes may be used to support other types of relationships between 
components.  For example, if one component ‘controls’ or ‘instructs’ another. 

5.8   Environmental Level 

NGAGE productions may be used to explicitly specify the environment in which a neu-
ral component operates.  For example, Figure 15 shows a grammar in which produc-
tions partition the input vector, the output vector or both to create sub-problems that 
may then be solved by distinct modules.  The operation apply_filter selects a subset 
from a given set based on a given binary filter; the operation apply_complement selects 
the subset excluded by the filter.  Figure 16 illustrates a potential decomposition that 

32.  MixtureOfExpertsModule   ProcessingModules gated-by GatingModule 
a GatingModule.number_gates = size(ProcessingModules.number_experts) 
b GatingModule.nodes_to_influence = ProcessingModules.influenceable_nodes 

33.  ProcessingModules   AllExperts  integrated-by IntegratorModule  
i  ProcessingModules.influenceable_nodes = IntegratorModule.input_nodes 
ii ProcessingModules.number_experts = AllExperts.number_experts 

34.  GatingModule  BackPropagationModule 
i GatingModule.connections = BackPropagation.connections  ∪ 
  GatingModule.output_nodes • GatingModule.nodes_to_influence 
a BackPropagationModule.num_outputs = GatingModule.number_gates 

35.  AllExperts1  ExpertModule AllExperts2 
i AllExperts1.number_experts = AllExperts2.number_experts + 1 

36.  AllExperts1  BackPropagationModule 
i AllExperts.number_experts = 1 
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may be generated from the productions of Figure 3, 4 and 15. The same partitioning ap-
proach may be used to specify the environment of nested modules within the context of 
the environment of the encapsulating module. 
 
 

 
 

Fig. 15. Productions that define the environment for different modules 
 
 
 

1’. Network   { in-port }  Task  { out-port } 
i, iv, v, vi, a – as in Figure 5 
ii. Network.nodes = Task.nodes 
iii Network.connections = Task.connections  
b Task.id = Network.id + “.1” 
c Task.inputs = Network.inputs  d  Task.outputs = Network.outputs 

37.  Task1  Partition (in) Task2  Task3 
i Task1.nodes = Task2.nodes ∪ Task3.nodes 
ii Task1.connections = Task2.connections ∪  Task3.connections  
a Task2.id = Task1.id + “.1”  b Task3.id = Task1.id + “.2”  
c Task2.inputs = apply_filter(Partition.filter, Task1.inputs) 
d Task3.inputs = apply_complement(Partition.filter, Task1.inputs) 
e Task2.outputs = Task1.outputs f Task3.outputs = Task1.outputs 

38.  Task1  Task2  Task3  Partition2 (out) 
i, ii, a, b as in production 37 
c Task2.inputs = Task1.inputs d Task3.inputs = Task1.inputs 
e Task2.outputs = apply_filter(Partition.filter, Task1.outputs) 
f Task3.outputs = apply_complement(Partition.filter, Task1.outputs) 

39.  Task1  Partition1 (in) Task2 Partition2 (out) Partition3 (in) Task3 Partition4 (out) 
i, ii, a, b as in production 37 
c Task2.inputs = apply_filter(Partition1.filter, Task1.inputs) 
d Task3.inputs = apply_filter(Partition3.filter, Task1.inputs) 
e Task2.outputs = apply_filter(Partition2.filter, Task1.outputs) 
f Task3.outputs = apply_filter(Partition4.filter, Task1.outputs) 

40.  Task  Module 
i Task.nodes = Module.nodes  
ii Task.connections = Module.connections ∪ Task.inputs × Module.input_nodes  

   ∪  Module.output_nodes • Task.outputs 
a Module.id = Task.id + “.1”  

41. Partition1  1  Partition2   
i Partition1.filter = Partition2.filter + “1” 

42. Partition1  0  Partition2   
i Partition1.filter = Partition2.filter + “0” 

43. Partition  1    
i Partition.filter = “1” 

44. Partition  0 
i Partition.filter = “0” 
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Fig. 16. Network with environment partitioning among heterogeneous modules 

6   Conclusions 

Current deficiencies in neural network modeling methods limit the capability of re-
searchers to programmatically explore new models. A perspective on the meta-
modelling issues that need to be addressed in the field was given, and six levels of 
model specification were identified.  The way forward for the field will involve the 
creation of robust specification languages that address all six levels and represent 
multiple, diverse models.  However, any such language will necessarily be fairly 
complex in order to achieve the representational power needed.  The Network Gener-
ating Attribute Grammar Encoding (NGAGE) was presented as an example of a meta-
modelling specification method that addresses all six levels.  Further, through the 
separation of simple context-free productions from more detailed attribute evaluation 
functions, NGAGE attempts to break down the complexity of the language into man-
ageable pieces that facilitate systematic exploration. 

NGAGE provides a rich foundation for representing diverse neural network archi-
tectures and for programmatically searching through that space of possible networks.  
However, while grammar productions for a variety of behaviours, structures and func-
tions have been defined, these only encompass a small number of the available mod-
els.  Creating additional productions covering more models will extend the utility of 
NGAGE as a meta-modelling tool.  Further, NGAGE is limited in current practice to 
a particular family of neurons, as defined by the model illustrated in Figure 9.  The 
focus of NGAGE has been the area of neural networks for learning, and hence rela-
tively basic attention has been paid to the internal details of neurons within a network.  
While the NGAGE neuron model and the associated Generic Neural Markup Lan-
guage encompass the types of neurons and connections used in the many models in 
the area of neural networks for learning, it is lacking with respect to the area of neural 
networks for biological modelling.  To address this issue requires a robust, multi-
model specification language for biological models.  The author anticipates that future 
languages, such as NineML, will provide such a basis and that NGAGE may be 
adapted to provide a meta-modelling layer above those languages.   
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Abstract. This chapter describes a principled approach to meta-learning
that has three distinctive features. First, whereas most previous work on
meta-learning focused exclusively on the learning task, our approach ap-
plies meta-learning to the full knowledge discovery process and is thus
more aptly referred to as meta-mining. Second, traditional meta-learning
regards learning algorithms as black boxes and essentially correlates
properties of their input (data) with the performance of their output
(learned model). We propose to tear open the black box and analyse
algorithms in terms of their core components, their underlying assump-
tions, the cost functions and optimization strategies they use, and the
models and decision boundaries they generate. Third, to ground meta-
mining on a declarative representation of the data mining (dm) process
and its components, we built a DM ontology and knowledge base using
the Web Ontology Language (owl).

The Data Mining Optimization Ontology (dmop, pronounced dee-
mope)) provides a unified conceptual framework for analysing dm tasks,
algorithms, models, datasets, workflows and performance metrics, as well
as their relationships. The dm knowledge base uses concepts from dmop
to describe existing data mining algorithms and their implementations
in major dm software packages. Meta-data collected from data mining
experiments are also described in terms of concepts from the ontology
and linked to algorithm and operator descriptions in the knowledge base;
they are then stored in data mining experiment data bases to serve as
training and evaluation data for the meta-miner.

These three features together lay the groundwork for what we call
deep or semantic meta-mining, i.e., dm process or workflow mining that
is driven simultaneously by meta-data and by the collective expertise
of data miners embodied in the data mining ontology and knowledge
base. In Section 1, we review the state of the art in the fields of meta-
learning and data mining ontologies; at the same time, we motivate the
need for ontology-based meta-mining and distinguish our approach from
related work in these two areas. Section 2 gives a detailed description
of dmop, while Section 3 introduces a novel method for ontology-based
discovery of generalized patterns from data mining workflows. Section 4
reports on proof-of-concept experiments conducted to gauge the efficacy
of dmop-based workflow mining, and Section 5 concludes.
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1 State of the Art and Motivation

The work described in this chapter draws together two research streams that have
remained independent so far—meta-learning and data mining ontology construc-
tion. This section reviews the state of the art in both areas and points out the
novelty of our approach with respect to each.

1.1 From Meta-learning to Meta-mining

Meta-learning is learning to learn: in computer science, it is the application of
machine learning techniques to meta-data describing past learning experience
in order to modify some aspect of the learning process and improve the per-
formance of the resulting model [29,3,13,78]. Meta-learning thus defined applies
specifically to learning, which is only one—albeit the central—step in the data
mining (or knowledge discovery) process1. The quality of mined knowledge de-
pends as much on other steps such as data cleaning, data selection, feature
extraction and selection, model pruning, and model aggregation. We still lack
an understanding of how the different components of the data mining process
interact; there are no clear guidelines except for high-level process models such
as crisp-dm [18]. Process-related issues, such as the composition of data mining
operations and the need for a methodology of data mining, are among the ten
data mining challenges discussed in [80].

In response to this challenge, a number of systems have been designed to pro-
vide user support throughout the different phases of the kd process (Serban et
al., 2010). Most of them rely on a planning approach and produce workflows
that are valid but not necessarily optimal with respect to a given cost function
such as predictive accuracy. This is the case of the planner-based intelligent dis-
covery assistant (ida) implemented in the e-lico project2. To allow the planner
to select the most promising workflows from an often huge set of candidates, an
ontology-based meta-learner mines records of past data mining experiments to
extract models and patterns that will suggest which dm algorithms should be
used together in order to achieve the best results for a given problem, data set and
cost function. The e-lico ida therefore self-improves as a result of meta-mining,
loosely defined as kd process-oriented meta-learning. Meta-mining extends the
meta-learning approach to the full knowledge discovery process: in the same way
that meta-learning is aimed at optimizing the results of learning, meta-mining
optimizes the results of data mining by taking into account the interdependen-
cies and interactions between the different process operations, and in particular
between learning and the different pre/post-processing steps. In this sense, meta-
mining subsumes meta-learning and must address all the open issues regarding
meta-learning.

1 We follow current usage in treating data mining and knowledge discovery as syn-
onyms, using the terms learning or modelling to refer to what Fayyad et al. [25]
called the data mining phase of the knowledge discovery process.

2 http://www.e-lico.org
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Since it emerged as a distinct research area in machine learning, meta-learning
has been cast as the problem of dynamically selecting or adjusting inductive bias
[61,74,75,30,77]. There is a consensus that with no restrictions on the space of
hypotheses to be explored by the learning algorithm and no preference criterion
for comparing candidate hypotheses, then no inductive method can do better
on average than random guessing. In short, without bias no learning is pos-
sible [51]; the so-called no-free-lunch theorem on supervised learning [79] and
the conservation law for generalization performance [63] express basically the
same idea. There are two types of bias: representational bias restricts the hy-
pothesis space whereas procedural—aka search or preference—bias gives prior-
ity to certain hypotheses over others in this space. The most widely addressed
meta-learning tasks—algorithm selection and model selection3—can be viewed
as ways of selecting or adjusting these two types of bias. Algorithm selection
is the choice of the appropriate algorithm for a given task, while model selec-
tion is the choice of the specific parameter settings that will produce relatively
good performance for a given algorithm on a given task. Algorithm—or model
class—selection amounts to adjusting representational bias and model selection
to adjusting preference bias. Though there have been a number of studies on
model selection [22,23,68,2], meta-learning research has focused predominantly
on algorithm selection [73,67,41,43,47,69].

The algorithm selection problem has its origins outside machine learning [66].
In 1976 a seminal paper by John Rice [62] proposed a formal model comprising
four components: a problem space X or collection of problem instances describ-
able in terms of features defined in feature space F , an algorithm space A or
set of algorithms considered to address problems in X , and a performance space
P representing metrics of algorithm efficacy in solving a problem. Algorithm se-
lection can then be formulated as follows: Given a problem x ∈ X characterized
by f(x) ∈ F , find an algorithm α ∈ A via the selection mapping S(f(x)) such
that the performance mapping p(α(x)) ∈ P is maximized. A schematic diagram
of the abstract model is given in Fig. 1.

Fig. 1. Rice’s model of the algorithm selection problem. Adapted from [62,66]

3 We take algorithm/model selection to include task variants and extensions such as
algorithm/model ranking and algorithm/model combination.
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In Rice’s model, selection mapping from problem space X onto algorithm
space A is based solely on features f ∈ F over the problem instances. In ma-
chine learning terms, the choice of the appropriate induction algorithm is condi-
tioned solely on the characteristics of the learning problem and data. Strangely,
meta-learning research has independently abided by the same restriction from
its inception to the present. From early meta-learning attempts [61,12] to more
recent investigations, the dominant trend relies almost exclusively on meta-data
describing the characteristics of base-level data sets used in learning, and the
goal of meta-learning has even been defined restrictively as learning a mapping
from dataset characteristics to algorithm performance [3]. Researchers have come
up with an abundant harvest of such characteristics, in particular statistical and
information-theoretic properties of training data [46,36,42,72,16]. A more recent
research avenue, dubbed landmarking, characterizes data sets in terms of the
predictive performance attained by simple learning algorithms when applied to
them [57,8,27,48]; yet another approach describes data sets based on features of
the models that were learned from them [8,55]. In all cases, however, the goal is
to discover mappings from data set characteristics to learning algorithms viewed
essentially as black boxes.

Thus far there has been no attempt to correlate dataset and algorithm char-
acteristics, in other words to understand which aspects of a given algorithm
explain its expected performance given the features of the data to be modelled.
As a consequence, current meta-learners cannot generalize over algorithms as
they do over data sets. To illustrate this problem, suppose that three algorithms
are observed to achieve equivalent performance on a collection of datasets rep-
resenting a task family. Meta-learning would yield three disjunctive rules with
identical conditions and distinct recommendations. There would be no way of
characterizing in more abstract terms the class of algorithms that would per-
form well on the given task domain. In short, no amount of meta-learning would
reap fresh insights into the commonalities underlying the disconcerting variety
of algorithms.

To overcome this difficulty, we propose to extend the Rice framework and
pry open the black box of algorithms [37]. To be able to differentiate similar
algorithms as well as detect deeper commonalities among apparently unrelated
ones, we propose to characterize them in terms of components such as the model
structure built, the objective functions and search strategies used, or the type of
data partitions produced. This compositional approach is expected to have two
far-reaching consequences. Through a systematic analysis of all the ingredients
that constitute an algorithm’s inductive bias, meta-learning systems (and data
miners in the first instance) will be able to infer not only which algorithms
work for specific data/task classes but—more importantly—why. In the long
term, they should be able to operationalize the insights thus gained in order to
combine algorithms purposefully and perhaps design new algorithms. This novel
approach to algorithm selection is not limited to the induction phase; it should
be applicable to other data and model processing tasks that require search in the
space of candidate algorithms. The proposed approach will also be adapted to
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model selection, i.e., finding the specific parameter setting that will allow a given
algorithm to achieve acceptable performance on a given task. This will require
an extensive study of the parameters involved in a given class of algorithms,
their role in the learning process or their impact on the expected results (e.g.,
on the complexity of the learned model for induction algorithms), and their
formalization in the data mining ontology.

Fig. 2. Proposed model for algorithm selection

The proposed revision of Rice’s model for algorithm selection is visualized in
Fig. 2. It includes an additional feature space G representing the space of features
extracted to characterize algorithms; selection mapping is now a function of both
problem and algorithm features. The revised problem formulation now is: Given
a problem x ∈ X characterized by f(x) ∈ F and algorithms a ∈ A characterized
by g(a) ∈ G, find an algorithm α ∈ A via the selection mapping S(f(x), g(a))
such that the performance mapping p(a(x)) ∈ P is maximized.

1.2 Data Mining Ontologies

An ontology is a structure O := (C,≤C ,R, σ,≤R, IR) consisting of a set of con-
cepts C and a set of relations R, a partial order ≤C on C, called concept hierarchy
or taxonomy, a function σ : R → C × C called signature, a partial order ≤R

on R called relation hierarchy, and a set IR of inference rules expressed in a
logical language L [39]. Before the coming of age of ontological engineering as a
distinct research area, there had been early attempts at a systematic description
of machine learning and data mining processes. camlet [71] used a rudimentary
ontology of learning tasks and algorithms to support the automatic composition
and revision of inductive processes. While camlet focused on model building,
the MiningMart project [52] shifted the focus to the preprocessing phase. The
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metadata used in MiningMart was condensed into a small ontology whose pri-
mary purpose was to allow for the reuse of stored data mining cases. Opera-
tor chains, mainly for preprocessing, were described at both the abstract and
executable levels to facilitate maintenance of the case base and adaptation of
retrieved cases. The taxonomy of data mining operators underlying the IDEA

system [9] had a broader scope in the sense that it covered that preprocessing,
induction and postprocessing phase of the knowledge discovery process. It had
an explicit representation of operator preconditions and effects and was used
by an AI-style planner to generate all valid workflows for a given application
task. However, unlike camlet and MiningMart, where the assembled operator
sequences were executed and later revised and reused, idea did not go beyond
the simple enumeration of valid dm process plans.

The advent of ontology languages and tools for the Semantic Web gave rise to
a new generation of data mining ontologies, the majority of which are aimed at
the construction of workflows for knowledge discovery. Among these, damon [17]
and GridMiner Assistant (gma) [14] focus more specifically on the development
of distributed kdd applications on the Grid. damon describes available data
mining software, their underlying methods and associated constraints in order
to enable semantic search for appropriate DM resources and tools. gma’s data
mining ontology, written in owl, is based on industry standards like the crisp-
dm process model [18] and the Predictive Model Markup Language [32]. The
ontology is used to support interactive workflow design: gma first backward-
chains from the initial goal/task to compose an abstract task sequence, eliciting
user preferences as needed (e.g., to select the preferred type of model). In the
second phase, it forward-chains along this sequence to fill in task parameters,
either by reasoning from preconditions and effects given in the ontology or by
getting user input.

Other ontologies for dm workflow construction are kddonto [20], kd ontology
[82] and dmwf [44]. kddonto provides knowledge of data mining algorithms
required by kddcomposer to build valid dm workflows. Given an algorithm B,
the goal is to find the set of algorithms Ai whose outputs can be used as inputs to
B. This is done by estimating the degree of match between the expected output
of each algorithm Ai and the required input B. Semantic similarity is computed
based on the length of the ontological paths between two concepts along the isA
and partOf relations. However (dis)similarity is only one component of a score or
cost function that takes account of other factors such as estimated performance
or the relaxation of constraints on the input of B. This score induces a finer
ranking on the candidate workflows and allows for the early disposal of those
whose cost exceeds a given threshold.

kd ontology [82] and a planner are tightly integrated in an automated work-
flow composition system that has been developed in conformance with proven
standards from the semantic web, namely the Web Ontology Language for ontol-
ogy modelling and the Planning Domain Definition Language (pddl) for plan-
ning. It has a blend of interesting features not found in other related work.
Contrary to idea and gma which generate workflows in the form of linear
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sequences, it creates workflows as directed acyclic graphs whose nodes repre-
sent implemented algorithms; however, these are abstract workflows in the sense
that the algorithm parameters need to be instantiated in order to produce ex-
ecutable workflows. In addition, kd ontology incorporates knowledge about a
broad range of data mining algorithms, from standard propositional learners to
more advanced algorithms that can handle structured and relational data, thus
expanding the power and diversity of workflows that the planner is able to gen-
erate. kd ontology has been tested on two use cases, one in genomics and the
other in product engineering.

dmwf and its associated planning environment (eProPlan) [44] have been de-
veloped to provide user support in the e-lico virtual data mining laboratory.
A hierarchical task network (htn) based planner performs a series of task de-
compositions starting from the initial user task, and generates alternative plans
when several methods are available for a given (sub)task. Given the number of
operators available to the planner (more than 600 from RapidMiner and Weka
alone), the potentially infinite number of valid workflows precludes the approach
of enumerating them all and leaving the final choice to the user. Hence the choice
of cooperative-interactive workflow planning, in which the planner incrementally
expands the current plan and periodically proposes a small number of intermedi-
ate extensions or refinements from which the user can choose. The ontology pro-
vides the basis for cooperative-interactive workflow planning through the concept
of workflow templates, i.e. abstract workflows that can mix executable operators
and tasks to be refined later into sub-workflows. These templates serve as the
common workspace where user and system can cooperatively design workflows.
Automated experimentation can help make intermediate decisions, though this is
a viable alternative only when time and computational resources are abundant.

Like the other workflow building systems described above, eProPlan generates
a set of correct workflows but has no way of selecting that which is most likely
to produce the best results. dmwf models operator preconditions and effects
but has no knowledge of the algorithms they implement or the models they
are capable of generating. The solution adopted in the e-lico virtual dm lab is
to couple the workflow generator with a meta-miner whose role is to rank the
workflows or select the most promising ones based on lessons learned from past
data mining experience. The meta-miner relies extensively on deep knowledge of
data mining algorithms’ biases and capabilities modelled in dmop (Section 2).

As mentioned above, the vast majority of existing dm ontologies are aimed
at supporting workflow construction. One exception is ontodm [53], whose de-
clared goal is to provide a unified framework for data mining [24]. It contains
definitions of the basic concepts used in data mining (e.g., dm task, algorithm,
dataset, datatype), which can be combined to define more complex entities such
as constraints or data mining experiments. The distinguishing feature of ontodm
is its compliance with ontological best practices defined mainly in the field of bi-
ological investigations. It uses a number of upper level ontologies such as Basic
Formal Ontology (bfo), the obo Relation Ontology (ro), and the Informa-
tion Artefact Ontology (iao). Its structure has been aligned with the Ontology
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of Biological Investigations (obi), and its development follows strict rules like
avoiding multiple inheritance and limiting the number of relations. ontodm is
called a general-purpose ontology by its authors and remains to be applied to a
concrete data mining use case. More recently, a similar ontology called Exposé
[76] has been developed to provide the conceptual basis for a database of data
mining experiments [11]. Exposé borrows ontodm’s upper level structure and
dmop’s conceptualization of data mining algorithms, and completes these with
a description of experiments that serves as the basis of an Experiment Markup
Language. ontodm’s and Exposé’s alignment with upper ontologies suggests that
their primary use is to provide a controlled vocabulary for DM investigations.
Among the dm ontologies that do not focus on workflow construction, dmop is
unique in its focus on the problem of optimizing the knowledge discovery pro-
cess through an in-depth characterization of data and especially of dm algorithm
biases and internal mechanisms.

2 An Ontology for Data Mining Optimization

2.1 Objectives and Overview

The overall goal of dmop is to provide support for all decision-making steps that
have an impact on the outcome of the knowledge discovery process. It focuses
specifically on dm tasks (e.g., learning, feature extraction) whose accomplish-
ment requires non-trivial search in the space of alternative methods. For each
such task, the decision process involves two steps that can be guided by prior
knowledge from the ontology: algorithm selection and model selection. While
data mining practitioners can profitably consult dmop to perform "manual" al-
gorithm and model selection, the ontology has been designed to automate these
two operations. Thus a third use of dmop is meta-learning, i.e., the analysis of
meta-data describing learning episodes in view of extracting patterns and rules
to improve algorithm and model selection. Finally, generalizing meta-learning to
the complete dm process, dmop’s most innovative objective is to support meta-
mining or the meta-analysis of complete data mining experiments in order to
extract workflow patterns that are predictive of good or bad performance. In
short, dmop charts the higher-order feature space in which meta-learning and
meta-mining can take place.

The dmop ontology’s overall structure and foundational role in meta-mining
are illustrated in Figure 3. dmop provides a conceptual framework that defines
the relationships among the core dm entities such as tasks, algorithms, mod-
els, workflows, experiments (Section 2.2). The hierarchy of concepts (classes),
together with axioms expressing their properties, relations and restrictions, con-
stitute the terminological box (tbox), or what we can call the ontology proper.
Based on this conceptual groundwork, individuals are created as instances of one
or several concepts from the tbox; these individuals, and all statements concern-
ing their properties or their relations with other individuals, form the assertional
box (abox), also called the knowledge base.
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Fig. 3. The DMOP architecture

The dm knowledge base (DMKB) captures the dm community’s collec-
tive expertise; ideally, it would be a compendium of the state of the art in
data mining. dmkb builds on dmop’s taxonomy of major data mining tasks
and paradigms (broad algorithm families) to classify and characterize individ-
ual algorithms that have been developed to date, together with their better
known implementations. For instance, dmkb contains formal descriptions of al-
gorithms most often used to solve classification tasks: generative approaches such
as Naïve Bayes, discriminative approaches such as Logistic Regression, and dis-
criminant function approaches such as svms. To distinguish individual variants
of a given algorithm family (e.g. NaiveBayesNormal, NaiveBayesKernel, NaiveBayes-
Discretized, MultinomialNaiveBayes, ComplementNaiveBayes), each is described giving
specific values to properties defined in the dm ontology. Similarly, operators from
dm packages are analysed to identify the algorithms they implement, so that all
attempts to explain an operator’s performance go beyond low-level program-
ming considerations to reason on the basis of algorithm assumptions and basic
components.

DM Experiment data bases (DMEX-DBs) are built using concept and prop-
erty definitions from dmop as well as concrete algorithm and operator definitions
from dmkb. In contrast to dmkb, which is a compilation of commonly accepted
data mining knowledge, a dmex database is any collection of experimental data
concerning a given data mining application task. It is usually domain-specific
and contains ground facts about clearly defined use cases, their associated data
sets, actual data mining experiments conducted to build predictive or descriptive
models that address the task, and the estimated performance of these models.
Thus any number of DM experimental data bases can be built with schemas
based on DMOP and DMKB.

2.2 The Core Concepts

To develop the dm concept hierarchy, we start with the two endpoints of the
dm process. At one end, the process receives input data relative to a given
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discovery task; at the other, it outputs knowledge in the form of a descriptive
or predictive model, typically accompanied by some kind of report containing
the learned model’s estimated performance and other meta-data. These three
concepts—Data, DM-Model, DM-Report—play a central role in dmop and have
been grouped, for convenience, in a derived class called IO-Object. The major
concept hierarchies of the ontology—DM-Task, DM-Algorithm, DM-Operator and
DM-Workflow—are structured directly or indirectly by these three types of in-
put/output objects.

instantiated in DMEX−DB

instantiated in DMKB

DM−Operator

specifiesOutputType

specifiesInputType

DM−Report

hasInput

hasOutput

DM−Operation

hasStephasNode

achieves

realizes

executes
DM−AlgorithmDM−Task

executes

addresses implements

DM−Workflow

Data

DM−Model

DM−Experiment

Fig. 4. The core concepts of dmop

Tasks and algorithms as defined in dmop are not processes that directly ma-
nipulate data or models, rather they are specifications of such processes. A DM-
Task is a specification of any piece of work that is part of the dm process, essen-
tially in terms of the input it requires and the output it is expected to produce.
A DM-Algorithm is the specification of a procedure that addresses a given Task,
while a DM-Operator is a program that implements a given DM-Algorithm (see
Figure 4). Instances of DM-Task and DM-Algorithm do no more than specify their
input/output types; only processes called DM-Operations have actual inputs and
outputs. A process that executes a DM-Operator also realizes the DM-Algorithm
implemented by the operator and by the same token achieves the DM-Task ad-
dressed by the algorithm. Finally, just as a DM-Workflow is a complex structure
composed of dm operators, a DM-Experiment is a complex process composed of
operations (or operator executions). A workflow can be represented as a directed
acyclic graph in which nodes correspond to operators and edges to IO-Objects,
i.e. to the data, models and meta-level reports consumed and produced by dm
operations. An experiment is described by all the objects that participate in the
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process: a workflow, data sets used and produced by the different data process-
ing phases, the resulting models and meta-data quantifying their performance.
Instances of DM-Algorithm and DM-Operator are described in the DMKB because
they represent consensus data mining knowledge, while instances of DM-Workflow
and DM-Experiment are stored in application-specific DM experiment data bases.

Data. As the critical resource that feeds the knowledge discovery process, data
are a natural starting point for the development of a data mining ontology. Over
the past decades many researchers have actively investigated data characteristics
that might explain generalization success or failure. An initial set of such sta-
tistical and information-theoretic measures was gathered in the StatLog project
[50] and extended in the Metal project with other statistical [46], landmarking-
based [57,7]and model-based [55,56] characteristics. Data descriptors in dmop
are based on the Metal heritage, which we further extended with geometrical
measures of data complexity [6].

Figure 5 shows the descriptors associated with the different Data subclasses.
Most of these are statistical measures, such as the number of instances or the
number of features of a data set, or the absolute or relative frequency of a
categorical feature value. Others are information-theoretic measures (italicized
in the figure) ; examples are the entropy of a categorical feature or the class
entropy of a labelled dataset. Characteristics in bold font, like the max Fisher’s
discriminant ratio, which measures the highest discriminatory power of any single
feature in the data set, or the fraction of data points estimated to be on the class
boundary, are geometric indicators of data set complexity; detailed definitions
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of these characteristics can be found in [38]. Finally, error rates such as those
of a linear or a 1-NN classifier (underlined) are data characteristics based on
landmarking, which was briefly described in Section 1.1.

DM Tasks. As mentioned above, dmop places special emphasis on so-called
core dm tasks—search-intensive or optimization-dependent tasks such as feature
construction or learning, as opposed to utility tasks such as reading/writing a
data set or sorting a vector of scalars.

is−a
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Fig. 6. The CoreDMTask Hierarchy

The CoreDMTask hierarchy (Fig. 6) comprises four major task classes defined
by their inputs and outputs: data processing, modelling, model processing, and
model application:

DataProcessingTask� ∀specifiesInputType.Data�∀specifiesOutputType.Data
ModellingTask� ∀specifiesInputType.Data�∀specifiesOutputType.Model
ModelProcessingTask� ∀specifiesInputType.Model�∀specifiesOutputType.Model
ModelApplicationTask� ∀specifiesInputType.Model�∀specifiesOutputType.Report

Specializations of each task are defined by specializing its input and output
types.Aswemovedown the tree inFigure 6, the descendant classes of ModellingTask
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specify input and output types that are successively more specific subclasses of
Data and Model respectively:

PredictiveModellingTask� ∀specifiesInputType.LabelledDataSet
�∀specifiesOutputType.PredictiveModel

ClassificationModellingTask � ∀specifiesInputType.CategoricalLabelledDataSet
�∀specifiesOutputType.ClassificationModel

Note the distinction between PredictiveModellingTask — the construction of a
predictive model — and PredictionTask, which is the simple application of the
model built through predictive modelling. The same distinction holds between
their respective subclasses, e.g. classification is the application of a classifier
built through classification modelling, and similarly for regression and structured
prediction. This is in contrast to current usage in the literature, where the term
classification, for instance, designates ambiguously the process of building or
applying a classifier.

DM Algorithms. The top levels of the Algorithm hierarchy reflect those of the
Task hierarchy, since each algorithm class is defined by the task it addresses, e.g.
DataProcessingAlgorithm≡ Algorithm�∃ addresses.DataProcessingTask. However, the
Algorithm hierarchy plunges more deeply than the Task hierarchy: for each leaf
class of the task hierarchy, there is an often dense subhierarchy of algorithms
that specify diverse ways of addressing each task. For instance, the leaf concept
ClassificationModellingTask in Figure 6 is mapped directly onto the hierarchy rooted
in the concept of ClassificationModellingAlgorithm in Figure 7.

As shown in the figure, classification modelling algorithms are divided into
three broad categories [10]. Generative methods compute the class-conditional
densities p(x|Ck) and the priors p(Ck) for each class Ck, then use Bayes’ theo-
rem to find posterior class probabilities p(Ck|x). They can also model the joint
distribution p(x, Ck) directly and then normalize to obtain the posteriors. In
both cases, they use statistical decision theory to determine the class for each
new input. Examples of generative methods are normal (linear or quadratic)
discriminant analysis and Naive Bayes. Discriminative methods such as logistic
regression compute posteriors p(Ck|x) directly to determine class membership.
Discriminant functions build a direct mapping f(x) from input x onto a class
label; neural networks and support vector classifiers (SVCs) are examples of
discriminant function methods. These three Algorithm families spawn multiple
levels of descendant classes that are distinguished by the type and structure of
the models they generate; model structures will be discussed in Section 2.3.

In addition to these primitive classes that form a strict hierarchy (as shown in
Figure 7), equivalent class definitions superpose a finer structure on the Algorithm
subclasses. For instance, we can distinguish between eager and lazy learners
based on whether they compress training data into ready-to-use models or simply
store the training data, postponing all processing until a request for prediction is
received [1]. Similarly, a classification algorithm can be classified as high-bias or
high-variance based on how it tends to control the bias-variance trade-off in its
learned models [28,21]. High-bias algorithms can only generate simple models
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Fig. 7. The ClassificationModellingAlgorithm hierarchy. Only the primitive class hierar-
chy is shown.

that lack the flexibility to adapt to complex data distributions but for that
reason remain stable across different training samples. High-variance algorithms
span a broader range of complexity; they can generate highly complex but often
unstable models: a slight change in the training sample can yield large changes in
the learned models and their predictive behavior. Many other equivalent classes
can be defined for modelling algorithms; as a result, algorithm instances can
have multiple inheritance links (not shown in the figure) that make this concept
hierarchy more of a directed acyclic graph than a simple tree structure.

2.3 Inside the Black Box: A Compositional View of DM Algorithms

As explained in Section 1, a key objective of the proposed meta-mining approach
is to pry open the black box of DM algorithms in order to correlate observed
behavior of learned models with both algorithm and data characteristics. This is
a long-term, labor-intensive task that requires an in-depth analysis of the many
data mining algorithms available. In this section, we illustrate our approach on
two major data mining tasks, classification modelling and feature selection.

Classification Modelling Algorithms. Opening the black box of a modelling
or learning algorithm is equivalent to explaining, or describing the sources of,
its inductive bias (Section 1.1). DMOP provides a unified framework for concep-
tualizing a learning algorithm’s inductive bias by explicitly representing: 1) its
underlying assumptions; 2) its hypothesis language or so-called representational
bias through a detailed conceptualization of the class of models it generates; and
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3) its preference or search bias through a definition of its underlying optimization
problem and the optimization strategy adopted to solve it.

Representational bias and models. As its name suggests, the keystone of a mod-
elling algorithm is the Model that it was designed to produce (ModellingAlgorithm
	 ∃ specifiesOutput.Model). A detailed characterization of a modelling algorithm’s
target model is the closest one can get to an actionable statement of its repre-
sentational bias or hypothesis language. DMOP’s characterization of Classifica-
tionModel is summarized in Figure 8. To clarify how the model-related and other
relevant concepts are used in describing a classification algorithm, we will use the
linear soft-margin SVM classification modelling algorithm (henceforth LinSVC-A
for the algorithm and LinSVC-M for the generated model) represented in Figure 9
as our running example.

A model is defined by two essential components: a model structure and a set
of model parameters. The ModelStructure determines the three main classes of
classification models (and hence of classification modelling algorithms). From
the definitions given in Section 2.2, it follows that the model structure of a
GenerativeModel is a JointProbabilityDistribution, while that of a DiscriminativeModel
is a PosteriorProbabilityDistribution. By contrast, DiscriminantFunctionModels compute
direct mappings of their inputs to a class label by summarizing the training data
in a LogicalStructure (e.g., decision tree, rule set) or a MathematicalExpression (e.g.,
superposition of functions in neural networks, linear combination of kernels in
SVMs). In LinSVC-M, where the kernel itself is linear, the linear combination of
kernels is equivalent to a linear combination of features (Fig. 9).

The concept of ModelParameter is indissociable from that of ModelStructure.
Within each model family, more specific subclasses and individual models are
produced by instantiating the model structure with a set of parameters. Proba-
bilistic — generative and discriminative — model structures are unambiguously
specified by the probability distribution that generated the training data. Since
this distribution can never be identified with certainty from a finite random
sample, the task is often simplified by assuming a family of distributions (e.g.,
Gaussian in NaiveBayesNormal) or a specific functional form (e.g., the logistic
function in LogisticRegression); estimating the probability distribution is then re-
duced to estimating the values of the distribution parameters (e.g., mean and
variance of a Gaussian) or the function parameters (e.g., weights of the linear
combination in the logistic function’s exponent). In dmop, the concept of Prob-
abilisticModelStructure has a specific property, hasDensityEstimation, that identifies
the parametric or non-parametric density estimation method used to estimate
the model parameters. In non-probabilistic (discriminant function) models, the
nature of the model parameters varies based on the type of model structure.
In logical structures, which are more or less complex expressions based on the
values of individual features, the model parameters are thresholds on feature
values that partition the instance space into hyperrectangular decision regions.
The natural model parameters of mathematical model structures are the values
of the underlying function parameters, e.g. the weights of the hidden units in
a neural network or the kernel coefficients in SVMs. In LinSVC-M (Fig. 9), the
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Fig. 9. Linear Soft Margin SVC Algorithm (referred to in the text as
LinSVC-A) and the model it specifies (LinSVC-M in the text).

model parameters are the instance weights and the kernel weights which, as we
have seen above, are those of the feature themselves.

In all cases, the number of model parameters confers on the selected model
structure the degrees of freedom required to capture the characteristics of the
target population. A model that has an inadequate set of parameters will under-
fit the data and incur systematic errors due to bias; on the other hand, a model
with too many model parameters will adapt to chance variations in the sample,
in short will overfit the training data and perform poorly on new data due to high
variance. Selecting the right number of parameters is no other than selecting the
right bias-variance tradeoff or selecting the appropriate capacity or level of com-
plexity for a given model structure. The complexity of each learned model can
be quantified using the concept of ModelComplexityMeasure, the most important
subclass of which is ModelParameterCount. Its sibling, ModelParameterMagnitude,
takes into account the view that a model’s complexity is also determined by
the magnitude of model parameter values [19,5]. The two complexity measures
of LinSVC-M (Fig. 9) are NumberOfSupportVectors and SumOfSquaredWeights, sub-
classes of ModelParameterCount and ModelParameterMagnitude respectively. A final
model descriptor is the type of DecisionBoundary that is drawn by a given model
(family). DMOP’s formalization of this concept distinguishes between linear and
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nonlinear decision boundaries, but more work is needed to develop a more elab-
orate geometry of decision regions.

Preference bias and optimization strategies. Once a model structure and its set
of parameters have been selected, the learning process is nothing more or less
than the automated adjustment of these parameters to produce a fully specified,
operational model. This is the task of the learning algorithm. The goal is to
determine the set of parameter values that will maximize classification perfor-
mance as gauged by some criterion. The search for the right parameter setting
can be cast as an OptimizationProblem that consists in minimizing a cost (or ob-
jective) function, with or without a corresponding set of constraints. The cost
function quantifies how close the current parameter values are to the optimum.
Learning stops when the cost function is minimized. In its simplest version, the
cost function is no more than a measure of error or loss (e.g. misclassification
rate or sum of squared errors). However, minimizing training set error can lead
to overfitting and generalization failure. For this reason many algorithms use a
regularized cost function that trades off loss against model complexity. In dmop,
the generic form of the modelling CostFunction is F = ε+λc, where ε is a measure
of loss, c is a measure of model complexity, and λ is a regularization parame-
ter which controls the trade-off between loss and complexity. The optimization
problem addressed by the LinSVC-A consists in minimizing the regularized cost
function

min
ξ,w,b

〈w.w〉 + C

n∑
i=1

ξ2
i

subject to the soft margin constraint yi(〈w, Φ(xi)〉 + b) ≥ 1 − ξi, with ξi ≥ 0,
and i = 1, ..., n. The ontological representation of this optimization problem is
shown (labelled SoftMarginSVCOptimizationProblem) in Figure 9.

dmop incorporates a detailed hierarchy of strategies adapted to the optimiza-
tion problems encountered in modelling and in other dm tasks (Fig. 10). These
OptimizationStrategies fall into two broad categories—continuous and discrete—
depending on the type of variables that define the problem. In certain cases, opti-
mization is straightforward. This is the case of several generative algorithms like
normal linear/quadratic discriminant analysis and Naive Bayes-Normal, where
the cost function is the log likelihood, and the maximum likelihood estimates
of the model parameters have a closed form solution. Logistic regression, on the
other hand, estimates the maximum likelihood parameters using methods such
as Newton-Raphson. In the case of LinSVC-A, the variables involved in the op-
timization problem defined above call for a continuous optimization strategy.
LinSVC-A uses Sequential Minimal Optimization (smo), a quadratic program-
ming method rendered necessary by the quadratic complexity component of the
cost function (L2 norm of Weights in Fig. 9).

The optimization strategy hierarchy plays an important role in dmop because
many core dm tasks other than modelling also have underlying optimization
problems. In particular, discrete optimization strategies will come to the fore in
feature selection methods.
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Feature Selection Algorithms. Feature selection is a particular case of di-
mensionality reduction, which can be defined as follows: given a set of n vectors
{x1,x2, . . . ,xn} ∈ R

p, find a set of lower-dimensional vectors {x1,x2, . . . ,xn} ∈
R

p′
, p′ < p, that maximally preserves the information in the data according

to some criterion. In a classification task, for instance, the criterion could be
some measure of how well the p or p′ features discriminate between the different
classes. Feature selection refers to the specific case where the p′ features are a
subset of the original p features; dimensionality is reduced by eliminating irrele-
vant or redundant features. Alternatively, new features can constructed from the
original ones via techniques like principal components analysis, and feature se-
lection applied to the set of derived features; this process—feature construction
followed by feature selection—is called feature extraction in [33] and in dmop.

In feature selection, every subset of the original p-dimensional feature vector
is represented by a vector σ ∈ {0, 1}p of indicator variables, where σi = 1 denotes
the presence and σi = 0 the absence of feature i. The task is to find a vector
σ∗ ∈ {0, 1}p|∀σ′, f(σ∗) ≤ f(σ′), where f is some measure of feature set quality.
A feature selection algorithm can be described by four properties: its mode of
interaction with the learning algorithm, an optimization strategy to guide search
in the space of feature subsets, a feature scoring or weighting mechanism to assess
the candidate subsets, and a decision strategy to make the final selection.

Interaction with the learner. Feature selection methods are commonly classified
based on how they are coupled with the learning algorithm. Filter methods
perform feature selection as a preprocessing step, independently of the learning
method; they must then use learner-independent relevance criteria to evaluate
the candidate features, either individually or as subsets of the initial feature set.
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Wrapper methods wrap feature selection around the learning process and use
the estimated performance of the learned model as the selection criterion; the
effectiveness of the selected features depends strongly on the specific learning
method used. In embedded methods, feature selection is encoded as an integral
part of the learning algorithm.

Optimization strategies. Feature selection implies extensive search in the dis-
crete space of feature subsets; there are 2p ways of assigning values to the p-
dimensional vector σ, in other words 2p possible subsets of the initial feature
set. Feature selection methods can adopt one of two optimization strategies to
solve this kind of problem: SearchStrategy and RelaxationStrategy. Search strate-
gies are based on the combinatorial approach that is a more natural approach
to problems in discrete domains, while relaxation strategies relax, as it were, the
discreteness constraint and reformulate the problem in a continuous space. The
result is then reconverted via a decision rule into a final selection in discrete fea-
ture space. Figure 10 shows the two main types of DiscreteOptimizationStrategy.
Search strategies, in particular heuristic search strategies that trade off opti-
mality for efficiency or simple feasibility, are by far the most widely used. The
subclasses of SearchStrategy are determined by the different properties of search
as shown in Figure 11) : its coverage (global or local), its search direction (e.g.,
forward, backward), its choice policy or what Pearl calls "recovery of pursuit"
[54] (irrevocable or tentative), the amount of state knowledge that guides search
(blind, informed), and its level of uncertainty (deterministic, stochastic). These
properties are For instance, Consistency-based feature selection [49] uses the
so-called Las Vegas strategy which is an instance of StochasticHillClimbing, which
combines local, greedy, stochastic search. Correlation-based feature selection [35]
adopts a forward-selection variant of (non-greedy) BestFirstSearch. Representing
the irrevocable choice policy of GreedySearch, C4.5’s embedded feature selection
algorithm and SVM-RFE [34] use GreedyForwardSelection and GreedyBackwardElim-
ination respectively. The concept RelaxationStrategy has no descendants in the
graph because after transposing the discrete problem into a continuous space,
on can use any instance of ContinuousOptimizationStrategy. However, most of the
feature selection algorithms that use relaxation further simplify the problem by
assuming feature independence, reducing the combinatorial problem to that of
weighting the p individual features and (implicitly) selecting a subset composed
of the top p′ features. This is the case of all so-called univariate methods, such
as InfoGain, χ2 and SymmetricalUncertainty (see Figure 12), as well as a few
multivariate methods like ReliefF [45,64] and SVMOne. ReliefF solves the contin-
uous problem similarly to univariate methods because it also weights individual
features, though in a multivariate context. On the contrary, SVMOne and SVM-
RFE use the continuous optimization strategy of the learner in which they are
embedded — SMO, which, as we saw above is an instance of QuadraticProgram-
ming. Finally, note the special case of SVM-RFE which actually combines the two
discrete optimization strategies: it generates candidate subsets through greedy
backward elimination in discrete space, then uses the SVM learner to weight the
individual features in continuous space, and finally returns to discrete space by
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generating a new subset purged of the n features with the lowest weights. This
cycle continues until there are no more features to eliminate.

Feature/subset weighting schemes. Another characteristic of a feature selection
algorithm is its feature weighting scheme. Feature weighting algorithms are di-
vided into two groups based on what is being weighted (hasEvaluationTarget
property in Fig. 11): individual features or feature subsets. Single-feature weight-
ing algorithms themselves can be classified as univariate or multivariate depend-
ing on the feature context that is brought to bear in weighting the individual fea-
ture: univariate algorithms (e.g., those that use information gain or χ2) weight
individual features in isolation from the others, while multivariate algorithms
weight individual features in the context of all the others. For instance, ReliefF
and SVMOne yield individual feature weights that are determined by taking all
the other features into account — when computing nearest neighbors in the case
of ReliefF, and in building the linear combination of features or kernels in the
case of SVMOne. Finally, feature weighting algorithms are completely specified
by adding the evaluation function they use – either individual feature or feature
subset weighting algorithms.

Decision strategy. Once the candidate features or feature subsets have been
generated and scored, a feature selection algorithm uses a decision strategy to
select the fnal feature subset. This can be a statistical test that uses the resulting
p-value as a basis for selection, or any kind of decision rule that sets a threshold
on any quantity that describes the evaluated entities, e.g., the weights of the
features or subsets, or their ranks.

Figure 12 situates a number of feature selection algorithms according to their
characteristics and those of their feature weighting components.
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Fig. 12. Synoptic view of feature selection methods based on their interaction with
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the optimization strategy used (search, relaxation), and their feature weighting com-
ponent’s evaluation target (single feature, feature subset) and evaluation context (uni-
variate, multivariate).
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3 DMOP-Based Pattern Discovery from DM Workflows

Data mining workflows are replete with structures that are often reused. A sim-
ple example is the workflow segment where the operator Weight by Information Gain
is invariably followed by Select by Weights to perform feature selection. This regu-
larity involves individual operators, but it would be even more useful if we could
detect the same basic structure had the first operator been replaced by any other
that does univariate feature weighting. Similarly, bagging subworkflows should
be recognizable despite the diversity of classification modelling operators used.
In order to detect patterns with strong support, a frequent pattern search proce-
dure should be capable of generalizing from specific operators to broad algorithm
classes. This is one of the roles of the dmop ontology, where we can follow the
executes link from grounded operations to operators, then the implements link
from operators to algorithms (Figure 4) in order to analyse the taxonomic (as
in Figure 7) and non-taxonomic commonalities between algorithms. In short,
prior knowledge modelled in dmop will support the search for generalized work-
flow patterns, similar to the generalized sequence patterns extracted via frequent
sequence mining in [70].

3.1 Workflow Representation for Generalized Pattern Mining

Workflows as hierarchical graphs. Data mining workflows are directed
acyclic graphs (dags), in which nodes correspond to operators and edges be-
tween nodes to input/output (i/o) objects, much like the "schemes" described
in [40,31]. More precisely, they are hierarchical dags, since nodes can repre-
sent composite operators (e.g. cross-validation) that are themselves workflows.
An example hierarchical dag representing a RapidMiner workflow is given in
Figure 13. The workflow cross-validates feature selection followed by classifica-
tion model building. X-Validation is a typical example of a composite operator
which itself is a workflow. It has two basic blocks, a training block which can be
any arbitrary workflow that receives as input a dataset and outputs a model,
and a testing block which receives as input a model and a dataset, and outputs a
performance measure. In this specific cv operator, the training block has three
steps: computation of feature weights by the Weight by Information Gain operator,
selection of a subset of features by the Select by Weights operator, and final model
building by the Naive Bayes operator. The testing block consists simply of the
Apply Model operator followed by the Compute Performance computation.

We now give a more formal definition of the hierarchical dags that we will
use to describe data mining workflows. Let:

� O be the set of all available operators that can appear in a data mining
workflow, e.g. classification operators, such as C4.5, SVMs, model combination
operators, such as boosting, etc.
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Fig. 13. A dm workflow as a hierarchical dag

� E be the set of all available data types that can appear in a data mining
workflow, e.g. the data types of the various i/o objects of some DM workflow,
models, datasets, attributes, etc.

� an operator o ∈ O be defined by its name and the data types of its inputs
and outputs. 1

A hierarchical directed acyclic graph, G, that represents a data mining workflow
is an ordered pair (O′, E′) where:

� O′ ⊆ O is the set of vertices or nodes that correspond to the operators used
in the workflow

� E′ ⊆ E is the set of ordered pairs of nodes, (oi, oj), called directed edges,
that correspond to the data types of the i/o objects, that are passed from
operator oi to operator oj in the workflow.

E′ defines the data-flow of the workflow and O′ the control flow.

Workflows as parse trees. A dag has one or more topological sorts. A
topological sort is a permutation p of the vertices of a dag such that an edge
(oi, oj) indicates that oi appears before oj in p [65]. Thus, it is a complete ordering
of the nodes of a dag. If a topological sort has the property that all pairs of
consecutive vertices in the sorted order are connected by an edge, then these
edges form a directed Hamiltonian path of the dag. In this case, the topological
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order is unique. If not, then it is always possible to get the unique topological
order by adding a second order such as the lexicographic order of the vertex
labels. The topological sort of a dag can be represented by a parse tree, which
is a reduction of the original dag where the edges have been fully ordered.

X-Validation

Weight by
Information Gain

Select by
Weights

Naive
Bayes

Apply
Model

Performance

End

Fig. 14. The parse tree (topological sort) of the DM-workflow given in Figure 13

The parse tree of Figure 14 gives the topological sort of the dm workflow
represented as a hierarchical dag in Figure 13. As seen clearly, the parse tree is
a simplification of the original graph; it represents the order of execution of the
different operators and their hierarchical relation but the data-flow is lost (the
edges are not labelled).

Augmenting the parse trees. Given the parse tree representation of a work-
flow, the next step is to augment it in view of deriving frequent patterns over
generalizations of the workflow components. Generalizations will be based on
concepts, relations and subsumptions modelled in dmop. Starting from the Op-
erator level, an operator o ∈ O implements some algorithm a ∈ A (Figure 4). In
addition the dmop defines a refined algorithm taxonomy, an extract of which is
given in Figure 7. Note that contrary to the asserted taxonomy which is a pure
tree, the inferred taxonomy can be a dag (a concept can have multiple ances-
tors) [60]; consequently the subsumption order is not unique. For this reason we
define a distance measure between two concepts C and D, which is related to
the terminological axiom of inclusion, C 	 D, as the length of the shortest path
between the two concepts. This measure will be used to order the subsumptions.
For the sake of clarity, we will assume a single-inheritance hierarchy in the ex-
ample of the (RapidMiner) NaiveBayes operator. Given the taxonomic relations
NaiveBayesNormal � NaiveBayesAlgorithm � BayesianAlgorithm � GenerativeAlgorithm,
the reasoner infers that NaiveBayes implements someInstance of these superclasses,
ordered using the distance measure described. Based on these inferences, an
augmented parse tree is derived from an original parse tree T by inserting the
ordered concept subsumptions between each node v ∈ T and its parent node.
Figure 15 shows the augmented version of the parse tree in Figure 14.
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X-Validation

DataProcessing

Algorithm

FeatureSelection

Algorithm

Feature

WeightingAlgorithm

UnivariateFeature

WeightingAlgorithm

EntropyBasedFeature

WeightingAlgorithm

Weight by
Information Gain

Select by
Weights

SupervisedModelling Algorithm

ClassificationModelling Algorithm

Generative Algorithm

Bayesian Algorithm

NaiveBayes Algorithm

NaiveBayes Normal

Naive Bayes

Apply
Model

Performance

End

Fig. 15. An augmented parse tree. Thin edges depict task decomposition into operators
(italics); a thick single line indicates that an operator implements an instance of its
parent algorithm; double lines depict subsumption.

3.2 Mining Generalized Workflow Patterns

We are now ready to mine generalized patterns from DM workflows represented
as (augmented) parse trees, which we now define more formally. A parse tree
is a rooted k -tree [15]. A rooted k -tree is a set of k nodes O′ ⊆ O where each
o ∈ O′, except one called root, has a parent denoted by π(o) ∈ O′. The function
l(o) returns the label of a node, and the operator ≺ denotes the order from left
to right among the children of a node.

Induced subtrees. We used Zaki et al.’s TreeMiner [81] to search for frequent
induced subtrees over the augmented tree representation of workflows. A tree
t´ = (Ot´, Et´) is called an induced subtree of t = (Ot, Et), noted t′ �i t,
if and only if Ot′ preserves the direct parent-child relation of Ot. Figure 16
shows a tree T1 and two of its potential induced subtrees, T2 and T3. In the
less constraining case where only an indirect ancestor-descendant relation is
preserved, the subtree t is called embedded. We had no need for embedded
trees: given the way augmented parse trees were built using the dmop algorithm
taxonomy, extending parent-child relationships to ancestor-descendants would
only result in semantically redundant patterns with no higher support.
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(a) T1

A

B

A C B

C C

B A

(b) T2
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Fig. 16. A tree T1 and two of its induced subtrees ,T2 and T3

Given a database (forest) D of trees, the tree miner algorithm will produce
a set P of induced subtrees (patterns). For a given tree Ti ∈ D and a pattern
S ∈ P , if S �i Ti, we say that Ti contains S or S occurs in Ti. Now let δTi(S)
denote the number of occurences of the subtree S ∈ P in a tree Ti ∈ D, and
let dTi be an indicator variable with dTi(S) = 1 if δTi(S) > 0 and dTi(S) = 0
if δTi(S) = 0. The support of the subtree S in the database D is defined as
sup(S) = ΣTi∈DdTi(S). We call the support set of S the set of trees Ti ∈ D with
dTi(S) > 0.

An example. We demonstrate frequent pattern extraction from the following
workflows that do cross-validated feature selection and classification:

a) feature selection based on Information Gain, classification with Naive Bayes
b) feature selection with Relief, classification with C4.5
c) feature selection with cfs, classification with C4.5
d) wrapper feature selection with Naive Bayes, classification with Naive Bayes.

Their parse trees are given in Figure 17. Workflow a) performs univariate fea-
ture selection based on a univariate weighting algorithm. The three remaining
workflows are all doing multivariate feature selection, where in b) this is done
using a multivariate feature weighting algorithm, and in c) and d) using heuristic
search, implemented by the OptimizeSelection operator, in the space of feature
sets where the cost function used to guide the search is cfs and the Naive Bayes
accuracy respectively.

We applied TreeMiner [81] to the augmented version of these parse trees,
setting the minimum support to 2 in order to extract frequent induced subtrees.
Some of the mined patterns and their support sets are shown in Figure 18.

Pattern (a) shows that in two of the four workflows, a) and b), a feature
weighting algorithm is followed by the Select by Weights operator, and that this
pair forms a feature selection algorithm followed by a classification modelling
algorithm, nested all together in a cross-validation operator. Pattern (b) captures
the fact that two workflows, b) and c), contain a multivariate feature selection
followed by a decision tree algorithm, again nested inside a cross-validation.
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Fig. 17. Parse trees of feature selection/classification workflows
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(c) supp=[c,d]
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Algorithm
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FeatureSelectionAlgorithm
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(d) supp=[a,b,c,d]

X-Validation
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X-Validation

Apply Model Performance

(f) supp=[a,b,c,d]

X-Validation

ClassificationModelling

Algorithm

Apply Model Performance

Fig. 18. Six patterns extracted from the 4 workflows of Figure 17

Pattern (c) corresponds to MultivariateFeatureSelection performed by Optimize-
Selection and followed by some classification algorithm. As mentioned above,
OptimizeSelection represents a heuristic search over feature sets using some search
strategy and some cost function which are not specified for the moment.

Pattern (d) is a generalization of patterns (a), (b) and (c), and covers all
four workflows. It simply says that a feature selection algorithm is followed by
a classification modelling algorithm.

Finally, patterns (e) and (f) also cover all four workflows. Pattern (e) cor-
responds to the validation step where a learned model is applied to a test set
using cross-validation, and some performance measure is produced. Pattern (f)
is a super pattern of pattern (e) and shows that a model should first be produced
by a classification modelling algorithm before it can be applied and evaluated.
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4 Experiments in Workflow Meta-Mining

This section describes workflow mining experiments in which the goal is to pre-
dict the relative performance of a new workflow, whether handcrafted by the
user or designed automatically, e.g. by eProPlan (page 279).

4.1 Experimental Design

As discussed in Section 1.1, standard meta-learning has been dominated by the
Rice model which considers only data set characteristics to predict the perfor-
mance of algorithms or algorithm families. We proposed an alternative model
which takes into account both data and algorithm characteristics. In this section,
we apply the revised Rice model to workflow mining: in the meta-mining view
of workflows as compositions of (implemented) algorithms, workflow selection or
ranking is grounded on both data and workflow characteristics.

Gathering the meta-mining data. To define meta-learning problems and
gather the necessary meta-data, we need to collect results from a sizeable num-
ber domain-level data mining experiments. We gathered 65 datasets concerning
microarray experiments on different types of cancer. Table 1 gives the name
(prefixed by the cancer type) and the number of examples, features, and classes
for each dataset. As is typical of gene profiling data, all are high-dimensional
small samples, i.e. the number of features is several orders of magnitude higher
than the number of examples.

The choice of a clearly circumscribed application domain for our meta-learning
experiments has a clear rationale. Previous work on meta-learning typically relied
on base-level experiments using UCI datasets [26] from the most diverse domains.
As a result, the meta-learner groped for regularities in the intractable immen-
sity and sparsity of the space of all possible datasets—from classical toy prob-
lems (e.g. Lenses, Tic-tac-toe) to more recent biomedical datasets (e.g. Dorothea,
Arcene), where the number of dimensions is one or several orders of magnitude
greater than the number of instances. Initially motivated by user rather than
meta-learner considerations, so-called third-generation data mining systems [58]
promoted the idea of vertical systems which focus on a specific application do-
main and problem, thus ensuring a more dense and coherent search space as well
as the possibility of bringing domain-specific knowledge to bear in the knowl-
edge discovery process. In this spirit, we selected gene expression-based cancer
diagnosis as our problem domain, with the explicit proviso that all conclusions
drawn from these experiments will apply only to datasets that stem from the
same application area or at least share their essential characteristics.

We applied different data mining workflows to these datasets and estimated
their performance using ten fold cross-validation. All the workflows were combi-
nations of feature selection and classification algorithms. We used the following
feature selection algorithms: Information Gain (ig), Chi-square (chi), ReliefF
(rf), and recursive feature elimination with svm (svmrfe); we fixed the num-
ber of selected features to ten. For classification we used the following algorithms:
one-nearest-neighbor (1nn), decision tree algorithms J48 and cart, Naive Bayes
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(nb), logistic regression algorithm (lr), and svms with linear (svm-l) and Gaus-
sian (svm-rbf) kernels. For J48 the C (pruning confidence) and M (minimum
number of instances per leaf) parameters were set to 0.25 and 2 respectively; for
cart the M and N (number of folds for the minimal cost-complexity pruning)
parameters were set to 2 and 5 respectively. The C parameter was set to 1 for
both svm-l and svm-r, and svm-r’s γ parameter was set to 0.1. We used the
implementations of these algorithms in the RapidMiner data mining suite. All
the possible combinations of the four feature selection algoriths with the seven
classication algorithms gave 28 different learning workflows, each applied to the
65 datasets, for a total of 1820 data mining experiments.

Table 1. The 65 microarray datasets used in the meta-mining experiments. N: number
of examples, D: number of features, C: number of classes

Dataset N D C Dataset N D C

adrenal_dahia 76 22283 2 leukemia_haslinger 100 12600 2
bladder_blaveri 40 5331 2 leukemia_wei 29 21481 2
bladder_dyrskjot 40 4409 3 leukemia_yagi 53 7241 2
bladder_sanchez-carbayo 157 22283 3 liver_chen 156 2621 2
breast_desmedt 198 22283 2 liver_iizuka 60 7129 2
breast_farmer 49 22215 3 liver_ye 87 8121 3
breast_gruvberger 58 3389 2 lung_barret 54 22283 2
breast_kreike 59 17291 2 lung_beer 86 7129 3
breast_ma_2 60 22575 2 lung_bhattacharjee_2 197 12600 4
breast_minn 68 22283 2 lung_bild 111 54675 2
breast_perou 65 7261 4 lung_wigle 39 1971 2
breast_sharma 60 1368 2 lymphoma_alizadeh 99 8580 2
breast_sotiriou 167 22283 3 lymphoma_booman 36 14362 2
breast_veer 97 24481 2 lymphoma_rosenwald 240 7388 3
breast_wang 286 22283 2 lymphoma_shipp 77 7129 2
breast_west 49 7129 2 medulloblastoma_macdonald 23 1098 2
cervical_wong 33 10692 2 melanoma_talantov 70 22283 3
cns_pomeroy_2 60 7129 2 mixed_chowdary 104 22281 2
colon_alon 62 2000 2 mixed_ramaswamy 76 15539 2
colon_laiho 37 22283 2 myeloma_tian 173 12625 2
colon_lin_1 55 16041 2 oral_odonnell 27 22283 2
colon_watanabe 84 54675 2 ovarian_gilks 23 36534 2
gastric_hippo 30 7127 2 ovarian_jazaeri_3 61 6445 2
glioma_freije 85 22645 2 ovarian_li_and_campbell 54 1536 2
glioma_nutt 50 12625 2 ovarian_schwartz 113 7069 5
glioma_phillips 100 22645 2 pancreas_ishikawa 49 22645 2
glioma_rickman 40 7069 2 prostate_singh 102 12600 2
head_neck_chung 47 9894 2 prostate_tomlins 83 10434 4
headneck_pyeon_2 42 54675 2 prostate_true_2 31 12783 2
leukemia_armstrong 72 12582 3 renal_williams 27 17776 2
leukemia_bullinger_2 116 7983 2 sarcoma_detwiller 54 22283 2
leukemia_golub 72 7129 2 srbct_khan 88 2308 4
leukemia_gutierrez 56 22283 4
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Predicting the performance of a candidate workflow was cast as a classification
problem: given a dataset dj , determine whether workflow wfi will be among the
top performing workflows (class best) or not (class rest). We assigned these
class labels as follows. For each dataset we did a pairwise comparison of the
estimated performance of the 28 workflows applied to it using a McNemar’s
test of statistical significance. For each workflow pair, a score of 1 was assigned
to the workflow—if any—which performed significantly better than the other,
which scored 0; otherwise both were assigned 0.5. The final performance rank of
a workflow for a given dataset was determined by the sum of points it scored on
these pairwise comparisons for that dataset. Clearly in the case of 28 workflows
the maximum possible score is 27 when a workflow is significantly better than all
the other workflows. If there are no significant differences then each workflow gets
a score of 13.5. The class label of a workflow for a given dataset was determined
based on its score; workflows whose scores were within 1.5 standard deviations
of the best performance measure for that dataset were labelled best and the
remaining workflows rest. Under this choice 45% of the experiments, i.e. (dj , wfi)
pairs, were assigned the label best and the remaining 55% the rest label.

Representing the meta-data. As explained earlier in this section, we used
a combination of dataset and workflow characteristics to describe the meta-
learning examples.

Data descriptors. We took 6 dataset characteristics from the StatLog and
metal projects: class entropy, average feature entropy, average mutual informa-
tion, noise-signal ratio, outlier measure of continuous features, and proportion
of continuous features with outliers. Because our base-level datasets contained
only continuous predictive features, average feature entropy and average mutual
information were computed via a binary split on the range of continuous feature
values, as is done in C4.5 [59]. Detailed descriptions of these data characteristics
are given in [50,41].

In addition, we used 12 geometric data complexity measures from [38]. These
can be grouped into three categories: (1) measures of overlaps in feature values
from different classes (maximum Fisher’s discriminant ratio, volume of overlap
region, maximum feature efficiency); (2) measures of class separability (fraction
of instances on class boundary, ratio of average intra/inter-class distance, and
landmarker-type measures like error rates of 1-NN and a linear classifier on
the dataset; (3) measures of geometry, topology, and density of manifolds (non-
linearity of linear classifier, nonlinearity of 1NN classifier, fraction of points with
retained adherence subsets, and average number of points per dimension). The
definitions of these measures, their rationale and formulas, are given in [38].

Workflow descriptors. Workflow descriptors were constructed in several steps
following the pattern discovery method described in Section 3:
1. We built parse trees (Section 3.1) from the 28 workflows and augmented them

using concept subsumptions from the dmop ontology (Section 3.1); we thus
obtained 456 augmented parse trees such as that shown in Figure 15.
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2. We applied the TreeMiner algorithm with a minimum support of 3% to the
augmented parse trees, thereby extracting 3843 frequent patterns defined as
induced subtrees (Section 3.2).

3. We ordered the extracted patterns in order of decreasing generality, then
pruned this initial pattern set to retain only closed patterns, i.e. patterns
that are maximal with respect to the subsumption ordering of an equivalence
class of patterns having the same support set [4]. The final set contained
1051 closed workflow patterns similar to those in Figure 18. In a nutshell, a
workflow pattern is simply a fragment of an augmented (workflow) parse tree
that has a support above a predefined threshold.

4. Finally, we converted each workflow pattern into a binary feature whose value
equals 1 if the given workflow contains the pattern and 0 otherwise; it is these
boolean features that we call workflow descriptors. Thus each workflow was
represented as a vector of 1051 boolean workflow descriptors. Essentially, what
we did was propositionalize the graph structure of the DM workflows.

4.2 Experimental Results

We defined two meta-mining scenarios. Scenario A relies mainly on the dataset
characteristics to predict performance, while scenario B considers both dataset
and workflow characteristics.

Meta-mining scenario A. In this scenario we create one meta-mining prob-
lem per workflow, producing 28 different problems. We denote by WF this set
of meta-mining problems and by WFi the meta-mining problem associated with
workflow wfi. For each meta-mining problem WFi, the goal is to build a model
that will predict the performance of workflow wfi on some dataset. Under this
formulation each meta-mining problem consists of |D| = 65 learning instances,
one for each of the datasets in Table 1; the features of these instances are the
dataset descriptors. The class label for each dataset dj is either best or rest,
based on the score of workflow wfi on dataset dj as described on page 302.

An issue that arises is how to measure the error for a specific dataset, which is
associated with 28 different predictions. One option is to count an error whenever
the set of workflows that are predicted as best is not a subset of the truly best
workflow set. This error definition is more appropriate for the task at hand,
where the goal is to recommend workflows that are expected to perform best;
it is less important to miss some of them (false negatives) than to recommend
workflows that will actually underperform (false positives). Here we adopted the
simple approach of counting an error whenever the prediction does not match
the class label, regardless of the direction of the error. With this method the
overall error averaged over the 65 datasets is equal to the average error over the
28 different meta-mining problems WFi. We denote this error estimate by

Adalgo
=

1
|WF |

|WF |∑
i=1

(f(x) �= y) =
1
|D|

|D|∑
i=1

(f(x) �= y),
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where f(x) denotes the predicted class, y the actual class, and algo the learning
algorithm that was used to construct the meta-mining models. We use McNe-
mar’s test to estimate the statistical difference between the error of the meta-
learner and that of the default rule, which simply predicts the majority class
for each meta-mining problem WFi. The average error of the default classifier
is denoted by

Addef
=

1
|WF |

|WF |∑
i=1

(cmaj �= y),

where cmaj is the majority class for problem WFi ∈ WF and y is the actual
class or class label.

To generate the meta-mining models we used J48 with the following parame-
ter settings: C=0.25 and M=2. Table 2 shows the error rates of the default rule
(Addef

) and J48 (AdJ48), averaged over the 28 different meta-mining problems,
which is equivalent to the error averaged over the different datasets. The aver-
age error rate of the meta-models using dataset characteristics was lower than
that of the default rule by around 5%, an improvement that was shown to be
statististically significant by McNemar’s test.

Table 2. Average estimated errors for the 28 WFi meta-mining problems in meta-
mining scenario A. A + sign indicates that AdJ48 was significantly better than Addef

,
an = that there was no significant difference and a - that it was significantly worse.

Addef
AdJ48

45.38 40.44 (+)

Meta-mining scenario B. The main limitation of meta-mining scenario A
is that it is not possible to generalize over the learning workflows. There is no
way we can predict the performance of a dm workflow wfi unless we have meta-
mined a model based on training meta-data gathered through systematic exper-
imentation with wfi itself. To address this limitation we introduce the second
meta-mining scenario which exploits both dataset and workflow descriptions, and
provides the means to generalize not only over datasets but also over workflows.

In scenario B, we have a single meta-mining problem in which each instance
corresponds to a base-level data mining experiment where some workflow wfi

is applied to a dataset dj ; the class label is either best or rest, determined with
the same rule as described above. We thus have 65 × 28 = 1820 meta-mining
instances. The description of an instance combines both dataset and workflow
meta-features. This representation makes it possible to predict the performance
of workflows which have not been encountered in previous dm experiments,
provided they are represented with the set of workflow descriptors used in the
predictive meta-model. The quality of performance predictions for such work-
flows clearly depends on how similar they are to the workflows based on which
the meta-model was trained.



Ontology-Based Meta-Mining of Knowledge Discovery Workflows 307

The instances of this meta-mining dataset are not independent, since they
overlap both with respect to the dataset descriptions and the workflow descrip-
tions. Despite this violation of the learning instance independence assumption,
we also applied standard classification algorithms as a first approach. However,
we handled performance evaluation with precaution. We first evaluated predic-
tive performance using leave-one-dataset-out, i.e., we removed all meta-instances
associated with a given dataset di and placed them in the test set. We built a pre-
dictive model from the remaining instances and applied it to the test instances.
In this way we avoided the risk of information leakage incurred in standard
leave-out-out or cross-validation, where both training and test sets are likely to
contain instances (experiments) concerning the same dataset. We will denote the
predictive error estimated in this manner by Bdalgo

, where algo is the classifi-
cation algorithm that was used to construct the meta-mining models. The total
number of models built was equal to the number of datasets. For each dataset
dj , the meta-level training set contained 64 × 28 = 1792 instances and the test
set 28, corresponding to the application of the 28 workflows to dj .

In addition, we investigated the possibility of predicting the performance of
workflows that have not been included in the training set of the meta-mining
model. The evaluation was done as follows: in addition to leave-one-dataset-out,
we also performed leave-one-workflow-out, removing from the training set all
instances of a given workflow. In other words, for each training-test set pair,
we removed all meta-mining instances associated with a specific dataset dj

as well as all instances associated with a specific workflow wfi. We thus did
65 × 28 = 1820 iterations of the train-test separation, where the training set
consisted of 64× 27 = 1728 instances and the test set of the single meta-mining
instance(di, wfj , label). We denote the error thus estimated by Bd,wfalgo

.

Table 3. BdJ48 and Bd,wfJ48 estimated errors, meta-mining scenario B. A + sign
indicates that Bd|d,wfalgo

was significantly better than Addef
, an = that there was no

significant difference and a - that it was significantly worse. Column 2 shows that the
meta-miner obtains significantly better results than the default by using both dataset
and workflow descriptors. Column 3 gives the results in a more stringent scenario
involving workflows never encountered in previous domain-level experiments.

Addef
BdJ48 Bd,wfJ48

45.38 38.24 (+) 42.25 (=)

Table 3 gives the estimated errors for meta-mining scenario B, in which the
meta-models were also built using J48 with the same parameters as in scenario
A, but this time using both dataset and workflow characteristics. McNemar’s
test was also used to compare their performance against the default rule. Col-
umn 2 shows the error rate using leave-one-dataset-out error estimation (BdJ48),
which is significantly lower than that of the default rule, but more importantly,
also lower than Adj48 (Table 2), the error rate of the meta-model built using
dataset characteristics alone. This provides evidence of the discriminatory power
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of the frequent patterns discovered in the dm workflows and used to build the
meta-models.

Column 3 shows the error rate of the meta-model built using the com-
bined leave-one-out-dataset/leave-one-workflow-out error estimation procedure
(Bd,wfJ48), which was meant to test the ability of the meta-model to predict
the performance of completely new workflows. The estimated error rate is again
lower than the baseline error, though not significantly. However, it demonstrates
the point that for a new dataset, our approach can predict the performance
of workflows never yet encountered in previous data mining experiments. As a
matter of fact, these workflows can even contain operators that implement algo-
rithms never seen in previous experiments, provided these algorithms have been
described in dmop.

4.3 Discussion

To gain a bit of insight into the kind of meta-model built by J48 using dataset
and workflow meta-features, we reran mining scenario B on the full dataset to
derive the decision tree to be deployed on new (dataset, workflow) examples. The
result was a complex decision tree with 56 internal nodes (meta-feature tests),
but a close analysis of a few top levels proved instructive.

The top two nodes test the dataset characteristic intraInter, or intra-interclass
nearest neighbor (NN) distance [38]. This is a measure of class separability,
computed as the ratio of intra (average distance between each data point and its
nearest-hit, i.e. its NN from the same class) to inter (average distance between
each data point and its nearest-miss, i.e. its NN from a different class):

intraInter=

(
1
N

N∑
i=1

d(xi, nearestHit(xi)

)
/

(
1
N

N∑
i=1

d(xi, nearestMiss(xi)

)
.

As shown in Fig. 19, the first two tests actually split the intraInter range of values
into 3 intervals. At one extreme, intraInter > 0.99 indicates a difficult problem
where data points from different classes are almost as close as points from the
same class; in this case, the meta-model predicts the class REST. At the other ex-
treme, the distance of a data point to members of a different class is almost twice
its distance to members of its class (intraInter ≤ 0.54,); in such cases where
classes are neatly separated, the prediction is BEST. Between these two extremes,
other tests are needed; the next meta-feature tested is ptsPerDim = N/D,
where N is the number of data points and D the dimensionality or number of fea-
tures. The threshold of 0.0008 discriminates between extremely high-dimensional
datasets which contain less than 0.0008 instances per feature, or equivalently,
more than 1300 features for 1 instance (right branch) and datasets with lower
D:N ratio (left branch). We omit the right branch, which grows to a depth of more
than 20 levels; in the left branch, by contrast, tests on 2 workflow descriptors
and 1 dataset descriptor suffice to classify the remaining instances. The workflow
descriptor statBasedFeatureWeightingAlgorithm designates a class of feature weight-
ing algorithms that weight individual features by computing statistics such as
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ds:intraInter

ds:intraInter REST

BEST

no

BEST

ds:adherence

BEST REST

<= 0.54

<= 0.99 > 0.99

> 0.54

yes

hiBias hiVariance

<= 0.26 > 0.26

<=0.0008 > 0.0008

wf:statBasedFWA

wf:bvarCMA

BEST

. . .

ds:ptsPerDim

Fig. 19. Top 6 levels of the meta-mined J48 workflow performance predictor based on
dataset and workflow characteristics

χ2, F-Ratio, or Pearson’s correlation coefficient. Workflows that do not use such
weighting algorithms (e.g., multivariate algorithms, or univariate methods that
use entropy-based weights) are classified as BEST. Among workflows that rely on
such statistics to weight features, only those that also use high-bias classification
modelling algorithms (e.g. linear discriminants, Naive Bayes) will be predicted
to have BEST performance. High-variance algorithms will be classified as BEST
only if they are applied to datasets with adherence < 0.26. This feature denotes
the fraction of data points with maximal adherence subset retained [38]. Intu-
itively, an adherence subset can be imagined as a ball that is fit around each
data point and allowed to grow, covering other data points and merging with
other balls, until it hits a data point from a different class. With complex bound-
aries or highly interleaved classes, the fraction of points with retained (i.e. not
merged) adherence subsets will be large. In the learned meta-decision tree, ad-
herence should not be greater than 0.26 for high-variance classification learners
to perform BEST.

To summarize, the meta-decision tree described above naturally blends data
and workflow characteristics to predict the performance of a candidate work-
flow on a given dataset. In the vicinity of the root, J48’s built-in feature selec-
tion mechanism picked up 3 descriptors of data complexity (class separability,
dimensionality, and boundary complexity) and 2 workflow descriptors (use of
univariate statistics-based feature scores, bias-variance profile of learning algo-
rithm/operator used). Although data descriptors outnumber workflow descrip-
tors in the subtree illustrated in Figure 19, the distribution is remarkably bal-
anced over the whole tree, where 28 of the 56 internal nodes test workflow fea-
tures. However, most of the workflow features used correspond to simple patterns
that express a constraint on a single data mining operator. Only two nodes test
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a sequence comprising a feature weighting/selection operator and a classification
operator. We expect more complex patterns to appear when we feed the meta-
learner with workflows from data mining experiments with multi-step data pro-
cessing. Finally, as mentioned above, the right subtree below ptsPerDim (replaced
by ". . ." in the figure), which corresponds to datasets with more than 1300 fea-
tures per data point, is considerably more complex; worth noting, however, is the
recurrence of the workflow pattern that contains "high-dimensionality tolerant
classification modelling algorithm" in branches that lead to a BEST leaf.

5 Conclusion

In this chapter, we proposed a semantic meta-mining approach that contrasts
with standard meta-learning in several respects. First, the traditional meta-
learning focus on a single task or operator has been replaced by a broader per-
spective on the full knowledge discovery process. Next, we introduced a revised
Rice model that grounds algorithm selection on both data and algorithm charac-
teristics. We operationalized this revised model while mining workflows viewed
as compositions of (implemented) algorithms, and performed workflow perfor-
mance prediction based on both dataset and workflow characteristics. In two
distinct meta-mining scenarios, models built using data and workflow character-
istics outperformed those based on data characteristics alone, and meta-mined
workflow patterns proved discriminatory even for algorithms and workflows not
encountered in previous experiments. These experimental results show that the
data mining semantics and expertise derived from the dmop ontology imparts
new generalization power to workflow meta-mining.

Though promising, these results can definitely be improved. Performance pre-
diction for DM workflows is still in its infancy, and we have done no more than
provide a proof of concept. We certainly need more base-level experiments and
more workflows in order to improve the accuracy of learned meta-models. We
also need to investigate more thoroughly the different dataset characteristics that
have been used in previous meta-learning efforts. Above all, we need more refined
strategies for exploring the the joint space of dataset characteristics and work-
flow characteristics. A simple approach could be to build a model in two stages:
first zoom in on the datasets and explore clusters or neighborhoods of datasets
with similar characteristics; then within each neighborhood, identify the work-
flow characteristics that entail good predictive performance. Essentially, what
we are trying to solve is a matching problem: the goal is to find the appropri-
ate association of workflow and dataset characteristics, where appropriateness
is defined in terms of predictive performance. One way to address this problem
is to use collaborative filtering approaches that are also able to account for the
properties of the matched objects.
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Abstract. Meta-learning has many aspects, but its final goal is to discover
in an automatic way many interesting models for a given data. Our early at-
tempts in this area involved heterogeneous learning systems combined with a
complexity-guided search for optimal models, performed within the framework
of (dis)similarity based methods to discover “knowledge granules”. This ap-
proach, inspired by neurocognitive mechanisms of information processing in the
brain, is generalized here to learning based on parallel chains of transformations
that extract useful information granules and use it as additional features. Various
types of transformations that generate hidden features are analyzed and meth-
ods to generate them are discussed. They include restricted random projections,
optimization of these features using projection pursuit methods, similarity-based
and general kernel-based features, conditionally defined features, features derived
from partial successes of various learning algorithms, and using the whole learn-
ing models as new features. In the enhanced feature space the goal of learning
is to create image of the input data that can be directly handled by relatively
simple decision processes. The focus is on hierarchical methods for generation
of information, starting from new support features that are discovered by differ-
ent types of data models created on similar tasks and successively building more
complex features on the enhanced feature spaces. Resulting algorithms facilitate
deep learning, and also enable understanding of structures present in the data by
visualization of the results of data transformations and by creating logical, fuzzy
and prototype-based rules based on new features. Relations to various machine-
learning approaches, comparison of results, and neurocognitive inspirations for
meta-learning are discussed.

Keywords: Machine learning, meta-learning, feature extraction, data under-
standing.

1 Introduction: Neurocognitive Inspirations for Meta-Learning

Brains are still far better in solving many complex problems requiring signal analy-
sis than computational models. Already in 1855 H. Spencer in the book “Principles
of Psychology” discussed associative basis of intelligence, similarity and dissimilar-
ity, relations between physical events, “psychical changes”, and activity of brain parts
(early history of connectionism is described in [1]). Why are brains so good in com-
plex signal processing tasks, while machine learning is so poor, despite development of
sophisticated statistical, neural network and other biologically-inspired computational
intelligence (CI) algorithms?

N. Jankowski et al. (Eds.): Meta-Learning in Computational Intelligence, SCI 358, pp. 317–358.
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Artificial neural networks (ANNs) drew inspiration from neural information pro-
cessing at single neuron level, initially treating neurons as threshold logic devices, later
adding graded response (sigmoidal) neurons [2] and finally creating detailed spiking
neural models that are of interest mainly to people in computational neuroscience [3].
Attempts to understand microcircuits and draw inspirations from functions of whole
neocortical columns have so far not been too successful. The Blue Brain Project [4]
created biologically accurate simulation of neocortical columns, but the project did
not provide any general principles how these columns operate. Computational neuro-
science is very important to understand details of neural functions, but may not be the
shortest way to computational intelligence. Situation in computational quantum physics
and chemistry is analogous: despite detailed simulations of molecular properties little
knowledge useful for conceptual thinking has been generated.

Neurocognitive inspirations for CI algorithms based on general understanding of
brain functions may be quite useful. Intelligent systems should have goals, select ap-
propriate data, extract information from data, create percepts and reason using informa-
tion derived from them. Goal setting may be a hierarchical process, with many subgoals
forming a plan of action or solution to a problem. Humans are very flexible in finding
alternative solutions, but current CI methods are focused on searching for a single best
solutions. Brains search for alternative solutions recruiting many specialized modules,
some of which are used only in very unusual situations. A single neocortical column
provides many types of microcircuits that respond in a qualitatively different way to the
incoming signals [5]. Other cortical columns may combine these responses in a hierar-
chical way creating complex hidden features based on information granules extracted
from all tasks that may benefit from such information. General principles, such as com-
plementarity of information processed by parallel interacting streams with hierarchical
organization are quite useful [6]. Neuropsychological models of decision making as-
sume that noisy stimulus information from multiple parallel streams is accumulated
until sufficient information is obtained to make reliable response [7]. Decisions may be
made if sufficient number of features extracted by information filters provide reliable
information.

Neurocognitive principles provide an interesting perspective on recent activity in
machine learning and computational intelligence. In essence, learning may be viewed
as a composition of transformations, with parallel streams that discover basic features
in the data, and recursively combine them in new parallel streams of higher-order fea-
tures, including high-level features derived from similarity to memorized prototypes or
categories at some abstract level. In the space of such features knowledge is transferred
between different tasks and used in solving problems that require sequential reason-
ing. Neurocognitive inspirations provide a new perspective on: Liquid State Machines
[5], ”reservoir computing” [8], deep learning architectures [9], deep belief networks
[10], kernel methods [11], boosting methods that use week classifiers [12], ensemble
learning [13, 14], various meta-learning approaches [15], regularization procedures in
feedforward neural networks, and many other machine learning areas.

The key to understanding general intelligence may lie in specific information filters
that make learning possible. Such filters have been developed slowly by the evolu-
tionary processes. Integrative chunking processes [16] combine this information into
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higher-level mental representations. Filters based on microcircuits discover phonemes,
syllables, words in the auditory stream (with even more complex hierarchy in the vi-
sual stream), lines and edges, while chunking links sequences of lower level patterns
into single higher-level patterns, discovering associations, motifs and elementary ob-
jects. Meta-learning tries to reach this level of general intelligence providing additional
level of control to search for composition of various transformations, including whole
specialized learning modules, that “break and conquer” difficult tasks into manageable
subproblems. The great advantage of Lisp programming is that the program may mod-
ify itself. There are no examples of CI programs that could adjust themselves in a deeper
way, beyond parameter optimization, to the problem analyzed. Constructive algorithms
that add new transformations as nodes in a graphic model are a step in this direction.

Computational intelligence tries to create universal learning systems, but biological
organisms frequently show patterns of innate behavior that are useful only in rare, quite
specific situations. Models that are not working well on all data, but work fine in some
specific cases should still be useful. There is “no free lunch” [17], no single system may
reach the best results for all possible distributions of data. Therefore instead of a direct
attempt to solve all problems with one algorithm, a good strategy is to transform them
into one of many formulations that can be handled by selected decision models. This is
possible only if relevant information that depends on the set goal is extracted from the
input data stream and is made available for decision processes. If the goal is to under-
stand data (making comprehensible model of data), algorithms that extract interesting
features from raw data and combine them into rules, find interesting prototypes in the
data or provide interesting visualizations of data should be preferred. A lot of knowl-
edge about reliability of data samples, possible outliers, suspected cases, relative costs
of features or their redundancies is usually ignored as there is no simple way to use it
in the CI programs. Such information is needed to set the meta-learning goals.

Many meta-learning techniques have recently been developed to deal with the prob-
lem of model selection [15, 18]. Most of them search for optimal model characterizing
a given problem by some meta-features (e.g. statistical properties, landmarking, model-
based characterization), and by referring to some meta-knowledge gained earlier. For
a given data one can use the classifier that gave the best result on a similar dataset in
the StatLog Project [19]. However, choosing good meta-features is not a trivial issue
as most features do not characterize the complexity of data distributions. In addition
the space of possible solutions generated by this approach is bounded to already known
types of algorithms. The challenge is to create flexible systems that can extract relevant
information and reconfigure themselves finding many interesting solutions for a given
task. Instead of a single learning algorithm designed to solve specialized problem, pri-
orities are set to define what makes an interesting solution, and a search for configura-
tions of computational modules that automatically create algorithms on demand should
be performed. This search in the space of all possible models should be constrained
by user priorities and should be guided by experience with solving problems of simi-
lar nature, experience that defines “patterns of algorithm behavior” in problem solving.
Understanding visual or auditory scenes is based on experience and does not seem to
require much creativity, even simple animals are better at it than artificial systems. With
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no prior knowledge about a given problem finding an optimal sequence of transforma-
tions may not be possible.

Meta-learning based on these ideas requires several components:

– specific filters extracting relevant information from raw data, creating useful sup-
port features;

– various compositions of transformations that create higher-order features analyzing
patterns in enhanced feature spaces;

– models of decision processes based on these high-order features;
– intelligent organization of search that discovers new models of decision processes,

learning from previous attempts.

At the meta-level it may not be important that a specific combination of features
proved to be successful in some task, but it is important that a specific transformation
of a subset of features was once useful, or that distribution of patterns in the feature
space had some characteristics that may be described by some specific data model and
is easy to adapt to new data. Such information allows for generalization of knowledge
at the level of search patterns for a new composition of transformations, facilitating
transfer of knowledge between different tasks. Not much is known about the use of
heuristic knowledge to guide the search for interesting models and our initial attempts
to meta-learning, based on the similarity framework [20, 21] used only simple greedy
search techniques. The Metal project [22] tried to collect information about general data
characteristics and correlate it with the methods that performed well on a similar data.
A system recommending classification methods has been built using this principle, but
it works well only in a rather simple cases.

This paper is focused on generation of new features that provide good foundation for
meta-learning, creating information on which search processes composing appropriate
transformations may operate. The raw features given in the dataset description are used
to create a large set of enhanced or hidden features. The topic of feature generation has
received recently more attention in analysis of sequences and images, where graphi-
cal models known as Conditional Random Fields became popular [23], generating for
natural text analysis sometimes millions of low-level features [24]. Attempts at meta-
learning on the ensemble level lead to very rough granularity of the existing models
and knowledge [25], thus exploring only a small subspace of all possible models, as
it is done in the multistrategy learning [26]. Focusing on generation of new features
leads to models that have fine granularity of the basic building blocks and thus are more
flexible. We have partially addressed this problem in the work on heterogeneous sys-
tems [27–34]. Here various types of potentially useful features are analyzed, including
higher-order features. Visualization of the image of input data in the enhanced feature
space helps to set the priority for application of models that worked well in the past,
learning how to transfer meta-knowledge about the types of transformations that have
been useful, and transferring this knowledge to new cases.

In the next section various transformations that extract information forming new fea-
tures are analyzed. Section three shows how transformation based learning may bene-
fit from enhanced feature spaces, how to define goals of learning and how to transfer
knowledge between learning tasks. Section four shows a few lessons from applying this
line of thinking to real data. The final section contains discussion and conclusions.
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2 Extracting Features for Meta-Learning

Brains do not attempt to recognize all objects in the same feature space. Even within
the same sensory modality a small subset of complex features is selected, allowing to
distinguish one class of objects from another. While the initial receptive fields react to
relatively simple information higher order invariant features are extracted from signals
as a result of hierarchical processing of multiple streams of information. Object recog-
nition or category assignment by the brain is probably based on evaluation of similarity
to memorized prototypes of objects using a few characteristic features [35], but for dif-
ferent classes of objects these features may be of quite different type, i.e. they are class
specific. Using different complex features in different regions of the input space may
drastically simplify categorization problems. This is possible in hierarchical learning
models, graphical models, or using conditionally defined features (see section 2.8).

Almost all adaptive learning systems are homogeneous, based on elements extract-
ing information of the same type. Multilayer Perceptron (MLP) neural networks use
nodes that partition the input space by hyperplanes. Radial Basis Function networks
based on localized functions frequently use nodes that provide spherical or ellipsoidal
decision borders [36]. Similarity-based methods use the same distance function for each
reference vector, decision trees use simple tests based on thresholds or subsets of val-
ues creating hyperplanes. Support Vector Machines use kernels globally optimized for
a given dataset [37]. This cannot be the best inductive bias for all data, frequently
requiring large number of processing elements even in cases when simple solutions
exist. The problem has been addressed by development of various heterogenous algo-
rithms [31] for neural networks [27–29],neurofuzzy systems [30], decision trees [32]
and similarity-based systems [33, 34, 38, 39] and multiple kernel learning methods
[40]. Class-specific high order features emerge naturally in hierarchical systems, such
as decision trees or rule-based systems [41, 42], where different rules or branches of the
tree use different features (see [43, 44]).

The focus of neural network community has traditionally been on learning algo-
rithms and network architectures, but it is clear that selection of neural transfer func-
tions determines the speed of convergence in approximation and classification problems
[27, 45, 46]. The famous n-bit parity problem is trivially solved using a periodic func-
tion cos(ω

∑
i bi) with a single parameter ω and projection of the bit strings on weight

vector with identical values W = [1, 1, ..1], while the multilayer perceptron (MLP)
networks need O(n2) parameters and have great difficulty to learn such functions [47].
Neural networks are non-parametric universal approximators but the ability to learn re-
quires flexible “brain modules”, or transfer functions that are appropriately biased for
the problem being solved. Universal learning methods should be non-parametric but
they may be heterogeneous.

Initial feature space for a set of objects O is defined by direct observations, mea-
surements, or estimations of similarity to other objects, creating the vector of raw input
data 0X(O) = X(O). These vectors may have different length and in general some
structure descriptors, grouping features of the same type. Learning from such data is
done by a series of transformations that generate new, higher order features. Several
types of transformations of input vectors should be considered: component, selector,
linear combinations and non-linear functions. Component transformations, frequently
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used in fuzzy modeling [48], work on each input feature separately, scaling, shifting,
thresholding, or windowing raw features. Each raw feature may give rise to several new
features suitable for calculations of distances, scalar products, membership functions
and non-linear combinations at the next stage. Selector transformations define subsets
of vectors or subsets of features using various criteria for information selection, dis-
tribution of feature values and class labels, or similarity to the known cases (nearest
neighbors). Non-linear functions may serve as kernels or as neural transfer functions
[27]. These elementary transformations are conveniently presented in a network form.

Initial transformations T1 of raw data should enhance information related to the
learning goals carried by new features. At this stage combining small subsets of fea-
tures using Hebbian learning based on correlations is frequently most useful. A new
dataset 1X = T1(0X) forms an image of the original data in the space spanned by a
new set of features. Depending on the data and goals of learning, this space may have
dimensionality that is smaller or larger than the original data. The second transforma-
tion 2X = T2(1X) usually extracts multidimensional information from pre-processed
features 1X. This requires an estimation which of the possible transformations at the
T1 level may extract information that will be useful for specific T2 transformations.
Many aspects can be taken into account defining such transformations, as some types
of features are not appropriate for some learning models and optimization procedures.
For example, binary features may not work well with gradient based optimization tech-
niques, and standardization may not help if rule-based solutions are desired. Intelligent
search procedures in meta-learning schemes should take such facts into account. Sub-
sequent transformations may use T2 as well as T1 and the raw features. The process is
repeated until the final transformation is made, aimed either at separation of the data, or
at mapping to a specific structures that can be easily recognized by available decision
algorithms. Higher-order features created after a series of k transformations kXi should
also be treated in the same way as raw features. All features influence the geometry of
decision regions; this perspective helps to understand their advantages and limitations.
All these transformations can be presented in a graphical form. Meta-learning needs
also to consider computational costs of different transformations.

2.1 Extracting Information from Single Features

Preprocessing may critically influence convergence of learning algorithms and con-
struction of the final data models. This is especially true in meta-learning, as the per-
formance of various methods if facilitated by different transformations, and it may be
worthwhile to apply many transformations to extract relevant information from each
feature. Raw input features may contain useful information, but not all algorithms in-
clude preprocessing filters to access it easily. How are features 1Xij = T1j(0Xi), cre-
ated from raw features 0Xi applying transformation T1j , used by the next level of trans-
formations? They are either used in an additive way in linear combinations for weighted
products, or in distance/similarity calculation, or in multiplicative way in probability es-
timation, or as a logical condition in rules or decision trees with suitable threshold for
its value. Methods that compute distances or scalar products benefit from normalization
or standardization of feature values. Using logarithmic, sigmoidal, exponential, poly-
nomial and other simple functions to make density of points in one dimension more
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uniform may sometimes help to circumvent problems that require multiresolution al-
gorithms. Standardization is relevant to additive use of features in distance calculation
(nearest neighbor methods, most kernel methods, RBF networks), it also helps to ini-
tialize weights in linear combinations (linear discrimination, MLP), but is not needed
for logical rules/decision trees.

Fuzzy and neurofuzzy systems usually include a “fuzzification step”, defining for
each feature several localized membership functions μk(Xi) that act as receptive fields,
filtering out the response outside the range of significant values of the membership
functions. These functions are frequently set in an arbitrary way, covering the whole
range of feature values with several membership functions that have triangular, Gaus-
sian or similar shapes. This is not the best way to extract information from single fea-
tures [41]. Filters that work as receptive fields separate subsets or ranges of values
that should be correlated with class distribution [49], “perceiving” subsets or inter-
vals where one of the classes dominate. If the correlation of feature values in some
interval [Xia, Xib], or a subset of values with some target output is strong membership
function μab(Xi) covering these values is useful. This implies that it is not necessary
to replace all input features by their fuzzified versions. Class-conditional probabilities
P(C|Xi), as computed by Naive Bayes algorithms, may be used to identify ranges of
Xi feature values where a single class dominates, providing optimal membership func-
tions μk(Xi) = P(C|Xi)/P(Xi). Negative information, i.e. information about the
absence of some classes in certain range of feature values, should also be segmented:
if P(Ck|Xi) < ε in some interval [Xia, Xib] then a derived feature Hikab(Xi), where
H(·) is a window-type function, carries valuable information that higher order trans-
formations are able to use. Eliminators may sometimes be more useful than classifiers
[50]. Projecting each feature value Xi on these receptive fields μk increases the dimen-
sionality of the original data, increasing a chance of finding simple models of the data
in the enhanced space.

2.2 Binary Features

Binary features Bi are the simplest, indicating presence or absence of some observa-
tions. They may also be created dividing nominal features into two subsets, or creating
subintervals of real features {Xi}. Using filter methods [49], or such algorithms as
1R [51] or Quality of Projected Clusters [52], intervals of real feature values that are
correlated with the targets may be selected and presented as binary features. From ge-
ometrical perspective binary feature is a label distinguishing two subspaces, projecting
all vectors in each subspace on a point 0 or 1 on the coordinate line. The vector of n
such features corresponds to all 2n vertices of the hypercube.

Feature values are usually defined globally, for all available data. Some features are
useful only locally in specific context. From geometrical perspective they are projec-
tions of vectors that belong to subspaces where specific conditions are met, and should
remain undefined for all other vectors. Such conditionally defined features frequently
result from questionnaires: if the answer to the last question was yes, then give addi-
tional information. In this case for each value Bi = 0 and Bi = 1 subspaces have
different dimensionality. The presence of such features is incorporated in a natural way
in graphical models [53], such as Conditional Random Fields [23], but the inference
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process is then more difficult than using the flat data where standard classification tech-
niques are used. Enhancing the feature space by adding conditionally defined features
may not be so elegant as using the full power of graphical techniques but can go a long
way towards improving the results.

Conditionally defined binary features may be obtained by imposing various restric-
tions on vector subspaces used for projections. Instead of using directly the raw fea-
ture Bi conditions Bi = T ∧ LTi(X), and Bi = F ∧ LFi(X) are added, where
LT (X), LF (X) are logical functions defining the restrictions using feature vector X.
For example, other binary features may create complexes LT = B2 ∧ B3... ∧ Bk that
help to distinguish interesting regions more precisely. Such conditional binary features
are created by branch segments in a typical decision tree, for example if one of the path
at the two top levels is X1 < t1 ∧ X2 ≥ t2, then this defines a subspace containing all
vectors for which this condition is true, and in which the third and higher level features
are defined.

Such features have not been considered in most learning models, but for problems
with inherent logical structure decision trees and logical rules have appropriate bias
[41, 42] and thus are a good source for generation of conditionally defined binary fea-
tures. Similar considerations may be done for nominal features that may sometimes be
grouped into larger subsets, and for each value restrictions on their projections applied.

2.3 Real-Valued Features

From geometrical perspective the real-valued input features acquired from various tests
and measurements on a set of objects are a projection of some property on a single line.
Enhancement of local contrast is very important in natural perception. Some properties
directly relevant to the learning task may increase their usefulness after transformation
by a non-linear sigmoidal function σ(βXi − ti). Slopes β and thresholds ti may be
individually optimized using mutual information or other relevance measures indepen-
dently for each feature.

Single features may show interesting patterns of p(C|X) distributions, for example
a periodic distribution, or k pure clusters. Projections on a line that show k-separable
data distributions are very useful for learning complex Boolean functions. For n-bit
parity problem n + 1 separate clusters may be distinguished in projections on the long
diagonal, forming useful new features. A single large cluster of pure values is worth
turning into a new feature. Such features are generated by applying bicentral functions
(localized window-type functions) to original features [52], for example Zi = σ(Xi −
ai) − σ(Xi − bi), where ai > bi. Changing σ into a step function will lead to a binary
features, filtering vectors for which logical condition Xi ∈ [ai, bi] is true. Soft σ creates
window-like membership functions, but may also be used to create higher-dimensional
features, for example Z12 = σ(t1 − X1)σ(X2 − t2).

Providing diverse receptive fields for sampling the data separately in each dimen-
sion is of course not always sufficient, as two or higher-dimensional receptive fields
are necessary in some applications, for example in image or signal processing filters,
such as wavelets. For real-valued features simplest constraints are made by products of
intervals

∏
i[r

−
i , r+

i ], or product of bicentral functions defining hyperboxes in which
projected vectors should lie. Other ways to restrict subspaces used for projection may
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be considered, for example taking only vectors that are in a cylindrical area surround-
ing the X1 coordinate Z1d = σ(X1 − t1)σ(d− ||X||−1), where ||X||−1 norm excludes
X1 feature. The point here is that transformed features should label different regions of
feature space simplifying the analysis of data in these regions.

2.4 Linear Projections

Groups of several correlated features may be replaced by a single combination perform-
ing principal component analysis (PCA) restricted to small subspaces. To decide which
groups should be combined standardized Pearson’s linear correlation is calculated:

rij = 1 − |Cij |
σiσj

∈ [−1, +1] (1)

where the covariance matrix is:

Cij =
1

n − 1

n∑
k=1

(
X

(k)
i − X̄i

)(
X

(k)
j − X̄j

)
; i, j = 1 · · ·d (2)

Correlation coefficients may be clustered using dendrogram or other techniques. Lin-
ear combinations of strongly correlated features allow not only for dimensionality re-
duction, but also for creation of features at different scales, from a combination of a
few features, to a global PCA combinations of all features. This approach may help to
discover hierarchical sets of features that are useful in problems requiring multiscale
analysis. Another way to obtain features for multiscale problems is to do clusterization
in the input data space and make local PCA within the clusters to find features that are
most useful locally in various areas of space.

Exploratory Projection Pursuit Networks (EPPNs) [54, 55] is a general technique that
may be used to define transformations creating new features. Quadratic cost functions
used for optimization of linear transformations may lead to formulation of the problem
in terms of linear equations, but most cost functions or optimization criteria are non-
linear even for linear transformations. A few unsupervised transformations are listed
below:

– Principal Component Analysis (PCA) in its many variants provides features that
correspond to feature space directions with the highest variance [17, 56, 57].

– Independent Component Analysis provides features that are statistically indepen-
dent [58, 59].

– Classical scaling, or linear transformation embedding input vectors in a space where
distances are preserved [60].

– Factor analysis, computing common and unique factors.

Many supervised transformations may be used to determine coefficients for combi-
nation of input features, as listed below.

– Any measure of dependency between class and feature value distributions, such as
the Pearson’s correlation coefficient, χ2, separability criterion [61],
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– Information-based measures [49], such as the mutual information between classes
and new features [62], Symmetric Uncertainty Coefficient, or Kullback-Leibler
divergence.

– Linear Discriminatory Analysis (LDA), with each feature based on orthogonal LDA
direction obtained by one of the numerous LDA algorithms [17, 56, 57], including
linear SVM algorithms.

– Fisher Discriminatory Analysis (FDA), with each node computing canonical com-
ponent using one of many FDA algorithms [56, 63].

– Linear factor analysis, computing common and unique factors from data [64].
– Canonical correlation analysis [65].
– Localized projections of pure clusters using various projection pursuit indices, such

as the Quality of Projected Clusters [52].
– General projection pursuit transformations [54, 55] provide a framework for various

criteria used in searching for interesting transformations.

Many other transformations of this sort are known and may be used at this stage
in transformation-based systems. The Quality of Projected Clusters (QPC) is a pro-
jection pursuit method that is based on a leave-one-out estimator measuring quality of
clusters projected on W direction. The supervised version of this index is defined as
[52]:

QPC(W) = (3)

∑
X

⎛
⎝A+

∑
Xk∈CX

G
(
WT (X − Xk)

)
− A− ∑

Xk /∈CX

G
(
WT (X − Xk)

)⎞⎠
where G(x) is a function with localized support and maximum for x = 0 (e.g. a Gaus-
sian function), and CX denotes the set of all vectors that have the same label as X.
Parameters A+, A− control influence of each term in Eq. (3). For large value of A−

strong separation between classes is enforced, while increasing A+ impacts mostly
compactness and purity of clusters. Unsupervised version of this index may simply try
to discover projection directions that lead to separated clusters. This index achieves
maximum value for projections on the direction W that group vectors belonging to
the same class into a compact and well separated clusters. Therefore it is suitable for
multi-modal data [47]).

The shape and width of the G(x) function used in E.q. (3) has influence on conver-
gence. For continuous functions G(x) gradient-based methods may be used to maxi-
mize the QPC index. One good choice is an inverse quartic function: G(x) = 1/(1 +
(bx)4), but any bell-shaped function is suitable here. Direct calculation of the QPC
index (3), as in the case of all nearest neighbor methods, requires O(n2) operations,
but fast version, using centers of clusters instead of pairs of vectors, has only O(n)
complexity (Grochowski and Duch, in print). The QPC may be used also (in the same
way as the SVM approach described above) as a base for creation of feature ranking
and feature selection methods. Projection coefficients Wi indicate then significance of
the i-th feature. For noisy and non-informative variables values of associated weights
should decrease to zero during QPC optimization. Local extrema of the QPC index may
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provide useful insight into data structures and may be used in a committee-based ap-
proach that combines different views on the same data. More projections are obtained
repeating procedure in the orthogonalized space to create sequence of unique interesting
projections [52].

Srivastava and Liu [66] analyzed optimal transformations for different applications
presenting elegant geometrical formulation using Stiefel and Grassmann manifolds.
This leads to a family of algorithms that generate orthogonal linear transformations
of features, optimal for specific tasks and specific datasets. PCA seems to be optimal
transformation for image reconstruction under mean-squared error, Fisher discriminant
for classification using linear discrimination, ICA for signal extraction from a mixture
using independence, optimal linear transformation of distances for the nearest neighbor
rule in appearance-based recognition of objects, transformations for optimal general-
ization (maximization of margin), sparse representations of natural images and retrieval
of images from a large database. In all these applications optimal transformations are
different and may be found by optimizing appropriate cost functions. Some of the cost
functions advocated in [66] may be difficult to optimize and it is not yet clear that so-
phisticated techniques based on differential geometry offer significant practical advan-
tages. Simpler learning algorithms based on numerical gradient techniques and system-
atic search algorithms give surprisingly good results and can be applied to optimization
of difficult functions [67].

2.5 Kernel Features

The most popular type of SVM algorithm with localized (usually Gaussian) kernels
[11] suffers from the curse of dimensionality [68]. This is due to the fact that such
algorithms rely on assumption of uniform resolution and local similarity between data
samples. To obtain accurate solution often a large number of training examples used
as support vectors is required. This leads to high cost of computations and complex
models that do not generalize well. Much effort has been devoted to improvements of
the scaling [69, 70], reducing the number of support vectors, [71], and learning multiple
kernels [40]. All these developments are impressive, but there is still room for simpler,
more direct and comprehensible approaches.

In general the higher the dimensionality of the transformed space the greater the
chance that the data may be separated by a hyperplane [36]. One popular way of cre-
ating highly-dimensional representations without increasing computational costs is by
using the kernel trick [11]. Although this problem is usually presented in the dual space
the solution in the primal space is conceptually simpler [70, 72]. Regularized linear dis-
criminant (LDA) solution is found in the new feature space 2X = K(X) = K(1X,X),
mapping X using kernel functions for each training vector. Kernel methods work be-
cause they implicitly provide new, useful features Zi(X) = K(X,Xi) constructed by
taking the support vectors Xi as reference. Linear SVM solutions in the Z kernel feature
space are equivalent to the SVM solutions, as it has been empirically verified [73].

Feature selection techniques may be used to leave only components corresponding
to “support vectors” that provide essential support for classification, for example only
those that are close to the decision borders or those close to the centers of cluster, de-
pending on the type of the problem. Once a new feature is proposed it may be evaluated
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on vectors that are classified at a given stage with low confidence, thus ensuring that
features that are added indeed help to improve the system. Any CI method may be used
in the kernel-based feature space K(X). This is the idea behind Support Feature Ma-
chines [73]. If the dimensionality is large data overfitting is a big danger, therefore only
the simplest and most robust models should be used. SVM solution to use LDA with
margin maximization is certainly a good strategy.

Explicit generation of features based on different similarity measures [39] removes
one of the SVM bottleneck allowing for optimization of resolution in different areas of
the feature space, providing strong non-linearities where they are needed (small disper-
sions in Gaussian functions), and using smooth functions when this is sufficient. This
technique may be called adaptive regularization, in contrast to a simple regulariza-
tion based on minimization of the norm of the weight vector ||W|| used in SVM or
neural networks. Although simple regularization enforces smooth decision borders de-
creasing model complexity it is not able to find the simplest solutions and may easily
miss the fact that a single binary feature contains all information. Generation of kernel
features should therefore proceed from most general, placed far from decision border
(such vectors may be easily identified by looking at the z = W · X distribution for
W = (m1 − m2)/||m1 − m2||, where m1 and m2 denote center points of two
opposite classes), to more specific, with non-zero contribution only close to decision
border. If dispersions are small many vectors far from decision borders have to be used
to create kernel space, otherwise all such vectors, independently of the class, would be
mapped to zero point (origin of the coordinate system). Adding features based on linear
projections will remove the need for support vectors that are far from decision borders.

Kernel features based on radial functions are projections on one radial dimension and
in this sense are similar to the linear projections. However, linear projections are global
and position independent, while radial projections use reference vector K(X,R) =
||X − R|| that allows for focusing on the region close to R. Additional scaling factors
are needed to take account of importance of different features K(X,R;W) = ||W ·
(X−R)||. If Gaussian kernels are used this leads to features of the G(W(X−R)) type.
More sophisticated features are based on Mahalanobis distance calculated for clusters
of vectors located near decision borders (an inexpensive method for rotation of density
functions with d parameters has been introduced in [27]), or flat local fronts using cosine
distance.

There is a whole range of features based on projections on more than one dimen-
sion. Mixed “cylindrical” kernel features that are partially radial and partially linear
may also be considered. Assuming that ||W || = 1 linear projection y = W · X de-
fines one direction in the n-dimensional feature space, and at each point y projections
are made from the remaining n − 1 dimensional subspaces orthogonal to W, such that
||X− yW|| < θ, forming a cylinder in the feature space. In general projections may be
confined to k-dimensional hyperplane and radial dimensions to the (n−k)-dimensional
subspace. Such features have never been systematically analyzed and there are no al-
gorithms aimed at their extraction. They are conditionally defined in a subspace of the
whole feature space, so for some vectors they are not relevant.
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2.6 Other Non-linear Mappings

Linear combinations derived from interesting projection directions may provide low
number of interesting features, but in some applications non-linear processing is essen-
tial. The number of possible transformations in such case is very large. Tensor products
of features are particularly useful, as Pao has already noted introducing functional link
networks [74, 75]. Rational function neural networks [36] in signal processing [76] and
other applications use ratios of polynomial combinations of features; a linear depen-
dence on a ratio y = x1/x2 is not easy to approximate if the two features x1, x2 are
used directly. The challenge is to provide a single framework for systematic selection
and creation of interesting transformations in a meta-learning scheme.

Linear transformations in the kernel space are equivalent to non-linear transforma-
tions in the original feature space. A few non-linear transformations are listed below:

– Kernel versions of linear transformations, including radial and other basis set ex-
pansion methods [11].

– Weighted distance-based transformations, a special case of general kernel transfor-
mations, that use (optimized) reference vectors [39].

– Perceptron nodes based on sigmoidal functions with scalar product or distance-
based activations [77, 78], as in layers of MLP networks, but with targets specified
by some criterion (any criterion used for linear transformations is sufficient).

– Heterogeneous transformations using several types of kernels to capture details at
different resolution [27].

– Heterogeneous nodes based or several type of non-linear functions to achieve mul-
tiresolution transformations [27].

– Nodes implementing fuzzy separable functions, or other fuzzy functions [79].
– Multidimensional scaling (MDS) to reduce dimensionality while preserving

distances [80].

MDS requires costly minimization to map new vectors into reduced space; linear
approximations to multidimensional scaling may be used to provide interesting features
[60]. If highly nonlinear low-dimensional decision borders are needed large number
of neurons should be used in the hidden layer, providing linear projection into high-
dimensional space followed by squashing by the neural transfer functions to normalize
the output from this transformation.

2.7 Adaptive Models as Features

Meta-learning usually leads to several interesting models, as different types of features
and optimization procedures used by the search procedure may create roughly equiv-
alent description of individual models. The output of each model may be treated as a
high-order feature. This reasoning is motivated both from the neurocognitive perspec-
tive, and from the machine learning perspective. Attention mechanisms are used to save
energy and inhibit parts of the neocortex that are not competent in analysis of a given
type of signal. All sensory inputs (except olfactory) travel through the thalamus where
their importance and rough category is estimated. Thalamic nuclei activate only those
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brain areas that may contribute useful information to the analysis of a given type of
signals [81].

Usually new learning methods are developed with the hope that they will be univer-
sally useful. However, evolution has implanted in brains of animals many specialized
behaviors, called instincts. From the machine learning perspective a committee of mod-
els should use diverse individual models specializing in analysis of different regions of
the input space, especially for learning difficult tasks. Individual models are frequently
unstable [82], i.e. quite different models are created as a result of repeated training (if
learning algorithms contains stochastic elements) or if the training set is slightly per-
turbed [83]. The mixture of models allows for approximation of complicated probability
distributions improving stability of individual models. Specialized models that handle
cases for which other models fail should be maintained. In contrast to boosting [12] and
similar procedures [84] explicit information about competence of each model in differ-
ent regions of the feature space should be used. Functions describing these regions of
competence (or incompetence) may be used for regional boosting [85] or for integration
of decisions of individual models [14, 86]. The same may be done with some features
that are useful only in localized regions of space but should not be used in other regions.

In all areas where some feature or the whole model Ml works well the competence
factor should reach F (X; Ml) ≈ 1 and it should decrease to zero in regions where
many errors are made. A Gaussian-like function may be used, F (||X−Ri||; Ml) = 1−
G(||X−Ri||a; σi), where a ≥ 1 coefficient is used to flatten the function, or a simpler
1/ (1 + ||X − Ri||−a) inverse function, or a logistic function 1−σ(a(||X−Ri||−b)),
where a defines its steepness and b the radius where the value drops to 1/2. Multiplying
many factors in the incompetence function of the model may decrease the competence
values, therefore each factor should quickly reach 1 outside the incompetence area. This
is achieved by using steep functions or defining a threshold values above which exactly
1 is taken.

The final decision based on results of all l = 1 . . .m models providing estimation of
probabilities P(Ci|X; Ml) for i = 1 . . .K classes may be done using majority voting,
averaging results of all models, selecting a single model that shows highest confidence
(i.e. gives the largest probability), selecting a subset of models with confidence above
some threshold, or using simple linear combination [13]. In the last case for class Ci

coefficients of linear combination are determined from the least-mean square solution
of:

P(Ci|X; M) =
m∑

l=1

∑
m

Wi,l(X)P(Ci|X; Ml) (4)

=
m∑

l=1

∑
m

Wi,lF (X; Ml)P(Ci|X; Ml)

The incompetence factors simply modify probabilities F (X; Ml)P(Ci|X; Ml) that
are used to set linear equations for all training vectors X, therefore the solution is done
in the same way as before. The final probability of classification is estimated by renor-
malization P(Ci|X; M)/

∑
j P(Cj |X; M). In this case results of each model are used
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as high order feature for local linear combination of results. This approach may also be
justified using neurocognitive inspirations: thalamo-cortical loops control which brain
areas should be strongly activated depending on their predicted competence.

In different regions of the input space (around reference vector R) kernel features
K(X,R) that use weighted distance functions should have zero weights for those in-
put features that are locally irrelevant. Many variants of committee or boosting algo-
rithms with competence are possible [13], focusing on generation of diversified models,
Bayesian framework for dynamic selection of most competent classifier [87], regional
boosting [85], confidence-rated boosting predictions [12], task clustering and gating
approach [88], or stacked generalization [89, 90].

2.8 Summary of the Feature Types

Features are weighted and combined by distance functions, kernels, hidden layers, and
in many other ways, but geometrical perspective shows what kind of information can be
extracted from them. What types of subspaces and hypersurfaces that contained them
are generated? An attempt to categorize different types of features from this perspective,
including conditionally defined features, is shown below. X represents here arbitrary
type of scalar feature, B is binary, N nominal, R continuous real valued, K is general
kernel feature, M are motifs in sequences, and S are signals.

– B1) Binary, equivalent to unrestricted projections on two points.
– B2) Binary, constrained by other binary features, complexes B1∧B2...∧Bk, subsets

of vertices of a cube.
– B3) Binary, projection of subspaces constrained by a distance B = 0 ∧ R1 ∈

[r−1 , r+
1 ]... ∧ Rk ∈ [r−k , r+

k ].
– N1-N3) Nominal features are similar to binary with subsets instead of intervals.
– R1) Real, equivalent to unrestricted orthogonal projections on a line, with thresh-

olds and rescaling.
– R2) Real, orthogonal projections on a line restricted by intervals or soft membership

functions, selecting subspaces orthogonal to the line.
– R3) Real, orthogonal projections with cylindrical constrains restricting distance

from the line.
– R4) Real, any optimized projection pursuit on a line (PCA, ICA, LDA, QPC).
– R5) Real, any projection on a line with periodic or semi-periodic intervals or gen-

eral 1D patterns, or posterior probabilities for each class calculated along this line
p(C|X).

– K1) Kernel features K(X,Ri) with reference vectors Ri, projections on a radial
coordinate creating hyperspheres.

– K2) Kernel features with intervals, membership functions and general patterns on
a radial coordinate.

– K3) General kernel features for similarity estimation of structured objects.
– M1) Motifs, based on correlations between elements and on sequences of discrete

symbols.
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– S1) Signal decompositions and projections on basis functions.
– T1) Other non-linear transformations restricting subspaces in a more complex way,

rational functions, universal transfer functions.

Combinations of different types of features, for example cylindrical constraints with
intervals or semi-periodic functions are also possible. The classification given above is
not very precise and far from complete, but should give an idea what type of decision
borders may be generated by different types of features. Higher-order features may be
build by learning machines using features that have been constructed by earlier trans-
formations. Relevance indices applied to these features, or feature selection methods,
should help to estimate their importance, although some features may be needed for
local representation of information only, so their global relevance may be low [49].

3 Transformation-Based Meta-Learning

A necessary step for meta-learning is to create taxonomy, categorizing and describing
similarities and relations among transformations and facilitate systematic search in the
space of all possible compositions of these transformations. An obvious division is be-
tween transformations optimized locally with well-defined targets, and adaptive trans-
formations that are based on a distal criteria, where the targets are defined globally,
for composition of transformations (as in backpropagation). In the second case inter-
pretation of features implemented by hidden nodes is rather difficult. In the first case
activity of the network nodes implementing fixed transformations has clear interpreta-
tion, and increased complexity of adding new node should be justified by discovery of
new aspects of the data. Local T2 transformations have coefficients calculated directly
from the input data or data after T1 transformation. They may be very useful for initial-
ization of global adaptive transformations, or may be useful to find better solutions of
more complex fixed transformations. For example, multidimensional scaling requires
very difficult minimization and most of the time converges to a better solution if PCA
transformations is performed first.

After initial transformations all data is converted to internal representation kX, form-
ing a new image of the data, distributed in a simpler way than the original image. The
final transformation should be able to extract desired information form this image. If the
final transformation is linear Y = k+1X = Tk+1(kX; kW) parameters kW are either
determined in an iterative procedure simultaneously with all other parameters W from
previous transformations (as in the backpropagation algorithms [36]), or sequentially
determined by calculating the pseudoinverse transformation, as is frequently practiced
in the two-phase RBF learning [91]. Simultaneous adaptation of all parameters (RBF
centers, scaling parameters, output layer weights) in experiments on more demanding
data gives better results.

Three basic strategies to create composition of transformations are:

– Use constructive method adding features based on simple transformations; proceed
as long as increased quality justifies added complexity [29, 92].

– Start from complex transformations and optimize parameters, for example using
flexible neural transfer functions [28, 93], optimizing each transformation before
adding the next one.



Optimal Support Features for Meta-Learning 333

– Use pruning and regularization techniques for large network with nodes based on
simple transformations and global optimization [36].

The last solution is the most popular in neural network community, but there are
many other possibilities. After adding each new feature the image of the data in the ex-
tended feature space is changed and new transformations are created in this space, not
in the original one. For example, adding more transformations with distance-based con-
ditions may add new kernel features and start to build the final transformation assigning
significant weights only to the kernel-based support features. This may either be equiv-
alent to the kernel SVM (for linear output transformations) created by evaluation of
similarity in the original input space, or to the higher-order nearest neighbor methods,
so far little explored in machine learning. From geometrical perspective kernel transfor-
mations are capable of smoothing or flatting decision borders: using support vectors R
that lie close to complex decision border in the input space X a combination of kernel
features W·K(X,R) = const lies close to a hyperplane in the kernel space K. A single
hyperplane after such transformation is frequently sufficient to achieve good separation
of data. This creates similar decision borders to the edited k-NN approach with support
vectors as references, although the final linear model avoids overfitting in a better way.
However, if the data has complex logical structure, with many disjoint clusters from the
same class, this is not an optimal approach.

Geometry of heteroassociative vector transformations, from the input feature space
to the output space, is quite important and leads to transformations that will be very
useful in meta-learning systems, facilitating learning of arbitrary problems. At each
point of the input space relative importance of features may change. One way to imple-
ment this idea [38] is to create local non-symmetric similarity function D(X − Y;X),
smoothly changing between different regions of the input space. For example, this may
be a Minkovsky function D(X − Y;X) =

∑
i si(X)|Xi − Yi| with the scaling factor

that depend on the point X of the input space. Many factors are very small or zero. They
may be calculated for each training vector using local PCA, and interpolated between
the vectors. Local Linear Embedding (LLE) is a popular method of this sort [94] and
many other manifold learning methods have been developed. Alternatively a smooth
mapping may be generated by MLP training or other neural networks to approximate
desired scaling factors.

Prototype rules for data understanding and transformation may be created using ge-
ometrical learning techniques that construct a convex hull encompassing the data, for
example an enclosing polytope, cylinder, a set of ellipsoids or some other surface en-
closing the data points. Although geometrical algorithms may be different than neural or
SVM algorithms, the decision surfaces they provide are similar to those offered by feed-
forward networks. A covering may be generated by a set of balls or ellipsoids following
principal curve, for example using the piecewise linear skeletonization approximation
to principal curves [95]. One algorithm of this type creates a “hypersausage” decision
regions [96]. One-class SVM also provides covering in the kernel space [11].

Kernel methods expand dimensionality of the feature space if the number of samples
is larger than the number of input features (see neurobiological justification of such pro-
jections in [5]). Enlarging the data dimensionality increases the chance to make the data
separable, and this is frequently the goal of this transformation, 2X = T2(1X; 1W).
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Random linear projections of input vectors into a high-dimensional space 2X = L(1X)
are the simplest way to increase dimensionality, with the random matrix L that has more
rows than columns. The final transformation is chosen to be linear Y = T3(2X; 2W) =
2W · 2X, although it may not be the best solution and other classifiers may be used on
the enhanced feature space. This is basically equivalent to random initialization of feed-
forward neural networks with linear transfer functions only. Such methods are used to
start a two-phase RBF learning [91]. For simple data random projections work rather
well [97], but one should always check results of linear discrimination in the original
feature space, as it may not be significantly worse. Many non-random ways to create
interesting features may certainly give better results. It may also be worthwhile to add
pre-processed 1X = T1(X) features to the new features generated by the second trans-
formation 2X = (1X, T2(1X; 1W)), because they are easier to interpret and frequently
contain useful information.

3.1 Redefining the Goal of Learning

Multi-objective optimization problems do not have a single best solution [98]. Usually
data mining systems return just a single best model but if several criteria are optimized
finding a set of Pareto optimal models is a better goal. For example, accuracy should
be maximized, but variance should be minimized, or sensitivity should be maximized
while the false alarm rate should be kept below some threshold. The search process for
optimal models in meta-learning should explore many compositions of transformations
retaining those that are close to the Pareto front. A forest of heterogeneous decision
trees [32] is an example of a multi-objective meta-search in a model space restricted
to decision trees. Heterogeneous trees use different types of rule premises, splitting the
branches not only using individual features, but also using tests based on kernel features,
defined by the weighted distances from the training data vectors. Adding distance-based
conditions with optimal support vectors far from decision borders provides flat spherical
borders that approximate hyperplanes in the border region. The beam search maintains
at each stage k decision trees (search states), ordering them by their accuracy estimated
using cross-validation on the training data [32]. This algorithm has found some of the
simplest and most accurate decision rules that gave different tradeoffs between sensi-
tivity and specificity.

Each data model depends on some specific assumptions about the data distribution
in the input space, and is successfully applicable only to some types of problems. For
example SVM and many other statistical learning methods [11] rely on the assumption
of uniform resolution, local similarity between data samples, and may completely fail
in case of high-dimensional functions that are not sufficiently smooth [68]. In such case
accurate solution may require an extremely large number of training samples that will
be used as reference vectors, leading to high cost of computations and creating complex
models that do not generalize well. To avoid any bias useful “knowledge granules” in
the data should be discovered. Support features created through parallel hierarchical
streams of transformations that discover interesting aspects of data are focused on local
improvements rather than some global goal, such as data separability. The image of
the original data in the enhanced space may have certain characteristic patterns that the
decision processes should learn about. The final transformations should have several
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different biases and the meta-learning search should try to match the best one to the
image of the data. The goal of learning should then focus on creation of one of the
standard types of such images rather than linear separability.

One way to discover what type of structures emerge after data transformations is to
use visualization of the data images in the original feature space and in the enhanced
space [99, 100]. PCA, ICA and QPC projections may show interesting structures in the
data. Multidimensional Scaling (MDS) [80] is a non-linear mapping that tries to faith-
fully display distances between vectors. Also projections based on directions obtained
from linear SVM are useful. The first projection on W1 line for linearly separable
data should give y(X;W1) = W1 · X + θ < 0 for vectors from the first class, and
y(X;W1) > 0 for the second class. The second best direction may then be obtained by
repeating SVM calculations in the space orthogonalized to the W1 direction. This pro-
cess may be repeated to obtain more dimensions. Fisher Discriminant Analysis (FDA)
is another linear discriminant that may be used for visualization [56].

Visualization of transformations in case of difficult logical problems reveals the na-
ture of difficulties and helps to set simpler goals for learning. Consider a parity-like
problem: each vector labeled as even is surrounded by vectors labeled as odd and vice
versa [47]. Localized transformations are not be able to generalize such information but
linear projections may provide interesting views on such data. For n-bit parity linear
projection y = W · X, where W = [1, 1...1], counts the number of 1 bits, producing
alternating clusters with vectors that belong to the odd and even classes. A periodic
function (such as cosine) solves the parity problem using a single parameter, but will
not handle other logical problems. In case of many Boolean functions finding transfor-
mations that lead to the k-separable solutions, with single-vectors from a single class
in intervals [yi, yi+1] along the projection line defines much easier goal than achieving
separability. The whole feature space is divided into parallel slices, orthogonal to the
W line. Such solutions are equivalent to a single prototype Pi in the middle of each
[yi, yi+1] interval, with the nearest neighbor decision rules using Euclidean distance
function. They may also be generated using projections on a radial direction satisfying
K(X,R) = 1 for a ≤ ||X−R|| ≤ b. This kernel feature is zero outside of the spherical
shell between the distance a and b from R. For binary hypercube such features discover
large pure clusters of data.

The number of parameters that fully describes such solution in n-dimensional fea-
ture space is n + k − 1. If these prototypes are not on a single line the nearest neighbor
rule will create Voronoi tessellation of the feature space and if each Voronoi region con-
tains vectors from a single class the solution may be called q-separable, where q is the
lowest number of Voronoi regions that is sufficient to separate the data into pure clus-
ters. This requires qn parameters but depending on the distributions of these regions
simpler solutions may exist. Consider for example a 3 by 3 regular board defined in two
dimensions by 4 lines (two parallel lines in each direction). These lines divide the space
into 9 regions, but instead of 9 prototypes (18 parameters) only 4 lines (12 parameters)
are sufficient. On the other hand describing k hyperspheres in n-dimensional space is
easy if prototypes with radial threshold functions are used, requiring k(n + 1) parame-
ters, while the same data distribution will be very hard to classify using transformations
based on linear projections. Characterization of the complexity of the learning problem
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should thus be done with reference to the types of transformations and the number of
parameters that are needed to describe the solution.

Useful features may be generated capturing frequent correlations of inputs (Hebbian
learning, PCA, ICA, discovering motifs), or searching for clusters of relatively pure data
using linear and radial projections. Visualizing resulting images of data should reveal
what types of methods are most appropriate for further analysis.

3.2 Transfer of Knowledge

According to the “no free lunch” theorem [17] no single adaptive system may reach
the best results for all possible distributions of data. It is therefore worthwhile to look
at what different algorithms may do well and when they fail. Data with simple logi-
cal structure require sharp decision borders provided by decision trees and rule-based
systems [41, 42], but are quite difficult to analyze with statistical or neural algorithms.
SVM will miss simple solution where the best answer is given by a single binary fea-
ture. Frequently data has Gaussian distribution and linear discrimination (linear SVM,
simple MLP networks) provides the best solution. k-NN and SVM in kernelized form
work well when decision borders have complex topology, but fail when sharp decision
borders are needed or when data structure has complex Boolean logic [101]. Neural
networks suffer from similar problems as SVM and will not converge for highly non-
separable problems (in the k-separability sense). New methods are frequently invented
and tested on data that are almost Gaussian-like, and thus are very easy to analyze, so
it is important to assign complexity estimate for different classification problems. Basis
Set Function networks (Radial or Separable) may provide local description but have
problems with simple decision borders creating complex models.

Different adaptive systems have biases that makes them suitable for particular classes
of problems. Discovering this bias and finding an appropriate model is usually done by
tedious experimentations with combinations of pre-processing, filtering and selection,
clusterization, classification or regression and post-processing techniques, combined
with meta-learning procedures based on stacking, boosting, committees and other tech-
niques. The number of possible combinations of different modules in large data mining
packages exceeds now 10 billions, and new modules are still added. With proper con-
trol of search and complexity of generated models [102, 103] automatic composition
of transformations guided by geometrical perspective for creation of features offers an
interesting approach that may overcome the limits of the “no free-lunch” theorem. Uni-
versal learning is an elusive dream that will not be realized without diverse transforma-
tions, specific for each application. Success of meta-search relies on the availability of
specific transformations for image analysis, multimedia streams, signal decomposition,
text analysis, biosequences and many other problems. Finding proper representation of
the problem is more than half of the solution. While these specific problems are not
addressed here it is worthwhile to analyze methods that may be applied to derive useful
features from typical measurements, as found in benchmark databases.

One strategy frequently used by people is to learn directly from others. Although
each individual agent rarely discovers something interesting, in a population of agents
that try different approaches accidental observations are exchanged and, if found useful,
become common know-how. Transfer learning is concerned with learning a number of
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related tasks together. In image, text analysis or robotics many methods have been de-
vised for knowledge transfer. Related machine learning subjects include: learning from
hints [104], lifelong learning [105], multi-task learning [106], cross-domain learning
[107, 108], cross-category learning [109] and self-taught learning [110]. EigenTransfer
algorithm [111] tries to unify various transfer learning ideas representing the target task
by a graph. The task graph has nodes with vectors and labels, connecting the target and
auxiliary data in the same feature space. Eigenvectors of this task graph are used as new
features to transfer knowledge from auxiliary data to help classify target data. Signifi-
cant improvements have been demonstrated in various transfer learning task domains.

Current approaches to transfer learning focus on using additional data to create a
better learning model for a given training data. The same feature space is used and the
same learning algorithm. This type of transfer learning is not suitable for meta-learning.
In the Universal Learning Machine (ULM) algorithm [112] transfer of knowledge be-
tween different algorithms is made by sharing new higher-order features that have been
successful in discovering knowledge granules in one of these algorithms. Decision trees
and rule-based algorithms discovered binary features (B1-B3 type). Real R1-R4 types
of features are discovered by projection pursuit, linear SVM and simple projections on
the line connecting centers of local clusters. Naive Bayes provides p(C|X) posterior
probabilities along these lines. Edited k-NN and kernel methods find good kernel fea-
tures based on similarity. The best features are easily identified using ranking methods.
In the experiments performed using this idea [112] significant improvements almost in
every algorithm has been found by adding a few features from other algorithms. For ex-
ample, on the hypothyroid problem (3 classes, 3772 training cases and 3428 test cases,
15 binary and 6 continuous features) adding two binary features discovered by decision
tree improved test results of SVM with Gaussian kernel from 94.1 to 99.5±0.4%, re-
ducing the number of support vectors and order of magnitude. Naive Bayes algorithm
fails on the original data, reaching only 41.3% accuracy, but in the enhanced space
gives 98.1±0.8%. This data has inherent logical structure that cannot be extracted by
Gaussian kernels or Naive Bayes but is captured by decision rules generated by the
tree. Transfer of knowledge for meta-learning is possible on an abstract level between
different models.

Universal Learning Machines are not restricted to any particular algorithm, trying to
extract and transfer new features to new algorithm, enhancing the pool of all features.
Support Features Machines (SFM) form an alternative to the SVM approach, using lin-
ear discriminant functions defined in such enhanced spaces [73]. For each vector X
there are n input features plus m kernel features Zi(X) = K(X,Xi), i = 1..m. Linear
models in the kernel space are as accurate as the kernel SVM, but creating this space
explicitly allows for more flexibility. Simple solutions are not overlooked if original
features are not discarded. Information granules from other models may be transferred,
and mixing kernels of miscellaneous types and with various parameters allows for mul-
tiresolution in different parts of the input space.

4 Lessons from Illustrative Calculations

For illustration of the ideas presented in previous sections a few datasets with different
characteristics are analyzed below: one artificial binary dataset (Parity), one artificial
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set with nominal features (Monks 1), one microarray gene expression data [113], two
medical datasets (Cleveland Heart Disease and Wisconsin Breast Cancer data), Spam
database derived from texts, Ionosphere data with radar signal patterns. These data can
be downloaded from the UCI Machine Learning Repository [114]. A summary of these
datasets is presented in Tab. 1. Methods described above have been used for visualiza-
tion of transformed images of different types of data to determine what kind of struc-
tures they create.

Table 1. Summary of used datasets

Title #Features #Samples #Samples per class Source
Parity 8 8 256 128 C0 128 C1 artificial
Monks 1 6 124 62 C0 62 C1 [114]
Leukemia 100 72 47 “ALL” 25 “AML” [113]

Heart 13 270 150 “absence” 120 “presence” [114]
Wisconsin 10 683 444 “benign” 239 “malignant” [115]

Spam 57 4601 1813 “spam” 2788 “valid” [114]
Ionopshere 34 351 224 “Type 1” 126 “Type 2” [114]

MDS mappings and PCA, ICA, QPC, SVM projections in the original and in the
enhanced feature spaces are shown using one-dimensional probability distributions and
two-dimensional scatterograms. Analyzing distribution in Figs. 1 – 8 one can determine
which classifier has the best bias and will create the simplest model of a given dataset.
To check if an optimal choice has been made comparison with classification accuracies
for each dataset using various classifiers has been done, in the original as well as in the
reduced one and two-dimensional spaces. The following classifiers have been used:

1. Naive Bayesian Classifier (NBC)
2. k-Nearest Neighbors (kNN)
3. Separability Split Value Tree (SSV) [61]
4. Support Vector Machines with Linear Kernel (SVML)
5. Support Vector Machines with Gaussian Kernel (SVMG)

4.1 Parity

High-dimensional parity problem is very difficult for most classification methods. Many
papers have been published about special neural network models that solve parity prob-
lem. The difficulty is quite clear: linear separation cannot be achieved by simple trans-
formations because this is a k-separable problem (Fig. 1). For n-bit strings it can easily
be separated into n + 1 intervals [47, 101], but learning proper MLP weights to achieve
it is very difficult. MDS does not show any interesting structure here, as all vectors
from one class have their nearest neighbors from the opposite class. Therefore Gaus-
sian RBF networks or kernel methods based on similarity are not able to extract useful
information. PCA and SVM find a very useful projection direction [1, 1..1], but the sec-
ond direction does not help at all. FDA shows significant overlaps for projection on the
first direction.
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Fig. 1. 8-bit parity dataset, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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The QPC index has found two directions that are equally useful. Points that are in
small clusters projected on the first direction belong to a large cluster projected on
the second direction, giving much better chance for correct classification. In fact any
two projections on the longest diagonals are equally useful. This example shows how
visualization may point the way towards perfect solution of a difficult problem even
in situations when most classifiers fail. Complexity of models created on the original
data is high: for example, SVM takes all 256 vectors as support vectors, achieving
results around the base rate (50%). Looking at Fig. 1 one can understand the type of
non-linearity after projections. Meta-learning should discover that the best classifier to
handle such data distribution is:

– any decision tree, after transformation to one dimension by PCA, SVM or two-
dimensions by QPC (offering the most stable solution);

– NBC, in one or two-dimensions, combining the two QPC directions for the most
robust solution, provided that it will use density estimation based on Gaussian mix-
tures or other localized kernels rather than a single Gaussian function;

– kNN on the 1D data reduced by PCA, SVM or QPC, with k=1, although it will
make a small error for the two extreme points.

– SVM with Gaussian kernel works well on one or two-dimensional data reduced by
SVM or QPC projections.

This choice agrees with the results of calculations [100] where the highest accuracy
(99.6 ± 1.2) has been obtained by the SSV classifier on the 2D data transformed by
SVM or QPC method. Results of NBC and kNN are not worse from the statistical point
of view (within one standard deviation). kNN results on the original data with k≤ 15
are always wrong, as all 8 closest neighbors belong to the opposite class. After di-
mensionality reduction kNN with k=1 is sufficient. Another suggestion is to use radial
projections, instead of linear projections. Due to the symmetry of the problem projec-
tion on any radial coordinates centered in one of the vertices will show n + 1 clusters
like projection on the long diagonal.

Visualization in Fig. 1 also suggest that using 2D QPC projected data the nearest
neighbor rule may be easily modified: instead of a fixed number of neighbors for vector
X, take its projections y1, y2 on the two dimensions, and count the number of neighbors
ki(εi) in the largest interval yi ± εi around yi that contain vectors from a single class
only, summing results from both dimensions k1(ε1) + k2(ε2). This new type of the
nearest neighbor rule has not been explored so far.

For problems with inherent complex logic, such as the parity or other Boolean func-
tions [101], a good goal is to create k-separable solutions adding transformations based
on linear or radial projections, and then solution of the problem becomes easy.

4.2 Monks 1

Monks 1 is an artificial dataset containing 124 cases, where 62 samples belong to the
first class, and the remaining 62 to the second. Each sample is described by 6 attributes.
Logical function has been used to create class labels. This is another example of dataset
with inherent logical structure, but this time linear k-separability may not be a good
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Table 2. Average classification accuracy given by 10-fold crossvalidation test for 8-bit parity
problem with reduced features.

# Features NBC kNN SSV SVML SVMG

PCA 1 99.21±1.65 99.20±1.68 (1) 99.21±1.65 (13/7) 39.15±13.47 (256) 99.20±1.68 (256)
PCA 2 99.23±1.62 99.21±1.65 (1) 99.23±1.62 (13/7) 43.36±7.02 (256) 98.83±1.88 (256)
MDS 1 38.35±7.00 43.73±7.44 (4) 47.66±4.69 (1/1) 42.98±5.84 (256) 44.10±8.50 (256)
MDS 2 30.49±13.79 48.46±7.77 (1) 49.20±1.03 (1/1) 43.83±8.72 (256) 43.04±8.91 (256)
FDA 1 75.84±10.63 76.60±7.37 (10) 73.83±6.97 (17/9) 45.73±6.83 (256) 77.76±7.89 (256)
FDA 2 74.56±10.69 99.23±1.62 (1) 96.87±3.54 (35/18) 44.16±5.67 (256) 98.84±1.85 (256)
SVM 1 99.23±1.62 99.61±1.21 (1) 99.23±1.62 (13/7) 54.61±6.36 (256) 99.61±1.21 (9)
SVM 2 99.21±1.65 99.61±1.21 (1) 99.61±1.21 (13/7) 50.29±9.28 (256) 99.61±1.21 (43)
QPC 1 99.20±2.52 99.21±1.65 (1) 99.20±2.52 (13/7) 41.46±9.57 (256) 99.21±1.65 (256)
QPC 2 98.41±2.04 98.44±2.70 (1) 99.61±1.21 (13/7) 43.01±8.21 (256) 98.44±2.70 (24)

ALL 23.38±6.74 1.16±1.88 (10) 49.2±1.03 (1/1) 31.61±8.31 (256) 16.80±22.76 (256)

goal. In Fig. 2 MDS does not show any structure, and PCA, FDA and SVM projections
are also not useful. Only QPC projection shows clear structure of a logical rule. In this
case a good goal for learning is to transform the data creating an image in the extended
feature space that can be easily understood covering it with logical rules.

Table 3 shows that correct solution is achieved only in the two-dimensional QPC
feature space, where only linear SVM fails, all other classifiers can easily handle such
data. Decision tree offers the simplest model in this case although in crossvalidation
small error has been made.

Table 3. Average classification accuracy given by 10-fold crossvalidation test for Monks 1 prob-
lem with reduced features.

# Features NBC kNN SSV SVML SVMG

PCA 1 56.98±14.12 53.97±15.61 (8) 57.94±11.00 (3/2) 63.71±10.68 (98) 58.84±12.08 (102)
PCA 2 54.67±13.93 61.28±17.07 (9) 61.34±11.82 (11/6) 63.71±10.05 (95) 67.17±17.05 (99)
MDS 1 67.94±11.24 69.48±10.83 (8) 68.58±10.44 (3/2) 69.61±11.77 (88) 64.67±10.88 (92)
MDS 2 63.52±16.02 67.75±16.51 (9) 66.98±12.21 (35/18) 64.74±16.52 (103) 62.17±15.47 (104)
FDA 1 72.05±12.03 69.35±8.72 (7) 67.82±9.10 (3/2) 69.93±11.32 (80) 72.37±9.29 (85)
FDA 2 64.48±17.54 69.29±13.70 (9) 68.65±14.74 (3/2) 69.23±10.57 (80) 70.96±10.63 (85)
SVM 1 70.38±10.73 70.12±8.55 (9) 70.32±16.06 (3/2) 71.98±13.14 (78) 72.82±10.20 (77)
SVM 2 71.79±8.78 69.29±10.93 (9) 69.35±9.80 (3/2) 72.75±10.80 (80) 68.65±13.99 (93)
QPC 1 72.56±9.70 81.34±12.49 (3) 82.43±12.22 (47/24) 67.50±13.54 (82) 67.43±17.05 (84)
QPC 2 100±0 100±0 (1) 98.46±3.24 (7/4) 66.92±16.68 (83) 99.16±2.63 (45)

ALL 69.35±16.54 71.15±12.68 (10) 83.26±14.13 (35/18) 65.38±10.75 (83) 78.20±8.65 (87)

4.3 Leukemia

Leukemia contains microarray gene expressions data for two types of leukemia (ALL
and AML), with a total of 47 ALL and 25 AML samples measured with 7129 probes
[113]. Visualization and evaluations of this data is based here on the 100 features with
the highest FDA ranking index.

This data showed a remarkable separation using both one and two-dimensional QPC,
SVM and FDA projections (Fig. 3), showing more interesting data distributions than
MDS or PCA. Choosing one of the three linear transformations (for example the QPC),
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Fig. 2. Monks 1 data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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and projecting original data to the one-dimensional space, SSV decision tree, kNN,
NBC and SVM classifiers, give 100% accuracy in the 10CV tests (Table 4). All these
models are very simple, with k=1 for kNN, or decision trees with 3 nodes, or only
2 support vectors for linear SVM. Results on the whole data are worse than on these
projected features. Results are slightly worse (1-2 errors) if features are selected and
dimensionality reduced separately withing each crossvalidation fold. This shows that
although the data is separable it may not be easy to find the best solution on the subset
of such data.

In this case maximization of margin is a good guiding principle and dimensionality
reduction is a very important factor, combining the activity of many genes into a single
profile. As the projection coefficients are linear the importance of each gene in this
profile may be easily evaluated. The data is very small and thus one should not expect
that all variability of the complex phenomenon has been captured in the training set,
therefore it is hard to claim that simple linear solutions should work well also on large
samples in this type of data, and they should be preferred in the meta-learning process.

Table 4. Average classification accuracy given by 10-fold crossvalidation test for Leukemia
dataset with reduced features.

# Features NBC kNN SSV SVML SVMG

PCA 1 98.57±4.51 98.57±4.51 (2) 95.71±6.90 (7/4) 98.57±4.51 (4) 98.57±4.51 (20)
PCA 2 98.57±4.51 98.57±4.51 (3) 95.81±5.16 (7/4) 97.14±6.02 (4) 97.14±6.02 (22)
MDS 1 92.85±7.52 91.78±7.10 (4) 91.78±14.87 (3/2) 91.78±9.78 (28) 91.78±7.10 (36)
MDS 2 98.57±4.51 97.32±5.66 (8) 95.71±6.90 (7/4) 97.32±5.66 (5) 98.75±3.95 (27)
FDA 1 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (2) 100±0.00 (12)
FDA 2 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (3) 100±0.00 (15)
SVM 1 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (2) 100±0.00 (14)
SVM 2 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (5) 100±0.00 (21)
QPC 1 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (2) 100±0.00 (10)
QPC 2 100±0.00 100±0.00 (1) 100±0.00 (3/2) 100±0.00 (2) 100±0.00 (12)

ALL 78.28±13.55 98.57±4.51 (2) 90.00±9.64 (5/3) 98.57±4.51 (16) 98.57±4.51 (72)

4.4 Heart and Wisconsin

Heart disease dataset consisting of 270 samples, each described by 13 attributes, 150
cases labeled as “absence”, and 120 as “presence” of heart disease. Wisconsin breast
cancer dataset [115] contains samples describing results of biopsies on 699 patients,
with 458 biopsies labeled as “benign”, and 241 as “malignant”. Feature 6 has 16 missing
values, removing corresponding vectors leaves 683 examples. Both datasets are rather
typical examples of medical diagnostic data.

The information contained in the Cleveland Heart training data is not really sufficient
to make a perfect diagnosis data (Fig. 4). Best classification results are in this case
around 85%, and distributions seem to be similar to overlapping Gaussians. Almost all
projections show comparable separation of a significant portion of the data, although
looking at probability distributions in one dimension SVM and FDA seem to have a bit
of an advantage. In such case strong regularization is advised to improve generalization.
For kNN this means that a rather large number of neighbors should be used (in most
cases 10, the maximum allowed here, was optimal), for decision trees strong pruning
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Fig. 3. Leukemia data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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Fig. 4. Heart data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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Fig. 5. Wisconsin data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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(SSV after FDA has only a root node and two leaves), while for SVM rather large value
of C parameter and (for Gaussian kernels) large dispersions. The best recommendation
for this dataset is to apply the simplest classifier – SSV or linear SVM on FDA projected
data. Comparing this recommendation with calculations presented in table 5 confirms
that this is the best choice.

The character of the Wisconsin breast cancer dataset is similar to the Cleveland Heart
data, although separation of the two classes is much stronger (Fig. 5). Benign cases
show high similarity in the MDS mapping and in all considered here linear projections,
while malignant cases are much more diverse, perhaps indicating that several types
of breast cancer are mixed together. It is quite likely that this data contains several
outliers and should really be separable, suggesting that wider margins of classification
should be used at the cost of a few errors. All methods give here comparable results,
although reduction of dimensionality to two dimensions helps quite a bit to decrease
the complexity of the data models. SVM is an exception, achieving essentially the same
accuracy and requiring similar number of support vectors for the original and for the
reduced data.

Again, the simplest classifier is quite sufficient here, SSV on FDA or QPC projec-
tions with a single threshold (a tree with just two leaves), or more complex (about 50
support vectors) SVM model with linear kernel on 2D data reduced by linear projection.
One should not expect that much more information can be extracted from this type of
data.

Table 5. Average classification accuracy given by 10-fold crossvalidation test for Heart dataset
with reduced features.

# Features NBC kNN SSV SVML SVMG

PCA 1 80.74±6.24 75.92±9.44 (10) 79.25±10.64 (3/2) 81.11±8.08 (118) 80.00±9.43 (128)
PCA 2 78.88±10.91 80.74±8.51 (9) 79.62±7.03 (15/8) 82.96±7.02 (113) 80.00±9.99 (125)
MDS 1 75.55±6.80 72.96±7.62 (8) 77.40±6.16 (3/2) 77.03±7.15 (170) 73.70±8.27 (171)
MDS 2 80.74±9.36 80.37±8.19 (6) 81.11±4.76 (3/2) 82.96±6.09 (112) 82.59±7.20 (121)
FDA 1 85.18±9.07 84.81±5.64 (8) 84.07±6.77 (3/2) 85.18±4.61 (92) 85.18±4.61 (106)
FDA 2 84.07±8.01 82.96±6.34 (10) 83.70±6.34 (3/2) 84.81±5.36 (92) 84.81±6.16 (110)
SVM 1 85.92±6.93 82.59±7.81 (9) 83.33±7.25 (3/2) 85.55±5.36 (92) 85.18±4.61 (107)
SVM 2 83.70±5.57 82.96±7.44 (10) 84.81±6.63 (3/2) 85.55±7.69 (92) 84.07±7.20 (131)
QPC 1 81.48±6.53 81.85±8.80 (10) 82.22±5.46 (9/5) 82.59±8.73 (118) 82.59±10.33 (130)
QPC 2 84.44±7.96 85.55±4.76 (10) 83.33±7.25 (13/7) 85.92±5.46 (103) 85.18±4.93 (132)

ALL 72.22±4.70 79.62±11.61 (9) 81.48±4.61 (7/4) 84.44±5.17 (99) 82.22±5.17 (162)

Table 6. Average classification accuracy given by 10-fold crossvalidation test for Wisconsin
dataset with reduced features.

# Features NBC kNN SSV SVML SVMG

PCA 1 97.36±2.27 96.92±1.61 (7) 97.07±1.68 (3/2) 96.78±2.46 (52) 97.36±2.15 (76)
PCA 2 96.18±2.95 96.34±2.69 (7) 97.36±1.92 (3/2) 96.92±2.33 (53) 97.22±2.22 (79)
MDS 1 96.63±1.95 95.60±1.84 (7) 97.07±1.83 (3/2) 95.60±2.59 (54) 95.74±2.45 (86)
MDS 2 95.16±1.70 96.48±2.60 (3) 96.19±2.51 (9/5) 96.92±2.43 (52) 96.63±2.58 (78)
FDA 1 97.07±0.97 97.35±1.93 (5) 96.92±2.34 (3/2) 97.21±1.88 (52) 97.65±1.86 (70)
FDA 2 95.46±1.89 96.77±1.51 (9) 96.93±1.86 (11/6) 96.77±2.65 (51) 97.07±2.06 (74)
SVM 1 95.90±1.64 97.22±1.98 (9) 97.22±1.99 (3/2) 97.22±1.26 (46) 96.93±1.73 (69)
SVM 2 97.21±1.89 97.36±3.51 (10) 97.22±1.73 (3/2) 96.92±2.88 (47) 96.92±3.28 (86)
QPC 1 96.33±3.12 97.22±1.74 (7) 96.91±2.01 (3/2) 96.34±2.78 (62) 97.07±1.82 (84)
QPC 2 97.21±2.44 96.62±1.84 (7) 96.33±2.32 (3/2) 96.62±1.40 (54) 96.33±1.87 (107)

ALL 95.46±2.77 96.34±2.52 (7) 95.60±3.30 (7/4) 96.63±2.68 (50) 96.63±2.59 (93)
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Fig. 6. Spambase data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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Fig. 7. Ionosphere data set, from top to bottom: MDS, PCA, FDA, SVM and QPC.
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Fig. 8. Ionosphere data set in the kernel space, from top to bottom: MDS, PCA, FDA, SVM and
QPC.
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4.5 Spambase

Spam dataset is derived from a collection of 4601 emails described by 57 attributes.
1813 of these emails are real spam and 2788 are work related and personal emails. From
Fig. 6 it is clear that MDS and PCA are not of much use in this problem, at least in a
low number of dimensions. In case of PCA the second dimension helps a bit to separate
data that belongs to different classes, but MDS is completely lost. FDA, QPC and lin-
ear SVM in 1-dimensional space look very similar, however adding second dimension
shows some advantage of SVM. It is clear that in this case low-dimensional visualiza-
tion is not able to capture much information about data distribution. Best results may be
expected from large margin classifiers, linear SVM gives 93.1±0.7% (C=1), and similar
results from the Gaussian kernel SVM.

4.6 Ionosphere

Ionosphere dataset has 351 records, with different patterns of radar signals reflected
from the ionosphere, 224 patterns in Class 1 and 126 in Class 2. First feature is binary,
second is always zero, and the remaining 32 are continuous.

In this case (Fig. 7) MDS and all projections do not show much structure. To il-
lustrate the effect of kernel transformation original features are replaced by Gaussian
kernels with σ = 1, thus increasing the dimensionality of the space to 351. Now (Fig. 8)
MDS shows focused cluster of signals from one class on the background of the second
class, and projection methods show quite clear separation, with FDA showing surpris-
ingly large separation. This shows that the data after the kernel transformation became
linearly separable. The FDA solution has been found on the whole dataset, and it may
not be possible to find such perfect solution in crossvalidation even if transductive learn-
ing is used.

5 Discussion and Conclusions

The holy grail of machine learning, computational intelligence, pattern recognition and
related fields is to create intelligent algorithms that will automatically configure them-
selves and lead to discovery of all interesting models for arbitrary data. All learning
algorithms may be presented as sequences of transformations. Current data mining sys-
tems contain many transformations that may be composed in billions of ways, therefore
it is impossible to test all promising combinations of preprocessing, feature selection,
learning algorithms, optimization procedures, and post-processing. Meta-level knowl-
edge is needed to automatize this process, help to understand how efficient learning
may proceed by search in the space of all transformation.

The main focus of this paper has been on generation of transformations, catego-
rization of types of features using geometrical perspective, creation of new features,
learning from other data models by feature transfer, understanding what kind of data
distributions are created in the extended features space, and finding decision algorithms
with proper bias for such data. Systematic explorations of features of growing com-
plexity enables discovery of simple models that more sophisticated learning systems



352 W. Duch, T. Maszczyk, and M. Grochowski

will miss. Feature constructors described here go beyond linear combinations provided
by PCA or ICA algorithms. In particular, kernel-based features offer an attractive alter-
native to current kernel-based SVM approaches, offering multiresolution and adaptive
regularization possibilities. Several new types of features have been introduced, and
their role analyzed from geometrical perspective. Mixing different kernels and using
different types of features gives much more flexibility to create decision borders or ap-
proximate probability densities. Adding specific support features facilitates knowledge
discovery. Good generalization is achieved by searching for large pure clusters of vec-
tors that may be uncovered by specific information filters. Homogeneous algorithms
create small clusters that are not reliable, but with many different filters the same vec-
tors may be mapped in many ways to large clusters. This approach significantly extends
our previous similarity-based framework [21] putting even higher demands on organi-
zation of intelligent search mechanism in the space of all possible transformations (see
[103] and this volume).

Constructing diverse information filters leads to interesting views on the data, show-
ing non-linear structures in the data that – if noticed – may be easy to handle with spe-
cific transformations. Systems that actively sample data, trying to “see it” through their
filters, are more flexible than classifiers working in fixed input spaces. Once sufficient
information is generated reliable categorization of data structures may be achieved. Al-
though the final goal of learning is to discover interesting models of data, more attention
should be paid to the intermediate representations, the image of data after transforma-
tion. Instead of hiding information in kernels and sophisticated optimization techniques
features based on kernels and projection techniques make this explicit. Finding useful
views on the data by constructing proper information filters is the best way to practi-
cal applications that automatically create all interesting data models for a given data.
Objects may have diverse and complex structures, and different categories may be iden-
tified in different feature spaces derived by such filters and transformations. Once the
structure of data image that emerges in the enhanced space is recognized, it may then
be handled by a decision module specializing in handling specific type of nonlinear-
ity. Instead of linear separability much easier intermediate goal is set, to create clear
non-linear data image of a specific type.

Some benchmark problems have been found rather trivial, and have been solved with
a single binary feature, one constrained nominal feature, or one new feature constructed
as a projection on a line connecting means of two classes. Analysis of images, multime-
dia streams or biosequences will require even more sophisticated ways of constructing
higher-order features. Thus meta-learning package should have general mechanisms
controlling search, based on understanding of the type of transformations that may be
useful for specific data, principles of knowledge transfer and goals of learning that go
beyond separability of data, and modules with transformations specific for each field.

Neurocognitive informatics draws inspirations from neurobiological processes re-
sponsible for learning and forms a good basis for meta-learning ideas. So far only a
few general inspirations have been used in computational intelligence, like for exam-
ple threshold neurons organized in networks that perform parallel distributed process-
ing. Even with our limited understanding of the brain many more inspirations may
be drawn and used in practical learning and object recognition algorithms. Parallel
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interacting streams of complementary information with hierarchical organization [6]
may be linked to multiple information filters that generate new higher-order features.
Accumulating noisy stimulus information from multiple parallel streams until reliable
response is made [7] may be linked to confidence level of classifiers based on informa-
tion from multiple features of different type. Kernel methods may be relevant for cate-
gory learning in biological systems [116], although in standard formulations of SVMs it
is not at all obvious. Explicit use of kernel features understood as similarity estimation
to objects categorized using high-order features may correspond to various functions of
microcircuits that are present in cortical minicolumns, extending the simple liquid state
machine picture [5]. With great diversity of microcircuits a lot of information is gener-
ated, and relevant chunks are used as features by simple Hebbian learning of weights
in the output layer. In such model plasticity of the basic feature detectors receiving the
incoming signals may be quite low, yet fast correlation-based learning is still possible.
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