Norbert Jankowski, Wlodzistaw Duch, and Krzysztof Grabczewski (Eds.)

Meta-Learning in Computational Intelligence

Studies in Computational Intelligence, Volume 358

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 336. Paolo Remagnino, Dorothy N. Monekosso, and Lakhmi
C.Jain (Eds.)

Innovations in Defence Support Systems — 3, 2011

ISBN 978-3-642-18277-8

Vol. 337. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 6, 2011

ISBN 978-3-642-17823-8

Vol. 338. Lakhmi C. Jain, Eugene V. Aidman, and
Canicious Abeynayake (Eds.)

Innovations in Defence Support Systems - 2, 2011
ISBN 978-3-642-17763-7

Vol. 339. Halina Kwasnicka, Lakhmi C. Jain (Eds.)
Innovations in Intelligent Image Analysis, 2010
ISBN 978-3-642-17933-4

Vol. 340. Heinrich Hussmann, Gerrit Meixner, and

Detlef Zuehlke (Eds.)

Model-Driven Development of Advanced User Interfaces, 2011
ISBN 978-3-642-14561-2

Vol. 341. Stéphane Doncieux, Nicolas Bredeche, and
Jean-Baptiste Mouret(Eds.)

New Horizons in Evolutionary Robotics, 2011

ISBN 978-3-642-18271-6

Vol. 342. Federico Montesino Pouzols, Diego R. Lopez, and
Angel Barriga Barros

Mining and Control of Network Traffic by Computational
Intelligence, 2011

ISBN 978-3-642-18083-5

Vol. 343. Kurosh Madani, Anténio Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)
Computational Intelligence, 2011

ISBN 978-3-642-20205-6

Vol. 344. Atilla El¢i, Mamadou Tadiou Koné, and
Mehmet A. Orgun (Eds.)

Semantic Agent Systems, 2011

ISBN 978-3-642-18307-2

Vol. 345. Shi Yu, Léon-Charles Tranchevent,

Bart De Moor, and Yves Moreau

Kernel-based Data Fusion for Machine Learning, 2011
ISBN 978-3-642-19405-4

Vol. 346. Weisi Lin, Dacheng Tao, Janusz Kacprzyk, Zhu Li,
Ebroul Izquierdo, and Haohong Wang (Eds.)

Multimedia Analysis, Processing and Communications, 2011
ISBN 978-3-642-19550-1

Vol. 347. Sven Helmer, Alexandra Poulovassilis, and Fatos Xhafa
Reasoning in Event-Based Distributed Systems, 2011
ISBN 978-3-642-19723-9

Vol. 348. Beniamino Murgante, Giuseppe Borruso, and
Alessandra Lapucci (Eds.)

Geocomputation, Sustainability and Environmental Planning,
2011

ISBN 978-3-642-19732-1

Vol. 349. Vitor R. Carvalho
Modeling Intention in Email, 2011
ISBN 978-3-642-19955-4

Vol. 350. Thanasis Daradoumis, Santi Caballé,

Angel A. Juan, and Fatos Xhafa (Eds.)
Technology-Enhanced Systems and Tools for Collaborative
Learning Scaffolding, 2011

ISBN 978-3-642-19813-7

Vol. 351. Ngoc Thanh Nguyen, Bogdan Trawinski, and
Jason J. Jung (Eds.)

New Challenges for Intelligent Information and Database
Systems, 2011

ISBN 978-3-642-19952-3

Vol. 352. Nik Bessis and Fatos Xhafa (Eds.)

Next Generation Data Technologies for Collective
Computational Intelligence, 2011

ISBN 978-3-642-20343-5

Vol. 353. Igor Aizenberg

Complex-Valued Neural Networks with Multi-Valued Neurons,
2011

ISBN 978-3-642-20352-7

Vol. 354. Ljupco Kocarev and Shiguo Lian (Eds.)
Chaos-Based Cryptography, 2011
ISBN 978-3-642-20541-5

Vol. 355. Yan Meng and Yaochu Jin (Eds.)
Bio-Inspired Self-Organizing Robotic Systems, 2011
ISBN 978-3-642-20759-4

Vol. 356. Slawomir Koziel and Xin-She Yang (Eds.)
Computational Optimization, Methods and Algorithms, 2011
ISBN 978-3-642-20858-4

Vol. 357. Nadia Nedjah, Leandro Santos Coelho,

Viviana Cocco Mariani, and Luiza de Macedo Mourelle (Eds.)
Innovative Computing Methods and Their Applications to
Engineering Problems, 2011

ISBN 978-3-642-20957-4

Vol. 358. Norbert Jankowski, Wtodzistaw Duch, and
Krzysztof Grabczewski (Eds.)

Meta-Learning in Computational Intelligence, 2011
ISBN 978-3-642-20979-6

Norbert Jankowski, Wlodzistaw Duch,
and Krzysztof Grabczewski (Eds.)

Meta-Learning in Computational
Intelligence

@ Springer

Editors

Dr. Norbert Jankowski
Department of Informatics
Nicolaus Copernicus University
ul. Grudzigdzka 5

87-100 Torun

Poland

Email: norbert@is.umk.pl

Professor Wiodzistaw Duch
Department of Informatics
Nicolaus Copernicus University
ul. Grudzigdzka 5

87-100 Torun

Poland

Email: wduch@is.umk.pl

ISBN 978-3-642-20979-6

DOI 10.1007/978-3-642-20980-2

Studies in Computational Intelligence

Dr. Krzysztof Grabczewski
Department of Informatics
Nicolaus Copernicus University
ul. Grudzigdzka 5

87-100 Torun

Poland

Email: kg@is.umk.pl

e-ISBN 978-3-642-20980-2

ISSN 1860-949X

Library of Congress Control Number: 2011929217

(© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer.

Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free

for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper
987654321

springer.com

Preface

In the early days of pattern recognition and statistical data analysis life was
rather simple: datasets were relatively small, collected from well-designed exper-
iments, analyzed using a few methods that had good theoretical background.
Explosive growth of the use of computers led to the creation of huge amounts of
data of all kinds, coming from business, finance, scientific experiments, medical
evaluations, Web-related data, multimedia, various imaging techniques, sensor
networks, and many others sources. Human experts are not capable of deep
exploration of large amounts of data, especially when an expertize in several
different areas is necessary for this purpose.

The need for scalable algorithms applicable for massive data sets, discovering
novel patterns in data, contributed to the growing interest in data mining and
knowledge discovery. It led to the development of new machine learning tech-
niques, including the use of inspirations from nature to develop evolutionary,
neural and fuzzy algorithms for data analysis and understanding. Computa-
tional intelligence became a field in its own, combining all these methods, and
the number of algorithms available for data analysis was rapidly growing. These
algorithms started to be collected in larger data mining packages, with a free
package called Weka starting the trend, and many others that soon followed.
These packages added better user interfaces, environments to build data flow
schemes by connecting various modules and test various algorithms. However,
the number of modules at each stage: pre-processing, data acquisition, feature
selection and construction, instance selection, classification, association and ap-
proximation methods, optimization techniques, pattern discovery, clusterization,
visualization and post-processing became unmanageably large. A large data min-
ing package allows for billions of combinations, making the process of knowledge
discovery increasingly difficult. Gone are the days when the life of a data miner
was simple and a background course in multivariate statistics was all that was
needed to do the job.

Paradoxically, the abundance of methods did not simplify the process of data
analysis. Despite the “no free lunch” theorem the work in computational intel-
ligence has been focused largely on universal algorithms, that should beat all
others in wide range of situations. Large packages allow for construction of more
specialized algorithms, properly biased for a given data. Constructing a success-
ful chain of data transformations to create optimal decision models should not
consist in picking arbitrarily some components and gluing them together. On the
other hand, testing all possible combinations is not feasible, because the num-
ber of combinations of data transformations at each stage is too large, and any
drastic reduction of the set of components that prevents combinatorial explosion
reduces the chance of finding interesting models. Human experts can help, but

VI Preface

even for trivial data experts tend to create complex systems that miss simple
solutions. For complex data methodology that guarantees finding appropriate
combination of CI transformation does not exist. Some of these methods are
redundant, generating almost identical solutions. Advanced data mining frame-
work in hand of an amateur is like a scalpel in hand of a Parkinson patient
trying to perform neurosurgery on his colleague. It can only result in a brain
salad surgery. Even the best experts do not know weak and strong points of all
methods available.

This is where meta-learning comes to rescue. The term “meta-learning” still
means different things to different people, but in general it covers a broad range
of approaches directed at learning how to learn. Humans are adapted to the niche
of adaptability, not to a particular environment, and this is where the superiority
of human intelligence lies. Learning of each method requires various specialized
selection and adaptation procedures. Meta-learning, operating in the space of
available data transformations and optimization techniques, should learn from
experience of solving different problems, make inferences about transformations
useful in different contexts, and finally help to construct interesting learning
algorithm that can uncover various aspects knowledge hidden in data. In general
meta-learning should do what a good expert does.

The last decade have brought many interesting ideas within the scope of
meta-learning, making this field a hot topic. Various approaches that address
meta-learning challenge at different levels of abstraction include:

e flexible frameworks for data analysis, facilitating systematic composition of
transformations and optimization methods to build data models;

e methods that analyze families of algorithms within a given (usually narrow)
framework;

e methods that support general context-sensitive analysis of the learning
processes;

e methods for meta-knowledge acquisition from human experts;

e methods that build interesting models using meta-knowledge, verify these
models and provide information to improve or correct meta-knowledge;

e theoretical approaches and principles that help to understand learning
methods.

These methods are often focused on a narrow subtask of improving particular
aspects of gaining, building, using, verifying and correcting meta-knowledge. The
problem is so demanding that every little nugget of meta-knowledge is precious.
Hence all tools that are capable of contributing to the final goal are valuable,
including knowledge generated from experiments with many learning algorithms
and also knowledge provided by human experts. Meta-learning should eventually
simplify the work of experts and non-experts, whose job will be to formulate
interesting questions and interpret the results, rather than to fight with tedious
technicalities required to create models, as it is done now.

Preface VII

In this book the reader will find 10 chapters summarizing research in many
directions relevant to meta-learning. The first chapter, “Universal meta-learning
architecture and algorithms”, written by Norbert Jankowski and Krzysztof
Grabczewski, is concerned with the most important problem, how should the
meta-learning search be organized. In this chapter authors propose sophisticated
representation of meta-search space in a form of specialized graph of learning
machines generators. The process of meta-learning is advised by dedicated mech-
anism of test tasks ordered by approximation of task complexity, which is guided
by complexity evaluators. The proposed framework is capable of using several
types of meta-knowledge (for example knowledge based on optimization proce-
dures or attractiveness of learning machines).

In the second chapter Kate Smith-Miles and Rafiqul Islam write about “Meta-
learning of instance selection for data summarization”. Selection of instances or
prototypes is important especially for very large datasets as well as for under-
standing the data. Selection is directed here by dedicated meta-learning algo-
rithm based on meta-features extracted especially for this task, although they
should also be useful for other problems.

Chapter three, by Damien Frangois, Vincent Wertz and Michel Verleysen is
focused on the problem of automatic choice of the metric in similarity-based
approaches realized with a help of meta-learning. This is one of the specific
aspects of data mining.

Chapter four, “Meta-learning Architectures: Collecting, Organizing and Ex-
ploiting Meta-knowledge”, by Joaquin Vanschoren is a nice rendez-vous
through different meta-learning algorithms, discussing their strategy of learning.
It presents information about different ways of collecting and using of meta-
knowledge. Authors also compare different architectures of meta-learning sys-
tems and their information flows, presenting in the end an interesting proposal for
extended meta-learning system based on consolidation of different approaches.

Chapter five, “Computational intelligence for meta-learning: a promising av-
enue of research” by Ciro Castiello and Anna Maria Fanelli, presents a system
based on neuro-fuzzy hybridization. Theoretical discussion of various aspects
of meta-learning architectures is given from the point of view of such hybrid
systems. This chapter goes beyond selection of learning machines, focusing on
deeper analysis of the learning model behavior. Applying neuro-fuzzy approach
to standard- and meta-levels of learning an integrated fuzzy logic system is
constructed.

In chapter six, Pavel Kordik and Jan Cerny discuss self-organization of super-
vised models within their Fully Automated Knowledge Extraction framework.
Diverse local expert models are combined within a cascade-like ensemble using
a group of adaptive models evaluation algorithm based on specialized evolution-
ary optimization and statistical ensemble techniques, including bagging, boosting
and stacking.

VIII Preface

In chapter seven Ricardo B. C. Prudéncio, Marcilio C. P. de Souto and Teresa
B. Ludermir describe how to select machine learning algorithms using the rank-
ing approach. This chapter presents application of meta-learning to the predic-
tion of time series and to clustering. In this case meta-learning is based mainly
on extraction of various meta-features that characterize the dataset.

Chapter eight, by Talib S. Hussain, is more theoretical, introducing “A Meta-
Model Perspective and Attribute Grammar Approach to Facilitating the Devel-
opment of Novel Neural Network Models”. This chapter presents an interesting
direction for systematic creation of complex neural networks that integrate mul-
tiple diverse models.

In chapter nine Melanie Hilario, Phong Nguyen, Huyen Do and Adam Woznica
write about “Ontology-Based Meta-Mining of Knowledge Discovery Workflows”.
This is one of the more advanced meta-learning frameworks, going beyond sys-
tems based on meta-features that use correlations between data and performance
of base learning machines. Data mining ontology is used for optimization process,
and a workflow representation is used to compose complex learning machines de-
fined by direct acyclic graphs.

In the final chapter Wlodzistaw Duch, Tomasz Maszczyk and Marek Gro-
chowski focus on creation of optimal features spaces in which meta-learning may
take place. In their approach parallel chains of transformations extract useful
information granules that are used as additional hidden features. Resulting al-
gorithms facilitate deep learning by composition of transformations, and enable
understanding of data structures by visualization of data distribution after trans-
formations, and by creating various logical rules based on the new features.

We hope that this book will help to find valuable information about the new
trends in meta-learning and will inspire the readers to further research in the
field of meta-learning methods.

Contents

Universal Meta-Learning Architecture and Algorithms 1
Norbert Jankowski, Krzysztof Grabczewski

Meta-Learning of Instance Selection for Data Summarization ... 77
Kate A. Smith-Miles, Rafiqul M.D. Islam

Choosing the Metric: A Simple Model Approach 97
Damien Francots, Vincent Wertz, Michel Verleysen

Meta-Learning Architectures: Collecting, Organizing and
Exploiting Meta-Knowledge 117
Joaquin Vanschoren

Computational Intelligence for Meta-Learning: A Promising
Avenue of Research. 157
Ciro Castiello, Anna Maria Fanelli

Self-organization of Supervised Models 179
Pavel Kordik, Jan Cerny

Selecting Machine Learning Algorithms Using the Ranking
Meta-Learning Approach 225
Ricardo B.C. Prudéncio, Marcilio C.P. de Souto, Teresa B. Ludermir

A Meta-Model Perspective and Attribute Grammar Approach

to Facilitating the Development of Novel Neural Network

Models 245
Talib S. Hussain

Ontology-Based Meta-Mining of Knowledge Discovery

Workflows 273
Melanie Hilario, Phong Nguyen, Huyen Do, Adam Woznica,

Alexandros Kalousis

Optimal Support Features for Meta-Learning 317
Wtodzistaw Duch, Tomasz Maszczyk, Marek Grochowski

Author Index e 359

Universal Meta-Learning Architecture and
Algorithms

Norbert Jankowski and Krzysztof Grabczewski

Department of Informatics
Nicolaus Copernicus University
Torun, Poland
{norbert,kg}@is.umk.pl
http://www.is.umk.pl/

Abstract. There are hundreds of algorithms within data mining. Some
of them are used to transform data, some to build classifiers, others for
prediction, etc. Nobody knows well all these algorithms and nobody can
know all the arcana of their behavior in all possible applications. How
to find the best combination of transformation and final machine which
solves given problem?

The solution is to use configurable and efficient meta-learning to solve
data mining problems. Below, a general and flexible meta-learning system
is presented. It can be used to solve different problems with computa-
tional intelligence, basing on learning from data.

The main ideas of our meta-learning algorithms lie in complexity con-
trolled loop, searching for most adequate models and in using special
functional specification of search spaces (the meta-learning spaces) com-
bined with flexible way of defining the goal of meta-searching.

Keywords: Meta-Learning, Data Mining, Learning Machines, Compu-
tational Intelligence, Data Mining System Architecture, Computational
Intelligence System Architecture.

1 Introduction

Recent decades have brought large amount of data, eligible for automated analy-
sis that could result in valuable descriptions, classifiers, approximators, visualiza-
tions or other forms of models. The Computational Intelligence (CI) community
has formulated many algorithms for data transformation and for solving clas-
sification, approximation and other optimization problems [I]. The algorithms
may be combined in many ways, so that the tasks of finding optimal solutions
are very hard and require sophisticated tools. Nontriviality of model selection
is evident when browsing the results of NIPS 2003 Challenge in Feature Selec-
tion [2/3], WCCI Performance Prediction Challenge [4] in 2006 or other similar
contests.

Most real life learning problems can be reasonably solved only by complex
models, revealing good cooperation between different kinds of learning machines.

N. Jankowski et al. (Eds.): Meta-Learning in Computational Intelligence, SCI 358, pp. 1-fz6]
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011

http://www.is.umk.pl/

2 N. Jankowski and K. Grabczewski

To perform successful learning from data in an automated manner, we need
to exploit meta-knowledge i.e. the knowledge about how to build an efficient
learning machine providing an accurate solution to the problem being solved.

One of the approaches to meta-learning develops methods of decision commit-
tees construction, different stacking strategies, also performing nontrivial analy-
sis of member models to draw committee conclusions [BI6I7I8I9]. Another group
of meta-learning enterprises [TO/TTIT2/T3] base on data characterization tech-
niques (characteristics of data like number of features/vectors/classes, features
variances, information measures on features, also from decision trees etc.) or on
landmarking (machines are ranked on the basis of simple machines performances
before starting the more power consuming ones) and try to learn the relation
between such data descriptions and accuracy of different learning methods. Al-
though the projects are really interesting, they still suffer from many limitations
and may be extended in a number of ways. The whole space of possible and
interesting models is not browsed so thoroughly, thereby some types of solutions
can not be found with this kind of approaches.

In gating neural networks [14] authors use neural networks to predict perfor-
mance of proposed local experts (machines preceeded by transformations) and
decide about final decision (the best combination learned by regression) of the
whole system. Another application of meta-learning to optimization problems,
by building relations between elements which characterize the problem and al-
gorithms performance, can be found in [15].

We do not believe that on the basis of some, not very sophisticated or expen-
sive, description of the data, it is possible to predict the structure and configura-
tion of the most successful learner. Thus, in our approach the term meta-learning
encompasses the whole complex process of model construction including adjust-
ment of training parameters for different parts of the model hierarchy, construc-
tion of hierarchies, combining miscellaneous data transformation methods and
other adaptive processes, performing model validation and complexity analy-
sis, etc. So in fact, our approach to meta-learning is a search process, however
not a naive search throughout the whole space of possible models, but a search
driven by heuristics protecting from spending time on learning processes of poor
promise and from the danger of combinatorial explosion.

This article presents many aspects of our meta-learning approach. In Section 2]
we present some basic assumptions and general ideas of our efforts. Section [
presents the main ideas of the computational framework we have developed to
make deeper meta-level analysis possible. Next, Section M describes the Meta
Parameter Search Machine, which supports simple searches within the space of
possible models. Section [Blis the most important part which describe main parts
of meta-learning algorithm (definition of configuration of meta-learning, elements
of scheme of main algorithm presented in Section 2] complexity control engine).
Section [presents example application of proposed meta-learning algorithm for
variety of benchmark data streams.

Universal Meta-Learning Architecture and Algorithms 3

2 General Meta-Learning Framework

First the difference between learning and meta-learning should be pointed out.
Both the learning and meta-learning are considering in the context of learn-
ing from data, which is common around computational intelligence problems.
Learning process of a learning machine L is a function A(L):

A(L): Kg x D — M, (1)

where K represents the space of configuration parameters of given learning
machine £, D defines the space of data streams (typically a single data table,
sometimes composed by few independent data inputs), which provide the learn-
ing material, and M defines the space of goal models. Models should play a role
(assumed by £) like classifier, feature selector, feature extractor, approximator,
prototype selector, etc.

Indeed, learning should be seen as the process in which some free parameters
of the machine M are adjusted or determined according to a strategy (algorithm)
of the learning machine L. After the learning process of £, the model M should
be ready to use as a classifier, data transformer, etc. depending on the goal
of L.

From such point of view meta-learning is another or rather specific learning
machine. In the case of meta-learning the learning phase learn how to learn, to
learn as well as possible. This means that the target model of a meta-learning
machine (as the output of meta-learning) is a configuration of a learning machine
extracted by meta-learning algorithm. The configuration produced by meta-
learning should play the goal-role (like, already mentioned, classifier, approx-
imator, data transformer, etc.) of meta-learning task. It is important to see that
meta-learning is obligated to chose machine type (it may be even very complex
one) and their strict configuration. This is because different configuration may
provide incomparable behavior of given learning machine. Of course such defini-
tion does not indicate, how the meta-learning should search for the best type of
learning machine and their best configuration.

Almost always meta-learning algorithms learn by observation and testing of
nested learning machines. Meta-learning differ in the strategy of selection, which
learning machines to observe and what to observe in chosen machines to find
possibly best or at least satisfactory conclusions. From the theoretical point of
view meta-learning, in general, is not limited in any way except the limitation
of memory and time.

We propose a unified scheme of meta-learning algorithms (MLAs) which base
on learning from observations. It is depicted in Figure [Tl

The initialization step is a link between given configuration of meta-learning
(which is very important question—see Section [£.2) and the further steps.

The meta-learning algorithm, after some initialization, starts the main loop,
which up to the given stop condition, runs different learning processes, monitors
them and concludes from their gains. In each repetition, it defines a number of
tasks which test the behavior of appropriate learning configurations (i.e. con-
figurations of single or complex learning machines)—step start some tasks. In

4 N. Jankowski and K. Grabczewski

initialize

START - = >

stop
condition

evaluate start some finali
results test tasks inafize

! .
- Y
wait for sTOP
any task

Fig. 1. General meta-learning algorithm.

other words, at this step it is decided, which (when and whether) machines are
tested and how it is done (the strategy of given MLA). In the next step (wait
for any task) the MLA waits until any test task is finished, so that the main
loop may be continued. A test task may finish in a natural way (at the assumed
end of the task) or due to some exception (different types of errors, broken by
meta-learning because of exceeded time limit and so on). After a task is finished,
its results are analyzed and evaluated. In this step some results may be accumu-
lated (for example saving information about best machines) and new knowledge
items created (e.g. about different machines cooperations). Such knowledge may
have crucial influence on further parts of the meta-learning (tasks formulation
and the control of the search through the space of learning machines). Precious
conclusions may be drawn, even if a task is finished in a non-natural way.

When the stop condition becomes satisfied, the MLA prepares and returns the
final result: the configuration of chosen learning machine or, in more general way,
even a ranking of learning machines (ordered by a degree of goal satisfaction),
comments on chosen learning machines and their interactions, etc.

Each of the key steps of this general meta-learning algorithm may be realized
in different ways yielding different meta-learning algorithms.

It is important to see that such a general scheme is not limited to a single
strategy of MLA or searching by observing task by task (MLA autonomously de-
cides about current group of started test tasks). This scheme does not apply any
limits to the learning machine search space which in general can be a non-fixed
space and may evaluate in the progress of meta search, for example to pro-
duce complex substitutions of machines. This opens the gates even to directing
the functional space of learning machines according to collected meta-knowledge.

Universal Meta-Learning Architecture and Algorithms 5

Also the stop condition may be defined according to the considered problem and
their limits.

This meta-scheme may be used to solve different types of problems. It is not
limited only to classification or approximation problems.

First, note that finding an optimal model for given data mining problem P is
almost always NP hard. Because of that, meta-learning algorithms should focus
on finding approximation to the optimal solution independently of the problem
type. Second, it would be very useful if the meta-learning could find solutions
which at least are not worst than the ones that can be found by human experts
in data mining in given limited amount of time. “At least” because usually
meta-learning should find more attractive solutions, sometimes even of surprising
structure. In general meta-learning is more open to make deeper observation of
intermediate test tasks and the search procedure may be more exhaustive and
consistent. Experts usually restrict their tests to a part of algorithms and to some
schemes of using them. Sophisticated meta-learning may quite easily overcome
such disadvantages simultaneously keeping high level of flexibility.

This is why our general goal of the meta-learning is to maximize the
probability of finding possibly best solution of given problem P within a search
space in as short time as possible.

As a consequence of such definition of the goal, the construction of meta-
learning algorithm should carefully advise the order of testing tasks during the
progress of the search and build meta-knowledge based on the experience from
passed tests. Meta-knowledge may cover experience of so different kinds, among
others: the correlations between subparts of machines in the context of perfor-
mance, experience connected to the complexities of machines etc.

In our meta-learning approach, the algorithms search not only among base
learning machines, but also produce and test different, sometimes quite complex
machines like compositions of (several) transformations and classifiers (or other
final e.i. decision making machines), committees of different types of machines,
including complex ones (like composition of a transformer and a classifier as a
single classifier inside the committee). Also, the transformations may be nested
or compose chains. The compositions of complex machines may vary in their
behavior and goal.

In the past, we have come up with the idea that meta-learning algorithms
should favorite simple solutions and start the machines providing them before
more complex ones. It means that MLAs should start with maximally plain learn-
ing machines, then they should test some plain compositions of machines (plain
transformations with plain classifiers), after that more and more complex struc-
tures of learning machines (complex committees, multi-transformations etc.).
But the problem is that the order of such generated tasks does not reflect real
complexity of the tasks in the context of problem P described by data D. Let’s
consider two testing tasks T and T of computational complexities O(m f?) and
O(m? f) respectively. Assume the data D is given in the form of data table and
m is the number of instances and f is the number of features. In such case, it
is not possible to compare time consumption of T and T5 until the final values

6 N. Jankowski and K. Grabczewski

m and f are known. What’s more, sometimes a composition of a transformation
and a classifier may be indeed of smaller complexity than the classifier without
transformation. It is true because when using a transformation, the data passed
to the learning process of the classifier may be of smaller complexity and, as a
consequence, classifier’s learning is simpler and the difference between the classi-
fier learning complexities, with and without transformation may be bigger than
the cost of the transformation. This proves that real complexity is not reflected
directly by structure of learning machine.

To obtain the right order in the searching queue of learning machines, a com-
plexity measure should be used. Although the Kolmogorov complexity [T6J17]

Ck(P) = min{il(p) : program p prints P} (2)
P

is very well defined from theoretical point of view, it is unrealistic from practi-
cal side—the program p may work for a very long time. Levin’s definition [I7]
introduced a term responsible for time consumption:

Cr(P) =min{cy(p) : program p prints P in time ¥} (3)
P

where
cr(p) = U(p) + log(t?). (4)

This definition is much more realistic in practical realization because of the time
limit [I8/17]. Such definition of complexity (or similar, as it will be seen further
in this paper) helps prepare the order according to the real complexity of test
tasks.

Concluding this section, the meta-learning algorithm presented below as a
special realization of the general meta-learning scheme described above, can be
shortly summarized by the following items:

— The search is performed in a functional space of different learning algorithms
and of different kinds of algorithms. Learning machines for the tests will be
generated using specialized machines generators.

— The mail loop is controlled by checking the complexity of the test tasks.
Complexity control is also useful to handle with halting problems of subse-
quent tasks, started by meta-learning.

— Meta-learning collects meta-knowledge basing on the intermediate test tasks.
Using this knowledge the algorithm provides some correction of complexities,
and changes the behavior of advanced machine generators, what has crucial
role in defining the meta-space of learning machines. The knowledge may be
accumulated per given problem but also may survive like for example in the
case of the knowledge about complexities. Meta-learning algorithms may use
meta-knowledge collected from other learning tasks.

Universal Meta-Learning Architecture and Algorithms 7

What can be the role of meta-learning in the context of no free lunch theorem?
Let’s start from another side, from the point of view of a learning machine
which has satisfactory level of validated(!) performance on the training data
and smallest complexity among other machines of similar performance, such
simplest solution has the highest probability of success on a test set, and it
was shown in literature from several perspectives like bias-variance, minimum
description length, regularization, etc [T92002TI22)23]. From this side, in the case
of classification problems, the process of meta-learning gives closer solution to
the optimal Bayesian classifier than single (accidental?) learning machine.

The problem is that no free lunch theorem does not assume any relation of the
distribution P(X,Y") of the learning data D with the distribution P(X’, F(X"))
(X C X’) of unknown target function F(.) except being not contradictory at
points of the data D. Within the context of given learning data D, not all targets
have similarly high (or highest) probability of evidence.

The perfect learning machine should discover not the origin-target, but the
most probable target. In other words: the goal of generalization is not to predict
an unpredictable model.

3 General System Architecture

Advanced data mining, including meta-learning, is not possible without a general
and versatile framework for easy and efficient management of different models,
performing tests etc. One of the main keys to such a system is a unified view of
machines and models. We define a machine as any process that can be configured
and run to bring some results. The results of the processes constitute models. For
example an MLP network algorithm [24] as the MLP machine can be configured
by the network structure, initial weights, learning parameters etc. It can be run
on some training data, and the result is a trained network—the MLP model
created by the learning process of the MLP machine.

We deliberately avoid using the term “learning machine”, since in our ap-
proach a machine can perform any process which we would, not necessarily, call
a learning process, such as loading data from a disk file, data standardization or
testing a classifier on external data.

A general view of a machine is presented in Figure 2l Before a machine may
be created it must be completely configured and its context must be defined.
Full machine configuration consists of:

— specification of inputs and outputs (how many, names and types),

— machine process parameters,

— submachines configuration (it is not depicted in Figure [to keep the figure
clear; in further figures, starting with Figure 3] the submachines are visible
as boxes placed within the parent machine).

Machine context is the information about:

— the parent machine (handled automatically by the system, when a machine
orders creation of another machine) and the child index,

8 N. Jankowski and K. Grabczewski

Machine process Results
parameters repository
Machine
Input 1 Output 1
, : :
Input n Output m

Fig. 2. The abstract view of a machine.

— input bindings i.e. the specification of other machines outputs that are to be
passed as inputs to the machine to be created.

Some parts of machine configuration are fixed and do not require verbatim speci-
fication each time, a machine is created (e.g. the collection of inputs and outputs,
for most machines, are always the same). Other configuration items usually have
some (most common or most sensible) default values, so the machine user needs
to specify only the items, that are different from the defaults.

A properly configured machine can be run (more precisely, the machine pro-
cess is run to create the model). After the machine process is finished, the results
may be deposited in the results repository and/or exhibited as outputs.

The inputs and outputs serve as sockets for information exchange between
machines. The difference between machine inputs and configuration is that in-
puts come from other machines and the configuration contains the parameters
of the process provided by the user. It is up to the machine author whether the
machine receives any inputs and whether it has some adjustable parameters.

Similarly, machine outputs provide information about the model to other
machines, and results repositories contain additional information about machine
processes—the information that is not expected by other machines in the form
of inputs.

The interconnections between outputs and inputs of different machines define
the information flow within the project. Therefore, it is very important to prop-
erly encapsulate the CI functionality into machines. For more flexibility, each
machine can create and manage a collection of submachines, performing sep-
arate, well defined parts of more complex algorithms. This facilitates creating
multi-level complex machines while keeping each particular machine simple and
easy to manipulate. An example of a machine with submachines is the repeater
machine presented in Figure Bl The submachines are placed within the area of
their parent machines.

The repeater in the example, performed two independent runs of 2-fold cross-
validation (CV). It has generated two distributors (one for each CV cycle) and
four test schemes (two per CV cycle). The CV distributor outputs are two train-
ing sets and two test sets—the first elements go to the inputs of the first test

Universal Meta-Learning Architecture and Algorithms

'Repeater

Distributor scheme

CV distributor

Training data

—_
Q—Liaining data

Test data

Distributor scheme

CV distributor

Training data

O
Test data

Training data
Test data

Test scheme

Training data

Test data

Test scheme

Training data
Test data

Test scheme

Training data
Test data

Test scheme

Training data
Test data

Data

Fig. 3. Run time view of Repeater machine configured to perform twice 2-fold CV.
Test schemes are simplified for clearer view—in fact each one contains a scenario to be
repeated within the CV, for example the one of Figure @l

scheme and the second elements to the second scheme. In this example the
repeater machine has 6 submachines, each having further submachines.

3.1 Schemes and Machine Configuration Templates

When configuring complex machines like the repeater in Figure B} it is impor-
tant to be provided with simple tools for machine hierarchy construction. To
be properly defined, the repeater needs definitions of two schemes: one defining
the distributor (i.e. the machine providing training and test data for each fold)
and one to specify the test performed in each fold (Figure M shows an example
test scenario, where kNN (k-nearest neighbors [25]) and SVM (support vector

e N
Test scheme
kNN Classification test
> Data
Data Classifie) | (Classifier
SVM Classification test
> Data
/ Data Classifie) | Qlassifier
Training Data)
Test Data

Fig. 4. A test scheme example.

10 N. Jankowski and K. Grabczewski

Feature selection template

H Feature selection
I 1

1

1

1

y 5 Data Data \

)]

/ "Data Feature ranking \ Feature ranking Transformation *
a

Data Transformation

Fig. 5. Feature selection template.

machines [26127]) classifiers are, in parallel, created, trained on the training data
and tested on the test data). At run time the repeater creates and runs the dis-
tributor scheme, and then creates and runs a number of test schemes with inputs
bound with subsequent data series exhibited as distributor scheme outputs.

The repeater’s children are schemes, i.e. machines especially designated for
constructing machine hierarchies. Schemes do not perform any advanced pro-
cesses for themselves, but just run graphs of their children (request creation of
the children and wait till all the children are ready to eventually exhibit their
outputs to other machines).

A machine configuration with empty scheme (or empty schemes) as child ma-
chine configuration (scheme which contain information only about types and
names of inputs and outputs) is called a machine template (or more precisely a
machine configuration template). Machine templates are very advantageous in
meta-learning, since they facilitate definition of general learning strategies that
can be filled with different elements to test a number of similar components in
similar circumstances. Empty scheme may be filled by one or more configura-
tions. The types of empty scheme inputs and outputs defines general type of role
of scheme. For example, the feature selection template, presented in Figure [
may be very useful for testing different feature ranking methods from the point
of view of their eligibility for feature selection tasks. The dashed box represents a
placeholder (empty scheme with defined types and names of inputs and outputs)
for a ranking. In case of ranking the scheme has single input with data and single
output with information about ranking of features. After replacing the Ranking
placeholder by a compatible configuration the whole construct can be created
and run or put into another configuration for more complex experiments.

3.2 Query System

Standardization of machine results management makes the technical aspects of
results analysis completely independent of the specifics of particular machines.
Therefore, we have designed the results repository, where the information may
be exposed in one of three standard ways:

— the machine itself may deposit its results to the repository (e.g. classification
test machines put the value of accuracy into the repository),

Universal Meta-Learning Architecture and Algorithms 11

— parent machines may comment their submachines (e.g. repeater machines
comment their subschemes with the repetition and fold indices),

— special commentator objects may comment machines at any time (this sub-
ject is beyond the scope of this article, so we do not describe it in more
detail).

The information within the repository has a form of label-value mappings.

Putting the results into the repositories is advantageous also from the per-
spective of memory usage. Machines can be discarded from memory when no
other machine needs their outputs, while the results and comments repositories
(which should be filled with moderation) stay in memory and are available for
further analysis.

The information can be accessed directly (it can be called a low level access) or
by running a query (definitely recommended) to collect the necessary information
from a machine subtree.

Queries facilitate collection and analysis of the results of machines in the
project, it is not necessary to know the internals of the particular machines. It
is sufficient to know the labels of the values deposited to the repository.

A query is defined by:

— the root machine of the query search,

— a qualifier i.e. a filtering object—the one that decides whether an item cor-
responding to a machine in the tree, is added to the result series or not,

— a labeler i.e. the object collecting the results objects that describe a machine
qualified to the result series.

Running a query means performing a search through the tree structure of sub-
machines of the root machine and collecting a dictionary of label-value mappings
(the task of the labeler) for each tree node qualified by the qualifier.

For example, consider a repeater machine producing run time hierarchy of
submachines as in Figure Bl with test schemes as in Figure @l After the repeater
is finished, its parent wants to collect all the accuracies of SVM machines, so it
runs the following code:

1 Query.Series results = Query(repeaterCapsule,
2 new Query.Qualifier.RootSubconfig(1, 3),
3 new Query.Labeler.FixedLabellList(" Accuracy"));

The method Query takes three parameters: the first repeaterCapsule is the result
of the CreateChild method which had to be called to create the repeater, the sec-
ond defines the qualifier and the third—the labeler. The qualifier RootSubconfig
selects the submachines, that were generated from the subconfiguration of re-
peater corresponding to path “1, 3”. The two-element path means that the source
configuration is the subconfiguration 3 of subconfiguration 1 of the repeater. The
subconfiguration 1 of the repeater is the configuration of the test scheme (0-based
indices are used) and its subconfiguration 3 is the SVM Classification test. So the
qualifier accepts all the machines generated on the basis of the configuration Clas-
sification test taking Classifier input from SVM machine. These are classification

12 N. Jankowski and K. Grabczewski

tests, so they put Accuracy to the results repository. The labeler FixedLabelList
of the example, simply describes each selected machine by the object put into
the results repository with label Accuracy. Intemi provides a number of qualifiers
and labelers to make formulating and running miscellaneous queries easy and
efficient. As a result we obtain a series of four descriptions (descriptions of four
nodes) containing mappings of the label Accuracy to the floating point value of
the accuracy.

In practice we are usually interested in some derivatives of the collected de-
scriptions, not in the result series being the output of the query. For this purpose,
Intemi provides a number of series transformations and tools for easy creation
of new series transformations. The transformations get a number of series ob-
jects and return another series object. One of the basic transformations is the
BasicStatistics which transforms a series into a single item series containing the
information about minimum, mean, maximum values and standard deviation.
More advanced predefined transformations perform results grouping, ungroup-
ing, mapping group elements and calculate statistics for hypotheses testing in-
cluding t-test, Wilcoxon test, McNemar test etc.

For the purpose of meta-learning we have encapsulated machine qualifier,
labeler and final series transformation into the class of QueryDefinition. Running
a query defined by the three components, in fact means collection of the results
according to the qualifier and the labeler, and transforming the collected series
with the transformation to obtain the final result of interest.

3.3 Task Spooling

Before a machine request is fulfilled, i.e. the requested machine is created and
its process run, the request context is equipped with proper task information
and the task is pushed to the task spooler, where it waits for its turn and for a
free processing thread. The task spooler of our system is not a simple standard
queue. To optimize the efficiency of task running, we have introduced a system of
hierarchical priorities. Each parent machine can assign priorities to its children,
so that they can be run in proper order. It prevents from starting many unrelated
tasks in parallel i.e. from too large consumption of memory and computation
time. As a result, the spooler has the form of tree containing nodes with priorities.

Intemi environment delegates machine creation and running machine pro-
cesses to separate task management modules. Each project can subscribe to
services of any number of task managers executed either on local or remote
computers (see Figure[dl). Moreover subscribing and unsubscribing to task man-
agers may be performed at project run time, so the CPU power can be assigned
dynamically. Each task manager serves the computational power to any num-
ber of projects. Task managers run a number of threads in parallel to make all
the CPU power available to the projects. Each project and each task manager,
presented in Figure[G may be executed on different computer.

A task thread runs machine processes one by one. When one task is finished,
the thread queries for another task to run. If a task goes into waiting mode (a
machine requests some submachines and waits for them) the task manager is

Universal Meta-Learning Architecture and Algorithms 13

(Project 1 h (Task manager 1 h
Task /

| J (. J

rProject 2) (Task manager 2 b

s:jjll;r [Thread 1][Thread 2]

| J . J

Fig. 6. Two projects and two task managers.

informed about it and starts another task thread, to keep the number of truly
running processes constant.

Machine tasks may need information from another machines of the project (for
example input providers or submachines). In the case of remote task managers, a
project proxy is created to supply the necessary project machines to the remote
computer. Only the necessary data is marshaled, to optimize the information
flow.

Naturally, all the operations are conducted automatically by the system. The
only duty of a project author is to subscribe to and unsubscribe from task
manager services—each requires just a single method call.

3.4 Machine Unification and Machine Cache

In advanced data mining project, it is inevitable that a machine with the same
configuration and inputs is requested twice or even more times. It would not
be right, if an intelligent data analysis system were running the same adaptive
process more than once and kept two equivalent models in memory. Therefore,
Intemi introduced machine contexts as formal objects separate from proper ma-
chines. Different contexts may request for the same machine, and may share the
machine.

Constructed machines are stored in machine cache, where they can be kept
even after getting removed from the project. When another request for the same
machine occurs, it can be restored from the cache and directly substituted in-
stead of repeated creation and running. To achieve this, each machine request is
passed to the machine cache, where the new machine configuration and context
are compared to those, deposited in the cache. If unification is successful, the
machine cache provides the machine for substitution.

Another unification possibility occurs between the requests pushed to the task
spooler. Intemi controls unification also at this level preventing from building
the same machine twice.

An illustrative example of machine unification advantages can be a project test-
ing different feature ranking methods. Table [[l shows feature rankings obtained

14 N. Jankowski and K. Grabczewski

Table 1. Feature rankings for UCI Wisconsin breast cancer data.

Ranking method Feature ranking

F-score 6327184509
Correlation coefficient 326718459
Information theory 2367581409
SVM 613794852
Decision tree (DT), Gini 2 6 81547 39
DT, information gain 261734859
DT, information gain ratio 2 6 1 57 4 3 8 9
DT, SSV 261874539

for Wisconsin breast cancer data from the UCI repository with eight different
methods: three based on indices estimating feature’s eligibility for target pre-
diction (F-score, correlation coefficient and entropy based mutual information
index), one based on internals of trained SVM model and four based on decision
trees using different split criteria (Gini index, information gain, information gain
ratio and SSV [2§]). To test a classifier on all sets of top-ranked features for each
of the eight rankings, we would need to perform 72 tests, if we did not control
subsets identity. An analysis of the 72 subsets brings a conclusion that there
are only 37 different sets of top-ranked features, so we can avoid 35 repeated
calculations.

In simple approaches such repetitions can be easily avoided by proper ma-
chine process implementation, but in complex projects, it would be very difficult
to foresee all the redundancies (especially in very complicated meta-learning
projects), so Intemi resolves the problem at the system level by means of ma-
chine unification.

To read more about Intemi please see [29/30/3T32/33].

4 Parameter Search Machine

One of the very important features of meta-learning is the facility of optimization
of given machine configuration parameters, for example, the number of features
to be selected from a data table. Parameter optimization may be embedded in
the algorithm of given learning machine or the optimization may be performed
outside of the learning machine. In some cases, from computational point of view,
it is more advantageous to realize embedded optimization—by implementing
optimization inside given learning process. However it is rather rare and in most
cases the optimization must not be realized in the embedded form without loss
of complexity and time of optimization.

As presented in previous sections, in so general purpose system, the machine
devoted to optimize parameters of machine configurations must be also very
general and ready to realize different search strategies and must be open to
extensions by new search strategies in feature. The new search strategies are

Universal Meta-Learning Architecture and Algorithms 15

realized as new modules for optimization machine and extend the possibilities
of searching in new directions.

Presented parameters search machine (PSM) can optimize any elements of
machine conﬁguratio. The optimization process may optimize any elements
of configuration and any element of subconfigurations (including subsubconfig-
urations etc.). Also subelements of objects in (sub-)configurations can be opti-
mized. This is important, because so often, machines are very complex and their
configurations are complex too, then the elements of optimization process are
sometimes deeply nested in complex structures. Thus, a mechanism of pointing
such elements is mandatory in flexible optimization definition. The search and
optimization strategies are realized as separate modules which realize appro-
priate functionality. Because of that, the search strategies are ready to provide
optimization of any kind of elements (of configurations) even the abstract (amor-
phic) structures can be optimized. Such structures may be completely unknown
for PSM, but given search strategy knows what to do with objects of given struc-
ture. Search strategies provides optimization of a single or a set of configuration
elements during the optimization process. It is important to notice that in so
general system, sometimes even changing simple scalar parameter, the behavior
of machine may change very significantly.

The PSM uses test procedures to estimate the objective functions as the
quality test to help the search strategy undertake the next steps. The definition
of such test must be realized in very open way to enable using of PSM to optimize
machines of different kinds and in different ways.

Such general behavior of MPS was obtained by flexible definition of configu-
ration of MPS combined with general optimization procedure presented below.
Let’s start the description of configuration of MPS. The MPS configuration con-
sists of (not all elements are obligatory):

Test Template: It determines the type of test measuring influence of the pa-
rameters being optimized to the quality of the resulting model. The test
template may be defined in many different ways and may be defined for
different types of problems. The most typical test used in such case for the
classification problems is the cross-validation test of chosen classifier (some-
times classifier is defined as complex machine). This is a mandatory part of
configuration.

Path to the final machine: Variable PathToFinalConfigurationlnTemplate in
the code presented below, defines a place (a path) of subconfiguration in the
test template, which will become the final configuration machine of MPS.
For example, in the case of optimizing a classifier this path will point to the
classifier in the test template and after optimization process based on con-
figuration pointed by this path in final configuration, the final configuration
of classifier will be extracted, and finally the MPS will play the role of the
classifier (which means that this classifier will be an output of the MPS on
finish). This parameter is not obligatory. If this parameter is not defined in

1 It is possible to optimize single or several parameters during optimization, sequen-
tially or in parallel, depending on used search strategy.

16 N. Jankowski and K. Grabczewski

configuration of MPS, the MPS will return just the final (optimized) config-
uration as the result of the optimization procedure.

Query definition: For each machine configuration created in the optimization
procedure (see below) the quality test must be computed to advise further
process of optimization and final choice of configuration parameters. The
query is realized exactly as it was presented in Section The test template
(for example cross-validation) will produce several submachines with some
results like accuracy, which describe the quality of each subsequent test. The
query definition specifies which machines (the machine qualifier) have to be
asked for results and which labels (the machine labeler) provides interesting
values to calculate the final quantity. As a result, series of appropriate values
are constructed. The last element of query definition defines how to calculate
the result-quantity (single real value) on the basis of previously obtained
series of values. Query definition is obligatory in MPS configuration.

Scenario or ConfigPathToGetScenario: These are two alternative ways to
define the scenario (i.e. the strategy) of parameter(-s) search and optimiza-
tion. Either of them must be defined. If the scenario is defined, then it is a
direct scenario is defined directly. If the path is defined, it points the con-
figuration which is expected to support auto-reading of the default scenario
for this type of configuration.

The scenario defined within the configuration of PSM determines the course of
the optimization process. Our system contains a number of predefined scenarios
and new ones can easily be implemented. The main, obligatory functionalities
of the scenarios are:

SetOptimizationItems: each scenario must specify which element(-s) will be
optimized. The items will be adjusted and observed in the optimization pro-
cedure. This functionality is used at the configuration time of the scenario,
not in the optimization time.

NextConfiguration: subsequent calls return the configurations to be tested.
The PSM, inside the main loop, calls it to generate a sequence of config-
urations. Each generated configuration is additionally commented by the
scenario to enable further meta-reasoning or just to inform about the di-
vergence between subsequent configurations. The method NextConfiguration
returns a boolean value indicating whether a new configuration was pro-
vided or the scenario stopped the process of provi