
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/300013561

Streaming Model Transformations By Complex Event Processing

Conference Paper · September 2014

DOI: 10.1007/978-3-319-11653-2_5

CITATIONS

22
READS

338

3 authors:

Some of the authors of this publication are also working on these related projects:

MONDO Collaborative Modeling View project

Viatra and EMF-IncQuery View project

Istvan David

Université de Montréal

28 PUBLICATIONS 246 CITATIONS

SEE PROFILE

István Ráth

Budapest University of Technology and Economics

70 PUBLICATIONS 1,575 CITATIONS

SEE PROFILE

Daniel Varro

Budapest University of Technology and Economics

223 PUBLICATIONS 6,017 CITATIONS

SEE PROFILE

All content following this page was uploaded by Istvan David on 13 October 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/300013561_Streaming_Model_Transformations_By_Complex_Event_Processing?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/300013561_Streaming_Model_Transformations_By_Complex_Event_Processing?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MONDO-Collaborative-Modeling?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Viatra-and-EMF-IncQuery?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-David-2?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-David-2?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Montreal?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-David-2?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-Rath?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-Rath?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Budapest-University-of-Technology-and-Economics?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-Rath?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Varro?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Varro?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Budapest-University-of-Technology-and-Economics?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Varro?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Istvan-David-2?enrichId=rgreq-f512c713acaf9ee7d9bb51b97f05ae60-XXX&enrichSource=Y292ZXJQYWdlOzMwMDAxMzU2MTtBUzo0MTY2MzkyMzAyMDE4NThAMTQ3NjM0NTk0MjA0Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Streaming Model Transformations
By Complex Event Processing?

István Dávid1, István Ráth1 and Dániel Varró1,2,3

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

Magyar tudósok krt. 2., 1117 Budapest, Hungary
davidi@inf.mit.bme.hu, {rath, varro}@mit.bme.hu

2 DIRO, Université de Montréal, Canada
3 MSDL, Dept. of Computer Science, McGill University, Montréal, Canada

Abstract. Streaming model transformations represent a novel class of
transformations dealing with models whose elements are continuously
produced or modified by a background process [1]. Executing streaming
transformations requires efficient techniques to recognize the activated
transformation rules on a potentially infinite input stream. Detecting a
series of events triggered by compound structural changes is especially
challenging for a high volume of rapid modifications, a characteristic of
an emerging class of applications built on runtime models.
In this paper, we propose a novel approach for streaming model transfor-
mations by combining incremental model query techniques with complex
event processing (CEP) and reactive (event-driven) transformations. The
event stream is automatically populated from elementary model changes
by the incremental query engine, and the CEP engine is used to identify
complex event combinations, which are used to trigger the execution of
transformation rules. We demonstrate our approach in the context of
automated gesture recognition over live models populated by Kinect
sensor data.

Keywords: streaming model transformations, complex event process-
ing, live models, change-driven transformations

1 Introduction

Scalability of models, queries and transformations is a key challenge in model-
driven engineering to handle complex industrial domains such as automotive,
avionics, cyber-physical systems or ubiquitous computing. The maintenance and
manipulation of large models identifies unique scenarios addressed by a novel
class of model transformations (MT) to overcome the limitations or extend the
capabilities of traditional (batch or incremental) MT approaches.

? This work was partially supported by the CERTIMOT (ERC_HU-09-01-2010-0003)
and MONDO (EU ICT-611125) projects partly during the third author’s sabbatical.

Change-driven transformations [2] consume or produce changes of source and
target models as their input or output models to enable transformations over
partially materialized models and to reduce traceability information. Streaming
transformations are defined [1] as a “special kind of transformation in which the
whole input model is not completely available at the beginning of the trans-
formation, but it is continuously generated.“ An additional class of streaming
transformations aims to tackle huge models by feeding a transformation process
incrementally (keeping only a part of the model in memory at any time).

In the current paper, we identify and address a novel class of streaming trans-
formations for live models where the models themselves are not necessarily huge
or infinite, but they change or evolve at a very fast rate (for instance, 25 times
per second), and it is the stream of model changes that requires efficient process-
ing. We propose a novel technique for streaming transformations to process these
event streams in order to identify a complex series of events and then execute
model transformations over them in a reactive way.

Our contribution includes a domain-specific event processing language for
defining atomic events classes (from elementary or compound model changes
using change patterns [2]) and combining these events into complex patterns
of events. We also propose a general, model-based complex event processing
architecture with a prototype engine Viatra-CEP to process rapidly evolving
event streams. We also include an initial scalability assessment of the framework
on a live model transformation scenario.

Our approach keeps the advantages of change-driven transformation as mod-
els can be partially materialized, since the processed event stream carries over
only few relevant contextual model elements but not the models themselves. In-
stead, incremental model queries observe the model and publish relevant struc-
tural changes as atomic events in an event stream. Then this stream is processed
by integrating known techniques from complex event processing (CEP) [3] to
identify and handle a complex series of events.

In the rest of the paper, in Section 2, we introduce a case study of gesture
recognition over live models used as a running example. The core ideas of our
approach are presented in Section 3 while Section 4 presents an integrated tool
set as a proof-of-concept. We carry out an initial performance of the approach in
Section 5. Finally, related approaches and tools are described in Section 6 and
Section 7 concludes our paper.

2 Case study: gesture recognition by live models

Our approach will be demonstrated on a gesture recognition case study. The
use case is based on our preliminary work [4], presented earlier at EclipseCon
Europe 2012, but without using the framework described in this paper.

In the case study, a human body is observed by optical sensors. The stream
of data from the sensors (Microsoft Kinect [5] in our case) carries the spatial
position of the hands, wrists, knees, etc. This stream is continuously processed
and its data is stored in a live model, technically, an EMF model maintained

via a Java based API [6]. Every time the optical sensors capture a new frame,
the model is updated with the appropriate spatial data. The sensors process 25
frames per second, resulting in 25 model update transactions each second. The
complexity of the scenario arises from the frequent changes the model undergoes.
Executing model transformations on such a model poses several problems, since
it would become obsolete quickly after being loaded into the memory. Moreover,
model update transactions affect multiple model elements.

Fig. 1: Excerpt from the domain meta-
model. [6]

Figure 1 shows an excerpt from
the domain metamodel [6], contain-
ing the head and the right arm. Sim-
ilar metamodel elements describe the
other three limbs of the body.

In this case study, we aim at rec-
ognizing a gesture in order to control
a PowerPoint presentation with it. On
the recognized gesture, the presenta-
tion advances to the next slide, there-
fore the gesture is referred to as the
forward gesture. In our presentation
[4] there is also a backward gesture to
move back to the previous slide.

As illustrated in Figure 2, the for-
ward gesture consists of two postures:
the forward start and the forward end.
To recognize the gesture, the series of
these two postures needs to be iden-
tified. Postures are considered as cer-
tain states of the body, which are de-
scribed with a range or interval of spatial data. For example, the forward start
posture is defined by the right arm being approximately stretched roughly to the
height of the shoulder. Determining whether the arm is stretched is achieved by
continuously measuring the angle between the upper and lower arm and smooth-
ing the resulting stream of spatial data by a moving average transformation [7].

Processing a series of postures could be interpreted as a state machine, in
which the states represent postures and transitions are triggered if a body leaves
the valid range of the state and enters another. For instance, the body initiates
the forward start posture by first entering the posture (forward start found),
then leaving it (forward start lost) after a certain amount of time.

3 Overview of the approach

First, in Section 3.1, we provide a taxonomy (illustrated in Figure 3) on struc-
tural model changes and events (Section 3.1). In Section 3.2 we propose a novel
approach for modeling and processing these changes as complex events in order

(a) Forward start
found.

(b) Forward start
lost.

(c) Forward end
found.

(d) Forward end
lost.

Fig. 2: Body postures with the key context of the human body highlighted.

to support streaming transformations. In Section 3.3, the detection of complex
event processing is briefly discussed.

3.1 A taxonomy of structural model changes

Elementary and compound structural model changes We define ele-
mentary changes as the most basic modifications applied on the model which
cannot be refined into multiple modification steps. For example, in the case
study in Section 2, such an elementary change would be moving the body’s
right hand on the x-axis, since it would require changing only one attribute of a
PositionedElement. (See Figure 1.) Elementary model changes in this case are
handled by the Eclipse Modeling Framework (EMF) [8] and its notifier/adapter
techniques enabled by the EMF Notification API.

Fig. 3: Structural changes vs. events

On the other hand, compound
changes consist of multiple elemen-
tary changes between two states
(snapshots) of the model (called the
pre-state and the post-state). For ex-
ample, if the whole right arm is
moved, the elbow, the wrist and the
hand are moved consequently, i.e.
the change affects multiple model el-
ements. The techniques of change-
driven transformations (CDT) [2]
are capable of identifying compound
structural changes by using change
patterns [2,9,10]. Change patterns ob-
serve the delta between the pre-state
and the post-state irrespective of how those states were reached, thus they ab-
stract from the actual trajectories in the state space.

Atomic and complex events In our work, we consider both atomic and
compound structural changes as atomic events in the event stream. This setup
allows the use of events of different granularity. An atomic event is specified by
its type, a set of model elements passed as parameters and a timestamp. Complex
events are built up from sequences of atomic events and other complex events,
using operators of an event algebra. Common operators enable the definition of
events following other events, mutually prohibited events, or events occurring
within a given time window.

Complex event processing (CEP) [3] techniques provide guidance on how to
evaluate the stream of atomic events in order to detect complex events. Unfor-
tunately, most CEP tools do not integrate well with existing model manage-
ment frameworks (like EMF) and significant programming effort is required to
translate elementary and compound structural model changes originating from
a modeling tool into event types appropriate for a CEP engine.

In our work, we aim at combining the benefits of CDT and CEP resulting in
a novel technique for identifying arbitrarily complex change events of compound
structural changes.

3.2 Changes, events and streaming transformations

In this section, we demonstrate how streaming transformations can be defined
by building upon well-established model query and transformation languages
by elaborating the case study of Section 2. First, model queries will be used to
identify the current state of the model and automatically publish notifications on
relevant state changes in the form of atomic events. Then these atomic events will
be combined into complex events using operators of an event algebra. Finally,
we define transformation rules that are activated by a complex event.

Model queries for structural constraints

Model queries capture structural constraints of a model. In this paper, we employ
the graph pattern language IQPL used by EMF-IncQuery [11]. This choice is
motivated by the high expressiveness of the language and the incremental query
evaluation strategy of EMF-IncQuery, which allows the sending of notifica-
tions upon the change of the result set of queries.

Listing 1 presents the graph pattern depicting the Forward start posture, as
presented in Figure 2a. The pattern is parameterized with the spatial data of the
right arm (consisting of the right hand, the right elbow and the right shoulder);
the head; and the body the previous parts belong to. Accordingly, joins over the
model are defined to describe this relationship in Lines 8-11. The Forward start
posture requires a stretched right arm to be detected, but the arm shall not be
held higher than head level (see Lines 13-14 and 16-17, respectively).

The latter one is a negative pattern call, which prohibits the occurrence of
the rightHandAboveHead pattern presented in Listing 2. The pattern compares
the spatial coordinates of the right hand and the head by their y coordinate. In
Lines 8-9, the y coordinate of the right hand and the head is bound to the RHy

1 pattern ForwardStart(
2 B: Body ,
3 RH: RightHand ,
4 RE: RightElbow ,
5 RS: RightShoulder ,
6 H: Head)
7 {
8 Body.Head(B, H);
9 Body.RightHand(B, RH);

10 Body.RightElbow(B, RE);
11 Body.RightShoulder(B, RS);
12
13 find
14 stretchedRightArm(B, RH, RE, RS);
15
16 neg find
17 rightHandAboveHead(B, RH, H);
18
19 }

Listing 1: ForwardStart posture

1 pattern rightHandAboveHead(
2 B: Body ,
3 RH: RightHand ,
4 H: Head)
5 {
6 Body.RightHand(B, RH);
7 Body.Head(B, H);
8 RightHand.y(RH ,RHy);
9 Head.y(H,Hy);

10
11 check(
12 MovingAverageCalculator ::
13 getCalculator("HY").
14 addValue(Hy). movingAvg <
15 MovingAverageCalculator ::
16 getCalculator("RHY")
17 .addValue(RHy). movingAvg
18);
19 }

Listing 2: rightHandAboveHead

and Hy variables, respectively. The variables are evaluated in a check block in
Lines 11-18 by invoking a Java based MovingAverageCalculator using Xbase
syntax [12]. The details of the rightHandAboveHead pattern are omitted for
space consideration.

Defining atomic events

In order to define atomic events, we propose an event processing language called
the Viatra-CEP Event Processing Language (Vepl). We built upon the result
set of model queries to identify relevant structural changes, i.e. we identify when
a new match is found for a model query or when an existing match is lost. These
compound changes constitute the atomic events in our approach. Formally, an
atomic event is specified as a = (t,P, d) where a.t denotes the type, a.P is a list
of parameters and a.d is a timestamp of the event.

1 IQPatternEvent ForwardStartFound(B: Body)
2 {
3 iqPatternRef:
4 ForwardStart(B, _RH , _RE , _RS , _H)
5 iqChangeType:
6 NEW_MATCH_FOUND
7 }
8
9 IQPatternEvent ForwardStartLost(B: Body)

10 {
11 iqPatternRef:
12 ForwardStart(B, _RH , _RE , _RS , _H)
13 iqChangeType:
14 EXISTING_MATCH_LOST
15 }

Listing 3: Atomic event types

Listing 3 presents two atomic
events reusing the graph pattern
from Listing 1. Pattern FSFound de-
scribes the event when the Forward
start posture is found (Figure 2a),
while pattern FSLost describes the
event when the Forward start pos-
ture is lost (Figure 2b).

Both atomic events are param-
eterized with a Body parameter
(Line 1, Line 8), evaluated at ex-
ecution time. This enables collect-
ing atomic events per body, i.e. to
distinguish between atomic events

based on their source.

Referring to IQPL patterns is a special feature of our language aiming to
seamlessly integrate a language for graph patterns with a language for event
patterns in Vepl. This reference to the IQPL pattern is supported by the
iqPatternRef attribute (Line 2-3, Line 9-10). The parameter list after the IQPL
pattern reuses the input parameter (B: Body). The other parameters are not
specified, as designated by their names augmented with an underscore charac-
ter. (A notation similar to Prolog’s anonymous predicates.) Two similar atomic
events describe the cases in which the Forward end posture is found and lost.

Defining complex events

In the next step, atomic events are combined into a complex event. In Listing
4, the definition part contains the constraints for the complex event, con-
sisting of atomic events in this specific case. The atomic events connected with
the ordered operator (denoted with an arrow). Therefore, this pattern defines a
complex event, in which the referred atomic events are observed in the specific
order. Since atomic events carry information about the appropriate structural
changes, this complex event will occur exactly on the series of postures depicted
in Figure 2. The input parameter of the complex event (B: Body) and its usage
in the definition part ensures that only atomic events originating from the
same body are combined in a single complex event instance.

1 ComplexEvent ForwardGesture(B: Body){
2 definition : ForwardStartFound(B) -> ForwardStartLost(B)
3 -> ForwardEndFound(B) -> ForwardEndLost(B)
4 }

Listing 4: A complex event pattern reusing atomic events from Listing 3.

Complex events are built up from sequences of atomic events and other com-
plex events, using operators of an event algebra. The event algebra of the Vepl
language offers three operators to formalize complex event patterns: the ordered,
the unordered and the timewindow operator. The ordered operator (o) pre-
scribes strict ordering between the events the complex event pattern consists of.
The unordered operator (u) allows the corresponding atomic events to occur
in arbitrary order. The timewindow operator defines an upper limit for the
complex event to be detected, starting from the first atomic event observed in
the particular complex event pattern.

Formally, a complex event pattern C is built inductively from a set A of
atomic events using three operators {o, u,w} as follows:

– Atomic events: Every atomic event a is a complex event e ∈ C.
– Ordered operator: If c1 and c2 are complex events then o(c1, c2) is a

complex event
– Unordered operator: If c1 and c2 are complex events then u(c1, c2) is a

complex event
– Timewindow operator: If c is a complex event and d is a timestamp then

w(c, d) is a complex event

A complex event pattern C is evaluated against a timestamp ordered stream
of observed events denoted as ~En

0 : e0 . . . en with ei = (ti, Pi, di) and ∀j > i :
dj > di. Initially, all ei are atomic event instances. However, during evaluation,
when a complex event instance cj is detected after processing event ei, then cj
is inserted into the stream (with di as the timestamp of the detection) to allow
the detection of depending complex events later. The semantics of the operators
in the event algebra is defined as follows:

– Ordered operator: ~En
0 |= o(c1, c2) iff two events with types corresponding

to c1 and c2 are present in the stream in the given order with the same
parameter binding, i.e. ∃i, j : c1.t = ei.t∧c2.t = ej .t∧ej .d > ei.d∧ei.σ(Pi) =
ej .σ(Pj). The timestamp of o(c1, c2) becomes ej .d.

– Unordered operator: ~En
0 |= u(c1, c2) iff both c1 and c2 are present in

stream in an arbitrary order ~En
0 |= o(c1, c2) or ~En

0 |= o(c2, c1); The times-
tamp of o(c1, c2) is max(ei.d, ej .d).

– Timewindow operator: ~En
0 |= w(c1, d1) iff exists an event ei in the stream

with timestamp value less then d1, i.e. ∃i : c1.t = ei.t ∧ ej .d < d1.

Defining transformation rules

As the final step to our approach, the actual streaming transformations are
defined. Vepl enables defining model transformations and organizing them into
rules guarded by the previously defined complex event patterns. In principle,
an arbitrary transformation language can be used as an action language (e.g.
Xtend as in our example). All variables are bound when the trigger event is
instantiated are accessible in the action part. Listing 5 shows a rule containing a
model transformation which executes the action defined within the action block
on the appearance of the ForwardGesture pattern, referenced in the event block.

1 Rule transactionRule {
2 event : ForwardGesture(B: Body)
3 action {
4 // acquiring the complex event
5 val observedComplexEvent = activation.observableEventPattern
6 // extracting the parameter
7 val body = observedComplexEvent.B
8 // additional operation to be executed
9 }

10 }

Listing 5: A streaming transformation rule

3.3 Detecting complex events
The event processing algebra, its operators and logical structures are mapped to
a deterministic finite automaton (DFA) based representation, to keep track of
partially and fully matched complex event patterns. As highlighted in Figure 4,
exactly one automaton is generated for every complex event pattern at compile
time. States in the automaton represent the relevant phases of detecting the
complex event pattern, i.e. the different states of the pattern matching process.

Transitions of the automaton identify how the matching process can evolve from
one state to another in accordance with the operators used in the complex event
pattern and the triggering event.

Fig. 4: Mapping between complex event
patterns and the semantic model.

During execution time, tokens rep-
resent the (partial or complete) com-
plex event pattern instances which are
stored in the states of the automa-
ton. If there is a token at a state of
the DFA, and the next event in the
event stream corresponds to the trig-
ger event of an outgoing transition,
then the token is passed along the
transition to the next state, thus the
detection of the complex event enters
a new phase. There may be multiple
tokens flowing in the same automaton
at a time since the next event in the stream may contribute to different parts
of the same complex event pattern according to its context. When a complex
event is detected, a new complex event instance is placed to the event stream
with corresponding type and timestamp.

Event processing contexts specify constraints on how occurrences may be se-
lected when looking for occurrence patterns that match the operator semantics
[13]. Due to space restrictions, the reader is referred to [14] for the details of
complex event pattern detection in Vepl. There we also prove that the au-
tomaton representing the detection cycle of complex events is always finite and
deterministic.

4 Architecture and use of the prototype tooling
In this section, we give an overview of the technological aspects and the tooling
of our approach. First, in Section 4.1 we present an architecture and a prototype
tool Viatra-CEP4 for processing complex events and supporting streaming
transformations. We also present the tool in action along a sample execution
scenario of our case study in Section 4.2.

4.1 Architectural overview
Figure 5 presents the architecture of our streaming transformation framework.
The Model is continuously queried by an Incremental query engine with queries
that are defined using the Query language. This enables not only to efficiently
obtain the match sets of a query, but it also continuously tracks changes of the
model.

Changes in the model are continuously propagated to the query engine through
a notification API, where callback functions can be registered to instance model
4 https://incquery.net/publications/viatra-cep

https://incquery.net/publications/viatra-cep

Fig. 5: Conceptual overview of the approach with our key contributions high-
lighted.

elements that receive notification objects (e.g. ADD, REMOVE, SET etc.) when
an elementary model manipulation is carried out. The framework internally
stores and maintains the partial pattern matches as notifications arrive.

As a query evaluates successfully, it produces a tuple of elements as the match
set. This data is wrapped into atomic change events and published on the Event
stream. The Event stream is continuously processed by a reactive Rule engine,
which handles the triggering of the predefined model transformations.

In order to activate streaming transformation rules guarded by complex event
patterns, the Event stream is also processed by a CEP engine. The engine con-
tinuously evaluates the complex event patterns based on the processed atomic
events. If a complex event pattern is matched, a complex event instance is gener-
ated, published on the event stream and eventually processed by the Rule engine,
which would trigger the appropriate model transformation.

In our prototype tool, a dedicated general purpose CEP engine (called Viatra-
CEP) was developed to support the Vepl language. However, the architecture
can also incorporate the integration of an external CEP engine (such as Esper
[15]) as demonstrated in our preliminary work [4]. The case studies in [4] high-
lighted that significant programming overhead is required to translate structural
changes to appropriate events and define complex event patterns accordingly,
which requires further investigations. Our Viatra-CEP prototype seamlessly
integrates with advanced EMF-related technologies such as EMF models, the
EMF-IncQuery framework [11] for incremental queries and existing transfor-
mation languages and tools.

4.2 Sample execution of the case study
Table 1 summarizes the execution steps triggered by four consecutive snapshots
of the forward gesture.

Posture Triggered execution
P
h
as
e
#
1

FS found

P
h
as
e
#
2

FS lost

P
h
as
e
#
3

FE found

P
h
as
e
#
4

FE lost

Legend

Table 1: Gesture phases and the execution steps triggered.

– Phase #1. The ForwardStart pattern (Listing 1) is found (1) in the model
by the query engine. This results in a new tuple of model elements as a
match set, which data is wrapped into an atomic event by the query engine
and passed to the event stream (2). In Step (3a) the Rule engine processes

the atomic event and if a transformation rule is activated, the appropriate
transformation gets executed. However, since no transformation rules are
associated with event ForwardStart, no transformation rules are activated
at this point. In Step (3b) the CEP engine processes the atomic event as
well and updates the complex event candidates, i.e. the partially matched
complex events.

– Phase #2 and #3. In the next phase, we detect that a match of the
ForwardStart pattern is lost. The same steps are executed as above, only
this time an atomic event of type ForwardStartLost is published on the event
stream and processed by the Rule engine and the CEP engine. In Phase #3,
a ForwardEndFound atomic event is identified and placed on the stream.

– Phase #4. The ForwardEnd pattern is lost and a ForwardEndLost atomic
event is published on the event stream consequently. Now there will be ad-
ditional steps triggered after Step (3b). After having processed the Forwar-
dEndLost atomic event, the CEP engine detects the ForwardGesture complex
event, instantiates the appropriate complex event instance consequently and
publishes it on the event stream Step (4). In Step (5) the Rule engine pro-
cesses the complex event and checks for activated transformation rules. The
rule defined in Listing 5 will be activated and the appropriate action will be
executed in Step (6).

5 Evaluation
To estimate the performance and scalability of our tool, we had to design a semi-
synthetic benchmark based on the use case of Section 2. The reason for this is
that Microsoft Kinect can only detect at most two bodies, and the refresh rate
is a fixed 25 frames per second (FPS), which is easily processed by our CEP
engine.

Evaluation setup. The core of the simulation is a previously recorded real
execution sequence in which the right arm is rotated. A full arm cycle consists of
12 positions, i.e. 12 frames. Every cycle yields exactly one Forward gesture (Fig-
ure 2) composed of the sequence of 4 atomic events; and every cycle also yields
two atomic events considered as noise. This makes 6 atomic events generated for
each cycle.

Our simulations aim at stress testing our CEP prototype, which is carried
out by multiplying this sequence along a different number of bodies in the model.
This part of the benchmark scenario is artificial in the sense that Kinect can
handle at most two bodies, but the actual positions of the bodies remain realistic.

After starting the simulations, we primarily measure the number of detected
complex events per second. From this rate, we calculate the effective processing
rate (i.e. the theoretical upper limit) of the CEP engine measured in frames per
second (FPS). This value is compared to the original FPS rate of the Kinect
sensor. We continue increasing the number of bodies up to the point when the
processing rate is greater than the recording rate.

Summary of results. Table 6 summarizes our results. Rows represent the
individual measurements with respect to the increasing number of bodies Body
count. The next two columns present the throughput of complex events (1/s)
and atomic events (1/s), respectively. The latter is calculated from the former,
since for every complex event to be detected, 6 atomic events are observed (as
discussed above). The number of atomic events in the model denotes how many
atomic events are triggered by elementary or compound model changes per cycle,
i.e. while the right arm makes a circle. This is the number of atomic events
required to be processed in order to achieve the frames-per-second (FPS) ratio
the Kinect sensors work with. Finally, processing speed summarizes the FPS of
our prototype compared to the basic FPS value of Kinect (25). This value is
calculated as the ratio of the Atomic event throughput and the Atomic events in
the model. This ratio is acceptable if it is above 1, otherwise the processing rate
of complex events falls short to the data production rate of the Kinect sensor.

[1/sec] [1/sec] [1/cycle] [x 25 FPS]

1 69.041 414.248 6 69.041

2 63.458 380.749 12 31.729

4 66.094 396.562 24 16.523

8 41.907 251.442 48 5.238

16 35.003 210.017 96 2.188

24 24.220 145.322 144 1.009

25 20.611 123.664 150 0.824

Body

count

Complex event

throughput

Atomic event

throughput

Atomic events in

the model

Processing

speed

Fig. 6: Throughput and the highest processing speed.

As a summary, our measurements show that our approach scales up to 24
bodies in the model (the lowest processing speed above 1) at 25×1.009 FPS.
In order to interpret this value, we need to recall that one body consists of 20
control points each of them containing 6 attributes (see PositionedElements in
Figure 1), from which 2 are actually modified in the simulations. Therefore, for
each body, 40 elementary model changes are triggered in every frame (assuming
that the limbs are not reattached to different bodies).

Handling 24 bodies at a rate of 25×1.009 FPS yields approximately 24000
complex events per second. Based on our measurements (which were carried out
using a 2.9GHz CPU), we conclude that our proof-of-concept implementation
offers promising performance and scalability while it integrates smoothly with
Eclipse based tooling. It should be noted, however, that because of the rather
simple movement profile (only a few coordinates are manipulated), the results
cannot be trivially extrapolated for data streams of real Kinect devices.

6 Related work

We give an overview of various approaches related to our work.

Streaming model transformations. In [1] the authors present streaming
transformations working on a stream of model fragments and elements. In con-
trast to this technique, our approach leverages derived information regarding
the model in the form of change events, which decouples the execution from the
actual model. Consequently, the issues discussed in [1] (e.g. dealing with refer-
ences among model elements and transformation scheduling) are not present in
our case.

The concept of change-driven transformations is proposed in [2] for executing
transformations on change models as input or output. Our approach extends
this approach since identifying complex model changes enables CDTs of higher
granularity and also enables the integration of complex event processing. Live
models used in the current paper are different from living models [9], while the
change pattern formalism is reused from [2], a similar formalism was proposed
in [10]. A formal foundation of infinite models is presented in [16] by redefining
OCL operators over infinite collections. This is complementary problem as the
models themselves are finite in our case, but their lifeline is infinite due to high
frequency model changes.

Complex event processing. Esper [15] is an open source event process-
ing engine. It has been employed in our preliminary work [4], presented at the
EclipseCon Europe 2012. Despite being a high-end CEP engine concerning its
performance and the descriptive power of its language, supporting the scenarios
like those presented in [1] is cumbersome and infeasible.

Other open CEP engines (e.g. StreamBase, Drools Fusion) can also be consid-
ered but integration into an existing MDE tooling remains a significant technical
challenge since defining change patterns and feeding model (change) information
into the engine requires significant programming effort. The integrated approach
presented in this paper (classified as a detection-oriented CEP) overcomes this
issue by providing a language supporting directly referencing graph patterns and
organizing them into complex event patterns.

Processing runtime models. Processing of runtime models may introduce
somewhat related challenges. Incremental model transformations are used in
[17] for efficient runtime monitoring. Song et al. introduced incremental QVT
transformations [18] for runtime models. However, these techniques primarily
focus on obtaining a faithful model of the running system, while they do not
consider event streams or complex event processing over live models.

Context-aware systems [19] introduce novel challenges for model transforma-
tions where not only business-relevant data needs to be processed, but also data
from the context or environment of the system. Our approach could be a feasi-
ble solution to execute model-transformations in a context-aware fashion, e.g. in

cyber-physical systems where environmental data gathered by the sensors could
affect the overall transformation process.

7 Conclusions and future work
In this paper, we identified and addressed a novel class of streaming transfor-
mations [1] for live models where the models themselves are available, but they
evolve at a very fast rate (resulting in thousands of changes in every second).
Elementary model changes (e.g. EMF notifications) as well as derived compound
changes of match sets of change patterns [2] are encapsulated into a stream of
atomic events. This event stream is consumed by complex event processing tech-
niques to identify complex series of events (appearing within a timeframe) and
execute streaming transformations upon their detection.

We proposed a language built as an extension of an existing query and
transformation language with execution semantics, and presented an integrated
model-based complex event processing engine Viatra-CEP to a proof-of-concept
prototype. Initial experimental evaluation over a complex gesture recognition
case study demonstrates the practical feasibility of our approach.

A main advantage of our framework is that models are not required to be
kept in memory during transformation as only the stream of events is processed.
Elementary and compound structural changes are first encapsulated into atomic
changes by incremental model queries. Atomic events contain only the few rele-
vant contextual model elements required to identify complex events and trigger
related transformations for complex event processing. As a result, the time and
structural dimension of changes is kept separated both from a conceptual and a
tooling viewpoint.

Future work and potential applications In the future, we plan to ap-
ply the framework in various domains. Models at runtime (M@RT) [20] aim at
representing the prevailing state of the underlying system. Processing streams
of changes or change events arising from these models, instead of approaching
them with batch or incremental transformations seems to be a natural fit.

Increasing the number of source models might introduce issues regarding the
scalability of a transformation engine, especially when distributed and federated
data sources are required to be handled. Dealing with change events instead
of keeping model fragments from different models in memory, may significantly
simplify this task.

As a primary direction for technical future work, we plan several enhance-
ments to the change pattern modeling language, which currently lacks desirable
features, such as branching patterns [21], negative patterns and temporal al-
gebraic structures [22]. We envisage a general canonical form of event pattern
definitions, which every event pattern could be translated into and would enable
optimization steps prior to the execution.

References
1. Sánchez Cuadrado, J., Lara, J.: Streaming model transformations: Scenarios, chal-

lenges and initial solutions. In Duddy, K., Kappel, G., eds.: Theory and Practice
of Model Transformations. Volume 7909 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2013) 1–16

2. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transforma-
tions. change (in) the rule to rule the change. Software and Systems Modeling 11
(2012 2012) 431–461

3. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (2001)

4. Dávid, I., Ráth, I.: Realtime gesture recognition with Jnect and Esper. Tech
demo at EclipseCon Europe 2012, http://incquery.net/incquery/demos/jnect
Accessed: 2014-07-01.

5. Microsoft Corp.: Microsoft Kinect official website. http://www.microsoft.com/
en-us/kinectforwindows/ Accessed: 2014-07-01.

6. Helming, J., Neufeld, E., Koegel, M.: jnect – An Eclipse Plug-In providing
a Java Adapter for the Microsoft Kinect SDK. http://code.google.com/a/
eclipselabs.org/p/jnect/ Accessed: 2014-07-01.

7. Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis: Forecasting and Control.
Wiley Series in Probability and Statistics. Wiley (2008)

8. Eclipse Foundation: Eclipse Modeling Framework Project (EMF). http://www.
eclipse.org/modeling/emf/ Accessed: 2014-07-01.

9. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., Innerhofer-
Oberperfler, F.: Living Models - Ten Principles for Change-Driven Software Engi-
neering. Int. J. Software and Informatics 5(1-2) (2011) 267–290

10. Yskout, K., Scandariato, R., Joosen, W.: Change patterns: Co-evolving require-
ments and architecture. Software and Systems Modeling (2012)

11. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Szatmári, Z., Varró,
D.: An Integrated Development Environment for Live Model Queries. Science of
Computer Programming (2013)

12. Eclipse Foundation: Xtext 2.6.0 Documentation. http://www.eclipse.org/
Xtext/documentation/2.6.0/Xtext%20Documentation.pdf Accessed: 2014-07-01.

13. Carlson, J.: An Intuitive and Resource-Efficient Event Detection Algebra. http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.9957 (2004) Accessed:
2014-07-01.

14. Dávid, I.: Complex Event Processing In Model Transformation Systems. Master’s
thesis, Department of Measurement and Information Systems, Budapest University
of Technology and Economics (2013)

15. EsperTech Inc.: Esper Official Website. http://esper.codehaus.org Accessed:
2014-07-01.

16. Combemale, B., Thirioux, X., Baudry, B.: Formally Defining and Iterating Infinite
Models. In France, R.B., Kazmeier, J., Breu, R., Atkinson, C., eds.: Model Driven
Engineering Languages and Systems - 15th International Conference, MODELS
2012, Innsbruck, Austria, September 30-October 5, 2012. Proceedings. Volume 7590
of LNCS., Springer (2012) 119–133

17. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model
Synchronization for Efficient Run-Time Monitoring. In Ghosh, S., ed.: Models in
Software Engineering, Workshops and Symposia at MODELS 2009, Denver, CO,

http://incquery.net/incquery/demos/jnect
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
http://code.google.com/a/eclipselabs.org/p/jnect/
http://code.google.com/a/eclipselabs.org/p/jnect/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/documentation/2.6.0/Xtext%20Documentation.pdf
http://www.eclipse.org/Xtext/documentation/2.6.0/Xtext%20Documentation.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.9957
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.9957
http://esper.codehaus.org

USA, October 4-9, 2009, Reports and Revised Selected Papers. Volume 6002 of
LNCS. (2009) 124–139

18. Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Shao, W., Mei, H.: Instant
and Incremental QVT Transformation for Runtime Models. In: Proceedings of
the 14th International Conference on Model Driven Engineering Languages and
Systems. MODELS’11, Berlin, Heidelberg, Springer-Verlag (2011) 273–288

19. Baldauf, M., Dustdar, S., Rosenberg, F.: A Survey on Context-Aware Systems.
Int. J. Ad Hoc Ubiquitous Comput. 2(4) (June 2007) 263–277

20. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10) (2009)
22–27

21. Ben-Ari, M., Manna, Z., Pnueli, A.: The Temporal Logic of Branching Time.
In: Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’81, New York, NY, USA, ACM (1981) 164–176

22. Gabbay, D.M.: Temporal Logic: Mathematical Foundations and Computational
Aspects. Clarendon Press, Oxford (1994)

View publication stats

https://www.researchgate.net/publication/300013561

	Streaming Model Transformations By Complex Event Processing
	1 Introduction
	2 Case study: gesture recognition by live models
	3 Overview of the approach
	3.1 A taxonomy of structural model changes
	Elementary and compound structural model changes
	Atomic and complex events

	3.2 Changes, events and streaming transformations
	Model queries for structural constraints
	Defining atomic events
	Defining complex events
	Defining transformation rules

	3.3 Detecting complex events

	4 Architecture and use of the prototype tooling
	4.1 Architectural overview
	4.2 Sample execution of the case study

	5 Evaluation
	Evaluation setup.
	Summary of results.

	6 Related work
	Streaming model transformations.
	Complex event processing.
	Processing runtime models.

	7 Conclusions and future work
	Future work and potential applications

