
Examples of SingularityNET AI Service

Assemblages

Nil Geisweiller

November 4, 2022

1 Introduction

This document goes over a list of potential AI service assemblages that could
be used as test cases for the next phase. Nearly all AI services involved already
exist on the SingularityNET platform.

2 AI Services Assemblages

Each assemblage is shown with:

1. a flowchart, arrows representing the flow of information between AI ser-
vices represented as blue boxes;

2. a type signature using types provided by an imaginary possible future
version of the AI-DSL, for now expressed in Idris;

3. optionally an implementation of such assemblage, again expressed in Idris.

2.1 Recognize Emotion of Hand Written Text

Let’s begin with an assemblage of two services to recognize the emotion of hand
written text. Given an image of handwritten text, it first turns it into a string
of text, then recognize an emotion from that.

handwritingEmotionRecognition : HandWriting -> Emotion

handwritingEmotionRecognition = emotionRecognition . handWritingToText

The type HandWriting could be specialized type of image and Emotion could be
a category, or possibly categorical distribution, of emotions. The composition
operator . can be used for the implementation given the simplicity of the
assemblage.

1

2.2 Topic Analysis of Speech

speechTopicAnalysis : Speech -> Topic

speechTopicAnalysis = topicAnalysis . speechToText

Speech could be a special type of sound and Topic a special type of text, or
maybe category, or categorical distribution, of topics.

2.3 Topic Analysis of Text from Any Language

This assemblage is simply doing topic analysis but for any language by trans-
lating the input text into English and the output topic back into the original
language.

anyLanguageTopicAnalyzer : Text -> (l : Language ** Topic l)

anyLanguageTopicAnalyzer = ?h

anyLanguageTopicAnalyzer' : Text l -> Topic l

anyLanguageTopicAnalyzer' = ?h

We offer two definitions:

1. anyLanguageTopicAnalyzer: corresponding exactly to its flowchart;

2. anyLanguageTopicAnalyzer’: corresponding to that flowchart without
language detection.

There is an interesting use of dependent types here. In the first definition,
anyLanguageTopicAnalyzer, a dependent pair is used to return the recognized
language then passed to Topic, here a parameterized type, to specify its lan-
guage. In the second definition, anyLanguageTopicAnalyzer’, a type variable
is used to express the guaranty that the language of the output topic is the same
as the one of the text.

2.4 Recognize Emotion from Speech

That assemblage combines a Speech Emotion Recognition service with a sub-
assemblage of speech-to-text and text-emotion-recognition services. The idea is

2

that such assemblage would improve the performance of emotion recognition by
combining different services and aggregating their results.

speechEmotionRecognizer : Speech -> Emotion

speechEmotionRecognizer = ?h

2.5 Turn an English Song into a Chinese Song

This assemblage aims at turning an English song into the same song but sang
in Chinese.

englishSongToChineseSong : Song English -> Song Chinese

englishSongToChineseSong x = let (enSing, accomp) = Spleeter x

enLyrics = toText enSing

chLyrics = toChinese enLyrics

notes = toMidi enSing

chSing = chineseSing notes chLyrics

in accomp + chSing

Spleeter : Song l -> (Singing l, Intrumental)

Spleeter song = ?h

Note the use of the parameterized type Song that could be a specialized type
of audio, a song in a given language. The implementation involves the let

construct. There are certainly ways to replace that by something purely com-
positional, something we may want to consider to make the AI-DSL language
more composition friendly. In addition we provide an example of type signature
of the AI service Spleeter, using dependent types again.

3

All services involved in that assemblage with the exception of toMidi exist
on SingularityNET. To create toMidi we have however found a number of open
source projects that could potentially be used

• https://basicpitch.spotify.com (Apache license);

• https://github.com/NFJones/audio-to-midi (MIT license);

• https://aubio.org/ (GPL license);

• https://wave2mid.sourceforge.net/index-en.html (unknown license);

• https://github.com/justinsalamon/audio to midi melodia (unknown license);

• https://github.com/bill317996/Audio-to-midi (MIT license);

• https://github.com/emredjan/audio-to-midi (unknown license)

• https://github.com/sbaeunker/audioToMidiConverter (GPL license)

3 conclusion

The type signatures are fairly simple in these examples, they could of course
be made more sophisticated, or additional properties could be added. These
aspects are important and have been previously explored to some degree. But
they will likely not be the main focus of the next phase, so are left out or
simplified for now. The purpose of the next phase will be to build a rudimentary,
yet working from end-to-end, AI-DSL prototype.

4

https://basicpitch.spotify.com
https://github.com/NFJones/audio-to-midi
https://github.com/NFJones/audio-to-midi
https://wave2mid.sourceforge.net/index-en.html
https://github.com/justinsalamon/audio_to_midi_melodia
https://github.com/bill317996/Audio-to-midi
https://github.com/emredjan/audio-to-midi
https://github.com/sbaeunker/audioToMidiConverter

	Introduction
	AI Services Assemblages
	Recognize Emotion of Hand Written Text
	Topic Analysis of Speech
	Topic Analysis of Text from Any Language
	Recognize Emotion from Speech
	Turn an English Song into a Chinese Song

	conclusion

