
International Workshop on Artificial intelligence for industrial Applications 1988

TOOLS FOR ADDING KNOWLEDGE T O THE CYC LSKB

Mary Shepherd
Microelectronics and Computer Technology Corporation

3500 West Balcones Center Drive
Austin, Texas 78759

US A

Abstract

The CYC Project is a ten-year research project now
in its fourth year at MCC in Austin, Texas. Its goal in
to build a large, real-world knowledge base. This type of
knowledge base is necessary if AI is going to overcome the
problems in knowledge acquisition and of brittleness that
currently h i t the strength and the breadth of AI pro-
grams. Knowledge is entered into the system by knowl-
edge enterers whom we call ‘Cyclists,” using the CYC
user interface. The CYC interface is not designed for the
naive or casual user, rather it is designed to enhance the
productivity of the expert.

The paper traces the history of the interface, and ex-
plains how the current tools allow the Cyclist to add
knowledge effectively. It also discusses the knowledge
server architecture which allows several Cyclists to work
on the knowledge base simultaneously.

Knowledge Representation

Information in CYC is stored as “frames.” Each frame, or
“unit,” is comprised of slots and the values for those slots. There
are separate units that represent each kind of slot, function, and
problem solving method, as well as each domain-level or object-
level concept in the system.

This means that CYC is self-referential in the same way that
a dictionary is self-referential. However, unlike a dictionary,
the CYC system will have a unit for each separate meaning of
each word. For instance, consider the English word “bank.”
There will be a unit for each of the concepts: monetary bank,
river bank, cloud bank, the bank of a curve, a bank in billiards,
etc. This type of disambiguation enables us to cleanly represent
knowledge about each distinct concept.

Also, unlike a dictionary, there will be a CYC frame for each
important concept even if no single word names it. Already,
many CYC concepts can not be described by a single word in
English-or any other natural language (e.g., CompositeTangi-
ble&lntangibleObject. TheUnitedStatesDuringAnElectionYear).

We envision CYC circa 1994 as containing all the knowledge
that is implicitly and explicity found in a one volume desk en-
cyclopedia. This includes not only the information explicitly
stated in each article, but, more importantly the information
that the person who wrote that article expected that the reader
would already know.

If one saw the statement: “Hirohito is the emperor of Japan,”
then one would consider the following questions: Has Hirohito
always been Emperor of Japan? Has the Emperor of Japan al-
ways been Hirohito? Will Hirohito always be Emperor of Japan?
Has Japan always had an Emperor? Is Hirohito a citizen of the
land that comprises Japan, or the Japanese Government? As
a person with knowledge of the world, you can answer these
questions. In order for CYC to answer them the system must
be provided with information about Japan, Hirohito, emperors,
countries, the average life span of a human being and a coun-
try and a form of government, and other such obvious facts not
specifically stated in an encyclopedia.

Some of this information is simple common sense, or conscn-
sus reality, which the writer of the article felt safe in assuming
the reader would know. For instance, Japan is comprised of the
people who arc citizens of Japan, the land that comprises Jnpn~l.

and the Government of Japan. Each of these facets change over
time. The number of Japanese citizens changes daily. There
have been times when Japan has controlled more land and times
when it has controlled less. The Government of Japan is not the
same now as i t was 100 years ago. To represent all of this we
began by creating a unit named Japan. That unit has references
to every other unit tha t has a relationship t o Japan. For in-
stance, two of the entries in the value of the capitalcity slot on
the unit Japan are CityOfEdo and CityOffokyo. One of the his-
toriclncarnations of the CityOfEdo is CityOfEdo1603 and one of
the historiclncarnations of the CityOffokyo is CityOfTokyol988.
Therefore, if asked a question about the capital of Japan in
the year 1603, CYC would know the city being referred to was
Edo. If asked about the Emperor of Japan, CYC would need to
know--or guess-which year the question refers to.

In short, CYC is based on concepts, not on words. Most
of the units in the system will deal with complex multi-word
concepts. We have found this to be a difficult or surprising
notion for many people to grasp. Therefore, it has been much
more diEcult than we had assumed it would be to find knowledge
enterers: people who are able to look at the world and translate
it into CYC concepts. It has been especially diEcult to identify
people who are able to recognize the consensus reality (implicit
facts) assumed by the author of an article so that this essential
knowledge could be included during knowledge entry.

Knowledge Entry

Cyclists interact with the system using the Unit Editor. The
Unit Editor (UE) is a context-driven browser/editor for the CYC
Knowledge Base (KB). There are more than 50 possible editing
operations in the system at present which are invoked in sev-
eral different ways: menu choices, keyboard-accelerators, control
keys or mouse clicks, and combinations of keyboard/control keys
and mouse clicks. For the convenience of the Cyclists, there is
more than one command for almost every o eration in the s y s
tem; for example, typing :rename, hitting *I-=, and
clicking the mouse on the RENAME UNIT option in the command
menu all do the same thing. UE allows the Cyclist t o view or edit
the existing set of units and slots, with the capability of saving
locally (on a satellite machine) or globally (on the ICuowledge
Server) any changes made to the KB.

Each Cyclist has a Symbolics lisp machine consisting of a
1024 X 1024 bit mapped Black & White monitor, a color mon-
itor, 30 megabytes (6 megawords) of RAM memory, and 360
megabytes of fast disk, plus access to gigabytes on a central
Symbolics machine used as a file server. While this configura-
tion is sufficient at present, we anticipate that we will saturate
our machines in the near future. Fortunately, by increasing the
amount of memory and disk in each machine, upgrading to the
forthcoming Symbolics Ivory machine, we hope to keep ahead of
the hardware limitations for as long as possible.

The Unit Editor can be thought of as comprising three s e p
arate, asynchronous processes: UE (B&W unit editor), hlUE (a
“museum room” editor on the color or B&W monitor), and the
Backgrouud processes.

UE, the basic BkW frame editor, is where Cyclists spend
most of their editing time (see figure 1). Cyclists may choose
between prcset display coufigirations to accomrnorlntc the dis-

88C~2529~6/88/0000~0365 $1.00 C 1988 IEEE 365

Slots Slot values

Ednor title line

Active
Editing pane.

Editing pane -

Bookkeeping
Slots -

Computable
Slots -

Mouse documentation line Process State Indicator Background Pane/ /
Server status indicator

FIGURE 1. THE DEFAULT UE CONFIGURATION

play to their needs and the task at hand.
The graphical unit editor is called MUE, which stands for

Museum Editor. While UE is text-oriented, MUE is spatially
oriented. This editor gives Cyclists a graphicai representation
of how a chosen unit relates to other units. Each unit displayed
is shown as a labelled rectangle, and related units-each repre-
sented recursively in the same way-are located a t a particular
position within it. For example, all specializations of the c h e
sen unit are located near the bottom of the labelled rectangle
(see figure 2). Color is used to reinforce the type of relationship
being represented (e.g., all the specializations will not only be
located near the bottom of their enclosing rectangle, but on a
color monitor each will also have a blue border). One can run
MUE on the B&W screen, but one then misses the “feel” of run-
ning it in color and (even more importantly) one misses having
the extra screenful of “real estate.”

The Knowledge Server (ICs) is the subsystem which coordi-
nates anioug all the n Cyclists using the system at the same time.
Each user machine or “satellite” has a full version of CYC, and
of the CYC ICB. Each editing operation performed at a satellite
is sent to the server machine, which then broadcasts it to all the
other satellites; tlie server machine also adjudicates among the
satellites in case of collisions.

The Background is a process that propagates the side effects
of each top-level editing operation. If one adds Hirohito as a new
instance of JapanesePerson, UE and MUE will instantly shift to
reflect that. Then the background will start adding inverse links
(e.g., from Hirohito to Japaneseperson), running forivard inlieri-

tances (e.g., assigning default values for various slots of Hirohito,
such as IanguageSpoken: JapaneseLanguage), and forward rules
and demons. Only after the background is finished with all side
effects, and if no errors have occurred on the satellite, will the
operation actually be sent to the KS. If one edits rapidly, and
there are many ramifications to one’s actions, the queue of back-
ground operations can grow, and the system can lag noticably
in propagating all the ramifications and ripples of those oper-
ations. The main reason for the existence of the background
process is to allow the Cyclist to continue entering information
without feeling the delay caused by the propagations.

When other Cyclists’ operations are received from the server
at one’s satellite, they are placed on the background queue, just
as though they were operations that were actually performed by
the local UE.

There is a separate Background Window, which is not nor-
mally displayed. It signals strongly if it needs to report an actual
error or ask the Cyclist questions which require immediate an-
swers, but it will signal gently if it only needs to print a warning
message. If it’s more than a gentle signal, it means the Back-
ground process has halted. When this occurs, editing in the
foreground UE can continue but operations will not be “assimi-
lated” by the ICB. They will simply be added to the queue until
the background lias been attended to. This allows the Cyclist
to continue with the task at hand without the interruption that
would necessarily occur if there were no background process.
.ho ther important reason tlie Background lias its own window
is to provide extra screen “real estate.”

366

Loosenings,

Restrictions

FIGURE 2. DEFAULT MUSEUM EDITOR CONFIGURATION

Unit Editor

Each of the four editing panes displays a separate CYC unit as
rows of slot/value pairs. Most of the editing is done in the editing
panes: viewing the existing state of a unit in the KB, clicking t o
make changes, and seeing the results of those changes appear.
One of the editing panes is always the "Active Pane," and is so
indicated either by being displayed with a thicker border, or in
reversevideo (display choice is based on the value stored on the
uePaneSelect? slot of the unit that represents the Cyclist who is
logged into the machine).

The use of different type fonts increases the amount of in-
formation that can be conveyed to the Cyclist. For instance,
if a slot name appears on a unit in bold font, that slot is in-
herited. If an entry on the value of an inherited slot appears
in italics, the entry is local (it was entered by hand and not
inherited); therefore, it will take precedence over a conflicting
inherited value.

The Server Attention Pane shows two numbers separated by
a diamond. The number on the right is the number of local
operations queued and waiting for the Background to attend
to them. The number on the left is the number of operations
received from the server, if there are any, waiting for the 10-
cal queue to empty so the Background can execute them and
propagate their side effects.

The Background Indicator Pane has a dual role. The pane
flips to reversevideo when the Background process has halted: it
either encountered an error, or has a serious message to commu-
nicate to the Cyclist. The pane grays-out when the Background
has some minor warning to communicate. The other role of the
Background Indicator Pane is to provide information about the
status of a satellite machine relative to the knowledge Server.

The symbols in that pane tell the Cyclist if the ICs is active,
if the satellite machine is transmitting and/or receiving infor-
mation, the number of minutes since the last communitation
between the satellite machine and the ICs, and the length of the
ICs operation queue.

The Server Attention Pane and the Background Indicator
Pane provide much information to the Cyclist in a minimum of
screen space. At a glance, the Cyclist knows the state of the
satellite and server machines. Before this information was avail-
able in UE, Cyclists were always running back and forth between
their satellite and the server t o make sure the connection was
still "up" and the machines were "talking" to one another.

Bookkeeping Slots are slots like mycreator. mylastEditor. my-
CreationTime. myLastEditTime, which are typically generated
by the system, and which generally do not interest the Cyclist.
While writing this paper I realized what a waste of screen space
it is to have the Bookkeeping Slots pane: one usually wants to
see none of them, or, more rarely, all of them displayed on a
unit. The system was changed so that the Bookkeeping Slots
will appear on a unit displayed in one of the editing panes on
demand, and the space dedicated to the Bookkeeping Slots pane
will be devoted to something more useful.

The Computable Slots for the selected unit are listed in that
pane. These are slots whose values may be generated by the
system on demand, but are not cached. They are typically com-
puted from other, more primitive slots. Some examples are:
allGeneralizations. allPartTypes. all% bProcesses.

The Legal Slots pane displays additional slots which the ac-
tive unit could legally have but which it does not currently have.
Since it takes a nontrivial amount of time (up to 10 seconds) to
update the legal slots each time a new unit is selected, the default
is for this pane to be blank. The Cyclist clicks on this pane to

367

have its contents computed and displayed. This makes editing
much faster since many of the editing and browsing tasks do not
involve seletcting or even seeing the list of legal slots for the cur-
rent unit. There is a row of asterisks separating two alphabetical
lists of slots in the Legal Slots pane. The slots listed above the
asterisk in this pane are those slots that usuallyMakeSenseFor
the active unit, and therefore are likely to be needed for tha t
unit. The slots below the asterisks are those that makesense-
For a unit, i.e., they are legal for the selected unit, but will not
be used as frequently as those that appear above the asterisks.
When creating a slot, the Cyclist tells the system the types of
things that slot will makeSenseFor and UsuallyMakeSenseFor.
This pane will probably be moved to a new position soon. One
thought is to place it vertically between the four editing panes t o
shorten the distance the mouse must travel to reach the desired
slots.

The Viewed Units pane lists a stack of units that have been
viewed during the current editing session but are not displayed
in any of the editing panes at the present time. A simple mouse
click will redisplay any of these units. The maximum size of
the Viewed Units list is currently set at 25 unit names, but
that may change. When UE was first written, we thought the
Viewed Units would be very useful. However, over time we have
come to realize that since a Cyclist generally edits one group of
closely related units at a time, the name of the unit most likely
to be needed is almost always on the screen somewhere (e.g., as
an entry in the value of a slot on one of the displayed units). A
command key/mouse click combination will display a unit whose
name appears anywhere on the screen. Also, clicking on the <>
symbol in the editor title line of a displayed unit flips to the unit
previously displayed there. For these reasons then, the Viewed
Units pane is not heavily used.

The Command Menu, is used almost exclusively by new Cy-
clists who have not yet learned the commands. Later, it can
be eliminated from the display, to allow more space to the four
editing panes. Since there is more than one command for almost
every operation, Cyclists tend to develop “pet commands.” For
instance when I want to create a new unit by copying another,
I h ’ it -1 CONTROL-c. There are at least two other commands
that will do exactly the same thing, but I never use them.

The Slot Value pane is where the value of a slot is displayed
in its entirety at the Cyclist’s request. This is useful since each
slot is allotted only one line in an editing pane, and there are
some slots whose entire value is not visible. A mouse click on a
certain position in a value causes all the entries in that value to
be printed in the Slot Value pane (the pane is scrollable if the
value is very large). This pane also functions as the Paste Board
display area. A paste board value can be created from any on-
screen units, slots, whole values, single entries, etc. There are
commands for modifying and editing values in the Paste Board,
and other commands for adding the displayed value to a slot on
a unit displayed in UE.

The type-in window is a Lisp Listener. This is the location
on the UE screen where the Cyclist is able to type new entries,
answer questions, etc. The UE default configuration provides
a small type-in window in order to allow more space for the
editing panes. However, the Cyclist can choose to have a very
large type-in window and only two editing panes; this is useful
when debugging or running a simulation which will cause a lot
of type-out.

um Editor

The precursor of MUE was a directed graph (semantic net), but
it was abandoned after about a year. The space became too
crowded and updating and navigating the knowledge space be-
came too slow and too difficult. We are not locked into MUE as
the only graphical representation for the system: other configu-
rations are in the planning stage.

MUE displays a chosen unit and i ts “neighborhood,” s a

set of labelled, nested boxes, each box representing a unit. On a
system with a color monitor, the outline color for each box indi-
cates the relationship of the unit represented by that box to the
unit represented by the box outside of it. For instance, a cyan
(light blue) box surrounds specializations of its surrounding unit,
whereas a red box surrounds generalizations of its surrounding
unit.

Figure 2 illustrates the MUE configuration used most fre-
quently. It is organized so the units that are restrictions (units
that are more specific in some way than the enclosing unit, e.g.,
specializations) of the unit are displayed in the lower half of the
screen. The loosenings (units that are more general than the
enclosing unit, e.g., generalizations) of the unit are displayed
in the top left quarter of the screen. The top right quarter is
divided in half vertically. The right half of this quarter-screen
area displays a list of the entries in the value of the instances
slot on the unit. The left half of this area displays a row of
other miscellaneous slots that appear on the unit along with the
values of those slots. This is useful when the Cyclist wants to
get a global overview of the neighborhood of a specific unit.

Every unit name on the MUE screen is mouse sensitive; nu-
merals and strings are not mouse sensitive. Many of the unit
names displayed are truncated so they do not over-write other
unit names, but when the mouse cursor is positioned over a
truncated unit name, the name expands.

Each time a new unit is displayed as the chosen unit in MUE
an entry is made on the history list which serves the same pur-
pose as the viewed units list on UE. The history list becomes
an array of memorized positions which can be rapidly traversed.
So, at any moment there is (a) an array of past positions, (b) an
“index” to the currently displayed position (which need not be
at the end of the array, e.g., if the Cyclist was browsing back in
time), and (c) an “index” to the next vacant spot in the array.
The history list is organized with the most recently viewed unit
at the top and the least recently viewed unit a t the bottom.

MUE has editing capabilities that can be used without hav-
ing to move the unit to UE. However, the ability t o shift any
displayed unit to UE is also present. That ability is useful for
more complicated editing, or for viewing slot values not entirely
displayed in MUE due to lack of space.

Using UE

I can not overstress the importance of the copy-and-edit process
as the most efficient method of entering an enormous amount of
new information in a knowledge base. CYC takes good advan-
tage of this method in UE. One simple command begins the
copy process that allows the Cyclist to create a large group
of heavily interrelated units. It begins by copying the given
u n i t s a y Mammal to Reptile. Some slots’ values will remain the
same; (e.g., genls: Animal). Some will result in new units being
created; new units analogous to those that were entries in the
values of Mammal. For instance, the value of the slot zooHous-
ing for Mammal is (SmallMammalHouse. LionHouse. Elephant-
House). The value for the zooHousing slot on the unit Reptile
will be (ReptileHouse), and that new unit will be copied recur-
sively from SmallMammalHouse. When copying a large group
of interrelated units (e.g., Mammal), the system keeps track of
those that have not yet been copied. The copy feature includes
automatic text substitution suggestions based upon the infor-
mation provided by the Cyclist as the copy process progresses.
It also makes guesses at entries for slot values based upon the
entries of that slot on other units of the same class. The cer-
tainty of the guess is reflected in the default choice for that entry
on the copy menu (e.g., the “first choice” box indicates strong
certainty, the “second choice” box indicates moderate certainty,
and the “edit” box indicates strong uncertainty). The copy prc+
cess may be suspended and then restarted from the point at
which it was interrupted without “loss of information.” This
allows the Cyclist to back up to create other necessary units. to

368

check information on a unit not on the screen, or switch to the
background window or MUE, and then continue.

One of the most important considerations when creating a
new unit, is to copy a unit that is as close as possible to the new
unit being created. This saves time, effort, and later corrections.
For instance, to create a unit that represents the fruit “lemons,”
it would be best to copy a unit that represents another citrus
fruit. This is because the unit that represents another citrus will
have many of the same slots that would have to appear on the
unit for lemons, and in most cases even the values for those slots
would be the same. If there were no other units in the system
that represented a citrus fruit, then another type of fruit might
be copied.

One way to find a unit to copy is to use the find-similar-unit
feature. This feature is also helpful when the Cyclist wants to
know if there are any units in the system that have a slot with a
particular entry in its value. Or if there are any units that have
a slot with precisely the same value as that of a slot on a given
unit. Or if there are any units that have all the same slots and
values (not including Bookkeeping Slots) as a given unit, and if
so, what are the names of those similar units.

One of the Cyclist’s tasks is to differentiate units as much
as possible. For instance, if the units Emperor-HeadOfState and
King-HeadOfState had all the same slots and values, the system
would have no way of differentiating them. It is then up to
the Cyclist t o add more information to each of those units until
there is some information not shared.

There are times when a Cyclist discovers that two units have
been created that are similar enough that they represent the
same concept, and there should really only be one of them (e.g.,
the slots peoplelHaveMet and acquaintedwithperson). For this
reason there is a feature in the system that allows two units
to be merged. The Cyclist decides which unit will remain, and
CYC guesses which slots and values will appear on the remaining
unit.

There is also a Subsume feature which allows one unit to
be given the slot values of another similar, but more complete
unit. In other words, if there are two units that would normaIIy
have many of the same slots, and many of the values of those
slots would also be the same or of the same type, but one of the
units is very skimpy and the other is fairly well developed, the
subsume feature is the fastest way to fill out the skimpy unit.

When one begins t o enter units about a new knowledge area,
the first units that should be created are the prototypical units
for all of the “things” that will be represented in that knowledge
area. A prototypical unit is one that describes and represents
a class of things. For instance if a Cyclist were entering in-
formation about bodies of water, the unit River, which is the
prototypical unit for all rivers, would be created before the unit
to represent the MississippiRiver. Because of this, there will be
times when the Cyclist will have to create a unit (e.g., Mississip
piRiver) and yet there is no unit other than River close enough
to use as a template from which to copy. To assist the Cyclist
in such a situation, there is a feature which will create a new
instance of a prototype with all the proper slots.

oops!
With few exceptions, anything done can be undone using the
undo facility. The exceptions involve lengthy operations that
should be performed only after deliberation (e.g., merging two
units or killing a unit). However, since there are so many com-
mands in the system, it is generally easier and faster to use an
editing command to undo a simple mistake than to use the undo
feature. The only time I really want to use the undo feature is
when I want to undo a lengthy operation like merging two units
or killing a unit. Sigh.

If, for some reason, a unit must be deleted or renamed, these
features propagate all side effects throughout the system. Ifcom-
pleting a deletion would create a problem somewhere in the ICB,

the Cyclist is notified and suggestions are provided to eliminate
the possible hazzard.

Knowledge Server
There are already 11 full time Cyclists in the CYC project

and each of them has a Symbolics machine, upon which they
enter knowledge. There is a version of the ICB resident on each
satellite machine. Each of the satellite sachines may be in one of
three modes with respect to the knowledge Server: transmitting
and receiying information; not transmitting but still receiving
information; or not transmitting and not receiving information,
The choice of mode is made by the Cyclist.

When information is entered on one of the transmitting satel-
lites, that information is sent to the Server, which checks the
transmission for consistency and legality. If the transmission
passes all checks, the Server then performs related operations
locally, and then sends them to all the satellite machines that
are in receiving mode. This keeps all versions of the ICB consis-
tent.

When a Cyclist on a nontransmitting satellite decides to
change modes and begin transmitting, the knowledge Server
asks if all changes to the KB on that satellite should become
part of the global KB and, therefore, be transmitted to the
other satellites. If the Cyclist’s answer is affirmative, the Server
runs through the operations in order, checks each for legality,
propagates side effects if there are any, and then sends the op-
erations to all other receiving satellites. If the Cyclist’s answer
is negative, that satellite is isolated until the Cyclist reloads the
system. Isolated in this context means the satellite will be in the
not transmitting and not receiving mode. This is because while
a satellite is not communicating with the Server, other satellites
are, and the KB on the nontransmittingmachines is inconsistent
with them.

Conclusion
While not an interface for the novice, once mastered, the

CYC user interface is a very useful and effective tool with which
to enter large amounts of knowledge quickly and easily. The in-
terface has grown and changed over time and will continue to do
so (this paper caused two changes to be implemented). There
are enhancements (e.g., a different type of graphical editor) be-
ing worked on now that will be implemented within a very short
time. Since the Cyclists who write and implement UE are also
using it, they are responsive to constructive ideas about how to
improve it.

Bibliography

D. Lenat, A. Borning, D. McDonald, C. Taylor, and S.
Weyer, “ICnoesphere: Expert Systems with Encyclope-
dic Knowledge,” Proceedings of the Conference IJCAI-8,
pp.167-169, 1984.

D. Lenat, E. A. Feigenbaum, “On the Thresholds of Knowl-
edge,” MCC Technical Report Number AI-126-87, May
1987.

D. Lenat, M. Prakash, M. Shepherd, “CYC: Using Common
Sense Knowledge to Overcome Brittleness and Knowledge
Acquisition Bottlenecks,” The AI Magazine , vol. 6, no. 4,
pp.65-85, 1986.

369

