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Abstract PAN is a general purpose, portable environment for execut- 
ing logic programs in parallel. It combines a flexible, distributed architecture 
which is resilient to software and platform evolution with facilities for au- 
tomatically extracting and exploiting AND and OR parallelism in ordinary 
Prolog programs. PAN incorporates a range of compile-time and run-time 
techniques to deliver the performance benefits of parallel execution while re- 
taining sequential execution semantics. Several examples illustrate the ef- 
ficiency of the controls that facilitate the execution of logic programs in a 
distributed manner and identify the class of applications that benefit from 
distributed platforms like PAN. 
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w I n t r o d u c t i o n  
PAN is a distributed logic programming system designed to exploit divide- 

and-conquer and speculative parallelism while being resilient to the software and 
hardware evolution that  rapidly makes most parallel programming technology 
obsolete. A major design goal has been to assemble it in a modular way from 
widely used, off-the-shelf components with long term software support. Such a 
system is less likely to become obsolete than if its main components were designed 
and built from scratch. The burden of evolving the system falls mainly on the 
component developers, and the smaller burden of evolving the modular interfaces 
is rather more manageable. This leads to a distributed design using sequential 
Prolog processes glued together by a distributed communications and process 
management infrastructure, PVM. 2~ It allows PAN to run on widely available 
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platforms such as networks of workstations as well as on parallel machines. A 
separable composite interface gives users access to all parts of the system, s~ 

Effective exploitation of a distributed architecture for executing Prolog 
programs also requires significant analysis to determine how best to partition 
up the resolution work load among the processing elements while preserving 
standard execution semantics. This paper describes a practical scheme called 
ADEPT for doing this on PAN in an automatic way. 

Section 2 discusses alternative approaches to logic programming in par- 
allel, while Section 3 presents the PAN approach. Section 4 reviews techniques 
which detect good system configurations and introduces the tools incorporated 
in PAN to detect parallelism. Section 5 explains the granularity controls and 
provides experimental results. Section 6 presents the scheduling scheme and 
Section 7 presents a class of applications that  can run effectively under PAN. 

w Relevant Research 

2.1 AND and OR Parallelism 
Parallelism in Prolog programs can be exploited by evaluating alternative 

solutions of a goal in parallel (OR-parallelism) or by simultaneously executing 
the goals in the body of a clause (AND-parallelism). Where the goals in a 
clause body share variables, schemes for parallel execution (eg 8)) co-ordinate 
their evaluation to avoid the same variable being bound to different values. 24) 
In the generalised version of Independent AND-parallelism (IAP)28) goals are 
deemed independent when no variable conflicts arise and/or  the complexity of 
the search expected by the programmer can be preserved. DeGroot's R A P  
model 1~) combines compile-time analysis with run-time checking to identify goals 
with shared variables and conditionalise their parallel execution. Such methods 
reduce the complexity of identifying parallelism solely at run-time. The RAP- 
WAM TM is a WAM-based implementation of RAP for shared-memory systems. 
Parallel systems like &-Prolog, TM ACE 41) and PDW ) identify independent AND- 
tasks based on RAP. 

Andorra-I 13) and NUA-Prolog 4~ exploit deterministic AND-parallelism 
based on the Andorra Principle ~6) as an alternative to IAP. A pre-processor iden- 
titles parallelisable tasks automatically. Implementations of the DDAS modeP 5) 
also exploit dependent AND-parallelism under conditions that  yield the same 
results as sequential Prolog execution. These schemes have yielded promis- 
ing results but heavily depend on specialised abstract machine technology that 
seems unlikely to attract  long term software support. By contrast ACE adopts 
a copying-based approach to simplify the exploitation of parallel tasks. 

Despite useful recent research in logic programming on program analysis, 
the automatic detection of parallelism has not yet been much used in parallel 
and/or  distributed systems. Systems like ANDOR-I149) Delta-Prolog, 12) CS- 
Prolog is) and PMS-Prolog TM cannot detect parallelism automatically and rely 
on explicit user declarations to exploit parallelism. These declarations require 
significant expertise to employ correctly. 

A major problem with implementing OR-parallelism is how to represent 
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different bindings for the same variable corresponding to different branches of 
the search tree as discussed in Reference) 2) This affects the cost of creating and 
accessing variable bindings either at task creation time, variable access t ime or 
task switching time. The SRI model 5~) used by the Aurora 35'4s) system keeps the 
multiple variable binding in an array in shared memory but incurs non-trivial 
task switching costs. MUSE 1) and Delphi 9) use a distributed-memory space for 
each parallel execution and do not need a representation for the multiple bindings 
of a variable. MUSE transfers an explicit copy of the data  of an executing process 
while the Delphi model reconstructs a process environment by recomputing the 
initial goal, which increases the task creation time. Kacsuk's Version of the 
recomputation model 2s) makes the least changes to the sequential WAM. Multi- 
sequential models OPERA 6) and PloSys ~6) implement TWAM, an extension to 
the WAM, to allow more efficient copy operations in the portion of stacks shared 
between engines. The Reduce-OR model 50) uses an alternative approach to 
exploit both full OR-parallelism and IAP parallelism. Data-join graphs represent 
computations for execution on non-shared memory multi-processors. 

All these approaches re-engineer mainstream Prolog technology. They 
make users dependent on specialised components that are unlikely to be sup- 
ported in the long term and risk becoming rapidly obsolete as mainstream tech- 
nology evolves. They  also tend to introduce new control and I /O  mechanisms 
and fail to support well established I /O predicates and control mechanisms mak- 
ing it laborious and awkward to port existing Prolog code to these platforms. 2~) 

2.2 Granularity of Parallelism 
Distributed execution of logic programs requires a match of granularity 

between a program and the multi-processor, it runs on to exploit its potential for 
performance fully. Processes that  are too coarse-grained for a multi-processor 
system unnecessarily limit its ability to exploit parallelism. Processes that  are 
too fine-grained introduce excessive communication overheads. Granularity anal- 
ysis should enable parallelism to be exploited at the right grain. 

Early proposals 31~s~) investigated the automatic inference of the complexity 
of logic programs but  only under several restrictive assumptions and did not 
model recursive predicates satisfactorily. Tick 52) used weights to quantify the 
grain of tasks. However, recursive predicates presented difficulties because the 
quantity of computation is data-dependent and difficult to determine. More 
recent proposals like ~) model satisfactorily all kinds of predicates but focus 
mainly on measuring the complexity of a process (goal) and have paid little 
attention on how to use this information. 

Debray et al. 15,~6) derive complexity functions for predicates at compile- 
time. Once the size of the data is known at run-time these functions can be 
evaluated. The size is checked against a threshold to determine whether or not 
the goal should be evaluated in parallel. The  scheme models predicates better  
and provides a bet ter  approximation of the weight of recursive predicates. Exper- 
imental results show that  this model can improve performance although it can 
also impair performance when too much information is processed at run-time. 
This model does not take into consideration some important factors. The main- 



376 G. Xirogiannis and H. Taylor 

tenance of size information and the grain size tests add a significant execution 
overhead which is not included in the time complexity estimation. This model 
also disregards the fact that  some predicates may fail or pass the granularity 
tests at compile-time and thus no run-time overhead is associated with them 
(i.e. for non-recursive or very complex recursive predicates). Garcia et al. 19) 

refine most of Debray's techniques but still rely on the basic granularity control 
principle. 

King et al., 32'33) have proposed a different technique for controlling ~he 
granularity of tasks at compile-time. This work is addressed towards concurrent 
languages. They coalesce tasks together if the complexity of their communication 
dominates the complexity of the computation on all sizes of possible data. This 
model does not add any run-time overhead but  it does not consider parallel 
execution of a goal in relation to the execution of other goals (like Debray's 
model) and does not effectively relate the cost of processing a task in parallel 
with the amount of local computation of the remaining tasks. 

Shen et al. 4~,47) propose a granularity control metric based on the idea 
that  if the gain obtained by executing a task in parallel is less than the over- 
heads required to support  parallel execution, then the task is better executed 
sequentially. They argue that  to minimise the overheads associated with parallel 
control, the number of creation points of parallel tasks should be reduced, hence 
the "distance" between the points that  create parallel work should increase. 

Granularity control mechanisms could also be used in parallel systems 
running on shared-memory multiprocessors like NUA-Prolog, Andorra-I, Paral- 
lel NU-Prolog, ANDOR-II, Aurora and Muse to improve performance to reduce 
unnecessary communication. PDP controls the grain size of parallel tasks based 
on Debray's model. It also uses heuristic observations concerning memory usage 
to control the grain of OR-tasks better. Experimental results presented in Ref- 
erence 2) indicate that  performance improves in some cases when the mechanism 
is used to control the grain size of potential parallel tasks. 

2.3 Scheduling Parallel Tasks 
Scheduling may be engine driven where engines look for tasks or task driven 

where tasks look for engines. &-Prolog and Andorra-I TM use the first method. 
The latter comprises a top scheduler (reconfigurer) and 2 sub-schedulers each 
responsible for AND-parallel and OR-parallel execution respectively. The sched- 
ulers partition the engines into flexible teams to distribute parallel tasks. Engine- 
driven approaches are also used by MUSE and Aurora and mainly address the 
problem of efficient scheduling of OR-parallel tasks controlling speculative OR- 
work. 4) 

Such scheduling strategies tend to identify many small parallel tasks at 
run-time. They are designed for platforms with low communication costs and 
fail to allow for the run-time overheads of distributed heterogeneous platforms 
like networks of workstations. The task switches and the search for new work 
depend proportionally on the communication overheads among engines. Engine- 
driven scheduling can not always efficiently relate the actual task load with 
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the composition of each team imposing run-time task and engine migration 39~ 
overheads. 

The communications costs of distributed platforms have been considered 
in the scheduling techniques used in OPERA 6~ and PloSys 36) which exploit 
OR-parallelism. A hierarchy of schedulers run in parallel with the workers us- 
ing an approximate representation of the system's state, while OPERA's  multi- 
sequential computational model does not create more parallelism than is avail- 
able to exploit. Similar multi-sequential models have also been adopted by more 
recent distributed systems like PDP. To improve their performance OPERA and 
PDP significantly re-engineer the WAM by pushing most of the parallel control 
to the engine level and adding primitives to optimise run-time execution. Thus 
they depart from using mainstream Prolog technology on distributed platforms 
and make themselves liable to being marginalised as mainstream technology 
evolves. PDP's  current implementation only uses one scheduler to support the 
number of available engines. This results in a centralised scheduling scheme with 
reduced flexibility that  is a potential bottleneck during distributed execution. 

w Design Choices of PAN 
PAN combines standard SICStus Prolog processes, a model of multiprocess- 

ing, a virtual multiprocessor PVM and a Tc l /T k  user interface to get a systems 
architecture with evolutionary resilience and high portability. PAN relies on its 
automatic paralleliser ADEPT to multiprocess ordinary Prolog programs. PAN's 
model of multiprocessing is control driven, exploits parallelism in a coarse-grained 
way, creates processes statically and communicates by synchronous and asyn- 
chronous message passing using extra primitives added to the Prolog language to 
control message passing and enable synchronisation. 

PAN runs one Prolog on each host of a PVM session. It is presented to 
users under X Window as a multi-headed extension of single processor Prolog 
systems. An interface to each Prolog engine is displayed in a separate X widget 
together with a console window to the PVM, and window based methods are 
supported for simultaneously invoking all engines together. 5~ 

PAN has been implemented under several versions of UNIX and on several 
heterogeneous hardware platforms. PAN uses SICStus Prolog's foreign language 
interface to add a few extra primitives to Prolog to allow program threads to 
pass messages among each other. The main communication primitives are: 

rx(Term, Id) blocks until caller synchronises with transmission from 
Prolog Id and then Term is unified with message sent 

tx(Term, Id) blocks until caller synchronises with receiving Prolog Id 
and then Term is sent 

rxnb(Term, Id) Term is unified with message (to be) sent from Prolog Id 

txnb(Term, ld) sends Term asynchronously to Prolog Id 

Arbitrarily large terms can be passed between Prolog engines. Unbound 
variables in them get freshly renamed on reception. Ordinary Prolog programs 
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are run in parallel on PAN by being transformed into its extended version of Pro- 
log so as to give the same results as with sequential execution. AND-parallelism 
is exploited in a fork-join manner. Tasks are distributed to remote engines and 
the results are returned to the parent engine. To facilitate OR-parallelism the 
algorithm in Reference 43) is implemented in Prolog. This implementation of 
the algorithm (Reference, TM pp. 322) is run in an AND-parallel manner and in 
contrast to Reference 43) contains sequential calls to process (on demand) part  of 
the OR-tree sequentially. AND-OR parallelism is exploited by combining both 
forms of parallelism. Parallel tasks run in AND-parallel, which reduces the com- 
plexity of interfacing between separate schedulers for OR and AND-parallelism 
(e.g. Andorra-I). 

3.1 ADEPT 
The Automatic Distributed Execution of Prolog by Transformations system 61) 

provides a set of tools and facilities that can analyse the configuration state of 
PAN, transform the programs of Prolog applications and can effectively exploit 
parallel execution in a distributed manner on process-based heterogeneous plat- 
forms. The ADEPT system (Fig. 1) runs on top of the PAN system and consists 
of compile-time and run-time facilities that rely on the PAN extensions to con- 
trol parallel computations. It offers automatic parallel program control requiring 
little user intervention, ensures correct results (in terms of sequential execution) 
and exploits good degrees of parallelism. PAN, augmented by ADEPT,  provides 
a distributed platform which requires little (if any) user intervention to exploit 
parallelism efficiently (in contrast to platforms like PEPSys,  3) Delta-Prolog, 12) 
CS-Prolog, 18) PMS-Prolog, 59) etc.), exploits various forms of parallelism, and 
uses standard Prolog technology (unlike OPERA, PDP, etc.). 

Both the System Analysis component and the Program Analysis component 
have been custom-made for PAN. The System Analysis component uses the com- 
mands and tools of PAN (e.g. PVM console, extra  primitives added to SICStus 
by PAN, etc.) as well as heuristics and rules of thumb to identify a suitable plat- 
form configuration to run the applications. The Program Analysis component is 
called ADEPT.  Apart from determinacy analysis (which follows the ideas pre- 
sented in Reference~2)), all other controls and tools (namely freeness analysis, 
call synchronisation graphs, task granularity control, task distribution analysis 
and engine allocation strategy) are either novel products of ADEPT or augment 
existing research in the area of distributed execution of Prolog. The System 
Analysis component is described briefly in Section 4.1 while Program Analysis is 
presented in more detail in Sections 4.2, 5 and 6. 

w Analysis 

4.1 System Analysis 
Analysis mechanisms identify those workstations that  combine high pro- 

cessing capabilities with low workload. System analysis is performed at compile- 
time in the following steps: 
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( S y s t e m  Analysis) ~rogram Analysis~ 

1 
Available System 

Resources 

Estimation of 
Communication Costs 

Load Balancing ] 

Platform 
Configuration ) 

Freeness 
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Call Synehronisation 
Graphs 

) Task Granularity Control 

s T a s kADni: l;isil~: TM ] 

Code Generator 

PAN-Prolog 
Program ) 

s Engine Strategy Allocation [ 

PAN-Prolog 
Execution ) 

Fig. 1 Overview of ADEPT 

�9 Identification of Platform Components 
�9 Estimation of the Available System Resources 
�9 Estimation of Communication Costs 
�9 Load Balancing 

Participating hosts are identified at compile-time, using the facilities of 
the PVM console. Each processor's current workload is measured as the average 
length of its current run-time queues.  The processing capabilities of each engine 
are measured in LIPS while the communication speed of the LAN is measured 
in Mbits/sec. PAN sessions utilise available Prolog engines taking these costs 
into account. The number of LIPS each engine can perform has been measured 
by running quicksort. The maximum rating in LIPS for that  program does not 
change for a given engine if the hardware and software configuration of that  
engine remain the same. The length of the run-time queues is identified using 
the UNIX command uptirne. The current communication speed of the LAN is 
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est imated by running tests that  communicate messages over it. 
PAN's  performance is sensitive to the LAN's  communication traffic and 

to changes in the workload of the engines part icipating in a given session. The 
current implementat ion of the system analyser detects network overheads and 
engine workload mainly at compile-time, hence it may fail to anticipate a sudden 
change during program execution and adjust the configuration of the platform 
accordingly. 

4.2 Program Analysis 
One of the jobs of A D E P T ' s  compile-time analyser is to process Prolog 

programs so that  they can be transformed into some equivalent form to run in 
parallel on PAN. The query-independent analysis offers an automatic  control 
driven approach to exploiting parallelism. The analyser imposes a low degree of 
extra  run-time controls. Under PAN, pure goals are AND-parallel candidates if: 

1. Goals do not share any variables. 
2. Goals share free variables 
3. Goals share variables but these goals are determinateW 

Abstract  program analyses (based on determinacy analysis and freeness 
analysis) determine when these conditions exist. Determinacy Analysis 42) ascer- 
tains the number of times that  a goal can be (re)-satisfied. It  considers the 
worst case where backtracking is exhaustive among independent goals with in- 
dependent variables as arguments.  The analysis calculates the upper bound for 
the determinacy of a conjunction/disjunction from the goals within the con- 
junction/disjunction. Goals with at most one solution are determinate.  Such 
goals do not restrict the search space and they do not generate variable conflicts 
in and-parallel execution. Determinacy analysis is conservative mainly because 
it is performed entirely at compile-time, but it imposes no run-time condition- 
checking overhead. 

Freeness Analysis detects at compile-time goal dependencies based on the 
instantiation state of shared variables. A mechanism 6~ analyses the instantia- 
tion state of variables and classifies shared variables as free, ground, non-free and 
aliases. Free variables remain uninstantiated after the execution of the program. 
Grounding of variables occurs when one of the terms involved in a unification is 
ground. This causes the variables of the non-ground term to become ground too. 
Aliasing can occur when one free variable is unified with another free variable. 
Variables remain free but  any consequent instantiation applied to one of them 
will also be applied to the other. Variables instantiated to non-ground terms 
are said to be non-free. The analyser determines that  shared free variables do 
not restrict the search space of their goals and goals with shared free variables do not 
generate variable conflicts. 

Analysis is performed entirely at compile-time adding no run-t ime 
condition-checking overhead. The mechanism for inferring freeness and sharing 

*~ Th i s  pape r  adop t s  t h e  t e rmino logy  proposed  by Sahlin.42) D e t e r m i n a t e  goals  e i ther  fail 
or succeed once. 
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information in A D E P T  is in a sense similar to the depth-k mechanism discussed 
in Reference. 34) However there is a fundamental  difference. The depth (and the 
fixpoint) of the analysis in A D E P T  is not pre-defined, in contrast to ReferenceJ 4) 
I t  is determined dynamically during compile-time for different types of programs. 
A D E P T  iterates as many  times as is necessary to estimate the instantiation s tate  
of shared variables. The depth of the iteration restricts the depth of the terms 
and then A D E P T  approximates  the behaviour of the variables. On the other 
hand, the mechanism in Reference 34) restricts the depth of the te rms to a fixed 
number first and this restricts the number of iterations. Then it approximates  
the behaviour of the variables. The dynamic nature  of A D E P T  allows greater 
flexibility in the approximation of the behaviour of terms but this on the other 
hand may affect the efficiency of the mechanism. The complexity of Reference 34) 
can be controlled by restricting the depth of terms. This is not the case for 
ADEPT.  Its complexity can grow as the number  of iterations increases. But  it 
is encouraging to know tha t  for the range of applications tested in A D E P T  so far, 
iterations stopped at reasonably small depths, similar to the depth restriction 
imposed by Reference. 34) 

Freeness analysis performed by A D E P T  always terminates.  The  analyser 
estimates if the instantiation s ta te ' :  of shared variables changes in a way tha t  
may affect the search space of goals. This estimation can be calculated in a 
fixed number of iterations. The algorithm iterates (and lets recursive goals 
recurse) as many times as it is necessary to prove that  further iterations will not 
provide any different information as far as the instantiation state of variables 
is concerned. The fixpoint is reached when further iterations do not change the 
instantiation state of shared variables. The analysis is safe in the sense that  
goals classified as independent at compile-time, will never depend on each other 
at run-time (eg. restrict the search space of each other). However, the analysis 
maintains a certain conservatism because it cannot  consider the actual run-time 
instantiations. In this sense, goals classified as dependent at compile-time, may 
not depend on each other at run-time. This is the case when a suitable run- 
t ime query grounds all shared variables, which effectively makes AND-goals with 
shared variables, independent. The accuracy and the effectiveness of the analysis 
performed by ADEPT can be compared with the Share, ~) Free, 38) Linear 37) 
and Gif 7) mechanisms. ADEPT performs as accurately and as effectively as 
these mechanisms. But there are examples in Reference 61) which indicate that 
ADEPT can perform even better. 

Side Effects Flow Analysis is also used at compile-time to detect goal de- 
pendencies and OR-parallel execution restrictions due to the presence of certain 
non-logical Prolog primitives. The main disadvantage of Side-Effects Flow Anal- 
ysis is tha t  it does not allow any predicate to perform speculative OR-work in 
the presence of side-effects in its body. The results of the program analysis per- 
formed so far are recorded in abstract  Call Synchronisation Graphs (CSG) which 
represent sequentiality constraints which are necessary to maintain s tandard 
Prolog semantics. The algorithm 6~ that  generates CSG extends the research 

.2 s h a r e d  v a r i a b l e s  a r e  c l a s s i f i ed  as  free, ground, non-free a n d  aliases 
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in Reference 5s) to encapsulate side-effects flow analysis, determinacy analysis as 
well as freeness analysis. CSG has similar expressive power to UDG. aS) CSG can 
be extended to include run-time conditions similar to CDG. 3s) 

PAN-Prolog programs are able to exploit AND and OR-parallelism. If 
further analysis (section 5) detects that  some form of parallel execution may not 
improve the performance, the run-time engine component (section 6) disregards 
the corresponding transformations to reduce the extra code interpretation and 
processes Prolog programs sequentially. 

w Granularity Control 
The execution of a logic program and query divide naturally into subtasks 

for distributed execution. If this division is carried too far, the benefits of par- 
allel execution are outweighed by the overheads of communication and run-time 
scheduling. One way to deal with tasks that  are too fine-grained is to coalesce 
them into larger grained tasks. The main motivation for controlling grain size is 
to reduce the overheads so that overall execution time will decrease. ADEPT's  
controls 62~ focus on efficiently using the data  gathered by complexity analysis 
programs like CasLog 15~ which estimate the t ime complexity of goals. They 
relate the amount of useful local computation with PAN's communication costs. 

5.1 AND-Parallel Execution 
Consider a clause C :- B1, B2 ....... Bn. Assume that  program analysis has 

determined that  a set (collection) of Bi (written as Gi for convenience) are 
candidates for parallel processing. Let these goals be G1,G2 ..... Gk. Assume that 
PAN employs k engines." Let T(Gm) be an estimate (by CasLog) of the time 
required to process goal Gm locally. Let ~ ] n  represent the processing capabilities 
(as discussed in section 4.1) of engine n. Let the extra time required to process 
g o a l  G m on a remote engine be 

Wlocal - Wremote 
T,at(Gm) = Tcorn(Gm) + Tsc,ed(Gm) + Trt(Gm) + Wrernote :r T(Gm) 

Tla t represents the communication overhead (Tcom), any scheduling cost 
(Tsched), the cost of any run-time granularity test (Trt) and the extra time 

(Wloca l  --  Wremote t ' T(Gm)) 
required to process a task in a slower engine*' \ ~%e-~ote 

Let goal Glocal be such that  T(Qocal) = max{T(Gj): Gj E {G1, ..., Gk}}. 
Goal G~o~aL will be processed locally. 

Basic Granularity Control for AND-parallelism: AND-goal Gi should be executed 
remotely if T(Gtocal)>_Tlat (~i)" 

This granularity control dictates that  in order to execute goal Gi in AND- 
parallel with goal Gtocal, the extra time required to process goal Gi remotely 
should be greater or equal to the time required to process goal Gtocat locally. 
This applies even if T(Q)  < Tlat (Gi) ,  in contrast to Debray and Garcia's proposal. 

*~ Alternatively assume tha t  PAN is able to process all G1,...,Gk in parallel. 
*~ In section 6 we will discuss why all remote  engines are  slower than  the  local engine 



PAN: A Por tab le ,  Para l le l  Prolog:  I ts  Design, Rea l i sa t ion  and  Per formance  383 

The basic granulari ty control for AND-parallelism will improve perfor- 
mance because VQ E {G1 .... , G,oca,-1, G,o~,+l, ..., Gk} that  satisfy the granularity 
control 

TparaHei(G) = max{T(Gioca,), maxi{T,at(Gi) + T(Gi)}}  < 
max{T(G,oca,), maxi{T(G,oca,) + T(Gi)}}  _< 
max{T(G,ocal), T(G,oca,) + maxi{T(Gi)}} < 
T(Glocal) -F maxi{T(Gi)} _< T(G1) + ... + T(Gk) 
= T s e q u e n t i a l ( G )  

The control still holds even if PAN employs less than  k engines *~ because 

T(Gzo~a~)+T(AND-tasks processed locally)_> T(Glocal)_>Tlat(G~). 

Performance may  improve further by distributing every Gi using the rule 
T(Gi) = min{T,at(Gj) : Gj (~ {G~, ..., G,oca,-1, G,oca,+l, ..., Gk}}. This rule may re- 
duce overheads by distributing goals with less communication cost first, hoping 
tha t  goals with considerable communication costs will be processed locally. 

5.2 OR-Parallel Execution 
Consider now a predicate P with clauses Cl,C~ ....... Cn. Assume tha t  a 

program analyser has determined that  P can explore its clauses in OR-parallel 
order. Let T(P) be a t ime estimation of P for a single solution. Let 

Wloca  I - Wremote 
Tlat(Ci) = T c o m ( C i )  + Tsched(Ci) + Trt(Ci) + * T(P) 

n * Wremote 

be the extra  cost for processing P over the head of clause C~ on a remote en- 
gine defined similarly to the AND-parallel controls. Let Clocat be such that  
T(C,oca,) = max {Tudq ) :  q e {(:1, ..., G } } .  

Oloeal will be processed locally. The use of a predicate level directive 
dictates that  either all or no clauses are candidates for OR-parallel execution. 

Basic Granularity Control for OR-parallelism: Clauses of P should be explored in 
OR-parallel if 

1T(p)  > max{T,~t(Ci), i = 1, ..., (local - 1), (local + 1), ..., n} 
n 

The basic control for OR-parallelism ideally should dictate tha t  in order 
to process the clauses of P in parallel T(Clocal)>Ttat(Ci). However, mainly due to 
practical restrictions which make estimating the t ime complexity of Ctocal non- 
trivial, this condition could apply only to non-recursive predicates. To model 
recursive and mutual ly recursive predicates, A D E P T  currently assumes tha t  all 
clauses of such predicates equally contribute to t ime complexity: 

T(Ci) -~ T(C,oca,) -~ -1 T(P) 
[1 

�9 5 A l t e r n a t i v e l y  a s s u m e  t h a t  P A N  is no t  a b l e  to  p r o c e s s  a l l  G1,. . . ,Gk in  pa ra l l e l .  
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This basic control will improve performance because VCi that  satisfy the 
granularity control where VCI E {C1, ..., Gocal-1, Gocal+l, ..., Cn } 

Tpara,,e,(P) -- max{T(Cloca,), maxi{Tlat(Ci) + T(Ci)}} 
1 1  

max{~T(P), maxi{~-T(P)§ T(Ci)}} _< 

1T(p) + max{T(C,)} < 1 T ( p ) +  1T(p) < Tsequential(P) 
H I I  

Performance may improve further (similarly to AND-parallelism) if we 
distribute every C~ using the rule 

T(Ci) = min{T~at(Cj) : C] e {C1, ..., Cn}} 

To make the analysis more accurate, Garcia suggests using follow sets from 
the theory of context free grammars to estimate the complexity of C'. Garcia also 
suggests using clusters of clauses such that  within each cluster clauses are exe- 
cuted sequentially and the different clusters are executed in OR-parallel instead 
of using predicate level parallelism. The program is re-written to generate the 
clusters. This technique may tend to balance the work-load better  in contrast 
to the "all clauses in parallel" directive adopted by ADEPT's  analyser. 

ADEPT's  analysis uses a new control metric to make better use of the no- 
tion of the collection of parallel tasks. The general idea is that  parallel candidates 
should be executed in a distributed manner if the time required to communi- 
cate all but one of the candidates remotely, is less than the time required to 
process the remaining task locally. This metric relates local computation to the 
overheads of executing a set of tasks over the distributed platform which makes 
it different to other proposed control metrics. In contrast, Shen et al. use a 
metric that  compares parallel execution time with the overheads of supporting 
parallelism. They claim that  the execution time of all parallel tasks should be 
considered, while we claim that the execution t ime of the local task suffices. The 
approach by King and Soper coalesces processes together if the complexity of 
their communication dominates the complexity of their computation. Debray et 
al. and Garcia et al. use a metric that  compares the execution time of a parallel 
candidate with the extra cost of handling this candidate in parallel. 

The proposed controls (in many cases) may explore more parallelism than 
other proposed controls. For example, Debray and Garcia's proposal will restrict 
AND-parallelism of an AND-candidate G, if T(G) < T,at(g). ADEPT,  on the 
other hand, will make a more informative decision based on the execution time 
and overheads of the collection of related AND-candidates, by parallelising T(G) 
only if there exists an AND-candidate K (to be processed locally) such that  
T(K) > Tin(g).  Similarly, the analysis by King and Soper might fail to AND- 
parallelise AND-candidate goals G, K if T(G) < Tlat (G) even if Tzat (G) < T (K) .  

The new controls hold regardless of the number of engines employed by 
the distributed platform or the tool or methodology that  estimates the execution 
time. Most of the analysis is performed at compile-time adding little (when 
necessary) run-time tests. If g(n) is a function that  estimates the time complexity 
of local tasks depending on the value of the input size n, the compile-time analysis 
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calculates an integer k, such that  Vn>k, F(n) satisfies the granularity control 
criteria. F(n) is generated by CasLog. 

The analysis partially unfolds loop tests and tests the t e rm sizes but  
only to the point at which the granularity threshold is reached. This  reduces 
overheads. If analysis detects that  goals satisfy the granularity tests at  compile- 
time, then no run-t ime test is added. "~ Run-t ime testing is also par t  of the 
compiled-code, but the scheduler 63) performs any run-t ime checks only when 
there are available engines to improve performance further. 

Using a practical rule of thumb, the clauses of a predicate are consid- 
ered (at compile-time) for exploitation in OR-parallel if they are more than  
k in number (k is set by the implementation, based on tests). The  use of the 
Wloca I - Wremote 

* T(Gm) factor makes the mechanism adaptive to heterogeneous 
Wremote 

distributed platforms like PAN because Tlat is re-adjusted for each engine n. 
The controls generate run-time tests for all possible "local" tasks. This 

may increase the code size, but on the other hand it provides all possible run- 
t ime distribution tests. However, it is fair to say that  this problem may appear  
in other proposals as well. A suitable implementat ion using appropriate  heuris- 
tics can reduce the number  of possible run-t ime tests. Consider the QuickSort 
program (presented in Reference, 44) pp. 56). In terms of PAN-Prolog representa- 
tion the program will be automatically annotated with the granularity controls 
and transformed for AND-parallel execution as follows. 

qsort ([], []). 
qsort ([AIB] ,C) : 

split (B,A, D,E) , 
and_task ( [ [grain (qsort (D, F) , size (E, SIZE) ) , qsort (E, G) ] , 

[grain (qsort (E, G) , size (D, SIZE) ) , qsort (D, F) ] ] ) , 
append (F, [AI G] , C) . 

The expression a n d _ t a s k  ( [Se t1  . . . .  , Se th ]  ) indicates that  one 
(and only one) Se% can be executed in a distributed manner  as long as it satisfies 
the granularity control criteria. The expression [ g r a i n  ( q s o r t  (D, F ) ,  s i z e  
(E, S I Z E ) ) ,  q s o r t ( E , G ) ]  dictates tha t  if s i z e ( E )  > SIZE then 

q s o r t  (D, F) will be executed remotely and q s o r t  (E, G) locally. Similarly, if 
s i z e ( D )  > SIZE then q s o r t  (E,G) will be executed remotely and q s o r t  
(D, F ) locally. 

w Scheduling Parallel Tasks in PAN 
Detecting available system resources at run-time and migrating tasks 

among distributed processors incurs overhead. A traditional task scheduler relies 
heavily on shared resources i.e. shared memory  or the interconnection network 
to perform its functions. As the scale of the distributed platform increases and 
the speed of local computat ion improves, task scheduling becomes increasingly 
frequent but necessary to synchronise the engines. PAN incorporates a mecha- 
nism, which consists of 2 components: 

*~ This is the case for non-recursive predicates or for very complex recursive predicates. 
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1. The compile-time component generates Task Distribution Functions that esti- 
mate the relative difficulty of potential parallel tasks. 

2. The run-time component 63~ provides a task distribution and engine re-allocatio~ 
strategy suitable for heterogeneous distributed platforms. 

The compile-time component reduces the overhead of identifying the dis- 
tribution order of potential parallel tasks. Detailed discussion of this component 
would clutter this paper, therefore the reader is referred to Reference 61) pp: 194- 
228. The general idea behind this component is that  we can use a suitable 
abstract interpreter (e.g. a suitable modification of CasLog) to generate a Task 
Distribution Function, which estimates the number of parallel tasks generated by 
a program and a given goal. It is then "easy" (and in fact of greater value to 
PAN) to estimate the ratio of the number of parallel tasks generated by pairs of 
goals, especially when these goals can be executed in parallel with each other. 
This ratio represents the relative difficulty of parallel tasks, which provides an 
estimate of the number of engines a parallel task may require in comparison 
to other parallel tasks. The relative difficulty dictates a best-first task distribu- 
tion order, which allocates more system resources to difficult tasks first. Task 
Distribution Functions can be particularly useful when estimating the relative 
difficulty of different parallel tasks. Consider the Integer Matrix Multiplication 
benchmark (as presented in Reference, 61) pp. 333) which generates two sets of 
parallel tasks, each set generating two different parallel goals (in total  four dif- 
ferent parallel goals). On the other hand OuickSort (presented in Reference, 44) 
pp. 56) generates a set of two "similar" parallel tasks (in the sense that  both 
parallel tasks call the same clauses). 

6.1 Task Distribution and Engine Re-allocation 
Run-time task distribution and engine re-allocation use a fully distributed 

farmer-worker scheme (chapter 8 6I) ) which generates dynamic task-driven re- 
lations among engines. A hierarchy of farmers and workers is generated which 
corresponds to a hierarchy of goals and sub-goals. Each node in it corresponds to 
a distributed component which consists of a distributed scheduler, its workers and 
a local engine pool. Several distributed and de-centralised scheduling components 
make the model more scalable. 

Engine allocation and team generation are dynamic and flexible in the 
sense that  each farmer may have a different number of workers during program 
execution to adjust to the distribution of tasks. Workers may also become farmers 
on demand to process parallel tasks more effectively. Distributed components 
communicate infrequently to reduce certain overheads. Farmers do not interfere 
with the workers (and their tasks) of other farmers at the same or different level 
of the hierarchy. Engines communicate only through their parent farmer. 

The hierarchy helps the farmers to schedule for a small number of workers 
to improve the efficiency and minimise any bottleneck situations, while reason- 
able control of task and engine migration is achieved at little cost. The main- 
tenance of a distributed pool does not consume much of the engine resources. 
Farmers perform useful program computation as well. The hierarchy reduces 
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task switches (of schedulers used in Aurora) while preserving (to some extent) 
the usual Prolog execution strategy and including some of the attractive charac- 
teristics of MUSE at little extra cost. To help the scheduler reduce speculative 
work ADEP T also incorporates an abort &failure mechanism. 61) 

Best-first scheduling provides a good degree of fair engine distribution and 
work-load balancing. In contrast models that  use "depth-first" scheduling (for 
example Andorra-I) do not always guarantee fair allocation of available system 
resources. Engines under PAN are sorted in a descending order of their process- 
ing capabilities to ensure that  farmers (which both  schedule remote distribution 
and perform local computation at the same time) employ "better" engines than 
their workers. The model distributes both AND and OR parallel tasks uniformly 
without the need for separate schedulers (e.g. Andorra-I). 

This task-driven "7 farmer-worker model of best-first engine re-allocation 
and task re-distribution aims to improve performance by reducing the complexity 
of interfacing among the scheduler and a large number of engines, to manage 
synchronisation bet ter  and also to keep communication overheads low to perform 
better  on distributed platforms. Scheduling control is done at the Prolog level 
and its implementation does not re-engineer the WAM (in contrast to distributed 
systems like PDP and OPERA) which complies with PAiN's design choices. 

The model imposes some overheads which relate mainly to the frequency 
of communication between a farmer and its workers and depend mainly on the 
characteristics of the platform. The bigger the frequency the bigger the over- 
heads. The best frequency to use can be experimentally determined. 

w Performance 

7.1 The Nature of the Experiments 
All programs were run under PAN using SICStus Prolog 3.5 on a vari- 

ety of heterogeneous Sun, Dec and Silicon Graphics workstations on the same 
LAN. The PAN session consisted of engines with different processing capabili- 
ties distributed over three different sub-networks of the LAN, that  are connected 
through gateway hosts. Large input sizes were used in most benchmarks to pro- 
vide long running non-trivial problems to push the controls and the platform to 
their limits. PAN's communication overheads generate large granularity thresh- 
olds, so only large input sizes can illustrate the performance of the proposed 
mechanisms. Each benchmark was run 20 consecutive times under the same 
PAN configuration. However, only the best three runs were taken into account. 
Time was always measured in seconds on the same workstation. Full details can 
be found in Reference. 61) 

7.2 Granularity Control 
The numbers in the following tables represent the performance improve- 

ment (PI) due to the use of the granularity controls presented in Section 5. 

.7 The scheduler initiates only when parallel tasks are generated. Otherwise the Prolog 
engine performs all computations.  
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Table 1 Quick Sort Granularity Control 

List Input Size 
750 1000 2000 

4 25.3 40.7 45.7 
8 31.0 43.0 46.5 
12 46.8 47.5 53.0 
16 48.0 48.7 53.6 

3000 
49.3 
50.6 
52.3 
56.0 

Table 2 Merge Sort Granularity Control 

List Input Size 
750 1000 2000 3000 

4 -3.9 -1.5 -4.1 -10.8 
8 18.2 18.9 22.8 29.8 
12 33.3 35.5 37.8 43.9 
16 37.2 43.2 46.7 50.9 

Given a program, an input goal and a platform configuration, let Twc be the 
average time of the best three out of twenty consecutive runs, required by PAN 
to process that  goal with the granularity controls enabled. Similarly, let TNC 
be the average time of the best three out of twenty consecutive runs, required 
by PAN to process the same goal with the granularity controls disabled. Per- 
formance improvement (Pl) due to the use of the controls is calculated using 

the expression P l -  T N C -  T w c ,  100%. The same PAN configuration was 
TNC 

used in all experiments. 
Consider QuickSort (presented in Reference, 4') pp. 56) and Table 1. The 

controls adapt well to the characteristics of the platform and the nature of the 
benchmark producing parallel tasks of different sizes. The more engines that 
participate in a PAN session, the more AND-tasks are processed remotely. As 
a result the controls prove beneficial ranging up to 56%. The controls are able 
to cope adequately with large test sizes (2000 or 3000 elements) and impose 
small run-time overheads as well. Debray's model provides a speed up of 3% 
under the ROLOG ~~ system using 4 processors and a speedup of 16.2% under 
the &-Prolog system also using 4 processors for the benchmark QuickSort(75). 
Under the PDP system performance does not improve at all when 3 and 15 
processors are used. Performance improves by 17.8% only when 8 processors are 
employed to process QuiekSort(700). Garcia's model improves the performance 
of QuiekSort(1000) by 21% running on a hierarchicat** implementation of &- 
Prolog with 4 processors. 

Consider the MergeSort  benchmark (presented in Reference, ~) pp. 578) 
and Table 2. In this benchmark the controls perform less adequately (but still 
effectively) than in Quicksort. When MergeSort  is run, the controls perform 
non-profitable .9 run-time tests since the input size becomes small enough not 
to satisfy the granularity tests only in the last recursions. On the other hand, 

.s Basically it 's an &-Prolog implementation with arbitrary overheads added to task creation 

.9 Granularity controls impose overhead without restricting parallelism. 
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Table 3 Perfect  N u m b e r s  

Integer Input Size 
75 100 300 500 

4 17.0 21.5 23.7 24.5 
8 6.5 9.5 12.2 15.2 
12 8.2 13.2 15.5 17.2 
16 14.1 20.1 20.4 21.6 

Table 4 F ibonacc i  N u m b e r s  

Integer Input Size 
t0 ]5 20 

4 1.3 7.2 15.2 
8 7.0 12.8 21.8 
12 11.4 18.0 27.4 
16 17.0 22.7 31.5 

the table indicates that the granularity mechanism is able to improve perfor- 
mance when many engines are being used. When many engines are being used, 
many parallel candidates are actually processed remotely which balances bet- 
ter the non-profitable (unnecessary) run-time tests. Debray's models improves 
performance of MergeSort(128) by 14.1% under the ROLOG system using 4 pro- 
cessors. The PDP system also using 4 processors improves the performance of 
MergeSort(500) by 1.44% 

Consider the Perfect Numbers benchmark (presented in Reference 5~ and 
Table 3. In contrast to OuickSort but similarly to MerfleSort, the granularity 
constraints succeed in most recursions because the input size is larger than the 
threshold of the granularity constraint. Only in the last few recursions do the 
input sizes become small enough not to satisfy the granularity tests. In fact, 
the granularity control mechanism in this case, performs more non-profitable 
(unnecessary) run-time tests in comparison to MergeSort.  Additionally, the 
overall number of parallel tasks generated by this benchmark is much less than 
the overall number of parallel tasks generated by MerfleSort for similar input 
sizes. As a result Perfect Numbers performs less adequately, but still effectively 
as the experiment results indicate. In this particular benchmark, controls provide 
a best-case performance improvement when PAN employs 4 engines. This is 
because when there are few engines (and many potential parallel tasks) the 
scheduler does not allow the controls to test the run-time conditions. Instead 
tasks are processed locally, without imposing non-profitable overheads. When 
PAN employs more engines, the controls test more run-time conditions, but 
in practice they impose non-profitable overheads. Due to the nature of this 
benchmark, only in the last few recursions do the input sizes become small 
enough not to satisfy the granularity tests. 

The Fibonacci Numbers benchmark (as presented in Reference ~ and Ta- 
ble 4) is similar to Perfect Numbers. However the controls improve performance 
more than the previous example mainly because the input sizes for Fibonacci 
Numbers are closer to the grain size threshold. Therefore the controls perform 
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Table 5 Matr ix  Mul t ip l ica t ion  

NxN Matrix Input Size 
15 30 45 60 

4 16.9 19.7 23.4 27.0 
8 16.1 19.2 20.7 28.0 
12 21.9 22.4 26.7 33.3 
16 23.8 24.5 28.7 36.9 

4 
8 
12 
16 

Table 6 P e r m u t a t i o n s  

List Input Size 
6 7 8 

0.0 -5.9 -3.8 
O.6 34.1 39.0 
6.1 34.1 40.8 

22.7 32.6 42.6 

less non-profitable tests. Debray's model provides a performance improvement 
for fib(15) of 27.3% under the ROLOG system and 29.2% under the ~:-Prolog 
system both using 4 processors. This is the only benchmark with consistent 
results under both parallel systems. Garcia's model improves the performance 
of fib(19) by 240/0 running on a hierarchical implementation of &-Prolog with 4 
processors. 

Consider the Integer Matrix Multiplication benchmark (as presented in Ref- 
erence, 61) pp. 333) and Table 5. This benchmark generates 4 parallel tasks in 
a single recursion, which is twice as many as QuickSort. Extra  parallel tasks 
require extra granularity tests, which of course impose extra run-time overhead. 
Debray tests a;n 8x8 matrix. But the large granularity threshold of this bench- 
mark in PAN makes the 8x8 matrix multiplication without any practical interest. 
Garcia's model improves the performance of the multiplication of a 4x2 and a 
2x100 matrix by 16.27% under the &-Prolog system using 4 processors. When 
a matrix 75xl and a vector are multiplied under the PDP system, performance 
does not improve at all regardless of the number of processors used. 

Consider the Permutations benchmark (as presented in Reference, 51) 
pp. 91) and Table 6. Permutations is a typical example of fine-grained OR- 
parallelism. The clauses generate a search tree with several OR-branches. The 
proposed model generates coarse-grained parallel tasks that  improve perfor- 
mance on distributed platforms like PAN. However, this benchmark does not 
perform that  well when 4 processors are used. The percentage of OR-candidates 
processed in practice is very small and the effect of granularity controls can 
not balance the overhead. But performance improves significantly when more 
processors are used. 

The previous example is the core program for other benchmarks like naive 
N-Queens (presented in Reference, 51) pp. 119). OR-parallelism in N-Queens  is 
generated in a similar way to Permutations and as a result performance figures 
are very similar. The  controls used in the P D P  are able to provide a best 
case performance improvement of 5% (approx.) for queen(8) running on 15 
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Table 7 

4 
8 
12 
16 

Tree Lookup Granular i ty  Control  

Integer Input Size 
5 7 9 

52.5 65.4 77.7 
57.9 73.1 85.2 
64.2 77.2 90.4 
68.6 81.0 93.2 

processors. 
Consider the Tree Lookup benchmark (presented in Reference, TM pp. aas) 

and Table 7. In contrast to previous examples, Tree Lookup may generate more 
than 2 OR-branches in each recursion (depending on the shape of the tree) 
and increase the number of potential parallel tasks. Granularity controls are 
able to improve performance dramatically because they can exploit the fine- 
grained nature of the program and perform profitable size tests that  coalesce 
many fine-grained tasks to form coarse-grained tasks, which adapt bet ter  to the 
characteristics of the platform. The controls prove very useful when the tree is 
unbalanced. Debray's model improves performance the performance of tree(8) 
only by 3% under the ROLOG system using 4 processors. 

7.3 Run-time Scheduling 
Direct comparison of PAN with parallel Prologs on shared-memory mul- 

tiprocessors is not always reasonable. They usually perform bet ter  than dis- 
tr ibuted platforms as argued in References. n'29) It is not always feasible to com- 
pare the performance of distributed platforms either, because they have different 
configurations making it difficult to establish a general and fair comparison met- 
ric. The numbers in tables represent the relative performance improvement RPI 
due to parallel execution in comparison to sequential execution. RPI is calcu- 

S 5E  
lated using the formula RPI = ~-~. PE is the average parallel execution time (in 

seconds) of the best 3 out of 20 consecutive runs. SE is the sequential execution 
time (in seconds). SE is defined as follows: 

number~engines SEi ) 
= ( ~ /number_of_engines SE \ i=i 

SEi is the average sequential execution t ime of the best 3 out of 20 con- 
secutive runs, for every engine i that  participates in a PAN session. To obtain 
SE~, programs were run under pure SICStus without the use and/or  intervention 
of PAN. SE provides a fair comparison metric for this heterogeneous platform 
since all programs were run on all engines participating in a given PAN session. 
All benchmarks were run under the same PAN configuration. 

7.4 AND-parallel Execution 
To illustrate the performance of the model for AND-parallelism the Quick- 

Sort program (Table 8), the MergeSort program (Table 9), the Perfect Numbers 
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Table 8 Quicksort Runtime Scheduling 

List Input Size 
750 1000 2000 3000 

4 2.11 2.18 3.09 3.68 
8 2.71 3.27 4.24 4.50 
12 3.07 3.66 4.87 5.22 
16 3.64 4.44 5.65 5.88 

Table9 MergeSort Runtime Scheduling 

List Input Size 
750 1000 2000 3000 

4 1.57 1.84 2.23 2.59 
8 2.09 2.21 2.61 3.12 
12 2.53 3.07 4.11 4.57 
16 2.71 3.81 4.49 5.07 

4 
8 
12 
16 

Table 10 Perfect Nos. Runtime Sched 

Integer Input Size 
100 300 500 

2.159 3.045 3.828 
4.849 6.372 7.090 
6.150 9.220 10.195 
7.050 11.562 12.887 

Table 11 

4 
8 
12 
16 

NxN Matrix Runtime Sched 

NxN Matrix Input Size 
30 45 60 

1.629 1.663 
1.720 1.678 

1.657 
1.740 

1.859 1.816 1.941 
2.146 2.122 2.414 

program program (Table 10) and the Big Integer Matrix Multiplication (Table 11) 
were run under PAN. 

The Matrix Multiplication program generates 4 medium-grained parallel 
tasks on each recursion. However this program generates AND-tasks very fast 
(in the sense that  these AND-tasks have no LHS goals to delay their gener- 
ation) and much faster than PAN can effectively handle them (in the sense 
tha t  the distribution rate  of PAN is much lower than the generation rate of 
AND-tasks).  This incurs extra  run-time overheads because it schedules poten- 
tial parallel tasks, which are processed locally instead. The overhead imposed 
by the scheduler in addition to the considerable communication cost, can not 
be balanced as effectively as with Quicksort by the gains of parallel execution. 
Several parallel tasks are not actually processed in parallel but wait locally for 
an engine to become available. Such programs perform bet ter  on shared-memory 
multiprocessors. In contrast,  the rate that  the QuickSort and MergeSort  pro- 
grams generate coarse-grained parallel tasks is reasonably close to the ra te  tha t  
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PAN can effectively process them. As a result the scheduler imposes less over- 
head in the latter case, because more potential AND-tasks are actually processed 
remotely. 

The Perfect Numbers program provides the best speed up, indicating that 
for non-trivial and coarse-grained applications this model distributes tasks effec- 
tively to engines while controlling the communication overheads and exploiting 
good degrees of parallelism. Especially when the rate of generation of AND-tasks 
is reasonably close to the rate, PAN can process them remotely. 

The proposed scheduling scheme is able to improve the performance of 
PAN as the input size of tasks and the number of engines participating in a 
PAN session increases indicating that the distributed scheduling components can 
effectively partition the work load and can also adapt to the changing configu- 
ration of the platform. ~z-Prolog provides a speed-up of 4.9 for QuickSort(1000) 
running on 10 nodes of a shared-memory multiprocessor. The AND-OR-parallel 
distributed Prolog executor 54) improves the performance of OuickSort(2000) by 
2.7 on 30 processors and the PDP system improves the performance of Quick- 
Sort(700) 2.9 times running on 15 processors. ~z-Prolog provides a linear speed 
up of 10 for Matrix(50) running on 10 processors, but distributed platforms like 
PDP provide a speed up of 1.85 for Matrix(75) on 15 processors. Finally the 
P DP  system provides a speed up of 2.6 for MergeSort(500) on 12 processors. 

7.5 OR-parallel Execution 
Analysis gets more complicated when it comes to OR-parallel execution. 

Programs like Permutations or naive N-Queens  usually do not perform that  
well under platforms with considerable communication costs as argued in Ref- 
erences. ~9,~1) Preliminary results showed that  PAN is not an exception. The 
Permutations program and especially the select~3 goal is the main source of OR- 
parallelism for other programs like Naive N-Queens.  However select~3 generates 
OR-parallel tasks very fast (in the sense that  the OR-task has no LHS goals to 
delay its generation) and much faster than PAN can effectively handle them (in 
the sense that  the distribution rate of PAN is much lower than the generation 
rate of OR-tasks by select~3). The overhead imposed by the scheduler and by 
the OR-interpreter of these tasks in addition to the considerable communica- 
tion cost, can not be balanced by the gains of parallel execution because most 
of parallel tasks are not actually processed in parallel but  wait locally for an 
engine to become available. PAN pays the penalty of keeping the control of OR- 
parallelism at the Prolog level (using an interpreter) instead of pushing most of 
the control to the WAM level to optimise the OR-parallel execution. However, 
the flexible configuration of ADEPT,  allows PAN to incorporate an improved 
version of the current OR-interpreter, or even to employ a new one. 

For the 10-Queens  benchmark OPERA provides a best case performance 
improvement of (approx.) 2 on 16 processors, but to achieve that  the usual 
WAM-based engine is re-engineered. ROLOG and PDP on the other hand im- 
prove performance further, however they are based on an execution model that  
differs significantly from PAN and a direct comparison would not be fair. 
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Table 12 OR-Tree Runt ime  Sched 

Integer Input Size 
1000 3000 5000 7000 

4 1.37 2.74 3.22 3.91 
8 3.59 5.85 6.87 7.82 
12 6.08 9.06 10.29 10.97 
16 6.52 9.80 12.69 14.03 

Table 13 Deep Fail Runt ime Sched 

Integer Input Size 
1000 3000 5000 7000 

4 1.84 2.63 3.07 3.78 
8 2.38 3.68 4.67 5.50 
12 3.00 5.26 6.10 7.12 
16 3.85 6.36 8.29 9.03 

Eng. 
4 
8 
12 
16 

Table 14 AND-OR Parallelism 

Synthetic-1 Synthetic-2 Synthetic-3 
2.537 2.032 3.132 
3.583 3.079 4.180 
4.302 3.705 5.125 
4.423 3.819 6.404 

Alternative benchmark programs have to be used to illustrate the per- 
formance of distributed platforms. The OR-Tree and Deep Fail programs (as 
presented in Reference, ~1) pp. 338, 339) are variations of benchmarks used in the 
performance analysis of several distributed systems in Reference. 29> Tables 12 
and 13 illustrate that  PAN can perform adequately for a certain class of non- 
trivial and large scale applications adapting well to the changing nature of the 
platform and the characteristics of each program. The main characteristic of 
this class of applications is that the rate of generation of OR-tasks is reasonably 
close to the rate that  PAN can process them effectively. 

7.6 AND-OR-Parallel Execution 
Implementation schemes combining AND and OR parallelism typically 

pay a penalty in the form of a higher control overhead. Table 14 presents the 
speed up numbers of the synthetic benchmarks used in the performance analysis 
of PDP (Reference 2) pp. 73, 74). They generate AND-under-OR and OR-under- 
AND parallelism respectively. It indicates that  PAN is able to control to a 
certain extent the extra control overhead. PAN better  exploits AND-under-OR 
parallelism of the synthetic-1 benchmark because it requires fewer task switches 
between the OR-interpreter and the Prolog engine in comparison to OR-under- 
AND parallelism generated by the synthetic-2. This indicates that  PAN favours 
the use of the OR-interpreter at the top levels of the execution tree while the 
tasks in lower levels can be processed either sequentially or in AND-parallel. 
Synthetic-3 is a variation of synthetic-1 which generates twice as many AND 
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and OR tasks. 
For the synthetic-1 benchmark PDP provides a speed up of up to 4.5, and 

for the synthetic-2 benchmark a speed up of up to 4.6. The latter benchmark 
performs better when it runs under the PDP  system because OR-parallel execu- 
tion is realised by extending the WAM, which imposes no task switches between 
the Prolog engine and the OR-mechanism which is the case in PAN. But  PAN 
also performs reasonably well using mainstream Prolog technology. As the scale 
of parallelism grows (synthetic-3) performance improves indicating that  PAN 
performs better running large scale applications. 

w Conclusion 
PAN combines SICStus Prolog, PVM and Te l /Tk  technology to create 

a message passing parallel system running on a virtual multiprocessor under 
a script controlled X Window interface. To exploit parallelism efficiently PAN 
uses suitable compile-time techniques to detect potential parallel tasks. Determi- 
nacy, Freeness and Side-Effects Flow analyses impose sequentiality constraints 
to maintain standard Prolog semantics. The use of strict and well informed 
granularity controls improve the performance of the platform by coalescing fine- 
grained tasks to form coarse-grained goals adding little (if any) overhead. Tasks 
are distributed to engines using a flexible task-driven hierarchy of distributed 
scheduling components. The performance results show that PAN performs bet- 
ter on large scale and non-trivial applications rather than fine-grained parallel 
tasks. 
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