
New Generation Computing, 20(2002)373-399
Ohmsha, Ltd. and Springer-Verlag [W GE EeeTlO COMPUTING

�9 Ltd. 2002

PAN: A Portable, Parallel Prolog: Its Design,
Realisation and Performance

George XIROGIANNIS and Hamish TAYLOR
Heriot-Watt Universi~
Riccarton, Edinburgh, EH14 4AS, Scotland
ceegx@cee, hw. ac. uk, hamish@cee, hw. ac. uk

Received 12 August 1999
Revised manuscript received 16 May 2001

Abstract PAN is a general purpose, portable environment for execut-
ing logic programs in parallel. It combines a flexible, distributed architecture
which is resilient to software and platform evolution with facilities for au-
tomatically extracting and exploiting AND and OR parallelism in ordinary
Prolog programs. PAN incorporates a range of compile-time and run-time
techniques to deliver the performance benefits of parallel execution while re-
taining sequential execution semantics. Several examples illustrate the ef-
ficiency of the controls that facilitate the execution of logic programs in a
distributed manner and identify the class of applications that benefit from
distributed platforms like PAN.

Keywords: Logic Programming, Parallelisation, PVM.

w I n t r o d u c t i o n
PAN is a distributed logic programming system designed to exploit divide-

and-conquer and speculative parallelism while being resilient to the software and
hardware evolution that rapidly makes most parallel programming technology
obsolete. A major design goal has been to assemble it in a modular way from
widely used, off-the-shelf components with long term software support. Such a
system is less likely to become obsolete than if its main components were designed
and built from scratch. The burden of evolving the system falls mainly on the
component developers, and the smaller burden of evolving the modular interfaces
is rather more manageable. This leads to a distributed design using sequential
Prolog processes glued together by a distributed communications and process
management infrastructure, PVM. 2~ It allows PAN to run on widely available

374 G. X i rog i ann i s a n d H, Tay lo r

platforms such as networks of workstations as well as on parallel machines. A
separable composite interface gives users access to all parts of the system, s~

Effective exploitation of a distributed architecture for executing Prolog
programs also requires significant analysis to determine how best to partition
up the resolution work load among the processing elements while preserving
standard execution semantics. This paper describes a practical scheme called
ADEPT for doing this on PAN in an automatic way.

Section 2 discusses alternative approaches to logic programming in par-
allel, while Section 3 presents the PAN approach. Section 4 reviews techniques
which detect good system configurations and introduces the tools incorporated
in PAN to detect parallelism. Section 5 explains the granularity controls and
provides experimental results. Section 6 presents the scheduling scheme and
Section 7 presents a class of applications that can run effectively under PAN.

w Relevant Research

2.1 AND and OR Parallelism
Parallelism in Prolog programs can be exploited by evaluating alternative

solutions of a goal in parallel (OR-parallelism) or by simultaneously executing
the goals in the body of a clause (AND-parallelism). Where the goals in a
clause body share variables, schemes for parallel execution (eg 8)) co-ordinate
their evaluation to avoid the same variable being bound to different values. 24)
In the generalised version of Independent AND-parallelism (IAP)28) goals are
deemed independent when no variable conflicts arise and/or the complexity of
the search expected by the programmer can be preserved. DeGroot's R A P
model 1~) combines compile-time analysis with run-time checking to identify goals
with shared variables and conditionalise their parallel execution. Such methods
reduce the complexity of identifying parallelism solely at run-time. The RAP-
WAM TM is a WAM-based implementation of RAP for shared-memory systems.
Parallel systems like &-Prolog, TM ACE 41) and PDW) identify independent AND-
tasks based on RAP.

Andorra-I 13) and NUA-Prolog 4~ exploit deterministic AND-parallelism
based on the Andorra Principle ~6) as an alternative to IAP. A pre-processor iden-
titles parallelisable tasks automatically. Implementations of the DDAS modeP 5)
also exploit dependent AND-parallelism under conditions that yield the same
results as sequential Prolog execution. These schemes have yielded promis-
ing results but heavily depend on specialised abstract machine technology that
seems unlikely to attract long term software support. By contrast ACE adopts
a copying-based approach to simplify the exploitation of parallel tasks.

Despite useful recent research in logic programming on program analysis,
the automatic detection of parallelism has not yet been much used in parallel
and/or distributed systems. Systems like ANDOR-I149) Delta-Prolog, 12) CS-
Prolog is) and PMS-Prolog TM cannot detect parallelism automatically and rely
on explicit user declarations to exploit parallelism. These declarations require
significant expertise to employ correctly.

A major problem with implementing OR-parallelism is how to represent

PAN: A Portable, Parallel Prolog: Its Design, Realisation and Performance 375

different bindings for the same variable corresponding to different branches of
the search tree as discussed in Reference) 2) This affects the cost of creating and
accessing variable bindings either at task creation time, variable access t ime or
task switching time. The SRI model 5~) used by the Aurora 35'4s) system keeps the
multiple variable binding in an array in shared memory but incurs non-trivial
task switching costs. MUSE 1) and Delphi 9) use a distributed-memory space for
each parallel execution and do not need a representation for the multiple bindings
of a variable. MUSE transfers an explicit copy of the data of an executing process
while the Delphi model reconstructs a process environment by recomputing the
initial goal, which increases the task creation time. Kacsuk's Version of the
recomputation model 2s) makes the least changes to the sequential WAM. Multi-
sequential models OPERA 6) and PloSys ~6) implement TWAM, an extension to
the WAM, to allow more efficient copy operations in the portion of stacks shared
between engines. The Reduce-OR model 50) uses an alternative approach to
exploit both full OR-parallelism and IAP parallelism. Data-join graphs represent
computations for execution on non-shared memory multi-processors.

All these approaches re-engineer mainstream Prolog technology. They
make users dependent on specialised components that are unlikely to be sup-
ported in the long term and risk becoming rapidly obsolete as mainstream tech-
nology evolves. They also tend to introduce new control and I /O mechanisms
and fail to support well established I /O predicates and control mechanisms mak-
ing it laborious and awkward to port existing Prolog code to these platforms. 2~)

2.2 Granularity of Parallelism
Distributed execution of logic programs requires a match of granularity

between a program and the multi-processor, it runs on to exploit its potential for
performance fully. Processes that are too coarse-grained for a multi-processor
system unnecessarily limit its ability to exploit parallelism. Processes that are
too fine-grained introduce excessive communication overheads. Granularity anal-
ysis should enable parallelism to be exploited at the right grain.

Early proposals 31~s~) investigated the automatic inference of the complexity
of logic programs but only under several restrictive assumptions and did not
model recursive predicates satisfactorily. Tick 52) used weights to quantify the
grain of tasks. However, recursive predicates presented difficulties because the
quantity of computation is data-dependent and difficult to determine. More
recent proposals like ~) model satisfactorily all kinds of predicates but focus
mainly on measuring the complexity of a process (goal) and have paid little
attention on how to use this information.

Debray et al. 15,~6) derive complexity functions for predicates at compile-
time. Once the size of the data is known at run-time these functions can be
evaluated. The size is checked against a threshold to determine whether or not
the goal should be evaluated in parallel. The scheme models predicates better
and provides a bet ter approximation of the weight of recursive predicates. Exper-
imental results show that this model can improve performance although it can
also impair performance when too much information is processed at run-time.
This model does not take into consideration some important factors. The main-

376 G. Xirogiannis and H. Taylor

tenance of size information and the grain size tests add a significant execution
overhead which is not included in the time complexity estimation. This model
also disregards the fact that some predicates may fail or pass the granularity
tests at compile-time and thus no run-time overhead is associated with them
(i.e. for non-recursive or very complex recursive predicates). Garcia et al. 19)

refine most of Debray's techniques but still rely on the basic granularity control
principle.

King et al., 32'33) have proposed a different technique for controlling ~he
granularity of tasks at compile-time. This work is addressed towards concurrent
languages. They coalesce tasks together if the complexity of their communication
dominates the complexity of the computation on all sizes of possible data. This
model does not add any run-time overhead but it does not consider parallel
execution of a goal in relation to the execution of other goals (like Debray's
model) and does not effectively relate the cost of processing a task in parallel
with the amount of local computation of the remaining tasks.

Shen et al. 4~,47) propose a granularity control metric based on the idea
that if the gain obtained by executing a task in parallel is less than the over-
heads required to support parallel execution, then the task is better executed
sequentially. They argue that to minimise the overheads associated with parallel
control, the number of creation points of parallel tasks should be reduced, hence
the "distance" between the points that create parallel work should increase.

Granularity control mechanisms could also be used in parallel systems
running on shared-memory multiprocessors like NUA-Prolog, Andorra-I, Paral-
lel NU-Prolog, ANDOR-II, Aurora and Muse to improve performance to reduce
unnecessary communication. PDP controls the grain size of parallel tasks based
on Debray's model. It also uses heuristic observations concerning memory usage
to control the grain of OR-tasks better. Experimental results presented in Ref-
erence 2) indicate that performance improves in some cases when the mechanism
is used to control the grain size of potential parallel tasks.

2.3 Scheduling Parallel Tasks
Scheduling may be engine driven where engines look for tasks or task driven

where tasks look for engines. &-Prolog and Andorra-I TM use the first method.
The latter comprises a top scheduler (reconfigurer) and 2 sub-schedulers each
responsible for AND-parallel and OR-parallel execution respectively. The sched-
ulers partition the engines into flexible teams to distribute parallel tasks. Engine-
driven approaches are also used by MUSE and Aurora and mainly address the
problem of efficient scheduling of OR-parallel tasks controlling speculative OR-
work. 4)

Such scheduling strategies tend to identify many small parallel tasks at
run-time. They are designed for platforms with low communication costs and
fail to allow for the run-time overheads of distributed heterogeneous platforms
like networks of workstations. The task switches and the search for new work
depend proportionally on the communication overheads among engines. Engine-
driven scheduling can not always efficiently relate the actual task load with

PAN: A Portable , Parallel Prolog: Its Design, Real isat ion and Performance 377

the composition of each team imposing run-time task and engine migration 39~
overheads.

The communications costs of distributed platforms have been considered
in the scheduling techniques used in OPERA 6~ and PloSys 36) which exploit
OR-parallelism. A hierarchy of schedulers run in parallel with the workers us-
ing an approximate representation of the system's state, while OPERA's multi-
sequential computational model does not create more parallelism than is avail-
able to exploit. Similar multi-sequential models have also been adopted by more
recent distributed systems like PDP. To improve their performance OPERA and
PDP significantly re-engineer the WAM by pushing most of the parallel control
to the engine level and adding primitives to optimise run-time execution. Thus
they depart from using mainstream Prolog technology on distributed platforms
and make themselves liable to being marginalised as mainstream technology
evolves. PDP's current implementation only uses one scheduler to support the
number of available engines. This results in a centralised scheduling scheme with
reduced flexibility that is a potential bottleneck during distributed execution.

w Design Choices of PAN
PAN combines standard SICStus Prolog processes, a model of multiprocess-

ing, a virtual multiprocessor PVM and a Tc l /T k user interface to get a systems
architecture with evolutionary resilience and high portability. PAN relies on its
automatic paralleliser ADEPT to multiprocess ordinary Prolog programs. PAN's
model of multiprocessing is control driven, exploits parallelism in a coarse-grained
way, creates processes statically and communicates by synchronous and asyn-
chronous message passing using extra primitives added to the Prolog language to
control message passing and enable synchronisation.

PAN runs one Prolog on each host of a PVM session. It is presented to
users under X Window as a multi-headed extension of single processor Prolog
systems. An interface to each Prolog engine is displayed in a separate X widget
together with a console window to the PVM, and window based methods are
supported for simultaneously invoking all engines together. 5~

PAN has been implemented under several versions of UNIX and on several
heterogeneous hardware platforms. PAN uses SICStus Prolog's foreign language
interface to add a few extra primitives to Prolog to allow program threads to
pass messages among each other. The main communication primitives are:

rx(Term, Id) blocks until caller synchronises with transmission from
Prolog Id and then Term is unified with message sent

tx(Term, Id) blocks until caller synchronises with receiving Prolog Id
and then Term is sent

rxnb(Term, Id) Term is unified with message (to be) sent from Prolog Id

txnb(Term, ld) sends Term asynchronously to Prolog Id

Arbitrarily large terms can be passed between Prolog engines. Unbound
variables in them get freshly renamed on reception. Ordinary Prolog programs

378 G. Xirogiannis and H. Taylor

are run in parallel on PAN by being transformed into its extended version of Pro-
log so as to give the same results as with sequential execution. AND-parallelism
is exploited in a fork-join manner. Tasks are distributed to remote engines and
the results are returned to the parent engine. To facilitate OR-parallelism the
algorithm in Reference 43) is implemented in Prolog. This implementation of
the algorithm (Reference, TM pp. 322) is run in an AND-parallel manner and in
contrast to Reference 43) contains sequential calls to process (on demand) part of
the OR-tree sequentially. AND-OR parallelism is exploited by combining both
forms of parallelism. Parallel tasks run in AND-parallel, which reduces the com-
plexity of interfacing between separate schedulers for OR and AND-parallelism
(e.g. Andorra-I).

3.1 ADEPT
The Automatic Distributed Execution of Prolog by Transformations system 61)

provides a set of tools and facilities that can analyse the configuration state of
PAN, transform the programs of Prolog applications and can effectively exploit
parallel execution in a distributed manner on process-based heterogeneous plat-
forms. The ADEPT system (Fig. 1) runs on top of the PAN system and consists
of compile-time and run-time facilities that rely on the PAN extensions to con-
trol parallel computations. It offers automatic parallel program control requiring
little user intervention, ensures correct results (in terms of sequential execution)
and exploits good degrees of parallelism. PAN, augmented by ADEPT, provides
a distributed platform which requires little (if any) user intervention to exploit
parallelism efficiently (in contrast to platforms like PEPSys, 3) Delta-Prolog, 12)
CS-Prolog, 18) PMS-Prolog, 59) etc.), exploits various forms of parallelism, and
uses standard Prolog technology (unlike OPERA, PDP, etc.).

Both the System Analysis component and the Program Analysis component
have been custom-made for PAN. The System Analysis component uses the com-
mands and tools of PAN (e.g. PVM console, extra primitives added to SICStus
by PAN, etc.) as well as heuristics and rules of thumb to identify a suitable plat-
form configuration to run the applications. The Program Analysis component is
called ADEPT. Apart from determinacy analysis (which follows the ideas pre-
sented in Reference~2)), all other controls and tools (namely freeness analysis,
call synchronisation graphs, task granularity control, task distribution analysis
and engine allocation strategy) are either novel products of ADEPT or augment
existing research in the area of distributed execution of Prolog. The System
Analysis component is described briefly in Section 4.1 while Program Analysis is
presented in more detail in Sections 4.2, 5 and 6.

w Analysis

4.1 System Analysis
Analysis mechanisms identify those workstations that combine high pro-

cessing capabilities with low workload. System analysis is performed at compile-
time in the following steps:

PAN: A Portable, Parallel Prolog: Its Design, Realisation and Performance 379

(S y s t e m Analysis) ~rogram Analysis~

1
Available System

Resources

Estimation of
Communication Costs

Load Balancing]

Platform
Configuration)

Freeness
Analysis

Call Synehronisation
Graphs

) Task Granularity Control

s T a s kADni: l;isil~: TM]

Code Generator

PAN-Prolog
Program)

s Engine Strategy Allocation [

PAN-Prolog
Execution)

Fig. 1 Overview of ADEPT

�9 Identification of Platform Components
�9 Estimation of the Available System Resources
�9 Estimation of Communication Costs
�9 Load Balancing

Participating hosts are identified at compile-time, using the facilities of
the PVM console. Each processor's current workload is measured as the average
length of its current run-time queues. The processing capabilities of each engine
are measured in LIPS while the communication speed of the LAN is measured
in Mbits/sec. PAN sessions utilise available Prolog engines taking these costs
into account. The number of LIPS each engine can perform has been measured
by running quicksort. The maximum rating in LIPS for that program does not
change for a given engine if the hardware and software configuration of that
engine remain the same. The length of the run-time queues is identified using
the UNIX command uptirne. The current communication speed of the LAN is

380 G. Xirogiannis and H. Taylor

est imated by running tests that communicate messages over it.
PAN's performance is sensitive to the LAN's communication traffic and

to changes in the workload of the engines part icipating in a given session. The
current implementat ion of the system analyser detects network overheads and
engine workload mainly at compile-time, hence it may fail to anticipate a sudden
change during program execution and adjust the configuration of the platform
accordingly.

4.2 Program Analysis
One of the jobs of A D E P T ' s compile-time analyser is to process Prolog

programs so that they can be transformed into some equivalent form to run in
parallel on PAN. The query-independent analysis offers an automatic control
driven approach to exploiting parallelism. The analyser imposes a low degree of
extra run-time controls. Under PAN, pure goals are AND-parallel candidates if:

1. Goals do not share any variables.
2. Goals share free variables
3. Goals share variables but these goals are determinateW

Abstract program analyses (based on determinacy analysis and freeness
analysis) determine when these conditions exist. Determinacy Analysis 42) ascer-
tains the number of times that a goal can be (re)-satisfied. It considers the
worst case where backtracking is exhaustive among independent goals with in-
dependent variables as arguments. The analysis calculates the upper bound for
the determinacy of a conjunction/disjunction from the goals within the con-
junction/disjunction. Goals with at most one solution are determinate. Such
goals do not restrict the search space and they do not generate variable conflicts
in and-parallel execution. Determinacy analysis is conservative mainly because
it is performed entirely at compile-time, but it imposes no run-time condition-
checking overhead.

Freeness Analysis detects at compile-time goal dependencies based on the
instantiation state of shared variables. A mechanism 6~ analyses the instantia-
tion state of variables and classifies shared variables as free, ground, non-free and
aliases. Free variables remain uninstantiated after the execution of the program.
Grounding of variables occurs when one of the terms involved in a unification is
ground. This causes the variables of the non-ground term to become ground too.
Aliasing can occur when one free variable is unified with another free variable.
Variables remain free but any consequent instantiation applied to one of them
will also be applied to the other. Variables instantiated to non-ground terms
are said to be non-free. The analyser determines that shared free variables do
not restrict the search space of their goals and goals with shared free variables do not
generate variable conflicts.

Analysis is performed entirely at compile-time adding no run-t ime
condition-checking overhead. The mechanism for inferring freeness and sharing

*~ Th i s pape r adop t s t h e t e rmino logy proposed by Sahlin.42) D e t e r m i n a t e goals e i ther fail
or succeed once.

PAN: A P o r t a b l e , Pa ra l l e l P ro log : I ts Design, R e a l i s a t i o n a n d P e r f o r m a n c e 381

information in A D E P T is in a sense similar to the depth-k mechanism discussed
in Reference. 34) However there is a fundamental difference. The depth (and the
fixpoint) of the analysis in A D E P T is not pre-defined, in contrast to ReferenceJ 4)
I t is determined dynamically during compile-time for different types of programs.
A D E P T iterates as many times as is necessary to estimate the instantiation s tate
of shared variables. The depth of the iteration restricts the depth of the terms
and then A D E P T approximates the behaviour of the variables. On the other
hand, the mechanism in Reference 34) restricts the depth of the te rms to a fixed
number first and this restricts the number of iterations. Then it approximates
the behaviour of the variables. The dynamic nature of A D E P T allows greater
flexibility in the approximation of the behaviour of terms but this on the other
hand may affect the efficiency of the mechanism. The complexity of Reference 34)
can be controlled by restricting the depth of terms. This is not the case for
ADEPT. Its complexity can grow as the number of iterations increases. But it
is encouraging to know tha t for the range of applications tested in A D E P T so far,
iterations stopped at reasonably small depths, similar to the depth restriction
imposed by Reference. 34)

Freeness analysis performed by A D E P T always terminates. The analyser
estimates if the instantiation s ta te ' : of shared variables changes in a way tha t
may affect the search space of goals. This estimation can be calculated in a
fixed number of iterations. The algorithm iterates (and lets recursive goals
recurse) as many times as it is necessary to prove that further iterations will not
provide any different information as far as the instantiation state of variables
is concerned. The fixpoint is reached when further iterations do not change the
instantiation state of shared variables. The analysis is safe in the sense that
goals classified as independent at compile-time, will never depend on each other
at run-time (eg. restrict the search space of each other). However, the analysis
maintains a certain conservatism because it cannot consider the actual run-time
instantiations. In this sense, goals classified as dependent at compile-time, may
not depend on each other at run-time. This is the case when a suitable run-
t ime query grounds all shared variables, which effectively makes AND-goals with
shared variables, independent. The accuracy and the effectiveness of the analysis
performed by ADEPT can be compared with the Share, ~) Free, 38) Linear 37)
and Gif 7) mechanisms. ADEPT performs as accurately and as effectively as
these mechanisms. But there are examples in Reference 61) which indicate that
ADEPT can perform even better.

Side Effects Flow Analysis is also used at compile-time to detect goal de-
pendencies and OR-parallel execution restrictions due to the presence of certain
non-logical Prolog primitives. The main disadvantage of Side-Effects Flow Anal-
ysis is tha t it does not allow any predicate to perform speculative OR-work in
the presence of side-effects in its body. The results of the program analysis per-
formed so far are recorded in abstract Call Synchronisation Graphs (CSG) which
represent sequentiality constraints which are necessary to maintain s tandard
Prolog semantics. The algorithm 6~ that generates CSG extends the research

.2 s h a r e d v a r i a b l e s a r e c l a s s i f i ed as free, ground, non-free a n d aliases

382 G. Xirogiannis and H. Taylor

in Reference 5s) to encapsulate side-effects flow analysis, determinacy analysis as
well as freeness analysis. CSG has similar expressive power to UDG. aS) CSG can
be extended to include run-time conditions similar to CDG. 3s)

PAN-Prolog programs are able to exploit AND and OR-parallelism. If
further analysis (section 5) detects that some form of parallel execution may not
improve the performance, the run-time engine component (section 6) disregards
the corresponding transformations to reduce the extra code interpretation and
processes Prolog programs sequentially.

w Granularity Control
The execution of a logic program and query divide naturally into subtasks

for distributed execution. If this division is carried too far, the benefits of par-
allel execution are outweighed by the overheads of communication and run-time
scheduling. One way to deal with tasks that are too fine-grained is to coalesce
them into larger grained tasks. The main motivation for controlling grain size is
to reduce the overheads so that overall execution time will decrease. ADEPT's
controls 62~ focus on efficiently using the data gathered by complexity analysis
programs like CasLog 15~ which estimate the t ime complexity of goals. They
relate the amount of useful local computation with PAN's communication costs.

5.1 AND-Parallel Execution
Consider a clause C :- B1, B2 Bn. Assume that program analysis has

determined that a set (collection) of Bi (written as Gi for convenience) are
candidates for parallel processing. Let these goals be G1,G2 Gk. Assume that
PAN employs k engines." Let T(Gm) be an estimate (by CasLog) of the time
required to process goal Gm locally. Let ~] n represent the processing capabilities
(as discussed in section 4.1) of engine n. Let the extra time required to process
g o a l G m on a remote engine be

Wlocal - Wremote
T,at(Gm) = Tcorn(Gm) + Tsc,ed(Gm) + Trt(Gm) + Wrernote :r T(Gm)

Tla t represents the communication overhead (Tcom), any scheduling cost
(Tsched), the cost of any run-time granularity test (Trt) and the extra time

(Wloca l -- Wremote t ' T(Gm))
required to process a task in a slower engine*' \ ~%e-~ote

Let goal Glocal be such that T(Qocal) = max{T(Gj): Gj E {G1, ..., Gk}}.
Goal G~o~aL will be processed locally.

Basic Granularity Control for AND-parallelism: AND-goal Gi should be executed
remotely if T(Gtocal)>_Tlat (~i)"

This granularity control dictates that in order to execute goal Gi in AND-
parallel with goal Gtocal, the extra time required to process goal Gi remotely
should be greater or equal to the time required to process goal Gtocat locally.
This applies even if T(Q) < Tlat (Gi) , in contrast to Debray and Garcia's proposal.

*~ Alternatively assume tha t PAN is able to process all G1,...,Gk in parallel.
*~ In section 6 we will discuss why all remote engines are slower than the local engine

PAN: A Por tab le , Para l le l Prolog: I ts Design, Rea l i sa t ion and Per formance 383

The basic granulari ty control for AND-parallelism will improve perfor-
mance because VQ E {G1 , G,oca,-1, G,o~,+l, ..., Gk} that satisfy the granularity
control

TparaHei(G) = max{T(Gioca,), maxi{T,at(Gi) + T(Gi)}} <
max{T(G,oca,), maxi{T(G,oca,) + T(Gi)}} _<
max{T(G,ocal), T(G,oca,) + maxi{T(Gi)}} <
T(Glocal) -F maxi{T(Gi)} _< T(G1) + ... + T(Gk)
= T s e q u e n t i a l (G)

The control still holds even if PAN employs less than k engines *~ because

T(Gzo~a~)+T(AND-tasks processed locally)_> T(Glocal)_>Tlat(G~).

Performance may improve further by distributing every Gi using the rule
T(Gi) = min{T,at(Gj) : Gj (~ {G~, ..., G,oca,-1, G,oca,+l, ..., Gk}}. This rule may re-
duce overheads by distributing goals with less communication cost first, hoping
tha t goals with considerable communication costs will be processed locally.

5.2 OR-Parallel Execution
Consider now a predicate P with clauses Cl,C~ Cn. Assume tha t a

program analyser has determined that P can explore its clauses in OR-parallel
order. Let T(P) be a t ime estimation of P for a single solution. Let

Wloca I - Wremote
Tlat(Ci) = T c o m (C i) + Tsched(Ci) + Trt(Ci) + * T(P)

n * Wremote

be the extra cost for processing P over the head of clause C~ on a remote en-
gine defined similarly to the AND-parallel controls. Let Clocat be such that
T(C,oca,) = max {Tudq) : q e {(:1, ..., G } } .

Oloeal will be processed locally. The use of a predicate level directive
dictates that either all or no clauses are candidates for OR-parallel execution.

Basic Granularity Control for OR-parallelism: Clauses of P should be explored in
OR-parallel if

1T(p) > max{T,~t(Ci), i = 1, ..., (local - 1), (local + 1), ..., n}
n

The basic control for OR-parallelism ideally should dictate tha t in order
to process the clauses of P in parallel T(Clocal)>Ttat(Ci). However, mainly due to
practical restrictions which make estimating the t ime complexity of Ctocal non-
trivial, this condition could apply only to non-recursive predicates. To model
recursive and mutual ly recursive predicates, A D E P T currently assumes tha t all
clauses of such predicates equally contribute to t ime complexity:

T(Ci) -~ T(C,oca,) -~ -1 T(P)
[1

�9 5 A l t e r n a t i v e l y a s s u m e t h a t P A N is no t a b l e to p r o c e s s a l l G1,. . . ,Gk in pa ra l l e l .

384 G. Xirogiannis and H. Taylor

This basic control will improve performance because VCi that satisfy the
granularity control where VCI E {C1, ..., Gocal-1, Gocal+l, ..., Cn }

Tpara,,e,(P) -- max{T(Cloca,), maxi{Tlat(Ci) + T(Ci)}}
1 1

max{~T(P), maxi{~-T(P)§ T(Ci)}} _<

1T(p) + max{T(C,)} < 1 T (p) + 1T(p) < Tsequential(P)
H I I

Performance may improve further (similarly to AND-parallelism) if we
distribute every C~ using the rule

T(Ci) = min{T~at(Cj) : C] e {C1, ..., Cn}}

To make the analysis more accurate, Garcia suggests using follow sets from
the theory of context free grammars to estimate the complexity of C'. Garcia also
suggests using clusters of clauses such that within each cluster clauses are exe-
cuted sequentially and the different clusters are executed in OR-parallel instead
of using predicate level parallelism. The program is re-written to generate the
clusters. This technique may tend to balance the work-load better in contrast
to the "all clauses in parallel" directive adopted by ADEPT's analyser.

ADEPT's analysis uses a new control metric to make better use of the no-
tion of the collection of parallel tasks. The general idea is that parallel candidates
should be executed in a distributed manner if the time required to communi-
cate all but one of the candidates remotely, is less than the time required to
process the remaining task locally. This metric relates local computation to the
overheads of executing a set of tasks over the distributed platform which makes
it different to other proposed control metrics. In contrast, Shen et al. use a
metric that compares parallel execution time with the overheads of supporting
parallelism. They claim that the execution time of all parallel tasks should be
considered, while we claim that the execution t ime of the local task suffices. The
approach by King and Soper coalesces processes together if the complexity of
their communication dominates the complexity of their computation. Debray et
al. and Garcia et al. use a metric that compares the execution time of a parallel
candidate with the extra cost of handling this candidate in parallel.

The proposed controls (in many cases) may explore more parallelism than
other proposed controls. For example, Debray and Garcia's proposal will restrict
AND-parallelism of an AND-candidate G, if T(G) < T,at(g). ADEPT, on the
other hand, will make a more informative decision based on the execution time
and overheads of the collection of related AND-candidates, by parallelising T(G)
only if there exists an AND-candidate K (to be processed locally) such that
T(K) > Tin(g). Similarly, the analysis by King and Soper might fail to AND-
parallelise AND-candidate goals G, K if T(G) < Tlat (G) even if Tzat (G) < T (K) .

The new controls hold regardless of the number of engines employed by
the distributed platform or the tool or methodology that estimates the execution
time. Most of the analysis is performed at compile-time adding little (when
necessary) run-time tests. If g(n) is a function that estimates the time complexity
of local tasks depending on the value of the input size n, the compile-time analysis

PAN: A Portable, Parallel Prolog: Its Design, Realisation and Performance 385

calculates an integer k, such that Vn>k, F(n) satisfies the granularity control
criteria. F(n) is generated by CasLog.

The analysis partially unfolds loop tests and tests the t e rm sizes but
only to the point at which the granularity threshold is reached. This reduces
overheads. If analysis detects that goals satisfy the granularity tests at compile-
time, then no run-t ime test is added. "~ Run-t ime testing is also par t of the
compiled-code, but the scheduler 63) performs any run-t ime checks only when
there are available engines to improve performance further.

Using a practical rule of thumb, the clauses of a predicate are consid-
ered (at compile-time) for exploitation in OR-parallel if they are more than
k in number (k is set by the implementation, based on tests). The use of the
Wloca I - Wremote

* T(Gm) factor makes the mechanism adaptive to heterogeneous
Wremote

distributed platforms like PAN because Tlat is re-adjusted for each engine n.
The controls generate run-time tests for all possible "local" tasks. This

may increase the code size, but on the other hand it provides all possible run-
t ime distribution tests. However, it is fair to say that this problem may appear
in other proposals as well. A suitable implementat ion using appropriate heuris-
tics can reduce the number of possible run-t ime tests. Consider the QuickSort
program (presented in Reference, 44) pp. 56). In terms of PAN-Prolog representa-
tion the program will be automatically annotated with the granularity controls
and transformed for AND-parallel execution as follows.

qsort ([], []).
qsort ([AIB] ,C) :

split (B,A, D,E) ,
and_task ([[grain (qsort (D, F) , size (E, SIZE)) , qsort (E, G)] ,

[grain (qsort (E, G) , size (D, SIZE)) , qsort (D, F)]]) ,
append (F, [AI G] , C) .

The expression a n d _ t a s k ([Se t1 , Se th]) indicates that one
(and only one) Se% can be executed in a distributed manner as long as it satisfies
the granularity control criteria. The expression [g r a i n (q s o r t (D, F) , s i z e
(E, S I Z E)) , q s o r t (E , G)] dictates tha t if s i z e (E) > SIZE then

q s o r t (D, F) will be executed remotely and q s o r t (E, G) locally. Similarly, if
s i z e (D) > SIZE then q s o r t (E,G) will be executed remotely and q s o r t
(D, F) locally.

w Scheduling Parallel Tasks in PAN
Detecting available system resources at run-time and migrating tasks

among distributed processors incurs overhead. A traditional task scheduler relies
heavily on shared resources i.e. shared memory or the interconnection network
to perform its functions. As the scale of the distributed platform increases and
the speed of local computat ion improves, task scheduling becomes increasingly
frequent but necessary to synchronise the engines. PAN incorporates a mecha-
nism, which consists of 2 components:

*~ This is the case for non-recursive predicates or for very complex recursive predicates.

386 G. Xirogiannis and H. Taylor

1. The compile-time component generates Task Distribution Functions that esti-
mate the relative difficulty of potential parallel tasks.

2. The run-time component 63~ provides a task distribution and engine re-allocatio~
strategy suitable for heterogeneous distributed platforms.

The compile-time component reduces the overhead of identifying the dis-
tribution order of potential parallel tasks. Detailed discussion of this component
would clutter this paper, therefore the reader is referred to Reference 61) pp: 194-
228. The general idea behind this component is that we can use a suitable
abstract interpreter (e.g. a suitable modification of CasLog) to generate a Task
Distribution Function, which estimates the number of parallel tasks generated by
a program and a given goal. It is then "easy" (and in fact of greater value to
PAN) to estimate the ratio of the number of parallel tasks generated by pairs of
goals, especially when these goals can be executed in parallel with each other.
This ratio represents the relative difficulty of parallel tasks, which provides an
estimate of the number of engines a parallel task may require in comparison
to other parallel tasks. The relative difficulty dictates a best-first task distribu-
tion order, which allocates more system resources to difficult tasks first. Task
Distribution Functions can be particularly useful when estimating the relative
difficulty of different parallel tasks. Consider the Integer Matrix Multiplication
benchmark (as presented in Reference, 61) pp. 333) which generates two sets of
parallel tasks, each set generating two different parallel goals (in total four dif-
ferent parallel goals). On the other hand OuickSort (presented in Reference, 44)
pp. 56) generates a set of two "similar" parallel tasks (in the sense that both
parallel tasks call the same clauses).

6.1 Task Distribution and Engine Re-allocation
Run-time task distribution and engine re-allocation use a fully distributed

farmer-worker scheme (chapter 8 6I)) which generates dynamic task-driven re-
lations among engines. A hierarchy of farmers and workers is generated which
corresponds to a hierarchy of goals and sub-goals. Each node in it corresponds to
a distributed component which consists of a distributed scheduler, its workers and
a local engine pool. Several distributed and de-centralised scheduling components
make the model more scalable.

Engine allocation and team generation are dynamic and flexible in the
sense that each farmer may have a different number of workers during program
execution to adjust to the distribution of tasks. Workers may also become farmers
on demand to process parallel tasks more effectively. Distributed components
communicate infrequently to reduce certain overheads. Farmers do not interfere
with the workers (and their tasks) of other farmers at the same or different level
of the hierarchy. Engines communicate only through their parent farmer.

The hierarchy helps the farmers to schedule for a small number of workers
to improve the efficiency and minimise any bottleneck situations, while reason-
able control of task and engine migration is achieved at little cost. The main-
tenance of a distributed pool does not consume much of the engine resources.
Farmers perform useful program computation as well. The hierarchy reduces

PAN: A Portable, Parallel Prolog: Its Design, Realisation and Performance 387

task switches (of schedulers used in Aurora) while preserving (to some extent)
the usual Prolog execution strategy and including some of the attractive charac-
teristics of MUSE at little extra cost. To help the scheduler reduce speculative
work ADEP T also incorporates an abort &failure mechanism. 61)

Best-first scheduling provides a good degree of fair engine distribution and
work-load balancing. In contrast models that use "depth-first" scheduling (for
example Andorra-I) do not always guarantee fair allocation of available system
resources. Engines under PAN are sorted in a descending order of their process-
ing capabilities to ensure that farmers (which both schedule remote distribution
and perform local computation at the same time) employ "better" engines than
their workers. The model distributes both AND and OR parallel tasks uniformly
without the need for separate schedulers (e.g. Andorra-I).

This task-driven "7 farmer-worker model of best-first engine re-allocation
and task re-distribution aims to improve performance by reducing the complexity
of interfacing among the scheduler and a large number of engines, to manage
synchronisation bet ter and also to keep communication overheads low to perform
better on distributed platforms. Scheduling control is done at the Prolog level
and its implementation does not re-engineer the WAM (in contrast to distributed
systems like PDP and OPERA) which complies with PAiN's design choices.

The model imposes some overheads which relate mainly to the frequency
of communication between a farmer and its workers and depend mainly on the
characteristics of the platform. The bigger the frequency the bigger the over-
heads. The best frequency to use can be experimentally determined.

w Performance

7.1 The Nature of the Experiments
All programs were run under PAN using SICStus Prolog 3.5 on a vari-

ety of heterogeneous Sun, Dec and Silicon Graphics workstations on the same
LAN. The PAN session consisted of engines with different processing capabili-
ties distributed over three different sub-networks of the LAN, that are connected
through gateway hosts. Large input sizes were used in most benchmarks to pro-
vide long running non-trivial problems to push the controls and the platform to
their limits. PAN's communication overheads generate large granularity thresh-
olds, so only large input sizes can illustrate the performance of the proposed
mechanisms. Each benchmark was run 20 consecutive times under the same
PAN configuration. However, only the best three runs were taken into account.
Time was always measured in seconds on the same workstation. Full details can
be found in Reference. 61)

7.2 Granularity Control
The numbers in the following tables represent the performance improve-

ment (PI) due to the use of the granularity controls presented in Section 5.

.7 The scheduler initiates only when parallel tasks are generated. Otherwise the Prolog
engine performs all computations.

388 G. Xirogiannis and H. Taylor

Table 1 Quick Sort Granularity Control

List Input Size
750 1000 2000

4 25.3 40.7 45.7
8 31.0 43.0 46.5
12 46.8 47.5 53.0
16 48.0 48.7 53.6

3000
49.3
50.6
52.3
56.0

Table 2 Merge Sort Granularity Control

List Input Size
750 1000 2000 3000

4 -3.9 -1.5 -4.1 -10.8
8 18.2 18.9 22.8 29.8
12 33.3 35.5 37.8 43.9
16 37.2 43.2 46.7 50.9

Given a program, an input goal and a platform configuration, let Twc be the
average time of the best three out of twenty consecutive runs, required by PAN
to process that goal with the granularity controls enabled. Similarly, let TNC
be the average time of the best three out of twenty consecutive runs, required
by PAN to process the same goal with the granularity controls disabled. Per-
formance improvement (Pl) due to the use of the controls is calculated using

the expression P l - T N C - T w c , 100%. The same PAN configuration was
TNC

used in all experiments.
Consider QuickSort (presented in Reference, 4') pp. 56) and Table 1. The

controls adapt well to the characteristics of the platform and the nature of the
benchmark producing parallel tasks of different sizes. The more engines that
participate in a PAN session, the more AND-tasks are processed remotely. As
a result the controls prove beneficial ranging up to 56%. The controls are able
to cope adequately with large test sizes (2000 or 3000 elements) and impose
small run-time overheads as well. Debray's model provides a speed up of 3%
under the ROLOG ~~ system using 4 processors and a speedup of 16.2% under
the &-Prolog system also using 4 processors for the benchmark QuickSort(75).
Under the PDP system performance does not improve at all when 3 and 15
processors are used. Performance improves by 17.8% only when 8 processors are
employed to process QuiekSort(700). Garcia's model improves the performance
of QuiekSort(1000) by 21% running on a hierarchicat** implementation of &-
Prolog with 4 processors.

Consider the MergeSort benchmark (presented in Reference, ~) pp. 578)
and Table 2. In this benchmark the controls perform less adequately (but still
effectively) than in Quicksort. When MergeSort is run, the controls perform
non-profitable .9 run-time tests since the input size becomes small enough not
to satisfy the granularity tests only in the last recursions. On the other hand,

.s Basically it 's an &-Prolog implementation with arbitrary overheads added to task creation

.9 Granularity controls impose overhead without restricting parallelism.

PAN: A Portable, Parallel Prolog: Its Design, Realisation and Performance 389

Table 3 Perfect N u m b e r s

Integer Input Size
75 100 300 500

4 17.0 21.5 23.7 24.5
8 6.5 9.5 12.2 15.2
12 8.2 13.2 15.5 17.2
16 14.1 20.1 20.4 21.6

Table 4 F ibonacc i N u m b e r s

Integer Input Size
t0]5 20

4 1.3 7.2 15.2
8 7.0 12.8 21.8
12 11.4 18.0 27.4
16 17.0 22.7 31.5

the table indicates that the granularity mechanism is able to improve perfor-
mance when many engines are being used. When many engines are being used,
many parallel candidates are actually processed remotely which balances bet-
ter the non-profitable (unnecessary) run-time tests. Debray's models improves
performance of MergeSort(128) by 14.1% under the ROLOG system using 4 pro-
cessors. The PDP system also using 4 processors improves the performance of
MergeSort(500) by 1.44%

Consider the Perfect Numbers benchmark (presented in Reference 5~ and
Table 3. In contrast to OuickSort but similarly to MerfleSort, the granularity
constraints succeed in most recursions because the input size is larger than the
threshold of the granularity constraint. Only in the last few recursions do the
input sizes become small enough not to satisfy the granularity tests. In fact,
the granularity control mechanism in this case, performs more non-profitable
(unnecessary) run-time tests in comparison to MergeSort. Additionally, the
overall number of parallel tasks generated by this benchmark is much less than
the overall number of parallel tasks generated by MerfleSort for similar input
sizes. As a result Perfect Numbers performs less adequately, but still effectively
as the experiment results indicate. In this particular benchmark, controls provide
a best-case performance improvement when PAN employs 4 engines. This is
because when there are few engines (and many potential parallel tasks) the
scheduler does not allow the controls to test the run-time conditions. Instead
tasks are processed locally, without imposing non-profitable overheads. When
PAN employs more engines, the controls test more run-time conditions, but
in practice they impose non-profitable overheads. Due to the nature of this
benchmark, only in the last few recursions do the input sizes become small
enough not to satisfy the granularity tests.

The Fibonacci Numbers benchmark (as presented in Reference ~ and Ta-
ble 4) is similar to Perfect Numbers. However the controls improve performance
more than the previous example mainly because the input sizes for Fibonacci
Numbers are closer to the grain size threshold. Therefore the controls perform

390 G. Xirogiannis and H. Taylor

Table 5 Matr ix Mul t ip l ica t ion

NxN Matrix Input Size
15 30 45 60

4 16.9 19.7 23.4 27.0
8 16.1 19.2 20.7 28.0
12 21.9 22.4 26.7 33.3
16 23.8 24.5 28.7 36.9

4
8
12
16

Table 6 P e r m u t a t i o n s

List Input Size
6 7 8

0.0 -5.9 -3.8
O.6 34.1 39.0
6.1 34.1 40.8

22.7 32.6 42.6

less non-profitable tests. Debray's model provides a performance improvement
for fib(15) of 27.3% under the ROLOG system and 29.2% under the ~:-Prolog
system both using 4 processors. This is the only benchmark with consistent
results under both parallel systems. Garcia's model improves the performance
of fib(19) by 240/0 running on a hierarchical implementation of &-Prolog with 4
processors.

Consider the Integer Matrix Multiplication benchmark (as presented in Ref-
erence, 61) pp. 333) and Table 5. This benchmark generates 4 parallel tasks in
a single recursion, which is twice as many as QuickSort. Extra parallel tasks
require extra granularity tests, which of course impose extra run-time overhead.
Debray tests a;n 8x8 matrix. But the large granularity threshold of this bench-
mark in PAN makes the 8x8 matrix multiplication without any practical interest.
Garcia's model improves the performance of the multiplication of a 4x2 and a
2x100 matrix by 16.27% under the &-Prolog system using 4 processors. When
a matrix 75xl and a vector are multiplied under the PDP system, performance
does not improve at all regardless of the number of processors used.

Consider the Permutations benchmark (as presented in Reference, 51)
pp. 91) and Table 6. Permutations is a typical example of fine-grained OR-
parallelism. The clauses generate a search tree with several OR-branches. The
proposed model generates coarse-grained parallel tasks that improve perfor-
mance on distributed platforms like PAN. However, this benchmark does not
perform that well when 4 processors are used. The percentage of OR-candidates
processed in practice is very small and the effect of granularity controls can
not balance the overhead. But performance improves significantly when more
processors are used.

The previous example is the core program for other benchmarks like naive
N-Queens (presented in Reference, 51) pp. 119). OR-parallelism in N-Queens is
generated in a similar way to Permutations and as a result performance figures
are very similar. The controls used in the P D P are able to provide a best
case performance improvement of 5% (approx.) for queen(8) running on 15

PAN: A Portable, Parallel Prolog: Its Design, Realisation and Performance 391

Table 7

4
8
12
16

Tree Lookup Granular i ty Control

Integer Input Size
5 7 9

52.5 65.4 77.7
57.9 73.1 85.2
64.2 77.2 90.4
68.6 81.0 93.2

processors.
Consider the Tree Lookup benchmark (presented in Reference, TM pp. aas)

and Table 7. In contrast to previous examples, Tree Lookup may generate more
than 2 OR-branches in each recursion (depending on the shape of the tree)
and increase the number of potential parallel tasks. Granularity controls are
able to improve performance dramatically because they can exploit the fine-
grained nature of the program and perform profitable size tests that coalesce
many fine-grained tasks to form coarse-grained tasks, which adapt bet ter to the
characteristics of the platform. The controls prove very useful when the tree is
unbalanced. Debray's model improves performance the performance of tree(8)
only by 3% under the ROLOG system using 4 processors.

7.3 Run-time Scheduling
Direct comparison of PAN with parallel Prologs on shared-memory mul-

tiprocessors is not always reasonable. They usually perform bet ter than dis-
tr ibuted platforms as argued in References. n'29) It is not always feasible to com-
pare the performance of distributed platforms either, because they have different
configurations making it difficult to establish a general and fair comparison met-
ric. The numbers in tables represent the relative performance improvement RPI
due to parallel execution in comparison to sequential execution. RPI is calcu-

S 5E
lated using the formula RPI = ~-~. PE is the average parallel execution time (in

seconds) of the best 3 out of 20 consecutive runs. SE is the sequential execution
time (in seconds). SE is defined as follows:

number~engines SEi)
= (~ /number_of_engines SE \ i=i

SEi is the average sequential execution t ime of the best 3 out of 20 con-
secutive runs, for every engine i that participates in a PAN session. To obtain
SE~, programs were run under pure SICStus without the use and/or intervention
of PAN. SE provides a fair comparison metric for this heterogeneous platform
since all programs were run on all engines participating in a given PAN session.
All benchmarks were run under the same PAN configuration.

7.4 AND-parallel Execution
To illustrate the performance of the model for AND-parallelism the Quick-

Sort program (Table 8), the MergeSort program (Table 9), the Perfect Numbers

392 G. Xirogiannis and H. Taylor

Table 8 Quicksort Runtime Scheduling

List Input Size
750 1000 2000 3000

4 2.11 2.18 3.09 3.68
8 2.71 3.27 4.24 4.50
12 3.07 3.66 4.87 5.22
16 3.64 4.44 5.65 5.88

Table9 MergeSort Runtime Scheduling

List Input Size
750 1000 2000 3000

4 1.57 1.84 2.23 2.59
8 2.09 2.21 2.61 3.12
12 2.53 3.07 4.11 4.57
16 2.71 3.81 4.49 5.07

4
8
12
16

Table 10 Perfect Nos. Runtime Sched

Integer Input Size
100 300 500

2.159 3.045 3.828
4.849 6.372 7.090
6.150 9.220 10.195
7.050 11.562 12.887

Table 11

4
8
12
16

NxN Matrix Runtime Sched

NxN Matrix Input Size
30 45 60

1.629 1.663
1.720 1.678

1.657
1.740

1.859 1.816 1.941
2.146 2.122 2.414

program program (Table 10) and the Big Integer Matrix Multiplication (Table 11)
were run under PAN.

The Matrix Multiplication program generates 4 medium-grained parallel
tasks on each recursion. However this program generates AND-tasks very fast
(in the sense that these AND-tasks have no LHS goals to delay their gener-
ation) and much faster than PAN can effectively handle them (in the sense
tha t the distribution rate of PAN is much lower than the generation rate of
AND-tasks). This incurs extra run-time overheads because it schedules poten-
tial parallel tasks, which are processed locally instead. The overhead imposed
by the scheduler in addition to the considerable communication cost, can not
be balanced as effectively as with Quicksort by the gains of parallel execution.
Several parallel tasks are not actually processed in parallel but wait locally for
an engine to become available. Such programs perform bet ter on shared-memory
multiprocessors. In contrast, the rate that the QuickSort and MergeSort pro-
grams generate coarse-grained parallel tasks is reasonably close to the ra te tha t

PAN: A Portable, Parallel Prolog: Its Design, Realisation and Performance 393

PAN can effectively process them. As a result the scheduler imposes less over-
head in the latter case, because more potential AND-tasks are actually processed
remotely.

The Perfect Numbers program provides the best speed up, indicating that
for non-trivial and coarse-grained applications this model distributes tasks effec-
tively to engines while controlling the communication overheads and exploiting
good degrees of parallelism. Especially when the rate of generation of AND-tasks
is reasonably close to the rate, PAN can process them remotely.

The proposed scheduling scheme is able to improve the performance of
PAN as the input size of tasks and the number of engines participating in a
PAN session increases indicating that the distributed scheduling components can
effectively partition the work load and can also adapt to the changing configu-
ration of the platform. ~z-Prolog provides a speed-up of 4.9 for QuickSort(1000)
running on 10 nodes of a shared-memory multiprocessor. The AND-OR-parallel
distributed Prolog executor 54) improves the performance of OuickSort(2000) by
2.7 on 30 processors and the PDP system improves the performance of Quick-
Sort(700) 2.9 times running on 15 processors. ~z-Prolog provides a linear speed
up of 10 for Matrix(50) running on 10 processors, but distributed platforms like
PDP provide a speed up of 1.85 for Matrix(75) on 15 processors. Finally the
P DP system provides a speed up of 2.6 for MergeSort(500) on 12 processors.

7.5 OR-parallel Execution
Analysis gets more complicated when it comes to OR-parallel execution.

Programs like Permutations or naive N-Queens usually do not perform that
well under platforms with considerable communication costs as argued in Ref-
erences. ~9,~1) Preliminary results showed that PAN is not an exception. The
Permutations program and especially the select~3 goal is the main source of OR-
parallelism for other programs like Naive N-Queens. However select~3 generates
OR-parallel tasks very fast (in the sense that the OR-task has no LHS goals to
delay its generation) and much faster than PAN can effectively handle them (in
the sense that the distribution rate of PAN is much lower than the generation
rate of OR-tasks by select~3). The overhead imposed by the scheduler and by
the OR-interpreter of these tasks in addition to the considerable communica-
tion cost, can not be balanced by the gains of parallel execution because most
of parallel tasks are not actually processed in parallel but wait locally for an
engine to become available. PAN pays the penalty of keeping the control of OR-
parallelism at the Prolog level (using an interpreter) instead of pushing most of
the control to the WAM level to optimise the OR-parallel execution. However,
the flexible configuration of ADEPT, allows PAN to incorporate an improved
version of the current OR-interpreter, or even to employ a new one.

For the 10-Queens benchmark OPERA provides a best case performance
improvement of (approx.) 2 on 16 processors, but to achieve that the usual
WAM-based engine is re-engineered. ROLOG and PDP on the other hand im-
prove performance further, however they are based on an execution model that
differs significantly from PAN and a direct comparison would not be fair.

39'4 G. Xirogiannis and H. Taylor

Table 12 OR-Tree Runt ime Sched

Integer Input Size
1000 3000 5000 7000

4 1.37 2.74 3.22 3.91
8 3.59 5.85 6.87 7.82
12 6.08 9.06 10.29 10.97
16 6.52 9.80 12.69 14.03

Table 13 Deep Fail Runt ime Sched

Integer Input Size
1000 3000 5000 7000

4 1.84 2.63 3.07 3.78
8 2.38 3.68 4.67 5.50
12 3.00 5.26 6.10 7.12
16 3.85 6.36 8.29 9.03

Eng.
4
8
12
16

Table 14 AND-OR Parallelism

Synthetic-1 Synthetic-2 Synthetic-3
2.537 2.032 3.132
3.583 3.079 4.180
4.302 3.705 5.125
4.423 3.819 6.404

Alternative benchmark programs have to be used to illustrate the per-
formance of distributed platforms. The OR-Tree and Deep Fail programs (as
presented in Reference, ~1) pp. 338, 339) are variations of benchmarks used in the
performance analysis of several distributed systems in Reference. 29> Tables 12
and 13 illustrate that PAN can perform adequately for a certain class of non-
trivial and large scale applications adapting well to the changing nature of the
platform and the characteristics of each program. The main characteristic of
this class of applications is that the rate of generation of OR-tasks is reasonably
close to the rate that PAN can process them effectively.

7.6 AND-OR-Parallel Execution
Implementation schemes combining AND and OR parallelism typically

pay a penalty in the form of a higher control overhead. Table 14 presents the
speed up numbers of the synthetic benchmarks used in the performance analysis
of PDP (Reference 2) pp. 73, 74). They generate AND-under-OR and OR-under-
AND parallelism respectively. It indicates that PAN is able to control to a
certain extent the extra control overhead. PAN better exploits AND-under-OR
parallelism of the synthetic-1 benchmark because it requires fewer task switches
between the OR-interpreter and the Prolog engine in comparison to OR-under-
AND parallelism generated by the synthetic-2. This indicates that PAN favours
the use of the OR-interpreter at the top levels of the execution tree while the
tasks in lower levels can be processed either sequentially or in AND-parallel.
Synthetic-3 is a variation of synthetic-1 which generates twice as many AND

PAN: A Portable, Parallel Prolog: Its Design, Realisation and Performance 395

and OR tasks.
For the synthetic-1 benchmark PDP provides a speed up of up to 4.5, and

for the synthetic-2 benchmark a speed up of up to 4.6. The latter benchmark
performs better when it runs under the PDP system because OR-parallel execu-
tion is realised by extending the WAM, which imposes no task switches between
the Prolog engine and the OR-mechanism which is the case in PAN. But PAN
also performs reasonably well using mainstream Prolog technology. As the scale
of parallelism grows (synthetic-3) performance improves indicating that PAN
performs better running large scale applications.

w Conclusion
PAN combines SICStus Prolog, PVM and Te l /Tk technology to create

a message passing parallel system running on a virtual multiprocessor under
a script controlled X Window interface. To exploit parallelism efficiently PAN
uses suitable compile-time techniques to detect potential parallel tasks. Determi-
nacy, Freeness and Side-Effects Flow analyses impose sequentiality constraints
to maintain standard Prolog semantics. The use of strict and well informed
granularity controls improve the performance of the platform by coalescing fine-
grained tasks to form coarse-grained goals adding little (if any) overhead. Tasks
are distributed to engines using a flexible task-driven hierarchy of distributed
scheduling components. The performance results show that PAN performs bet-
ter on large scale and non-trivial applications rather than fine-grained parallel
tasks.

References
1) Ali, K. A. M. and Karlsson, R., Scheduling OR-parallelism in MUSE. in Proc.

of 8th Int. Conf. on Logic Prog. (Furukawa, K., ed.), pp. 807-821, 1991.

2) Araujo, J. and Ruz, J.J., "A Parallel Prolog System for Distributed Memory,"
Int. Journal of Logic Prog., 33, 1, pp. 49-79, 1997.

3) Baron, U., de Kergommeaux J.C., Hailperin M., Ratcliffe M., Robert P., Syre
J.C., and Westphal H., "The parallel ECRC Prolog system PEPSys: An
overview and evaluation results," in Int. Conf. on FCGS (ICOT, ed.), pp. 841-850,
1988.

4) Beaumont, T. and Warren, D. H. D., "Scheduling Speculative Work in OR-
parallel Prolog Systems," in Proc. of lOth Int. Conf. on Logic Prog. (Warren, D. S.,
ed.), pp. 135-149, 1993.

5) Bratko, I., Prolog: Prog. for Art. Intelligence, 2nd ed. Addison Wesley, 1991.

6) Briat, J., Favre, M., Geyer, C., and de Kergommeaux, J. C., "OPERA: Or-
parallel Prolog system on Supernode," Implementations of Distributed Prolog (Kac-
suk, P. and Wise M. J, eds.), John Wiley, pp. 45-64, 1992.

7) Bruynooghe M., Deomoen N., Boulanger D., Deneeker M., and Mulkers A., "A
Freeness and Sharing Analysis of Logic Programs Based on Pre-interpretation,"
in Proc. of 3rd Int. Symp. on Static Analysis (R. Cousot and D. A. Schmidt, eds.),
pp. 128-142, 1996.

396 G. Xirogiannis and H. Taylor

8) Carlton M. and Van Roy P., A Distributed Prolog System with AND-Parallelism,
IEEE Software, pp. 43-51, Jan., 1988.

9) Clocksin W. F., "The Delphi Multiprocessor Inference Machine," in Proc. of
ICSLP '92-Work. on Concurrent and Parallel Implementations (Apt, K., ed.), 1992.

10) Costa, V. S., Warren, D. H. D., and Yang, R., "The Andorra-I Preprocessor
Full Prolog on the Basic Andorra Model," in Proc. of 8th Int. Conf. on Logic Prog.
(Furukawa, K., ed.), pp. 599 613, 1991.

11) Coulouris, G. F., and Dollimore, J., Distributed Systems: Concepts and Desigtl, 2nd
ed., Addison Wesley, 1994.

12) Cunha, J. C., Medeiros, P. D., Carvalhosa, M. B., and Pereira, L. M., "Delta-
Prolog: A Distributed Logic Programming Language and its Implementation
on Distributed Memory Multiprocessors," Implementations of Distributed Prolog
(Kacsuk, P. and Wise, M. J., eds.), John Wiley, pp. 335-356, 1992.

13) Durra I., "Strategies for Scheduling AND and OR Parallel Work in Paral-
lel Logic Programming Systems," in in Proc. of 1994 Int. Symp. of Logic Prog.
(M. Bruynooghe, ed.), pp. 289-304, 1994.

14) Debray, S. K., Garcia, P. L., Hermenegildo, M. V. and Lin N. W., "Estimating
the Computational Cost of Logic Programs," in Proc. of Static Analysis S.vmp.
(Charlier, B. L., ed.), 1994, pp. 255-265, 1994.

15) Debray, S. K. and Lin, N., "Cost Analysis of Logic Programs," TOPLAS, 15, 5,
pp. 826-875, 1993.

16) Debray, S. K., Lin, N. W. and Hermenegildo, M. V., "Task Granularity Anal-
ysis in Logic Programs," in Proc. of 1990 ACM Conf. on Prog. Lang. Design and
Implementation, pp. 174-188, 1990.

17) DeGroot, D., "Restricted AND-parallelism and Side Effects," in Proc. oflnt.
Symp. on Logic Prog., pp. 80-89, 1987.

18) Futo, I., "The Real Time Extension of CS-Prolog Professional," ICLP'94- Work.
on Parallel and Data Parallel Execution of Logic Programs (Barklund, J., Jayaraman,
B. and Tanaka, J., eds.), 1994.

19) Garcia, P.L, Hermenegildo, M.V. and Debray, S.K, "A Methodology for Gran-
ularity Based Control of Parallelism in Logic Programs," Journal of Symbolic
Computation, 22, pp. 715 734, 1996.

20) Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam,
V., PVM User's Guide and Reference Manual, ORNL, Tennessee, 1995.

21) Gupta, G. and Costa, V. S., "Cuts and Side-effects in AND-OR Parallel Prolog,"
Journal of Logic Prog., 27, 1, 1996.

22) Gupta G, Hermenegildo M, and Costa V., S., "AND-OR Parallel Prolog: Re-
computation Based Approach," New Generation Computing, 1, 3-4, pp. 770-782,
1993.

23) Hermenegildo, M. V. and Greene, K. J., "The &-Prolog System: Exploiting
Independent AND-parallelism," New Generation Computing, 9, 3-4, pp. 233-257,
1991.

24) Hermenegildo M. V., Bueno F., Puebla G., and Lopez P., "Program Analysis,
Debugging and Optimisation Using the CIAO System Preprocessor," in Proc. of
1999 IJCSLP (D. De Schreye, ed.), pp. 52-66, 1999.

P A N : A

25)

Portable, Parallel Prolog: Its Design, Realisation and Performance 397

Hermenegildo, M. V., "An Abstract Machine for Restricted AND-parallel Exe-
cution of Logic Programs," Proc. of 3rd lnt. Conf. on Logic Prog. (Shapiro, E., ed.),
pp. 25-40, 1986.

26) Hermenegildo M. V. and Rossi, F., "On the Correctness and Efficiency of Inde-
pendent AND-parallelism in Logic Programs," in Proc. of 1989 N. Amer. Conf. on
LogicProg. (Lusk, E. L. and Overbeek, R. A., eds.), pp. 369-389, 1989.

27) Jacobs D. and A. Langen A., "Accurate and Efficient Approximation of Variable
Aliasing in Logic Programs," Journal of Logic Prog., 13, 2-3, pp. 291-314, 1992.

28) Kacsuk, P., "OR-parallel Prolog on Distributed Memory Systems," LNCS, 817,
Springer-Verlag, pp. 543-463, 1994.

29) Kacsuk, P. and Wise, M. J., Implementations of DistributedProlog. John Wiley,
Chichester, 1992.

30) Kale, L. V. and Ramkumar, B., "The REDUCE/OR Process Model for Par-
allel Logic Programming on Non-shared Memory Machines," Implementations of
DistributedProlog (Kacsuk, P. and Wise, M. J., eds.), John Wiley, pp. 187-212,
1992.

31) Kaplan, S., "Algorithmic Complexity of Logic Programs," in Proc. of 5th Int.
Conf. and Symp. on Logic Prog. (Kowalski, R. and Bowen K, eds.), pp. 780-793,
1988.

32) King A., Shen K., and Benoy F., "Lower-bound Time-complexity Analysis of
Logic Programs," in Int. Syrup. on Logic Prog. (J. Maluszynski, ed.), pp. 261-276,
1997.

33) King, A. and Soper, P., "Heuristics, Thresholding and a New Technique for
Controlling the Granularity of Concurrent Logic Programs," Tech. Rep. CSTR
92-08, Dept. of Electronics and Computer Science-Southampton Univ., 1992.

34) King A. and Soper P., "Depth-k Sharing and Freeness," in Int. Conf. on Logic
Prog. 1994 (P. Van Hentenryck, ed.), pp. 553 568, 1994.

35) Lusk, E., Warren, D. H. D. and Haridi, S., "The Aurora OR-parallel System,"
New Generation Computing, 7, 2-3, pp. 243-271, 1990.

36) Morel, E., Briat, J., de Kergommeaux, J. C. and Geyer, C., "Side-effects
in PloSys Or-parallel Prolog on Distributed Memory Machines," ICSLP'96-
Compulog NetMeeting (Maher, M. J., ed.), Bonn, 1996.

37) Mulkers A., Simoens W., Janssens G. and Bruynooghe M., "On the Practi-
cality of Abstract Equation Systems," in Proc. of 12th Int. Conf. on Logic Prog.
(L. Sterling, ed.), pp. 781-795, 1995.

38) Muthukumar K. and Hermenegildo M. V., "The CDG, UDG and MEL Methods
for Automatic Compile-time Parallelization of Logic Programs for Independent
AND-parallelism," in 7th Int. Conf. on Logic Prog. (D. H. D. Warren and P. Szeredi,
eds.), pp. 221-236, 1990.

39) Nelson, R. D. and Squillante, M. S., "Modeling and Analysis of Task Migration
in Shared-memory Multiprocessor Computer Systems," in Proc. of 4th Int. Work.
on MASCOT, Computer Socie~, pp. 262-266, 1996.

40) Palmer, D. and Naish, L., "NUA-Prolog, Extension to WAM for Parallel An-
dorra," in Proc. of 8th Int. Conf. on Logic Prog. (Furukawa, K., ed.), pp. 599-613,
1991.

398 G. Xirogiannis and H. Taylor

41) Pontelli, E., Gupta, G. and Hermenegildo, M. V., "&-ACE: a High Performance
Parallel Prolog System," in Proe. of lnt. Parallel Processing Syrup., IEEE Computer
Socie~. , 1995.

42) Sahlin, D., "Determinacy Analysis for Full Prolog," ACM Syrup. on Partial Evalu-
ation and Semantics Based Program Manipulation, ACM Press, 1991.

43) Shapiro, E., "An OR-parallel Algorithm for Prolog and its FCP Implementa-
tion," in Proc. of 4thlnt. Conf. on Logic Prog. (Lassez, J.L, ed.), pp. 311-337, 1987.

44) Shapiro, E. and Sterling, L., The Art of Prolog, MIT Press, 1988.

45) Shen, K., "Improving the Execution of the Dependent AND-parallel Prolog
DDAS," LNCS, 817, Spring-Verlag, pp. 438-452, 1994.

46) Shen K., Costa V. S., and King A., "A New Metric for Controlling Granularity
for Parallel Execution," in Work. on Parallelism and Implementation Technology for
Constraint Logic Prog. Langs., 1997.

47) Shen K., Costa V. S., and King A., "Distance, a New Metric for Controlling
Granularity for Parallel Execution," Functional and Logic Prog., 1999.

48) Sindaha R.Y., "Branch-level Scheduling in Aurora: The Dharma Scheduler," in
Int. Syrup. on Logic Prog. (D. Miller, ed.), pp. 403-419, 1993.

49) Takeuchi, A., "Parallel Logic Prog.," PhD thesis, Univ. of Tokyo, Japan, 1990.

50) Taylor, H., "Assembling a Resolution Multiprocessor from Interface, Program-
ruing and Distributed Processing Components," Computer Languages, 22, 2-3,
pp. 181 192, 1996.

51) Tick, E., Parallel Logie Prog., MIT Press, 1991.

52) Tick, E., "Compile-time Granularity Analysis of Parallel Logic Programming
Languages," New Generation Computing, 7, 2, 1990.

53) Tick, E. and Zhong, X., "A Compile-time Granularity Analysis Algorithm and
its Performance Evaluation," New Generation Computing, 1, 3-4, 1993.

54) Verden, A. and Glaser, H., "An AND-OR-parallel Distributed Prolog Executor,"
Implementations of Distributed Prolog (Kacsuk, P. and Wise, M. J., eds.), John
Wiley, pp. 143 157, 1992.

55) Warren, D. H. D., "The SRI Model for OR-parallel Execution of Prolog-
Abstract Design and Implementation," in Proc. of Int. Symp. on Logic Prog. (War-
ren, D. H. D. and Szeredi, P., eds.), pp. 92-102, 1987.

56) Warren, D. H. D., "The Extended Andorra Model with Implicit Control,"
ICLP'90-Work. on Parallel Logic Prog. (Warren, D. H. D. and Szeredi P, eds.),
1990.

57) Wegbreit, B., "Mechanical program analysis," CACM, 18, 9, pp. 528-539, 1975.

58) Winsborough W. and Waern A., "Transparent AND-parallelism in the Presence
of Shared Free Variables," in 5th Int. Conf. and Syrup. on Logic Prog. (R. Kowalski
and K. Bowen, eds.), pp. 749-764, 1988.

59) Wise, M. J., "Experience with PMS-Prolog," Software Practice and Experience, 22,
2, pp. 151-175, 1993.

60) Xirogiannis, G., "Compile-time Analysis of Freeness and Side-effects for Dis-
tributed Execution of Prolog Programs," in Proc. of 6th Hellenic Conf. on Infor-
matics (Sellis, T. and Pagkalos, G., eds.), pp. 701-722, 1997.

PAN: A

61)

62)

63)

64)

Portable, Parallel Prolog: Its Design, Realisation and Performance 399

Xirogiannis, G., "Execution of Prolog by Transformations on Distributed Memory
Multi-Processors," PhD thesis, Heriot-Watt Univ., Edinburgh, 1998.

Xirogiannis, G., "Granularity Control for Distributed Execution of Logic Pro-
grams," in Proc. of 18th Int. Conf. on Distributed Computing Systems (Papazoglou,
M. P., Takizawa, M., Kramer, B. and Chanson, S., eds.), pp. 230-237, 1998.

Xirogiannis, G., and Taylor, H., "A Dynamic Task Distribution and Engine
Allocation Strategy for Distributed Execution of Logic Programs," in Proc. of
19981nt. Conf. on High-Performance Computing & Networking (Sloot, P., Bubak, M.
and Hertzerger, B., eds.), pp. 294-304, 1998.

Yang, R., Beaumont, T., Dutra, I., Costa, V. S. and Warren, D. H. D., "Perfor-
mance of the Compiler-based Andorra-I System," in Proc. of the Tenth International
Conference on Logic Programming (David S. Warren, ed.), pp. 150-166, Budapest,
Hungary, 1993. The MIT Press.

George Xirogiannis, Ph.D.: He received his B.S. in Mathematics
from the University of Ioannina, Greece in 1993, his M.S. in Ar-
tificial Intelligence from the University of Bristol in 1994 and his
Ph.D. in Computer Science from Heriot-Watt University, Edin-
burgh in 1998. His Ph.D. thesis concerns the automated execution
of Prolog on distributed heterogeneous multi-processors. His re-
search interests have progressed from knowledge-based systems to
distributed logic programming and data mining. Currently, he is
working as a senior IT consultant at Pricewaterhouse Coopers. He
is also a Research Associate at the National Technical University
of Athens, researching in knowledge and data mining.

Hamish Taylor, Ph.D.: He is a lecturer in Computer Science in
the Computing and Electrical Engineering Department of Heriot-
Watt University in Edinburgh. He received M.A. and MLitt de-
grees in philosophy from Cambridge University and an M.S. and
a Ph.D. degree in computer science from Heriot-Watt Univer-
sity, Scotland. Since 1985 he has worked on research projects
concerned with implementing concurrent logic programming lan-
guages, developing formal models for automated reasoning, per-
formance modelling parallel relational database systems, and vi-
sualisizing resources in shared web caches. His current research
interests are in applications of collaborative virtual environments,
parallel logic programming and networked computing technolo-
gies.

