Formal verification of a union-find
based unification algorithm

Diplomathesis

by
Guido Vogt

Guidance by Dr. R. Stéark

iF
| nstitute of Informatics
University of Fribourg, Switzerland

May 1998

Formal verification of a union-find based unification algorithm

Contents
L@ VN 1V S TP 1
N O PP 2
1 INTRODUGCTION ..tiiitiiitieitie sttt sttt sttt st sbe e sbe e sb e sb e e sb e e s beesbeesbe e sbeesbeesbeesbeesbeesbeesbeesaeenneas 3
LA WRBE IS LPTP?....ccee ettt sttt be s be e s e e tesae st e emeeseesbesneeneeseesteeneensennens 3
1.2 Program VElifICAIONcooueiiieieeieese ettt et ettt et be b e 3
1.3 Problem dESCriPLIONccoueeieeiteeie ettt ettt ettt et et ettt b e 4
2 UNIFTCATION L.ttt bttt h e st a e s et s et s et s et s et s a bt st et e nbe et et enes 5
P2 A I =3 ¢ To (g T = 0 PR PPR PSPPI 5
2.2 The NOtioN " SUDSHTULION" ..ottt sb e bbb e st e e sbeesreenree s 5
2.3 The NotioN "UNITICAIION"oiiiiieiieiie ettt st sb e st sb e b e e sbeesbeesreenreens 6
2.4 A simple unification algorithmcoiioiioiie e 6
2 4. L EXAMPIE. ...ttt bbb bbb bbb bbb ne s 8
A O ol (= TR R PRSP 10
3 SPECIFICATION OF THE UNIFICATION ALGORITHM ...coiiiiiiiiiiieieee e 12
TN S o=) o= (o TSRS 12
G2 0] 1= 0= 1 = o o O OPS 16
4 CORRECTNESS PROOFFcoiiiiitiiitie ittt sttt sttt st sttt sbe bbb e b b e sbeesbeesbeesneesaeas 20
4.1 AN INrOAUCIONY EXBIMPIE. .. cotiiiteeite ettt ettt ettt et ettt be e nre e 20
4.2 SOME iMPOItaNt PrOPOSILIONS.ccvieteetiesieeste ettt et ettt ettt et e be et ettt ettt e be b 22
4.2.1 Theorems about "Unifiable TEIMISooiiiii e e 22
4.2.2 Theorems about "Unify_TErmMS PaIt”ooiiiiiiiiiee e e 22
4.2.3 Theorems about "unify_terms SUD" ..o 23
4.2.4 DEfinition Of "appliCaION"........ceiiiiiiiiee e 23
4.2.5 Definition Of "COMPOSITION"eiiiiiiiiii ittt 23
4.2.6 Termination Of the CYCIETESE.......eiiiiiee e 24
4.2.7 Termination of the union-find algorithm ... 24
4.2.8 MOSt geNEral SUDSHITULION.eeieeiieiiitiiiie et st 24
APPENDIX A BIBLIOGRAPHY ..ottt sttt 25
F o T] = T T S S I 26
APPENDIX C FORMAL PROOFoiiiiiiiiitie ettt st sttt s 27

Formal verification of a union-find based unification algorithm

Preface

This diploma thesis was written for a diploma in computer science at the Institute of Informatics at the
University of Fribourg in Switzerland during the terms of 1997 and 1998.

The main part of the work consists of on-line proving and thus deriving the full correctness proof for the
unification algorithm used by LPTP (Logic Program Theorem Prover by R. Stérk). This proof comprises
about 13,000 lines.

Thanks go to Dr. R. Stérk for letting me have an inside look at his Logic Program Theorem Prover and
for many hours of his support.

Fribourg, May 1998 Guido Vogt

Formal verification of a union-find based unification algorithm

Chapter 1

| ntr oduction

1.1 What isLPTP?

LPTP is an interactive theorem prover for the formal verification of Prolog programs. It is a proof
refinement system allowing the user to interactively construct formal proofs. Using the LPTP system, it
is possible to generate proofs deductively from the assumption to the goal or goal directed from the goal
backwards to the axioms. LPTP has the ability to automatically search for proofs or parts of proofs. In
the simplest case, LPTP just finds the name of alemma that has been proved already and that is used at
acertain point in a proof. In the best case, LPTP finds complete proofs.

LPTP has been designed for correctness proofs of pure Prolog programs. Pure Prolog programs may
contain negation, if-then-else and built-in predicates like is/2, </2 and call/n+ 1. The programs,
however, have to be free of cut and database predicates like assert/1 and retract/1 which alows program
modification during runtime.

The kernel of LPTP iswritten exactly in the fragment of Prolog that can be treated in LPTP. This means
that LPTP uses no single cut. Moreover, it is possible to prove properties of LPTP in LPTP itself.

1.2 Program Verification

Program verification is a formal activity aiming for proof of program correctness. The usual way of
verifying program correctness is to check that it meets its specifications.

An important notion is termination. A Prolog program may or may not terminate, which means that it
"produces a finite or infinite number of answers" respectively. In the first case, the program may either
succeed or fail, meaning that the given sequence of predicates is met (and thus resulting in the answer
"yes') or is not met (resulting in the answer "no"). In the case of non-termination, no statement can be
made. It is therefore essential to verify, that each Prolog function (a part of an entire program)
implemented, returns only a finite number of responses and thus terminates.

With the three basic notions from above (termination, success and failure), it is possible to verify Prolog
programs in LPTP, which meet the restrictions imposed by LPTP described in the previous section.

Formal verification of a union-find based unification algorithm

1.3 Problem description

As seen, LPTP is written in the subset of Prolog that can be processed by LPTP itself, which permits to
prove, in principle, the correctness of the system as awhole.

The goal of this diplomathesisisto formally prove, by means of LPTP, the correctness of the union-find
based unification algorithm used internally by LPTP and described in chapter 2.

Formal verification of a union-find based unification algorithm

Chapter 2

Unification

2.1 Thenotion" Term"

In this diplomathesis we will repeatedly refer to the notion of aterm, so there is a need to clearly define
this expression. Terms are defined recursively as follows:

- avariableisaterm,
- if fisan n-ary function symbol and ty,...,t, are terms, then f(ty,... t,) isaterm.

In particular, every constant isaterm. A term with no variablesis called ground. A subterm of aterm s
isasubstring of swhich in turnisaterm. If wisasubterm of s, then w occursin s. In general, there can
be several occurrences of a given subterm in a term - for example f(x) and g(f(x),f(x)). By definition,
every term is a subterm of itself. A subterm sof atermtis called proper if st t.

It is convenient to view terms as trees. The tree associated with avariable x has just one node, labeled by
X itself. The tree associated with f(ty,...,t,) is obtained by attaching the trees associated with ty,...,t,,
under the root labeled by f. In particular, the tree associated with a constant ¢ has one node, labeled c.

N
EEY

Figure 2.1 The tree associated with the term k(g(x,y),a)

2.2 Thenotion " Substitution"

Substitutions bind variables to terms. A substitution is a finite mapping from variables to terms which
assigns aterm t different from x to each variable x in its domain. Thisis written as

{Xa/ta,... Xt}

Formal verification of a union-find based unification algorithm

where
X1,..., Xy are different variables,
ty,....t, areterms,
foril [Ln],x* t.

Informally, it can be read as: "The variables x;,...,X, are bound to t,...,t,, respectively”. Example: By
applying the substitution {y/b} to the term f(a,y), the term f(a,b), with a,b constants and y a variable is
obtained.

2.3 Thenotion " Unification"

Unification is an important notion in Prolog programming. Informally, unification is the process of
making terms identical by means of certain substitutions. For example, the terms f(a,y,z) and f(x,b,2),
with a,b constants and x,y,z variables, can be made identical by applying to them the substitution
{x/a,y/b}: both sides then become f(a,b,2). However the substitution {x/a,y/b,z/a} aso makes these two
terms identical. Such substitutions are called unifiers. The first unifier is to be preferred, because it is
"more general", which means that it does not make unnecessary bindings. The second unifier is a
"special case" of the first one. More precisely, the first unifier is a most general unifier (mgu in short) of
f(a,y,2) and f(x,b,2) while {x/a,y/b,z/a} is not. Therefore, the aim of the unification problem is to answer
the question whether for two given input terms there is a substitution, mapping the input terms into the
same term. In case of a positive answer, the input terms are said to be unified and the appropriate
substitution is called a unifier.

There are two reasons why two terms may not be unifiable. The first one is illustrated by the following
example: f(g(x,a),2) and f(g(x,b),a) are not unifiable, since two constants cannot unify. The second one
can be shown when considering the terms g(x,a) and g(f(x),a). No term x can be unified with another
term containing X. This is known as the occur-check failure.

The unification problemis solved by providing an algorithm that
a) terminates with failureif the terms are not unifiable,
b) produces amost general unifier if the terms are unifiable.

2.4 A simpleunification algorithm

Prolog, as well as many automated theorem provers, uses Robinson's unification algorithm shown in [6].
Robinson's algorithm is easy to implement and efficient enough for terms of small sizes. In the worst
case, however, Robinson's unification algorithm is exponential, even if terms are represented by directed
acyclic graphs (dags in short).

Example: To unify the following equations, most Prolog systems need exponential time.

2- X0 = f(X1,X1), XL = f(X2,X2), ..., X{n-1} = f(X_n, X_n),
YO = f(YL, Y1), YL =f(Y2,Y2), ..., Y{n-1} = f(Y_n Y.n),
X0 = YO.

It is well known, that the unification problem is polynomial. There exist severa fast unification
algorithms which are quasi-linear in the worst case (e.g. [3], [4], [7]). LPTP implements one of the fast
algorithms. LPTP uses Purdom's simple unification algorithm [5]. As many fast unification algorithms,
Purdom's algorithm is based on R.E. Tarjan's results for digjoint-set data structures (union-find).

Definition: A unification graph is a structure G = (N,F,L,SP,L) such that
N1 A& [N isthe set of nodes]

Formal verification of a union-find based unification algorithm

LTN, [L isthe element "nil".]
Fi N, [F is the set of functional nodes]
L:F® Symbols, [L isthe labeling function. It assigns function symbols to functional nodes.]
SF® N*, [Sassigns alist of argument nodes to each functional node.]
PN® NE {L}, [P isthe parent function. Equivalence classes are trees.]
"xT FPX)tLb PXT F), [Non-leaf nodes are functional]

"xT N$nT NP (x)=L.

Elements of N are called nodes. Elements of F are called function nodes. Elements of N\ F are called
variables.

L is alabeling function. It assigns to every function node a symbol, namely the function symbol of the
node. For each function node x1 F the list S(x) consists of the successor nodes of x aso called
arguments of x. If xT F and S(x) = [Yo,...,Yn1] then:

(1) arity(x) :=n,
(2) arg(x,i) :=y; fori<n.

The function P induces a tree structure on G. We write P x instead of P(x). The trees induced by P are
called equivalence classes. If P x =L then x iscalled aroot. If P x =y then y is called the parent node of
x. For each nodex T N we define

P*x:=yU $nT NP"x=y& Py=L),
i.e. there exists a non-cyclic path of length nin G from the node x to theroot y.

An equivalence relation ~ is defined on the set N by x~y U P* x=P* y, i.e. if the two nodes x and y
have the same root, P* x can be understood as the representative of the equivalence class of x.

Definition: A function T is called a solution of a unification graph G, if it assigns to each node xT N a
term T(X) such that

(1) T(x) © T(y) for al nodesx,y T N such that P x =y and
(2) T(X) © f(T(Yo),..., T(Yna)) for al xT F such that L(x) = f and S(X) = [Yo,...,Yn-1]-

A solution T, is called more general than T, if there exists a subgtitution s such that T;(X)s © T,(x) for
al nodesxT N.

Definition: A unification graph G is called acyclic if the relation < defined by
y«xU P*x1 F& $i <arity(P* x)y = arg(P* x,i)
isacyclic, i.e. if there exists no sequence z, < z; < ... <z, such that 0 < nand z = z.

Lemma: If G has a solution then G is acyclic.

Definition: A unification graph G is called solved, if G is acyclic and for al nodes x,y1 F such that
Px=y

(1) LX) = L(y),
(2) arity(x) = arity(y),
(3) arg(x,i) ~ arg(y,i) for al i < arity(x).

Lemma: If G is solved, then it has a most general solution.

Formal verification of a union-find based unification algorithm

The aim of the unification algorithm is to transform a given graph G into a solved graph G' by refining
the parent function P. In the correctness proof an imaginary set O N of open nodes is required.
Initially, O := A A sketch of the unification algorithm is given below:

function unify(x,y)

begi n

X 1= P*(x); /* x :=find(x) */ (1)
y 1= P(y); I* y = find(y) */ (2)
if x =y then (3)
return(true) (4)
end; (5)
if xT N\ F then /* x is a non-functional node */ (6)
P(x) :=vy; /* union(x,y) */ (7)
return(true) (8)
elsif y 1T N\ F then /* y is a non-functional node */ (9)
P(y) := x; /* union(y, x) */ (10)
return(true) (11)
elsif L(x) = L(y) and arity(x) = arity(y) then /* X,y in the same set */ (12)
P(x) :=vy; /* union(x,y) */ (13)
/* O:= OE {x} */ (14)
for i =0,.,arity(x) - 1 do (15)
if Qunify(arg(x,i),arg(y,i)) then (16)
return(false) (17)
end (18)
end (19)
/* O := 0\ {x} */ (20)
el se (21)
return(fal se) (22)
end (23)

end unify.

Figure 2.2 Unification algorithm

The function unify terminates, since the number of roots decreases in each recursive call.

1) Assume that T is a solution of G: If x,yT N and T(x) = T(y) then unify(x,y) returns true and
transforms G into a graph G' such that T is still a solution of G'.

2) If unify(x,y) returnstrue, (thus transforming G into G') and if u~vthenu~'v.
3) If unify(x,y) returnstrue, (thus transforming G into G') then x ~'y.
4) If unify(x,y) returns true, (thus transforming G into G') then O = O'.
5) Assume that unify(xo,Yo) returnstrue, (thus transforming G into G) and further assumed that for al
x1T F\Oandyl Nsuchthat Px=ywehave
a) L(x) = L(y),
b) arity(x) = arity(y),
c) arg(x,i) ~ arg(y,i) for al i < arity(x),
then we have for the graph G' the same, i.e. for all xT F\OandyT N suchthat P' x =y we have
a) L(x) = L(y),
b) arity(x) = arity(y),
c) arg(x,i) ~" arg(y,i) for al i < arity(x).
For a proof of the above properties, see Appendix A.

24.1 Example

Given are two terms x := f(g(s,t),h(t)) and y := f(u,v) which are to be unified. Figure 2.3 shows the tree
structures. The numbers next to the nodes show a consecutive numbering used throughout the example.

Formal verification of a union-find based unification algorithm

ANEEPAN
AV A

Figure 2.3 The tree structure of the terms f(g(s;t),h(t)) and f(u,v)

As afirst step, the sets N,F as well as the functions L and S are determined:
N={1,2,3,4,5,6,7,8},

F={1,236},

LD =f L) =g LE)=h,

L) =f,

S1) =[23], 92) = [4.5], S3) = [5],
S6) =[7.8].

When calling unify with arguments x and y defined above, the two terms are re-defined to point to nodes
number one and six, by lines (1) and (2) of the agorithm, respectively. (This is the well known find
operation, which returns an identifier specifying the set to which an element belongs to). Since
L(1) = L(6) and arity(1) = arity(6), line (12) applies, resulting in a hew tree structure shown in figure
2.4, (this is the well known union operation, which combines two given sets) and following two
recursive calls of the function:

unify(2,7) evaluating to unify(g(s;t),u) and
unify(3,8) evaluating to unify(h(t),v).

NN
SN

Figure 2.4 The tree structure after the first union operation

The two recursive calls each add another vertex to the tree, connecting nodes 2 and 7 as well as nodes 3
and 8 as shown in figure 2.5. The agorithm then terminates, because the criteriain line (3) is aways
met from then on.

Formal verification of a union-find based unification algorithm

f
-1« 6
/\ P /\
-2 3 -7 8 .
/\/ * u _ =7V
=)

Figure 2.5 The tree structure after termination of the algorithm

Finally, the function T can be determined and the unification can be resolved:
T(1) = f(g(st),h(t),

T(2) = g(s),

T(3) = h(t),

T4) =s,

T(5) =t,

T(6) = T(2),

T(7) = 9(T(4),T(9)) = g(sh),

T(8) = h(T(5)) = h(t).

Asafinal result, the substitution unifying the two termsis: {u/g(s;t),v/h(t)}.

2.5 Cycletest

Finally, it must be verified, that the unification graph obtained by the algorithm in figure 2.2, is cycle-
free. Thisis done by the functions cycle and test, illustrated in figures 2.6 and 2.7.

Let (G,®) be adirected graph.

function cycle(Q

begi n

W:= & (1)
foreach x 1 G do (2)
if Gtest(x, /A then (3)
return(fal se) (4)
end; (5)
end; (6)
return(true) (7

end cycle.

Figure 2.6 The function cycle

10

Formal verification of a union-find based unification algorithm

function test(x,P)

begi n

if x 1 Wthen (1)
return(true) (2)
elseif x T P then (3)
return(fal se) (4)
el se (5)
foreachy T {y T Gx®y} do (6)
if Gtest(y,P E {x}) then (7)
return(fal se) (8)
end; (9)
end; (10)
W:= WE {x}; (11)
return(true) (12)
end; (13)

end test.

Figure 2.7 The function test

The successors of a node x are only computed provided x I Wand x T P (lines (1) and (3) in figure 2.7).
Thus, for each node x the function test is called at most twice with first argument x.

1) Assuming:
P ={xg,...,%n},
X1 ® ... ® X,
Xn ® Y,

test(y,P) returns false.
Then acycle must exist in the graph.
2) 1fx1 Wthenthere existsno pathy, ® ... ® Y, such that
X = Yo,
there existsai < n such that y; = y,.
3) If test(x,P) returnstruethen xT W.

11

Formal verification of a union-find based unification algorithm

Chapter 3

Specification of the unification algorithm

This chapter describes the specifications as well as the implementation of the unification algorithm used
by LPTP. The code can also be found in the Prolog source-file named "mgu.pl" on the accompanying
disk. Remark: "\ + G' means"not G", and "(G® G;; G) " means"if Gy then G; else G,".

3.1 Specification

A termisavariable or a function symbol with terms as arguments as seen above. Example: The variable
X is encoded as $(x) , the term f(X,Y,c) is encoded as [f, $(x), $(y), [c]]. Note that the symbol
"$" isaunary constructor in Prolog. Instead of $(x) one could writevar (x) aswell.

In this case, terms are coded in Prolog as follows:
term(T) means: T isaterm.

term($(X)) :-

atom c(X).
term([X TL]) :-

atom c(X),
term(TL).

Similarly, aterm-list is specified:

termL(TL) means: TL isalist of terms.
termi([]).
ternL([T]TL]) :-

term(T),
term(TL).

By definition, aterm is a subterm of itself. If aterm T1 occursin a second term T2, then T1 is a subterm
of T2.

subterm(T1,T2) means. T1 is a subterm of T2.
subterm(T, T).

subtern(T,[_| TL]) :-
subternl(T, TL).

12

Formal verification of a union-find based unification algorithm

subtermL(T1,TL) means: T1 is a subterm of an element of alist of subterms TL.

subternmi(T1, TL) :-
nmenber (T2, TL),
subtern(T1, T2).

var_form(T) means: T has the encoded form of avariable.

var_form($()).

size(T,N) means. The size of theterm T equals N.
N is a successor number, e.g. 0, S(0), S(s(0)), S(S(5(0))), The size of avariable-form equals 5(0) = 1.

size($(_),s(0)).

size([_| TL],s(N)) :-
sizeL(TL, N).

sizel (TL,N) means: The size of the list of terms TL equals N.
Remark: plus/3is defined in Iptp/lib/nat/nat.pl.

sizelL([],0).

sizeL([T| TL], N3) :-
size(T, N1),
sizeL(TL, N2),
pl us(N1, N2, N3) . % N3 = N1 + N2

substitution(S) means: Sis a subgtitution. A substitution Sis a list of bindings of the form bind(X,T),
where X isthe name of avariable and T isaterm. Thereis at most one binding of the form bind(X,T) for
XinS

substitution([]).
substitution([bind(X, T)|S]) :-

atom c(X),

term(T),
substitution(S),
\+ domain(X S).

domain(X,S) means. The variable X is in the domain of the substitution S. There exists a hinding
bind(X,T)in S

domai n(X, S) :-
menber (bi nd(X,), S).

apply(T1,5T2) means: T2 isthe result of applying the substitution Sto the term T1.

13

Formal verification of a union-find based unification algorithm

appl y($(X),S, T) :- assoc(X S, T).

appl y([X| TIL], S, [X T2L]) : -
appl yL(T1L, S, T2L).

applyL(T1L,S,T2L) means: T2L is the result of applying the substitution S to each term in the list of
terms T1L.

appl yL([1,_[1])-

appl yL([T1| T1L], S, [T2] T2L]) : -
appl y(TL, S, T2),
appl yL(T1L, S, T2L).

assoc(X,ST) means: T is the result of applying the substitution Sto the variable $(X).

assoc(X, [],%(X)).
assoc(X [bind(X,T)|_1,T).

assoc(X, [bind(Y,)[S],T) :-
\+ X =,
assoc(X, S, T).

class(C) means. Cisaclass (atree of terms). A class hasthe form cl(T,P). T is the term representing the
root of the class C. Pisalist of the children of theterm T. P iscaled a partition. It isalist of classes. If
theroot of aclassisavariable, then all its members must be variables too.

class(cl (T,P)) :-
term(T),

partition(P),

\+ partition_nenber(T,P),
\'+ not_var_class(T,P).

not_var_class(T,P) means. P is a partition containing no variables.
not _var_class($(_),P) :-

partition_menber (T, P),
\+ var _formT).

partition(P) means: P is a partition (alist of digjoint classes).
partition([]).

partition([C P]) :-
class(Q),
partition(P),
disjoint(C, P).

digoint(C,P) means: The class C and the partition P are digoint. This has to be done in two steps
because of the lack of a"not a and not b"-construct in Prolog.

14

Formal verification of a union-find based unification algorithm

disjoint(CP) :-
\+ not _disjoint(C P).

not disjoint(C P) :-
cl ass_nenber (T, O,
partition_nmenber (T, P).

class solution(C,S) means: The substitution Sis a solution of the class C, meaning that the substitution
Sunifies al the terms of the class C.

class_solution(C'S) :-
\'+ not _class_solution(C S).

not class_solution(C'S) :-
cl ass_menber (T1, O,
cl ass_nmenber (T2, Q) ,
appl y(T1, S, T3),
apply(T2, S, T4),
\+ T3 = T4.

partition_solution(P,S) means. The substitution Sis a solution of the partition P.
partition_solution([],_).
partition_solution([CP],S) :-

class_solution(C S),
partition_solution(P,S).

unifier(T1,T2,S) means. The substitution Sis a unifier of T1 and T2.
unifier(T1,T2,S) :-
appl y(T1, S, T3),
appl y(T2, S, T3).
unifierL(TL1,TL2,S) means: The substitution Sis a unifier of the term-lists TL1 and TL2.
unifierL([],[],).
uni fierL([T1| TLL],[T2|TL2],S) :-

unifier(T1,T2,9),
uni fierL(TL1, TL2, S).

solved(P) means: The partition P is in solved form. If C is a class of the partition P with root
[FISL,....Sq and [G[Ty,..., T,] is an element of C, then F isequal to G, misequal to n, and theterm S is
equivalent to T; with respect to P.

15

Formal verification of a union-find based unification algorithm

sol ved(P) :-
\'+ not _sol ved(P).

not solved(P) :-
nenber (cl ([X1] T1L], P1), P),
partition_menber ([X2] T2L], P1),
(\+ X1 = X2
; \ + equival ent L(T1L, T2L, P)
).

equivalent(T1,T2,P) means. T1 and T2 are equivalent with respect to the partition (equivalence relation)
P. T1 and T2 belong to the same class of P.

equi valent(T1, T2, P) :-

find(P, T1, T),
find(P, T2, T).

equivalentL(T1L,T2L,P) means. The elements of two term-lists T1L and T2L are equivalent in twos.
equi valentL([],[],.).
equi val ent L([T1| T1L],[T2| T2L],P) : -

equi val ent (T1, T2, P),
equi val ent L(T1L, T2L, P).

3.2 Implementation

unifiable terms(T1,T2) means: T1 and T2 can be unified using the union-find algorithm.

unifiable_terms(T1,T2) :-
unify terms_part(T1, T2,).

unify_terms_part(T1,T2,P) means: T1 and T2 can be unified using the union-find algorithm. The result
is the solved, cycle-free partition P.

unify terms_part(TL1, T2,P) :-

union find(T1,T2,[],P),
cycle free(P).

unify_terms sub(T1,T2,S) means. Try to unify the two terms T1 and T2 using the union-find algorithm.
If they are unifiable, convert the solved, cycle-free partition P into a unifying substitution.

unify terms_sub(T1,T2,S) :-
unify terms_part(T1, T2, P),
partition_sub(P,P,[],9S).

union_find(T1,T2,P1,P4) means:

16

Formal verification of a union-find based unification algorithm

uni on_find(T1, T2, P1, P4) :-
find delete(P1,T1, P2, Cl),

(cl ass_nenber (T2, C1) ->
P4 = P1

: find_del ete(P2, T2, P3, C2),
Cl = cl(T3,QL),
C =cl (T4, @),
(var _form(T3) ->

P4 = [cl (T4,[C1| Q])| P3]
: var_form(T4) ->

P4 = [cl (T3,[C2| Q1])]| P3]
; T3 = [Tag| T1L],
T4 = [Tag| T2L],

uni on_findL(T1L, T2L,
[cl (T4, [CLlQ@])|P3],P4) %P(x) :=y

union_findL(T1L,T2L,P1,P3) means:
union_findL([],[],P,P).
uni on_findL([T2| T1L], [T2| T2L], P1, P3) : -

union_find(T1, T2, P1, P2),
uni on_fi ndL(T1L, T2L, P2, P3).

class_ member(T,C) means. The term T belongs to the class C.
class_nmenber (T,cl (T,)).

class_nenber (T,cl (_,P)) :-
partition_menber (T, P).

partition_member(T,P) means. The term T belongs to one of the classes of P.

partition_nenber(T,[C]) :-
cl ass_nenber (T, O .

partition_nenber(T,[_|P]) :-
partition_nmenber (T, P).

find(P,T1,T2) means: The term T1 belongs to the class with root T2 in partition P.
find([],T,T).
find([C P],T1,T2) :-
class_nmenber(T1,C ->

C=cl(T2,_)
; find(P, T1, T2)
).

find_delete(P1,T,P2,C) means: Find the class C of partition P1 to which the term T belongs to. Delete C
in P1 to obtain partition P2.

17

Formal verification of a union-find based unification algorithm

find_delete([],T,[].cl(T,[])).

find _delete([Cl|P1], T, P3,C2) :-
cl ass_nmenber (T,C1) ->

c = C1,
P3 = P1

; nd_del ete(P1, T, P2, C2),
3 = [Cl| P2]

cycle free(P) means. The partition P iscycle free.

cycle free(P) :-
roots(P, TL),
cycle freel(TL,P,[]1.,11,.)-

roots(P,TL) means: Theterm-list TL isthe list of the roots of the classes of the partition P.

roots([],[1])-

roots([cl (T,)|P],[TITL]) :-
roots(P, TL).

cycle freel (TL,P,C,WF1,WF2) means. Check whether the terms in the term-list TL are in the cycle-free
portion of partition P. C is the path to the termsin TL. WF1 is a list of nodes which are already in the
cycle-free part of P. WF2 is the output list of nodes which are in the cycle-free part of P. WF2 extends
WF1. WF2 is a so-called topological ordering of P.

cycle freeL([],_, _, W, W).

cycle_freeL([T1| T1L], P, C, W1, WF3) : -
find(P, T1, T2),
nmenber check(T2,C) ->
fail
; nmenber _check(T2, WF1) ->
cycle_freelL(T1L, P, C, WF1, WF3)
; var_formT2) ->
cycle freeL(T1L, P, C [T2| WF1], WF3)
; T2 = [_|T2L],
cycle_freelL(T2L, P, [T2] O, W1, W2),
cycle freeL(T1L, P, C [T2| WF2], WF3)

member_check(X,L) means. Check whether an element X belongsto alist L.

nenber check(X [YIL]) :-
(X=Y->
true
; nmenber _check(X, L)

18

Formal verification of a union-find based unification algorithm

partition_sub(P1,P2,S1,S2) means. Go through the classes of partition P1 and look for variables. Take
variables. Expand them to terms according to the partition P2. Add the bindingsto S1. The result is 2.

partition_sub([], ,SS).

partition_sub([C P1], P2, S1, S3) :-
class_sub(C, P2, S1, S2),
partition_sub(Pl, P2, S2, S3) .

class_sub(cl ($(X), P1), P2, S1, S2) : -
partition_term($(X), P2, T),
partition_sub(P1, P2, [bind(X T)]|S1], S2).

class_sub(cl ([_| _],P1),P2,S1,S2) :-
partition_sub(Pl, P2, S1, S2) .

partition_term(T1,P,T2) means. Expand the term T1 into term T2 according to partition P.

partition_term(T1, P, T3) :-

find(P, T1, T2),
var_formT2) ->
T3 = T2

; T2 = [Tag| T1L],
partition_terni(TLlL, P, T2L),
T3 = [Tag| T2L]

).

partition_termL(T1L,P,T2L) means. Expand every term in the term-list T1L into the term-list T2L
according to partition P.

partition_term([], ,[]).
partition ternm([T1| T1L], P, [T2] T2L]) :-

partition_term(T1, P, T2),
partition_ternmi(TLlL, P, T2L).

19

Formal verification of a union-find based unification algorithm

Chapter 4

Correctness Proof

This chapter illustrates some of the most important theorems, lemmas and corollaries used in the
correctness proof. The entire correctness proof can be found in the files provided on the accompanying
disk. The proof is 13,463 lines long. A listing and the contents of the disk files is given in appendix B
and C of this diplomathesis.

For each theorem, lemma, corollary or definition, the names of the file holding the mentioned proof is
given in sguare brackets[].

4.1 Anintroductory example

As an introductory example the general requirements for proving a given program are shown by means
of the program assoc. Assoc(X,ST) means, T is the result of applying the substitution S to the variable
$(X). The corresponding Prolog code is:

assoc(X [],%(X)).
assoc(X [bind(X,T)|_1,T).
assoc(X, [bind(Y,)|S],T) :-
\+ X =Y,
assoc(X, S, T).

Figure 4.1 Program assoc.

The first step is to define the program output. In the given case, T must be in term-form. Thisis ensured
by the lemma assoc: types shown in figure 4.2 and found in file [substitution.pr].

20

Formal verification of a union-find based unification algorithm

Lemma 1 [assoc:types] " x,5t(S assoc(x,st) US at omi c(x) US substitution(s)® Stermt)).
Pr oof.
Inductiong: " x,st(S assoc(x,st) ® S at oni c(x) US substitution(s)® Sternt)).
Hypothesiso: none.
Assumptiony: S at omi ¢(x) US subst i t uti on([]).
Thusy: S at omi ¢(x) US substitution(])® Sterm$(x).
Conclusion;: S at ori ¢(x) US substitution(]) ® Sterm$(x)).
Hypothesisi: none.
Assumptiony: S at omi ¢(x) US subst i t uti on([bi nd(x,t)[vo]). D S subst i t uti on([bi nd(x,t)|vo])
by completion. S t er m(t).
Thusy: S at omi ¢(x) US subst it uti on([bi nd(x,t)|v]) ® St er nt).
Conclusiony: S at omi ¢(x) US subst i t uti on([bi nd(x,t)|v]) ® St er nt).
Hypothesis;: S at omi ¢(x) US substitution(s)® Stermt) andx?! yand S assoc(xsit).
Assumptiony: S at omi ¢(x) US subst i t uti on([bi nd(y,vo)|s]). D S subst i t uti on([bi nd(y,vo)|s])
by completion.
Thusy: S at omi ¢(x) US subst it uti on([bi nd(y,vo)|s]) ® St er mt).
Conclusion;: S at oni ¢(x) US subst it uti on([bi nd(y,vo)ls]) ® St er n(t).
Assumptiong: S assoc(x,st) US at onmi ¢(x) US substit uti on(s).
Satom c(x) USsubstitution(s)® Sternt).
Satom c(x) USsubstitution(s)® Stern(t). Sternt).
Thusy: S assoc(x,st) US atormi c(x) US substitution(s)® Stern(t). O

Figure 4.2 LPTP-induction-proof of the lemma assoc:types.

The upper-case, bold-faced "D" in the proof symbolizes a definition. The upper-case, bold-faced "S"
symbolizes succeeds, indicating that the subsequent predicate returns the answer "yes'. This means the
answer produced by the assoc program isindeed in term-form.

As a next step, it must be shown that the assoc-function actually exists. This is proven by means of
lemma assoc: existence shown in figure 4.3. For the sake of readability, we now refrain from displaying
the proof, thus only showing the lemma itself. The complete proof however, can be found in
[substitution.pr].

Lemma 2 [assoc:existence] " x,5(S substitution(s) US atom c(x) ® $t S assoc(x,st)).

Figure 4.3 Lemma assoc: existence.

Furthermore, it must be shown, that the term computed by assoc is unique. For this purpose another
lemma called assoc: uniquenessis set up. It is shown in figure 4.4 [substitution.pr].

Lemma 3 [assoc:uniqueness] " x,s,t1,t2(S assoc(x,st;) US at onmi ¢(x) US substi tution(s) U
S assoc(xsty) ® t1=ty).

Figure 4.4 Lemma assoc: uniqueness.

So far it has been demonstrated that:
afunction defined by assoc exists,
the calculated result is unique,
the calculated result is aterm.

The next step isto demonstrate, whether or not the implementation of the function ever comesto aresult
at run-time, i.e. whether or not the program terminates. Therefore, a lemma called assoc:termination is
defined. It is shown in figure 4.5 with the appropriate proof [partl.pr].

21

Formal verification of a union-find based unification algorithm

Lemma 4 [assoc:termination] " x,s,t(S substi tution(s) US at omi c(X) ® T assoc(x,s;t)).
Pr oof.
Inductiono: " (S substitution(s)® " xt(S atom c(X) ® T assoc(x,s,t))).
Hypothesis;: none. S at o ¢(X) ® T assoc(x,[].b).
Conclusion;: " xt(S at om ¢(X) ® T assoc(x,[].1)).
Hypothesis;: " xt(S at omi c(X) ® T assoc(x,st)) and S at oni c(x) and St er n(t) and
S substitution(s)and F donai n(x,s).
Assumptiony: S at omi c(vg). $t S assoc(vo,s,t) by Lemma [assoc: existence]. gr(x) by Axiom[atomic:gr].
T assoc(Vo,[bi nd(xt)|s],v1) by completion.
Thus,: S at om ¢c(Vo) ® T assoc(Vo,[bi nd(x,t)|s],v1).
Conclusions: " vo,va(S at omi c(vg) ® T assoc(Vo,[bi nd(xt)[s],v1)).
Assumptiong: S substi tution(s) US at om c(x). " xt(S at ormi c(X) ® T assoc(x,s;t)).
Satom c(X) ® T assoc(xst). Tassoc(xst).
Thusy: S substitution(s)USatom c(x)® T assoc(xst). O

Figure 4.5 Lemma assoc:termination.

Thislemmais also proved by induction.

4.2 Someimportant propositions

In this section, the most important theorems, lemmas and corollaries required for the correctness proof
areinvestigated in detail.

For the sake of clarity, only the most important steps leading to the desired proof are shown. Lesser
important steps are omitted.

42.1 Theorems about " unifiable terms"

The two following theorem state that if ?s is a substitution unifying the terms 21 and 72, then
unifiable_terms terminates and succeeds.

[partll.pr]

Theorem 1 [unifiable_terms:characterization] " t1,t2(St er mt;) US t er m(ty) ®
(Sunifiable ternms(tyty) « $sSsubstitution(s)USunifier (tyts9))).

[part6.pr]

Theorem 2 [unifiable_terms:termination] " t;,t2(Stermt) USterm(ty) ® T uni fi abl e_t er ms(ty,ty)).

4.2.2 Theorems about " unify_terms part"
[part2.pr]

Corollary 3 [unify_terms part:types] " t,t,p(Stermt) US tern{t) USuni fy_terns_part (ti,tzp) ®
Spartition(p)).

[part6.pr]

Theorem 4 [unify_terms_part:termination] " t;,t,p(St er mt) US t er mty) ®
Tunify_terns_part (ty,to,p)).

[partl2.pr]

22

Formal verification of a union-find based unification algorithm

Theorem 5 [unify_terms_part:uniqueness] " ty,t2,p,p2(S uni fy_terns_part (ty,tzp) U
Sunify_ternms_part (t1,t2,p2) ® p1=p2).

[part7.pr]

Theorem 6 [unify_terms_part:success] " ti,t2,5(St er m(t)) US t er m(t;) US substi tuti on(s) U
Sunifier(t,tzs) ® $p(Sunify ternms_part (ttzp) US parti tion_sol uti on(p,s))).

[partll.pr]
Theorem 7 [unify_term part:solved] " tyto,s(Stermt) UStermt) US unify _terms_part (t,tzp) ®
S sol ved(p)).

4.2.3 Theorems about " unify _terms sub"

[part8.pr]

Theorem 8 [unify_terms_sub:types] " ti,t2,s(Ster mt) US ter m{t) US uni fy_ternms_sub(tytss) ®
S substitution(s)).

[part9.pr]

Theorem 9 [unify_terms_sub:termination] " t,t2, (St er mty) US t er m(ty) ®
Tunify_terns_sub(ty,t9).

[part12.pr]

Theorem 10 [unify_terms_sub:uniqueness] " t1,t2,81, S2,(S uni fy_t er ms_sub(ty,tz,51) U
Sunify terms_sub(tytss) ® s1=5).

[part8.pr]

Theorem 11 [unify_terms sub:existence] " ti,t2,5(S t er m(ty) US t er mtz) US substi tuti on(s) U
Sunifier(ttzs) ® $s(Sunify_ terms_sub(tyty,s) Ucomposition(sy,s,s))).

[partll.pr]

Theorem 12 [unify_terms_sub:unifier] " ty,to,s(Stermt) UStermt) USunify _terms_sub(tyty,s) ®
Suni fi er (t1,t2,91)).

424 Definition of " application”

By the next definition it is shown that an application is in fact a function. The application of a
substitution ?s to the term 2 iswritten as (7t // ?9).

[substitution.pr]

Definition 13 [///2] " ti,stAS term{ty) US substitution(s) ® (t1//s=ta« S appl y(t1,st2)).

4.25 Definition of " composition”

A predicate composition is defined to express that ?s3 is the substitution, which arises by applying to a
term T the substitutions ?s1 and ?s2 in turns.

[substitution.pr]

23

Formal verification of a union-find based unification algorithm

Definition 14 [composition/3] " s1,5,,S3(composition(sy,Sz,Ss) «
"x(Satonmc(x)® $(X) / s/l 2=(X) I %)).

4.2.6 Termination of the cycle test

This theorem states: If P is a partition, then the cycle-test for P terminates. (A partition is a list of
digoint classes, which again is atree of terms).

[part6.pr]

Theorem 15 [cycle freeitermination] " p(S partition(p)® Tcycl e_free(p)).

427 Termination of the union-find algorithm

By this next theorem it is proven that if T1 and T2 are both terms and P1 is a partition, then the union-
find algorithm terminates. It is expressed in the following way:

[partd.pr]

Theorem 16 [union_find:termination] " ty,t2,p,pAS ter mt) US termt) US partition(py) ®
T uni on_f i nd(ty,t2,p1,p2).

4.2.8 Most general substitution

Finally, it is proven that if two terms are unifiable, the union-find algorithm computes a most general
substitution.

[partl2.pr]

Theorem 17 [unify_terms _sub:most:general] " ti,tr,s1,5(Stermt) UStermt) USpartiti on(s) U
Sunifier(tytzs) USunify_terms_sub(tytz,s) ® composition(s,,s,,sy)).

24

Formal verification of a union-find based unification algorithm

Appendix A

Bibliography

[1]
(2]
(3]

[4]

(5]
(6]

(8]
[9]

Krzysztof R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
Thomas H. Corman. Introduction to Algorithms. 485-487

A. Martelli and U. Montanari. An efficient Unification Algorithm. ACM Transactions on
Programming Languages and Systems, 4(2): 258-282. 1982.

M. S. Paterson and M. N. Wegman. Linear Unification. J. of Computer and System Sciences,
16: 158-167, 1978.

Paul W. Purdom. A Practical Unification Algorithm. Information Sciences, 55:123-127, 1991.

J. A. Robinson. A machine-Oriented Logic Based on the Resolution Principle. J. of the
Association for Computing Machinery, 12(1): 23-41, 1965.

Peter Ruzicka and Igor Privara. An Almost Linear Robinson Unification Algorithm. Acta
Informatica 27:61-71, 1989.

Robert F. Stérk. LPTP: A Logic Program Theorem Prover. June 1996.
Robert F. Stérk. A Smple Unification Algorithm. February 1996.

25

Formal verification of a union-find based unification algorithm

Appendix B
Disk Files

1 ngu. pl

2. axi ons. pr
3. substitution. pr
4. subt er ms. pr
5. part 1. pr

6. part 2. pr

7. part 3. pr

8. part4. pr

9. part5. pr

10. part6. pr

11. part7. pr

12. part 8. pr

13. part9. pr

14. part 10. pr
15. part1l. pr
16. part12. pr

26

Formal verification of a union-find based unification algorithm

Appendix C

Formal proof

27

