
Formal verification of a union-find
based unification algorithm

Diploma thesis

by

Guido Vogt

Guidance by Dr. R. Stärk

Institute of Informatics

University of Fribourg, Switzerland

May 1998

Formal verification of a union-find based unification algorithm

1

Contents

CONTENTS..1

PREFACE...2

1 INTRODUCTION ..3

1.1 What is LPTP?..3
1.2 Program Verification ..3
1.3 Problem description ..4

2 UNIFICATION...5

2.1 The notion "Term"..5
2.2 The notion "Substitution"..5
2.3 The notion "Unification"...6
2.4 A simple unification algorithm ...6

2.4.1 Example...8
2.5 Cycle test ..10

3 SPECIFICATION OF THE UNIFICATION ALGORITHM...12

3.1 Specification ...12
3.2 Implementation...16

4 CORRECTNESS PROOF ..20

4.1 An introductory example...20
4.2 Some important propositions...22

4.2.1 Theorems about "unifiable_terms"..22
4.2.2 Theorems about "unify_terms_part" ...22
4.2.3 Theorems about "unify_terms_sub" ..23
4.2.4 Definition of "application"..23
4.2.5 Definition of "composition"..23
4.2.6 Termination of the cycle test...24
4.2.7 Termination of the union-find algorithm ..24
4.2.8 Most general substitution..24

APPENDIX A BIBLIOGRAPHY ...25

APPENDIX B DISK FILES ..26

APPENDIX C FORMAL PROOF ..27

Formal verification of a union-find based unification algorithm

2

Preface

This diploma thesis was written for a diploma in computer science at the Institute of Informatics at the
University of Fribourg in Switzerland during the terms of 1997 and 1998.

The main part of the work consists of on-line proving and thus deriving the full correctness proof for the
unification algorithm used by LPTP (Logic Program Theorem Prover by R. Stärk). This proof comprises
about 13,000 lines.

Thanks go to Dr. R. Stärk for letting me have an inside look at his Logic Program Theorem Prover and
for many hours of his support.

Fribourg, May 1998 Guido Vogt

Formal verification of a union-find based unification algorithm

3

Chapter 1

Introduction

1.1 What is LPTP?

LPTP is an interactive theorem prover for the formal verification of Prolog programs. It is a proof
refinement system allowing the user to interactively construct formal proofs. Using the LPTP system, it
is possible to generate proofs deductively from the assumption to the goal or goal directed from the goal
backwards to the axioms. LPTP has the ability to automatically search for proofs or parts of proofs. In
the simplest case, LPTP just finds the name of a lemma that has been proved already and that is used at
a certain point in a proof. In the best case, LPTP finds complete proofs.

LPTP has been designed for correctness proofs of pure Prolog programs. Pure Prolog programs may
contain negation, if-then-else and built-in predicates like is/2, </2 and call/n + 1. The programs,
however, have to be free of cut and database predicates like assert/1 and retract/1 which allows program
modification during runtime.

The kernel of LPTP is written exactly in the fragment of Prolog that can be treated in LPTP. This means
that LPTP uses no single cut. Moreover, it is possible to prove properties of LPTP in LPTP itself.

1.2 Program Verification

Program verification is a formal activity aiming for proof of program correctness. The usual way of
verifying program correctness is to check that it meets its specifications.

An important notion is termination. A Prolog program may or may not terminate, which means that it
"produces a finite or infinite number of answers" respectively. In the first case, the program may either
succeed or fail, meaning that the given sequence of predicates is met (and thus resulting in the answer
"yes") or is not met (resulting in the answer "no"). In the case of non-termination, no statement can be
made. It is therefore essential to verify, that each Prolog function (a part of an entire program)
implemented, returns only a finite number of responses and thus terminates.

With the three basic notions from above (termination, success and failure), it is possible to verify Prolog
programs in LPTP, which meet the restrictions imposed by LPTP described in the previous section.

Formal verification of a union-find based unification algorithm

4

1.3 Problem description

As seen, LPTP is written in the subset of Prolog that can be processed by LPTP itself, which permits to
prove, in principle, the correctness of the system as a whole.

The goal of this diploma thesis is to formally prove, by means of LPTP, the correctness of the union-find
based unification algorithm used internally by LPTP and described in chapter 2.

Formal verification of a union-find based unification algorithm

5

Chapter 2

Unification

2.1 The notion "Term"

In this diploma thesis we will repeatedly refer to the notion of a term, so there is a need to clearly define
this expression. Terms are defined recursively as follows:

• a variable is a term,

• if f is an n-ary function symbol and t1,…,tn are terms, then f(t1,…,tn) is a term.

In particular, every constant is a term. A term with no variables is called ground. A subterm of a term s
is a substring of s which in turn is a term. If w is a subterm of s, then w occurs in s. In general, there can
be several occurrences of a given subterm in a term - for example f(x) and g(f(x),f(x)). By definition,
every term is a subterm of itself. A subterm s of a term t is called proper if s ≠ t.

It is convenient to view terms as trees. The tree associated with a variable x has just one node, labeled by
x itself. The tree associated with f(t1,…,tn) is obtained by attaching the trees associated with t1,…,tn,
under the root labeled by f. In particular, the tree associated with a constant c has one node, labeled c.

k

ag

x y

Figure 2.1 The tree associated with the term k(g(x,y),a)

2.2 The notion "Substitution"

Substitutions bind variables to terms. A substitution is a finite mapping from variables to terms which
assigns a term t different from x to each variable x in its domain. This is written as

{x1/t1,…,xn/tn}

Formal verification of a union-find based unification algorithm

6

where

• x1,…,xn are different variables,

• t1,…,tn are terms,

• for i ∈ [1,n], xi ≠ ti.

Informally, it can be read as: "The variables x1,…,xn are bound to t1,…,tn, respectively". Example: By
applying the substitution {y/b} to the term f(a,y), the term f(a,b), with a,b constants and y a variable is
obtained.

2.3 The notion "Unification"

Unification is an important notion in Prolog programming. Informally, unification is the process of
making terms identical by means of certain substitutions. For example, the terms f(a,y,z) and f(x,b,z),
with a,b constants and x,y,z variables, can be made identical by applying to them the substitution
{x/a,y/b}: both sides then become f(a,b,z). However the substitution {x/a,y/b,z/a} also makes these two
terms identical. Such substitutions are called unifiers. The first unifier is to be preferred, because it is
"more general", which means that it does not make unnecessary bindings. The second unifier is a
"special case" of the first one. More precisely, the first unifier is a most general unifier (mgu in short) of
f(a,y,z) and f(x,b,z) while {x/a,y/b,z/a} is not. Therefore, the aim of the unification problem is to answer
the question whether for two given input terms there is a substitution, mapping the input terms into the
same term. In case of a positive answer, the input terms are said to be unified and the appropriate
substitution is called a unifier.

There are two reasons why two terms may not be unifiable. The first one is illustrated by the following
example: f(g(x,a),z) and f(g(x,b),a) are not unifiable, since two constants cannot unify. The second one
can be shown when considering the terms g(x,a) and g(f(x),a). No term x can be unified with another
term containing x. This is known as the occur-check failure.

The unification problem is solved by providing an algorithm that

a) terminates with failure if the terms are not unifiable,

b) produces a most general unifier if the terms are unifiable.

2.4 A simple unification algorithm

Prolog, as well as many automated theorem provers, uses Robinson's unification algorithm shown in [6].
Robinson's algorithm is easy to implement and efficient enough for terms of small sizes. In the worst
case, however, Robinson's unification algorithm is exponential, even if terms are represented by directed
acyclic graphs (dags in short).

Example: To unify the following equations, most Prolog systems need exponential time.

?- X0 = f(X1,X1), X1 = f(X2,X2), ..., X_{n-1} = f(X_n,X_n),
 Y0 = f(Y1,Y1), Y1 = f(Y2,Y2), ..., Y_{n-1} = f(Y_n,Y_n),
 X0 = Y0.

It is well known, that the unification problem is polynomial. There exist several fast unification
algorithms which are quasi-linear in the worst case (e.g. [3], [4], [7]). LPTP implements one of the fast
algorithms. LPTP uses Purdom's simple unification algorithm [5]. As many fast unification algorithms,
Purdom's algorithm is based on R.E. Tarjan's results for disjoint-set data structures (union-find).

Definition: A unification graph is a structure G = (N,F,L,S,P,Λ) such that

N ≠ ∅, [N is the set of nodes.]

Formal verification of a union-find based unification algorithm

7

Λ ∉ N, [Λ is the element "nil".]

F ⊆ N, [F is the set of functional nodes.]

L:F → Symbols, [L is the labeling function. It assigns function symbols to functional nodes.]

S:F → N*, [S assigns a list of argument nodes to each functional node.]

P:N → N ∪ {Λ}, [P is the parent function. Equivalence classes are trees.]

∀x ∈ F (P(x) ≠ Λ ⇒ P(x) ∈ F), [Non-leaf nodes are functional.]

∀x ∈ N ∃n ∈ N Pn(x) = Λ.

Elements of N are called nodes. Elements of F are called function nodes. Elements of N \ F are called
variables.

L is a labeling function. It assigns to every function node a symbol, namely the function symbol of the
node. For each function node x ∈ F the list S(x) consists of the successor nodes of x also called
arguments of x. If x ∈ F and S(x) = [y0,…,yn-1] then:

(1) arity(x) := n,

(2) arg(x,i) := yi for i<n.

The function P induces a tree structure on G. We write P x instead of P(x). The trees induced by P are
called equivalence classes. If P x = Λ then x is called a root. If P x = y then y is called the parent node of
x. For each node x ∈ N we define

P* x := y ⇔ ∃n ∈ N(Pn x = y & P y = Λ),

i.e. there exists a non-cyclic path of length n in G from the node x to the root y.

An equivalence relation ∼ is defined on the set N by x ∼ y ⇔ P* x = P* y, i.e. if the two nodes x and y
have the same root, P* x can be understood as the representative of the equivalence class of x.

Definition: A function T is called a solution of a unification graph G, if it assigns to each node x ∈ Ν a
term T(x) such that

(1) T(x) ≡ T(y) for all nodes x,y ∈ N such that P x = y and

(2) T(x) ≡ f(T(y0),…,T(yn-1)) for all x ∈ F such that L(x) = f and S(x) = [y0,…,yn-1].

A solution T1 is called more general than T2 if there exists a substitution σ such that T1(x)σ ≡ T2(x) for
all nodes x ∈ N.

Definition: A unification graph G is called acyclic if the relation ‹ defined by

y ‹ x ⇔ P* x ∈ F & ∃i < arity(P* x)y = arg(P* x,i)

is acyclic, i.e. if there exists no sequence z0 ‹ z1 ‹ … ‹ zn such that 0 < n and z0 = zn.

Lemma: If G has a solution then G is acyclic.

Definition: A unification graph G is called solved, if G is acyclic and for all nodes x,y ∈ F such that
P x = y

(1) L(x) = L(y),

(2) arity(x) = arity(y),

(3) arg(x,i) ∼ arg(y,i) for all i < arity(x).

Lemma: If G is solved, then it has a most general solution.

Formal verification of a union-find based unification algorithm

8

The aim of the unification algorithm is to transform a given graph G into a solved graph G' by refining
the parent function P. In the correctness proof an imaginary set Ο ⊆ N of open nodes is required.
Initially, Ο := ∅. A sketch of the unification algorithm is given below:

function unify(x,y)
begin
 x := P*(x); /* x := find(x) */ (1)
 y := P*(y); /* y := find(y) */ (2)
 if x = y then (3)
 return(true) (4)
 end; (5)
 if x ∈ N \ F then /* x is a non-functional node */ (6)
 P(x) := y; /* union(x,y) */ (7)
 return(true) (8)
 elsif y ∈ N \ F then /* y is a non-functional node */ (9)
 P(y) := x; /* union(y,x) */ (10)
 return(true) (11)
 elsif L(x) = L(y) and arity(x) = arity(y) then /* x,y in the same set */ (12)
 P(x) := y; /* union(x,y) */ (13)
 /* Ο := Ο ∪ {x} */ (14)
 for i = 0,…,arity(x) - 1 do (15)
 if ¬unify(arg(x,i),arg(y,i)) then (16)
 return(false) (17)
 end (18)
 end (19)
 /* Ο := Ο \ {x} */ (20)
 else (21)
 return(false) (22)
 end (23)
end unify.

Figure 2.2 Unification algorithm

The function unify terminates, since the number of roots decreases in each recursive call.

1) Assume that T is a solution of G: If x,y ∈ N and T(x) = T(y) then unify(x,y) returns true and
transforms G into a graph G' such that T is still a solution of G'.

2) If unify(x,y) returns true, (thus transforming G into G') and if u ∼ v then u ∼' v.

3) If unify(x,y) returns true, (thus transforming G into G') then x ∼' y.

4) If unify(x,y) returns true, (thus transforming G into G') then Ο = Ο'.

5) Assume that unify(x0,y0) returns true, (thus transforming G into G') and further assumed that for all
x ∈ F \ Ο and y ∈ N such that P x = y we have
a) L(x) = L(y),
b) arity(x) = arity(y),
c) arg(x,i) ∼ arg(y,i) for all i < arity(x),
then we have for the graph G' the same, i.e. for all x ∈ F \ Ο and y ∈ N such that P' x = y we have
a) L(x) = L(y),
b) arity(x) = arity(y),
c) arg(x,i) ∼' arg(y,i) for all i < arity(x).

For a proof of the above properties, see Appendix A.

2.4.1 Example

Given are two terms x := f(g(s,t),h(t)) and y := f(u,v) which are to be unified. Figure 2.3 shows the tree
structures. The numbers next to the nodes show a consecutive numbering used throughout the example.

Formal verification of a union-find based unification algorithm

9

f

hg

s t

1

2 3

4 5

f

vu

6

7 8

Figure 2.3 The tree structure of the terms f(g(s,t),h(t)) and f(u,v)

As a first step, the sets N,F as well as the functions L and S are determined:

N = {1,2,3,4,5,6,7,8},

F = {1,2,3,6},

L(1) = f, L(2) = g, L(3) = h,

L(6) = f,

S(1) = [2,3], S(2) = [4,5], S(3) = [5],

S(6) = [7,8].

When calling unify with arguments x and y defined above, the two terms are re-defined to point to nodes
number one and six, by lines (1) and (2) of the algorithm, respectively. (This is the well known find
operation, which returns an identifier specifying the set to which an element belongs to). Since
L(1) = L(6) and arity(1) = arity(6), line (12) applies, resulting in a new tree structure shown in figure
2.4, (this is the well known union operation, which combines two given sets) and following two
recursive calls of the function:

• unify(2,7) evaluating to unify(g(s,t),u) and

• unify(3,8) evaluating to unify(h(t),v).

f

hg

t

1

2 3

4 5

f

vu

6

7 8

P

Figure 2.4 The tree structure after the first union operation

The two recursive calls each add another vertex to the tree, connecting nodes 2 and 7 as well as nodes 3
and 8 as shown in figure 2.5. The algorithm then terminates, because the criteria in line (3) is always
met from then on.

Formal verification of a union-find based unification algorithm

10

f

hg

s t

1

2 3

4 5

f

vu

6

7 8

P

P

Figure 2.5 The tree structure after termination of the algorithm

Finally, the function T can be determined and the unification can be resolved:

T(1) = f(g(s,t),h(t),

T(2) = g(s,t),

T(3) = h(t),

T(4) = s,

T(5) = t,

T(6) = T(1),

T(7) = g(T(4),T(5)) = g(s,t),

T(8) = h(T(5)) = h(t).

As a final result, the substitution unifying the two terms is: {u/g(s,t),v/h(t)}.

2.5 Cycle test

Finally, it must be verified, that the unification graph obtained by the algorithm in figure 2.2, is cycle-
free. This is done by the functions cycle and test, illustrated in figures 2.6 and 2.7.

Let (G,→) be a directed graph.

function cycle(G)
begin
 W := ∅; (1)
 foreach x ∈ G do (2)
 if ¬test(x,∅) then (3)
 return(false) (4)
 end; (5)
 end; (6)
 return(true) (7)
end cycle.

Figure 2.6 The function cycle

Formal verification of a union-find based unification algorithm

11

function test(x,P)
begin
 if x ∈ W then (1)
 return(true) (2)
 elseif x ∈ P then (3)
 return(false) (4)
 else (5)
 foreach y ∈ {y ∈ G:x→y} do (6)
 if ¬test(y,P ∪ {x}) then (7)
 return(false) (8)
 end; (9)
 end; (10)
 W := W ∪ {x}; (11)
 return(true) (12)
 end; (13)
end test.

Figure 2.7 The function test

The successors of a node x are only computed provided x ∉ W and x ∉ P (lines (1) and (3) in figure 2.7).
Thus, for each node x the function test is called at most twice with first argument x.

1) Assuming:

• P = {x1,…,xn},

• x1 → … → xn,

• xn → y,

• test(y,P) returns false.

Then a cycle must exist in the graph.

2) If x ∈ W then there exists no path y0 → … → yn such that

• x = y0,

• there exists a i < n such that yi = yn.

3) If test(x,P) returns true then x ∈ W.

Formal verification of a union-find based unification algorithm

12

Chapter 3

Specification of the unification algorithm

This chapter describes the specifications as well as the implementation of the unification algorithm used
by LPTP. The code can also be found in the Prolog source-file named "mgu.pl" on the accompanying
disk. Remark: "\+ G" means "not G", and "(G0→G1;G2)" means "if G0 then G1 else G2".

3.1 Specification

A term is a variable or a function symbol with terms as arguments as seen above. Example: The variable
X is encoded as $(x), the term f(X,Y,c) is encoded as [f,$(x),$(y),[c]]. Note that the symbol
"$" is a unary constructor in Prolog. Instead of $(x) one could write var(x) as well.

In this case, terms are coded in Prolog as follows:

term(T) means: T is a term.

term($(X)) :-
atomic(X).

term([X|TL]) :-
atomic(X),
termL(TL).

Similarly, a term-list is specified:

termL(TL) means: TL is a list of terms.

termL([]).

termL([T|TL]) :-
term(T),
termL(TL).

By definition, a term is a subterm of itself. If a term T1 occurs in a second term T2, then T1 is a subterm
of T2.

subterm(T1,T2) means: T1 is a subterm of T2.

subterm(T,T).

subterm(T,[_|TL]) :-
subtermL(T,TL).

Formal verification of a union-find based unification algorithm

13

subtermL(T1,TL) means: T1 is a subterm of an element of a list of subterms TL.

subtermL(T1,TL) :-
member(T2,TL),
subterm(T1,T2).

var_form(T) means: T has the encoded form of a variable.

var_form($(_)).

size(T,N) means: The size of the term T equals N.

N is a successor number, e.g. 0, s(0), s(s(0)), s(s(s(0))), …. The size of a variable-form equals s(0) = 1.

size($(_),s(0)).

size([_|TL],s(N)) :-
 sizeL(TL,N).

sizeL(TL,N) means: The size of the list of terms TL equals N.

Remark: plus/3 is defined in lptp/lib/nat/nat.pl.

sizeL([],0).

sizeL([T|TL],N3) :-
size(T,N1),
sizeL(TL,N2),
plus(N1,N2,N3). % N3 = N1 + N2

substitution(S) means: S is a substitution. A substitution S is a list of bindings of the form bind(X,T),
where X is the name of a variable and T is a term. There is at most one binding of the form bind(X,T) for
X in S.

substitution([]).

substitution([bind(X,T)|S]) :-
atomic(X),
term(T),
substitution(S),
\+ domain(X,S).

domain(X,S) means: The variable X is in the domain of the substitution S. There exists a binding
bind(X,T) in S.

domain(X,S) :-
 member(bind(X,_),S).

apply(T1,S,T2) means: T2 is the result of applying the substitution S to the term T1.

Formal verification of a union-find based unification algorithm

14

apply($(X),S,T) :- assoc(X,S,T).

apply([X|T1L],S,[X|T2L]) :-
applyL(T1L,S,T2L).

applyL(T1L,S,T2L) means: T2L is the result of applying the substitution S to each term in the list of
terms T1L.

applyL([],_,[]).

applyL([T1|T1L],S,[T2|T2L]) :-
apply(T1,S,T2),
applyL(T1L,S,T2L).

assoc(X,S,T) means: T is the result of applying the substitution S to the variable $(X).

assoc(X,[],$(X)).

assoc(X,[bind(X,T)|_],T).

assoc(X,[bind(Y,_)|S],T) :-
\+ X = Y,
assoc(X,S,T).

class(C) means: C is a class (a tree of terms). A class has the form cl(T,P). T is the term representing the
root of the class C. P is a list of the children of the term T. P is called a partition. It is a list of classes. If
the root of a class is a variable, then all its members must be variables too.

class(cl(T,P)) :-
term(T),
partition(P),
\+ partition_member(T,P),
\+ not_var_class(T,P).

not_var_class(T,P) means: P is a partition containing no variables.

not_var_class($(_),P) :-
partition_member(T,P),
\+ var_form(T).

partition(P) means: P is a partition (a list of disjoint classes).

partition([]).

partition([C|P]) :-
class(C),
partition(P),
disjoint(C,P).

disjoint(C,P) means: The class C and the partition P are disjoint. This has to be done in two steps
because of the lack of a "not a and not b"-construct in Prolog.

Formal verification of a union-find based unification algorithm

15

disjoint(C,P) :-
\+ not_disjoint(C,P).

not_disjoint(C,P) :-
class_member(T,C),
partition_member(T,P).

class_solution(C,S) means: The substitution S is a solution of the class C, meaning that the substitution
S unifies all the terms of the class C.

class_solution(C,S) :-
\+ not_class_solution(C,S).

not_class_solution(C,S) :-
class_member(T1,C),
class_member(T2,C),
apply(T1,S,T3),
apply(T2,S,T4),
\+ T3 = T4.

partition_solution(P,S) means: The substitution S is a solution of the partition P.

partition_solution([],_).

partition_solution([C|P],S) :-
class_solution(C,S),
partition_solution(P,S).

unifier(T1,T2,S) means: The substitution S is a unifier of T1 and T2.

unifier(T1,T2,S) :-
apply(T1,S,T3),
apply(T2,S,T3).

unifierL(TL1,TL2,S) means: The substitution S is a unifier of the term-lists TL1 and TL2.

unifierL([],[],_).

unifierL([T1|TL1],[T2|TL2],S) :-
unifier(T1,T2,S),
unifierL(TL1,TL2,S).

solved(P) means: The partition P is in solved form. If C is a class of the partition P with root
[F|S1,…,Sm] and [G|T1,…,Tn] is an element of C, then F is equal to G, m is equal to n, and the term Si is
equivalent to Ti with respect to P.

Formal verification of a union-find based unification algorithm

16

solved(P) :-
\+ not_solved(P).

not_solved(P) :-
member(cl([X1|T1L],P1),P),
partition_member([X2|T2L],P1),
(\+ X1 = X2
; \+ equivalentL(T1L,T2L,P)
).

equivalent(T1,T2,P) means: T1 and T2 are equivalent with respect to the partition (equivalence relation)
P. T1 and T2 belong to the same class of P.

equivalent(T1,T2,P) :-
find(P,T1,T),
find(P,T2,T).

equivalentL(T1L,T2L,P) means: The elements of two term-lists T1L and T2L are equivalent in twos.

equivalentL([],[],_).

equivalentL([T1|T1L],[T2|T2L],P) :-
equivalent(T1,T2,P),
equivalentL(T1L,T2L,P).

3.2 Implementation

unifiable_terms(T1,T2) means: T1 and T2 can be unified using the union-find algorithm.

unifiable_terms(T1,T2) :-
unify_terms_part(T1,T2,_).

unify_terms_part(T1,T2,P) means: T1 and T2 can be unified using the union-find algorithm. The result
is the solved, cycle-free partition P.

unify_terms_part(T1,T2,P) :-
union_find(T1,T2,[],P),
cycle_free(P).

unify_terms_sub(T1,T2,S) means: Try to unify the two terms T1 and T2 using the union-find algorithm.
If they are unifiable, convert the solved, cycle-free partition P into a unifying substitution.

unify_terms_sub(T1,T2,S) :-
unify_terms_part(T1,T2,P),
partition_sub(P,P,[],S).

union_find(T1,T2,P1,P4) means:

Formal verification of a union-find based unification algorithm

17

union_find(T1,T2,P1,P4) :-
find_delete(P1,T1,P2,C1),
(class_member(T2,C1) ->

P4 = P1
; find_delete(P2,T2,P3,C2),

C1 = cl(T3,Q1),
C2 = cl(T4,Q2),
(var_form(T3) ->

P4 = [cl(T4,[C1|Q2])|P3]
; var_form(T4) ->

P4 = [cl(T3,[C2|Q1])|P3]
; T3 = [Tag|T1L],

T4 = [Tag|T2L],
union_findL(T1L,T2L,

[cl(T4,[C1|Q2])|P3],P4) % P(x) := y
)
).

union_findL(T1L,T2L,P1,P3) means:

union_findL([],[],P,P).

union_findL([T1|T1L],[T2|T2L],P1,P3) :-
 union_find(T1,T2,P1,P2),
union_findL(T1L,T2L,P2,P3).

class_member(T,C) means: The term T belongs to the class C.

class_member(T,cl(T,_)).

class_member(T,cl(_,P)) :-
partition_member(T,P).

partition_member(T,P) means: The term T belongs to one of the classes of P.

partition_member(T,[C|_]) :-
class_member(T,C).

partition_member(T,[_|P]) :-
partition_member(T,P).

find(P,T1,T2) means: The term T1 belongs to the class with root T2 in partition P.

find([],T,T).

find([C|P],T1,T2) :-
(class_member(T1,C) ->

C = cl(T2,_)
; find(P,T1,T2)
).

find_delete(P1,T,P2,C) means: Find the class C of partition P1 to which the term T belongs to. Delete C
in P1 to obtain partition P2.

Formal verification of a union-find based unification algorithm

18

find_delete([],T,[],cl(T,[])).

find_delete([C1|P1],T,P3,C2) :-
(class_member(T,C1) ->

C2 = C1,
P3 = P1

; find_delete(P1,T,P2,C2),
P3 = [C1|P2]

).

cycle_free(P) means: The partition P is cycle free.

cycle_free(P) :-
roots(P,TL),
cycle_freeL(TL,P,[],[],_).

roots(P,TL) means: The term-list TL is the list of the roots of the classes of the partition P.

roots([],[]).

roots([cl(T,_)|P],[T|TL]) :-
roots(P,TL).

cycle_freeL(TL,P,C,WF1,WF2) means: Check whether the terms in the term-list TL are in the cycle-free
portion of partition P. C is the path to the terms in TL. WF1 is a list of nodes which are already in the
cycle-free part of P. WF2 is the output list of nodes which are in the cycle-free part of P. WF2 extends
WF1. WF2 is a so-called topological ordering of P.

cycle_freeL([],_,_,WF,WF).

cycle_freeL([T1|T1L],P,C,WF1,WF3) :-
find(P,T1,T2),
(member_check(T2,C) ->

fail
; member_check(T2,WF1) ->

cycle_freeL(T1L,P,C,WF1,WF3)
; var_form(T2) ->

cycle_freeL(T1L,P,C,[T2|WF1],WF3)
; T2 = [_|T2L],

cycle_freeL(T2L,P,[T2|C],WF1,WF2),
cycle_freeL(T1L,P,C,[T2|WF2],WF3)

).

member_check(X,L) means: Check whether an element X belongs to a list L.

member_check(X,[Y|L]) :-
(X = Y ->

true
; member_check(X,L)
).

Formal verification of a union-find based unification algorithm

19

partition_sub(P1,P2,S1,S2) means: Go through the classes of partition P1 and look for variables. Take
variables. Expand them to terms according to the partition P2. Add the bindings to S1. The result is S2.

partition_sub([],_,S,S).

partition_sub([C|P1],P2,S1,S3) :-
class_sub(C,P2,S1,S2),
partition_sub(P1,P2,S2,S3).

class_sub(cl($(X),P1),P2,S1,S2) :-
partition_term($(X),P2,T),
partition_sub(P1,P2,[bind(X,T)|S1],S2).

class_sub(cl([_|_],P1),P2,S1,S2) :-
partition_sub(P1,P2,S1,S2).

partition_term(T1,P,T2) means: Expand the term T1 into term T2 according to partition P.

partition_term(T1,P,T3) :-
find(P,T1,T2),
(var_form(T2) ->

T3 = T2
; T2 = [Tag|T1L],

partition_termL(T1L,P,T2L),
T3 = [Tag|T2L]

).

partition_termL(T1L,P,T2L) means: Expand every term in the term-list T1L into the term-list T2L
according to partition P.

partition_termL([],_,[]).

partition_termL([T1|T1L],P,[T2|T2L]) :-
partition_term(T1,P,T2),
partition_termL(T1L,P,T2L).

Formal verification of a union-find based unification algorithm

20

Chapter 4

Correctness Proof

This chapter illustrates some of the most important theorems, lemmas and corollaries used in the
correctness proof. The entire correctness proof can be found in the files provided on the accompanying
disk. The proof is 13,463 lines long. A listing and the contents of the disk files is given in appendix B
and C of this diploma thesis.

For each theorem, lemma, corollary or definition, the names of the file holding the mentioned proof is
given in square brackets [].

4.1 An introductory example

As an introductory example the general requirements for proving a given program are shown by means
of the program assoc. Assoc(X,S,T) means, T is the result of applying the substitution S to the variable
$(X). The corresponding Prolog code is:

assoc(X,[],$(X)).
assoc(X,[bind(X,T)|_],T).
assoc(X,[bind(Y,_)|S],T) :-
\+ X = Y,
assoc(X,S,T).

Figure 4.1 Program assoc.

The first step is to define the program output. In the given case, T must be in term-form. This is ensured
by the lemma assoc:types shown in figure 4.2 and found in file [substitution.pr].

Formal verification of a union-find based unification algorithm

21

Lemma 1 [assoc:types] ∀x,s,t(S assoc(x,s,t) ∧ S atomic(x) ∧ S substitution(s) → S term(t)).
Proof.
Induction0: ∀x,s,t(S assoc(x,s,t) → S atomic(x) ∧ S substitution(s) → S term(t)).

Hypothesis0: none.
Assumption2: S atomic(x) ∧ S substitution([]).
Thus2: S atomic(x) ∧ S substitution([]) → S term($(x)).

Conclusion1: S atomic(x) ∧ S substitution([]) → S term($(x)).
Hypothesis1: none.

Assumption2: S atomic(x) ∧ S substitution([bind(x,t)|v0]). D S substitution([bind(x,t)|v0])
by completion. S term(t).

Thus2: S atomic(x) ∧ S substitution([bind(x,t)|v0]) → S term(t).
Conclusion1: S atomic(x) ∧ S substitution([bind(x,t)|v0]) → S term(t).
Hypothesis1: S atomic(x) ∧ S substitution(s) → S term(t) and x ≠ y and S assoc(x,s,t).

Assumption2: S atomic(x) ∧ S substitution([bind(y,v0)|s]). D S substitution([bind(y,v0)|s])
by completion.

Thus2: S atomic(x) ∧ S substitution([bind(y,v0)|s]) → S term(t).
Conclusion1: S atomic(x) ∧ S substitution([bind(y,v0)|s]) → S term(t).

Assumption0: S assoc(x,s,t) ∧ S atomic(x) ∧ S substitution(s).
S atomic(x) ∧ S substitution(s) → S term(t).
S atomic(x) ∧ S substitution(s) → S term(t). S term(t).

Thus0: S assoc(x,s,t) ∧ S atomic(x) ∧ S substitution(s) → S term(t). �

Figure 4.2 LPTP-induction-proof of the lemma assoc:types.

The upper-case, bold-faced "D" in the proof symbolizes a definition. The upper-case, bold-faced "S"
symbolizes succeeds, indicating that the subsequent predicate returns the answer "yes". This means the
answer produced by the assoc program is indeed in term-form.

As a next step, it must be shown that the assoc-function actually exists. This is proven by means of
lemma assoc:existence shown in figure 4.3. For the sake of readability, we now refrain from displaying
the proof, thus only showing the lemma itself. The complete proof however, can be found in
[substitution.pr].

Lemma 2 [assoc:existence] ∀x,s(S substitution(s) ∧ S atomic(x) → ∃t S assoc(x,s,t)).

Figure 4.3 Lemma assoc:existence.

Furthermore, it must be shown, that the term computed by assoc is unique. For this purpose another
lemma called assoc:uniqueness is set up. It is shown in figure 4.4 [substitution.pr].

Lemma 3 [assoc:uniqueness] ∀x,s,t1,t2(S assoc(x,s,t1) ∧ S atomic(x) ∧ S substitution(s) ∧
S assoc(x,s,t2) → t1 = t2).

Figure 4.4 Lemma assoc:uniqueness.

So far it has been demonstrated that:

• a function defined by assoc exists,

• the calculated result is unique,

• the calculated result is a term.

The next step is to demonstrate, whether or not the implementation of the function ever comes to a result
at run-time, i.e. whether or not the program terminates. Therefore, a lemma called assoc:termination is
defined. It is shown in figure 4.5 with the appropriate proof [part1.pr].

Formal verification of a union-find based unification algorithm

22

Lemma 4 [assoc:termination] ∀x,s,t(S substitution(s) ∧ S atomic(x) → T assoc(x,s,t)).
Proof.
Induction0: ∀s(S substitution(s) → ∀x,t(S atomic(x) → T assoc(x,s,t))).

Hypothesis1: none. S atomic(x) → T assoc(x,[],t).
Conclusion1: ∀x,t(S atomic(x) → T assoc(x,[],t)).
Hypothesis1: ∀x,t(S atomic(x) → T assoc(x,s,t)) and S atomic(x) and S term(t) and

S substitution(s) and F domain(x,s).
Assumption2: S atomic(v0). ∃t S assoc(v0,s,t) by Lemma [assoc:existence]. gr(x) by Axiom[atomic:gr].

T assoc(v0,[bind(x,t)|s],v1) by completion.
Thus2: S atomic(v0) → T assoc(v0,[bind(x,t)|s],v1).

Conclusion1: ∀v0,v1(S atomic(v0) → T assoc(v0,[bind(x,t)|s],v1)).
Assumption0: S substitution(s) ∧ S atomic(x). ∀x,t(S atomic(x) → T assoc(x,s,t)).

S atomic(x) → T assoc(x,s,t). T assoc(x,s,t).
Thus0: S substitution(s) ∧ S atomic(x) → T assoc(x,s,t). �

Figure 4.5 Lemma assoc:termination.

This lemma is also proved by induction.

4.2 Some important propositions

In this section, the most important theorems, lemmas and corollaries required for the correctness proof
are investigated in detail.

For the sake of clarity, only the most important steps leading to the desired proof are shown. Lesser
important steps are omitted.

4.2.1 Theorems about "unifiable_terms"

The two following theorem state that if ?s is a substitution unifying the terms ?t1 and ?t2, then
unifiable_terms terminates and succeeds.

[part11.pr]

Theorem 1 [unifiable_terms:characterization] ∀t1,t2(S term(t1) ∧ S term(t2) →
(S unifiable_terms(t1,t2) ↔ ∃s S substitution(s) ∧ S unifier(t1,t2,s))).

[part6.pr]

Theorem 2 [unifiable_terms:termination] ∀t1,t2(S term(t1) ∧ S term(t2) → T unifiable_terms(t1,t2)).

4.2.2 Theorems about "unify_terms_part"

[part2.pr]

Corollary 3 [unify_terms_part:types] ∀t1,t2,p(S term(t1) ∧ S term(t2) ∧ S unify_terms_part(t1,t2,p) →
S partition(p)).

[part6.pr]

Theorem 4 [unify_terms_part:termination] ∀t1,t2,p(S term(t1) ∧ S term(t2) →
T unify_terms_part(t1,t2,p)).

[part12.pr]

Formal verification of a union-find based unification algorithm

23

Theorem 5 [unify_terms_part:uniqueness] ∀t1,t2,p1,p2(S unify_terms_part(t1,t2,p1) ∧
S unify_terms_part(t1,t2,p2) → p1 = p2).

[part7.pr]

Theorem 6 [unify_terms_part:success] ∀t1,t2,s(S term(t1) ∧ S term(t2) ∧ S substitution(s) ∧
S unifier(t1,t2,s) → ∃p(S unify_terms_part(t1,t2,p) ∧ S partition_solution(p,s))).

[part11.pr]

Theorem 7 [unify_term_part:solved] ∀t1,t2,s(S term(t1) ∧ S term(t2) ∧ S unify_terms_part(t1,t2,p) →
S solved(p)).

4.2.3 Theorems about "unify_terms_sub"

[part8.pr]

Theorem 8 [unify_terms_sub:types] ∀t1,t2,s(S term(t1) ∧ S term(t2) ∧ S unify_terms_sub(t1,t2,s) →
S substitution(s)).

[part9.pr]

Theorem 9 [unify_terms_sub:termination] ∀t1,t2,s(S term(t1) ∧ S term(t2) →
T unify_terms_sub(t1,t2,s)).

[part12.pr]

Theorem 10 [unify_terms_sub:uniqueness] ∀t1,t2,s1, s2,(S unify_terms_sub(t1,t2,s1) ∧
S unify_terms_sub(t1,t2,s2) → s1 = s2).

[part8.pr]

Theorem 11 [unify_terms_sub:existence] ∀t1,t2,s(S term(t1) ∧ S term(t2) ∧ S substitution(s) ∧
S unifier(t1,t2,s) → ∃s1(S unify_terms_sub(t1,t2,s1) ∧ composition(s1,s,s))).

[part11.pr]

Theorem 12 [unify_terms_sub:unifier] ∀t1,t2,s(S term(t1) ∧ S term(t2) ∧ S unify_terms_sub(t1,t2,s) →
S unifier(t1,t2,s1)).

4.2.4 Definition of "application"

By the next definition it is shown that an application is in fact a function. The application of a
substitution ?s to the term ?t is written as (?t // ?s).

[substitution.pr]

Definition 13 [///2] ∀t1,s,t2(S term(t1) ∧ S substitution(s) → (t1 // s = t2 ↔ S apply(t1,s,t2))).

4.2.5 Definition of "composition"

A predicate composition is defined to express that ?s3 is the substitution, which arises by applying to a
term T the substitutions ?s1 and ?s2 in turns.

[substitution.pr]

Formal verification of a union-find based unification algorithm

24

Definition 14 [composition/3] ∀s1,s2,s3(composition(s1,s2,s3) ↔
∀x (S atomic(x) → $(x) // s1 // s2 = $(x) // s3)).

4.2.6 Termination of the cycle test

This theorem states: If P is a partition, then the cycle-test for P terminates. (A partition is a list of
disjoint classes, which again is a tree of terms).

[part6.pr]

Theorem 15 [cycle_free:termination] ∀p(S partition(p) → T cycle_free(p)).

4.2.7 Termination of the union-find algorithm

By this next theorem it is proven that if T1 and T2 are both terms and P1 is a partition, then the union-
find algorithm terminates. It is expressed in the following way:

[part4.pr]

Theorem 16 [union_find:termination] ∀t1,t2,p1,p2(S term(t1) ∧ S term(t2) ∧ S partition(p2) →
T union_find(t1,t2,p1,p2)).

4.2.8 Most general substitution

Finally, it is proven that if two terms are unifiable, the union-find algorithm computes a most general
substitution.

[part12.pr]

Theorem 17 [unify_terms_sub:most:general] ∀t1,t2,s1,s2(S term(t1) ∧ S term(t2) ∧ S partition(s2) ∧
S unifier(t1,t2,s2) ∧ S unify_terms_sub(t1,t2,s1) → composition(s1,s2,s2)).

Formal verification of a union-find based unification algorithm

25

Appendix A

Bibliography

[1] Krzysztof R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[2] Thomas H. Corman. Introduction to Algorithms. 485-487

[3] A. Martelli and U. Montanari. An efficient Unification Algorithm. ACM Transactions on
Programming Languages and Systems, 4(2): 258-282. 1982.

[4] M. S. Paterson and M. N. Wegman. Linear Unification. J. of Computer and System Sciences,
16: 158-167, 1978.

[5] Paul W. Purdom. A Practical Unification Algorithm. Information Sciences, 55:123-127, 1991.

[6] J. A. Robinson. A machine-Oriented Logic Based on the Resolution Principle. J. of the
Association for Computing Machinery, 12(1): 23-41, 1965.

[7] Peter Ruzicka and Igor Privara. An Almost Linear Robinson Unification Algorithm. Acta
Informatica 27:61-71, 1989.

[8] Robert F. Stärk. LPTP: A Logic Program Theorem Prover. June 1996.

[9] Robert F. Stärk. A Simple Unification Algorithm. February 1996.

Formal verification of a union-find based unification algorithm

26

Appendix B

Disk Files

1. mgu.pl

2. axioms.pr

3. substitution.pr

4. subterms.pr

5. part1.pr

6. part2.pr

7. part3.pr

8. part4.pr

9. part5.pr

10. part6.pr

11. part7.pr

12. part8.pr

13. part9.pr

14. part10.pr

15. part11.pr

16. part12.pr

Formal verification of a union-find based unification algorithm

27

Appendix C

Formal proof

