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Chapter 1

Introduction

1.1 What is LPTP?

LPTP is an interactive theorem prover for the formal verification of Prolog pro-
grams. It is a proof refinement system that allows a user to construct formal
proofs interactively. It is possible to generate proofs deductively from the as-
sumption forwards to the goal or goal directed from the goal backwards to the
axioms. LPTP has the ability to search for proofs or parts of proofs automati-
cally. In the simplest case, LPTP just finds the name of a lemma that already
has been proved and is used at a certain point in a proof. In the best case,
LPTP finds complete proofs.

LPTP has been designed for correctness proofs of pure Prolog programs.
Pure Prolog programs may contain negation, if-then-else and built-in predicates
like is/2, </2 and call/n + 1. The programs, however, have to be free of cut
and database predicates like assert/1 and retract/1 which allow to modify a
program during runtime.

The kernel of LPTP is written in exactly the fragment of Prolog that can
be treated in LPTP. This means that LPTP uses no single cut. Moreover, in
principle it is possible to prove properties of LPTP in LPTP itself.

LPTP has a graphical user interface in the Gnu Emacs Editor. For example,
the user can double-click on a quantifier and the whole scope of the quantifier is
highlighted. Moreover, the Emacs LPTP-Mode provides functions that indent
proofs in a correct way as this is usually done for program source code.

LPTP has a TEX- and an HTML-manager who are able to generate TEX-
and HTML-output which is readable for humans.

LPTP runs under different Prologs. It has been tested with CProlog, Quin-
tus Prolog, SICStus Prolog under ECLiPse under Unix and with Open Prolog
on the Macintosh.

LPTP is able to check a 13128 lines long proof (133 pages) in 99.2 seconds
for correctness (on a Sun SPARCserver 1000). Hereby it has to be said that in
practise proofs or parts of proofs that have to be checked are rarely longer than
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6 CHAPTER 1. INTRODUCTION

4 pages. The average response time of the system during interactive proving
is therefore less than 4 seconds. In automatic theorem proving, however the
response time can be arbitrary long.

A skilled user can generate up to 2000 lines of formal proofs with LPTP in
one day (if the proofs are mathematically not too complicated).

LPTP uses the so-called ground representation for formulas and proofs.
LPTP differs from other theorem provers. At the end the user has a proof in

his hands that is readable for humans and not only a message ‘yes, the theorem
is provable’.

We believe that in computer science the purpose of formal proofs about
programs is not only to verify their correctness but also to document the code.
In a similar way, in mathematics, proofs are used to communicate ideas and
methods between mathematicians. A correctness proof of a computer program,
for example, explains the meaning of subprocedures.

Although LPTP was a one-person project, the largest program we have veri-
fied is 635 lines long. The example program is a parser for ISO standard Prolog.
The 635 lines comprise the specification of the parser, too. The specification is
given by a DCG (Definite Clause Grammar). The full correctness proof con-
tains theorem like the following: if a parse tree is transformed into a token list
(using write) and the token list is parsed back into a parse tree (using read),
then this parse tree is identical to the original parse tree.

The fully formalized correctness proof for the ISO Prolog parser is 13000
lines long. This means that we have a factor of 20 for the full verification of this
example program.

It has been often claimed that declarative programs are easier to verify than
imperative programs. There exist, however, only a few examples which support
this claim. There exist not many programs that have been formally verified.

One reason that it is possible to verify non-trivial programs in LPTP is the
underlying logical theory. The formal system which is the basis of LPTP is
a first-order predicate logic theory called inductive extension of logic programs
(IND). It is more or less the Clark completion of a program extended by induc-
tion.

The naive extension of Clark’s theory by induction immediately leads to an
inconsistency. Therefore IND is formulated in a extended language in which
there are three operators S, F and T for success, failure and termination.

For a goal G, the expressions S G, F G and T G are positive formulas
expressing success, failure and termination of G. It is an essential feature of
IND that success, failure and termination are expressed by positive formulas,
i.e. formulas that do not contain negation. This is the reason that induction
does not lead to contradictions.

The theory IND is computationally adequate in the following sense: the
formula T G is provable in IND if, and only if, the goal G is left-terminating
and dynamically well-typed. The letter T stands for both terminating and typed.

Left-terminating means that a goal terminates independently from the se-
lection of the clauses in the program, if always the left-most literal is selected
during the computation. Dynamically well-typed means that, whenever a built-
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in atom is selected, then the arguments of the built-in predicate are correctly
typed such that the atom can be evaluated. Moreover, dynamically well-typed
implies that negative literals are ground when they are selected.

The inductive extension of logic programs IND differs from other know the-
ories in the following points:

1. IND is consistent for arbitrary programs.

2. IND contains induction principles. It contains simultaneous induction
along the definition of predicates in a program.

3. IND contains axioms for logical built-in predicates like is/2, </2 and
call/n. We call a built-in predicate logical, if the domain and the eval-
uation of the predicate are compatible with instantiation. The predicate
var/1, for example, is not logical in this sense, since the atom var(x) is
evaluated to true, whereas the instance var(f(0)) has answer no.

4. IND is sound and complete for arbitrary programs and goals and not only
for restricted classes of programs as for example the class of definite or
the class of allowed programs.

5. IND respects the special literal selection rule of Prolog.

6. It is possible to make termination proofs in IND.

7. It is possible to treat polymorphic logic programs in IND which use the
predicate call/1.

On the design of this report

This report is fully accessible to the novice logic programmer and the non-proof
theorist. It requires no knowledge of formal logic that goes beyond free and
bound variables or substitutions. The underlying theory of LPTP however re-
quires basic knowledge of proof-theory and inductive definitions as it is presented
in the first chapters of standard textbooks (for example, in [4, 6, 7, 8, 17]). A
short overview on the theoretical foundations of LPTP is given in [15]. More
details can be found in [10, 11, 14, 16, 12, 13].

Although LPTP is implemented in Prolog in a declarative way, we have
decided not to take the source code as description of the system. So we do not
explain the implementation of LPTP in Prolog in this report, but describe the
system in a neutral way. The underlying Prolog, however, will shine through at
certain points. We have to assume a little familiarity with Prolog. We want to
point out, however, that the purpose of the whole enterprise is to reason about
pure Prolog programs in a logical way and not in the way a Prolog programmer
usually does. Thus in principle it would be possible to use the LPTP system
without ever having heard anything about Prolog.

A second point is the choice of representation of formulas. There are two
possibilities, the mathematical notation or the ASCII representation. The fol-
lowing formula is displayed in mathematical notation:
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∀x (p1(x) ∧ p2(x)→ q1(x) ∨ q2(x)).

Here is the same formula in ASCII representation:

all x: p1(x) & p2(x) => q1(x) \/ q2(x).

The mathematical notion is certainly more convenient for the eye. The user of
LPTP, however, will spend most of his time at a computer in an editor and look
at the ASCII representation of formulas despite the fact that LPTP is able to
produce mathematical notation (TEX output) automatically. Therefore we have
decided to use the ASCII represenation of formulas in this report.

When we talk about formulas, then we have to use mathematical variables
like x, ϕ and ψ. This means that instead of

all x: phi1 & phi2 => psi1 \/ psi2

we have to write

all x: ϕ1 & ϕ2 => ψ1 \/ ψ2.

Thereby we assume that x, ϕi and ψi are holes (variables) that can be filled
with ASCII strings.

1.2 A simple example

We present the features of the LPTP system by proving some simple facts about
the predicates member and append. The explanations here are extremely brief.
The details are discussed later in this report.

The ‘member’ program

We begin with a small Prolog program. Although Prolog has lost the ‘.pl’
extension to the programming language Perl we use the traditional extension
nevertheless. We invoke an editor and create the file ‘list.pl’ with the following
contents:

list([]).
list([X|L]) :- list(L).

member(X,[X|L]).
member(X,[Y|L]) :- member(X,L).

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

In these program clauses, identifiers that start with a capital letter like X and L
are Prolog variables. In the first clause, [] is the empty list and, in the second
clause, [X|L] is the same as the pair ’.’(X,L). The colon-dash symbol ‘:-’ is



1.2. A SIMPLE EXAMPLE 9

read as ‘if’. The first clause for list says that [] is a list and the second clause
for list says that the pair [X|L] is a list, if L is a list.

The predicate member(X,L) expresses that X is an element of the list L and
the predicate append(L1,L2,L3) expresses that L3 is the concatenation of L1
and L2. To run the program in Prolog, we have to start Prolog and to read
in the clauses with the following command (possible warnings about singleton
variables can be ignored):

?- consult(’list.pl’).

After this is done we can ask queries. Every query has to be terminated by a
full stop. Here is an example with answer ‘yes’:

?- member(2,[1,2,3]).

yes

The anwer ‘yes’ means: yes, 2 is an element of the list [1,2,3]. The expression
[1,2,3] is an abbreviation for the following Prolog term:

’.’(1,’.’(2,’.’(3,[]))).

Here is an example with answer ‘no’:

?- member(7,[1,2,3]).

no

The answer ‘no’ means: no, 7 is not an element of the list [1,2,3]. The
following query contains the Prolog variable X. To obtain more than one answer
one has to type a semicolon.

?- member(X,[1,2,3]).

X = 1 ;

X = 2 ;

X = 3 ;

no

The first theorem below that we are going to prove about the predicate member
will be that, whenever ` is a list, the query member(X,`) terminates and has
only finitely many solutions as in this example.
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The ground representation

Since the LPTP system itself is a Prolog program it cannot deal with the Prolog
code ‘list.pl’ directly. LPTP needs the so-called ground representation of
‘list.pl’ which is usually written on the file ‘list.gr’. To obtain the ground
representation one has to start Prolog again and to read in the LPTP system
with one of the following commands or whatever the Prolog system requires:

?- consult(’lptp.pl’).
?- load(lptp).
?- load(’/home/staerk/lptp/bin/lptp’).
?- [lptp].

Then one has to type one of the following commands:

?- compile gr(list).
?- compile gr(’/home/staerk/list’).

With the compile gr command the ground representation of ‘list.pl’ is writ-
ten on the file ‘list.gr’. If the LPTP system does not find the file ‘list.pl’
one has to type the full pathname of the file but without the ‘.pl’ suffix. It is
possible to define in LPTP abbreviations for path names:

?- set(home,’/home/staerk/’).
?- compile gr($(home)/list).

The syntax of pathnames and abbreviations is described in Chapter 2.

Success, failure and termination

As we have seen in the member example, the basic notions of Prolog are suc-
cess, failure and termination. Success corresponds to the answer ‘yes’, failure
corresponds to the answer ‘no’ and termination has to be understood as ‘only
finitely many answers’.

In LPTP, there are three operators that express these properties. The op-
erators are: succeeds, fails and terminates. We can ask the system about
the logical meaning of the operators. To do this, we start LPTP and load the
ground representation of the program clauses into the data base of LPTP with
the command:

?- needs gr(list).

Now, we can ask, for example, the following query:

?- def(succeeds member(?x,[?y|?m])).

The answer of LPTP is:

?x = ?y \/ succeeds member(?x,?m)
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This formula says that member(?x,[?y|?m]) succeeds if, and only if, ?x is equal
to ?y or member(?x,?m) succeeds. The expressions ?x, ?y and ?m are LPTP
variables.

An LPTP variable is different from a Prolog variable. An LPTP variable (in
the following called variable) always starts with a question mark and is followed
by an identifier that begins with a lowercase letter. The symbol ‘\/’ is called
disjunction and it is read as ‘or’.

In general, the success, failure or termination of a predicate is expressed by
more complicated formulas. To see the exact definition of the success of the
member predicate we type in the following query:

?- def(succeeds member(?x,?m)).

The difference to the query above is, that here the second argument of member
is the variable ?m and not the compound term [?y|?m]. The answer of LPTP
is:

(ex l: ?m = [?x|?l]) \/
(ex [y,l]: ?m = [?y|?l] & succeeds member(?x,?l))

This formula says that member(?x,?m) succeeds, if and only, if one of the fol-
lowing statements is true:

1. there exists an l such that ?m is equal to [?x|?l], or

2. there exist y and l such that ?m is equal to [?y|?l] and member(?x,?l)
succeeds.

The symbol ‘ex’ is a quantifier and it is read as ‘there exists’. The symbol & is
called conjunction and is read as ‘and’.

Note that the answer to the first query can be obtained from the answer to
the second query by replacing the variable ?m everywhere by the term [?x|?m]
and simplifying the result. This is done automatically by the system.

We can also ask the system about the definition of failure and termination.
To see an example for the failure operator we type:

?- def(fails member(?x,[?y|?m])).

The answer of the system is:

~ ?x = ?y & fails member(?x,?m)

This formula says that member(?x,[?y|?m]) fails if, and only if, it is not the
case that ?x is equal to ?y and if member(?x,?m) fails. The symbol ‘~’ is called
negation and is read as ‘not’. To see an example for the termination operator
we type:

?- def(terminates member(?x,?m)).

The answer of the system is:
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all [y,l]: ?m = [?y|?l] => terminates member(?x,?l)

This formula says that member(?x,?m) terminates if, and only if, for all y and l:

if ?m is equal to [?y|?l], then member(?x,?l) terminates.

The symbol ‘all’ is called a universal quantifier and it is read as ‘forall’. The
symbol ‘=>’ is called implication and ‘ϕ => ψ’ is read as ‘if ϕ then ψ’.

The first automatic proof

The first lemma that we want to prove is about the termination of the predicate
member. We want to prove the following formula:

all [y,l]: succeeds list(?l) => terminates member(?y,?l)

Proofs are usually written on files with the extension ‘.pr’. Therefore we create
in the editor a file ‘example.pr’ containing the following lines:

:- initialize.
:- needs gr(list).

:- lemma(member:termination,
all [y,l]: succeeds list(?l) => terminates member(?y,?l),
all [y,l]: succeeds list(?l) => terminates member(?y,?l)
by [ind]
).

The command initialize clears the internal database of LPTP. The command
needs gr(list) tells LPTP to load the ground representation ‘list.gr’ into
its memory. The structure of the lemma is the following:

:- lemma(name,
formula,
derivation
).

A derivation is usually a sequence of derivation steps. At the beginning deriva-
tions are incomplete. In our case the incomplete derivation has the following
form:

formula by [ind]

This tells LPTP that we want to prove formula by induction. We start LPTP
and read in the file ‘example.pr’ with one of the following commands:

?- consult(’example.pr’).
?- [’example.pr’].
?- exec(’example.pr’).

The output of the system is:
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induction(
[all l: succeeds list(?l) =>

(all y: terminates member(?y,?l))],
[step([],[],[],all y: terminates member(?y,[])),
step([x,l],
[all y: terminates member(?y,?l),
succeeds list(?l)],
[],
all y: terminates member(?y,[?x|?l]))])

This is a ground Prolog term. We call it a derivation. It has the following form:

induction(
[formula],
[induction-step1,

induction-step2])

Each induction step has the following structure:

step([variable,...],
[hypothesis,...],
derivation,
conclusion)

LPTP proves the lemma by induction on the predicate list. There are two
steps, the empty list [] and the compound list [?x|?l]. The first step is
trivial, since the definition of terminates member(?y,[]) is tt as can be seen
by asking the system the query:

?- def(terminates member(?y,[])).

The second case is also easy, since the query

?- def(terminates member(?y,[?x|?l])).

yields the following formula, which is the hypothesis of the induction step:

terminates member(?y,?l).

Thus it is not so surprising that LPTP is able to prove the lemma automatically.
We now copy the derivation, created by the system, to the file ‘example.pr’

and replace the old, incomplete, partial, gappy derivation

formula by [ind]

by the complete derivation. The file ‘example.pr’ looks then as follows:

:- initialize.
:- needs gr(list).

:- lemma(member:termination,
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all [y,l]: succeeds list(?l) => terminates member(?y,?l),
induction(
[all l: succeeds list(?l) =>

(all y: terminates member(?y,?l))],
[step([],[],[],all y: terminates member(?y,[])),
step([x,l],
[all y: terminates member(?y,?l),
succeeds list(?l)],
[],
all y: terminates member(?y,[?x|?l]))])

).

The proof of the lemma is complete.
If the Emacs LPTP mode is installed correctly, then the interaction between

Emacs and the LPTP process goes automatically. If we start Emacs with a file
with ‘.pr’ extension, then it should go into lptp-mode. In our example, we
start Emacs with the file ‘example.pr’:

:- initialize.
:- needs gr(list).

:- lemma(member:termination,
all [y,l]: succeeds list(?l) => terminates member(?y,?l),
all [y,l]: succeeds list(?l) => terminates member(?y,?l)
by [ind]
).

Emacs goes into lptp-mode and indicates it on the mode line. We can start start
LPTP by selecting ‘Run LPTP’ from the LPTP-menu or with the command ‘M-x
run-lptp’ or ‘M-x run-lptp-other-frame’. In a seperate buffer (or frame) a
new Prolog process is started with LPTP. We can send the buffer ‘example.pr’
to the LPTP process with the send command ‘C-c i s’. To replace the formula
by the derivation of LPTP we set the cursor (also called point in Emacs) on the
symbol ‘by’ and copy the output of LPTP via the get command ‘C-c i g’. The
buffer then looks as follows:

:- initialize.
:- needs gr(list).

:- lemma(member:termination,
all [y,l]: succeeds list(?l) => terminates member(?y,?l),
induction(
[all l: succeeds list(?l) =>

(all y: terminates member(?y,?l))],
[step([],[],[],all y: terminates member(?y,[])),
step([x,l],
[all y: terminates member(?y,?l),
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succeeds list(?l)],
[],
all y: terminates member(?y,[?x|?l]))])

).

Double-clicking on a keyword like step or all shows the structure of the deriva-
tion. Appendix A contains a detailed description of the Emacs LPTP mode.

Defining an abbreviation

The predicates list, member and append are called user-defined predicates in
contrast to built-in predicates like is and call which we will treat later. In
formal proofs, there is usually a third kind of predicates which we call abbrevi-
ations. Here is an example. We extend the file ‘example.pr’ by the following
lines:

:- definition pred(sub,2,
all [l1,l2]: sub(?l1,?l2) <=>
(all x: succeeds member(?x,?l1) => succeeds member(?x,?l2))
).

In this predicate definition we define an abbreviation sub(?l1,?l2) which ex-
presses that ?l1 is a subset of ?l2, i.e. every element of ?l1 is also an element
of ?l2. The first thing we want to prove about sub is that it is transitive. To
do this we add the following lines to example.pr:

:- lemma(sub:transitive,
all [l1,l2,l3]: sub(?l1,?l2) & sub(?l2,?l3) => sub(?l1,?l3),
all [l1,l2,l3]: sub(?l1,?l2) & sub(?l2,?l3) => sub(?l1,?l3)
by [auto(9)]
).

An incomplete derivation like

formula by [auto(9)]

tells the system to try to prove formula automatically with a search depth of 9.
We send the file ‘example.pr’ to LPTP and the system responds immediatly
with:

assume(sub(?l1,?l2) & sub(?l2,?l3),
[assume(succeeds member(?x,?l1),
[all x: succeeds member(?x,?l1) =>

succeeds member(?x,?l2) by elimination(sub,2),
all x: succeeds member(?x,?l2) =>
succeeds member(?x,?l3) by elimination(sub,2)],

succeeds member(?x,?l3)),
sub(?l1,?l3) by introduction(sub,2)],

sub(?l1,?l3))
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We take the derivation created by the system gratefully and paste it over the
incomplete derivation:

formula by [auto(9)]

If we are working in Emacs then we can use the get command ‘C-c i g’ to do
this. The lemma now looks as follows:

:- lemma(sub:transitive,
all [l1,l2,l3]: sub(?l1,?l2) & sub(?l2,?l3) => sub(?l1,?l3),
assume(sub(?l1,?l2) & sub(?l2,?l3),
[assume(succeeds member(?x,?l1),
[all x: succeeds member(?x,?l1) => succeeds member(?x,?l2)

by elimination(sub,2),
all x: succeeds member(?x,?l2) => succeeds member(?x,?l3)
by elimination(sub,2)],

succeeds member(?x,?l3)),
sub(?l1,?l3) by introduction(sub,2)],

sub(?l1,?l3))
).

This proof can be read as follows: Assume that ?l1 is a subset of ?l2 and that
?l2 is a subset of ?l3. Assume that ?x is an element of ?l1. By the definition
of sub we have the following:

all x: succeeds member(?x,?l1) => succeeds member(?x,?l2)
all x: succeeds member(?x,?l2) => succeeds member(?x,?l3).

From this we obtain that ?x is an element of ?l3. Since ?x was chosen arbitrarily,
we have

all x: succeeds member(?x,?l1) => succeeds member(?x,?l3).

By the definition of sub, this means that ?l1 is a subset of ?l3. QED.
In the derivation created by LPTP we see two implication introduction steps.

In general, the derivation step assume has the following structure:

assume(formula1,
derivation,
formula2)

The derivations step proves the following formula:

formula1 => formula2

Derivation must be a correct derivation of formula2 from the additional assump-
tion formula1.



1.2. A SIMPLE EXAMPLE 17

More automatic proofs

The transitivity lemma does not use the definition of the predicate member. It
uses the definition of the abbreviation sub only. The next lemma needs both:

:- lemma(sub:member,
all [y,l1,l2]: sub(?l1,?l2) & succeeds member(?y,?l2) =>
sub([?y|?l1],?l2),

all [y,l1,l2]: sub(?l1,?l2) & succeeds member(?y,?l2) =>
sub([?y|?l1],?l2) by [auto(11)]

).

With the increased search depth of 11 the system is able to prove this lemma
with a deep thought. After we have sent the file ‘example.pr’ to LPTP with
the command ‘C-c i s’, LPTP prints the following derivation on the screen:

assume(sub(?l1,?l2) & succeeds member(?y,?l2),
[assume(succeeds member(?x,[?y|?l1]),
[def succeeds member(?x,[?y|?l1]) by completion,
cases(?x = ?y,
[],
succeeds member(?x,?l1),
all x: succeeds member(?x,?l1) =>
succeeds member(?x,?l2) by elimination(sub,2),

succeeds member(?x,?l2))],
succeeds member(?x,?l2)),

sub([?y|?l1],?l2) by introduction(sub,2)],
sub([?y|?l1],?l2))

This derivation is short enough, so we paste it over the ... by [auto(11)] (in
Emacs we simply type ‘C-c i g’). In this derivation we see for the first time a
case splitting which, in general, has the following structure:

case(formula1,
derivation1,
formula2,
derivation2,
formula)

It expresses that formula is derivable in both cases, in the case of formula1 and
the case of formula2. The following disjunction must be derivable:

formula1 \/ formula2

In the derivation above, the disjunction is:

?x = ?y \/ succeeds member(?x,?l1)

It is obtained from
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succeeds member(?x,[?y|?l1])

by taking its definition (which is here called completion).
Now we want to test the LPTP system to see whether it is clever. We add

the following corollary at the end of the file ‘example.pr’:

:- corollary(sub:member:2,
all [x,y,i,j]: sub(?i,?j) & succeeds member(?x,?j) &
succeeds member(?y,?j) => sub([?x,?y|?i],?j),

all [x,y,i,j]: sub(?i,?j) & succeeds member(?x,?j) &
succeeds member(?y,?j) => sub([?x,?y|?i],?j) by [auto(5)]

).

As the term corollary suggest to any mathematician, this must follow from
previously proved theorems and lemmas very easily. And indeed, LPTP finds
the following derivation with thinking depth 5:

assume(sub(?i,?j) & succeeds member(?x,?j) &
succeeds member(?y,?j),
[sub([?y|?i],?j) by lemma(sub:member),
sub([?x,?y|?i],?j) by lemma(sub:member)],

sub([?x,?y|?i],?j))

This derivation is just a two-fold application of the previous lemma.
We still have not used the predicate append. Our final goal for the short

example session is to prove that if ?l1 is a subset of ?l and ?l2 is a subset of
?l then the concatenation of ?l1 and ?l2 is a subset of ?l, too. This would be
too complicated for LPTP, therefore we first prove the following lemma:

:- lemma(append:member,
all [y,l1,l2,l3]: succeeds append(?l1,?l2,?l3) &
succeeds member(?y,?l3) =>
succeeds member(?y,?l1) \/ succeeds member(?y,?l2),

all [y,l1,l2,l3]: succeeds append(?l1,?l2,?l3) &
succeeds member(?y,?l3) =>
succeeds member(?y,?l1) \/ succeeds member(?y,?l2) by [ind]

).

The response of the system is the following:

induction(
[all [l1,l2,l3]: succeeds append(?l1,?l2,?l3) =>

(all y: succeeds member(?y,?l3) =>
succeeds member(?y,?l1) \/ succeeds member(?y,?l2))],

[step([l],
[],
[],
all y: succeeds member(?y,?l) =>

succeeds member(?y,[]) \/ succeeds member(?y,?l)),
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step([x,l1,l2,l3],
[all y: succeeds member(?y,?l3) =>

succeeds member(?y,?l1) \/ succeeds member(?y,?l2),
succeeds append(?l1,?l2,?l3)],
assume(succeeds member(?y,[?x|?l3]),
succeeds member(?y,[?x|?l1]) \/
succeeds member(?y,?l2) by gap,
succeeds member(?y,[?x|?l1]) \/ succeeds member(?y,?l2)),
all y: succeeds member(?y,[?x|?l3]) =>
succeeds member(?y,[?x|?l1]) \/
succeeds member(?y,?l2))])

This derivation uses induction on the predicate append. Since append has two
clauses in the file ‘list.pl’, there are two steps in the induction proof. The
first step, the base case, is complete. The second step is not yet complete. It
contains a gap. We copy the partial derivation to the file ‘example.pr’, replace
the lines

succeeds member(?y,[?x|?l1]) \/
succeeds member(?y,?l2) by gap

by the following lines

succeeds member(?y,[?x|?l1]) \/
succeeds member(?y,?l2) by [auto(7),l(5)]

and send the file again to LPTP. The response of the system is:

[def succeeds member(?y,[?x|?l3]) by completion,
cases(?y = ?x,
[],
succeeds member(?y,?l3),
[succeeds member(?y,?l1) \/ succeeds member(?y,?l2),
cases(succeeds member(?y,?l1),
[],
succeeds member(?y,?l2),
[],
succeeds member(?y,[?x|?l1]) \/
succeeds member(?y,?l2))],

succeeds member(?y,[?x|?l1]) \/
succeeds member(?y,?l2))]

This is a nested case splitting. The derivation is now complete and we can step
to the final theorem:

:- theorem(sub:append,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4),
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &



20 CHAPTER 1. INTRODUCTION

sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4) by [auto(10)]
).

We send the file ‘example.pr’ to the system and after a short while we get the
following derivation:

assume(succeeds append(?l1,?l2,?l3) & sub(?l1,?l4) &
sub(?l2,?l4),
[assume(succeeds member(?x,?l3),
[succeeds member(?x,?l1) \/ succeeds member(?x,?l2) by
lemma(append:member),
cases(succeeds member(?x,?l1),
all x: succeeds member(?x,?l1) =>
succeeds member(?x,?l4) by elimination(sub,2),

succeeds member(?x,?l2),
all x: succeeds member(?x,?l2) =>
succeeds member(?x,?l4) by elimination(sub,2),

succeeds member(?x,?l4))],
succeeds member(?x,?l4)),

sub(?l3,?l4) by introduction(sub,2)],
sub(?l3,?l4))

LPTP uses the previous lemma to prove the theorem. With this proof the file
‘example.pr’ is complete and we terminate the example session.

Interactive proofs

As we have already seen, proofs can contain gaps. A gap has always the following
form:

formula by gap.

It has the effect that formula is forced to be true at this point in the proof
no matter whether it is derivable from previously proved formulas or not. The
concept of gaps gives the possibility to construct proofs in arbitrary ways: from
the assumptions forward to the conclusion, from the conclusion backward to
the assumption or a mix of both strategies. A proof can contain an arbitrary
number of gaps. We can even force the constant falsum to be true with

ff by gap.

LPTP prints a warning message on the screen for every gap it detects in a
derivation. The keyword by is not only used for gaps. It serves for different
purposes. It is used also to indicate that a formula can be derived using a
lemma as in

formula by lemma(append:member).

If the expression on the right-hand side of by is a list as in
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formula by [tactic,option,...].

then this is understood as a command for LPTP to try to prove formula by
tactic and to print the result to the screen. The tactics that we have seen so far
were:

• auto(n) — use automatic proof search of depth n, and

• ind — use induction.

There are many more tactics, for example:

• case — use case splitting,

• unfold — unfold the formula,

• fact — use a fact (axiom, lemma, corollary or theorem).

To show how the other tactics are used, we prove the theorem ‘append:sub’
again, but this time by hand. We start with the following:

:- theorem(sub:append,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4),
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4) by []
).

The following expression is a command for LPTP:

formula by []

The command tells LPTP to create a standard derivation for formula, or more
precisely, to construct an initial piece of the obvious derivation for formula which
is given by the logical structure of formula. In our case, the system responds
with:

assume(succeeds append(?l1,?l2,?l3) & sub(?l1,?l4) &
sub(?l2,?l4),
sub(?l3,?l4) by gap,
sub(?l3,?l4))

We take this proof fragment with ‘C-c i g’ such that we have:

:- theorem(sub:append,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4),
assume(succeeds append(?l1,?l2,?l3) & sub(?l1,?l4) &
sub(?l2,?l4),
sub(?l3,?l4) by gap,
sub(?l3,?l4))
).
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Now we change the gap to:

:- theorem(sub:append,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4),
assume(succeeds append(?l1,?l2,?l3) & sub(?l1,?l4) &
sub(?l2,?l4),
sub(?l3,?l4) by [unfold,l(1)],
sub(?l3,?l4))
).

This tells LPTP to unfold the expression sub(?l3,?l4) by its definition. In
Emacs, we can use the command ‘C-c i u’ for this. The option l(1) tells the
system to indent its answer one columen to the right such that it fits nicely into
our proof at the position we want to have it. The system responds with:

[assume(succeeds member(?x,?l3),
succeeds member(?x,?l4) by gap,
succeeds member(?x,?l4)),

sub(?l3,?l4) by introduction(sub,2)]

After the command ‘C-c i g’ we have:

:- theorem(sub:append,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4),
assume(succeeds append(?l1,?l2,?l3) & sub(?l1,?l4) &
sub(?l2,?l4),
[assume(succeeds member(?x,?l3),
succeeds member(?x,?l4) by gap,
succeeds member(?x,?l4)),
sub(?l3,?l4) by introduction(sub,2)],

sub(?l3,?l4))
).

Now we replace the gap by the following:

[succeeds member(?x,?l1) \/ succeeds member(?x,?l2) by [fact],
succeeds member(?x,?l4) by gap]

This tells the system that we believe that the formula

succeeds member(?x,?l1) \/ succeeds member(?x,?l2)

can be proved by a fact, i.e. lemma, corollary or theorem, but that we have
forgotten the name of the fact. Indeed, LPTP finds the right lemma and answers
with:

succeeds member(?x,?l1) \/ succeeds member(?x,?l2) by
lemma(append:member)
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We take the answer and have now the following incomplete proof that still
contains a gap.

:- theorem(sub:append,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4),
assume(succeeds append(?l1,?l2,?l3) & sub(?l1,?l4) &
sub(?l2,?l4),
[assume(succeeds member(?x,?l3),
[succeeds member(?x,?l1) \/ succeeds member(?x,?l2) by
lemma(append:member),
succeeds member(?x,?l4) by gap],
succeeds member(?x,?l4)),

sub(?l3,?l4) by introduction(sub,2)],
sub(?l3,?l4))
).

We replace now the expression

succeeds member(?x,?l4) by gap

by the following:

succeeds member(?x,?l4) by [case,l(4)]

In Emacs, we use the command ‘C-c i c’ for this task. LPTP introduces two
new gaps in its response:

cases(succeeds member(?x,?l1),
succeeds member(?x,?l4) by gap,
succeeds member(?x,?l2),
succeeds member(?x,?l4) by gap,
succeeds member(?x,?l4))

After the get command (‘C-c i g’) we have:

:- theorem(sub:append,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4),
assume(succeeds append(?l1,?l2,?l3) & sub(?l1,?l4) &
sub(?l2,?l4),
[assume(succeeds member(?x,?l3),
[succeeds member(?x,?l1) \/ succeeds member(?x,?l2) by
lemma(append:member),
cases(succeeds member(?x,?l1),
succeeds member(?x,?l4) by gap,
succeeds member(?x,?l2),
succeeds member(?x,?l4) by gap,
succeeds member(?x,?l4))],
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succeeds member(?x,?l4)),
sub(?l3,?l4) by introduction(sub,2)],
sub(?l3,?l4))
).

This proof now contains two gaps and our intermediate goal is to close the first
one. We replace it by:

succeeds member(?x,?l4) by [elim,l(5)]

In Emacs, we use the command ‘C-c i e’. The elim tactic tells the system that
we believe that the formula can be proved by elimination of a prior abbreviation.
By default, LPTP takes the first one, in our case sub(?l1,?l4) and responds
with:

[all x: succeeds member(?x,?l1) =>
succeeds member(?x,?l4) by elimination(sub,2),

succeeds member(?x,?l4)]

We take this piece of derivations with ‘C-c i g’. After that, the remaining gap
is attacked in the same way as the first one. We replace it by the following:

succeeds member(?x,?l4) by [elim,more,l(5)]

In Emacs, we use ‘C-u C-c i e’ for that. The option more tells the system to
use backtracking and to search for more possibilities. In fact, LPTP first picks
again sub(?l1,?l4) and prints the following:

[all x: succeeds member(?x,?l1) =>
succeeds member(?x,?l4) by elimination(sub,2),

succeeds member(?x,?l4) by gap]

This time we are asked whether we want more or not. Since the first proposal
of the system still contains a gap, we type ‘y’ and the system prints its second
proposal which it obtains by eliminating the abbreviation sub(?l2,?l4):

[all x: succeeds member(?x,?l2) =>
succeeds member(?x,?l4) by elimination(sub,2),

succeeds member(?x,?l4)]

This derivation is what we want and therefore we type ‘n’ when we are asked
for more. We type a last time ‘C-c i g’ and obtain the following proof which
is exactly the same proof as LPTP has found in the last section automatically:

:- theorem(sub:append,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
sub(?l1,?l4) & sub(?l2,?l4) => sub(?l3,?l4),
assume(succeeds append(?l1,?l2,?l3) & sub(?l1,?l4) &
sub(?l2,?l4),
[assume(succeeds member(?x,?l3),
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[succeeds member(?x,?l1) \/ succeeds member(?x,?l2) by
lemma(append:member),
cases(succeeds member(?x,?l1),
[all x: succeeds member(?x,?l1) =>

succeeds member(?x,?l4) by elimination(sub,2),
succeeds member(?x,?l4)],

succeeds member(?x,?l2),
[all x: succeeds member(?x,?l2) =>

succeeds member(?x,?l4) by elimination(sub,2),
succeeds member(?x,?l4)],

succeeds member(?x,?l4))],
succeeds member(?x,?l4)),

sub(?l3,?l4) by introduction(sub,2)],
sub(?l3,?l4))
).

Gernerating TEX-output

The LPTP system has a TEX manager who is able to produce output which can
be formatted with the program TEX. In order to generate TEX output we insert
the following line at the beginning of the proof file ‘example.pr’:

:- tex file(example).

This command tells LPTP to produce TEX output and to write it on the file
‘example.tex’. At the end of the file ‘example.pr’ we insert the following
command:

:- bye.

This command tells LPTP to close all files, especially the file ‘example.tex’. We
can format the file ‘example.tex’ with tex and view the result in a previewer
like for example xdvi.

unix> tex example.tex
unix> xdvi example.dvi

The file ‘example.dvi’ can be translated into a PostScript file by dvips.

Generating HTML-output

LPTP has an HTML-manager, too. This manager is not built into the system
but it constists of two external Perl scripts ‘pl2html.perl’ and ‘pr2html.perl’.
The first script converts Prolog files with extension ‘.pl’ into HTML, whereas
the second script converts proof files with extension ‘.pr’ into HTML. In our
example the scripts are used as follows:



26 CHAPTER 1. INTRODUCTION

unix> mkdir html
unix> pl2html.perl -o html list.pl
unix> pr2html.perl -o html example.pr

These commands create several HTML-files. The main file is ‘example.html’.
It can be viewed, for example, with the following command:

unix> netscape html/example.html

The file ‘example.html’ contains a list of all definitions, lemmas, corollaries and
theorems of ‘example.pr’. Each item has a link to the corresponding file.

In the Middle Ages, knowledge of Latin and Greek was essential for all scholars. The
one-language scholar was necessarily a handicapped scholar who lacked the perception
that comes from seeing the world from two points of view. Similarly, today’s prac-
titioner of Artificial Intelligence is handicapped unless thoroughly familiar with both
Lisp and Prolog, for knowledge of the two principal languages of Artificial Intelligence
is essential for a broad point of view.

P. H. Winston, 1986, in
‘Prolog Programming for Artificial Intelligence’ by I. Brakto.



Chapter 2

Basic concepts of LPTP

2.1 The structure of proof files

Proof files have a header and a main part. To Prolog programmers, proof files
look like Prolog code files and in fact they are. Proof files consist of commands
for the LPTP system. Proof files are written in an editor in the same way as
programs are written. The difference is that proof files are checked for cor-
rectness far more often than programs are compiled. We recommend to write
proof files in the Emacs editor with a special Emacs mode that is described in
Appendix A.

The header of a proof file

The header of a proof file contains a command for initialization and commands
for input and output. These commands are similar to import and export state-
ments in programming languages with modules.

:- initialize.

:- thm file(path). % Write theorems to path.thm
:- tex file(path). % Write TEX output to path.tex

:- needs gr(path). % Read in clauses from path.gr
:- needs thm(path). % Read in the theorem file path.thm

The exact meaning of the commands and the syntax of path is explained below.

The main part of a proof file

The main part of a proof file contains lemmas, theorems and corollaries. It con-
tains also definitions for predicate and function symbols and axioms for built-in
predicates. The main part of a proof file corresponds in programming languages
to the part of a file where procedures are defined.

27
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Lemmas, theorems and corollaries contain a reference, a formula and a
derivation. The reference is a name by which we can refer to the lemma, theorem
or corollary. It must be a colon separated list of names like, for example:

plus:associative

The notions of formula and derivation are explained in Chapter 3. For the
moment it is best to think of a derivation as a body of a procedure. Lemmas
have the following form:

:- lemma(reference,
formula,
derivation
).

Theorems have the following form:

:- theorem(reference,
formula,
derivation
).

Corollaries have the following form:

:- corollary(reference,
formula,
derivation
).

Predicate definitions are used to define abbreviations. They are described in
detail in Section 4.1. Predicate definitions have the following form:

:- definition pred(reference,
formula
).

Functions symbols are used to extend the language. They are described in
Section 4.2. Function definitions have the following form:

:- definition fun(reference,
formula,
existence by reference,
uniqueness by reference
).

Axioms are used mainly for built-in predicates. Axioms are described in more
detail in Section 4.3. They have the following form:

:- axiom(reference,
formula
).

Proof files are terminated with the bye command.

:- bye(file).
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Comments

Any text between /* and */ is considered as comment. One line comments
start with the % character and end with the next line terminator. Comments
are ignored by LPTP. The program pr2html.perl treats comments starting
with /** in a special way.

2.2 Checking proof files

How does the LPTP system work? — Proof files are written in an editor and
then executed by the LPTP system. The execution of a proof file is similar to
compilation of a program. First, a proof file is parsed and transformed to an in-
ternal representation. The parsing is done by the Prolog interpreter, since proof
files have Prolog syntax. The transformation into the internal representation is
done by LPTP.

In a next step, the derivations are checked for correctness. If a derivation
contains a gap with a tactics command, the LPTP system tries to apply the
tactics. For example, the LPTP system tries to extend a derivation at the
specific point indicated by the tactics command. If the proof is correct, the
theorem is added to the internal database such that it can be used later. The
internal represenation of the theorem is also written to the so-called theorem
file such that it can be used later in other proof files.

The internal database

The LPTP system has an internal database that contains

• lemmas, theorems, corollaries,

• predicate definitions, function definitions,

• axioms for built-in predicates,

• program clauses.

The exact representation of the internal database is not important. It may help,
however, to understand the system by assuming that the internal database is a
collection of facts of the following form:

• db lemma(reference,formula).

• db theorem(reference,formula).

• db corollary(reference,formula).

• db pred(predicate name,arity,formula).

• db fun(function name,arity,formula).

• db axiom(reference,formula).
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• db clauses(predicate name,arity,clause list).

For Prolog programmers, it is important to note that the program clauses in the
internal database of LPTP have nothing to do with the internal representation
of Prolog clauses of the underlying Prolog interpreter. LPTP is implemented in
Prolog but has its own internal database.

Commands

The LPTP system has two kinds of commands: (i) commands that are used
in proof files and (ii) commands that are used interactively in the LPTP inter-
preter. We indicate the category of a command by using the symbol ‘:-’ for
proof file commands and ‘?-’ for LPTP commands. This means that commands
of the kind (i) are written as follows:

:- command(argument,...).

Commands of the kind (ii) are written as follows:

?- command(argument,...).

Note, that all commands are terminated by a period.

Commands in a proof file

The proof file commands have the following effects on the internal database:

:- initialize.
This command should always be the first command in a proof file. It
clears the internal database completely.

:- needs thm(path).
This command reads in the the file path.thm and adds all the lemmas,
theorems, corollaries, definitions and axioms from path.thm to the internal
database. Any number of needs thm commands can occur in a proof file.

:- needs gr(path).
This command reads in the file path.gr and adds all the program clauses
from path.gr to the internal database. Any number of needs gr com-
mands can occur in a proof file.

:- thm file(path).
This command tells LPTP to write theorem output that can be used later
in other proofs using the needs thm command. The thm file command
opens the file path.thm for writing. During proof-checking the internal
representation of lemmas, theorems, corollaries, definitions and axioms
are written to this file.
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:- tex file(path).
This command tells LPTP to write TEX output. The command opens the
file path.tex and writes TEX code to path.tex during proof checking. The
TEX code can be later used by TEX or LATEX to create formatted output.

:- prt file(path).
This command tells LPTP to write pretty print output. The command
opens the file path.prt and writes correctly indented ascii output to the
file. This command is not very often used.

:- lemma(reference,formula,derivation).
This command is one of the most used commands of the LPTP system. It
checks whether derivation is a correct derivation for formula (see p. 50).
If this is the case then formula is added to the internal database as a
lemma. It can be referred to in subsequent proofs by reference. The
formula together with the reference is also written to the ‘.thm’ file such
that it can be used later in other proof files. The reference has to be
a colon separated list of names. If derivation contains tactic commands
then LPTP performs proof search to complete the tactics and writes the
sub-derivations to the standard output.

:- theorem(reference,formula,derivation).
This command works in the same way as the lemma command.

:- corollary(reference,formula,derivation).
This command works in the same way as the lemma command.

:- definition pred(reference,formula).
This command checks whether formula is a correct definition for a defined
predicate symbol also called an abbreviation. If this is the case then the
definition is added to the internal database and the abbreviation can be
used in subsequent derivations. The definition is also written to the ‘.thm’
file. For more details, see Section 4.1.

:- definition fun(ref,formula,existence by ref,uniqueness by ref).
This command checks whether formula is a correct definition of a func-
tion symbol. If this is the case then the definition is written to the inter-
nal database and the defined function symbol can be used in subsequent
derivations. The definition is also written to the ‘.thm’ file. For more
details, see Section 4.2.

:- axiom(reference,formula).
This command works as the lemma command except that there is no
derivation argument that has to be checked. Axioms should only be used
in the context of built-in predicates and only in accordance to the criteria
of [16]. For more details, see Section 4.3.

:- bye(file).
This command should always be the last command in a proof file. It closes
all files that have been opened for writing.
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File name extensions

The LPTP system relies on certain file name extensions. Therefore, the following
file name extensions have to be used:

file.pl
Prolog source code files; contain the source code of the the programs that
are to be verified. Contain also predicates that are used in specifications.

file.pr
Proof files; contain formal proofs of properties of the programs in the ‘.pl’
files.

file.gr
Ground representation files; contain the ground representation of pro-
grams that are to be verified. These files are created from the ‘.pl’ files
with the compile gr(file) command.

file.thm
Theorem files; contain the internal representation of theorems, lemmas,
corollaries and axioms. Contain also the definition of defined predicate
and function symbols. Generated by the thm file(path) command at the
beginning of proof files.

file.tex
TEX file; contain TEX code created from ‘.pr’ files. Generated by the
tex file(path) command at the beginning of proof files.

All but the Prolog source code and the proof files are automatically generated
files that can safely be deleted without loosing any information. The ground
representation files can be generated from the source code files. The theorem-
and TEX files can be generated from the proof files.

Syntax of path names

The LPTP system has an archaic way to refer to files. A path has always to be
the full path name to a file. — This is not as cumbersome as it appears, since
you can define aliases for paths in LPTP similar to shell languages.

LPTP uses the following conventions: The path separator of LPTP is the
slash ‘/’. An alias is used in the form $(alias). A suffix to a file name is inserted
automatically. A typical command in LPTP looks as follows:

:- needs thm($(lib)/list/permutation).

This command reads in the file permutation.thm which is in the subdirectory
list of the LPTP library. The $(lib) is expanded into the full path name
to the library, since lib is a predefined alias. Thus the above path name may
expand to

/home/staerk/lptp/list/permutation.thm
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on a Unix system and to

:HD:lptp:list:permutation.thm

on a Macintosh computer. Note that LPTP automatically converts the slashes
to colons on the Macintosh.

The following commands can be used to define an alias and to expand it (in
case of problems):

:- set(alias,path).
This commands defines alias as an abbreviation for path. It can later be
used in path names in the form $(alias).
Example: ?- set(tmp,’/home/staerk/tmp’).

?- io expand(path,X).
This command is used to expand path into its full form in case of problems
with file names. Note, that there are two underscores in this command.
Actually, this is an internal predicate of LPTP.

$(lptp)
This is a predefined alias that refers to LPTP’s home directory.

$(lib)
This is a predefined alias that refers to the library of LPTP. It is defined
as $(lptp)/lib. See Chapter 6 for a survey of the library.

$(examples)
This is a predefined alias that refers to the examples subdirectory of
LPTP. It is defined as $(lptp)/examples. See Chapter 7 for a description
of the examples.

$(tex)
This is a predefined alias that refers to the tex subdirectory of LPTP. It
is defined as $(lptp)/tex.

$(tmp)
This is a predefined alias that refers to the tmp subdirectory of LPTP. It
is defined as $(lptp)/tmp.

Maybe it is easier to look at an example. A typical header in a proof file for the
verification of the quicksort program may look as follows:

:- set(home,’/home/staerk’).
:- set(tmp,$(home)/tmp).
:- set(exp,$(home)/examples).

:- needs thm($(lib)/list/list).
:- needs thm($(lib)/list/permutation).
:- needs gr($(exp)/quicksort).
:- thm file($(exp)/quicksort).
:- tex file($(tmp)/quicksort).
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First an alias home is defined. The home alias is then used to define an alias
tmp for a temporary directory that contains junk files and the alias exp for a
directory that contains the quicksort program that has to be verified. The lib
alias is predefined and refers to the LPTP library.

If all else fails then one can use full path names between single quotes like,
for example:

:- needs thm(’/home/staerk/lptp/list/permutation’).

For Prolog programmers it has to be mentioned that a path is neither a string
nor an atom but it is structured ground Prolog term that is expanded by LPTP
into a file name. Thus the slash / is a binary infix constructor and the dollar $
is a unary constructor symbol.

It is a bad idea to use underscores or spaces in file names, since later TEX
or other programs may have difficulties. Note also that in the above example
the alias home has nothing to do with the shell environment variable HOME. The
string home is a Prolog atom whereas HOME is a Prolog variable. The command
set(HOME,...) is meaningless in LPTP.



Chapter 3

Formal proofs

In this chapter we introduce the notion of a formal proof. We have ordered
the inference rules and axioms according to statistical data from 47000 lines of
formal proofs. This means that the most frequently used inference rules and
axioms come first and the rarely used inference rules and axioms come last.
However, the statistical data reflect only the personal style of formal proofs of
the author. The reader is completely free to use the inference rules and axioms
in a different manner. The general style of proofs, namely natural deduction
style, is built-in to the LPTP system and cannot be changed by the user.

3.1 Syntax and grammar

LPTP uses the syntax of standard Prolog and LPTP files are parsed by the
built-in parser of the Prolog interpreter. Therefore we describe below a subset
of the syntax of standard Prolog which comprises the syntax of formulas and
derivations.

To Prolog programmers it may be of help if we point out that all LPTP
objects are ground Prolog expressions. The syntactic categories variable, term,
atom, goal, formula and derivation below refer to objects of LPTP and not to
constructs of Prolog. For example, by a variable we mean a ground Prolog term
?x and not a Prolog variable X.

To logicians it may be useful if we mention that ground Prolog terms are
nothing else then finite trees. We encode terms, formulas and derivations as
finite trees.

We refer the reader interested in details of Prolog syntax, especially in prefix,
infix and postfix operators, to the example in Section 7.3. There we present a
parser for ISO standard Prolog which has been fully verified with LPTP.

35
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Tokens

The input stream is divided into tokens. Tokens are names or the separator sym-
bols. There can be any amount of layout characters between tokens. Separator
symbols are:

( ) , [ ] |

Round brackets are used for grouping, whereas square brackets are used to
construct lists. The comma and the vertical bar are used to separate arguments
in compound terms and to separate elements of a list. There are three kinds of
names: identifier names, graphic names and single-quoted names. Between two
names of the same kind there has to be at least one layout character.

Identifier names

An identifier name is a sequence of alpha numeric characters and the underscore
that starts with a lower case letter. Examples of identifier names are:

x1 l1 member quick sort

LPTP treats integers, i.e. sequences of digits, as names, too.

Graphic names

A graphic name is a sequence of graphic characters. Graphic characters are:

# $ & * + - . / : < = > ? @ \ ^ ~

Examples of graphic names are:

-- <=> @+

A graphic name should not start with /* because this is the beginning of a
comment. The graphic name ‘.’ (full stop) followed by layout space has a
special meaning to Prolog. It is a terminator token.

Single-quoted names

A single quoted name is any sequence of character enclosed in single quotes that
does not contain single quotes. Example of single quote names are:

’test.pl’ ’.’ ’TeX’

The single quotes are not part of the name. Thus the name ’abc’ is the same
as abc.
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References

References are used to identify lemmas, theorems and corollaries. A reference
is a colon separated list of names:

name:name: ... :name

As a special case a single name is also considered as a reference.

Notation

In the following with use words in italic like term, atom, goal, formula and
derivation as non-terminals in the sense of a formal grammar. Terminals are
written in type-writer font like, for example, => or all. When we talk about the
elements of a syntactic category defined by a non-terminal we use the following
meta-symbols:

x, y, z, . . . . . . . . . . . . . . . . . . for variables,

s, t, . . . . . . . . . . . . . . . . . . . . . for terms,

A, B, . . . . . . . . . . . . . . . . . . . . for atoms,

G, H, . . . . . . . . . . . . . . . . . . . for goals,

ϕ, ψ, χ, . . . . . . . . . . . . . . . . . for formulas,

Γ, ∆, Π, . . . . . . . . . . . . . . . . . for finite sequences of formulas,

d, e, . . . . . . . . . . . . . . . . . . . . . for derivations.

Terms

Terms are the syntactic concepts that denote data. Terms should be considered
as finite trees. A Prolog program defines relations between terms. A term is
either a variable, a constant or a compound term. Here is the grammar for
terms:

term → ?name
| name
| name(term,...,term)
| []
| [term,...,term]
| [term,...,term|term]
| term op term
| op term
| term op

The single productions of the grammar have the following meaning:
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?name
Terms of this kind are called variables. Note, that variable names start
with a lower case letter or are integers. The question mark indicates that
they are variables and not constants. Examples of variables are:
?x, ?l1, ?3.

name
Terms of this kind are called constants. The constant x is not the same
as the variable ?x. Examples of constants are:
c, open bracket.

name(term,...,term)
Terms of this kind are called compound terms. Sometimes they are also
called constructor terms. Name is called a function symbol or a construc-
tor. The terms are called its arguments. The number of arguments is
called the arity of the constructor. Examples of compound terms are:
pair(?x,?y), f(?u,c,g(?v)), ++(?z).

[]
This term is called the empty list. It is a special constant. Sometimes it
is also called nil. However, the constant nil is not the same as [].

[term,...,term]
Terms of this kind are called lists. A list [t1,...,tn] is an abbreviation
for the compound term ’.’(t1,...,’.’(tn,[])). Thus the list [1,2] is
exactly the same as the term ’.’(1,’.’(2,[])). Examples of lists are:
[1,2,3], [?x,?y], [f(f(?z))].

[term,...,term|term]
Terms of this kind are also called lists. The difference to the lists above
is that they are not nil-terminated. A list [t1,...,tn|tn+1] is an abbre-
viation for the compound term ’,’(t1,...,’.’(tn,tn+1)). Thus the list
[1,2|3] is exactly the same as the term ’.’(1,’.’(2,3)). Examples of
lists are:
[?head|?tail], [?x,?y|?z].

term op term
Terms of this kind are called infix terms. The name op must be declared
in Prolog as an infix operator with a certain precedence and associativity.
An infix term t1 op t2 just a convenient abbreviation for the compound
term op(t1,t2). Thus the term 1 + 2 is exactly the same as the term
+(1,2). Examples of infix terms are:
?x + ?y * ?z, ?n + 1.

op term
Terms of this kind are called prefix terms. The name op must be declared
in Prolog as a prefix operator with a certain precedence. A prefix term
op t is just a convenient abbreviation for the compound term op(t). Thus
the prefix term - ?x is exactly the same as the compound term -(?x).
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term op
Terms of this kind are called postfix terms. The name op must be declared
in Prolog as a postfix operator with a certain precedence. A postfix term
t op is just a convenient abbreviation for the compound term op(t). Thus
the postfix term ?x ++ is exactly the same as the term ++(?x).

Parentheses are used to group terms with operators. The usual precedence rules
of algebra apply. For example, the term ?m + ?i * ?j is the same as the term
?m + (?i * ?j).

Goals

Goals have three different purposes. First, they are the same as the bodies of
program clauses. Second, they are used to query a Prolog program. Finally, in
our context, they are used to form atomic formulas of the form succeeds G,
fails G and terminates G. Here is the grammar for goals:

goal → true
| fail
| term = term
| atom
| ~goal
| goal & ... & goal
| goal \/ ... \/ goal

atom → name
| name(term,...,term)

The single productions of the grammar have the following meaning:

true
The goal that always succeeds.

fail
The goal that always fails.

term = term
Goals of this kind are called equations. Equations are solved by unification.
Examples of equations are:
?l3 = [?x|?l1], f(?x,?y) = f(1,2).

name
Goals of this kind are called propositional atoms. Name is called a predi-
cate symbol of arity zero. Examples of propositional atoms are:
loop, start.
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name(term,...,term)
Goals of this kind are called atomic goals. Atomic goals define relations
between terms. Name is called apredicate symbol. The terms are called its
arguments. The number of arguments is called the arity of the predicate.
Example of atomic goals are:
member(?x,[?y|?l]), append(?l1,?l2,?l3).

~goal
Goals of this kind are called negated goals. The meaning of the negation
symbol is negation by finite failure. If the attempt to compute G fails after
finitely many steps then ~G succeeds.

goal & ... & goal
Goals of this kind are called conjunctions. Conjunctions are sequential
conjunctions. This means that to solve G1 & G2 one has to solve first G1

and then G2.

goal \/ ... \/ goal
Goals of this kind are called disjunctions. Disjunctions are alternatives. To
solve a disjunction G1 \/ G2 first the goal G1 is tried. If it succeeds then
the disjunction succeeds. If it fails then G2 is tried and the disjunction
succeeds or fails according to whether G2 succeeds or fails.

The description of goals is only informal. Their exact declarative meaning is
given by the axioms and rules for the operators succeed, fail and terminates
in Section 3.3. The operational meaning is given be the model of pure Prolog
in [16].

Formulas

Formulas are mathematical statements. The simplest formulas are equations
and logical relations. Formulas can be true or false. Derivations are used to
show that formulas are valid or follow from certain assumptions. Here is the
grammar for formulas:

formula → tt
| ff
| term = ... = term
| term <> term
| gr(term)
| name
| name(term,...,term)
| succeeds goal
| fails goal
| terminates goal
| def succeeds atom
| def fails atom
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| def terminates atom
| ~formula
| formula & ... & formula
| formula \/ ... \/ formula
| formula => formula
| formula <=> formula
| all name:formula
| all [name,...,name]:formula
| ex name:formula
| ex [name,...,name]:formula

The single productions of the grammar have the following meaning:

tt
The constant true, also called verum. The constant tt is considered as
the same as the empty conjunction.

ff
The constant false, also called contradiction or falsum. The constant ff
is considered as the same as the empty disjunction.

term = ...= term
Formulas of this kind are called equations. The meaning of a chain of
equations t1 = t2 = t3 is that t1 is equal to t2 and t2 is equal to t3.
Examples of equations are:
?x=?y, [?x|?l1] ** ?l2 = [?x|?l1 ** ?l2] = [?x|?l3].

term <> term
The meaning of the formula t1 <> t2 is that t1 is not equal to t2, in other
words that t1 is different from t2. Examples are:
[] <> [?x|?l], 0 <> s(?x).

gr(term)
The meaning of gr(t) is that the term t is ground, i.e. does not contain
variables during runtime. Examples are:
gr(c), gr([?x|?l]).

name
Formulas of this kind are called propositional constants or nullary predicate
symbols.

name(term,...,term)
Formulas of this kind are called atomic formulas. Name is called a pred-
icate symbol. It expresses a relation between its arguments. The number
of arguments is the arity of the predicate symbol. Examples of atomic
formulas are:
sub(?l1,?l2), err msg(?x,?l).
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succeeds goal
The formula succeeds G expresses that the goal G succeeds. Examples
for formulas of this kind are:
succeeds member(?x,[?x|?l]), succeeds append([1,2],[3,4],?l).

fails goal
The formula fails G expresses that the goal G fails in the sense of finite
failure. Examples for formulas of this kind are:
fails member(?x,?l), fails append([?x|?l1],?l2,?l3).

terminates goal
The formula terminates G expresses that the goal G terminates and is
dynamically well-typed. Termination means universal termination. The
whole computation tree for G must be finite. Well-typed means that there
are no errors in any branch of the computation. All negated goals are
ground if they are called and all built-in atoms are instantiated correctly.
Examples for formulas of this kind are:
terminates (member(?x,?l1) & ~member(?x,?l2)).

def succeeds atom
The formula def succeeds A is an abbreviation of a formula that is ob-
tained from the program clauses for the atom A and expresses the success
of A. The exact definition is known to the LPTP system and can be seen
by asking the following command:
?- def(succeeds A).

def fails atom
The formula def fails A is an abbreviation of a formula that is obtained
from the program clauses for the atom A and expresses the finite failure
of A. The exact definition is known to the LPTP system and can be seen
by asking the following command:
?- def(fails A).

def terminates atom
The formula def terminates A is an abbreviation of a formula that is
obtained from the program clauses for the atom A and expresses the ter-
mination of A. The exact definition is known to the LPTP system and
can be seen by asking the following command:
?- def(terminates A).

~formula
This kind of formula is called negation. The connective ~ is read as not.
The formula ~ϕ expresses that ϕ is not true.

formula & ... & formula
This kind of formula is called conjunction. The connective & is read as
and. The formula ϕ1 & ... & ϕn expresses that all formulas ϕ1, . . . , ϕn
are true.
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formula \/ ... \/ formula
This kind of formula is called disjunction. The connective \/ is read as or.
The formula ϕ1 \/ ... \/ ϕn expresses that at least one of the formulas
ϕi is true.

formula => formula
This kind of formula is called implication. The connective => is read as
implies or if then. The formula ϕ => ψ expresses that, if ϕ is true, then
ψ is true.

formula <=> formula
This formula is called equivalence. The connective <=> is read as is equiv-
alent to. The formula ϕ <=> ψ expresses that ϕ is true if, and only if, ψ
is true.

all name:formula
The symbol all is called universal quantifier. The formula all x:ϕ ex-
presses that, for all x, the formula ϕ is true. The quantifier all x is
read as forall x. The formula ϕ is said to be in the scope of the universal
quantifier. The quantifier binds the variable x in ϕ. All occurences of the
variable x in ϕ are called bound occurences. An example of a universaly
quantified formula is:
all x:r(?x).
Note, that there is no question mark before the first x. It is a mistake to
write all ?x:r(?x).

all [name,...,name]:formula
It is possible to quantify over more than one variable. The formula
all [x1,...,xn]:ϕ expresses that, for all x1, . . . , xn, the formula ϕ is
true. The variables x1, . . . , xn are bound in ϕ. The LPTP system iden-
tifies the formula all x:(all y:ϕ) with all [x,y]:ϕ. The formula
all [x]:ϕ is the same as all x:ϕ. An example of a universally quanti-
fied formula is:
all [x,l]:succeeds list(?l) => terminates member(?x,?l).
Note that the scope of the quantifier extends as far to the right as possible.

ex name:formula
The symbol ex is called existential quantifier. The formula ex x:ϕ ex-
presses that, there exists an x such that the formula ϕ is true. The quan-
tifier ex x is read as there exists an x or there is an x. The formula ϕ is
said to be in the scope of the existential quantifier. The quantifier binds
the variable x in ϕ. All occurences of the variable x in ϕ are called bound
occurences. Note how one has to use parentheses in the following example:
all l:succeeds list(?l) => (ex n:succeeds lenght(?l,?n)).

ex [name,...,name]:formula
It is possible to quantify over more than one variable. The formula
ex [x,y]:ϕ expresses that there exist x and y such that ϕ is true.
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We write ϕ ≡ ψ if the formula ϕ is syntactically equal to ψ modulo alpha
conversion (renaming of bound variables). We write s ≡ t it the term s is
syntactically equal to t. By FV(ϕ) we denote the set of free variables of ϕ. A
variable is free in ϕ if it is not bound by a quantifier. For example, the variable y
is free in the fomula all x:r(?x,?y) but the variable x is not.

Precedences and parentheses

The following table expresses the associativity and precedence of the operators
that are used in formulas and terms. (The operator by will by introduced later.)

:- op(980,xfy,by).
:- op(970,xfy,:).
:- op(960,yfx,<=>).
:- op(950,xfy,=>).
:- op(940,yfx,\/).
:- op(930,yfx,&).
:- op(900,fy,~).
:- op(900,fy,not).
:- op(900,fy,def).
:- op(900,fy,succeeds).
:- op(900,fy,fails).
:- op(900,fy,terminates).
:- op(800,fy,all).
:- op(800,fy,ex).
:- op(700,yfx,=).
:- op(700,xfy,<>).
:- op(100,fy,?).

The higher the precedence of an operator the lower is its binding strength. The
operator with the highest precedence in an expression is the main operator of
an expression. For example, the formula

ϕ1 & ϕ2 => ψ1 \/ ψ2

is the same as the formula

(ϕ1 & ϕ2) => (ψ1 \/ ψ2).

The tag xfy expresses that the operator is an infix operator that associates to
the right. For example, the formula

ϕ => ψ => χ

is the same as the formula

ϕ => (ψ => χ).

The tag yfx expresses that the operator is an infix operator that associates to
the left. For example, the formulas
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ϕ & ψ & χ, ϕ \/ ψ \/ χ

are the same as the formulas

(ϕ & ψ) & χ, (ϕ \/ ψ) \/ χ.

Note, that the colon operator has a high priority such that that formula

ex x:r(?x) & q(?x)

means

ex x:(r(?x) & q(?x))

and not

(ex x:r(?x)) & q(?x).

Internal representation of formulas

It may help to understand the system if we explain how terms and formulas
are represented internally. Although terms and formulas are themselves Prolog
expressions the LPTP system translates them into a uniform representation.
The uniform representation only knows variables, compound expressions and
abstractions as given by the following grammar:

expression → $(name)
| [tag,expression,...,expression]
| @(tag,[name,...,name],expression)

For example, the formula

all [x,y]:r(?x,f(?y),c)

is translated into the internal expression

@(forall,[x,y],[r/2,$(x),[f/1,$(y)],[c/0]]).

The uniform representation of expressions has the advantage that the internal
predicates of LPTP for substitution and matching always have only three cases.
It gives also the possibility to add new syntactic constructs to the system without
the nightmare of changing a lot of predicates.

Automatic flattening of formulas

It is during the translation into uniform expressions that conjunctions, disjunc-
tions and quantifiers are automatically flattened. For example, a conjunction

(ϕ1 & ϕ2) & (ϕ3 & tt)

is automatically translated into the internal representation
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[&,ϕ̄1,ϕ̄2,ϕ̄3].

Nested quantifiers of the same type are also collected into one abstraction. For
example, the formula

ex x:(ex y:(ex z:ϕ))

is translated into

@(exists,[x,y,z],ϕ̄).

The inference rules below rely on the fact that the flattening is done.

Transformation of goals into formulas

The LPTP computes for each goal G three formulas S(G), F (G) and T (G)
which express success, failure and termination of G. The user never has to call
the functions S, F , and T , because they are built into the system. However, it
is good to know how they are defined. The idea is that the operators succeeds,
fails and terminates are moved as far into goals as possible, such that we
have formulas of the following kind only:

succeeds atom
fails atom
terminates (goal & ... & goal)

Here is the definition of the functions S and F :

S(true) := tt,
S(fail) := ff,
S(s = t) := s = t,
S(A) := succeeds A,
S(~G) := F (G),
S(G1 & ... & Gn) := S(G1) & ... & S(Gn),
S(G1 \/ ... \/ Gn) := S(G1) \/ ... \/ S(Gn).

F (true) := ff,
F (fail) := tt,
F (s = t) := s <> t,
F (A) := fails A,
F (~G) := S(G),
F (G1 & ... & Gn) := F (G1) \/ ... \/ F (Gn),
F (G1 \/ ... \/ Gn) := F (G1) & ... & F (Gn).

Note that S and F are mutually recursive. Here is the definition of T :
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T (true) := tt,
T (fail) := tt,
T (s = t) := tt,
T (A) := terminates A,
T (~G) := T (G) & gr(x1) & ... & gr(xn), if FV(G) = {x1, . . . , xn},
T (G1 & ... & Gn) := terminates (G1 & ... & Gn),
T (G1 \/ ... \/ Gn) := T (G1) & ... & T (Gn).

Some remarks to the definition of T : (i) T (G) expresses universal termination
of the goal G. This can be seen in the case of disjunctions. A disjunction
terminates, if all disjuncts terminate. (ii) The function T does not go into
conjunctions. The reason is that we do not want to expand

T (G & H) := T (G) & (F (G) \/ T (H)).

It would lead to an explosion of the size of the formulas. Instead, this equality
is built into the inference rules. (iii) In the case of negated goals, the function T
expresses that they have to be ground if they are selected. (iv) More motivation
for the definition of these functions can be found in [12].

Definition forms for predicates

Based on the internal database of clauses the LPTP system is able to compute
formulas that express success failure and termination of predicates. The func-
tions S(G), F (G) and T (G) are used to compute the definition forms of atoms.
In the example of the member program (see p. 8) we have:

?- needs gr($(lib)/list/list).

?- def succeeds member(?x,?l1).

(ex l: ?l1 = [?x|?l]) \/
(ex [y,l]: ?l1 = [?y|?l] & succeeds member(?x,?l))

?- def fails member(?x,?l1).

(all l: ~ ?l1 = [?x|?l]) &
(all [y,l]: ?l1 = [?y|?l] => fails member(?x,?l))

?- def terminates member(?x,?l1).

all [y,l]: ?l1 = [?y|?l] => terminates member(?x,?l)

Note, that if we instantiate the arguments of the member/2 predicate with terms,
then the defining formulas are automatically simplified:

?- def succeeds member(?x,[?y|?l]).
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?x = ?y \/ succeeds member(?x,?l)

?- def fails member(?x,[?y|?l]).

~ ?x = ?y & fails member(?x,?l)

?- def terminates member(?x,[?y|?l]).

terminates member(?x,?l)

This automatic simplification is very convenient in practise, since it can reduce,
for examle, a disjunction of 10 disjuncts to a simple one line formula in certain
cases. In the following we denote by

DP (succeeds A)
DP (fails A)
DP (terminates A)

the results of the commands

?- def(succeeds A).
?- def(fails A).
?- def(terminates A).

We call these formulas the definition forms for the atom A. The exponent P in
DP stands for the logic program under considerations, i.e. the internal database
of clauses of LPTP.

Compiling Prolog programs into the ground representation

As we have seen, in LPTP variables are represented as ground Prolog terms,
for example ?x, ?y, ?z. Therefore, before Prolog programs can be verified in
LPTP, they have to be translated into a ground representation similar to the
one used in the programming language Gödel [5]. The command for compiling
a Prolog source file into the ground representation is the following:

?- compile gr(path).

This command takes the file path.pl and compiles it into the file path.gr which
can later be used in the needs gr(path) command. Note, that the system
appends the extensions ‘.pl’ and ‘.gr’ to the path name automatically.

Prolog variables are translated to LPTP variables in a simple way: the Prolog
variable X1 is translated into ?x1, the variable Head is translated into ?head,
etc. So the system just converts the names to lower case. Anonymous variables
(underscores) are translated into ?0, ?1, . . . and so on. The bodies of clauses
are translated into goals in the following way (we write Ḡ for the translation
of G):
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true ; true
fail ; fail
s = t ; s̄ = t̄
r(t1,...,tn) ; r(t̄1,...,t̄n)
G1 , G2 ; Ḡ1 & Ḡ2

G1 ; G2 ; Ḡ1 \/ Ḡ2

\+ G ; ~Ḡ
not G ; ~Ḡ
G1 -> G2 ; G3 ; (Ḡ1 & Ḡ2) \/ (~Ḡ1 & Ḡ3)

The empty body is translated into the goal true.

Derivations

A derivation is a sequence of derivation steps. Its purpose is to show that
a formula necessarily follows from a list of initial assumptions. Here is the
grammar of derivations:

derivation → derivation step
| [derivation step,...,derivation step]

It is possible to omit the outermost brackets if the derivation constists of a single
derivation step only. Derivations are usualy written in vertical mode like this:

[derivation step,
derivation step,
derivation step]

In the simplest case, a derivation step is just a formula. In general, a derivation
step is a structured object. Here is the grammar for derivation steps:

derivation step → formula
| formula by tag
| assume(formula,derivation,formula)
| cases(formula,derivation,formula,derivation,formula)
| cases([case(formula,derivation),...],formula)
| exist(name,formula,derivation,formula)
| exist([name,...],formula,derivation,formula)
| induction([formula,...],
[step([name,...],[formula,...],derivation,formula),...])

| contra(formula,derivation)
| indirect(~formula,derivation)

This grammar, however, is only an approximation. It does not specify what a
correct derivation and what a correct derivation step is. For specifying correct
derivations we need more. At every point in a derivation there is a hidden se-
quence of assumptions Γ and a hidden sequence of already derived formulas ∆.
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What the proof-checker does is the following: given the sequence of assump-
tions Γ it computes the sequence ∆ and checks at the end whether the formula
that the derivation is supposed to prove follows from ∆.

A derivation d is a finite list of derivations steps [s1, . . . , sn]. Each derivation
step si adds exactly one formula ϕi to the sequence of allready derived formulas
such that the derivation d finally produces the formulas ϕ1, . . . , ϕn. To describe
this in a more precise manner we define inductively the following three relations
for derivations d and derivation steps s.

Γ{d}∆ ; Π
Under the assumptions Γ the derivation d derives the formulas Π from the
formulas ∆.

Γ{s}∆ ; ϕ
Under the assumptions Γ the derivation step s derives the formula ϕ from
the formulas ∆.

Γ; ∆ . ϕ
Under the assumptions Γ the formula ϕ is immediately derivable from ∆.

The relations will be correct with respect to the following assertions. We write
Γ |= ϕ if the formula ϕ is a logical consequence from Γ in the sense of classical
predicate logic. We write Γ |= ∆, if Γ |= ϕ for each ϕ in ∆.

1. If Γ{d}∆ ; Π and Γ |= ∆, then Γ |= Π.

2. If Γ{s}∆ ; ϕ and Γ |= ∆, then Γ |= ϕ.

3. If Γ; ∆ . ϕ and Γ |= ∆, then Γ |= ϕ.

The relation Γ{d}∆ ; Π for derivations is defined by the following rule:

Γ{s1}∆ ; ϕ1,

Γ{s2}∆, ϕ1 ; ϕ2,

Γ{s3}∆, ϕ1, ϕ2 ; ϕ3,
...

Γ{sn}∆, ϕ1, . . . , ϕn−1 ; ϕn,

Γ{[s1, . . . , sn]}∆ ; ∆, ϕ1, . . . , ϕn

The derivation step s1 adds the formula ϕ1 to ∆; the derivation step s2 adds
the formula ϕ2 to ∆, ϕ1; and so on. Finally the new formulas that are derived
by the derivation [s1, . . . , sn] are ϕ1, . . . , ϕn.

We say that a derivation d is a correct derivation for the formula ϕ, if
d derives a list of formulas Π such that ϕ is immediately derivable from Π.
Formally:

〈〉{d}〈〉; Π 〈〉; Π ; ϕ

d is correct for ϕ
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The commands lemma(r,ϕ,d), theorem(r,ϕ,d) and corollary(r,ϕ,d) check
whether d is a correct derivation for ϕ.

3.2 Derivation steps

In this section we describe the single derivation steps. For each derivation step
we give the syntax, the result and a short description. The result of a derivation
step is the formula it introduces. The short description contains also the formal
definition of the relation Γ{s}∆ ; ϕ, where the formula ϕ is the result of the
derivation step s. We have ordered the derivation steps according to how often
they are used. The percent numbers in brackets are based on 46830 lines of
formal proofs, or 1.9 MB. The brackets at the top of a description also say
whether a derivation step is a pure logical step of classical predicate logic, or
whether it is an applied step of the underlying theory of LPTP.
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Derivation step: by 38.4%

Syntax:

formula by tag

Result: The step ϕ by tag introduces the formula ϕ.

Description: The tag gives a hint how the formula ϕ can be derived. The tag
has to be one of the following:

theorem(reference)
lemma(reference)
corollary(reference)
axiom(reference)
completion
sld
introduction(name,arity)
elimination(name,arity)
existence(name,arity)
uniqueness(name,arity)
builtin
concatenation
addition
gap
because
[tactic,...]

See also: Section 3.4, Section 4.1, Section 4.2, Section 4.3.
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Derivation step: formula 34.1%

Syntax:

formula

Result: The trivial step ϕ introduces the formula ϕ.

Description: In the simplest case a derivation step is just a formula ϕ that is
immediately derivable from the already derived formulas ∆. The formula ϕ is
then added to ∆.

Formal rule:
Γ; ∆ . ϕ

Γ{ϕ}∆ ; ϕ

Example: In the simplest case a derivation is just a sequence of formulas.
Assume that the following formula belongs to ∆:

all [x,l]:terminates r(?x,?l)

Then the following is a correct derivation:

[terminates r(?x,?l),
succeeds r(?x,?l) \/ fails r(?x,?l),
...]

We have used the following inference rules for immediate consequence:

all [x,l]:terminates r(?x,?l) . terminates r(?x,?l)
terminates r(?x,?l) . succeeds r(?x,?l) \/ fails r(?x,?l)

See also: Section 3.3.
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Derivation step: assume (implication introduction) 14.3%

Syntax:

assume(formula,
derivation,
formula)

Result: The step assume(ϕ,d,ψ) yields the formula ϕ => ψ.

Description: In order to prove ϕ => ψ one assumes that ϕ is true and derives
ψ from ϕ. This means that the formula ϕ is added to the assumptions Γ and to
the already derived formulas ∆. The derivation d then must derive a sequence
of formulas Π from Γ and ∆ such that ψ is an immediate consequence of Π.

Formal rule:
Γ, ϕ{d}∆, ϕ ; Π Γ; Π . ψ

Γ{assume(ϕ,d,ψ)}∆ ; ϕ => ψ

Example: In the following lemma we assume that p & q is true. Then we infer
as immediate consequences the formulas p, q and q & p.

assume(p & q,
[p, q, q & p],
q & p)

The formula which is introduced is p & q => q & p.
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Derivation step: cases (disjunction elimination) 5.3%

Syntax:

cases(formula,
derivation,
formula,
derivation
formula
)

cases([
case(formula,

derivation),
...],
formula)

Result: The step cases(ϕ1,d1,ϕ2,d2,ψ) introduces the formula ψ. The step
cases([case(ϕ,d),...],ψ) introduces the formula ψ.

Description: Assume that we have a disjunction ϕ1 \/ ... \/ ϕn that fol-
lows immediately from ∆ and that we want to prove the formula ψ. We can
prove the formula ψ by a case splitting. In each case we assume that the for-
mula ϕi is true, i.e. we add ϕi temporarily to Γ and ∆, and derive with the
derivation di formulas Πi such that ψ follows immediately from Πi. Then we
can infer ψ.

Formal rule:

Γ; ∆ . ϕ1 \/ ... \/ ϕn Γ, ϕi{di}∆, ϕi ; Πi Γ, ϕi; Πi . ψ for i = 1, . . . , n
Γ{cases([case(ϕ1,d1),...,case(ϕn,dn)],ψ)}∆ ; ψ

In the special case of n = 2 we have:

Γ; ∆ . ϕ1 \/ ϕ2 Γ, ϕi{di}∆, ϕi ; Πi Γ, ϕi; Πi . ψ for i = 1, 2
Γ{cases(ϕ1,d1,ϕ2,d2,ψ)}∆ ; ψ

Example: In the following example we make a case splitting for p \/ q.

assume((p \/ q) & r,
cases(p, p & r,
q, q & r,
p & r \/ q & r),
p & r \/ q & r)

The case step introduces (p \/ q) & r => p & r \/ q & r.

See also: Tactic case, p. 109.
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Derivation step: exist (exist elimination) 4.8%

Syntax:

exist(name,formula,
derivation,
formula
)

exist([name,...],formula,
derivation,
formula
)

Result: Both, the step exist(x,ϕ,d,ψ) and exist([x,...],ϕ,d,ψ) intro-
duce the formula ψ.

Description: Assume that we have an existentially quantified formula ex x:ϕ
which is immediately derivable from ∆. Suppose we want to prove the formula ψ.
We say, let x be such that ϕ is true, i.e. we add ϕ to Γ and ∆, and derive then
a sequence of formulas Π such that ψ is derivable from Π immediately. If the
variable x does not occur free in ψ, i.e. if ψ is independent of the choice of x,
we can say that it follows from ex x:ϕ.

Formal rule:

Γ; ∆ . ex x:ϕ Γ, ϕ{d}∆, ϕ ; Π Γ; Π . ψ x /∈ FV(ψ)
Γ{exist(x,ϕ,d,ψ)}∆ ; ψ

In the general case with more than one quantified variable the rule is:

Γ; ∆ . ex [x,...]:ϕ Γ, ϕ{d}∆, ϕ ; Π Γ; Π . ψ [x, . . .] ∩ FV(ψ) = ∅
Γ{exist([x,...],ϕ,d,ψ)}∆ ; ψ

Example: Note, that LPTP considers formulas equivalent modulo renaming of
bound variables.

assume(ex x:r(?x) & p,
exist(y,r(?y),
ex x:r(?x),
(ex x:r(?x)) & p),

(ex x:r(?x)) & p)

The derivations step introduces (ex x:r(?x) & p) => (ex x:r(?x)) & p.

See also: Tactic ex, p. 111.
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Derivation step: induction 2.4%

Syntax:

induction([formula,...],
[step([name,...],
[formula,...],
derivation,
formula),

...])

Result: The derivation step induction([ϕ1,...,ϕn],induction steps) intro-
duces the formula ϕ1 & ... & ϕn.

Description: Induction means simultaneous induction along the definitions of
predicates in a logic program. Induction has the form:

induction([ϕ1,...,ϕn],induction steps)

The formulas ϕ1, . . . , ϕn are the formulas that have to be derived using induc-
tion. Each formula ϕi must be of the following form:

all [x1,...,xn]: succeeds R(x1,...,xn) => ψ

The precicate symbol R must have clauses that define it in the current database
of clauses. An example, where n = 1, is the following:

induction(
[all l: succeeds list(?l) => terminates member(?x,?l)],
induction steps)

In this example we want to proof by induction on list(?l) that member(?x,?l)
terminates. Since the predicate list has two clauses (see p. 8) there are two
induction steps. In general, an induction step has the following form:

step([x1,...,xm],
[ψ1,...,ψk],
d,
χ)

The formula ψ1, . . . , ψk are the induction hypotheses and the formula χ is the
conclusion that has to be derived by d from the hypotheses. The number and
the structure of the formulas ψj depend on the structure of the clauses in the
program. The induction step derives the following formula:

all [x1,...,xm]: ψ1 & ... & ψk => χ
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Formal rule:

Γ, ~ψ{d}∆, ~ψ ; Π Γ; Π . χ {~x} ∩ FV(Γ) = ∅
Γ{step([~x],[~ψ],d,χ)}∆ ; all [~x]:~ψ => χ

The bound variables ~x can be changed by the user. So one could as well use the
induction step step([~y],[~ψ′],d′,χ′) where ψ′, d′, χ′ are obtained from ψ, d,
χ by renaming ~x to ~y. In the example of list there are two induction steps.
The first step is:

step([],
[],
d,
terminates member(?x,[]))

There are no induction hypotheses in this case and the conclusion that has to
be derived by d is the formula terminates member(?x,[]). A better name for
this kind of step would be base case. The second induction step is:

step([y,l],
[terminates member(?x,?l), succeeds list(?l)],
d,
terminates member(?x,[?y|?l]))

There are two induction hypothesis here:

terminates member(?x,?l) & succeeds list(?l)

The conclusion that has to be derived by d is the formula

terminates member(?x,[?y|?l]).

Here is the full induction proof of the example:

induction(
[all l: succeeds list(?l) => terminates member(?x,?l)],
[step([],
[],
terminates member(?x,[]) by completion,
terminates member(?x,[])),
step([y,l],
[terminates member(?x,?l),
succeeds list(?l)],

terminates member(?x,[?y|?l]) by completion,
terminates member(?x,[?y|?l]))])]

)
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In the simple case of induction on list the induction scheme may look a little
bit clumsy. However, it has been designed for mutual recursive predicates and
in practical application it soon happens that an induction has 44 cases (see
Chapter 7). The LPTP system knows how to create the induction scheme and
so the user does not have to worry about it. In our example, the induction
scheme can be created by the following tactic:

?- needs gr($(lib)/list/list).
?- all l: succeeds list(?l) => terminates member(?x,?l)

by [ind].

See also: Tactic ind on p. 113 and tactic indqf on p. 114. For the theoretical
foundations of the induction scheme, see [13].
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Derivation step: contra (proof by contradiction) 0.5%

Syntax:

contra(formula,
derivation)

Result: The step contra(ϕ,d) introduces the formula ~ϕ.

Description: This derivation step corresponds to a proof by contradiction.
Assume that we want to prove the formula ~ϕ. We assume ϕ, i.e. we add ϕ
to Γ and ∆ and try to derive a contradiction. The derivation d must derive a
sequence of formulas Π which is inconsistent. This means that the constant ff
(falsum) is immediately derivable from Π.

Formal rule:
Γ, ϕ{d}; Π Γ; Π . ff

Γ{contra(ϕ,d)}∆ ; ~ϕ

Example: The following example derives ~p & ~q => ~(p \/ q).

assume(~p & ~q,
contra(p \/ q,
cases(p,ff,q,ff,ff),
ff),

~(p \/ q))



3.2. DERIVATION STEPS 61

Derivation step: indirect (indirect proof) 0.1%

Syntax:

indirect(~formula,
derivation)

Result: The step indirect(~ϕ,d) introduces the formula ϕ.

Description: This derivation step corresponds to the principle of indirect
proofs. This principle is only valid in classical logic and not in intuitionistic
logic. Since LPTP is classical system, the principle is available in LPTP. Sup-
pose that we want to prove the formula ϕ. We assume the negation of ϕ and add
it to Γ and ∆ and try to derive a contradiction. The derivation d must derive
an inconsistent sequence of formulas Π from which the constant ff (falsum) is
immediately derivable.

Formal rule:
Γ, ~ϕ{d}∆, ~ϕ ; Π Γ; Π ; ff

Γ{indirect(~ϕ,d)}∆ ; ϕ

Example: The following derivation derives ~(p & q) => ~p \/ ~q.

assume(~(p & q),
indirect(~(~p \/ ~q),
[indirect(~p,[~p \/ ~q, ff]),
indirect(~q,[~p \/ ~q, ff]),
p & q, ff]),

~p \/ ~q)

Note, that the formula ~(p & q) => ~p \/ ~q is intuitionistically not valid.
The derivation step indirect is not the only reason that LPTP is classical system.
For example, the formula ϕ \/ ~ϕ (tertium non datur) is built into LPTP as
an axiom.
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3.3 Inference rules

In this section we define the relation Γ; ∆.ϕ which expresses that the formula ϕ
is immediately derivable from the sequence of formulas ∆ under the assumptions
of Γ. The purpose of Γ is to ensure that its free variables are not bound in an
immediate derivation. Remember that the soundness assertion for Γ; ∆ . ϕ is
the following: if Γ |= ∆ then ∆ |= ϕ.

The relation Γ; ∆ . ϕ for immediate derivation is used in its pure form in
the simple derivation steps that consists of single formulas only. Remember
that this derivation step is used in 34% of all derivation steps. The numbers in
this section now say how often each single case of an immediate derivation is
used. We want to point out the 0.0% does not necessarily mean that the rules
has been never used. However, the alpha-conversion rule below is really never
used. Perhaps this is because alpha-conversion (renaming of bound variables)
is built into the other rules. Every rule that uses matching or equality does
automatically include alpha-conversion.

Immediate derivations are not that simple as the name might suggest. The
relation Γ; ∆ . ϕ is defined in terms of a more refined relation Γ; ∆ .n ϕ that
includes a depth n. In fact, at the moment LPTP defines the relation Γ; ∆ . ϕ
as follows:

Γ; ∆ .6 ϕ

Γ; ∆ . ϕ.

The number 6 is called the depth of thinking of LPTP and this number could
be changed in the future.

Remember that a capital Greek letter like ∆ denotes finite list of formulas.
∆ has to be understood as the conjunction of its elements. If one of the elements
of ∆ is itself a conjunction then we consider the conjuncts also as elements of ∆.
In other words, if we write ϕ in ∆ below, then we mean that

1. ϕ is an element of ∆, or

2. there exists an element ψ1 & ... & ψn of ∆ and an i, 1 ≤ i ≤ n, such
that ϕ is ψi.

For example, we have:

r(?x) in [?x = ?y, succeeds list(?x) & r(?x)]

In this way we avoid an explicit conjunction elimination rule or, more precisely,
we include it into the identity rule. Note also, that we may assume that the
ψi’s are not conjunctions, since otherwise they would have been flattened au-
tomatically. Therefore, we do not have to iterate the process in the definition
of in.

Substitutions

A substitution σ is considered as a finite set ob bindings:

σ = {t1/x1, . . . , tn/xn}.
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It is not required that the term ti are different from the variable xi. However,
the variables x1, . . . , xn have to be pairwise different. We define

spt(σ) := {xi | 1 ≤ i ≤ n, xi 6≡ ti}.

We write ϕσ for the result of applying the substitution σ to the formula ϕ. This
means that the variables xi are simultaneously replaced by the terms ti and the
bound variables are renamed when necessary.
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Inference rule: identity 44.8%

Description: This is the most elementary and also by far most used inference
rule. It says that we can infer a formula ϕ if it belongs already to ∆.

Formal rule:
ϕ in ∆

Γ; ∆ .n ϕ

Inference rule: modus ponens (matching) 16.1%

Description: This rule is a combination of instantiation of universal quanti-
fiers, modus ponens and elimination of conjunctions. It includes the following
rules:

• From (all [~x]: ϕ(~x)) we can infer ϕ(~t).

• From (all [~x]: ϕ1(~x) & ... & ϕn(~x)) we can infer ϕi(~t).

• From (all [~x]: ϕ(~x) => ψ(~x)) and ϕ(~t) we can infer ψ(~t).

It includes also more complicated rules. For example, from

(all [~x]: ϕ(~x) => (all [~y]: ψ(~x, ~y) => χ(~x, ~y)))

and ϕ(~s) and ψ(~s,~t) we can infer χ(~s,~t).

Formal rules:

mp(∆, ϕ)
Γ; ∆ .n ϕ

ϕ in ∆
mp(∆, ϕ)

mp(∆, ϕ1 & ... & ϕn)
mp(∆, ϕi)

mp(∆, ϕ1 & ... & ϕn => ψ) ϕ1 in ∆ . . . ϕn in ∆
mp(∆, ψ)

mp(∆, (all [~x]: ϕ)) spt(σ) ⊆ {~x}
mp(∆, ϕσ)

Example: From the list of formulas

all [x,y,z]: r(?x,?y) & r(?y,?z) => r(?x,?z)
r(1,2), r(2,3)

we can infer r(1,3).

Example: From (all [x,y]: r(?x,?y)) we can infer r(1,2).
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Inference rule: conjunction introduction 7.4%

Description: If we can derive ϕi from ∆ with length n for each i = 1, . . . , k,
then we can derive the conjunction ϕ1 & ... & ϕk with length n+ 1.

Formal rule:
Γ; ∆ .n ϕi for i = 1, . . . , k
Γ; ∆ .n+1 ϕ1 & ... & ϕk

Example: From

p, p => q

we can infer

p & q.

Inference rule: forall introduction 7.1%

Description: If ϕ is derivable from ∆ with length n and the variables ~x do not
appear free in any formula of Γ, then we can infer (all [~x]: ϕ) with length
n+ 1.

Formal rule:
Γ; ∆ .n ψ FV(Γ) ∩ {~x} = ∅

Γ; ∆ .n+1 (all [~x]: ϕ)

Example: If the variables ?x and ?l do not appear free in any assumption, we
can infer from

list(?l) => terminates member(?x,?l)

the formula

all [x,l]: list(?l) => terminates member(?x,?l).
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Inference rule: unification (CET) 5.5%

Description: Suppose that we want to derive an equation s = t. First, we
collect all the equations of ∆ into a set E. If E is not unifiable, then we already
have a contradiction. Otherwise, let σ be the most general unifier of E. If
sσ ≡ tσ, then we can infer s = t.

To infer a formula ϕ, we can proceed in the same way. If σ is a most general
unifier of E and ψ is in ∆ and ϕσ ≡ ψσ, then we can infer ϕ.

Formal rules:

pure equations(∆) = E E not unifiable
Γ; ∆ .n ϕ

pure equations(∆) = E mgu(E) = σ sσ ≡ tσ
Γ; ∆ .n s = t

pure equations(∆) = E mgu(E) = σ ψ in ∆ ϕσ ≡ ψσ
Γ; ∆ .n ϕ

By pure equations(∆) we denote the set of all equations s = t which are in ∆
such that s and t are pure constructor terms which do not contain defined
function symbols (see Section 4.2).

Remark: This simple and efficient treatment of equality is based on the so-
called Clark equality theory CET (see [3]). This equality theory axiomatizes
unification with following formulas:

1. x = y

2. x = y & y = z => x = z

3. x = y => y = x

4. x1 = y1 & ... & xn = yn => f(x1,...,xn) = f(y1,...,yn)

5. f(x1,...,xn) = f(y1,...,yn) => xi = yi

6. f(x1,...,xn) <> g(y1,...,ym), if f is different from g,

7. t <> x, if the variable x occurs in t and t is different from x

8. x1 = y1 & ... & xn = yn & R(x1,...,xn) => R(y1,...,yn)

Example: From the list of equations

[?x1|?l1] = [?x2|?l2], s(?y) = s(?x2)

we can infer

?x1 = ?y.
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Inference rule: sld step 2.5%

Description: This rule is the same as the following derivation step.

succeeds R(t1,...,tn) by sld

See p. 82 for more details.

Formal rule:

(A :- G) ∈ Clauses body(∆, S(Gσ))
Γ; ∆ .n succeeds Aσ

Example: From the formula

succeeds member(?x,[?v|?l])

we can infer

succeeds member(?x,[?u,?v|?l]).

See also: See p. 46 for the definition of the formula S(G) and p. 82 for the
definition of body(∆, ϕ).

Inference rule: disjunction introduction 2.4%

Description: A disjunction ϕ1 \/ ... \/ ϕm can be inferred with length
n+ 1 if there exists an i, 1 ≤ i ≤ m, such that ϕi can be inferred with length n.

Formal rule:
Γ; ∆ .n ϕi

Γ; ∆ .n+1 ϕ1 \/ ... \/ ϕm

Example: From p we can infer p \/ q.

See also: The generalized disjunction introduction on p. 77.
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Inference rule: inconsistency 2.2%

Description: If ∆ is inconsistent, then we can infer ϕ. A sequence ∆ is
inconsistent, if one of the following holds:

1. ff is in ∆ [43.0%]

2. succeeds G and fails G are in ∆ [32.9%]

3. ψ and ~ψ are in ∆ [14.4%]

4. s = t and s <> t are in ∆ [8.3%]

5. t <> t is in ∆ [1.3%]

Formal rules:

ff in ∆
Γ; ∆ .n ϕ

ψ in ∆ ~ψ in ∆
Γ; ∆ .n ϕ

s = t in ∆ s <> t in ∆
Γ; ∆ .n ϕ

t <> t in ∆
Γ; ∆ .n ϕ

(succeeds G) in ∆ (fails G) in ∆
Γ; ∆ .n ϕ



3.3. INFERENCE RULES 69

Inference rule: equality 2.0%

Description: This is the standard equality rule that says from s = t and ϕ(s)
we can infer ϕ(t). The LPTP rule, however, is a little bit more general. In
LPTP an equation is not only an equation between two terms but an equation
between several terms, written as t1 = t2 = ... = tn. Moreover, symmetry is
also included into the equality rule.

Let E be the set of (general) equations of ∆. We say that two terms s and t
are syntactically equal modulo E, if t can be obtained from s by replacing
subterms r1, . . . , rn by terms r′1, . . . , r

′
n such that for each i = 1, . . . , n there is

an equation in E that states that ri and r′i are equal. In the same way we define
that a formula ϕ is equal to ψ modulo E.

Now, an equation t1 = t2 = ... = tn can be inferred, if ti is equal to ti+1

modulo E for i = 1, . . . , n − 1. A formula ϕ can be inferred, if there exists a
formula ψ in ∆ such that ϕ is equal to ψ modulo E.

Formal Rules:

equations(∆) = E t1 ≡ ti+1 (mod E) for i = 1, . . . , n− 1
Γ; ∆ .n t1 = ... = tn

equations(∆) = E ψ in ∆ ϕ ≡ ψ (mod E)
Γ; ∆ .n ϕ

Example: From the formulas

?x = ?y, r(s(?x),?y)

we can infer

r(s(?y),?x).

From the list of equations

s(?x) + ?y = s(?x + ?y)
?x + ?y = ?y + ?x
s(?y + ?x) = ?y + s(?x)

we can infer

s(?x) + ?y = s(?x + ?y) = s(?y + ?x) = ?y + s(?x).



70 CHAPTER 3. FORMAL PROOFS

Inference rule: atom introduction (user-defined) 1.5%

Description: This rule is the same as the following derivation steps:

succeeds atom by completion
fails atom by completion
terminates atom by completion

It says that if ϕ is the defining formula for succeeds A and ϕ can be inferred
with length n then succeeds A can be inferred with length n + 1. The same
rule can be applied with the defining formulas for fails A and terminates A.
See p. 83 for more details.

Formal rules:
Γ; ∆ .n DP (succeeds A)

Γ; ∆ .n+1 succeeds A

Γ; ∆ .n DP (fails A)
Γ; ∆ .n+1 fails A

Γ; ∆ .n DP (terminates A)
Γ; ∆ .n+1 terminates A

Example: From

?x <> ?y
fails member(?x,?l)

we can infer

fails member(?x,[?y|?l]).

Inference rule: modus ponens (plain) 1.3%

Description: If ψ => ϕ is in ∆ and ψ is derivable with length n, then ϕ is
derivable with length n+ 1.

Formal rule:
(ψ => ϕ) in ∆ Γ; ∆ .n ψ

Γ; ∆ .n+1 ϕ

Example: From

p, p => q

we can infer q.
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Inference rule: special axiom 1.1%

Description: A formula ϕ can be inferred, if it is a special axiom. Special
axioms are:

1. t = t [49.1%]

2. gr(c), if c is a constant, [20.2%]

3. f(s1,...,sm) <> g(t1,...,tn), if f 6= g or m 6= n, [11.0%]

4. ϕ \/ ~ϕ, s = t \/ s <> t [9.5%]

5. ~(s = t), if s and t are pure and not unifiable, [9.5%]

6. s <> t, if s and t are pure and not unifiable, [0.6%]

7. ϕ <=> ϕ [0.0%]

Formal rule:
ϕ a special axiom

Γ; ∆ .n ϕ

Remark: The special axioms are redundant. They have been added for effi-
ciency reasons and in order to shorten formal proofs.
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Inference rule: modus ponens (including derivability) 1.0%

Description: The generalized modus ponens rule says the following. If the
formula

all [~x]:ϕ(~x) => ψ(~x)

is in ∆ and ϕ(~t) is derivable from ∆ with length n then ψ(~t) is derivable with
length n+ 1.

Formal rule:

(all [~x]:ϕ => ψ) in ∆ spt(σ) ⊆ {~x} ∩ FV(ψ) Γ; ∆ .n ϕσ

Γ; ∆ .n+1 ψσ

Example: From

all [x,l]: succeeds list(?l) => terminates member(?x,?l)
succeeds list(?l)

we can infer

terminates member(?x,?l).

Remark: Note, that the formal rule does not say exactly the same as the
informal description. In the informal description one has to require in addition
that the variables ~x actually occur in the formula χ.

See also: Modus ponens with matching on p. 64.

Inference rule: exist introduction 0.9%

Description: From ϕ(~t ) we can infer the formula (ex [~x]: ϕ(~x)).

Formal rule:
ϕσ in ∆ spt(σ) ⊆ {~x}

Γ; ∆ .n (ex [~x]: ϕ)

Example: From r(1,2) we can infer

ex [x,y]: r(?x,?y).
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Inference rule: termination introduction (termination) 0.8%

Description: If T (G) and T (H1 & ... & Hm) are derivable with length n
then the formula

terminates (G & H1 & ... & Hm)

is derivable with length n + 1. Here, T is the built-in function that associates
to a goal a formula that expresses its termination (see p. 46).

Formal rule:

Γ; ∆ .n T (G) Γ; ∆ .n T (H1 & ... & Hm)
Γ; ∆ .n+1 terminates (G & H1 & ... & Hm)

Example: From

terminates member(?x,?l1)
gr(?x) & gr(?l2)
terminates member(?x,?l2)

we can infer

terminates (member(?x,?l1) & ~member(?x,?l2)).

See also: Tactic unfold on p. 115.

Inference rule: exist introduction (matching) 0.7%

Description: If ϕi(~t ) is in ∆ for i = 1, . . . ,m then we can infer the formula

ex [~x]: ϕ1(~x ) & ... & ϕn(~x ).

Formal rule:

ϕ1σ in ∆ . . . ϕnσ in ∆ spt(σ) ⊆ {~x}
Γ; ∆ .n ex [~x]: ϕ1 & ... & ϕn

Example: From p(2) and q(2,3) we can infer

ex [x,y]: p(?x) & q(?x,?y).
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Inference rule: ground introduction (variable) 0.6%

Description: If there exists a formula gr(f(t1,...,tm)) in ∆ and an index i
such that

• 1 ≤ i ≤ m,

• ti is a pure constructor term,

• and the variable x occurs in ti,

then we can infer the formula gr(x).

Formal rule:

gr(f(t1,...,tm)) in ∆ ti ∈ Pure Terms x ∈ FV(ti)
Γ; ∆ .n gr(x)

Example: From gr([?x|?l]) we can infer gr(?x) and gr(?l).

Inference rule: termination introduction (success) 0.4%

Description: If T (G) and S(G) => T (H1 & ... & Hm) are derivable with
length n then the formula

terminates (G & H1 & ... & Hm)

is derivable with length n + 1. Here, T is the built-in function that associates
to a goal a formula that expresses its termination and S is the corresponding
function that expresses success (see p. 46).

Formal rule:

Γ; ∆ .n T (G) Γ; ∆ .n S(G) => T (H1 & ... & Hm)
Γ; ∆ .n+1 terminates (G & H1 & ... & Hm)

Example: From

terminates reverse(?l1,?l2)
succeeds reverse(?l1,?l2) => terminates append(?l2,[?x],?l3)

we can infer terminates (reverse(?l1,?l2) & append(?l2,[?x],?l3)).

See also: Tactic unfold on p. 115.
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Inference rule: implication introduction (right) 0.4%

Description: If we can infer ψ with length n then we can infer ϕ => ψ with
length n+ 1.

Formal rule:
Γ; ∆ .n ψ

Γ; ∆ .n+1 ϕ => ψ

Example: From q we can infer p => q.

Inference rule: ground introduction (term) 0.2%

Description: If t is a pure constructor term and gr(x) is derivable with
length n for each variable x of t, then we can derive the formula gr(t) with
length n+1.

Formal rule:

t ∈ Pure Terms Γ; ∆ .n gr(x) for all x ∈ FV(t)
Γ; ∆ .n+1 gr(t)

Example: From gr(?x) and gr(?l) we can infer gr([?x|?l]).

Inference rule: totality 0.2%

Description: From the formula (terminates A) we can infer the following
formulas:

succeeds A \/ fails A
fails A \/ succeeds A

Formal rule:

(terminates A) in ∆
Γ; ∆ .n succeeds A \/ fails A

(terminates A) in ∆
Γ; ∆ .n fails A \/ succeeds A
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Inference rule: termination introduction (failure) 0.1%

Description: If T (G) and F (G) are derivable with length n, then the formula

terminates (G & H1 & ... & Hm)

is derivable with length n + 1. Here, T is the built-in function that associates
to a goal a formula that expresses its termination and F is the corresponding
functions that expresses its failure (see p. 46).

Formal rule:

Γ; ∆ .n T (G) Γ; ∆ .n F (G)
Γ; ∆ .n+1 terminates (G & H1 & ... & Hm)

Inference rule: implication introduction 0.1%

Description: If ψ is derivable from ∆ plus ϕ with length n then ϕ => ψ is
derivable from ∆ alone with length n+ 1.

Formal rule:
Γ, ϕ; ∆, ϕ .n ψ

Γ; ∆ .n+1 (ϕ => ψ)

Inference rule: equivalence introduction 0.1%

Description: From ϕ => ψ and ψ => ϕ we can infer ϕ <=> ψ.

Formal rule:
(ϕ => ψ) in ∆ (ψ => ϕ) in ∆

Γ; ∆ .n (ϕ <=> ψ)

Inference rule: implication introduction (left) 0.1%

Description: If we can infer ~ϕ with length n then we can infer ϕ => ψ with
length n+ 1.

Formal rule:
Γ; ∆ .n ~ϕ

Γ; ∆ .n+1 ϕ => ψ

Example: From ~p we can infer p => q.
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Inference rule: trivial equivalences 0.1%

Description: If ϕ is in ∆ and ϕ is equivalent to ψ then we can infer ψ.
Equivalent means the following:

1. s <> t <=> ~(s = t)

2. s <> t <=> t <> s

Formal rules:

s <> t in ∆
Γ; ∆ .n ~(s = t)

~(s = t) in ∆
Γ; ∆ .n s <> t

s <> t in ∆
Γ; ∆ .n t <> s

Inference rule: disjunction introduction (subset) 0.0%

Description: A disjunction (ϕ1 \/ ... \/ ϕn) can be inferred if there exists
a disjunction (ψ1 \/ ... \/ ψm) in ∆ such that {ψ1, . . . , ψm} is a subset of
{ϕ1, . . . , ϕn}.

Formal rule:

(ψ1 \/ ... \/ ψm) in ∆ {ψ1, . . . , ψm} ⊆ {ϕ1, . . . , ϕn}
Γ; ∆ .n (ϕ1 \/ ... \/ ϕn)

Example: From p \/ q we can infer q \/ r \/ p.

Inference rule: forall introduction (alpha conversion) 0.0%

Description: If ϕ is in ∆ and the variables ~x do not appear free in any formula
of Γ, then we can infer (all [~x]: ϕ).

Formal rule:

ϕ in ∆ ∀y ∈ FV(ϕ)(y ∈ FV(Γ)→ yσ ≡ y ∧ y /∈ {~x})
Γ; ∆ .n (all [~x]: ϕσ)

Remark: The forall introduction rule is implemented in a very general way
that includes also a hidden substitution rule and still is as easy to check as the
plain rule.
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Inference rule: equivalence elimination 0.0%

Description: If ϕ is in ∆ and ϕ <=> ψ or ψ <=> ϕ is in ∆ and, then we can
infer ψ.

Formal rules:

(ϕ <=> ψ) in ∆ ϕ in ∆
Γ; ∆ .n ψ

(ψ <=> ϕ) in ∆ ϕ in ∆
Γ; ∆ .n ψ

Inference rule: equality (injective) 0.0%

Description: From f(s1,...,sn) = f(t1,...,tn) we can infer si = ti under
condition that f is a constructor symbol and not a defined function symbol.

Formal rule:

f(s1,...,sn) = f(t1,...,tn) in ∆ f ∈ Constructors
Γ; ∆ .n si = ti

Example: From [?x|?l1] = [?y|?l2] we can infer ?x = ?y and ?l1 = ?l2.

Inference rule: alpha conversion 0.0%

Description: If ψ is in ∆ and ϕ is obtained from ψ by renaming bound vari-
ables, then we can infer ϕ.

Formal rule:
ψ in ∆ ψ ≡ ϕ

ϕ

Remember, that we write ϕ ≡ ψ to express that ϕ is alpha equivalent to ψ.

Remark: The renaming of bound variables is included into the matching prim-
itives. So the rule for alpha conversion is not used very often.
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3.4 Inference rules with names

In this section we define the relation Γ{ϕ by tag}∆ ; ψ for various different
kinds of tags. In all cases except in the case that ϕ is of the form (def χ)
the formula ψ that is introduced by the derivation step is the formula ϕ itself.
Remember that derivation steps of the form (ϕ by tag) are used in 38.4% cases
of all derivation steps. This means that they are the most used derivation steps.

The reason that there is the keyword by is that if would cost too much the
LPTP system to figure out itself by which rule the formula has been inferred.
Proof-checking would be too slow.

This section does not define all cases of by derivation steps. Some of them
that have to do with the extension of the language by abbreviations and func-
tions symbols and the use of built-in predicates are described in Chapter 4. The
percent numbers in this section refer to the frequency of the usage of the single
tags.
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By: reference 51.8%

Syntax:

formula by theorem(reference)
formula by lemma(reference)
formula by corollary(reference)
formula by axiom(reference)

Description: The tags theorem, lemma, corollary and axiom have the same
meaning. If fact(reference) refers to the formula ψ and the formula ϕ is imme-
diately derivable from ∆ plus ψ under the assumptions Γ, then the derivation
step

ϕ by fact(reference)

introduces the formula ϕ. It is assumed that ψ does not contain free variables.
What LPTP does, is that it looks its internal database for the fact ψ with the
name reference. Then it adds it temporarily to the already derived formulas.

Formal rule:
Γ; ∆, ψ . ϕ

Γ{ϕ by fact(reference)}∆ ; ϕ

Remark: The reference has to be a colon separated list of names of the form:

name:name: ... :name

At the moment, LPTP does not yet use the structure of references. However,
in the future it is planned to used names in heuristics.

Example: Assume that the corollary(lh:cons) refers to the formula

all [x,l]:succeeds list(?l) => lh([?x|?l]) = s(lh(?l))

Then we can write:

assume(succeeds list(?l),
lh([?x|?l]) = s(lh(?l)) by corollary(lh:cons),
...)

See also: Tactic fact, p. 112.
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By: completion (fixed point) 18.0%

Syntax:

def succeeds atom by completion
def fails atom by completion
def terminates atom by completion

Description: The fixed point rule says that if the formula (succeeds A) is
immediately derivable then the derivation step

def succeeds atom by completion

introduces the defining formula for (succeeds A). The defining formula for
(succeeds A) can be obtained with the LPTP following command (see p. 48):

?- def(succeeds A).

The same rule applies for (fails A) and (terminates A). Note that defining
formulas depend on the logic program P , i.e. on the clauses in the internal
database of LPTP.

Formal rules:

Γ; ∆ . succeeds A

Γ{def succeeds A by completion}∆ ; DP (succeeds A)

Γ; ∆ . fails A

Γ{def fails A by completion}∆ ; DP (fails A)

Γ; ∆ . terminates A

Γ{def terminates A by completion}∆ ; DP (terminates A)

See also: For the defintion of DP see p. 48.
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By: sld 9.7%

Syntax:

succeeds atom by sld

Description: If there exists a clause B :- G in the internal database and
a substitution σ such that A ≡ Bσ and the success of the body Gσ follows
immediately from ∆, then the derivation step

succeeds A by sld

derives the formula (succeeds A). Now, we have to say what we mean by
the success of the body Gσ follows immediately from ∆. This means that the
success formula S(Gσ) is immediately derivable from ∆.

Remark: This rule is an efficient version of the rule

succeeds A by completion.

Formal rules:

(A :- G) ∈ Clauses body(∆, S(Gσ))
Γ{succeeds Aσ by sld}∆ ; succeeds Aσ

(t1 = t2) in ∆
body(∆, t1 = t2)

(t2 = t1) in ∆
body(∆, t1 = t2)

(t1 <> t2) in ∆
body(∆, t1 <> t2)

(t2 <> t1) in ∆
body(∆, t1 <> t2)

(succeeds A) in ∆
body(∆, succeeds A)

(fails B) in ∆
body(∆, fails A)

body(∆, ϕ1) . . . body(∆, ϕn)
body(∆, ϕ1 & ... & ϕn)

body(∆, ϕi)
body(∆, ϕ1 \/ ... \/ ϕn)

See also: See p. 46 for the definition of the formula S(G).
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By: completion (closure) 5.0%

Syntax:

succeeds atom by completion
fails atom by completion
terminates atom by completion

Description: If the success formula DP (succeeds A) is immediately derivable
from ∆, then the derivation step

succeeds A by completion

derives the formula (succeeds A).
If the failure formula DP (fails A) is immediately derivable from ∆, then

the derivation step

fails A by completion

derives the formula (fails A).
If the termination formula DP (fails A) is immediately derivable from ∆,

then the derivation step

terminates A by completion

derives the formula (terminates A).

Formal rules:

Γ; ∆ . DP (succeeds A)
Γ{succeeds A by completion}∆ ; succeeds A

Γ; ∆ . DP (fails A)
Γ{fails A by completion}∆ ; fails A

Γ; ∆ . DP (terminates A)
Γ{terminates A by completion}∆ ; terminates A

See also: For the defintion of DP see p. 48.
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By: gap

Syntax:

formula by gap

Description: A derivation can contain gaps. Of course, as long as a derivation
contains gaps it is not a correct derivation in the logical sense. The pseudo
derivation step ϕ by gap derives the formula ϕ. In other words, it forces the
formula ϕ to be true. The LPTP system prints a warning if a derivation contains
gaps.

Formal rule:

Γ{ϕ by gap}∆ ; ϕ

Example:

ff by gap

By: because

Syntax:

formula by because

Descritption: The because derivation step is exactly as the gap derivation
step except that LPTP does not print a warning message.

Formal rule:

Γ{ϕ by because}∆ ; ϕ
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Derivations containing gaps

The last two derivation steps are pseudo derivation steps, since they allow the
user to introduce arbitrary formulas. For example, even the constant ff (falsum)
can be introduced in this way. Although the proofs may contain gaps they are
still partially correct. This means that formulas that are not marked by gap or
because still have to be derivable from other formulas according to the inference
rules. Moreover, the gaps provied the user a means to construct proofs in an
arbitrary way: from assumptions forward to the conclusion (forward chaining)
or from the conclusion backward to the assumptions (backward chaining). It
allows even arbitrary combinations of both styles.

A rule of inference is nothing else but a mechanical procedure which allows one to
determine of any given finite class of expressions whether anything can be inferred
from them by means of the rule of inference under consideration, and if so to write
down the conclusion. (. . . ) Now you see the essential difficulty of this definition is the
notion of mechanical procedure which comes in and which needs further specification.
These mechanical procedures are here applied to expressions or rather finite classes of
expressions, and the result is either again an expression or the answer Yes or No.

K. Gödel, 193?
“Collected Works, Volume III, p. 166”



Chapter 4

More about formal proofs

At this point we have to make some thoughts about the relation of formal proofs
and the reality. For example, why does a formal proof for the equivalence of
two predicates imply that the two predicates are computationally equivalent in
reality? Why does a formal proof of termination of a predicate imply that the
predicate terminates in reality? What does reality mean here? What is a formal
proof more than a string of 0’s and 1’s in the memory of a computer?

We cannot answer all the questions here because some of them are philosoph-
ical questions about the foundations of mathematics and do not have answers.
However, we can explain what the assumptions are that we make about the
world and why under these assumptions it follows that the LPTP system or
at least the underlying theory is adequate for its purpose. For the moment,
let us assume that there are no bugs in LPTP and that it implements exactly
the formal system described in [16] which is an extension of the formal system
of [11].

The main assumption about Prolog that we make is that it implements
correctly the mathematical operational model of [16] and, for example, performs
the occurs-check during unification if it is necessary. If we do not make this
assumption, then the LPTP system is not correct for Prolog. For example, we
can easily derive in LPTP the following formula:

terminates (?x = f(?x) & ?y = f(?y) & ?x = ?y).

The corresponding Prolog query, however, does not terminate in standard im-
plementations of Prolog, since they omit the occurs check.

?- X = f(X), Y = f(Y), X = Y.

We consider it as a definitive mistake in the design of Prolog that the above
query does not terminate.

The second assumptions about Prolog is that it also correctly implements
the built-in predicates according to the model of [16]. We will say more about
built-in predicates in Section 4.3 of this chapter. For the moment we just want
to mention that our model for built-in predicates is simple and flexible and
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comprises most of the so-called logical built-in predicates of Prolog and even
non-logical predicates like call/1. However, it is not possible to treat predicates
like the var/1 predicate. The reason is simple. Under any reasonable axioms
for var/1 it must certainly be possible do derive succeeds var(?x), since ?x
is a variable. But then we can derive:

all x: succeeds var(?x)
succeeds var(c)

But c is a constant and var(c) fails. Thus the LPTP system would be incorrect.
We believe that the era of var/1 is over (cf [9]).

Under the two assumptions that the occurs check is done and that the built-
in predicates are implemented correctly, one can show that LPTP is adequate
in the following sense. Let us assume that P is a pure Prolog program and that
the internal database of LPTP contains exactly the clauses of P and nothing
else. We write P ` ϕ, if there exists a derivation d such that LPTP accepts d
as a correct derivation for ϕ in the sense of page 3.1. Then the results of [16]
say the following:

(T1) If A has answer σ in Prolog, then P ` succeeds Aσ.

(T2) If A has answer no in Prolog, then P ` fails A.

These are the simple results. The non-trivial results say the following:

(T3) If P ` gr(t), then t is a ground term.

(T4) If P ` terminates A, then the Prolog computation for A terminates.
This means that A has finitely many answers, i.e., one can hit the semi-
colon key a finite number of times until one finally gets the answer no. It
also means that during the computation, negative goals are always ground
if they are called. Moreover, built-in atoms are correctly instantiated such
that they can be evaluated when they are called. In fact, it means even
more. One can permute the clauses in the program P in an arbitrary way
(even during run-time) and the computation still terminates and does not
flounder.

(T5) If P ` terminates A & (ex [~x]: succeeds A), then there exists an
answer for A (not necessarily the first) that has answer terms for the
variables ~x only.

(T6) If P ` terminates A & fails A, then A has answer no in Prolog.

(T7) If P ` terminates A & succeeds Aσ, then one of the answers of Prolog
is more general than σ.

What we see from (T5)–(T7) is that we always have to prove termination,
otherwise we cannot apply the formal statements to Prolog. It is easy to give
an example, why it is really necessary. Consider the program P that has the
following clauses:
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r :- q, fail.
q :- q.

Then the following is a correct LPTP derivation for fails r.

:- lemma(loop,
fails r,
[fails fail, fails q \/ fails fail, fails r]
).

However, the goal ?- r does not fail in Prolog. It loops. This is not a contra-
diction to (T6), since we did not prove terminates r and, in fact, this is not
possible in LPTP.

Hence, we have always to prove termination of the predicates. This may
seem cumbersome, since if we have proved termination, then we have proved
too much. We have shown that the order of clauses in Program is irrelevant
which is much more than just termination under Prolog. However, in practice
this is not a problem as has been observed by Apt and Pedreschi in [1, 2]. —
Our examples in Chapter 7 confirm their thesis.

4.1 Defining predicates

In LPTP the user has the possibility to define abbreviations. Formally, an
abbreviation is an extension of the language. It is well-know that under certain
assumption the extension of a formal language by new predicates is conservative
over the original language. This means that if we have a derivation of a formula
that uses abbreviations and the formula itself does not contain abbreviations,
then the derivation can be expanded into a derivation of the original language
that does not contain abbreviations.

The principle of language extensions is true for pure predicate logic. As
soon as non-logical principles are involved as for example, induction or equality
axioms, one has to make sure that the conservativeness property remains true.
In our case this is not a problem.

The best way to explain abbreviations is by looking at an example. We
recall the predicate definition of the introduction:

:- definition pred(sub,2,
all [l1,l2]: sub(?l1,?l2) <=>
(all x: succeeds member(?x,?l1) => succeeds member(?x,?l2))
).

This defintion defines a binary predicate sub that expresses the subset relation
between lists. In general, a predicate definition has the following form:

:- definition pred(R,n,all [x1,...,xn]: R(x1,...,xn) <=> ϕ)
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where the free variables of ϕ are contained in x1, . . . , xn.
When LPTP processes a predicate definition it first checks whether the sym-

bol R is already defined as a predicate or as a function symbol. If this is the
case, then it prints an error message. Otherwise the definition is added to the
internal database and also written on the ‘.thm’ file. The latter is important,
since if the theorems are later used than one has to ensure that the abbreviations
in the theorems have their original meaning.

As soon as LPTP has a definition for a symbol it treats the symbol differently.
In our example, it changes the internal representation of sub and it is no longer
possible to use sub in another context, say as constructor symbol or predicate
symbol in a logic program.

Although LPTP does only enforce it as far as it is really necessary for the
soundness of the system, the following three name spaces should be disjoint:

1. names used in logic programs (clauses),

2. names used in predicate definitions,

3. names used function definitions.

The inference rules are implemented such that it is not possible to use a name in
different contexts at the same time. For example, as soon as sub has a predicate
definition the axiom

sub(?x,?y) = sub(?u,?v) => ?x = ?y & ?y = ?v

can no longer be applied, since sub is no longer a constructor symbol.
There are two inference rules associated to a predicate definition: an intro-

duction rule and an elimination rule. Introduction means replacing the formula
by the abbreviation and elimination means expanding an abbreviation into its
definition.
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By: predicate introduction 4.0%

Syntax:

name(term1,...,termn) by introduction(name,n)

Description: Assume that R is defined by

:- definition pred(R,n,
all [x1,...,xn]: R(x1,...,xn) <=> ϕ(x1, . . . , xn)
).

Then, if ϕ(t1, . . . , tn) is immediately derivable from ∆, the derivation step

R(t1,...,tn) by introduction(R,n)

derives the formula R(t1, . . . , tn).

Formal rule:

Γ; ∆ . ϕ(t1, . . . , tn) (all [~x]: R(~x) <=> ϕ(~x)) ∈ Def
Γ{R(t1,...,tn) by introduction(R,n)}∆ ; R(t1, . . . , tn)

Example: Assume that ?x is not free in Γ and that sub is defined as at the
beginning of this section. Then the following is a correct derivation:

[succeeds member(?x,?l1) => succeeds member(?x,?l2) by gap,
sub(?l1,?l2) by introduction(sub,2)]

See also: Tactic unfold on p. 115.
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By: predicate elimination 4.4%

Syntax:

formula by elimination(name,arity)

Description: Assume that R is defined by

:- definition pred(R,n,
all [x1,...,xn]: R(x1,...,xn) <=> ϕ(x1, . . . , xn)
).

Then, if R(t1, . . . , tn) is immediately derivable from ∆, the derivation step

ϕ(t1,...,tn) by elimination(R,n)

derives the formula ϕ(t1, . . . , tn).

Formal rule:

Γ; ∆ . R(t1, . . . , tn) (all [~x]: R(~x) <=> ϕ(~x)) ∈ Def
Γ{ϕ(t1,...,tn) by elimination(R,n)}∆ ; R(t1, . . . , tn)

Example: Assume that sub is defined as at the beginning of this section. Then
the following derivation is correct:

[sub(?l1,?l2) by gap,
member(?x,?l1) by gap,
all x: succeeds member(?x,?l1) => succeeds member(?x,?l2)
by elimination(sub,2),
member(?x,?l2)]

See also: Tactic def on p. 110.
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4.2 Defining function symbols

Language extensions by function symbols are not that simple as extensions by
predicate symbols. Defined function symbols are not just abbreviations. Defined
functions symbols replace existential quantifiers and that is the reason why they
are useful. Function definitions have the following form:

:- definition fun(f,n,
all [x1,...,xn,y]: δ(x1, . . . , xn) =>
(f(x1,...,xn) = y <=> γ(x1, . . . , xn, y)),

existence by fact(reference1),
uniqueness by fact(reference2)
).

The name f is the function symbol that is defined, n is the number of its
arguments, δ is the domain of the function and γ is the graph of the function.
The definition is only accepted by LPTP if reference1 refers to

all [x1,...,xn]: δ(x1, . . . , xn) => (ex y: γ(x1, . . . , xn, y))

and reference2 to

all [x1,...,xn,y,z]: δ(x1, . . . , xn) & γ(x1, . . . , xn, y) &
γ(x1, . . . , xn, z) => y = z

or to facts from which the two formulas are immediately derivable. When LPTP
processes a function definitions it first checks the syntactic correcteness and then
tries to derive the existence statement and the uniqueness statement from the
corresponding facts. It it succeeds then the function definition is added to the
internal database and also written on the ‘.thm’ file.

Let us consider an example about the concatenation of lists. The predicate
append/3 from p. 8 has the following two properties:

lemma(append:existence,
all [l1,l2]: succeeds list(?l1) =>
(ex l3: succeeds append(?l1,?l2,?l3)),

derivation
).

lemma(append:uniqueness,
all [l1,l2,l3,l4]: succeeds append(?l1,?l2,?l3) &
succeeds append(?l1,?l2,?l4) => ?l3 = ?l4,

derivation
).

The two properties can be found in the library file $(lib)/list/list.pr. And
as soon as they are in the internal database of LPTP we can define a binary
function symbol ** in the following way:
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:- definition fun(**,2,
all [l1,l2,l3]: succeeds list(?l1) =>
(?l1 ** ?l2 = ?l3 <=> succeeds append(?l1,?l2,?l3)),
existence by lemma(append:existence),
uniqueness by lemma(append:uniqueness)
).

In this definition, the domain and graph of of **/2 are the following formulas:

δ(?l1,?l2) := succeeds list(?l2)
γ(?l1,?l2,?l3) := succeeds append(?l1,?l2,?l3)

Note that **/2 is treated as a total function. If the second argument of **/2,
however, is not a list, or if it is not provably a list, then we know nothing about
the value of ?l1 ** ?l2. Note also, that LPTP treats **/2 no longer as a
constructor symbol. Thus, for example, the axioms

?l1 ** ?l2 <> 0
?l1 ** ?l2 = ?m1 ** ?m2 => ?l1 = ?m1 & ?l2 = ?m2

are no longer available.
There are two inference rules associated to a function definiton: the existence

and the uniqueness rule.



94 CHAPTER 4. MORE ABOUT FORMAL PROOFS

By: function existence 2.6%

Syntax:

formula by existence(name,arity)

Description: Assume that f has the following definition:

:- definition fun(f,n,
all [~x, y]: δ(~x) => (f(~x) = y <=> γ(~x, y)),
existence by fact(reference1),
uniqueness by fact(reference2)
).

Then, if δ(~t) is immediately derivable from ∆, the derivation step

γ(~t, f(~t)) by existence(f,n)

derives the formula γ(~t, f(~t)).

Formal rule:

Γ; ∆ . δ(~t)
(all [~x, y]: δ(~x) => (f(~x) = y <=> γ(~x, y))) ∈ Def

Γ{γ(~t, f(~t)) by existence(f,n)}∆ ; γ(~t, f(~t))

Example: Assume that **/2 has the standard definition from above. Then
the following is a correct derivation:

[succeeds list(?l2) by gap,
succeeds append(?l1,?l2,?l1 ** ?l2) by existence(**,2)]
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By: function uniqueness 1.8%

Syntax:

term = term by uniqueness(name,arity)

Description: Assume that f has the following definition:

:- definition fun(f,n,
all [~x, y]: δ(~x) => (f(~x) = y <=> γ(~x, y)),
existence by fact(reference1),
uniqueness by fact(reference2)
).

Then, if δ(~t) and γ(~t, s) are immediately derivable from ∆, the derivation step

f(~t) = s by uniqueness(f,n)

derives the formula f(~t) = s and the derivation step

s = f(~t) by uniqueness(f,n)

derives the formula s = f(~t).

Formal rules:

Γ; ∆ . δ(~t) Γ; ∆ . γ(~t, s)
(all [~x, y]: δ(~x) => (f(~x) = y <=> γ(~x, y))) ∈ Def

Γ{f(~t) = s by uniqueness(f,n)}∆ ; f(~t) = s

Γ; ∆ . δ(~t) Γ; ∆ . γ(~t, s)
(all [~x, y]: δ(~x) => (f(~x) = y <=> γ(~x, y))) ∈ Def

Γ{s = f(~t) by uniqueness(f,n)}∆ ; s = f(~t)

Example: Assume that **/2 has the standard definition from above. Then
the following is a correct derivation:

[succeeds list(?l2) by gap,
succeeds append(?l1,?l2,[?x|?l3]) by gap,
?l1 ** ?l2 = [?x|?l3] by uniqueness(**,2),
[?x|?l3] = ?l1 ** ?l2 by uniqueness(**,2)]
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4.3 Axioms and built-in predicates

Most Prolog programs use built-in predicates. Therefore it is important for
a system like LPTP to support built-in predicates. The addition of built-in
predicates to LPTP, however, is not so trivial as it may seem. The fundamental
questions are: What are the right axioms for the built-in predicates? Why do
axioms like

all [x,y]: succeeds ?x =< ?y => ?x = ?y \/ succeeds ?x < ?y,
all x: succeeds call(list,?x) <=> succeeds list(?x),
all [x1,x2,y]: succeeds ?x1 is ?y & succeeds ?x2 is ?y =>
?x1 = ?x2

not destroy the properties (T1)–(T7) of LPTP? — The answers are given in [16].
Here, we just recall what is necessary to use the LPTP system.

An atom R(t1,...,tn) is called a built-in atom, if R is a built-in predicate.
The built-in in predicates that LPTP supports at the moment are:

atom/1
integer/1
atomic/1
is/2
</2
=</1
call/n+ 1
current op/3

This list can be extended by arbitrary built-in predicates provided that they
they fit into the following model.

Evaluation of built-in predicates

We assume that the result of the evaluation of a built-in atom is a goal. We
write eval(A) for the result of the evaluation of A. Thus eval(A) is a goal. Since
not every built-in atom can be evaluated, the function eval is a partial function.
We assume that eval has the following two properties:

(D) If A ∈ dom(eval), then Aσ ∈ dom(eval) for each substitution σ.

(E) eval(Aσ) ≡ eval(A)σ for all A ∈ dom(eval) and all substitutions σ.

Condition (D) says that if an atom can be evaluated then every instance of
the atom can also be evaluated. Condition (E) says that the evaluation of an
instance of an atom must be compatible with the evaluation of the atom itself.
This condition is needed to make the lifting lemma true.

The function eval is defined in the following way:
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Built-in predicate: atom/1

Type condition: atom(t) ∈ dom(eval) :⇐⇒ t is a ground term.

Evaluation:

eval(atom(t)) :=
{
true, if t is a constant but not a number;
fail, otherwise.

Example: eval(atom(c)) = true, eval(atom(f(0))) = fail,
eval(atom(2)) = fail.

Built-in predicate: integer/1

Type condition: integer(t) ∈ dom(eval) :⇐⇒ t is a ground term.

Evaluation:

eval(integer(t)) :=
{
true, if t is an integer;
fail, otherwise.

Example: eval(integer(2)) = true, eval(integer(c)) = fail.

Built-in predicate: atomic/1

Type condition: atomic(t) ∈ dom(eval) :⇐⇒ t is a ground term.

Evaluation:

eval(atomic(t)) :=
{
true, if t is a constant or a number;
fail, otherwise.

Example: eval(atomic(2)) = true, eval(atomic(c)) = true,
eval(atomic(f(c))) = fail.

Built-in predicate: is/2

Type condition: (s is t) ∈ dom(eval) :⇐⇒ t is a ground arithmetic term,
i.e. a term built-up from integer constants 0, 1, -1, 2, -2, . . . using the arith-
metical operators +, -, *, /.

Evaluation:

eval(s is t) := (s = n), where n is the value of the term t.

Example: eval(?x is (2 * 2) + 3) := (?x = 7).

Built-in predicate: </2

Type condition: (s < t) ∈ dom(eval) :⇐⇒ s and t are ground arithmetic
terms (see is/2).

Evaluation:
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eval(s < t) :=
{
true, if the value of s is less than the value of t;
fail, otherwise.

Example: eval(2 < 3) = true, eval(2 < 2) = fail, eval(3 < 2) = fail.

Built-in predicate: =</2

Type condition: (s =< t) ∈ dom(eval) :⇐⇒ s and t are ground arithmetic
terms (see is/2).

Evaluation:

eval(s =< t) :=

{ true, if the value of s is less than or equal to
the value of t;

fail, otherwise.

Example: eval(2 =< 3) = true, eval(2 =< 2) = true, eval(3 =< 2) = fail.

Built-in predicate: call/n+ 1

Type condition: call(s,t1,...,tn) ∈ dom(eval) :⇐⇒ s is a constant.

Evaluation:

eval(call(s,t1,...,tn)) := s(t1,...,tn).

Example: eval(call(list,[1,2])) = list([1,2]),
eval(call(<,?x,?y)) = (?x < ?y).

Built-in predicate: current op/3

Type condition: current op(t1,t2,t3) ∈ dom(eval) :⇐⇒ t1 is an integer, t2
is one of the constants fx, fy, xfy, xfx, yfx, xf, yf and t3 is ground.

Evaluation: eval(current op(t1,t2,t3)) := G1 \/ ... \/ Gn,
where the goals Gi correspond to the entries in the operator table, for example,

Gi = (t1 = 500 & t2 = yfx & t3 = (+)).

Rules for built-in predicates

There are two rules for built-in predicates. The derivation steps have the fol-
lowing form:

ϕ by builtin

These derivation steps correspond to the by completion steps for user-defined
predicates.
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By: built-in (closure) 0.9%

Syntax:

succeeds atom by builtin
fails atom by builtin
terminates atom by builtin

Description: Assume that A is a built-in atom such that A ∈ dom(eval) and
eval(A) = G. If S(G) is immediately derivable from ∆ then the derivation step

succeeds A by builtin

derives the formula (succeeds A). If F (G) is immediately derivable from ∆
then the derivation step

fails A by builtin

derives the formula (fails A). If T (G) is immediately derivable from ∆ then
the derivation step

terminates A by builtin

derives the formula (terminates A).

Formal rules:

A ∈ dom(eval) Γ; ∆ . S(eval(A))
Γ{succeeds A by builtin}∆ ; succeeds A

A ∈ dom(eval) Γ; ∆ . F (eval(A))
Γ{fails A by builtin}∆ ; fails A

A ∈ dom(eval) Γ; ∆ . T (eval(A))
Γ{terminates A by builtin}∆ ; terminates A

Example: The following is a correct derivation:

[succeeds 0 < 1 by builtin,
terminates ?x < ?y by gap,
terminates call(<,?x,?y) by builtin]

See also: The functions S, F and T are defined on page 46.
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By: built-in (fixed point) 0.3%

Syntax:

def succeeds atom by builtin
def fails atom by builtin
def terminates atom by builtin

Description: Assume that A is a built-in atom such that A ∈ dom(eval) and
eval(A) = G. If (succeeds A) is immediately derivable from ∆, then the
derivation step

def succeeds A by builtin

derives the formula S(G). If (fails A) is immediately derivable from ∆, then
the derivation step

def fails A by builtin

derives the formula F (G). If (terminates A) is immediately derivable from ∆,
then the derivation step

def terminates A by builtin

derives the formula T (G).

Formal rules:

A ∈ dom(eval) Γ; ∆ . succeeds A

Γ{def succeeds A by builtin}∆ ; S(eval(A))

A ∈ dom(eval) Γ; ∆ . fails A

Γ{def fails A by builtin}∆ ; F (eval(A))

A ∈ dom(eval) Γ; ∆ . terminates A

Γ{def terminates A by builtin}∆ ; T (eval(A))

Example: Under the assumption succeeds ?x is 2 + 3 the derivation step

def succeeds ?x is 2 + 3 by builtin

derives the fomula ?x = 5.

See also: The functions S, F and T are defined on page 46.
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Inference rule: atom introduction (built-in) 0.2%

Syntax:

succeeds atom
fails atom
terminates atom

Description: Assume that A is a built-in atom such that A ∈ dom(eval) and
eval(A) = G. If S(G) is derivable from ∆ with length n then (succeeds A)
is derivable with length n+ 1. If F (G) is derivable from ∆ with length n then
(fails A) is derivable with length n + 1. If T (G) is derivable from ∆ with
length n then (terminates A) is derivable with length n+ 1.

Formal rules:
A ∈ dom(eval) Γ; ∆ .n S(eval(A))

Γ; ∆ .n+1 succeeds A

A ∈ dom(eval) Γ; ∆ .n F (eval(A))
Γ; ∆ .n+1 fails A

A ∈ dom(eval) Γ; ∆ .n T (eval(A))
Γ; ∆ .n+1 terminates A

See also: The functions S, F and T are defined on page 46.
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Axioms for built-in predicates

Unfortunately the above rules for built-in predicates are not enough. There is
nothing that corresponds to the induction principle for user-defined predicates.
The only way to use statements like

all [x,y]: succeeds ?x =< ?y => ?x = ?y \/ succeeds ?x < ?y,

is by postulating them as axioms, for example as:

:- axiom(leq:less,
all [x,y]: succeeds ?x =< ?y => ?x = ?y \/ succeeds ?x < ?y
).

An axiom is treated like a lemma without proof. The formula is added to the
internal data base of LPTP as an axiom and it is written to the ‘.thm’ file. It
can then be referred to in derivation steps. For example:

[succeeds ?x =< ?y by gap,
?x = ?y \/ succeeds ?x < ?y by axiom(leq:less)]

Axioms cannot be arbitrary. They must be true in all structures that are least
fixed points of the standard operator associated to a logic program (see [16]).
The LPTP cannot check whether this condition is satisfied or not, therefore the
user is responsible for it. To give an idea what kind of axioms are true in fixed
point structures we give some examples. First we define an auxiliary predicate
that is needed in some axioms:

arithmetic(X) :- integer(X).
arithmetic(X + Y) :- arithmetic(X), arithmetic(Y).
arithmetic(X - Y) :- arithmetic(X), arithmetic(Y).
arithmetic(X * Y) :- arithmetic(X), arithmetic(Y).
arithmetic(X / Y) :- arithmetic(X), arithmetic(Y).
arithmetic(- X) :- arithmetic(X).

Here, is a list of possible axioms for built-in preciates:

:- axiom((is):integer,
all [x,y]: succeeds ?x is ?y & succeeds arithmetic(?y) =>
succeeds integer(?x)
).

:- axiom((is):function,
all [x1,x2,y]: succeeds ?x1 is ?y & succeeds ?x2 is ?y =>
?x1 = ?x2
).

:- axiom((is):existence,
all y: succeeds arithmetic(?y) => (ex x: succeeds ?x is ?y)
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).

:- axiom((is):termination,
all [x,y]: succeeds arithmetic(?y) => terminates ?x is ?y
).

:- axiom(integer:gr,
all x: succeeds integer(?x) => gr(?x)
).

:- axiom(leq:termination,
all [x,y]: succeeds arithmetic(?x) &
succeeds arithmetic(?y) => terminates ?x =< ?y,
).

:- axiom(less:termination,
all [x,y]: succeeds arithmetic(?x) &
succeeds arithmetic(?y) => terminates ?x < ?y,
).

:- axiom(leq:reflexive,
all x: succeeds arithmetic(?x) => succeeds ?x =< ?x
).

:- axiom(less:leq,
all [x,y]: succeeds ?x < ?y => succeeds ?x =< ?y
).

:- axiom(leq:less,
all [x,y]: succeeds ?x =< ?y => ?x = ?y \/ succeeds ?x < ?y
).

:- axiom(less:success:leq:failure,
all [x,y]: succeeds ?x < ?y => fails ?y =< ?x
).

:- axiom(less:failure:leq:success,
all [x,y]: fails ?x < ?y => succeeds ?y =< ?x
).

:- axiom(leq:less:transitive,
all [x,y,z]: succeeds ?x =< ?y & succeeds ?y < ?z =>
succeeds ?x < ?z
).

:- axiom(less:leq:transitive,
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all [x,y,z]: succeeds ?x < ?y & succeeds ?y =< ?z =>
succeeds ?x < ?z
).

In the presence of built-in predicates the statement (T4) of the beginning of this
chapter has to be read as follows:

(T4) If P ` terminates A, then the Prolog computation of A terminates in-
dependently of the order of clauses in the Program. Moreover, the com-
putation of A does not flounder. This means, that if a built-in atom B is
called then B belongs to the domain of eval and can be evaluated. If a
negated goal is called, then it is ground.

Of course, this theorem is only true if the axioms for the built-in axioms satisfy
the condition mentioned above.



Chapter 5

Commands and Tactics

In this chapter we introduce the different modes of LPTP and say how they
can be changed. Then we complete the list of commands of LPTP. Finally we
explain the tactics of LPTP.

5.1 Commands

The commands that are used in proof files have already been described in Chap-
ter 2. The commands for modes and flags have been described in the previous
section. The remaining commands of LPTP are listed below. Some of them
have already been introduced earlier, but we repeat them here for a complete
survey.

?- def(formula).
The command def(ϕ) prints the definition of ϕ to the standard output.
If ϕ is of the form succeeds A, fails A or terminates A, then the
defining formula of ϕ is printed. The atom A can be user-defined or built-
in. If ϕ is an atom of the form R(~t), where R is an abbreviation, then
the definition of R is expanded. See also the Emacs command ‘C-c i d’.

?- facts(reference).
This command prints all facts that are stored in the internal database
of LPTP and match reference to the standard output. The argument
reference of the command can be a name or a colon separated list of
names. The command prints all the facts of the internal database that
contain all the components of reference in their names. For example,
the command facts(list) prints all facts about list; the command
facts(length:nat) prints all facts about length and nat. See also the
Emacs command ‘C-c i l’.

?- depends(fact(reference)).
This command prints all facts on which fact(reference) depends to the

105
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standard output. For this command the flag write dependencies has to
be set. See p. 121 for more details.

?- mark(formula).
Several tactics use a marked formula. The command mark(ϕ) markes the
formula ϕ such that it can be used by tactics later. See Sect. 5.2 for more
details. See also the Emacs command ‘C-c i m’.

?- formula by [tactic,options,...].
This command tries to prove formula by tactic. See Sect. 5.2 for more
details on tactics.

Examples

In the following example we assume that the clauses and the theorems for lists
have been loaded with the following commands:

?- needs gr($(lib)/list/list).
?- needs thm($(lib)/list/list).

The first example shows the expansion of an abbreviation.

?- def(sub(?l1,?l2)).

all x: succeeds member(?x,?l1) => succeeds member(?x,?l2)

The next example computes the defining form of a user-defined predicate.

?- def(succeeds append([?x|?l0],?l1,?l2)).

ex l3: ?l2 = [?x|?l3] & succeeds append(?l0,?l1,?l3)

The next two examples compute the definitions of built-in predicates.

?- def(fails call(list,?l)).

fails list(?l)

?- def(succeeds ?x is 2 + 5).

?x = 7

The next example lists all facts about member.

?- facts(member).

Lemma (member:termination)
all [x,l]: succeeds list(?l) => terminates member(?x,?l).

...
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The next example shows how to use tactics as interactive commands.

?- p & (q \/ r) => (p & q) \/ (p & r) by [auto(5),r(20)].

======
assume(p & (q \/ r),
cases(q,
[],
r,
[],
p & q \/ p & r),
p & q \/ p & r)
======

The command ‘by’ is only used for small examples. In real proofs a pseudo
derivation step is applied. The next section explains the details.

5.2 Tactics

The most convenient way to use tactics is together with the LPTP Emacs mode
which is described in Appendix A. If this mode is installed correctly, then proof
files with the extenstion ‘.pr’ let Emacs go into LPTP mode. In this mode
there is a menu on on the menubar which lists the tactics.

Tactics are implemented as pseudo derivation steps similar to the gap and
because derivation step. If LPTP reaches a tactic derivation step, it tries to
apply the tactics using the current list of assumptions Γ, the marked formula
(if it exists), and the current list of already derived formulas ∆. As a side
effect LPTP writes a derivation to standard output. The user can then replace
the pseudo derivation step by the derivation computed by LPTP. In Emacs
mode this is done with the get command. Some tactics use the so-called marked
formula. Sometimes, there are more than one possible ways to apply a tactics. In
this case, the option more forces LPTP to backtrack for alternative possibilities.

We start with the general description of a tactic derivation step and the pos-
sible options. The single tactics will be explained afterwards alphabetically. The
first tactic auto is conceptually different from the remaining tactics. It is used
for automatic derivations. The other tactics are used for interactive derivation.
They only compute the next two or three obvious steps in a derivation.
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Derivation step: tactic

Syntax:

formula by []
formula by [tactic]
formula by [tactic,option,...]

Description: The derivation step

ϕ by [tactic,option,...]

derives the formula ϕ. As a side effect, LPTP tries to prove ϕ using tactic. The
(partial) derivation is written to standard output.

Options:

more
This option tells LPTP to ask the user whether he wants alternative so-
lutions.

l(n)
This option tells LPTP to indent the output by n columns. Default is
l(0). In Emacs mode, the insertion of the appropriate l(n) option is
done automatically. The l stands for left margin.

r(n)
This option tells LPTP that the width of the screen is n columns. The
number n is used for breaking formulas at appropriate places. Default is
r(76). The r stands for right margin.

Formal rule:

Γ{ϕ by [...]}∆ ; ϕ

Example: The derivation step

sub(?l1,?l2) by [unfold,l(4)]

has — as a side effect — the following output:

======
[assume(succeeds member(?x,?l1),
succeeds member(?x,?l2) by gap,
succeeds member(?x,?l2)),
sub(?l1,?l2) by introduction(sub,2)]

======
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Tactic: automatic auto(n)

Description: The tactics

ϕ by [auto(n),...]
ϕ by [auto(n),more,...]

causes LPTP to search for an automatic proof of ϕ from the current list of
assumptions Γ and the list of already derived formulas ∆. The integer n is a
bound for the depth of the search. The option more causes LPTP to search
for alternative derivations. In Emacs one control the search depth using the
argument C-u n.

Emacs commands: C-c i a, C-u n C-c i a.

Tactic: case splitting case

Description: The tactics

ϕ by [case,...]
ϕ by [case,more,...]

pick a disjunction ψ from the list of already derived formulas ∆ and tries to
prove ϕ by a case splitting on that disjunction. If the disjunction ψ is of the
form ψ1 \/ ψ2 it inserts at least the following derivation step:

case(ψ1,
ϕ by gap,
ψ2,
ϕ by gap,
ϕ)

The option more causes LPTP to pick a different disjunction. If a disjunction
has been marked using ‘C-c i m’, then this disjunction is used.

Emacs commands: C-c i c, C-u C-c i c
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Tactic: completion (fixed point) comp

Description: The tactics

ϕ by [comp,...]
ϕ by [comp,more,...]

pick a formula ψ of the form (succeeds A) or (fails A) or (terminates A)
from the list of already derived formulas ∆; then they insert the derivation step

def ψ by completion

and try to derive ϕ from DP (ψ). The option more causes LPTP to pick a
different ψ from ∆. If a formula has been marked using ‘C-c i m’, then this
formula is used.

Emacs commands: C-c i o, C-u C-c i o.

Tactic: expansion of an abbreviation elim

Description: The tactics

ϕ by [elim,...]
ϕ by [elim,more,...]

pick an atom R(~t) from the list of already derived formulas ∆ such that R is a
definded predicate symbol. Assume that R has the following definition:

:- definition pred(R,n,all [~x]: R(~x) <=> ψ(~x)).

Then the tactics expand R(~t) into the formula ψ(~t). They insert the derivation
step

ψ(~t) by elimination(R,n)

and try to prove ϕ from ∆ plus ψ(~t). The option more causes LPTP to pick
another atom R(~t) from ∆. If an atom R(~t) has been marked using ‘C-c i m’,
then this atom is used.

Emacs commands: C-c i e, C-u C-c i e.



5.2. TACTICS 111

Tactic: existence elimination ex

Description: The tactics

ϕ by [ex,...]
ϕ by [ex,more,...]

pick an existentially quantified formula (ex [~x]: ψ) from the list of already
derived formulas ∆ and try to prove ϕ by eliminating the existential quantifier
and assuming that there are ~x such that ψ holds. They insert at least the
following derivation steps:

exist(~x,
ψ,
ϕ by gap,
ϕ)

The option more causes LPTP to pick a different existentially quantified formula
from ∆. If an existentially quantified formula has been marked using ‘C-c i
m’, then this formula is used.

Emacs commands: C-c i x, C-u C-c i x.
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Tactic: fact fact

Description: The tactic

ϕ by [fact,...]

tries to derive ϕ by a lemma, theorem, corollary or axiom that is stored in the
internal database. As a result it prints a derivation step like the following:

ϕ by lemma(append:termination)

Note, that the user does not have to remeber the names of the theorems. LPTP
will find them automatically. Sometimes, it even changes ϕ. For example, if ϕ
is the equation s = t, then the result can be the following:

t = s by lemma(plus:successor)

Thus, LPTP has commuted s and t.
In a first run, LPTP tries to match ϕ against the head of one of the stored

facts. If this does not yield anything, then LPTP goes through the whole
database and tries each fact in turn for deriving ϕ. The second run can take
some time.

Example: Assume that the corollary(lh:cons) refers to the formula

all [x,l]:succeeds list(?l) => lh([?x|?l]) = s(lh(?l))

Then we can write:

assume(succeeds list(?l),
lh([?x|?l]) = s(lh(?l)) by [fact],
...)

The system will answer with:

lh([?x|?l]) = s(lh(?l)) by corollary(lh:cons)

Emacs command: C-c i f.
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Tactic: induction ind

Description: The tactic

ϕ by [ind,...]

generates the induction scheme for ϕ. In order that the induction scheme can
be created, the formula ϕ must have the following form:

all [~x]: succeeds R(~x) => ψ

Or, it must be a conjunction of such formulas:

(all [~x]: succeeds R(~x) => ψ) & ...

The predicate R must be user-defined, and the clauses for R must be loaded
into the internal database.

Sometimes the formula that has to be proved by induction is not in the right
form. For example, let ϕ be the formula

all [~x, ~y]: succeeds R(~x) & ψ => χ.

Then the tactic ind does the following. It creates the induction scheme for the
following formula ϕ′ which is equivalent to ϕ:

all [~x]: succeeds R(~x) => (all [~y] ψ => χ).

Example: The tactic

all [l1,l2,l3]: succeeds list(?l3) =>
terminates append(?l1,?l2,?l3) by [ind]

generates the following derivation:

induction(
[all l3: succeeds list(?l3) =>

(all [l1,l2]: terminates append(?l1,?l2,?l3))],
[step([],
[],
[],
all [l1,l2]: terminates append(?l1,?l2,[])),

step([x,l],
[all [l1,l2]: terminates append(?l1,?l2,?l),
succeeds list(?l)],
[],
all [l1,l2]: terminates append(?l1,?l2,[?x|?l]))])

It generates the induction scheme for the following formula:

all l3: succeeds list(?l3) =>
(all [l1,l2]: terminates append(?l1,?l2,?l3))
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Then it derives automacally the original formula:

all [l1,l2,l3]: succeeds list(?l3) =>
terminates append(?l1,?l2,?l3)

Emacs command: C-c i i.

Tactic: induction (quantifier-free) indqf

Description: If ϕ is the formula

all [~x, ~y]: succeeds R(~x) & ψ => χ.

then the tactic

ϕ by [indqf,...]

generates the induction scheme for the following formula:

all [~x]: succeeds R(~x) => (ψ => χ).

Example: The tactic

all [y,l]: succeeds list(?l) =>
terminates member(?y,?l) by [indqf]

generates the following derivation:

induction(
[all l: succeeds list(?l) => terminates member(?y,?l)],
[step([],[],[],terminates member(?y,[])),
step([x,l],
[terminates member(?y,?l),
succeeds list(?l)],
[],
terminates member(?y,[?x|?l]))])

Emacs command: C-c i q.
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Tactic: totality tot

Description: The tactics

ϕ by [tot,...]
ϕ by [tot,more,...]

pick a formula of the form (terminates A) from the list of already derived for-
mulas ∆. Then they make a case splitting with (succeeds A) and (fails A).
At least they print the following derivation step:

cases(succeeds A,
ϕ by gap,
fails A,
ϕ by gap,
ϕ)

The option more causes LPTP to pick a different termination atom from ∆ and
to make a different case splitting on success and failure. If a termination atom
has been marked using ‘C-c i m’, then this atom is used.

Emacs commands: C-c i t, C-u C-c i t.

Tactic: unfold (success) unfold

Description: The tactic

succeeds A by [unfold,...]

computes the defining formula DP (succeeds A) and tries to derive this for-
mula. At least it prints the following derivation:

[DP (succeeds A) by gap,
succeeds A by completion]

Emacs command: C-c i u.
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Tactic: unfold (failure) unfold

Description: The tactic

fails A by [unfold,...]

computes the defining formula DP (fails A) and tries to derive this formula.
At least it prints the following derivation:

[DP (fails A) by gap,
fails A by completion]

Emacs command: C-c i u.

Tactic: unfold (termination) unfold

Description: The tactic

terminates A by [unfold,...]

computes the defining formula DP (terminates A) and tries to derive this for-
mula. At least it prints the following derivation:

[DP (terminates A) by gap,
terminates A by completion]

Emacs command: C-c i u.

Tactic: unfold (abbreviation) unfold

Description: Assume that R has the following definition:

:- definition pred(R,n,all [~x]: R(~x) <=> ϕ(~x)).

Then the tactic

R(~t) by [unfold,...]

expands the atom R(~t) into the formula ϕ(~t). It then tries to prove ϕ(~t). At
least it prints the following derivation:

[ϕ(~t) by gap,
R(~t) by introduction(R,n)

Emacs command: C-c i u.
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Tactic: unfold (termination of a conjunction) unfold

Description: The tactic

terminates (G1 & G2 & ... & Gn) by [unfold,...]

does the following. It tries to prove T (G1) and the formula T (G2 & ... & Gn)
(see page 46). At least it prints the following derivation:

[T (G1) by gap,
T (G2 & ... & Gn) by gap,
terminates (G1 & G2 & ... & Gn)]

The tactic

terminates (G1 & G2 & ... & Gn) by [unfold,more,...]

tries to prove the following formula:

Terminates G1 & (succeeds G1 => terminates (G2 & ... & Gn)).

At least it prints the following derivation:

[T (G1) by gap,
assume(S(G1),
T (G2 & ... & Gn) by gap,
T (G2 & ... & Gn)),
terminates (G1 & G2 & ... & Gn)]

Emacs commands: C-c i u, C-u C-c i u.
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Tactic: unfold (uniqueness) unfold

Description: Assume that f has the following definition:

:- definition fun(f,n,
all [~x, y]: δ(~x) => (f(~x) = y <=> γ(~x, y)),
existence by ...,
uniqueness by ...
).

Then the tactic

f(~t) = s by [unfold,...]

does the following. It tries to prove the formulas δ(~t) and γ(~t, s). At least it
prints out the following derivation:

[δ(~t) by gap,
γ(~t, s) by gap,
f(~t) = s by uniqueness(f,n)]

Emacs commands: C-c i u.

Tactic: unfold (existence) unfold

Description: Assume that f has the following definition:

:- definition fun(f,n,
all [~x, y]: δ(~x) => (f(~x) = y <=> γ(~x, y)),
existence by ...,
uniqueness by ...
).

Then the tactic

γ(~t, f(~t)) by [unfold,...]

does the following. It tries to prove the formula δ(~t). At least it prints out the
following derivation:

[δ(~t) by gap,
γ(~t, f(~t)) by existence(f,n)]

Emacs commands: C-c i u.
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Tactic: debug debug

Description: The tactic

formula by [debug,...]

prints as a side effect the set of protected variables and the list of available
formulas to standard output.

Emacs command: C-c i b.
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5.3 Flags and Modes

The behavior of the LPTP system is controlled by flags. Flags can be set and
unset in the following way:

?- set(Flag).
?- unset(Flag).

In most cases the user does not have to set the flags individualy but can use the
four predefined modes of LPTP.

?- pedantic.
?- plain.
?- draft.
?- show.

LPTP is by default in pedantic mode when it is started. It checks everything
and reports all irregularities as warnings or error messages. The TEX output
files are written and the theorem files as well. The plain mode is a little bit
faster, since it checks only what is really necessary and does not write the TEX
output files. Both, pedantic mode and plain mode are used to check whole proof
files. The draft mode is used for checking single proofs. It does not write any
output and does not assert the facts that is proved to the database, because in
most cases the proof of such a fact contains gap. The draft mode is the fastest
mode. It ignores errors. The show mode prints the names of the theorems on
the screen. This is useful because it shows the progress of the system when it
is checking a large file.

The four modes pedantic, plain, draft and show set and unset certain flags
according to the following table:

pedantic plain draft show

check everything yes no yes no

fail on error yes yes no no

unique names yes no no yes

assert facts yes yes no yes

report because yes no no no

tex output yes no no no

thm output yes yes no no

print names no no no yes

The single flags have the following effects when set:

check everything
The following additional tests are made: if a fact is asserted when reading
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a ‘.thm’ file, then the fact is checked for syntactical correctness; when for-
mulas are compiled into the internal representation it is checked whether
the internal representation is a correct formula. The same is done for
derivations.

fail on error
In case of an error the system fails after it has printed the error message.

unique names
If a fact is asserted then it is tested whether the name of the fact is new.
Unique names are not really necessary. A proof can be correct even if it
contains two different lemmas with the same name.

assert facts
After a proof has been checked the formula it proves is asserted to the
internal database. If the flag assert facts is set, then this is done, even
if the proof contains gaps or incorrect derivation steps.

report because
Prints a warning for because gaps in proofs. Sometimes the warnings
abouts gaps in proofs are annoying and the user wants to turn them of.
This can be done by unsetting the flag report because.

tex output
If the flag tex output is unset, then no TEX output is written even if the
file contains a tex file command.

thm output
If the flag thm output is unset, then no theorem file is written even if the
file contains a thm file command.

print names
Prints the names of the theorems, lemmas, corollaries and axioms on the
screen. This is useful if the user wants to know where the system is.

write dependencies
If the flag write dependencies is set then the dependencies between the-
orems, lemmas, corollaries, axioms and function definitions are written
to the ‘.thm’ file. If the ‘.thm’ file is later read into the system using
needs thm, then the dependencies are added to the internal database and
are printed to the standard output with the command depends.

debug
Go into debugging mode. The debugging mode is used to debug the system
and not to debug proofs. Use ϕ by [debug] for debugging the formula ϕ
in a proof, i.e. to see why ϕ is not derivable.

global error, set global error
Internal flags that are set and unset by LPTP and not by the user.
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The library

(UNDER CONSTRUCTION)

6.1 Natural numbers and arithmetic

Some rules for natural numbers are built-in to LPTP.

(. . . )

See: ‘lptp/lib/nat/’

By: addition 0.0%

Syntax:

term = term by addition

6.2 Lists

Some rules for list processing are built-in to LPTP.

(. . . )

See: ‘lptp/lib/list/’

By: concatenation 1.5%

Syntax:

term = term by concatenation
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Examples

(UNDER CONSTRUCTION)

7.1 Sorting algorithms with call/3

See: ‘lptp/lib/builtin/’

7.2 A tautology checker

See: ‘lptp/examples/taut/’

7.3 A verified parser for ISO standard Prolog

See: ‘lptp/examples/parser/’

7.4 Algorithms for AVL-trees

See: ‘lptp/examples/avl/’

7.5 Min-max and alpha-beta pruning

See: ‘lptp/examples/alpha/’

7.6 A union-find based unification algorithm

See: ‘lptp/examples/mgu/’
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Appendix A

Emacs mode

LPTP mode customizes Emacs for editing formal proofs. It changes the TAB, DEL
and LFD keys and defines ‘C-c i x’ commands for the interaction with an inferior
Prolog process that runs LPTP. The output created by LPTP is automatically
copied from the Prolog buffer to the edit buffer. LPTP mode provides a menubar
menu and it makes it possible to select a formula by double-clicking on it with
the left mouse button.

Installing LPTP mode

The following lines in the file ‘.emacs’ will make Emacs use LPTP mode auto-
matically when editing files with a ‘.pr’ extension:

(autoload ’lptp-mode "~/lptp/etc/lptp-mode"
"Major mode for editing formal proofs" t)

(setq auto-mode-alist
(cons ’("\\.pr$" . lptp-mode) auto-mode-alist))

The string "~/lptp/etc/lptp-mode" in the first line is the path to the file
‘lptp-mode.el’. It has to be changed accordingly. If the directory of the file
‘lptp-mode.el’ is already in the Emacs load path, then one can use the string
"lptp-mode".

The Emacs lisp file ‘lptp-mode.el’ can be compiled with the command ‘M-x
byte-compile-file’. Emacs will then use the byte-code file with the ‘.elc’
extension.

The following two variables determine the Prolog interpreter and the com-
mand that is used to load the LPTP system into the Prolog interpreter.

prolog-program-name
A variable that contains the command for starting Prolog. Example values
are: "sicstus", "quintus", "cprolog".
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lptp-start-string
A variable that contains the command for loading the LPTP system into
Prolog interpreter. Example values are:
"load(lptp)", "[lptp]", "consult(’lptp.pl’)".

If the LPTP system has been compiled so that it extends a Prolog interpreter
(eg. GNU Prolog), then the variables have to be set in the following way:

(defvar prolog-program-name "/home/staerk/lptp/bin/lptp"
"Program name for invoking an inferior Prolog process.")

(defvar lptp-start-string ""
"The Prolog command to load the LPTP system.")

These variables can be changed in the file ‘lptp-mode.el’ or they can be set
using a so-called hook in the ‘.emacs’ file:

(add-hook ’lptp-mode-hook
(lambda ()
(setq prolog-program-name "/usr/local/bin/sicstus")
(setq lptp-start-string

"consult(’/home/staerk/lptp/src/lptp.pl’)")))

You can also use a so called ‘local variables list’ at the end of a file that you
want to edit in LPTP mode. Include the following lines as comments at the end
of the file:

% Local Variables:
% mode: lptp
% End:

These lines tell Emacs to use LPTP mode.

Editing formal proofs

C-c C-a (lptp-beginning-of-formula)
Go to the beginning of this formula or to the beginning of this proof step.

C-c C-e (lptp-end-of-formula)
Go to the end of this formula or to the end of this proof step.

C-c C-n (lptp-next-formula)
Go to the beginning of the next formula or the beginning of the next proof.

C-c C-p (lptp-previous-formula)
Go to the beginning of the previous formula or the beginning of the pre-
vious proof step.
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C-c C-m (lptp-mark-fact)
Put point at the beginning and mark at the end of this fact. A fact is an
axiom, corollary, lemma or theorem.

LFD (newline-and-indent)
Insert a newline, then indent.

TAB (indent-for-tab-command)
Indent this line in the proper way.

double-mouse-1 or C-c C-@ (lptp-mark-formula)
Put point at the beginning and mark at the end of this formula or this
proof step and copy it into the kill ring. The formula marked is the one
that contains point or follows point.

C-c i [ (lptp-insert-brackets)
Insert a pair of brackets around this formula and indent it in the proper
way.

C-c i r (ltpt-replace-ff-by-gap)
Replace ‘ff by gap’ by the previous formula.

C-c i ~ (lptp-backup-buffer)
Save buffer and make the previous version into a backup file.

The commands ‘C-c C-n’ and ‘C-c C-p’ are used to step quickly through
files that contain formal proofs. For example, put point to the first ‘:-’ and
type ‘C-c C-n’. The commands are also useful to jump from one step to another
in an induction proof. For example, put point to the word step and type ‘C-c
C-n’.

If you wish to operate on the current lemma, theorem or corollary, use ‘C-c
C-m’ which puts point at the beginning and mark at the end of the current fact.
For example, this is the easiest way to get ready to move the fact to a different
place in the text.

To indent a line, use the TAB command. No matter where in the line you
are when you type TAB, it aligns the line as a whole in an appropriate way. The
TAB command is useful to detect syntax errors early. In a list of formulas the
TAB command scans all the way back to the first formula of the list to calculate
the right indentation. This is not very efficient but has shown to be useful in
practise.

The double-mouse-1 command sets the region around the item you click
on. The text is put into the kill ring so that you can yank it with mouse-2. If
you double-click on an all or ex quantifier you select the whole scope of that
quantifier. If you double click on an opening bracket ‘[’ you select the whole list
of items which starts at the ‘[’. If you double-click on a key word like assume,
case, contra, induction or step you select the corresponding proof step. Turn
on region highlighting with the command ‘M-x transient-mark-mode’ to see
the effect of double-clicking. You can also put the command
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(transient-mark-mode 1)

in your ‘.emacs’ file.
The command ‘C-c i [’ is designed to facilitate a style of editing which

keeps brackets balanced at all times. ‘C-c i [’ inserts a pair of square brackets
around the current formula. It leaves point after the open bracket. It is used in
the following situation:

assume(ϕ,
ψ by gap,
χ)

Suppose that point is at the beginning of ψ. Then ‘C-c i [’ changes the proof
fragment to the following:

assume(ϕ,
[
ψ by gap],
χ)

Now one can insert a new formula in the line above ψ. This works also if the
formula ψ extends over several lines.

At the beginning proofs are usually empty. In a first step the empty proof
(ff by gap) has to be replaced by the formula of the lemma we want to prove.
The command ‘C-c i r’ is used in the following situation:

:- lemma(reference,
ϕ,
ff by gap
).

Suppose that point is at the beginning of ‘ff by gap’. Then ‘C-c i r’ changes
the text fragment to the following:

:- lemma(reference,
ϕ,
ϕ by []
).

Now one can send the buffer to a running LPTP process or one can use tactics
command to further edit the proof.

Usually, Emacs makes a backup for a file only the first time the file is saved.
The command ‘C-c i ~’ causes Emacs to make so-called numbered backups
with the extensions .~1~, .~2~, and so on. To prevent unlimited consumption
of disk space, Emacs deletes numbered backup versions automatically. The two
variables kept-old-versions and kept-new-versions control this deletion. In
longer proofs, we recommend to make backup files frequently.
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Running LPTP

M-x run-lptp
Run a new LPTP process in the buffer *lptp*.

M-x run-lptp-other-frame
Run a new LPTPprocess in the buffer *lptp* in a new frame.

M-x lptp-quit
Quit the LPTP process and kill the buffer *lptp*.

C-c i s (lptp-save-send-buffer)
Save buffer and send it to the LPTP process.

C-c i g (lptp-get)
Replace the current formula by the output from the LPTPprocess. The
point should be at the topmost level in the formula.

C-c i d (lptp-definition)
Take the atom that is in the region and display its definition in the *lptp*
buffer.

C-c i l (lptp-list-facts)
Lists all the facts about the symbol that is in the region in the *lptp*
buffer.

C-c i m (lptp-mark-assumption)
Take the formula that is in the region and send it to the *lptp* buffer as
marked assumption.

The commands ‘C-c i s’ and ‘C-c i g’ communicate with a Prolog process
that has been started with ‘M-x run-lptp’ or ‘M-x run-lptp-other-frame’.
‘C-c i s’ saves the buffer, if it has been modified and sends it to the Prolog
process. More precisely, it sends the command consult(’buffer-name’) to the
Prolog process. The ‘C-c i s’ command is not used very often, since it is
included in the tactics command.

The ‘C-c i g’ commands replaces the current formula with the output cre-
ated by the system. This command is smart and removes the enclosing brackets
of the LPTP output if this is necessary. For example, suppose that in the edit
buffer we have

assume(ϕ0,
[ϕ1,
ϕ2],
ϕ3)

and that point is at the beginning of formula ϕ1. Suppose that the output in
the *lptp* buffer looks as follows:
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======
[ψ0,
ψ1]

======

Then the ‘C-c i g’ command changes the edit buffer to

assume(ϕ0,
[ψ0,
ψ1,
ϕ2],
ϕ3)

Note, that the formulas ψ0 and ψ1 are even automatically moved one column
to the left.

The command ‘C-c i d’ displays the definition of an atom in the *lptp*
buffer if there is a definition for the atom. It sends the command def(region)
to the Prolog process.

The command ‘C-c i l’ lists all facts about a symbol in the *lptp* buffer.
It sends the command facts(region) to the Prolog process. A fact is a theorem,
lemma, corollary or an axiom.

The command ‘C-c i m’ markes a formula for later use in a tactics com-
mand. It sends the command mark(region) to the Prolog process.

Tactics

C-c i a (lptp-tactic-auto)
Try to prove this formula automatically. With a numeric argument change
the default search depth to that argument.

C-c i c (lptp-tactic-case)
Try to prove this formula by case splitting. With an argument, pick other
possible disjunctions.

C-c i o (lptp-tactic-comp)
Try to prove this formula by expanding a formula of the form succeeds
atom, fails atom or terminates atom. If a formula has been marked
using C-c i m, then use the marked formula. With an argument, pick
other possible formulas.

C-c i e (lptp-tactic-elim)
Try to prove this formula by expanding a defined predicate (eliminate the
predicate). If a formula has been marked using ‘C-c i m’, then use the
marked formula. With an argument, pick other possible formulas.

C-c i x (lptp-tactic-ex)
Try to prove this formula by elimination of an existential formula. If a
formula has been marked using ‘C-c i m’, then use the marked formula.
With an argument, pick other possible existentially quantified formulas.
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C-c i f (lptp-tactic-fact)
Try to prove this formula by a fact. A fact is an axiom, a lemma, a
theorem or a corollary.

C-c i i (lptp-tactic-ind)
Try to prove this formula by induction.

C-c i q (lptp-tactic-indqf)
Try to prove this formula by quanitfier-free induction.

C-c i t (lptp-tactic-tot)
Try to prove this formula by case splitting on a termination atom. If a
formula has been marked using ‘C-c i m’, then use the marked formula.
With an argument, pick other possible termination atoms.

C-c i u (lptp-tactic-unfold)
Try to prove this formula by unfolding it. With an argument, try different
possibilities.

C-c i b (lptp-tactic-debug)
Print the protected variables and the list of available formulas at this point
in the proof.

The tactics commands work all in a similar way. They insert at the end of
the current formula the string ‘by [name,l(n)]’, where name is taken from
lptp-tactic-name and n is the indentation of the formula. Then they save
the buffer and send it to the Prolog process. If there exists already a ‘by string’
extension, it is replaced.

With an argument, the commands insert ‘by [name,more,l(n)]’. For ex-
ample, if ‘C-c i c’ picks the wrong disjunction for case splitting, you can use
‘C-u C-c i c’ and force LPTP to backtrack and to display other possibilities.

The ‘C-c i a’ works different. It inserts ‘by [auto(5),more,l(n)]’ at the
end of the formula. If you want to increase the search depth from 5 to 9, use
‘M-9 C-c i a’ or ‘C-u 9 C-c i a’.

The LPTP menu

The LPTP menu is placed in the menu bar. The items of the menu are printed
in table A.1. You can customize the menu in the ‘lptp-mode.el’ file.

Memorizing Emacs commands

The ‘C-c i x’ commands can easily be memorized:
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Send buffer (C-c i s)
Get output (C-c i g)
--------------------------
Tactic: auto (C-c i a)
Tactic: case (C-c i c)
Tactic: comp (C-c i o)
Tactic: elim (C-c i e)
Tactic: ex (C-c i x)
Tactic: fact (C-c i f)
Tactic: ind (C-c i i)
Tactic: indqf (C-c i q)
Tactic: tot (C-c i t)
Tactic: unfold (C-c i u)
--------------------------
Print definition (C-c i d)
List facts (C-c i l)
Debug (C-c i b)
--------------------------
Mark formula (C-c i m)
Insert brackets (C-c i [)
Backup buffer (C-c i ~)
--------------------------
Run LPTP
Quit LPTP

Table A.1: The Emacs LPTP menu.
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Commands for tactics:

a — automatic
b — debug
c — case splitting
e — elimination of defined predicate
f — fact
i — induction
o — completion
q — quantifier-free induction
t — totality
u — unfold
x — existential elimination

Commands for interaction with LPTP:

d — definition
g — get output
l — list all facts
m — mark assumption
s — save and send buffer

Editing commands:

r — replace by previous
[ — insert brackets
~ — backup

Creating tags tables for proof files

In large multi-file proofs it is convenient to jump directly to the axioms, lem-
mas, theorems and corollaries using Emacs tags tables and the ‘M-.’ command
(find-tag). To create a tags table for ‘.pr’ files use the lptp-tags shell script
in the lptp/etc directory. Note that this script needs Emacs version 19.30 or
later. Go to the directory that contains the ‘.pr’ files and type the command

lptp-tags *.pr

This command will create a file TAGS listing the names of the component files
and the names and positions of all the axioms, lemmas, corollaries and theorems.
You can use the M-TAB command (complete-tag) to perform tags completion on
the text around point and ‘M-.’ (find-tag) to find the tag’s definition. The first
command is used to complete the name of a lemma, theorem or corollary and
the second command is used to find the lemma, theorem or corollary. See the
subsection on tags in the Emacs manual for more information. The lptp-tags
script is an abbreviation for
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etags
--language=none
--regex=’/:- \(axiom\|lemma\|corollary\|theorem\)[^,]*/’

Note that earlier versions of the etags program do not have the possibility to
define regular expressions.

Please do not define C-c 〈letter〉 as a key in your major modes. These sequences are
reserved for users; they are the only sequences reserved for users, so we cannot do
without them. Instead, define sequences consisting of C-c followed by a non-letter.
These sequences are reserved for major modes. Changing all the major modes in
Emacs 18 so they would follow this convention was a lot of work. Abandoning this
convention would waste that work and inconvenience the users.

The Emacs Lisp Manual, Version 2.1
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$(alias), 32
$(examples), 33
$(lib), 33
$(lptp), 33
$(tex), 33
$(tmp), 33
&, 40, 42
;, 50
.gr, 32
.pl, 32
.pr, 32
.tex, 32
.thm, 32
<=>, 43
<>, 41
≡, 44
=, 39, 41
=>, 43
., 50
?name, 38
[], 38
[term,...,term], 38
[term,...,term|term], 38
\/, 40, 43
~, 40, 42

all, 43
alpha conversion, 78
anonymous variable, 48
arity, 38, 40, 41
assert facts, 121
assume(...), 54
atom, 39
atomic formula, 41
atomic goal, 40
auto(n), 109
axiom, 31, 71, 80, 112

axiom(reference,formula), 31

because, 84
by, 52

because, 84
completion, 81, 83
gap, 84
reference, 80
sld, 82
tactic, 108

by, 106
by tag, 52
bye(file), 31

case, 109
case splitting, 55
case(...), 55
cases(...), 55
CET, 66
check everything, 120
Clark, 66
commands, 105
comments, 29
compile gr(path), 48
completion, 81, 83, 110
conjunction, 40, 42

elimination, 62
introduction, 65

constant, 38
constructor, 38
contra(...), 60
contradiction, 60
corollary, 31, 80, 112
corollary(...), 31

debug, 119, 121
def(formula), 105
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def fails atom, 42, 48
def succeeds atom, 42, 48
def terminates atom, 42, 48
definition

function, 31
predicate, 31

definition form, 47
definition fun(...), 31
definition pred(...), 31
depends, 105
depth of thinking, 62
derivation, 49

correct derivation, 50
derivation step

assume, 54
by, 52
cases, 55
contra, 60
exist elim, 56
formula, 53
indirect, 61
induction, 57

derivation step, 51
disjunction, 40, 43

elimination, 55
introduction, 67, 77

DP (fails A), 48
DP (succeeds A), 48
DP (terminates A), 48
draft, 120

elim, 110
empty list, 38
equality, 66, 69, 78
equation, 39, 41
equivalence, 43, 77

elimination, 78
introduction, 76

ex, 43, 111
exist

elimination, 56
introduction, 72, 73

exist(...), 56
expression, 45

F (G), 46

fact, 112
fact, 112
facts(reference), 105
fail, 39
fail on error, 121
fails goal, 42
false, 41
falsum, 41
ff, 41, 68
file names, 32
flags, 120
flattening of formulas, 45
forall

introduction, 65, 77
formula, 40
function symbol, 38
FV(ϕ), 44

gap, 84
global error, 121
goal, 39
gr(term), 41
grammar, 35
ground representation, 48
ground term, 41

HTML, 25

identity rule, 64
implication, 43

introduction, 54, 75, 76
in, 62
inconsistency, 68
ind, 113
indirect, 61
indirect(...), 61
indqf, 114
induction, 57

induction step, 57
quantifier-free, 114
simultaneous, 57
tactic, 113

induction(...), 57
inference rule, 62

alpha conversion, 78
atom intro, 70
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by, 79
conjunction intro, 65
disjunction intro, 67, 77
equality, 69
equality (injective), 78
equivalence elim, 78
equivalence intro, 76
exist intro, 72, 73
forall intro, 65, 77
ground intro, 74, 75
identity, 64
implication intro, 75, 76
inconsistency, 68
modus ponens (general), 72
modus ponens (matching), 64
modus ponens (plain), 70
sld step, 67
special axiom, 71
termination intro, 73, 74, 76
totality, 75
trivial equivalences, 77
unification (CET), 66

initialize, 30
internal database, 29
internal represenation, 45
io expand(path,X), 33

l(n), 108
lemma, 31, 80, 112
lemma(...), 31
list, 38
logic

classical logic, 61
intuitionistic logic, 61

def(formula), 106
modes, 120
modus ponens, 64, 70, 72
more, 108

name
graphic name, 36
identifier name, 36
single-quoted name, 36

needs gr(path), 30
needs thm(path), 30

negated goal, 40
negation, 40, 42
negation as failure, 40
Netscape, 26
nil, 38

op, 44
operator, 44

path, 32
pedantic, 120
Perl, 25
pl2html.perl, 25
plain, 120
pr2html.perl, 25
precedence, 44
predicate formula, 41
predicate symbol, 40
print names, 121
proof by contradiction, 60
proof files, 27
propositional atom, 39
propositional constants, 41
prt file(path), 31

quantifier
existential quantifier, 43
universal quantifier, 43

r(n), 108
reference, 80
reference, 37
report because, 121

S(G), 46
set(Flag), 120
set(alias,path), 33
set global error, 121
show, 120
sld, 67
sld, 82
substitution, 62
succeeds goal, 42
syntax, 35

T (G), 46
tactic, 107
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automatic, 109
case splitting, 109
completion, 110
debug, 119
existence elimination, 111
expansion of abbreviation, 110
fact, 112
induction, 113
options, 108
quantifier-free induction, 114
totality, 115
unfold (abbreviation), 116
unfold (existence), 118
unfold (failure), 116
unfold (success), 115
unfold (termination), 116, 117
unfold (uniqueness), 118

term, 37
compound term, 38
infix term, 38
postfix term, 39
prefix term, 38

terminates goal, 42
termination, 46, 117
tertium non datur, 61
TEX, 25
tex output, 121
tex file(path), 31
theorem, 31, 80, 112
theorem(...), 31
thm output, 121
thm file(path), 30
token, 36
tot, 115
totality

inference rule, 75
tactic, 115

true, 41
true, 39
tt, 41

underscore, 48
unfold, 115–118
unification, 66
unique names, 121
unset(Flag), 120

variable, 38
bound variable, 43
free variable, 44

verum, 41

write dependencies, 121
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