I nductive Object-Oriented L ogic Programming

Erivan Alves de Andrade and Jacques Robin

Centro de Informatica, Universidade Federal de &abuco, Recife, Brazil
{eaa,jr}@cin.ufpe.br

Abstract. In many of its practical applications, such asurelt language
processing, automatic programming, expert systamsiantic web ontologies
and knowledge discovery in databases, Inductivad_Bgogramming (ILP) is
not used to substitute but rather to complement ualanknowledge
acquisition.This manual acquisition is increasingbne using hybrid languages
integrating objects with rules or relations.  Sinesing a common
representation language for both manually encodedlaP learned knowledge
is key to their seamless integration, this rai$esissue of using such hybrid
languages for induction. In this paper, we presgigolf, an ILP system that
uses the object-oriented logic language Flora foowkedge representation.
Cigolf takes as input a background knowledge bassgt of examples, and a
learning bias specification, all represented inr&ldt translates this object-
oriented input into a relational input specificatifor the ILP system Aleph. It
then uses a tabled Prolog version of Aleph to iednew knowledge and
translates back this learned knowledge into Fldfa.describe the issues raised
by this bi-directional translation process and sbiition we adopted. We also
compare the respective performance of Cigolf anépAl on a few ILP
benchmarks to assess the overhead associated siith an object-oriented
logic representation language instead of a puogiclone for learning tasks.

1 Introduction

Inductive Logic Programming (ILP) stands out amanagchine learning techniques

by virtue of the following distinctive charactercst:

1.

2.

3.

Ability to learn generic relations amongseveral domain entity classes, each one
represented by a distinct universally quantifiedalale, overcoming the limitation
of attribute-based learning to the propertiea single domain entity class;
Ability to learn from both exampleand intentional knowledge, as opposed to only
from examples;

Ability to learnrecursive definitions.
These three unique features have made ILP a leadingnder for the following

machine learning applications:
1. Automatic programming in CASE [6];



2. Knowledge acquisition for Natural Language ProaesqiNLP) systems, expert
systems in deterministic yet structurally compleamains and semantic web
ontologies [5];

3. Mining multiple table databases, as opposed to Igtigpsingle table transaction
databases [4].

For all these applications, while complete autooratiemains often unrealistic,
consolidated manual knowledge acquisition techrigaed in some cases partially
reusable knowledge bases are available. Thus, titiey af ILP to complete, from
data, prior intentional knowledge that was manuailydeled is crucial. In addition,
much of the knowledge needed by these applicatisngelational in nature,
reinforcing the special adequacy of ILP. Finallpttb automatic programming and
NLP knowledge acquisition require learning recuzgivles.

Recently, these key application niches of ILP are by one making the switch to
object-oriented or hybrid object-rule representatianguages for the manually
encoded part of their knowledge base. Object-Catemt (OO) has become the
leading paradigm for modeling and programming laggs in modern software
engineering. Similarly, the most widely used largggin symbolic NLP are based on
typed feature structures [12] that incorporate K&® concepts such as complex
composite structures with type signatures and itdrere. Modern expert systems in
deterministi¢ domains usually represent knowledge in a formaltkat integrates
rules with an OO language such as Java, C++, @saription logic. Semantic web
ontology languages are also evolving towards aitlylotasses plus rules language.
Finally, the SQL standard and the main DBMS vendage recently switched from
the purely relational data model to the objecttretel one.

An impedance mismatch is thus slowly creeping betwen the one hand, the OO
and hybrid languages used for manual knowledgeisitiqa in the niche applications
of ILP, and on the other hand, the purely rule eeldtion oriented language used by
available ILP systems. This mismatch hinders ILEeptial for seamlessly integrating
machine learning with manual modeling in comprehenknowledge, data and
software engineering workbenches.

In this paper, we suggest that to maintain its eidgigs niche applications, ILP
should consider to follow the language paradignit ghiat occurred within these
applications. We show the feasibility and pradtigeof Inductive Object-Oriented
Logic Programming (IOOLP) by presenting Cigplin implemented system able to
learn a first-order theory from examples, backgtbuknowledge and a bias
specification, all four represented in the hybri@® Gorn logic language Flora [16], a
Frame Logic [8] dialect.

1 In non-deterministic domains, Bayesian and degisietworks have become the dominant
representation scheme.
2 F-Logic in reverse



2 Outline of the approach

When we started working on IOOLP, our aim was tabke to empirically evaluate
its feasibility and practicality as early as possitDur key idea for fast prototyping
Cigolf was to reuse an existing OOLP language togyetvith an existing ILP engine
and focus on bi-directional translation between@@LP language and the standard
LP language used by the ILP engine.

Within this framework, our next design step wasliioose both the ILP engine and
the OOLP language to be reused. For the engineceheie used the following
criteria: (1) versatility of the ILP task classdsatt it can carry out, (2) proven
effectiveness in practical, real world domains é3iddeclarative implementation that
facilitates modifications. For the language choiee used following criteria: (1)
covering of OO concepts, (2) expressive powerw@}-studied formal semantics and
associated deductive inference mechanism properigsproven effectiveness in
diverse practical applications, and (5) proximitsorfi the chosen ILP engine
language.

These criteria led us to base Cigolf on the ILPimm@\leph[15] and on the OOLP
language Flora. We review their main charactesstic turn in what follows,
emphasizing those that make them fit our criteria.

2.1 Aleph

Among the freely available ILP systems, Aleph wae only one to meet our three
criteria to serve as the inductive engine of Cigbifst, Aleph is probably the most
versatile ILP engine for the following reasons:

* In contrast to most ILP systems that implemennglsiinduction algorithm, Aleph
implements a variety of them, which turns it intcamprehensive workbench able
to partially emulatéthe functionalities of six other systems: Prodga@DIL, FORS,
MIDOS, Tilde and WARMR,;

e It consequently supports a variety of supervised ansupervised relational
learning tasks including classification, numerigaigression, outlier analysis,
clustering and association pattern discovery;

|t supports learning from positive examples onlyauidition to standard learning
from both positive and negative examples;

« |t can learn single or multiple predicate definitso

* It can learn autonomously or interactively;

« Its knowledge representation language is full jRr@og, including recursive rules
and function symbols, whereas most ILP systemsbaror the other;

« It is easily extensible and customizable by allayinser defined hypothesis
refinement operators, evaluation functions andragkarch heuristics;

It provides over 50 parameters for setting andngiine learning task.

3 Naturally, these Aleph emulations tend to be &ffisient and scalable than the corresponding
specialized engines.



Second, it has been successfully used in variopkcations, including molecular
biology, drug design and natural language grameening. Third, it is implemented
mostly declaratively in the largely standard confant YAP Prolog [3]

2.2 Flora

Flora (Frame LOgic tRAnslator) is a highly declarat object-oriented, dynamic,
high-order, tabled extension of Prolog with wellsmled negation as failure.

Syntactically and semantically, the Flora languadegrates three languages that
extend Prolog in orthogonal yet synergetic wayante Logic (F-Logic), Transaction
Logic (TR) [1] and HiLog [2]. F-Logic is an objectented logic programming
language that overcomes the limitations of purelgtional languages such as Prolog,
to elegantly model taxonomic knowledge as well amglex and semi-structured
data. TR is a dynamic logic programming languagas fbrovides backtrackable,
declarative update predicates to overcome the lihabdf Prolog to correctly
represent, execute and reason about database siptfatesactions and procedural
knowledge, within its logical framework. HiLog extends Prolog witligh-order
syntactic sugar while semantically remaining fostler. It thus overcomes the
inability of Prolog to express meta-level rules aqeries declarativelywithin its
logical framework, and it does so without incurrithg inference complexity blow up
of semantically high-order languages. The Floraudéde engine currently available
runs on top of the tabled Prolog engine XSB[14tdhsists of two main components:
the Floracompiler that transforms a Flora program into a semanticatjuivalent
XSB program, and the Florghell that provides an interactive command and query
run time layer on top of XSB.

Let us now evaluate Flora in terms of the criteviadefined above for the OOLP
language to reuse in Cigolf. In terms of OO consgeipie Flora language inherits from
F-Logic complex objects, object identity, encapsala type and class hierarchies
with multiple inheritance, overriding, overloadiagd late binding. The Flora engine
currently implements all these concepts except gswation. It also lacks automatic
type checking. Integrating TR and HiLog with F-Logallows the Flora engine to
implement two other key OO concepts declarativelithin its logical framework:
state changing and reflection methods. While sotherdOLP languages implement
encapsulation and type checking, all of them relypoocedural extra-logical Prolog
predicates to implement state change and reflediimrs not truly bringing these last
two concepts within the OOLP paradigm.

In terms of expressive power, Flora stands at iga knd of the scale among
OOLP languages thanks to its integration of F-Lpgith TR, HiLog and the well-
founded negation provided by the underlying XSBieagThe same is true with
respect to its theoretical foundations: all thremponents of the Flora language, F-
Logic, TR and HiLog possess a correct and refutatimmplete proof theory. In terms
of practical applicability, Flora has been sucoabsfused for disparate data
integration, semantic web ontology engineering sewlrity policy management.

To assess proximity to standard Prolog, one must fiote that while many
different approaches have been taken to integoafie Wwith objects, it is possible to



identify two main broad classes: (1) embedding dogiside objects, such as
Pluto[10], and (2) embedding objects inside logih as Flora. Flora's embedding of
objects inside logic makes it closer to standamldg: Overall, Flora thus fitted our
five conceptual criteria much better than other ®ORnguages. On the practical
side, the fact the Flora engine is implemented bmmiling Flora programs into
Prolog programs allowed a large part of the bidtiomal translation between Cigolf
and Aleph learning task specifications and restitishe implemented in Cigolf by
reusing and modifying the Flora compiler.

To give a feel for the structure and syntax of @&lprogram and to illustrate how
it can be used as an ILP language, we give in Praghartial Flora representation of
the Bongard classification problem shown in Fig.Elery example is a set of
geometric figures. The problem is to induce a $efemeric spatial relations between
figure classes that together differentiate the tp@siexamples in lower board, from
the negative ones in the upper board.

Examples labelled “neg”
e e % |ev | Ve | @
ah| & |95 “alEr
Examples labelled “pos”

0L |7 | ¥ |7
@W& AVA OV oY @@Zv&

Fig. 1. A Bongard classification problem

©
52

o]
O

[=]

(]

Bes”

% Background knowledge: class hierarchy togeth#r type signatures
( 1) circle::shape.
(2) square::shape.
.(3) triangle::shape[direction*=>dir].
(4) shape[in*=>>shape,leftOf*=>>shape].
(5) bgEx[shapes*=>>shape].
% Example base: object creation together withtatte value assignments
% Only the positive example on line 1, column 4hswn
(6) ta22:triangle[direction->down].
(7) tb22:triangle[in->>ta22,direction->down].
(8) ex22:bgEx[shapes->>{ta22,th22}].
% Background knowledge: deductive rules
(9) X:shape[in->>B]:-X[in->>C],C[in->>B].
(10) X:shape[leftOf->>B]:-X][leftOf->>C],B[in->>C].
% Queries on backrgound knowledge and example base



(12) ?-X:shape[leftOf->>Y].
(12) ?-X[M->>Y].

Prog. 1 An example Flora program representing a simple Bohgroblem.

A Flora program is made of four main types of ckmidwo corresponding to its
OO0 part, the class hierarchy definition facts abfect creation facts corresponding,
and two to its corresponding logical part.

A Flora class  hierarchy fact follows the  syntacticpattern:
class::superclasslattr . typOp . type 4,...attr n typOp N type ] tO
specify the superclass of a class together witlprieger attribute filler and method
return type constraints. There are four typing afm@s in Flora*=>, *=>>, => and
=>>, The presence or absence of theprefix distinguishes between inheritable and
non-inheritable type constraints, whereas theand >> suffixes indicates whether
the attribute is single valued or set valued.

Object creation facts follow the syntactic pattern
object:class]attr , assignOp , value ,...attr , assignOp | value ] to
create a new instance of a class while assigningrdper attribute and method return
values. There are four value assignment operdtors *->> , -> and ->>, that
follow the same prefix and suffix conventions thiea typing operators.

Together, Flora class definition and object creafiacts are calleé-Molecules.
Flora deductive rules and queries are essentialyo® rules and queries in which
logical terms may be substituted by F-moleculegjital variables can appear in any
position inside these molecules: as object nanasschame, attribute name, method
name, attribute value, method return value or ntkihput parameter. This freedom
provides Flora with a high-order syntax that isyw@owerful for concise meta-
programming, as illustrated by the query on linentich asks for all the triplet,

M, Y such thaiX andY are objects of any class ahtis a set valued attribute of
that includes in its value set.



2.3 Thearchitecture of Cigolf

Background Learned
Inductive Learning Bias Examples Knowledge Knowledge
Queries in Flora in Flora in Flora in Flora in Flora

A

>[ Clgolf Shell ]4—

+ Modified Prolog to
Cigolf to Aleph Clgolfto Aleph Flora Flora
Learning Bias Example Compller Translator

Translator Translator

—— ——
Learning Bias Examples
in Aleph in Prolog

v

[Flora SheIII AlephTP Tabled Inductive Engine ]—
\ [ XSB Tabled Deductive Engine ] /

Fig. 2. The Cigolf ar chitecture.

Learned
Knowledge
in Prolog

Background
Knowledge
in Prolog

Inductive

Queries in
Aleph

The architecture of Cigolf is given in Fig. 2. Ibrwsists of four entirely new
components (shown in dark gray boxes), two modif@gsed components (shown in
light gray boxes) and two components reused “ag &me”(shown in a white box),
namely the XSB tabled deductive engine and theaFbeell. TheCigolf shell accepts
the Flora compiler commands together with a setiétide commands and queries
equivalent to those of Aleph, but that work witlareing problems encoded in OO
syntax. TheCigolf to Aleph learning bias trandator translates the object-oriented
learning bias specification that we defined ford@fignto an equivalent relational bias
specification accepted as input by Aleph. TQigolf to Aleph example trandator
translates the types contained in Flora objects ¢bdify examples in Cigolf into
equivalent Aleph typing predicates. TReolog to Flora trandator translates the best
hypotheses returned by Aleph into Flora syntax. DameFloras high expressive
flexibility, there are many different syntactical aternatives for this translation. In
order to alow Cigolf to choose the alternative that conforms to the user specified
input OO bias, this translator consists of a Prolog rewrite rule base that is generated at
run time by our modified version of the Flora compiler. The Flora compiler was
modified to (a) recognize Flora objects that are Cigolf learning bias specification and
examples and dispatch them to the new components that handle them, and (b)
generate the learned knowledge back translation rules. The Aleph engine was
modified to run on top of the tabled deductive engine XSB instead of YAP Prolog,
resulting in AlephTP (Aleph in Tabled Prolog). This port was necessary because, one
the one hand, the Flora compiler generates code that requires tabling to execute
properly, especially to terminate and implement the well-founded semantics for



negation as failure, and, on the other hand, Aleglles on some non-standard
features of YAP Prolog that are not available inBX$o execute the Flora compiler
generated code passed to XSB through AlephTP uthtime predicates of the Flora
shell must be loaded in XSB.

3 Object-oriented representation of |L P bias and examples

In Aleph, learning bias can be expressed in a tyageways that include: induction
parameter setting directives, mode facts, integritystraints, and pruning directives.
We now review how Cigolf codifies such bias in Oftsix.

The 50 induction parameters provided by AlephTPesieoded in Cigolf as attributes
of the special classettingILP . They are set by Flora facts instantiating one or
several objects of that class. For example, the Hatow specifies that Cigolf must
learn from positive only examples clauses with astithan five literals.

(13) _:settinglLP[evalfn->posonly, clauselength->5].

Cigolf modes are specified using facts of the famodeh(Recall,Ft) or
modeb(Recall,Ft) that indicate what terms can respectively appeahyin
pothetic rule heads and bodi€$. is a Flora term with variables labeled with unifi-
cation direction constraints. The labels are: and-- for input and output vari-
ables, and## for constantsRecall is an integer that indicates the maximum
number of alternative ways thit can be instantiated when applying deduction on
the hypothesized rule in the context of prior kneage. For unlimited number of al-
ternativesRecall = '*' . For example, the mode definitions on lines (16a)1
below instruct Cigolf to only consider rules defigiBongard figures in terms of (a)
the inclusion relations between the shapes thabrtains, (b) the classes of these
shapes, and (c) their directions. The alternatheding on lines (15b-16b), takes ad-
vantage of Flora high-order and object embeddingasyto specify search for flexi-
ble rule patterns.

(14) modeh(1, ++A::bgEX).

(15a) modeb(10, --Y:##C[belong -> ++A:bgEX, in ->Z:##C2]).
(16a) modeb(*, ++Z[belong -> ++A:bgEX, direction =B:##E]).
(15b) modeb(*, ++A:bgEX[##S ->> --F:##C[##M->> --E2C1])).

(16b) modeb(10, ++A:bgEX[##S->> --F##C[##M->> -:F2C1, ##N-> --D])).
Integrity constraints are rules of the fofalse :- Body , whereBody is a
conjunction of Flora terms that must not be entbffem valid hypotheses and back-
ground knowledge. For example, the constraintsvbegrpress that an object cannot

be contained in another object that it contains.

(26) false :- X:shape[in ->> Y[in ->> X]].

Pruning directives have the form prune((CHead:-GBpeBody, where CHead:-
CBody are Flora rule patterns to discard from thipathesis space when the condi-
tion Body follows from the background knowledger Egample, the directive below
excludes rules where there are one triangle iofeftjuare.



(27) prune((E::bgEx :- T:triangle[belong -> E:bgEX,

leftOf ->> S:square])).

Examples are Flora facts that instantisiedeh patterns. The positive ones are
prefixed by|- , while the negative ones are prefixed|by as for example in lines
28-29 below. The attributes of these two examples specified as background
knowledge as shown in Prog. 1 fror ex22.

(28) |~ ex1::bgEx.
(29) |- ex22::bgEx.

4 Extending the Flora compiler

The Flora compiler consists of two main pawtsapping rules andtrailer rules. The
wrapping rulesrewrite domain knowledge represented as OO F-Mddschy first
flattening them into a conjunction of binary reteis between two classes, objects,
attributes or method names, calleditoms. These F-Atoms are then substituted by
Prolog terms using wrapper predicatéke correspondence between some F-Atoms
patterns and their corresponding wrapper predidatgisen in table 1.

Table 1. Main Flora F-Atoms patterns and their correspogdimapper predicates.

F-Atom Wrapper predicate F-Atom Wrapper predicate
Cl:C2 sub(C1,C2) C[A=>>T] mvdsig(C,A,T)
A:B isa(A,B) OJA*->V] ifd(Q,AV)
O[A->V] id(O,A,V) O[A*=>V] ifdsig(0,A,V)
O[A->>V] mvd(O,A,V) OJA*->>V] imvd(O,A,V)
C[A=>T] fdsig(C,A,T) O[A1=>>V]  imvdsig(0,A,V)

For example, the wrapping rules would rewrite thardrule on line 30 below into
the Prolog rule on lina.

(30)B:bgEx:-M:triangle[belong->B:bgEXx,in->>P:triangle].

(a)derived_isa(B,bgEXx):-isa(M,triangle),fd(M,belong,B),

isa(B,bgEx),mvd(M,in,P),isa(P,triangle).

This example illustrates that F-Atoms in differeantext may get rewritten into
different wrapper predicates, suchdesived_isa  in a rule head anda in a rule
body. Wrapping rules alone rewrite a Flora progriao a Prolog program only
syntactically. Semantic translation further requires concatenating traildes at the
end of the rewritten program. The trailer rule ba&sea domain independent Prolog
axiomatization, in terms of wrapper predicates,ttif complex OO semantics of
Flora, inincluding inheritance, overwriting and et identity equality.

The Flora compiler designed to translate an OOL® am equivalent relational LP
for deduction with XSB, needed to be extended tdopm such translation for
induction with AlephTP. To that effect, we creatag additional wrapper predicate
classes: mode wrappemsap_modeN/m+1 and complex type wrappetsg_V /1 .
For each Cigolf mode declaration of the fokRecall,Ft) , WhereMis modeh
or modeb, our induction-oriented version of the Flora compiler:



1. Creates a new wrapper predicate of the form
map_modeN(#tmo,D1tcg_V1,...,Dmtcg_Vm)
whereN records that it wraps the™node declaration/y,....vVv.  , are the
variables occurring in the Flora teffh, andDy,...,D  , are their respective
unification direction constraints;

2. Adds the following clauses to the AlephTP transiatdf the Cigolf input:
— An Aleph mode declaration of the form

:- M(Recall,map_modeN(#tmo,D1tcg_V1,...,.Dmtcg_Vm)

- Afacttmo(N) ;
- For eachv,({V ...,V  n}, awrapper rule of the form:
tcg_V (V) :-Cv |, whereCy; is the Flora wrapper predicate conjunction of

all the sub-terms dEft in whichV, occurs;

- If M = modeb, a mode wrapper rule of the form:

map_modeN(N,V4,...,.V ) :- Cft, whereCft is the Flora wrapper
predicate conjunction that results from calling EHhera compiler ontd-t.

Finally, for each exampl&ft , whose OO type unifies with tHet occurring in
the N" Cigolf mode declaratiomodeh(Recall,Ft) , our modified Flora compiler
adds an example wrapper fact of the formap_modeN(N,A,,..,A ) to the
AlephTP input bias specificatioi,..,A _are constants oEft that unify with the
labeled variables dft . An example of such translation is given belownds 31-32
contain the Cigolf mode declarations and lines 83t# Cigolf examples. Lindsc
contain the Aleph mode declarations with embeddgadlCmode wrapper predicates.
These predicates are defined in ljra in terms of Flora compiler wrapper predicates
and Cigolf example wrapper predicates. Limks contains the Cigoltmo (Type
Mode Order) wrapper predicates and lirfasdefines the Cigolf typing wrapper
predicates in terms of Flora wrapper predicates.

(31) modeh(1, ++A::bgEXx).

(32) modeb(*, --Y:##C[belong -> ++A:bgEXx, in ->>Z##C]).

(33) |- ex22::bgEx.

(34) |~ ex1::bgEx.

(b) :- modeh(1, map_model(#tmo,+tcg_A)).

(c) :- modeb(*,map_mode2(#tmo,-tcg_Y,#tcg_C, +tcgtdy_Z).

(d) tmo(1).

(e) tmo(2).

(f) teg_Y(Y):-isa(Y,C), fd(Y,belong,A), mvd(Y,inXZ

(g) tcg_C(C):-isa(Y,C), isa(Z,C).

(h) tcg_A(A):- fd(Y,belong,A).

(i) tcg_Z(2):- mvd(Y,in,Z), isa(Z,C).

(j) map_mode2(2,Y,C,A,Z):- isa(Y,C), fd(Y,belong,Alsa(A,bgEx), mvd(Y,in,Z),
@C).

() map_model(1,ex22). % in positive example file

(m) map_model(1,ex17). % in negative example file



5 Testing CIGOLF on ILP Benchmarks

We tested Cigolf on two standard relational clésaifon benchmarks: a 30 example
Bongard problem and a 10 example train problem. §¢end problem consists of
learning rules that predict the direction of arnrgiven the properties of its wagons.
For each problem, we compared a relational reptasen tested with AlephTP and
two OO representations tested with Cigolf. Thetfiuses flat F-molecules with
variables only in object and class positions. Téeoad uses embedded F-molecules
with variables also in attribute positions. Thespegiments provide a first assessment
of the run time overhead resulting from using arfd/lobject-rule representation for
machine learning. Their goal is to check whethehsaverhead is an acceptable price
to pay for the sizable data preparation and inggion speed-up achieved by
avoiding time-consuming and tedious manual traiwsiato the purely relational
format of available ILP engines from the examplbackground knowledge and
induced knowledge often available and usable anlgni hybrid object-rule or object-
relational format.

Table 2. Cigolf and AlephTP test runs on the Bongard aralnfproblem.

Bongard Train
Leamned Bottom Bottom Leamed Bottom Bottom
Model Rules Time | Clause Clause Rules Time| Clause Clause
Size Generalizations Size | Generalizations
AlephTP 3.14s 20 216 2 91 25 882
Cigolf1 13.94s 60 227 2 575 22 374
Cigolf2 8.625 21 42 2 6.95 29 404

The results given in Table 3 are encouraging in shase that the efficiency
overhead between of IOOLP with Cigolf as comparetetational ILP with AlephTP
is generally small. Interestingly, the second O@resentation that more fully exploits
Flora's flexible high-order syntax even outperforms AlephTP in some cases. A more
systematic analysis of various bias specifications and their interaction with the use of
tabling for learning, should bring interesting insights on the interactions between
object-oriented modelling, high-order syntax and induction search space size.

6 Related works

Learning knowledge in a hybrid language that integrates first-order Horn rules with
object-centered descriptions with inheritance was implemented in two main previous
systems. WiM-D[13] and CILGG [7]. These two proposals share with ours the main
idea: reusing an existing ILP engine to perform induction and developing a bi-
directional trandation between the hybrid language and the ILP engine's purely rela
tional language.

In terms of language, WiM-D differs from Cigolf in that it implements learning in
a subset of F-Logic that excludes methods, set valued attributes and class attributes,



while Cigolf implements learning in Flora,saperset of F-Logic that extends it with

HiLog high-order syntax and Transaction Logic deatize backtrackable updates
predicates. In terms of learning capabilities, WIMs less versatile than Cigolf for it
cannot, for example, learn from noisy data.

In terms of language, CILGG differs from Cigolf timat it implements learning in
CARIN-ALN [9], an extension of Datalog that alloweyms in rule bodies and queries
to be substituted by concepts defined in the detsoni logic ALN. CARIN-ALN dif-
fers from Flora in four ways: with respect to dgstion-rule integration, to relational
terms, to description terms, and to semantics. \Wé#pect to description-rule inte-
gration, Flora is more expressive than CARIN-ALN &lowing description terms in
rule heads. With respect to relational terms, Fisranore expressive than CARIN-
ALN for allowing function symbols. With respect ttescription terms, Flora also
seems to be more expressive than CARIN-ALN. Fagtlic and disjunctive defini-
tions are allowed in Flora class signatures whitelded from ALN descriptions.
Semantically, CARIN-ALN differs from Flora in thétworks under the open-world
assumption while Flora works under the closed-watsumption. However, for
learning purposes, CILGG changes the semanticsABIS-ALN to a hybrid semi-
closed world assumption.

7 Conclusions

A key role of ILP in machine learning researchdsekplore the issues involved in
learning representations that are even more imtyifiexible, abstract and closer to
the knowledge level. In this paper, we proposedjdofurther in that direction by
learning in Flora, a language that extends thelpuedational first-order Horn logic
of traditional ILP with object-orientation, highder syntax, declarative database
updates predicates and well-founded negation. Weodstrated the conceptual and
computational feasibility of inducing knowledge regpented in Flora by reusing and
integrating components from a relational ILP systamd a deductive OOLP system.
This integration resulted in Cigolf, the first corapensive IOOLP system. Cigolf is
sufficiently versatile and expressive to serve dssh bed to assess the strength and
applicability of the IOOLP paradigm for many diféert learning tasks. In particular,
it opens the door for the seamless integrationetdtional machine learning with
mainstream object-oriented data, knowledge andvaoft engineering.

In future work, we intend to test the scalabiliiy@igolf for larger classification
tasks, as well as its versatility to perform otbkisses of learning tasks. The research
presented here is part of a larger project thasaondevelop a multi-agent software
engineering methodology and environment that suppmvo complementary paths
for automated agent code generation: one from nilgnoailt UML models, and the
other from input/output training examples. In thisoject, Flora is used as the
common target language integrating these two p&btentially incomplete Flora
code is first generated from the UML model. Cigbkn uses this code as background
knowledge to inductively complete it, based ondkRamples.



References

1. Bonner, A.J., Kifer, M. "An Overview of Transamst Logic," Theoretical Computer Science,
vol. 133, pp.205-265,0ctober 1994. http://citesgarec.com/bonner94overview.html

2. Chen, W., Kifer, M., Warren, D.S. HiLog: A Fouwiibn for Higher-Order Logic
Programming. Journal of Logic Programming, numherBume 15 (1989)

3. Costa, V. Damas, L. Res, R, Azevedo, R. YAP Use’'s Manual.
http://www.ncc.up.pt/~vsc/Y ap/ (2000)

4. Dzeroski, S., Lavrec, N., (Eds.) Relational Data Mining. Springer-Verlag. (2001).

5. Fensel, D. Ontologies: Silver Bullet for Knowledge Management and ElectronicCommerce,
Springer-Verlag, Berlin,(2001).

6. Flener, P., Partridge, D. Inductive Programming.Automated Software Engineering,Special
Issue on Inductive Programming 8(2001).

7. Kietz, JU. A Data-Preprocessing Method Enabling ILP-Systems to Learn CARIN-ALN
Rules. http://www.afia.polytechnique.fr/CAFE/ILPO1_Archi/Archi/kietz.pdf(2001).

8. Kifer, M., Lausen, G., Wu, J. Logica Foundations of Object-Oriented and Frame-Based
Languages. Technical Report 90/14, Department of Computer Science, State University of
New York at Stony Brook- SUNY (1990).

9. Levy, A.Y., Rousset, M.-C. CARIN: A representation language combining Horn rules and
description logics. In Proc. of the 12th European Conf. on Artificial Intelligence (ECAI-96),
pages 323—327(1996).

10. Liu, M. . Pluto: An Object-Oriented Logic Programming Language. Proceedings of the 39th
International Conference and Exhibition on Technology of Object-Oriented Languages and
Systems(TOOL S39), Santa Barbara, California (2001).

12. Nebel, B., Smolka, G. Attributive Description Formalisms. In C. Rollinger O. Herzog,
editor, Text Understanding in LILOG, LNAI 546. Springer-Verlag, Berlin, Germany(1991).

13. Popelinsky, L. Object-oriented data modelling and rules: ILP meets databases.Proceedings
of Knowledge Level Modelling Workshop,ECML'95 Heraklion, Crete(1995).

14. Sagonas, K., Swift, T., Warren, D. S. XSB as an efficient deductive database engine. In R.
T. Snodgrass and M. Winglett, editors, Proc. of the 1994 ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD'94), pages 442—453(1994).

15. Srinivasan, A. The Aleph Manua. Oxford University, Machine Learning Group at the
Computing  Laboratory.http://web.comlab.ox.ac.uk/oucl/research/areas/machl earn/Al eph/
(2003).

16. Yang, G., Kifer,M. FLORA: Implementing an Efficient DOOD System Using a Tabling
Logic Engine. In 6th International Conference on Rules and Objects in Databases (DOOD),
http://citeseer.nj.nec.com/309887.html (2000).



