
T

i

l

d

e

Top-down Induction of Logical DEcision trees

User's Manual

Hendrik Blockeel

v1.3, July 21, 1997

Contents

1 Introduction 2

2 Installing Tilde 2

3 Running Tilde 2

4 Input Files for Tilde 3

5 The knowledge base 3

6 The settings �le 5

6.1 Miscellaneous Speci�cations 5

6.2 Re�nement Operator Speci�cation 6

6.3 Constraints on Variables . 9

6.4 Types . 10

6.5 Lookahead . 10

6.6 Discretization . 12

6.7 Specifying an Alternative Root Query 13

7 Commands in Tilde 14

8 Output �les 17

8.1 Result Files . 17

8.2 Summary Files . 18

8.3 Other Output Files . 19

1

9 Acknowledgements 19

1 Introduction

This is a user's manual for the inductive logic programming system Tilde.

It explains how Tilde can be used, but not what it does or how it works. For

information on things such as �rst-order logical decision trees, discretization,

. . . we refer to [1, 2] which discuss these topics in the context of Tilde and

o�er further references.

2 Installing Tilde

At this momentTilde is available for Sun workstations running the SunOS4.1.3

or Solaris (SunOS5.5.1) operating system.

The Tilde system comes in a �le called TILDE *.tar.gz. The asterisk

is replaced by some characters indicating the version of Tilde it contains

(which platform, . . .).

Run the following commands:

gunzip TILDE_*.tar.gz

tar xvf TILDE_*.tar

A directory TILDE has now been created in the current directory. From

now on we refer to this directory as Tilde's home directory.

3 Running Tilde

The environment variable TILDE RT DIR must be set to Tilde's home direc-

tory.

The script TILDE RT in the directory $TILDE RT DIR starts Tilde. No

parameters are required. TILDE RT must be run in the directory where the

data �les are. It is recommended to put $TILDE RT DIR in your path or de�ne

an alias tilde=$TILDE RT DIR/TILDE RT.

The environment variable TILDE BIM PROLOG COMPILER should be set to

YES or NO, depending on whether a ProLog-by-BIM compiler is available

locally. If this compiler is available and TILDE BIM PROLOG COMPILER is set to

2

YES, background knowledge will be compiled, and the opt command (which

optimises the knowledge base) becomes available in Tilde. This results in

better performance.

If TILDE BIM PROLOG COMPILER is not set, a message is written to the

screen and the default value NO is assumed.

4 Input Files for Tilde

The directory where Tilde is called, should contain the following �les:

app.kb

app.bg

app.s

where app is the name of the application.

If more than one app.kb �le is present in the directory where Tilde is

run, Tilde will ask the user which application it should run on.

� app.kb contains all models, in the same format as used by the Claudien

[4] and ICL [6] systems. We refer to the Claudien and ICL manuals [7]

for more information.

� app.bg contains background knowledge. This �le is optional.

� app.s contains application-speci�c settings, the re�nement operator,

. . . This �le is discussed in Section 6.

5 The knowledge base

The �le app.kb contains the examples on which Tilde will run. app.bg

contains the background knowledge (which is a Prolog program). Tilde uses

the learning from interpretations setting [5, 3]. In this setting each example

is an interpretation, and therefore in Tilde examples are represented by

Prolog programs (which together with the background knowledge generate

these interpretations).

An example is represented as follows:

3

begin(model(name)).

Prolog program

end(model(name)).

The Prolog program will normally contain a fact indicating the class of

the example, and may contain other information that strictly spoken does

not belong to the interpretation generated by the example (e.g. information

on how to partition the data set for cross-validation).

Example 1 In the Machines example application that comes with Tilde,

the background knowledge �le mach.bg is:

replaceable(gear).

replaceable(wheel).

replaceable(chain).

not_replaceable(engine).

not_replaceable(control_unit).

The following two examples are taken from mach.kb:

begin(model(1)).

testnr(1).

sendback.

worn(gear).

worn(engine).

end(model(1)).

begin(model(2)).

testnr(2).

keep.

end(model(2)).

The testnr facts are administrative information; sendback and keep are

class indicators. We will not include them in the interpretations.

The interpretation generated for example 1 is then:

fworn(gear), worn(engine), replaceable(gear), replaceable(wheel),

replaceable(chain), not replaceable(engine), not replaceable(control unit)g

4

and for example 2:

freplaceable(gear), replaceable(wheel), replaceable(chain),

not replaceable(engine), not replaceable(control unit)g

6 The settings �le

The �le app.s contains the de�nition of the re�nement operator, information

on discretization, heuristics, lookahead speci�cations, . . .

6.1 Miscellaneous Speci�cations

The following speci�cations are optional, i.e. if they are not present, default

values will be used. For most of these values it is best not to change them,

unless you know what you are doing.

� classes(classlist).

Classlist is a list specifying into which classes the examples have to be

classi�ed. Each class has to be a ground atom. Default: [pos, neg].

� output options(optionlist).

optionlist is a list that speci�es what should be written to the output

�le, and in what format. The user may wish to see a lot of output

information, or only the most important things (e.g. classi�cation ac-

curacy). This can be controlled with this setting. A more detailed

description is given in Section 8, where the output �le is discussed.

Default: [c45,prolog].

� minimal cases(n).

This is the minimal number of examples that a leaf of the tree should

cover. Default: 2.

� heuristic(heur).

heur = gain j gainratio

This speci�es the heuristic that is to be used. Gainratio is C4.5's

default heuristic; it usually yields better results than gain. Default:

gainratio.

5

� confidence level(cl).

cl is a number between 0 and 1, that is used in the post-pruning phase

for estimating the prediction error. Default: 0.25.

� accuracy(a).

a is a number between 0 and 1, and speci�es the minimal accuracy

that has to be reached in order to stop splitting a node any further.

Default: 1.

� talking(t).

t is an integer between 0 and 5 (included). It controls the amount of

output Tilde writes to the screen. With t = 0, no output is written.

With t = 4 all clauses that are tested are written to the screen. t = 5

is only useful for debugging purposes. Default: 2.

6.2 Re�nement Operator Speci�cation

In order to compute a split for a node, Tilde takes the query that was used

to generate this node (i.e. all examples covered by this node, and only those,

are models for that query), and tries to re�ne it by adding a conjunction to

it, in such a way that an optimal split between examples of di�erent classes

is obtained.

The re�nement operator (and consequently, the hypothesis language) is

speci�ed using facts of the following form:

rmode(N: conj).

Such a fact speci�es that a re�nement step can consist of adding the

conjunction of literals conj to the query to be re�ned. This can happen at

most N times on the basis of this fact. However, if other speci�cations allow

conj to be added as well, they are counted independently.

For the variables occurring in the conjunction, modes can be speci�ed. 3

modes are available:

� +X means that the variable is an input variable; i.e. it has to be bound

when adding this literal. To this end, the variable is uni�ed with a

variable already occurring in the query.

� �X means that the variable can, but need not be bound (uni�cation

with other variables is possible but not mandatory).

6

� X means this is a new variable; no uni�cation is performed with already

existing variables (though variables that are introduced later on may

be uni�ed with this variable)

If a variable occurs several times in one conjunction, its mode should be

indicated only once.

Example 2 Suppose the following rmode-facts (among others) are given:

rmode(3: p(+X)).

rmode(3: q(+X, Y)).

rmode(3: (r(-X), s(X)).

Then a query ?- a(X), b(Y) can be re�ned into:

?- a(X), b(Y), p(X). % p's argument has to be bound

?- a(X), b(Y), p(Y).

?- a(X), b(Y), q(X,Z). % q's first argument has to be bound,

?- a(X), b(Y), q(Y,Z). % its second argument is a new variable.

?- a(X), b(Y), r(X), s(X). % r's argument can but need not be bound

?- a(X), b(Y), r(Y), s(Y). % and s has the same argument as r

?- a(X), b(Y), r(Z), s(Z).

Another form of the rmode-speci�cation is

rmode(N: #(n*m*V : conj1, conj2)).

where n and m are numbers, and V is a variable or a structure (list or other)

containing variables. V shares variables with both conj1 and conj2.

Just before the actual re�nements are computed, the conjunction conj1

is called. It can be called for at most N examples (each call occurs in the

context of a di�erent example). For each example, at most m answer sub-

stitutions for the variables that are shared with V are stored. Each answer

substitution of V generates an instantiation of conj2, and each such instan-

tiation is considered for addition to the current clause.

This construction is useful for generating literals that contain constants.

Example 3 Suppose the current query to be re�ned is ?- a(X), b(Y,Z).

Then the following speci�cation

7

rmode(1: #(1*10*C: member(C, [1,2,3,4,5,6,7,8,9,10]), +X = C)).

gives rise to these re�nements:

?- a(X), b(Y,Z), X=1.

?- a(X), b(Y,Z), X=2.

...

?- a(X), b(Y,Z), X=10.

?- a(X), b(Y,Z), Y=1.

?- a(X), b(Y,Z), Y=2.

...

?- a(X), b(Y,Z), Y=10.

?- a(X), b(Y,Z), Z=1.

?- a(X), b(Y,Z), Z=2.

...

?- a(X), b(Y,Z), Z=10.

The speci�cation

rmode(1: #(1000*3*C: p(C), p(C))).

yields, for example:

?- a(X), b(Y,Z), p(2.4).

?- a(X), b(Y,Z), p(1.8).

?- a(X), b(Y,Z), p(1.1).

?- a(X), b(Y,Z), p(1.5).

?- a(X), b(Y,Z), p(2.3).

...

In each example (with a maximum of 1000), 3 values for p's argument that

occur in that example are chosen.

1

These constants will occur in the possible

re�nements. For instance, in the above example, it might be that the �rst

model (example) contained the facts p(2.4), p(1.8), the second p(1.1),

p(1.5), p(2.3), p(2.8) (with only the �rst 3 of these 4 selected), and so

on.

Remark: due to the Prolog syntax de�nition, there has to be a space

between the colon and the #.

1

It is not speci�ed how the examples are chosen.

8

6.3 Constraints on Variables

Note: This feature is still in a test phase.

It is possible to explicitly specify constraints that must hold for variables

that occur in certain places. These constraints are akin to the use of modes

and types, but o�er more
exibility.

Constraints can be speci�ed in the following way:

constraint(conj, constr).

This speci�cation means that whenever conj is added to a clause, constr

should not be violated.

Example 4 Suppose bond literals can be added under the following condi-

tions:

rmode(5:bond(+X, +Y, Z)).

constraint(bond(X, Y, Z), X \== Y).

According to the rmode speci�cation, bond(X,Y ,Z) can be added to a clause

if X and Y are uni�ed with some variable in that clause. If X and Y have the

same type, they might be uni�ed with one and the same variable V , such that

bond(V,V,Z) is added to the clause. However, the constraint speci�cation

prohibits this.

The second argument of the constraint speci�cation can be any Pro-

log query. Moreover, two extra predicates can be used: occurs/1 and

not occurs/1. These check whether a predicate already occurs in a clause.

Example 5 The speci�cation

constraint(p(X,Y), not_occurs(p(X,Z))).

tells Tilde that p should not be added with a �rst argument that already

occurs as �rst argument of a p-literal. Another interesting constraint is

rmode(p(+X, +Y)).

constraint(p(X,Y), occurs(p(_, X))).

This can e.g. be used to construct \chains" of p-literals, such as p(A,B),

p(B,C), p(C,D), avoiding the combinatorial explosion of possible uni�ca-

tions that would occur if each variable could be uni�ed with any variable

already occurring.

9

6.4 Types

If a typed language is used, variables can only be uni�ed if their types cor-

respond (i.e. the queries must be type-conform). A typed language can be

speci�ed by putting the following fact into the settings:

typed language(yes).

If this fact is present, then type speci�cations have to be present for each

predicate. If a predicate is untyped, this can still be indicated by using

anonymous variables where normally type names would be put.

A type speci�cation looks as follows:

type(pred(targ

1

, ..., targ

n

)).

Pred is the name of the predicate, targ

i

is a constant denoting a type, or a

variable.

Example 6 These are some type speci�cations:

type(info(string, number)).

type(number < number).

type(X = X).

type(member(_, list)).

Variables that have the same type can always be compared using the equality

operator, but the operator < will only be used with variables that have the

type number. The member predicate is partially untyped: its second argument

must be a list, but its �rst argument can be anything.

Note that types only in
uence the way in which variables are uni�ed, and

nothing else. Constants are always considered to be untyped. For instance, if

the type declaration type(p(a,b)) is present, a literal such as p(1,1)might

be added if the rmode declarations allow it.

6.5 Lookahead

When re�ning queries, Tilde can look ahead in the re�nement lattice, in

those cases where that is allowed explicitly by the user. Lookahead is com-

putationally expensive, but in some cases the quality of a re�nement can

10

be assessed better. Therefore it is important to allow lookahead where it is

useful, but not more than necessary.

Typically, lookahead is useful when a conjunction is added that in itself

will always succeed (i.e. it does not yield any gain), but introduces new

variables that may be important for the classi�cation. The advantage of

adding such conjunctions would otherwise be underestimated.

Lookahead-speci�cations look as follows:

lookahead(pattern, conj).

Such a speci�cation indicated that, whenever a conjunction is added that

matches with pattern, the conjunction conj can (but need not) be added as

well.

Example 7 Consider the following lookahead speci�cations:

lookahead(next_to(X,Y), large(Y)).

lookahead((on(X,Y), next_to(Y,Z)), on(X,Z)).

They tell Tilde that whenever next to(A,B) can be added, the addition of

next to(A,B), large(B) (in one re�nement step) also has to be consid-

ered. And whenever a conjunction on(A,B), next to(B,C) can be added,

on(A,B), next to(B,C), on(A,C) should be tried as well.

Lookahead can be allowed recursively, e.g.:

lookahead(next_to(X,Y), next_to(Y,Z)).

allows a chain of next to literals to be introduced in one re�nement step. In

order to avoid in�nite recursion, a maximal lookahead depth can be given by

means of

max lookahead(n)

n is the maximal number of lookahead levels that is allowed.

11

6.6 Discretization

Discretization is a technique used by symbolic learners to handle numeric

data. A continuous domain is transformed into a discrete domain by intro-

ducing discrete values that correspond to intervals in the continuous domain.

The discrete domain can be characterised by the thresholds between the in-

tervals. For instance, the continuous domain [0; 1] could be discretized into

three discrete values fsmall,average,largeg corresponding to the inter-

vals [0; 0:25), [0:25; 0:75), [0:75; 1]. This particular discretization is charac-

terised completely by the thresholds 0:25 and 0:75.

The question is, then, how to �nd suitable values for these thresholds.

Tilde uses ICL's discretization algorithm [12] which is based on Fayyad and

Irani's paper [10, 9]. In this manual, we do not discuss the algorithm, but

focus on how the user can control the discretization process.

The user can indicate that a variable has a continuous domain and has

to be discretized, by means of:

discretization(bounds(n)).

to be discretized(pred, varlist).

to be discretized(pred, n, varlist).

n is the number of thresholds discretization is allowed to yield at most. It

can be speci�ed for all predicates by means of discretization(bounds(n)),

but this value can be overridden for any speci�c predicate by explicitly adding

it to the to be discretized speci�cation. Varlist contains the variables that

are to be discretized.

Example 8 Let us take a look at the following speci�cations:

discretization(bounds(3)).

to_be_discretized(employee(Name, Address, ID, Age), [Age]).

to_be_discretized(wage(ID, Wage), 5, [Wage]).

Ages of employees are discretized into four discrete values (i.e. there are three

thresholds). Wages are discretized with �ve thresholds.

Discretization is performed one time, before the induction itself starts.

After discretization is done, a predicate discretized is available that con-

tains the results of discretization in the following format:

12

discretized(pred, varlist, constlist)

Pred and varlist should correspond with the pred and varlist arguments of

a to be discretized fact. The result of the discretization of the variable is

the list constlist, which contains all thresholds that have been found.

Example 9 For the speci�cation of example 8, the following results might

have been obtained:

discretized(employee(Name, Address, ID, Age), [Age], [21,35,50]).

discretized(wage(ID, Wage), [Wage], [35000, 45000, 50000, 70000, 85000]).

A typical use of these results would be:

rmode(#(1*10*C: (discretized(employee(_, _, _, X), [X], L),

member(C, L)),

+Age < C)).

rmode(#(1*10*C: (discretized(wage(ID, X), [X], L), member(C, L)),

+Wage < C)).

The #-construct indicates that some age or wage variable should be compared

with a constant that occurs in the list of discretization thresholds of ages or

wages.

6.7 Specifying an Alternative Root Query

By default, the root query (this is the query associated with the root of the

tree, i.e. the query from which Tilde starts re�ning by adding literals to

it) is true. In some cases it may be desirable to have an alternative root

query. Typically, this is the case when there are determinate literals that

with certainty are known to be relevant for classi�cation. In such cases it

is not necessary to let the system �nd out for itself that these literals are

relevant, the more so because relevance is not always obvious in the case of

determinate literals.

It is possible to specify an alternative root query by means of the root(RootQuery)

speci�cation. The default setting is equivalent to root(true).

Example 10 For a certain classi�cation task involving molecules, it is known

that the weight of a molecule is relevant. One way of de�ning the re�nement

operator would be:

13

rmode(1:weight(W)).

rmode(5: #(1*10*C: (discretized(weight(W), [W], L), member(C, L)),

+Weight < C).

lookahead(weight(Weight),

#(1*10*C: (discretized(weight(W), [W], L), member(C, L)),

Weight < C).

The tests on weights can only be added after weight(W) has been added, and

since weight(W) itself never yields any gain, a separate lookahead speci�ca-

tion is necessary. All this can be done more easily by putting weight(W) in

the root query:

root(weight(W)).

rmode(5: #(1*10*C: (discretized(weight(W), [W], L), member(C, L)),

+Weight < C).

This way, a variable indicating the weight of the molecule will always be

available for testing.

The advantages of the latter approach become more obvious when more

variables are introduced by the root query.

In the extreme case where the root query introduces a set of variables S

and none of the nodes can contain any other variables than the ones in S,

the decision tree becomes a propositional one.

7 Commands in Tilde

� monitor.

starts a separate window in which the progress of the induction is

shown. During the induction process this window is updated every

few seconds, showing how many examples have already been covered

by leaves. Also, the part of the tree that has already been formed is

shown. Users with lots of time to waste can watch the tree grow.

� go(output �le).

go.

14

starts induction (possibly preceded by discretization), generating a log-

ical decision tree. Output is written to output �le. If go is used without

an argument, the output �le is called output. Exactly what is writ-

ten to the output �le, is discussed in Section 8. With this command,

induction is always performed on the whole dataset.

� nfold(n).

performs an n-fold cross-validation. A random partition of n sets is

�rst created, and subsequently n runs of the induction algorithm are

performed. For each run a di�erent set of the partition has been left

out of the training data, so training is done on the examples of n � 1

sets, and the remaining set is used as a test set. Output of these runs

is written to �les with �xed names: ur1, ur2, . . . , urn.

In order to make cross-validation possible, it is necessary that a fact

testid(modelname) is available in eachmodel, that explicitly indicates

the name of the model. This name has to be the same name as the

name occurring in the begin(model(name)) and end(model(name))

speci�cations.

Remark: the respeci�cation of the modelname is in fact redundant.

In the most recent versions of Tilde (from v1.3 onwards) it is not

required anymore.

� nfold(n, s).

does the same as nfold(n), but s is a seed used to create the random

partition. If in consecutive cross-validations the same value for s is

used, each cross-validation will be done on the same partition. This is

useful with respect to reproduceability of results.

� leave one out.

runs an m-fold cross-validation, with m the total number of examples;

each time m � 1 examples are used for training, and one example for

testing. Output is written to ul1, ul2, . . . , ulm.

For the leave one out procedure to work, a fact testnr(i) has to be

available in each model, assigning a unique number i from 1 to m to

the model.

Remark: This command will probably be removed in later versions of

15

Tilde. It can be simulated by using nfold(n) with n the number of

examples.

� leave one out from list(list)

assumes a predicate testid to be available, on which cross-validation

will be based. For each constant c in list, the data are partitioned

in those examples where testid(c) succeeds (these will form the test

data), and those where it does not succeed (these will form the training

set). This gives rise to an l-fold cross-validation, with l the length of

the list (assuming that in each model testid succeeds for one constant

only).

Output is written to �les uLc, with c the constant from the list on which

the run was based.

An example of where this command could be used, is the Mesh dataset

[8], where cross-validation is often done based on the 5 structures that

appear in the data.

� tenfold.

will probably be removed in the future. This runs a tenfold cross-

validation based on a testnrpredicate, where in the i-th cross-validation

the models with a number n such that n mod 10 = i are used as test

set. This can be simulated with leave one out from list. Output

�les are called uti with i = 0� 9.

� opt.

is only available if a ProLog-by-BIM compiler is available and the en-

vironment variable TILDE BIM PROLOG COMPILER is set to YES. This

command causes Tilde to generate an optimised (compiled) version

of the knowledge base. A �le app.kb.O.wic is created containing the

optimised code. Whenever Tilde is subsequently run, it will use the

optimised version of the knowledge base if it is not older than the un-

optimised version. This will result in much better performance (both

faster loading of the knowledge base and faster induction).

Note that Tilde has to be restarted for the optimisation to take e�ect.

The opt command generates an optimised version of the knowledge

base, but does not change the internal database of Tilde. Only by

16

exiting Tilde and restarting it, the optimised version of the data will

be loaded.

Also note that the optimisation process takes a while. Dots appear on

the screen indicating the progress. There is one dot for 100 examples.

8 Output �les

8.1 Result Files

The results of each run of the induction algorithm are written to a �le. The

�lename is the argument of the go command, or uri for a random n-fold

cross-validation, etc.

The output of a run contains the following statistics:

� CPU-times for discretization and induction itself

� Complexity, accuracy on training set, accuracy on test set, and global

accuracy (both sets together) are shown:

{ for the original tree

{ for a more compact but equivalent version of the above tree

{ for the pruned tree (Tilde uses a post-pruning algorithm that is

based on the algorithm used in Quinlan's C4.5 system [11].)

Moreover, extra information can be written according to several output

options. These output options are speci�ed by means of

output options(list).

with list a list containing one or more of the following constants:

� c45

the pruned tree is written in C4.5-like output format, i.e. the tree's

root is to the left, yes and no branches are drawn, and for each leaf

the total number of examples covered, and the number of examples

correctly predicted are shown between brackets.

17

� c45c

writes the compact version of the original tree, in the same format as

above.

� c45e

writes the pruned tree in the same format as c45, but also writes for

each leaf the list of examples that are covered by that leaf.

� c45ce

writes the compact version of the original tree with examples shown

� lp

writes the logic program corresponding to the pruned tree

� prolog

writes the Prolog program corresponding to the pruned tree

� elaborate

writes a lot of information: the thresholds found for the discretization,

very elaborate representations of trees, . . .| this is mainly used for

debugging purposes, and makes the output much less readable.

By default, output options([c45,prolog]) is assumed.

8.2 Summary Files

When performing cross-validations, Tilde not only gives detailed reports

on each run, but also generates a summary of the whole cross-validation.

Two �les are generated: CT.x and SUMMARY.x, where x = ul, uL, ut or ur,

depending on which kind of cross-validation is performed (this is consistent

with the names of the output �les).

� CT.x contains a contingency table of real vs. predicted classes. For this

table, Cramer's coe�cient is reported. This coe�cient is de�ned as

V =

v

u

u

t

�

2

n(q � 1)

18

with

�

2

=

q

X

i=1

q

X

j=1

(x

ij

� e

ij

)

2

e

ij

where

n is the total number of examples

x

ij

is the number of examples in row i and column j

e

ij

=

r

i

�c

j

n

, the number of examples expected in row i and column j

r

i

is the total number of examples in row i

c

j

is the total number of examples in column j

q is the number of classes

While the �

2

-statistic gives an idea of how signi�cantly the prediction

di�ers from random prediction, V scales it to a number between 0 and

1 and can therefore be used as some sort of correlation coe�cient. For

q = 2, V equals the classical correlation coe�cient for 2� 2-tables, i.e.

for a table

A B

C D

, ' =

AD�BC

p

(A+B)(A+C)(B+D)(C+D)

.

� SUMMARY.x contains a summary of the induction times, tree complexi-

ties and predictive accuracies of all the runs in the cross-validation, as

well as their average values and standard deviations.

8.3 Other Output Files

Some other output �les are generated that may be of use.

� The �le app.progress is updated by Tilde each time a leaf of the tree

has been created (i.e. it is continuously updated during the induction

process). It contains the number of leaves created up till now, as well

as the number of examples that have been covered by these leaves

(both as an absolute number and as a percentage of the total number

of examples). As such, it gives the user some idea of how far the

induction process has proceeded. Tilde's monitor accesses this �le.

� The �le app.ptree is updated by Tilde each time a test or leaf is

added to the tree. It contains the partial tree induced up till now, in

c45-format. This �le, too, is accessed by Tilde's monitor.

19

� The �le pruned ct contains a couple (real class, predicted class) for

each example in the dataset. These data are used for computing the

contingency table.

9 Acknowledgements

Tilde was developed by Hendrik Blockeel and Luc De Raedt. Its devel-

opment was made possible by a grant from the Flemish Institute for the

Promotion of Scienti�c and Technological Research in the Industry (IWT),

which supports Hendrik Blockeel, by the Fund for Scienti�c Research of Flan-

ders, which supports Luc De Raedt, and by the European Community Esprit

project 20237, Inductive Logic Programming 2.

Many thanks are due to Wim Van Laer and Luc Dehaspe, whose code

for the ICL and Claudien systems was in part reused in Tilde; this has

signi�cantly acceleratedTilde's development. Luc Dehaspe, Wim Van Laer,

Nico Jacobs, Johannes F�urnkranz, Sa�so D�zeroski and Bart Vandromme have

been very helpful with comments and discussions on the Tilde system.

References

[1] H. Blockeel and L. De Raedt. Experiments with top-down induction of

logical decision trees. Technical Report CW 247, Dept. of Computer Sci-

ence, K.U.Leuven, January 1997. Also in Periodic Progress Report ES-

PRIT Project ILP2, January 1997. http://www.cs.kuleuven.ac.be/-

publicaties/rapporten/CW1997.html.

[2] H. Blockeel and L. De Raedt. Lookahead and discretization in ILP.

In Proceedings of the 7th International Workshop on Inductive Logic

Programming. Springer-Verlag, 1997.

[3] L. De Raedt. Induction in logic. In R.S. Michalski and Wnek J., ed-

itors, Proceedings of the 3rd International Workshop on Multistrategy

Learning, pages 29{38, 1996.

[4] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning,

26:99{146, 1997.

20

[5] L. De Raedt and S. D�zeroski. First order jk-clausal theories are PAC-

learnable. Arti�cial Intelligence, 70:375{392, 1994.

[6] L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings

of the 5th Workshop on Algorithmic Learning Theory, volume 997 of

Lecture Notes in Arti�cial Intelligence. Springer-Verlag, 1995.

[7] L. Dehaspe, L. De Raedt, and W. Van Laer. Claudien : a clausal

discovery engine: a user manual. Technical report, KUL, 1994.

[8] B. Dol�sak and S. Muggleton. The application of Inductive Logic Pro-

gramming to �nite element mesh design. In S. Muggleton, editor, In-

ductive logic programming, pages 453{472. Academic Press, 1992.

[9] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised

discretization of continuous features. In A. Prieditis and S. Russell,

editors, Proc. Twelfth International Conference on Machine Learning.

Morgan Kaufmann, 1995.

[10] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-

valued attributes for classi�cation learning. In Proceedings of the 13th

International Joint Conference on Arti�cial Intelligence, pages 1022{

1027, San Mateo, CA, 1993. Morgan Kaufmann.

[11] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-

mann series in machine learning. Morgan Kaufmann, 1993.

[12] W. Van Laer, S. D�zeroski, and L. De Raedt. Multi-class problems and

discretization in ICL (extended abstract). In Proceedings of the MLnet

Familiarization Workshop on Data Mining with Inductive Logic Pro-

gramming (ILP for KDD), 1996.

21

