
Learning to Classify English Text

with ILP Methods

William Cohen

AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill NJ 07974 USA

wcohen@research.att.com

August 8, 1995

Abstract

Text categorization is the task of classifying text into one of several pre-

de�ned categories. In this paper we will evaluate the e�ectiveness of sev-

eral ILP methods for text categorization, and also compare them to their

propositional analogs. The methods considered are FOIL, the propositional

rule-learning system RIPPER, and a �rst-order version of RIPPER called

FLIPPER. We show that the bene�t of using a �rst-order representation in

this domain is relatively modest; in particular, the performance di�erence

between FLIPPER and FOIL and their propositional counterparts is quite

small, compared to the di�erences between FOIL and FLIPPER. However,

a �rst-order representation seems to be advantageous when high-precision

classi�ers are desirable.

1 Introduction

Text categorization is the task of classifying text into one of several pre-de�ned

categories. In this paper we will evaluate the e�ectiveness of ILP methods for text

categorization. There are two primary motivations for this e�ort.

The �rst motivation is practical. There is increasing interest in using intelli-

gent systems to perform tasks like e-mail �ltering, news �ltering, and automatic

indexing of documents. Many of these applications require the ability to classify

text into one of several prede�ned categories, and in many of these applications,

it would be useful to automatically learn such classi�ers from examples. However,

the learning techniques traditionally used for text categorization problems use

a propositional representation for text, which ignores such intuitively important

ILP-95, Leuven

properties as the order of words in a document. ILP methods o�er a potential for

improved performance on this task, as they can (at least in principle) formulate

classi�ers that depend on word order.

The second motivation is methodological. Although recent years have seen con-

tinual progress in the development of ILP methods, progress has also been made in

other areas of learning. A crucial challenge for the ILP community is to determine

for which problems ILP methods give \added value"|i.e. for which problems ILP

methods are signi�cantly superior to propositional methods. To date, attempts

to use formal methods to identify situations in which ILP methods are preferable

have been disappointing; most positive results for the learnability of logic pro-

grams have relied on reductions to propositional representations. Experimental

methods have been more successful in clarifying when �rst-order techniques are

useful: there have been a number of papers demonstrating that ILP methods can

outperform propositional ones on speci�c learning problems

[

King et al., 1992;

Zelle and Mooney, 1994; Mooney and Cali�, 1995

]

. However, there have been

relatively few systematic comparisons of propositional and �rst-order learners. A

secondary goal of these experiments is to provide some additional datapoints com-

paring ILP methods to propositional ones.

An earlier description of some of these results can be found elsewhere

[

Cohen,

1995b

]

.

2 Text Categorization

2.1 Text categorization and inductive learning

Text categorization is the classi�cation of textual documents into one of several

�xed classes or categories. For example, below is a list of IJCAI paper titles, which

have been labelled with a \+" if they were placed in a machine learning session:

d1 + improving e�ciency by learning intermediate concepts

d2 + learning dnf by decision trees

d3 + constructive induction on decision trees

d4 � a comparison of atms and csp techniques

d5 � the specialization and transformation of constructive existence proofs

.

.

.

One way of building a text categorization system is to learn classi�cation rules from

pre-classi�ed data; for instance, one might learn from the data above a general rule

for when to schedule a paper in a machine learning session. A typical approach is

to represent a document as a feature-vector

~

d, where the features are words in the

vocabulary, and a feature w is true for an instance

~

d i�

~

d contains the word w. In

the example above, the features might be atms, based , comparison, concepts, : : : ,

ILP-95, Leuven

and the �nal rule might be something like

ML-SESSION � learning=TRUE _ trees=TRUE

Thus the problem of building a text categorizer can be formulated as a proposi-

tional inductive learning problem.

2.2 Representing text in logic

The scheme described above for representing documents is only one of many possi-

bilities. Another common approach uses numeric features that count the number

of occurrences of a word w in a document

[

Apt�e et al., 1994

]

; vector space ap-

proaches use features that are based on both frequency of a word in a document

and frequency in the corpus ; and single value decomposition methods form fea-

tures that are linear combinations of word frequency counts.

A common feature of all these representations, however, is that they ignore the

ordering of words in a document; instead a documents is treated as an unordered

\bag of words". However, many modern information retrieval systems support

queries that exploit word ordering

[

Harter, 1986, pages 81{94

]

. It seems reasonable

to conjecture that adopting a representation that includes ordering information

might improve learning performance.

One way to represent ordering information directly is with logic. Labeled

examples of the target class C can be represented as labeled ground facts of the

form +c(d) or �c(d), where d is a constant that identi�es a document, together

with facts of the form w

i

(d ; p). The fact w

i

(d; p) indicates that word w

i

appears

in the document d at position p. (Positions are integers 1,2,3,: : :,n, where n is

the length of the longest document.) These word predicates are a straightforward

generalization of the normal propositional encoding for examples, which would be

a set of unary predicates of the form w

i

(d).

In a typical ILP system, the c(d) facts would used as training examples, and

the w

i

(d; p) facts would be used as background relations. Adding additional back-

ground predicates makes it possible to formulate classi�ers that depend on near-

ness, adjacency, and so on. In our experiments, we used these additional back-

ground predicates:

� near1 (p

1

; p

2

) is true when jp

1

� p

2

j � 1.

� near2 (p

1

; p

2

) is true when jp

1

� p

2

j � 2.

� near3 (p

1

; p

2

) is true when jp

1

� p

2

j � 3.

� after(p

1

; p

2

) is true when p

2

> p

1

.

In experiments with FOIL we also used the relation succ(p

1

; p

2

), which is true

when p

2

= p

1

+ 1. This predicate was included since it is determinate

[

Mug-

gleton and Feng, 1992; Quinlan, 1991

]

, and the FOIL algorithm includes special

mechanisms that exploit determinism.

ILP-95, Leuven

2.3 Evaluating performance for text categorization

Text categorization learning problems tend to have certain common properties.

There are usually a large number of features. It is also frequently the case that

for a �xed category, there will be many more negative examples than positive

examples. The proponderance of negative examples can cause problems for some

learning systems, and can also lead to methodological complications. For classes

that have few positive examples, the error rate of the classi�er that always predicts

the label \�" is usually quite low. Hence success in text categorization problems

is often measured not only by error rate, but also by recall and precision. Recall is

the fraction of the time that an actual positive example is predicted to be positive

by the classi�er, and precision is the fraction of the time that an example predicted

to be positive is actually positive. More precisely:

recall �

#true positives

#true positives + #false negatives

precision �

#true positives

#true positives + #false positives

For convenience, we will de�ne the precision of a classi�er that always predicts

negative as 1.00.

3 Experimental results with FOIL

3.1 The FOIL learning system

We performed experiments using a number of di�erent learning systems. The

�rst was FOIL6

[

Quinlan, 1990; Quinlan and Cameron-Jones, 1993

]

. We used the

standard options in running FOIL6, with two exceptions.

FOIL6 includes a backtracking mechanism that extends the greedy search.

In preliminary experiments, this feature seemed to cause unpredictable runtime

performance. Because of this, and because the evidence that FOIL6's backtracking

actually improves performance is weak

[

Cameron-Jones and Quinlan, 1993

]

, we

disabled backtracking in our experiments.

1

FOIL6 also uses two heuristics that allow literals that introduce new variables

to be added to the clause, even if these literals have low gain. (The rationale for

doing this is that the new variables may make it possible to later add other gainful

literals to the clause.) One heuristic is to add, whenever possible, determinate

literals that introduce new variables; the second is to introduce \weak" non-gainful

and non-determinate literals if there are no better alternatives. These \weak"

literals also seemed to cause poor performance in preliminary experiments, and so

we also disabled this behavior.

2

1

This was done with the command line option \-t0".

2

This was done with the command line option \-w0".

ILP-95, Leuven

Table 1: Propositional vs. relation encodings

category default propositional encoding relational encoding

errors errors recall precision errors recall precision

bonds 60 133 0.517 0.230 132 0.533 0.235

burma 93 38 0.634 0.937 38 0.634 0.937

neilson 87 568 0.632 0.930 569 0.621 0.915

tickertalk 40 41 0.000 0.000 43 0.250 0.200

box-o�ce 42 133 0.786 0.210 133 0.786 0.210

budget 197 290 0.315 0.286 290 0.310 0.284

dukakis 107 181 0.393 0.266 134 0.402 0.381

hostages 228 380 0.316 0.243 383 0.298 0.234

ireland 117 165 0.376 0.324 165 0.368 0.321

quayle 133 160 0.684 0.435 90 0.722 0.644

average 110.4 208.9 0.465 0.302 197.7 0.470 0.354

3.2 The Testbed

To evaluate these learning methods we used ten text categorization problems de-

scribed from the information retrieval literature

[

Lewis and Gale, 1994; Lewis and

Catlett, 1994

]

. In each of these problems, the goal is to classify AP newswire head-

lines as relevant or irrelevant to topics like \federal budget" and \nielson ratings".

The corpus of 371,454 pre-classi�ed headlines is split into a training set of 319,463

titles and a test set of 51,991 titles. The headlines are an average of nine words

long, and the total vocabulary is 67,331 words.

Since a corpus of this size is unwieldy (even for most propositional learning

systems) training was done on ten smaller subsamples, each containing 999 exam-

ples. The subsamples were choosen using a technique called uncertainty sampling

[

Lewis and Gale, 1994

]

. In brief, uncertainty sampling is a heuristic technique

for extracting a sample that is small but informative with respect to particular

category. Lewis and Gale showed that training a probabilistic classi�er on 999

uncertainty samples gave results competitive with training the classi�er on the

entire corpus. Lewis and Catlett showed that training C4.5

[

Quinlan, 1994

]

on an

uncertainty sample of 999 examples yields error rates comparable to training on a

random sample of 10,000 examples.

It should be noted, however, that even these \small" samples are rather large

by ILP standards, each containing 999 training examples and between 2304 and

3077 di�erent background predicates.

3.3 Results with FOIL

ILP-95, Leuven

Table 1 summarizes the result of running FOIL6 on the ten benchmark prob-

lems. The columns under the heading \propositional encoding" indicate FOIL's

performance with only the word relations as background knowledge; notice that

since there are no relations de�ned over indices, the index arguments to the word

relations cannot be used to discriminate between positive and negative examples,

and hence this encoding is isomorphic to the standard propositional one. The

columns under the heading \relational encoding" indicate FOIL's performance

with the full set of background relations listed above. The columns of the table

are mostly self-explanatory; however note that we record the absolute number of

errors (on the entire test set of 51,991 titles) rather than error rate. Also, the

column labeled \default errors" records the number of errors made by the default

rule, which assigns the label \�" to every example.

To summarize, on one category (tickertalk) both the relational and proposi-

tional encodings gave very low precision and recall; inspection showed that these

hypotheses classify almost everything as false. On one category (nielson) both

encodings gave reasonable recall but low precision. On the other eight categories,

both encodings gave reasonable levels of both recall and precision.

The relational and propositional encodings usually have very similar perfor-

mance, re
ecting the fact (con�rmed by inspection) that the additional background

relations are only occasionally used by FOIL. The relational encoding does have

noticibly higher precision on dukakis and quayle; this leads to a reduction in the

number of errors for these categories of about 25% and 45%, respectively. Pri-

marily as a consequence of this, the relational encoding perform a little better on

average for all three measures of error rate, precision, and recall.

We emphasize that small average di�erence between the two classi�ers is the

result of a substantial improvement on some categories, not the result of a slight

improvement on every category. We believe that this sort of improvement is more

likely to be interest to the end user of a text classi�cation system.

These informal observations were con�rmed by using a paired sign test to

compare the two classi�ers: the relational encoding is statistically signi�cantly

better on the two categories dukakis and quayle, and not signi�cantly worse on

any of the remaining eight categories.

3.4 FOIL with relation selection

We discovered that FOIL's performance can be improved by a �rst-order analog

of feature selection. In a second set of experiments, we discarded word relations

corresponding to words that appeared less than k times in the training corpus,

for various values of k. This simple frequency-based selection method has been

e�ective in other text categorization problems

[

Apt�e et al., 1994

]

.

The results are shown in Table 2. Here, we indicate for each value of k the

number of errors, recall, and precision obtained using each encoding; all of these

numbers are averages across the ten categories. We also show (in the \paired

ILP-95, Leuven

Table 2: Frequency-based relation selection

k propositional encoding relational encoding paired

errors recall precision errors recall precision tests

1 208.9 0.465 0.303 197.7 0.470 0.354 2r 0p

3 145.1 0.510 0.433 131.5 0.506 0.467 3r 1p

5 108.9 0.490 0.532 105.0 0.497 0.545 4r 1p

7 99.3 0.444 0.560 106.0 0.463 0.536 1r 2p

10 97.4 0.424 0.579 100.6 0.424 0.574 2r 2p

25 98.3 0.325 0.589 98.4 0.347 0.591 1r 2p

50 91.4 0.265 0.690 92.4 0.268 0.717 0r 0p

100 98.4 0.189 0.783 96.9 0.221 0.749 1r 1p

200 104.3 0.111 0.946 111.7 0.122 0.815 1r 1p

tests" column) the number of categories for which each encoding is superior at a

95% con�dence level using a paired test; for instance \4r 1p" indicates that the

relational encoding is better on four categories and the propositional encoding is

better on one.

To summarize, relation selection improves performance generally as k is raised

from 1 to 3; thereafter, improving k improves precision at the expense of recall.

Applying relation selection also changes the relative value of the relational and

propositional encodings. When k is set to maximize recall, the relational encoding

is better overall, and also better on four of the ten individual categories. However,

this advantage gradually erodes as k is increased, and at very large values of k, the

propositional encoding is better overall. The apparent reason is the reversal is that

for large values of k the relational encoding tends to hypothesize rules based on

accidental patterns of frequently-occuring but contentless words. In text retrieval

tasks, it is common practise to discard such \function words"; were this done, then

the relational encoding would likely be competitive even for large values of k.

3

3.5 Comparing FOIL and propositional learners

We now turn to a crucial question: how does FOIL compare to existing propo-

sitional methods on these problems? We will focus initially on results appearing

elsewhere in the literature.

Lewis and Catlett

[

1994

]

reported results obtained with a Bayesian probabilistic

classi�er, and also with an extension of C4.5 that allows the user to specify a loss

ratio. A loss ratio indicates the ratio of the cost of a false negative to the cost of a

false positive; the goal of learning is to minimize misclassi�cation cost on unseen

3

We retained function words to facilitate comparison with previous results on these datasets.

ILP-95, Leuven

Table 3: Comparing learners by error rate

999 uncertain

errors default FOIL(k=1) FOIL(k=50) C4.5 Prob

rule prop rel prop rel LR=5

bonds 60 133 132 37 37 33.4 36.2

burma 93 38 38 66 65 46.9 50.8

neilson 87 568 569 43 47 48.8 32.1

tickertalk 40 41 43 41 42 40.0 40.6

boxo�ce 42 133 133 29 30 24.5 25.2

budget 197 290 290 176 176 174.8 187.5

dukakis 107 181 134 106 99 102.4 108.0

hostages 228 380 383 206 212 215.7 187.3

ireland 117 165 165 109 109 97.9 98.1

quayle 133 160 90 101 107 83.5 115.6

average 110.4 208.9 197.7 91.4 92.4 86.8 88.1

data. Uncertainty sampling changes the relative frequency of positive and negative

examples, and hence in training C4.5 on uncertainty samples, better results were

obtained with a loss ratio of �ve.

Table 3 gives a category-by-category comparison of our results to those of Lewis

and Catlett, using the familiar metric of error rate. We show results for FOIL

without any relational selection (k = 1), and with relation selection for k = 50,

the value at which error rate is approximately minimized. To summarize brie
y,

FOIL without relation selection seems to have higher error rates, in general, than

the other methods. With relation selection FOIL is roughly comparable to the

other methods. Note that all of the methods in the table make some use of feature

selection.

Table 4 gives a similar comparison of results for recall and precision. The values

for FOIL with relation selection are given for k = 5, which strikes a relatively

good balance between precision and recall. To summarize, FOIL without relation

selection is complementary to the other methods; while both the probabilistic

classi�er and C4.5 have relatively high precision and low recall, FOIL without

relation selection has relatively high recall and low precision. Adding relation

selection with k = 5 yields somewhat better recall and much higher precision,

although precision is still lower than the propositional methods.

Another commonlyused metric in information retrieval is the F-measure

[

VanRi-

jsbergen, 1979, pages 168{176

]

, de�ned as

F

�

�

(�

2

+ 1)PR

�

2

P + R

ILP-95, Leuven

Table 4: Comparing learners by recall and precision

FOIL(k=1) FOIL(k=5) C4.5 Prob

prop rel prop rel LR=5

bonds recall 0.5167 0.5333 0.5500 0.5667 0.5033 0.5283

precision 0.2296 0.2353 0.6111 0.6939 0.8935 0.8005

burma recall 0.6344 0.6344 0.5054 0.5591 0.5280 0.5183

precision 0.9365 0.9365 0.8246 0.8667 0.9424 0.8893

neilson recall 0.6322 0.6207 0.7586 0.7356 0.5081 0.7448

precision 0.9310 0.9150 0.7253 0.6957 0.8805 0.8675

tickertalk recall 0.0000 0.2500 0.5000 0.5000 0.0000 0.1750

precision 0.0000 0.2000 0.2222 0.2222 1.0000 0.3500

boxo�ce recall 0.7857 0.7857 0.7381 0.7381 0.5476 0.7000

precision 0.2102 0.2102 0.3163 0.3163 0.8070 0.7000

budget recall 0.3147 0.3096 0.3807 0.3706 0.1665 0.1954

precision 0.2857 0.2837 0.4545 0.5935 0.7558 0.5704

dukakis recall 0.3925 0.4019 0.3925 0.4206 0.1776 0.7940

precision 0.2658 0.3805 0.5385 0.5488 0.5689 0.4722

hostages recall 0.3158 0.2982 0.3991 0.3991 0.1860 0.3746

precision 0.2432 0.2337 0.3333 0.3434 0.5848 0.6564

ireland recall 0.3761 0.3675 0.4103 0.4188 0.2043 0.3000

precision 0.3235 0.3209 0.5926 0.4949 0.8328 0.6842

quayle recall 0.6842 0.7218 0.7143 0.7143 0.5474 0.2737

precision 0.4354 0.6443 0.6835 0.6738 0.7575 0.6570

average recall 0.4652 0.4698 0.4899 0.4973 0.3367 0.3732

precision 0.3023 0.3537 0.5302 0.5449 0.8023 0.6648

where P is precision, R is recall, and � is a parameter controlling the importance

given to precision relative to recall. A value of � = 1 corresponds to equal weight-

ing of precision and recall. Following Lewis and Gale

[

1994

]

, we give in Table 5

values for F

�

at � = 1. This is a single measure of e�ectiveness in which preci-

sion and recall are given equal importance, and higher scores correspond to better

classi�ers.

To summarize Table 5, FOIL with the relational encoding and relation selection

with k = 5 obtains the highest average F -value, followed closely by FOIL with

with the propositional encoding and relation selection. Without relation selec-

tion, however, FOIL obtains a much lower average F-value than the propositional

methods.

ILP-95, Leuven

Table 5: Comparing learners by F-measure (� = 1)

F

�=1

FOIL(k=1) FOIL(k=5) C4.5 Prob

prop rel prop rel LR=5

bonds 0.318 0.327 0.579 0.624 0.644 0.637

burma 0.756 0.756 0.627 0.680 0.677 0.655

nielsons 0.162 0.159 0.742 0.715 0.644 0.801

tickertalk 0.000 0.044 0.082 0.082 0.000 0.033

boxo�ce 0.332 0.332 0.443 0.443 0.652 0.700

budget 0.299 0.296 0.414 0.456 0.273 0.291

dukakis 0.317 0.391 0.454 0.476 0.271 0.136

hostages 0.275 0.262 0.363 0.369 0.282 0.477

ireland 0.348 0.343 0.485 0.454 0.328 0.417

quayle 0.532 0.681 0.699 0.693 0.636 0.386

average 0.3339 0.3591 0.4888 0.4992 0.4407 0.4533

4 Experiments with RIPPER

4.1 The RIPPER learning system

Tables 4 and 5 indicate that with relational selection FOIL does well on this task,

relative to previous propositional learning methods; however, it is not clear why

FOIL does so well.

One might be tempted to believe that FOIL's ability to use �rst-order logic is

the major reason for its success on this task; however, the fact that FOIL with

a propositional encoding performs nearly as well casts some doubt on this hy-

pothesis. Even the fact that FOIL's relational encoding often outperforms the

propositional encoding does not give concrete proof that the relational encoding

is intrinsically better. Since natural language is redundant, it is often possible

to represent the same classi�cation rule in many ways; although FOIL makes ap-

propriate use of non-word relations it is possible that an alternative propositional

rule-learning method would do as well or better than relational FOIL. In support

of this conjecture, note that (at least with respect to error rates) relation selec-

tion improves performance of FOIL, while simultaneously lessening the di�erence

between the relational and propositional versions of FOIL.

To better understand the reasons underlying FOIL's performance, we per-

formed additional experiments with a purely propositional rule-learning system,

RIPPER

[

Cohen, 1995a

]

. The learning algorithm used in RIPPER is a re�nement

of incremental reduced error pruning (IREP), which was introduced by F�urnkranz

and Widmer. Since some readers may not be familiar with RIPPER, we will

ILP-95, Leuven

summarize it brie
y below; �rst however we will review F�urnkranz and Widmer's

IREP algorithm.

4.1.1 IREP

IREP tightly integrates reduced error pruning with a separate-and-conquer rule

learning algorithm. Like FOIL, IREP builds up a rule set in a greedy fashion,

one rule at a time. After a rule is found, all examples covered by the rule (both

positive and negative) are deleted. This process is repeated until there are no

positive examples, or until the rule found by IREP has an unacceptably large

error rate.

In order to build a rule, IREP uses the following strategy. First, the uncovered

examples are randomly partitioned into two subsets, a growing set and a pruning

set . In our implementation, the growing set contains 2/3 of the examples.

Next, a rule is \grown". In our implementation a rule is grown using a propo-

sitional version of FOIL. The rule-growing algorithm begins with an empty con-

junction of conditions, and considers adding to this any condition of the form A

w

or :A

w

where A

w

is a feature representing the presence of the word w in an doc-

ument. The condition that maximizes FOIL's information gain criterion is added,

and this process is repeated until the rule covers no negative examples from the

growing dataset.

After growing a rule, the rule is immediately pruned. To prune a rule, our im-

plementation considers deleting any �nal sequence of conditions from the rule, and

chooses the deletion that maximizes a heuristic value function v. This is repeated

until no deletion improves the value of v. F�urnkranz and Widmer experimented

with two value functions. We obtained the best results with a third value func-

tion v(Rule) �

p�n

p+n

where p (respectively n) is the number of positive (negative)

examples in the pruning set covered by Rule.

As an aside, we note that IREP can be made much more e�cient for text cat-

egorization problems by using a non-standard representation for examples. Recall

that that text categorization problems typically involve many features (one for

each word), and that for each example relatively few features are \true". Because

of this, the usual propositional representation for examples|a matrix in which

each feature is a column and each example a row|is quite ine�cient. The experi-

ments of this paper were conducted using an implementation that uses a \sparse"

representation for examples, in which only the \true" elements of each row are

stored. In growing a rule, the process of �nding the optimal feature A

w

is imple-

mented in so as to require time only linear in the \sparse" representation of the

dataset. This minor implementation detail leads to a huge improvement in e�-

ciency on large corpora; for instance, our implementation of RIPPER (described

below) requires an average of only 30 minutes of CPU time to learn a classi�er

from the entire training corpus of 319,463 examples and 67,331 features.

ILP-95, Leuven

4.1.2 RIPPER vs. IREP

RIPPER is an extended version of IREP.

4

In addition to using a di�erent value

function v, RIPPER adds two other re�nements: it uses a di�erent heuristic for

determining when to stop adding rules to a rule set, and also includes postpass

that \optimizes" a rule set.

IREP stops greedily adding rules to a rule set when the last rule constructed

has an error rate exceeding 50% on the pruning data. This heuristic often stops too

soon. Our assessment of the problem is that for low-coverage rules, the estimate

of error has high variance, and thus there is a good chance that a rule will have

its error rate incorrectly assessed at more than 50%.

In RIPPER, a di�erent scheme is used|one is similar in spirit to the way in

which individual rules are grown and then pruned. After each rule is added, the

total description length of the rule set and the examples is computed. RIPPER

stops adding rules when this description length is more than d bits larger than the

smallest description length obtained so far, or when there are no more positive

examples.

5

The rule set is then simpli�ed by examining each rule in turn (starting

with the last rule added) and deleting rules so as to minimize description length.

The description length encoding scheme for is the same as that used in the latest

version of C4.5rules

[

Quinlan, 1995

]

.

After RIPPER stops adding rules, the rule set is \optimized" so as to more

closely approximate the e�ect of conventional reduced error pruning. Each rule is

considered in turn: �rst R

1

, then R

2

, etc, in the order in which they were learned.

For each rule R

i

, two alternative rules are constructed. The replacement for R

i

is formed by growing and then pruning a rule R

0

i

, where pruning is guided so as

to minimize error of the entire rule set R

1

; : : : ; R

0

i

; : : : ; R

k

on the pruning data

(rather than the heuristic v function.) The revision of R

i

is formed analogously,

except that the revision is grown by greedily adding conditions to R

i

, rather than

the empty rule. Finally a decision is made as to whether the �nal theory should

include the revised rule, the replacement rule, or the original rule. This decision

is made using the encoding length heuristic.

After optimization, the ruleset may cover fewer positive examples; thus after a

ruleset is optimized IREP is called again on the uncovered positive examples, and

any additional rules that it generates are added to the rule set.

The optimization step can be repeated; however, in extensive experiments on

propositional datasets we found that optimizing rulesets yields diminishing returns

if repeated more than once or twice. If optimization is repeated twice, RIPPER

is quite competitive with state-of-the-art propositional learning methods, such

as C4.5 and C4.5rules

[

Cohen, 1995a

]

. Additionally, RIPPER is quite fast: like

IREP, RIPPER runs in time O(n log

2

n) on noisy datasets (where n is the number

4

Although the implementation supports multiple classes, we will describe a two-class version

of the algorithm, for the sake of simplicity.

5

In the experiments of this paper we used d = 64.

ILP-95, Leuven

of examples).

The implementation of RIPPER also allows the user to specify a loss ratio.

Loss ratios are supported by changing the weights given to false positive error

and false negative errors in the pruning and optimization stages of the learning

algorithm.

4.2 Experiments with RIPPER

Tables 6 and 7 compare RIPPER to FOIL with relations. Table 6 compares

the performance of RIPPER and FOIL on each of the ten test problems when

the default options are used for both learners,

6

and no relation or feature selec-

tion is done. Interestingly, discarding infrequently used words has little e�ect of

RIPPER's generalization performance; however, Table 7 compares average per-

formance across the ten problems as the level of relation selection is changed (for

FOIL) and as the loss ratio is changed (for RIPPER).

The results are clearly in favor of RIPPER. In Table 6, RIPPER achieves a

lower error rate than relational FOIL on every problem but one, obtains higher re-

call on all but two problems, and obtains higher precision on all but three problems.

On average, RIPPER has higher recall than FOIL, almost double the precision of

FOIL, makes only half as many errors. Table 7 is similar: every recall/precision

value obtained by FOIL is dominated by one obtained by RIPPER.

RIPPER also obtains a higher F-value on every problem except one (tickertalk).

In fact, RIPPER also outperforms relational FOIL with relation selection at k = 5,

the value for which F-measure is maximized; compared to this version of FOIL,

RIPPER obtains a higher F-value than on every problem except for two, and also

obtains a higher average F-value.

5 FLIPPER: A �rst-order version of RIPPER

The experiments of the previous section show that performance can be improved

by using RIPPER|a propositional rule learning system|rather than FOIL. The

next obvious step is to attempt combine the strengths of RIPPER and FOIL by

implementing a �rst-order learner based on the RIPPER pruning algorithm. We

note that RIPPER is heavily based on IREP and FOIL, both methods which were

developed in the ILP community, so such an integration should be straightforward.

In this section we will brie
y describe a �rst-order version of RIPPER, which

we call FLIPPER. We will then present some (preliminary) experimental results

with FLIPPER.

6

Except that weak literals and backtracking are disabled for FOIL, as noted above.

ILP-95, Leuven

Table 6: RIPPER vs. FOIL with relations

category RIPPER FOIL

recall precision recall precision

bonds 0.633 0.613 0.533 0.235

burma 0.699 0.929 0.634 0.937

neilson 0.678 0.776 0.621 0.915

tickertalk 0.000 1.000 0.250 0.200

box-o�ce 0.667 0.596 0.786 0.210

budget 0.574 0.574 0.310 0.284

dukakis 0.916 0.415 0.402 0.381

hostages 0.513 0.461 0.298 0.234

ireland 0.444 0.536 0.368 0.321

quayle 0.850 0.669 0.722 0.644

average 0.5974 0.657 0.470 0.354

category RIPPER FOIL

errors F-measure errors F-measure

bonds 46 0.623 132 0.327

burma 33 0.798 38 0.756

neilson 45 0.724 569 0.159

tickertalk 40 0.000 43 0.044

box-o�ce 33 0.629 133 0.332

budget 168 0.574 290 0.296

dukakis 147 0.571 134 0.391

hostages 248 0.485 383 0.262

ireland 110 0.486 165 0.343

quayle 76 0.748 90 0.681

average 94.6 0.5638 197.7 0.3591

ILP-95, Leuven

Table 7: RIPPER vs. FOIL with relation selection

relational FOIL

k errors recall precision

1 197.7 0.470 0.354

3 131.5 0.506 0.467

5 105.0 0.497 0.545

7 106.0 0.463 0.536

10 100.6 0.424 0.574

25 98.4 0.347 0.591

50 92.4 0.268 0.717

100 96.9 0.221 0.749

200 111.7 0.122 0.815

RIPPER

L errors recall precision

0.333 123.8 0.670 0.456

0.5 124.7 0.660 0.448

1.0 94.6 0.597 0.657

2.0 86.3 0.344 0.836

3.0 87.5 0.329 0.837

5.0 99.4 0.160 0.840

10.0 99.9 0.158 0.862

5.1 Language bias

Since text categorization problems are often quite large, we restrict the language

learned by FLIPPER to non-recursive function-free clauses with negation as fail-

ure, and restrict background knowledge to be extensional (i.e. ground unit clauses.)

The FOIL system has demonstrated that under these assumptions a very e�cient

learning system can be built, if appropriate indexing techniques are used.

For reasons that will become clear shortly, FLIPPER is based on an indexed

second-order theorem prover, rather than a �rst-order one. For instance, given

the following clause C

child(X ;Y) Q(Y ;X)

the following background knowledge DB

father(william; charlie);mother(susan; charlie)

and the query child(charlie,susan)? , FLIPPER's theorem prover will answer \true",

returning the substitition fQ = motherg. We will use ` to represent proveability

by this theorem prover; for instance we would write

C;DB ` child(charlie; susan)

5.2 Learning algorithm and re�nement operator

By design, the learning algorithm used in RIPPER can be easily extended to

�rst-order clauses. The rules constructed by RIPPER are propositional conjunc-

tions that are built using two operations: (a) adding a new conjunct to the

end of a conjunction, and (b) deleting some �nal sequence of conjuncts from a

ILP-95, Leuven

conjunction. These can be generalized in a straightforward way to (a

0

) adding

a literal to the body of a clause and (b

0

) deleting a �nal sequence of literals

from a clause body. However, previous experience has indicated that in many

�rst-order contexts, it is desirable for the end user to have some control over

the clauses that can be constructed by the learner

[

Kietz and Wrobel, 1992;

Cohen, 1994

]

. Thus FLIPPER builds clauses using the RIPPER learning al-

gorithm, but employs a declaratively speci�ed re�nement operator which allows

the user to specify which speci�c re�nement operations (of the type a

0

above)

are allowable. Clauses are generalized by simply reversing previous re�nement

operations.

The states in the re�nement graph are of the form hA B;DB i. For the

purpose of computing re�nements, DB is a set of ground facts. However, the

constants appearing in DB will be interpreted as variables and predicate symbols

elsewhere. (This point will be clari�ed shortly, by example.)

The top of the re�nement graph is the state h2;DB

0

i where DB

0

is a user-

speci�ed initial database. Re�nements are speci�ed via a series of re�nement rules

of the form hA B;Pre;Posti where Pre is a conjunction of literals, and Post

is set of positive literals. Either A or B can be absent. The semantics of these

re�nement rules is de�ned below.

De�nition 1 (FLIPPER's re�nement operator) hC

2

;DB

2

i is a re�nement

of hC

1

;DB

1

i (written hC

1

;DB

1

i ! hC

2

;DB

2

i) if one of the following holds:

� There is a re�nement rule of the form hA B;Pre;Posti, C

1

= 2, �

is a ground substitution such that DB

1

` Pre�, C

2

= (A� B�), and

DB

2

= DB

1

[(Post�).

� There is a re�nement rule of the form h B

r

;Pre;Posti, C

1

= (A B), �

is a ground substitution such that DB

1

` Pre�, C

2

= (A B; (B

r

�)), and

DB

2

= DB

1

[(Post�).

Let us use the notation C where Pre asserting Post for a re�nement rule

hC ;Pre;Posti. As an example, a bias for the well-known king-rook-king illegal

problem with the background relations adjacent , equal , and less than might be

represented with the initial database

DB

0

= frel(adjacent); rel(equal); rel(less than)g

and the re�nement rules

illegal(A,B,C,D,E,F)

where true asserting f linked(A), linked(B), : : : , linked(F) g

 R(X,Y)

where rel(R),linked(X),linked(Y) asserting ;

ILP-95, Leuven

This representation makes it quite easy to introduce additional constraints. For

instance, to introduce the type declaration illegal(row,col,row,col,row,col), and the

constraint that all background relations must have arguments of the same type,

one could revise the re�nement rules as follows:

illegal(A,B,C,D,E,F)

where true asserting f row(A), col(B), : : : , row(E), col(F) g

 R(X,Y)

where rel(R),CommonType(X),CommonType(Y) asserting ;

This re�nement language is novel in a number of respects. It has much of the

expressiveness of antecedent description grammars and augmented antecedent

description grammars

[

Cohen, 1994; Cohen, 1993

]

; however, it requires only a

function-free theorem-prover (rather than full Prolog) to evaluate.

5.3 A re�nement operator for text categorization

Before presenting the speci�c re�nement operator used in the text categorization

experiments, one subtle point in the de�nition above will be clari�ed, and one

extension to the re�nement language will be presented.

5.3.1 Generating new variable symbols

In the de�nition of the semantics of a re�nement operator hC ;Pre;Posti, we say

that the � such that DB

1

` Pre� must be a ground substitition. In fact it is not

only necessary that Pre� is ground; it must also be the case that Post� is ground,

since one e�ect of re�nement is to replace DB

1

with DB

1

[Post�.

7

The theorem prover, of course, will only generate bindings for those variables

in Pre. Hence when a re�nement step is performed the � produced by the theorem

prover is extended so that every variable X appearing in Post or C but not Pre

is mapped to a new \constant" of the form Xi, where i is a small integer. (The

word \constant" is in quotes since this symbol is treated as a constant only for

the purpose of re�nement|it may be used as a variable by the learning system.)

As an example, consider the text categorization problem presented in Sec-

tion 2.1. With the initial database

DB

0

= fword(decision);word(trees);word(by) : : :g

and the re�nement rules

ml session(D) where true asserting f doc(D) g

 W(D,I) where word(W),doc(D) asserting f pos(I) g

a path through the re�nement graph might be the following

7

Recall that the DB part of a re�nement state is a set of ground facts.

ILP-95, Leuven

h2;DB

0

i

hml session(D) ; fdoc(D)g [DB

0

i

hml session(D) trees(D; I1); fpos(I1); doc(D)g [DB

0

i

hml session(D) trees(D; I1);decision(D;I2); fpos(I2); pos(I1); doc(D)g [DB

0

i

.

.

.

5.3.2 Generating constant and predicate symbols

The above provides a convenient way of generating variable symbols to appear in

a clause. We have also added extended the re�nement language to make it easy

to generate constant and predicate symbols in a data-driven way. Speci�cally, the

user can mark a variable X appearing in a re�nement, indicating that it must

be replaced by a constant. (Formally, De�nition 1 is modi�ed by replacing �

everywhere with � ��

X

, where �

X

must be a substitution of the form fX = cg for

some constant c.)

Such an extension is simply a syntactic convenience unless there is an e�cient

way to �nd the best instantiation for a marked variable X. FLIPPER �nds the

substitution �

X

that optimizes gain over the background theory T

B

|e�ciently|

by �nding for each example e all proofs of

T

B

; (A B;B

r

�) ` e

and recording the bindings given to X. Thus only substitutions �

X

that will

satisfy positive examples are considered.

This extension is especially useful when X is a second-orded variable (i.e. one

which will be bound to a predicate symbol). In this case a second-order re�nement

rule can be used without �rst enumerating the set of all possible predicates|

instead FLIPPER's second-order theorem-prover is used to enumerate appropriate

predicate symbols.

5.3.3 Re�nement for text categorization

Using these extensions the re�nement operator for text categorization problems

can be succintly stated as follows.

The initial database is

DB

0

= frel(near1); rel(near2); rel(near3); rel(after)g

Using the notion X

�

to denote a \marked" variable, the re�nement rules are

C(D) where true asserting f doc(D) g

 W

�

(D,I) where doc(D) asserting f pos(I) g

 :W

�

(D,I) where doc(D) asserting ;

 R(I,J) where rel(R),pos(I),pos(J),I6=J asserting ;

ILP-95, Leuven

Table 8: RIPPER vs. FLIPPER

category default RIPPER FLIPPER

errors errors recall precision errors recall precision

bonds 60 46 0.6333 0.6129 41 0.5667 0.6939

burma 93 33 0.6989 0.9286 33 0.6882 0.9412

neilson 87 45 0.6782 0.7763 46 0.6092 0.8154

tickertalk 40 40 0.0000 1.0000 40 0.0000 1.0000

box-o�ce 42 33 0.6667 0.5957 25 0.6190 0.7429

budget 197 168 0.5736 0.5736 171 0.5076 0.5747

dukakis 107 147 0.9159 0.4153 88 0.7103 0.5714

hostages 228 248 0.5132 0.4606 248 0.5132 0.4606

ireland 117 110 0.4444 0.5361 119 0.3590 0.4884

quayle 133 76 0.8496 0.6686 68 0.7368 0.7481

average 110.4 94.6 0.5974 0.6568 87.9 0.5310 0.7037

5.4 Experimental results

At the time of this writing the implementation of FLIPPER has just been

completed, and as a consequence our experiments with the system are somewhat

preliminary. (For instance, we have made no e�ort to determine if the re�nement

rules above can be improved, or to see how relation selection impacts FLIPPER,

and we have not performed any signi�cance tests.) However, Tables 8 and 9

give a preliminary comparison of RIPPER to FLIPPER (with relations). Table 6

compares the performance of RIPPER and FOIL on each of the ten test problems

when the default options are used for both learners and no relation or feature

selection is done. Table 7 compares average performance across the ten problems

as the loss ratio is changed.

To summarize, FLIPPER appears to perform slightly better than RIPPER in

two respects.

First, FLIPPER appears to be capable of �nding higher precision classi�ers

than RIPPER: RIPPER's highest average precision is 86%, whereas FLIPPER's

highest average precision is almost ten points higher.

Second, with respect to error rate, Table 8 shows that the \out of the box"

version of FLIPPER obtains slightly lower error rates on average|due largely

to its improved performance on the dukakis category. (Recall that this was one

of two categories for which relations signi�cantly improved the performance of

FOIL.) The same edge in error rates appears to hold for most values of the loss

ratio parameter, as shown by Table 9; FLIPPER obtains a lower error rate for 6

of the 7 loss ratios investigated, and is only fractionally higher on the remaining

ILP-95, Leuven

Table 9: RIPPER vs. FLIPPER, varying the loss ratio

RIPPER

LR errors recall precision

0.333 123.8 0.67008 0.45560

0.5 124.7 0.66040 0.44757

1.0 94.6 0.59738 0.65677

2.0 86.3 0.34364 0.83579

3.0 87.5 0.32918 0.83716

5.0 99.4 0.16014 0.84012

10.0 99.9 0.15760 0.86235

FLIPPER

LR errors recall precision

0.333 122.3 0.6669 0.4715

0.5 103.9 0.6367 0.5216

1.0 87.9 0.5310 0.7037

2.0 85.5 0.3634 0.8199

3.0 87.7 0.3207 0.8316

5.0 95.7 0.2171 0.9055

10.0 102.8 0.1201 0.9565

loss ratio (LR = 3).

6 Summary and remarks

Figure 1 summarizes the error rates obtained by the various learning systems as

their parameters are varied. Figure 2 gives a similar summary of obtainable levels

of recall and precision. For FOIL, the varied parameter is the degree of relation

selection; for RIPPER and FLIPPER, the varied parameter is loss ratio. Only a

single point is shown for C4.5 and the probabilistic classi�er, as Lewis and Catlett

only reported results for one parameter setting.

We will now summarize the conclusions that we have drawn from these results.

6.1 First order vs propositional learners

For these problems, there are some situations in which using a �rst-order repre-

sentation is useful. The most evident one is when a a high-precision classi�er is

desirable; at low levels of recall both relational FOIL and RIPPER obtain higher

precision classi�ers than their propositional analogs. Further, the highest levels of

precision overall are obtained by FLIPPER. FLIPPER obtains 96% precision at

12% recall, and 91% precision at 22% recall, while the highest precision proposi-

tional classi�er has only 86% precision at 16% recall.

However, at low and intermediate levels of precision, the performance of the

propositional and relational learners we have studied is nearly indistinguishable.

In particular, if the goal is simply to minimize error rate, then the �rst-order

representation o�ers no practically signi�cant advantage over the best available

propositional methods (at least for these problems). In fact, when parameters

are set so as to minimize error, then propositional FOIL and relational FOIL

ILP-95, Leuven

80

90

100

110

120

130

140

150

p
r
e
c
i
s
i
o
n

recall

FOIL(rel)
FOIL(prop)

RIPPER
FLIPPER

C4.5 (LR=5)
Prob.

Figure 1: Average error rates of the learners

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
r
e
c
i
s
i
o
n

recall

FOIL(rel)
FOIL(prop)

RIPPER
FLIPPER

C4.5
Prob.

Figure 2: Precision-recall tradeo�s of the learners

ILP-95, Leuven

are statistically indistinguishable, and the propositional system RIPPER and its

�rst-order version FLIPPER also perform quite similarly. We also note that when

optimized for error rate both C4.5 and the probabilistic classi�er give performance

superior to FOIL, and comparable to RIPPER and FLIPPER.

One can put this observation in a more positive light by noting that even when

the larger hypothesis space searched by the �rst order systems is unnecessary (as

is apparently the case in minimizing error) the �rst order learners are able to

obtain good generalization performance, relative to that of propositional learners.

In other words, the overhead of using �rst-order methods from the standpoint of

generalization appears to be quite low.

6.2 Methodological points

These results emphasize the importance of careful comparison between relational

and propositional learning systems. After reading the results of Section 3 one

might be tempted to believe that �rst-order learning methods (in particular, FOIL)

represent a substantial advance over propositional methods for this problem; this

conclusion would appear particularly plausible had we not presented the results

for FOIL with a propositional representation. In fact, the results for propositional

FOIL and RIPPER suggest that a large factor in FOIL's success is not its use of

a �rst-order representation, but rather its use of rules. We conjecture that other

propositional learning methods, such as SWAP1

[

Apt�e et al., 1994

]

and CN2

[

Clark

and Niblett, 1989

]

would also perform well on this problem.

Another observation is illustrated by Figure 2, in particular by the three curves

labeled relational FOIL, propositional FOIL, and RIPPER. While switching from

a propositional to relational representation for FOIL does o�er some performance

improvement, this improvement is far less than that obtained by switching from

propositional FOIL to propositional RIPPER.

This illustrates the point that in addressing the representational problems that

are central to ILP, it is unwise to ignore or neglect the issues that are central to

machine learning, such as pruning. In this case, the representation and background

knowledge used are much less important than the pruning algorithm used by the

learner.

7 Conclusions

We have evaluated the e�ectiveness of several learning methods for learning text

categorization rules. Speci�cally, we have evaluated FOIL6, using both proposi-

tional and relational representations; RIPPER, a propositional rule-learning sys-

tem; and FLIPPER, a �rst-order version of RIPPER. We have also evaluated a

relation selection method as a means of improving performance in text categoriza-

tion problems.

ILP-95, Leuven

The experiments indicate that (at least on this set of test problems) a �rst-order

representation can provide some additional bene�t, but only in certain contexts.

In particular, the �rst order representation seems to be advantageous when high-

precision classi�ers are desirable. In many other situations, however, the �rst-order

representation provides little or no bene�t; for instance, the extra power provided

by the �rst-order representation is unused by both FOIL and FLIPPER when

parameters are set so as to minimize error rate.

A further observation is that while relational FOIL and FLIPPER perform

somewhat better than their propositional counterparts, the performance di�er-

ences between FOIL and relational FOIL and RIPPER and FLIPPER are small.

However, the di�erence between FOIL and FLIPPER is quite pronounced: in

fact, the propositional RIPPER system clearly outperforms relational FOIL. This

demonstrates that the gains due to improvements in pruning algorithms and other

core machine learning technologies can far outweigh the gains due to a more pow-

erful representation language.

References

(Apt�e et al., 1994) Chidanand Apt�e, Fred Damerau, and Sholom M. Weiss. Au-

tomated learning of decision rules for text categorization. ACM Transactions

on Information Systems, 12(3):233{251, 1994.

(Cameron-Jones and Quinlan, 1993) R. M. Cameron-Jones and J. R. Quinlan.

First-order learning, zeroth order data. In Proceedings of the Sixth Australian

Joint Conference on Arti�cial Intelligence. World Scienti�c, 1993.

(Clark and Niblett, 1989) P. Clark and T. Niblett. The CN2 induction algorithm.

Machine Learning, 3(1), 1989.

(Cohen, 1993) William W. Cohen. Rapid prototyping of ILP systems using ex-

plicit bias. In Proceedings of the 1993 IJCAI Workshop on Inductive Logic

Programming, Chambery, France, 1993.

(Cohen, 1994) WilliamW. Cohen. Grammatically biased learning: learning logic

programs using an explicit antecedent description language. Arti�cial Intelli-

gence, 68:303{366, 1994.

(Cohen, 1995a) William W. Cohen. Fast e�ective rule induction. In Machine

Learning: Proceedings of the Twelfth International Conference, Lake Taho, Cal-

ifornia, 1995. Morgan Kaufmann.

(Cohen, 1995b) William W. Cohen. Text categorization and relational learning.

InMachine Learning: Proceedings of the Twelfth International Conference, Lake

Taho, California, 1995. Morgan Kaufmann.

ILP-95, Leuven

(Harter, 1986) Stepher P. Harter. Online Information Retrieval. Academic Press,

San Diego, 1986.

(Kietz and Wrobel, 1992) Jorg-Uwe Kietz and Stephan Wrobel. Controlling the

complexity of learning in logic through syntactic and task-oriented models. In

Inductive Logic Programming. Academic Press, 1992.

(King et al., 1992) Ross D. King, Stephen Muggleton, Richard A. Lewis, and

Michael J. E. Sternberg. Drug design by machine learning: the use of inductive

logic programming to model the structure-activity relationships of trimetho-

prim analogues binding to dihydrofolate reductase. Proceedings of the National

Academy of Science, 89, 1992.

(Lewis and Catlett, 1994) David Lewis and Jason Catlett. Heterogeneous uncer-

tainty sampling for supervised learning. In Machine Learning: Proceedings of

the Eleventh Annual Conference, New Brunswick, New Jersey, 1994. Morgan

Kaufmann.

(Lewis and Gale, 1994) David Lewis and William Gale. Training text classi�ers

by uncertainty sampling. In Seventeenth Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, 1994.

(Mooney and Cali�, 1995) Raymond J. Mooney andMary Elaine Cali�. Induction

of �rst-order decision lists: Results on learning the past tense of english verbs.

Journal of Arti�cial Intelligence Research, 2, 1995.

(Muggleton and Feng, 1992) Stephen Muggleton and Cao Feng. E�cient induc-

tion of logic programs. In Inductive Logic Programming. Academic Press, 1992.

(Quinlan and Cameron-Jones, 1993) J. R. Quinlan and R. M. Cameron-Jones.

FOIL: Amidterm report. In Pavel B. Brazdil, editor,Machine Learning: ECML-

93, Vienna, Austria, 1993. Springer-Verlag. Lecture notes in Computer Science

667.

(Quinlan, 1990) J. Ross Quinlan. Learning logical de�nitions from relations. Ma-

chine Learning, 5(3), 1990.

(Quinlan, 1991) J. Ross Quinlan. Determinate literals in inductive logic program-

ming. In Proceedings of the Eighth International Workshop on Machine Learn-

ing, Ithaca, New York, 1991. Morgan Kaufmann.

(Quinlan, 1994) J. Ross Quinlan. C4.5: programs for machine learning. Morgan

Kaufmann, 1994.

(Quinlan, 1995) J. Ross Quinlan. MDL and categorical theories (continued). In

Machine Learning: Proceedings of the Twelfth International Conference, Lake

Taho, California, 1995. Morgan Kaufmann.

ILP-95, Leuven

(Van Rijsbergen, 1979) C. J. Van Rijsbergen. Information Retrieval. Butterworth,

London, second edition, 1979.

(Zelle and Mooney, 1994) John M. Zelle and Raymond J. Mooney. Inducing de-

terministic Prolog parsers from treebanks: a machine learning approach. In

Proceedings of the Twelfth National Conference on Arti�cial Intelligence, Seat-

tle, Washington, 1994. MIT Press.

