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The simplification principle

• The heart of any efficient implementation of a constraint
  language is the simplification principle:

Simplify each occurrence of a constraint
as much as possible

• This principle has continued to hold from the early days of
  Prolog implementation (e.g., the DEC-10 compiler) to the
  present.  It holds for the WAM, for native code systems, and
  for systems that do global analysis.

• All experimental evidence so far shows no contradiction with
  the hypothesis that the principle continues to hold until 
  performance has reached that of imperative programming.

• Examples of simplification:

Static:
Dynamic:

Local:
Global:

• This is done at compile-time and run-time (statically and 
  dynamically) and by looking at various-sized pieces of
  program (locally and globally).

“get_variable” in the WAM is a move
Clause indexing
WAM unification is done per functor
The two-stream unification algorithm
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The simplification principle in the WAM

Simplify unification

• Consider the unification X=s(a,T).

• Since the second argument s(a,T) is known, the general
  algorithm can be specialized for this case, resulting in:

   get_structure A1, s/2

   unify_constant a

   unify_value A2

Simplify backtracking

• Consider the predicate p with definition:

• If the first argument is an atom, then picking the right clause
  can be done with hashing instead of backtracking:

p(a). 
p(b).

   switch_on_term V,C,fail,fail

C: switch_on_constant 2, T  % Hash lookup

A: get_constant a

   proceed

B: get_constant b

   proceed

T: entry a, A

   entry b, B

V: % Try both clauses with backtracking
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How to implement a new logic language

• The quickest way to implement a new logic language is to
  write an interpreter in Prolog (e.g., Concurrent Prolog, 
  Still-Life, Timed Gentzen, ...).

• There are several ways to get an efficient implementation:

1. Extend the WAM.  This technique has been the most
    popular (e.g., CLP(R), CLP(FD), ...).  It is not the right way
    for languages very different from Prolog (e.g., λ-Prolog).

2. Compile the language into an existing implementation of
    Prolog (e.g., QD-Janus).  Modern implementations of
    Prolog are fast and support advanced control constructs
    such as coroutining (e.g., SICStus) and first-class 
    suspensions (e.g., ECLiPSe).

3. If the above is difficult, then try to compile the language 
    into a system that provides useful primitives.  For example,
    λ-Prolog has been implemented with MALI, a memory
    management library tailored for logic programming.

• To get the fastest possible implementation, it is necessary to
  compile directly to a lower-level language (e.g., C or assembly).
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Implementation trade-offs

Approach Portability Execution
speed

Foreign
language
interface

Dynamicity
(assert/retract)

Emulator
in C or C++

Generate
C or C++

Generate
Prolog

Assembly

Machine
code (binary)

Interpreter
in C or C++

yes

yes

yes

no

no

yes

average

fast †

average

Compilation
speed

fast

fast

slow

fast

slow

depends *

fast

fast §

fast

best

poor

depends *

average

average

poor

yes

no

yes

no

yes

yes

† Using RISC-macro technique (see next slide)
§ Compilation becomes more complex with modern (superscalar) RISC

(3) Best speed while maintaining  excellent portability and
      interoperability

(3)

(1) Smallest development time to get a system that works

• Three good trade-offs:

(2)

Interpreter
in Prolog

yes slow fast poor yes (1)

* Depends on the underlying Prolog system

(2) Smallest development time to get a system that is fast
      enough to be useful
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C as a portable assembler

• Goals: speed, portability, and interoperability.

• Generating assembly is efficient but nonportable.
  Generating emulated byte code is portable but inefficient.
  Naive use of C as a target language is inefficient.

• A solution (R. Meyer): 
  The RISC-macro technique using GNU C.

1. Generate RISC code, where the RISC instructions are C
    macros.  The macros are chosen so that the C compiler
    translates them into actual RISC instructions.

2. Do not use the C call stack.  Compile short branches as
    gotos and long branches as functions (using a simple
    interpretive loop).  Control overhead < 5% and C
    procedure sizes are bounded.

3. Assign registers to global variables (a feature of GNU C).

4. Let the C compiler handle register allocation, peepholing,
    architecture-dependent issues and calls to C routines.

• This technique is being used in the LIFE compiler development
  at DEC PRL.  It is fast (3 times faster than the first C code 
  generation and within 30% of pure native) and portable (same 
  code runs on MIPS, Alpha, and i486).
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The compiler intermediate form
for constraint language implementation

• The intermediate form is the compiler’s internal representation
  of the program.

• A good intermediate form should be able to express correctness
   independently of termination and efficiency.

• Ideally, an intermediate form has 3 orthogonal components:

1. Primitive constraints: the basic data manipulation 
    instructions, which are executable and non-directional.
    They may include structural constraints (e.g., unification
    of Herbrand terms) and arithmetic constraints (e.g., 
    equalities and inequalities).

2. Control flow: all modifications of control flow.  This 
    includes calls, jumps, closures and continuations.

3. Type attributes: standard data types as well as modedness
    and aliasing information.

• This allows expressing purely declarative execution as well as
  efficient operational execution.

• Compilation proceeds in two steps:

1. Add control and type information to the constraints.
    This can be done through programmer annotation, 
    compiler transformations and global analysis.

2. Translate the annotated constraints to the target language.
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Examples of intermediate forms

The Warren Abstract Machine (WAM) instruction set

The Aquarius Kernel Prolog language

• The WAM instruction set can be divided into a
  constraint part (get, put, unify instructions) and a 
  control part (call, switch, choice points).  The
  instructions have execution order and type information
  wired in.  Mapping from Prolog is straightforward and
  many important optimizations are designed in.

• Research issue: The constraints are too tightly bound with 
  execution order and types to allow for significant further
  optimization.  For example, the “unify” instructions must 
  be executed in a given order to unify a term’s arguments.

• Aquarius Kernel Prolog is a simplified representation
  of Prolog with all syntactic sugar removed. The three
  components are orthogonal (e.g., type information is
  stored separately from the program).

• Research issue: The only constraints and control that are
  represented are Prolog’s.  Other constraints (e.g., 
  arithmetic) and other control (e.g., coroutining) are not
  represented.

• We present two examples of intermediate forms that 
  have been designed for efficient execution of Prolog.
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Example of LIFE compilation (1)

� LIFE is a constraint language implementing unification and matching
on  -terms.

� A  -term is a generalization of a Prolog term. It is to a Prolog term
as a dynamic record is to a static array. That is, it has named fields
and fields may be added at will. There is no notion of a ground

term.

� In this example, we show how the RISC-macro technique is used to
compile  -term unification in LIFE.

� A  -term can be considered as a conjunction of three primitive
constraints: a sort constraint (X : s), a feature constraint (X:f = Y),
and an equality constraint (X = Y).

� The  -term X : person(age ) 25) is equivalent to X : person ^ (X:age =

Y) ^ (Y : 25).

� The representation of  -terms, if used as Prolog terms, has at most
a single word of memory overhead.
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Example of LIFE compilation (2)

� Consider a LIFE program consisting of the single fact p(X:f(X)). This
program is translated into Kernel LIFE and then into FLAM code.
The FLAM translation uses the two-stream unification algorithm:

extern(p)
allocate

pred_args([v(1)])
begin_unify

sort_and_features(v(1),f,[1],[v(2)],0,intern(6))
if_new_feat(v(2),intern(7),1)
unify(v(2),v(1))

intern(8)
jump(intern(9))

intern(6)
intern(7)

write_feature(v(1),v(2))
write_test(intern(8),1)

intern(9)
end_unify

deallocate
return

� The instruction sort and features(Reg,Func,FeatList,RegList,Level,Label)
corresponds to the constraint V = f(f1 ) V1; :::; fn ) Vn), with:

Reg V

Func f

FeatList [ f1; :::; fn ]
RegList [ V1; :::; Vn ]
Level (two-stream unification)
Label (branch to write stream)

� The instructions unify(Reg1,Reg2) and write feature(Reg1,Reg2)
correspond to the constraint V = W, with Reg1 and Reg2 corre-
sponding to V and W.

� The FLAM code is translated into C using the RISC-macro tech-
nique.
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Example of LIFE compilation (3)

� The C code resulting from the compilation of p(X:f(X)) is a sequence
of macros that strongly resembles a RISC assembly program. It is
101 lines long and begins as follows:

extern(p)
start_block(block(local_vars => [t(0),t(1),l(2),t(2)],number => 0))
comment(p = allocate)
blt(frame,choice,intern(10))
sub(choice,frame_block(0),t(0))
b(intern(11))

intern(10)
sub(frame,frame_block(0),t(0))

intern(11)
sw(frame,frame_previous,t(0))
sw(cont,frame_cont,t(0))
mv(t(0),frame)
lv(t(0),0)
sw(t(0),frame_size,frame)
comment(p = begin_unify)
comment(p = sort_and_features(v(1),f,[1],[v(2)],0,intern(6)))
b(intern(13))

intern(12)
mv(t(0),r(0))

intern(13)
lref(t(0),r(0))
bref(t(0),intern(12))
beq(t(0),static_add(sort_f,feat_tag),intern(14))
beq(t(0),topAtom,intern(18))
beq(t(0),static_add(topAtom,feat_tag),intern(15))
beq(t(0),sort_f,intern(14))
jmp_fail

intern(14)
b(intern(17))
jmp_fail

intern(15)
lv(t(1),static_add(sort_f,feat_tag))
sw(t(1),0,heap)
set_ref(heap,t(1))
add(heap,word,heap)
c_call(CopyTable(r(0)))
bgt(r(0),last_heap,intern(16))

...
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Using types when compiling constraints

Master routine
for constraint

A=B+C

source
code

object
code

type

new type

int(A),unboxed(A),
int(B),unboxed(B),
new(C)

int(A),unboxed(A),
int(B),unboxed(B),
int(C),unboxed(C)

A=B+C

add(A,B,C)

• The source code is annotated with type information.

• A single master routine per constraint generates specialized 
  object code and updates the type.

• The master routine can be used as the abstract operation in 
  global analysis.  The analyzer is easily integrated in the compiler.

• This technique is planned for the LIFE compiler.  It generalizes
  the technique of entry specialization used in the Aquarius compiler.
  Using an accumulator preprocessor the source code is kept compact.
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Sample code for the master routine

master_add(X=Y+Z, Tin, Code, Tout) :-
    if (Tin=>(int(Y),int(Z)) then
        % Generate add instruction:
        Code = [add(T,Y,Z),unify(T,X)]
        % Update type:
        Tout = update(int(X),Tin)
    else
        % Handle other special cases
        ...
    else
        % Default (most general) case:
        Code = [general_add(X,Y,Z)]
        Tout = update((int(X),int(Y),
                      int(Z)),Tin))
    endif.

• Special cases can be added according to need.  Leaving them
  out affects speed and does not affect not correctness.
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The Prolog language and the WAM

• Prolog is a constraint logic language that solves equality
  constraints over finite trees or rational trees.  Constraint
  solving is done by unification.  Control flow is sequential
  augmented with chronological backtracking.

• Prolog has been used as a base to build constraint systems
  using other domains, both practically and theoretically.
  For example, CLP(R) handles linear equalities and inequalities
  over floats, and is built on top of a standard Prolog engine.

• Prolog systems are reaching the performance of imperative 
  programming.  Hence it is important to understand what makes 
  Prolog run fast.

• The main breakthrough in Prolog implementation was the 
  development of the Warren Abstract Machine (WAM) in 1983.  
  The WAM defines a high-level instruction set and execution 
  model for Prolog.  Implementation work since then has built on 
  this foundation.

15



Evolution of Prolog performance

System Machine Clock Benchmark
(MHz) N Q D S R HM

z DEC-10 Prolog DEC-10 1 1 1 1 1 1
XSB 1.3 SPARC 25 7 4 2 4 3 3
Quintus 2.0 Sun 20 11 4 3 4 3 4
z MProlog 2.3 386 33 13 6 5 5 2 5
ECLiPSe 3.3.7 SPARC 25 11 6 4 6 3 5
NU-Prolog 1.5.38 SPARC 25 22 7 5 7 2 5
SICStus 2.1 DEC 25 37 16 10 10 5 10
Quintus 2.5 SPARC 25 33 16 9 13 8 12
z BIM 3.1 beta SPARC 25 34 21 8 16 8 13
z SICStus 2.1 SPARC 25 39 26 15 20 8 17
z x y Aquarius SPARC 25 120 140 28 25 12 29
z x IBM Prolog IBM 120 59 74 69 33 60
z x Aquarius 1.0 DEC 25 180 210 63 44 46 71
z x y Parma MIPS 25 330 350 130 170 59 140

� This table compares popular software implementations of Prolog.

� Annotations: z (native code system), x (system with global analy-
sis), y (research system).

� Benchmarks with times on DEC-10 Prolog (year 1977, in ms): N
(naive reverse, 53.7), Q (quicksort, 75.0), D (deriv, 10.1), S (serialise,
40.2), R (query, 185.0), HM (harmonic mean).

� Machines: DEC (DECstation 5000/200), IBM (IBM System 370
ES/9000 Model 9021), MIPS (MIPS R3230), SPARC (SPARCsta-
tion 1+), Sun (Sun 3/60 MC68020), 386 (IBM PC clone).
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The WAM as a constraint language

• The WAM provides two primitive constraints, a functor
  constraint and an equality constraint.

X=f(X1,...,Xn)
(n≥0, Xi variable or constant)

put_...
unify_...
...
unify_...

get_...
unify_...
...
unify_...

put_variable ... unify_variable ...

put_value ...

get_variable ...

get_value ...

unify_value ...

put_unsafe_value ...

unify_local_value ...

X=Y

Two possible instruction sequences

Instruction sequences that implement the constraintConstraint

Eight possible instructions

• The data manipulation instructions of the WAM instruction set
  are executable constraints, specialized with execution order and
  type information.

X=f/n
X.1=X1
...
X.n=Xn

Decomposed
constraints

• The instructions are specialized for variables occurring for the 
  first time (denoted “variable”) and others (denoted “value”).

• The “unify” instructions may only occur in the positions shown.

n unify instructions
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The WAM instruction set

Constraint Specialized constraint (with execution order and type)

Loading argument registers (just before a call)
X = Y put variable Vn, Ri Create a new variable, put in Vn and Ri.
X = Y put value Vn, Ri Move Vn to Ri.
X = C put constant C, Ri Move the constant C to Ri.
X = nil put nil Ri Move the constant nil to Ri.

X = F=N put structure F=N, Ri Create the functor F=N, put in Ri.
X = :=2 put list Ri Create a list pointer, put in Ri.

Unifying with registers (head unification)
X = Y get variable Vn, Ri Move Ri to Vn.
X = Y get value Vn, Ri Unify Vn with Ri.
X = C get constant C, Ri Unify the constant C with Ri.
X = nil get nil Ri Unify the constant nil with Ri.

X = F=N get structure F=N, Ri Unify the functor F=N with Ri.
X = :=2 get list Ri Unify a list pointer with Ri.

Unifying with structure arguments (head unification)
X:i = Y unify variable Vn Move next structure argument to Vn.
X:i = Y unify value Vn Unify Vn with next structure argument.
X:i = C unify constant C Unify the constant C with next structure argument.
X:i = nil unify nil Unify the constant nil with next structure argument.

^

1� j�N

X:(i + j� 1) = Yi unify void N Skip next N structure arguments.

Managing unsafe variables
X = Y put unsafe value Vn, Ri Move Vn to Ri and globalize.

X:i = Y unify local value Vn Unify Vn with next structure argument and globalize.
Procedural control

call P, N Call predicate P, trim environment size to N.
execute P Jump to predicate P.
proceed Return.
allocate Create an environment.
deallocate Remove an environment.

Selecting a clause (conditional branching)
switch on term V, C, L, S Four-way jump on type of A1.
switch on constant N, T Hashed jump (size N table at T) on constant in A1.
switch on structure N, T Hashed jump (size N table at T) on structure in A1.

Backtracking (choice point management)
try me else L Create choice point to L, then fall through.
retry me else L Change retry address to L, then fall through.
trust me else fail Remove top-most choice point, then fall through.
try L Create choice point, then jump to L.
retry L Change retry address, then jump to L.
trust L Remove top-most choice point, then jump to L.
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How to compile unification

In the WAM (1983)

The two-stream algorithm (1989)

• Single instruction stream

• A mode flag distinguishes between Read and Write mode

• Breadth-first traversal of terms: X=f(g(A),h(B)) is
  compiled as X=f(T,U), T=g(A), U=h(B)

• Problems:
- Write mode is not propagated to substructures, resulting in 
  superfluous variable creations and bindings

- Every instruction sets or tests the mode flag

- Superfluous work on failure, e.g. X=f(g(a),_,_) always unifies 
  the last two arguments

• Two instruction streams: for Read and for Write mode

• Depth-first traversal of terms

• Key idea: a mechanism to jump between the Read and
  Write mode streams as needed, with very low overhead

• Advantages:

- No superfluous operations

- Downward propagation of Write mode (to substructures)

- Linear code size

- Efficient expansion to native code
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How to compile unification:
The WAM

• Consider the unification X=f(g(A),h(B))

get_structure X, f/2
unify_variable T
unify_variable U

get_structure T, g/1
unify_variable A

get_structure U, h/1
unify_variable B

X=f(T, U)

T=g(A)

U=h(B)

var(X)?

Mode←W Mode←R
Create f/2

Mode?

Write T
Read T

Mode?

Write U
Read U

W R

W R

yes no
• The WAM instructions and their
  internal operations look like this:

Create T

Create U

Subterm
unifications

WAM
instruction
sequence

Internal operations
of WAM instructions
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How to compile unification:
The two-stream idea

• It is possible to efficiently execute  any
  contiguous subsequence.  Give each sub-
  sequence a unique identifier 	s .  Then a 
  single comparison per subsequence and a 
  single register R are all that is needed.

• Given a sequence of instructions.

R≠s

jump if R=s

R=s

Sequence of
instructions

• Arrange the unification instructions in
  a depth-first traversal of the term.
  Then two properties are true:

- Each subterm is a contiguous
  sequence of instructions.

- Nested subterms are also nested
  sequences of instructions.
  (This permits further reduction 
  of overhead.)

• Idea due to Mohamed Amraoui, 
  André Mariën and Bart Demoen, 
  Kent Boortz, and Micha Meier.
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How to compile unification:
The two-stream algorithm

• Consider the unification X=f(g(A),h(B))

• The two-stream compilation looks like this:

var(X)?

X=f(T,U)

var(T)?

T=g(A)

var(U)?

U=h(B)

 X=f(T,U)

T=g(A)

jump if R≥1

U=h(B)

jump if R≥1

set R←1

set R←0

Read mode
instructions

Write mode
instructions

Instructions that implement
the unification of T with the 
subterm g(A)

yes
no

yes

yes

no

no

set R←1

• There are two instruction
  sequences, with jumps
  between them

• The constraint T=g(A)
  is compiled differently in
  the Read and Write mode
  sequences
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Using types when compiling unification

� This table describes how unification is compiled in Aquarius.

� unify(X,Y) generates code for the unification X=Y using type T.

� “ T) var(X) ” tests whether type T implies var(X).

Name Condition Actions
unify(X, Y) var(X), var(Y) var var(X, Y)

var(X), nonvar(Y) var nvar(X, Y)
nonvar(X), var(Y) var nvar(Y, X)
nonvar(X), nonvar(Y) nvar nvar(X, Y)

nvar nvar(X, Y) 8 args Xi, Yi: unify(Xi, Yi)
var nvar(X, Y) T) new(X) new old(X, Y)

T) ground(X) old old(X, Y)
otherwise old old(X, Y) (depth limited)

var var(X, Y) T) (old(X), old(Y)) oldv oldv(X, Y)
T) (old(X), new(Y)) Generate store instruction
T) (new(X), old(Y)) Generate store instruction
T) (new(X), new(Y)) new new(X, Y)

new new(X, Y) Generate store and move instructions
new old(X, Y) compound(Y) W seq(X, Y)

atomic(Y) Generate store instruction
var(Y) var var(X, Y)

old old(X, Y) compound(Y), (T)nonvar(X)) Test Y type, then old old R(X, Y)
compound(Y) Generate switch, R & W branches
atomic(Y), (T) nonvar(X)) old old R(X, Y)
atomic(Y) Generate unify atomic instruction
nonvar(Y), (T) var(X)) old old W(X, Y)
var(Y) var var(X, Y)

oldv oldv(X, Y) A = atomic value(T, X) unify(Y, A)
A = atomic value(T, Y) unify(X, A)
T) (atomic(X), atomic(Y)) Generate comparison instruction
T) (var(X), nonvar(Y)) Generate store instruction
T) (nonvar(X), var(Y)) Generate store instruction
otherwise Generate unify instruction

old old W(X, Y) compound(Y) W seq(X, Y)
atomic(Y) Generate store instruction

old old R(X, Y) compound(Y) 8 args Xi, Yi: old old(Xi, Yi)
atomic(Y) Generate comparison instruction

W seq(X, Y) Generate W mode sequence
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Backtracking

The raw ingredients: three stacks

choice point stack

data stack

trail stack

(a log of actions to restore objects older than the most recent choice point)

(a choice point encapsulates execution state: registers, stack pointers, retry address)

Actions

• To mark an execution point as backtrackable:
  Create a choice point.

• To backtrack to a previous execution point:
  Restore machine state (registers & stack pointers);
  Unwind the trail (restore the trailed objects);
  Go to the retry address.

What does it do?

• A general multi-level “undo” mechanism
  that recovers memory.

(all data objects are put here)

24



Timestamping (1)

• WAM trail condition: Trail a variable binding if the address
  of the variable is less than the address of the top-most choice 
  point.

• Improved trail condition: Trail a constraint modification if
  the previous modification was done before the creation time 
  of the top-most choice point.

- This works well for the WAM since an unbound variable can 
  only be bound once on forward execution.

- Other constraints may be modified (“bound”) more than once
  on forward execution (e.g., refinement of finite domains).  The 
  WAM condition results in too much trailing for them (c.f., CHIP ).

• Implementing this trail condition requires that each choice
  point and each constraint contain a timestamp marking its
  creation or modification time.

• To trail a binding means to store enough information on a 
  stack (the trail stack) so that backtracking may restore the
  unbound state.
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Timestamping (2)

1 2 nn-1i

• At any execution point, number the choice points on the 
  stack from 1 to n.

• Let ts   be the timestamp corresponding to choice point i
  and top   be the stack top at the creation time of choice point i.i

i

• The following invariants are maintained:

i<j  ⇒  top  ≤ top
i<j  ⇒  ts  < tsi

i j

j

• Trail condition when modifying constraint c:

• Maintaining consistent values of the timestamps:

1. Keep a global timestamp counter gts

2. Store gts in choice points and constraints 
    at their creation

4. Never decrement gts

if ts   > ts  then trailn c

stack

bottom top

choice points

... ...

3. Increment gts at choice point creation
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The CLP(FD) language

• CLP(FD) is a constraint logic language that incorporates
  a finite-domain solver built using the “glass-box” approach.

• “Glass-box”: provide primitive operations to allow efficient
  implementation of constraint solvers in the user language.

• CLP(FD) provides the single constraint X in R where X is
  a finite-domain variable and R is a range.  Various ranges
  are provided, e.g., L..H, min(Y), max(Y), dom(Y), val(Y).

• The finite-domain constraint “X=Y+C” can be 
  implemented as follows:

'X=Y+C'(X,Y,C) :-
    X in min(Y)+C..max(Y)+C,
    Y in min(X)-C..max(X)-C.

Partial lookahead scheme:

Full lookahead scheme:

'X=Y+C'(X,Y,C) :-
    X in dom(Y)+C,
    Y in dom(X)-C.
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The CLP(FD) implementation

• CLP(FD) is implemented by translation to C.  The base engine
  is a WAM, and the WAM instructions are C macros.

• A new class of FD variables is added, with a new tag.

• Unification of FD variables and standard variables is defined
  in the obvious way.

• Data structures and abstract instructions are added to support
  the range constraints.

FD variable

Timestamp

C-frame

Constraints

Max only
Min and Max
Dom
Val

Min only

A-frame
Environment of the clause
containing the FD variable

C-frames

FD variables
Clause arguments

Domain
(value)

CodeCreated for
each constraint

• Several non-trivial constraint optimizations are implemented.
  The system is significantly faster than CHIP.

List of suspended constraints,
separated into 5 chains for speed

• The following data structures support the constraint solver:
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Conclusions and Further Work

• The field of constraint logic language implementation
  is relatively new.  Much remains to be done.

• Prolog is a constraint language over a simple domain.
  Prolog implementation technology has progressed much
  in the last decade, and implementation of other constraint
  domains can profit from this work.

• Some fruitful areas for further work:

• Design of a common intermediate form to be
  shared between researchers to avoid duplication 
  of work.

• Extension of the “glass-box” approach to other
  constraint domains.

• Development of global analysis for constraint
  systems.

• Development of constraint compilers.

• Better understanding of “cooperation” between
   constraint solvers.

29



Partial bibliography

Daniel Diaz and Philippe Codognet. A Minimal Extension of the WAM
for clp(FD). In 10th ICLP, pages 774–790, Budapest, Hungary, MIT
Press, June 1993.

Joxan Jaffar and Michael J. Maher. Constraint Logic Programming: A
Survey. In JLP, Tenth Anniversary Issue, 1994.

Niels Jørgensen, Kim Marriott and Spiro Michaylov. Some Global
Compile-Time Optimizations for CLP(R). In 8th ILPS, pages 420–434,
MIT Press, October 1991.

Peter Van Roy. 1983–1993: The Wonder Years of Sequential Prolog
Implementation. In JLP, Tenth Anniversary Issue, 1994.

30


