
Issues in

Implementing

Constraint Logic

Languages

Peter Van Roy
DEC Paris Research Laboratory

École de Printemps
Châtillon/Seine

May 1994

1

Overview

• High-level issues
 The simplification principle
 How to implement a new logic language
 The compiler intermediate form
 Example of LIFE compilation
 Using types when compiling constraints

• Prolog implementation issues
 The Prolog language and the WAM
 Evolution of Prolog performance
 The WAM as a constraint language
 How to compile unification
 Using types when compiling unification

• Some general implementation techniques
 Backtracking
 Timestamping
 Suspensions and the CLP(FD) implementation

• Conclusions and further work

• Bibliography

2

The simplification principle

• The heart of any efficient implementation of a constraint
 language is the simplification principle:

Simplify each occurrence of a constraint
as much as possible

• This principle has continued to hold from the early days of
 Prolog implementation (e.g., the DEC-10 compiler) to the
 present. It holds for the WAM, for native code systems, and
 for systems that do global analysis.

• All experimental evidence so far shows no contradiction with
 the hypothesis that the principle continues to hold until
 performance has reached that of imperative programming.

• Examples of simplification:

Static:
Dynamic:

Local:
Global:

• This is done at compile-time and run-time (statically and
 dynamically) and by looking at various-sized pieces of
 program (locally and globally).

“get_variable” in the WAM is a move
Clause indexing
WAM unification is done per functor
The two-stream unification algorithm

3

The simplification principle in the WAM

Simplify unification

• Consider the unification X=s(a,T).

• Since the second argument s(a,T) is known, the general
 algorithm can be specialized for this case, resulting in:

 get_structure A1, s/2

 unify_constant a

 unify_value A2

Simplify backtracking

• Consider the predicate p with definition:

• If the first argument is an atom, then picking the right clause
 can be done with hashing instead of backtracking:

p(a).
p(b).

 switch_on_term V,C,fail,fail

C: switch_on_constant 2, T % Hash lookup

A: get_constant a

 proceed

B: get_constant b

 proceed

T: entry a, A

 entry b, B

V: % Try both clauses with backtracking

4

How to implement a new logic language

• The quickest way to implement a new logic language is to
 write an interpreter in Prolog (e.g., Concurrent Prolog,
 Still-Life, Timed Gentzen, ...).

• There are several ways to get an efficient implementation:

1. Extend the WAM. This technique has been the most
 popular (e.g., CLP(R), CLP(FD), ...). It is not the right way
 for languages very different from Prolog (e.g., λ-Prolog).

2. Compile the language into an existing implementation of
 Prolog (e.g., QD-Janus). Modern implementations of
 Prolog are fast and support advanced control constructs
 such as coroutining (e.g., SICStus) and first-class
 suspensions (e.g., ECLiPSe).

3. If the above is difficult, then try to compile the language
 into a system that provides useful primitives. For example,
 λ-Prolog has been implemented with MALI, a memory
 management library tailored for logic programming.

• To get the fastest possible implementation, it is necessary to
 compile directly to a lower-level language (e.g., C or assembly).

5

Implementation trade-offs

Approach Portability Execution
speed

Foreign
language
interface

Dynamicity
(assert/retract)

Emulator
in C or C++

Generate
C or C++

Generate
Prolog

Assembly

Machine
code (binary)

Interpreter
in C or C++

yes

yes

yes

no

no

yes

average

fast †

average

Compilation
speed

fast

fast

slow

fast

slow

depends *

fast

fast §

fast

best

poor

depends *

average

average

poor

yes

no

yes

no

yes

yes

† Using RISC-macro technique (see next slide)
§ Compilation becomes more complex with modern (superscalar) RISC

(3) Best speed while maintaining excellent portability and
 interoperability

(3)

(1) Smallest development time to get a system that works

• Three good trade-offs:

(2)

Interpreter
in Prolog

yes slow fast poor yes (1)

* Depends on the underlying Prolog system

(2) Smallest development time to get a system that is fast
 enough to be useful

6

C as a portable assembler

• Goals: speed, portability, and interoperability.

• Generating assembly is efficient but nonportable.
 Generating emulated byte code is portable but inefficient.
 Naive use of C as a target language is inefficient.

• A solution (R. Meyer):
 The RISC-macro technique using GNU C.

1. Generate RISC code, where the RISC instructions are C
 macros. The macros are chosen so that the C compiler
 translates them into actual RISC instructions.

2. Do not use the C call stack. Compile short branches as
 gotos and long branches as functions (using a simple
 interpretive loop). Control overhead < 5% and C
 procedure sizes are bounded.

3. Assign registers to global variables (a feature of GNU C).

4. Let the C compiler handle register allocation, peepholing,
 architecture-dependent issues and calls to C routines.

• This technique is being used in the LIFE compiler development
 at DEC PRL. It is fast (3 times faster than the first C code
 generation and within 30% of pure native) and portable (same
 code runs on MIPS, Alpha, and i486).

7

The compiler intermediate form
for constraint language implementation

• The intermediate form is the compiler’s internal representation
 of the program.

• A good intermediate form should be able to express correctness
 independently of termination and efficiency.

• Ideally, an intermediate form has 3 orthogonal components:

1. Primitive constraints: the basic data manipulation
 instructions, which are executable and non-directional.
 They may include structural constraints (e.g., unification
 of Herbrand terms) and arithmetic constraints (e.g.,
 equalities and inequalities).

2. Control flow: all modifications of control flow. This
 includes calls, jumps, closures and continuations.

3. Type attributes: standard data types as well as modedness
 and aliasing information.

• This allows expressing purely declarative execution as well as
 efficient operational execution.

• Compilation proceeds in two steps:

1. Add control and type information to the constraints.
 This can be done through programmer annotation,
 compiler transformations and global analysis.

2. Translate the annotated constraints to the target language.

8

Examples of intermediate forms

The Warren Abstract Machine (WAM) instruction set

The Aquarius Kernel Prolog language

• The WAM instruction set can be divided into a
 constraint part (get, put, unify instructions) and a
 control part (call, switch, choice points). The
 instructions have execution order and type information
 wired in. Mapping from Prolog is straightforward and
 many important optimizations are designed in.

• Research issue: The constraints are too tightly bound with
 execution order and types to allow for significant further
 optimization. For example, the “unify” instructions must
 be executed in a given order to unify a term’s arguments.

• Aquarius Kernel Prolog is a simplified representation
 of Prolog with all syntactic sugar removed. The three
 components are orthogonal (e.g., type information is
 stored separately from the program).

• Research issue: The only constraints and control that are
 represented are Prolog’s. Other constraints (e.g.,
 arithmetic) and other control (e.g., coroutining) are not
 represented.

• We present two examples of intermediate forms that
 have been designed for efficient execution of Prolog.

9

Example of LIFE compilation (1)

� LIFE is a constraint language implementing unification and matching
on -terms.

� A -term is a generalization of a Prolog term. It is to a Prolog term
as a dynamic record is to a static array. That is, it has named fields
and fields may be added at will. There is no notion of a ground

term.

� In this example, we show how the RISC-macro technique is used to
compile -term unification in LIFE.

� A -term can be considered as a conjunction of three primitive
constraints: a sort constraint (X : s), a feature constraint (X:f = Y),
and an equality constraint (X = Y).

� The -term X : person(age) 25) is equivalent to X : person ^ (X:age =

Y) ^ (Y : 25).

� The representation of -terms, if used as Prolog terms, has at most
a single word of memory overhead.

10

Example of LIFE compilation (2)

� Consider a LIFE program consisting of the single fact p(X:f(X)). This
program is translated into Kernel LIFE and then into FLAM code.
The FLAM translation uses the two-stream unification algorithm:

extern(p)
allocate

pred_args([v(1)])
begin_unify

sort_and_features(v(1),f,[1],[v(2)],0,intern(6))
if_new_feat(v(2),intern(7),1)
unify(v(2),v(1))

intern(8)
jump(intern(9))

intern(6)
intern(7)

write_feature(v(1),v(2))
write_test(intern(8),1)

intern(9)
end_unify

deallocate
return

� The instruction sort and features(Reg,Func,FeatList,RegList,Level,Label)
corresponds to the constraint V = f(f1) V1; :::; fn) Vn), with:

Reg V

Func f

FeatList [f1; :::; fn]
RegList [V1; :::; Vn]
Level (two-stream unification)
Label (branch to write stream)

� The instructions unify(Reg1,Reg2) and write feature(Reg1,Reg2)
correspond to the constraint V = W, with Reg1 and Reg2 corre-
sponding to V and W.

� The FLAM code is translated into C using the RISC-macro tech-
nique.

11

Example of LIFE compilation (3)

� The C code resulting from the compilation of p(X:f(X)) is a sequence
of macros that strongly resembles a RISC assembly program. It is
101 lines long and begins as follows:

extern(p)
start_block(block(local_vars => [t(0),t(1),l(2),t(2)],number => 0))
comment(p = allocate)
blt(frame,choice,intern(10))
sub(choice,frame_block(0),t(0))
b(intern(11))

intern(10)
sub(frame,frame_block(0),t(0))

intern(11)
sw(frame,frame_previous,t(0))
sw(cont,frame_cont,t(0))
mv(t(0),frame)
lv(t(0),0)
sw(t(0),frame_size,frame)
comment(p = begin_unify)
comment(p = sort_and_features(v(1),f,[1],[v(2)],0,intern(6)))
b(intern(13))

intern(12)
mv(t(0),r(0))

intern(13)
lref(t(0),r(0))
bref(t(0),intern(12))
beq(t(0),static_add(sort_f,feat_tag),intern(14))
beq(t(0),topAtom,intern(18))
beq(t(0),static_add(topAtom,feat_tag),intern(15))
beq(t(0),sort_f,intern(14))
jmp_fail

intern(14)
b(intern(17))
jmp_fail

intern(15)
lv(t(1),static_add(sort_f,feat_tag))
sw(t(1),0,heap)
set_ref(heap,t(1))
add(heap,word,heap)
c_call(CopyTable(r(0)))
bgt(r(0),last_heap,intern(16))

...

12

Using types when compiling constraints

Master routine
for constraint

A=B+C

source
code

object
code

type

new type

int(A),unboxed(A),
int(B),unboxed(B),
new(C)

int(A),unboxed(A),
int(B),unboxed(B),
int(C),unboxed(C)

A=B+C

add(A,B,C)

• The source code is annotated with type information.

• A single master routine per constraint generates specialized
 object code and updates the type.

• The master routine can be used as the abstract operation in
 global analysis. The analyzer is easily integrated in the compiler.

• This technique is planned for the LIFE compiler. It generalizes
 the technique of entry specialization used in the Aquarius compiler.
 Using an accumulator preprocessor the source code is kept compact.

13

Sample code for the master routine

master_add(X=Y+Z, Tin, Code, Tout) :-
 if (Tin=>(int(Y),int(Z)) then
 % Generate add instruction:
 Code = [add(T,Y,Z),unify(T,X)]
 % Update type:
 Tout = update(int(X),Tin)
 else
 % Handle other special cases
 ...
 else
 % Default (most general) case:
 Code = [general_add(X,Y,Z)]
 Tout = update((int(X),int(Y),
 int(Z)),Tin))
 endif.

• Special cases can be added according to need. Leaving them
 out affects speed and does not affect not correctness.

14

The Prolog language and the WAM

• Prolog is a constraint logic language that solves equality
 constraints over finite trees or rational trees. Constraint
 solving is done by unification. Control flow is sequential
 augmented with chronological backtracking.

• Prolog has been used as a base to build constraint systems
 using other domains, both practically and theoretically.
 For example, CLP(R) handles linear equalities and inequalities
 over floats, and is built on top of a standard Prolog engine.

• Prolog systems are reaching the performance of imperative
 programming. Hence it is important to understand what makes
 Prolog run fast.

• The main breakthrough in Prolog implementation was the
 development of the Warren Abstract Machine (WAM) in 1983.
 The WAM defines a high-level instruction set and execution
 model for Prolog. Implementation work since then has built on
 this foundation.

15

Evolution of Prolog performance

System Machine Clock Benchmark
(MHz) N Q D S R HM

z DEC-10 Prolog DEC-10 1 1 1 1 1 1
XSB 1.3 SPARC 25 7 4 2 4 3 3
Quintus 2.0 Sun 20 11 4 3 4 3 4
z MProlog 2.3 386 33 13 6 5 5 2 5
ECLiPSe 3.3.7 SPARC 25 11 6 4 6 3 5
NU-Prolog 1.5.38 SPARC 25 22 7 5 7 2 5
SICStus 2.1 DEC 25 37 16 10 10 5 10
Quintus 2.5 SPARC 25 33 16 9 13 8 12
z BIM 3.1 beta SPARC 25 34 21 8 16 8 13
z SICStus 2.1 SPARC 25 39 26 15 20 8 17
z x y Aquarius SPARC 25 120 140 28 25 12 29
z x IBM Prolog IBM 120 59 74 69 33 60
z x Aquarius 1.0 DEC 25 180 210 63 44 46 71
z x y Parma MIPS 25 330 350 130 170 59 140

� This table compares popular software implementations of Prolog.

� Annotations: z (native code system), x (system with global analy-
sis), y (research system).

� Benchmarks with times on DEC-10 Prolog (year 1977, in ms): N
(naive reverse, 53.7), Q (quicksort, 75.0), D (deriv, 10.1), S (serialise,
40.2), R (query, 185.0), HM (harmonic mean).

� Machines: DEC (DECstation 5000/200), IBM (IBM System 370
ES/9000 Model 9021), MIPS (MIPS R3230), SPARC (SPARCsta-
tion 1+), Sun (Sun 3/60 MC68020), 386 (IBM PC clone).

16

The WAM as a constraint language

• The WAM provides two primitive constraints, a functor
 constraint and an equality constraint.

X=f(X1,...,Xn)
(n≥0, Xi variable or constant)

put_...
unify_...
...
unify_...

get_...
unify_...
...
unify_...

put_variable ... unify_variable ...

put_value ...

get_variable ...

get_value ...

unify_value ...

put_unsafe_value ...

unify_local_value ...

X=Y

Two possible instruction sequences

Instruction sequences that implement the constraintConstraint

Eight possible instructions

• The data manipulation instructions of the WAM instruction set
 are executable constraints, specialized with execution order and
 type information.

X=f/n
X.1=X1
...
X.n=Xn

Decomposed
constraints

• The instructions are specialized for variables occurring for the
 first time (denoted “variable”) and others (denoted “value”).

• The “unify” instructions may only occur in the positions shown.

n unify instructions

17

The WAM instruction set

Constraint Specialized constraint (with execution order and type)

Loading argument registers (just before a call)
X = Y put variable Vn, Ri Create a new variable, put in Vn and Ri.
X = Y put value Vn, Ri Move Vn to Ri.
X = C put constant C, Ri Move the constant C to Ri.
X = nil put nil Ri Move the constant nil to Ri.

X = F=N put structure F=N, Ri Create the functor F=N, put in Ri.
X = :=2 put list Ri Create a list pointer, put in Ri.

Unifying with registers (head unification)
X = Y get variable Vn, Ri Move Ri to Vn.
X = Y get value Vn, Ri Unify Vn with Ri.
X = C get constant C, Ri Unify the constant C with Ri.
X = nil get nil Ri Unify the constant nil with Ri.

X = F=N get structure F=N, Ri Unify the functor F=N with Ri.
X = :=2 get list Ri Unify a list pointer with Ri.

Unifying with structure arguments (head unification)
X:i = Y unify variable Vn Move next structure argument to Vn.
X:i = Y unify value Vn Unify Vn with next structure argument.
X:i = C unify constant C Unify the constant C with next structure argument.
X:i = nil unify nil Unify the constant nil with next structure argument.

^

1� j�N

X:(i + j� 1) = Yi unify void N Skip next N structure arguments.

Managing unsafe variables
X = Y put unsafe value Vn, Ri Move Vn to Ri and globalize.

X:i = Y unify local value Vn Unify Vn with next structure argument and globalize.
Procedural control

call P, N Call predicate P, trim environment size to N.
execute P Jump to predicate P.
proceed Return.
allocate Create an environment.
deallocate Remove an environment.

Selecting a clause (conditional branching)
switch on term V, C, L, S Four-way jump on type of A1.
switch on constant N, T Hashed jump (size N table at T) on constant in A1.
switch on structure N, T Hashed jump (size N table at T) on structure in A1.

Backtracking (choice point management)
try me else L Create choice point to L, then fall through.
retry me else L Change retry address to L, then fall through.
trust me else fail Remove top-most choice point, then fall through.
try L Create choice point, then jump to L.
retry L Change retry address, then jump to L.
trust L Remove top-most choice point, then jump to L.

18

How to compile unification

In the WAM (1983)

The two-stream algorithm (1989)

• Single instruction stream

• A mode flag distinguishes between Read and Write mode

• Breadth-first traversal of terms: X=f(g(A),h(B)) is
 compiled as X=f(T,U), T=g(A), U=h(B)

• Problems:
- Write mode is not propagated to substructures, resulting in
 superfluous variable creations and bindings

- Every instruction sets or tests the mode flag

- Superfluous work on failure, e.g. X=f(g(a),_,_) always unifies
 the last two arguments

• Two instruction streams: for Read and for Write mode

• Depth-first traversal of terms

• Key idea: a mechanism to jump between the Read and
 Write mode streams as needed, with very low overhead

• Advantages:

- No superfluous operations

- Downward propagation of Write mode (to substructures)

- Linear code size

- Efficient expansion to native code

19

How to compile unification:
The WAM

• Consider the unification X=f(g(A),h(B))

get_structure X, f/2
unify_variable T
unify_variable U

get_structure T, g/1
unify_variable A

get_structure U, h/1
unify_variable B

X=f(T, U)

T=g(A)

U=h(B)

var(X)?

Mode←W Mode←R
Create f/2

Mode?

Write T
Read T

Mode?

Write U
Read U

W R

W R

yes no
• The WAM instructions and their
 internal operations look like this:

Create T

Create U

Subterm
unifications

WAM
instruction
sequence

Internal operations
of WAM instructions

20

How to compile unification:
The two-stream idea

• It is possible to efficiently execute any
 contiguous subsequence. Give each sub-
 sequence a unique identifier 	s . Then a
 single comparison per subsequence and a
 single register R are all that is needed.

• Given a sequence of instructions.

R≠s

jump if R=s

R=s

Sequence of
instructions

• Arrange the unification instructions in
 a depth-first traversal of the term.
 Then two properties are true:

- Each subterm is a contiguous
 sequence of instructions.

- Nested subterms are also nested
 sequences of instructions.
 (This permits further reduction
 of overhead.)

• Idea due to Mohamed Amraoui,
 André Mariën and Bart Demoen,
 Kent Boortz, and Micha Meier.

21

How to compile unification:
The two-stream algorithm

• Consider the unification X=f(g(A),h(B))

• The two-stream compilation looks like this:

var(X)?

X=f(T,U)

var(T)?

T=g(A)

var(U)?

U=h(B)

 X=f(T,U)

T=g(A)

jump if R≥1

U=h(B)

jump if R≥1

set R←1

set R←0

Read mode
instructions

Write mode
instructions

Instructions that implement
the unification of T with the
subterm g(A)

yes
no

yes

yes

no

no

set R←1

• There are two instruction
 sequences, with jumps
 between them

• The constraint T=g(A)
 is compiled differently in
 the Read and Write mode
 sequences

22

Using types when compiling unification

� This table describes how unification is compiled in Aquarius.

� unify(X,Y) generates code for the unification X=Y using type T.

� “ T) var(X) ” tests whether type T implies var(X).

Name Condition Actions
unify(X, Y) var(X), var(Y) var var(X, Y)

var(X), nonvar(Y) var nvar(X, Y)
nonvar(X), var(Y) var nvar(Y, X)
nonvar(X), nonvar(Y) nvar nvar(X, Y)

nvar nvar(X, Y) 8 args Xi, Yi: unify(Xi, Yi)
var nvar(X, Y) T) new(X) new old(X, Y)

T) ground(X) old old(X, Y)
otherwise old old(X, Y) (depth limited)

var var(X, Y) T) (old(X), old(Y)) oldv oldv(X, Y)
T) (old(X), new(Y)) Generate store instruction
T) (new(X), old(Y)) Generate store instruction
T) (new(X), new(Y)) new new(X, Y)

new new(X, Y) Generate store and move instructions
new old(X, Y) compound(Y) W seq(X, Y)

atomic(Y) Generate store instruction
var(Y) var var(X, Y)

old old(X, Y) compound(Y), (T)nonvar(X)) Test Y type, then old old R(X, Y)
compound(Y) Generate switch, R & W branches
atomic(Y), (T) nonvar(X)) old old R(X, Y)
atomic(Y) Generate unify atomic instruction
nonvar(Y), (T) var(X)) old old W(X, Y)
var(Y) var var(X, Y)

oldv oldv(X, Y) A = atomic value(T, X) unify(Y, A)
A = atomic value(T, Y) unify(X, A)
T) (atomic(X), atomic(Y)) Generate comparison instruction
T) (var(X), nonvar(Y)) Generate store instruction
T) (nonvar(X), var(Y)) Generate store instruction
otherwise Generate unify instruction

old old W(X, Y) compound(Y) W seq(X, Y)
atomic(Y) Generate store instruction

old old R(X, Y) compound(Y) 8 args Xi, Yi: old old(Xi, Yi)
atomic(Y) Generate comparison instruction

W seq(X, Y) Generate W mode sequence

23

Backtracking

The raw ingredients: three stacks

choice point stack

data stack

trail stack

(a log of actions to restore objects older than the most recent choice point)

(a choice point encapsulates execution state: registers, stack pointers, retry address)

Actions

• To mark an execution point as backtrackable:
 Create a choice point.

• To backtrack to a previous execution point:
 Restore machine state (registers & stack pointers);
 Unwind the trail (restore the trailed objects);
 Go to the retry address.

What does it do?

• A general multi-level “undo” mechanism
 that recovers memory.

(all data objects are put here)

24

Timestamping (1)

• WAM trail condition: Trail a variable binding if the address
 of the variable is less than the address of the top-most choice
 point.

• Improved trail condition: Trail a constraint modification if
 the previous modification was done before the creation time
 of the top-most choice point.

- This works well for the WAM since an unbound variable can
 only be bound once on forward execution.

- Other constraints may be modified (“bound”) more than once
 on forward execution (e.g., refinement of finite domains). The
 WAM condition results in too much trailing for them (c.f., CHIP).

• Implementing this trail condition requires that each choice
 point and each constraint contain a timestamp marking its
 creation or modification time.

• To trail a binding means to store enough information on a
 stack (the trail stack) so that backtracking may restore the
 unbound state.

25

Timestamping (2)

1 2 nn-1i

• At any execution point, number the choice points on the
 stack from 1 to n.

• Let ts be the timestamp corresponding to choice point i
 and top be the stack top at the creation time of choice point i.i

i

• The following invariants are maintained:

i<j ⇒ top ≤ top
i<j ⇒ ts < tsi

i j

j

• Trail condition when modifying constraint c:

• Maintaining consistent values of the timestamps:

1. Keep a global timestamp counter gts

2. Store gts in choice points and constraints
 at their creation

4. Never decrement gts

if ts > ts then trailn c

stack

bottom top

choice points

... ...

3. Increment gts at choice point creation

26

The CLP(FD) language

• CLP(FD) is a constraint logic language that incorporates
 a finite-domain solver built using the “glass-box” approach.

• “Glass-box”: provide primitive operations to allow efficient
 implementation of constraint solvers in the user language.

• CLP(FD) provides the single constraint X in R where X is
 a finite-domain variable and R is a range. Various ranges
 are provided, e.g., L..H, min(Y), max(Y), dom(Y), val(Y).

• The finite-domain constraint “X=Y+C” can be
 implemented as follows:

'X=Y+C'(X,Y,C) :-
 X in min(Y)+C..max(Y)+C,
 Y in min(X)-C..max(X)-C.

Partial lookahead scheme:

Full lookahead scheme:

'X=Y+C'(X,Y,C) :-
 X in dom(Y)+C,
 Y in dom(X)-C.

27

The CLP(FD) implementation

• CLP(FD) is implemented by translation to C. The base engine
 is a WAM, and the WAM instructions are C macros.

• A new class of FD variables is added, with a new tag.

• Unification of FD variables and standard variables is defined
 in the obvious way.

• Data structures and abstract instructions are added to support
 the range constraints.

FD variable

Timestamp

C-frame

Constraints

Max only
Min and Max
Dom
Val

Min only

A-frame
Environment of the clause
containing the FD variable

C-frames

FD variables
Clause arguments

Domain
(value)

CodeCreated for
each constraint

• Several non-trivial constraint optimizations are implemented.
 The system is significantly faster than CHIP.

List of suspended constraints,
separated into 5 chains for speed

• The following data structures support the constraint solver:

28

Conclusions and Further Work

• The field of constraint logic language implementation
 is relatively new. Much remains to be done.

• Prolog is a constraint language over a simple domain.
 Prolog implementation technology has progressed much
 in the last decade, and implementation of other constraint
 domains can profit from this work.

• Some fruitful areas for further work:

• Design of a common intermediate form to be
 shared between researchers to avoid duplication
 of work.

• Extension of the “glass-box” approach to other
 constraint domains.

• Development of global analysis for constraint
 systems.

• Development of constraint compilers.

• Better understanding of “cooperation” between
 constraint solvers.

29

Partial bibliography

Daniel Diaz and Philippe Codognet. A Minimal Extension of the WAM
for clp(FD). In 10th ICLP, pages 774–790, Budapest, Hungary, MIT
Press, June 1993.

Joxan Jaffar and Michael J. Maher. Constraint Logic Programming: A
Survey. In JLP, Tenth Anniversary Issue, 1994.

Niels Jørgensen, Kim Marriott and Spiro Michaylov. Some Global
Compile-Time Optimizations for CLP(R). In 8th ILPS, pages 420–434,
MIT Press, October 1991.

Peter Van Roy. 1983–1993: The Wonder Years of Sequential Prolog
Implementation. In JLP, Tenth Anniversary Issue, 1994.

30

