
ILP systems on the ILPnet systems repository

Irene Weber

Department of Computer Science, University of Stuttgart, Germany

email: Irene.Weber@informatik.uni-stuttgart.de

October 9, 1996

Contents

1 ILP systems on the web 1

2 Empirical ILP systems 2

2.1 Foil

�

: 2

2.2 mFOIL : 4

2.3 GOLEM : 4

2.4 LINUS : 5

2.5 PROGOL : 7

2.6 SPECTRE : 8

2.7 MERLIN : 9

2.8 FOIDL

�

: 10

2.9 FOCL

�

: 11

2.10 HYDRA

�

: 11

2.11 FORTE

�

: 11

2.12 CHILLIN

�

: 12

3 Programming assistants 12

3.1 FILP : 12

3.2 LILP : 14

3.3 MARKUS : 15

4 Interactive ILP systems 16

4.1 MOBAL : 16

4.2 MILES : 18

4.3 CLINT : 19

5 Alternative ILP tasks 21

5.1 Inductive data engineering: INDEX : : : : : : : : : : : : : : : : 21

5.2 Clausal discovery: CLAUDIEN : : : : : : : : : : : : : : : : : : 23

1

1 ILP systems on the web

This section gives an overview over the ILP systems gathered at the ILPNET

systems repository. As this paper basically is a report on ILPNET, it empha-

sizes on systems developed by ILPNET members. For each system, a short

description is given which summarizes its basic principles, the functionality and

options it o�ers and the input it expects. To facilitate the selection of a suitable

system, the hardware and software prerequisites for running it are described as

well.

Descriptions of systems developed outside ILPNET are marked with an as-

terisk (

�

). These systems are described in less detail, expect for the system

FOIL which is one of the best-known and successful empirical ILP systems and

has inspired a lot of further research.

A common classi�cation of ILP systems distinguishes between empirical ILP

systems and interactive ILP systems [LD94, Rae92]. Empirical ILP systems are

characterised as non-interactive batch learners inducing de�nitions for single

predicates from scratch. Interactive systems, also called incremental systems,

interactively learn multiple predicates, possibly starting with a preliminary in-

complete or inconsistent theory. This classi�cation is not to be taken too rigidly

but rather as indicating two poles of the spectrum of exisiting ILP systems. To

better �t the situation encountered at the ILP systems repository, we further

divide the class of empirical systems according to the number of examples the

systems expect to process. In the re�ned classi�cation, the term empirical ILP

systems then refers to single-predicate batch learning systems which are able to

analyse large example sets requiring little or no user guidance.

Interactive ILP systems incrementally build complex domain theories con-

sisting of multiple predicates where the user controls and initiates the subsequent

steps of the model construction and re�nement process. These systems usually

o�er a graphical user interface.

The third group of systems learns from small example sets in batch mode.

One of the systems we assign to this group, namely FILP [BG93a, BG93b]

queries the user for missing examples, but as this interaction takes place in

advance to induction, and as the induction proceeds autonomously once the

example set is completed, the learning algorithm in essence performs batch-

learning. The system MARKUS [Gro92] is a non-interactive theory revisor

learning single predicates, and consequently �ts neither into the class of empir-

ical ILP systems nor into the class of interactive ILP systems. Thus it seems

natural to distinguish a third class of systems. As these systems require only

small example sets and little user guidance, this class of systems may qualify as

programming assistants.

Recently, the interest in ILP research has extended to include alternative task

settings besides the classical ILP concept-learning task. The ILP systems repos-

itory includes two systems which are commonly assigned to the non-classical

approach. They are described at the end of this section.

2

2 Empirical ILP systems

2.1 Foil

�

Foil [QCJ93] is a system for learning intensional concept de�nitions from re-

lational tuples. The induced concept de�nitions are represented as function-

free Horn clauses, optionally containing negated body literals. The background

knowledge predicates are represented extensionally as sets of ground tuples.

FOIL employs a heuristic search strategy which prunes vast parts of the hy-

pothesis space.

As its general search strategy, FOIL adopts a covering approach. Induction

of a single clause starts with a clause with an empty body which is specialised

by repeatedly adding a body literal to the clause built so far. As candidate

body literals, FOIL considers the literals which are constructed by variabilising

the known predicates, that is, by distributing variables to the argument places

of background knowledge predicates. Additionally, FOIL takes into account

literals stating (un)equality of variables. Furthermore, literals may contain con-

stants which the user has declared as theory (i.e. relevant) constants.

All literals conform to the type restrictions of the predicates. For further con-

trol of the language bias, FOIL provides parameters limiting the total number

and maximum depth of variables in a single clause. In addition, FOIL incor-

porates mechanisms for excluding literals which might lead to endless loops in

recursive hypothesis clauses. FOIL o�ers limited number handling capabilities

and generates literals comparing numeric variables to each other or to thresholds

it has derived.

Among the candidate literals, FOIL selects one literal to be added to the

body of the hypothesis clause. The choice is determined by the information

gain heuristic. The gain heuristic is an information-based measure estimat-

ing the utility of a literal in dividing positive from negative examples. FOIL

stops adding literals to the hypothesis clause if the clause reaches the prede-

�ned minimum accuracy or if the encoding length of the clause exceeds the

number of bits needed for explicitly encoding the positive examples it covers.

This second stopping criterion prevents the induction of overly long and speci�c

clauses in noisy domains. Induction of further hypothesis clauses stops if all

positive examples are covered or if the set of induced hypothesis clauses violates

the encoding length restriction. In a postprocessing stage, FOIL removes un-

neccessary literals from induced clauses as well as redundant clauses from the

concept de�nition.

FOIL's greedy search strategy makes it very e�cient, but also prone to ex-

clude the intended concept de�nitions from the search space. Some re�nements

of the hill-climbing search alleviate its short-sightedness, such as including a

certain class of literals with zero information gain into the hypothesis clause

and a simple backtracking mechanism.

FOIL is a batch learning system which reads in all learning input from a sin-

3

gle input �le. For learning, positive as well as negative examples are required. A

user may provide negative examples explicitely or, alternatively, instruct FOIL

to construct negative examples automatically according to the Closed World

Assumption (CWA). In the latter case, the set of positive examples must be

complete up to a certain example complexity. For predicates with high arity,

the CWA may generate a huge number of negative examples. FOIL o�ers a

command line option allowing the user to specify the percentage of randomly-

selected negative examples to be used for induction.

Examples and background knowledge for FOIL have to be formatted as

tuples, that is, each ground instance of a predicate is represented as a sequence

of argument values. For each predicate, the user provides a header de�ning its

name and argument types. Optionally, the user may indicate the input/output

mode of the predicates, thus further limiting the number of literals constructed

by FOIL.

For convenient testing of the induced hypothesis, the user may provide test

cases (i.e. classi�ed examples) for the target predicates together with the learn-

ing input. FOIL then checks the hypothesis on these cases and reports the

results.

FOIL is available as C source code which is easily compiled using the en-

closed Make�le. The release also includes a conversion program for trans-

forming C4.5 input �les into FOIL's format. The development of Foil was

started in 1989. Version 6.4 of FOIL, dating from January 1996, is available by

ftp://ftp.cs.su.oz.au/pub.

2.2 mFOIL

The system mFOIL [LD94, D�ze93] is a descendant of FOIL which aims at

improving its noise handling capacities which are of crucial importance when

processing imperfect real-world datasets.

mFOIL integrates several noise-handling techniques from attribute-value

learning approaches into FOIL. It o�ers two alternative accuracy-based search

heuristics replacing FOIL's entropy-based information gain criterion, namely

the Laplace-estimate and the more sophisticated m-estimate. The m-estimate

takes into account the prior probabilities of examples, leading to a more reliable

criterion for small example sets. The user-settable parameter m allows to con-

trol the inuence of the prior probabilities. In mFOIL, FOIL's encoding-length

based stopping criteria are replaced by criteria relying on statistical signi�cance

testing.

Further di�erences between FOIL and mFOIL concern the search strategy

and the background knowledge. As FOIL, mFOIL adopts a covering strategy,

but, unlike FOIL, it conducts beam search in order to overcome at least par-

tially some of the disadvantages of FOIL's greedy hill-climbing search. On the

other hand, some of FOIL's more advanced features, such as number handling,

4

are not realised in mFOIL. Whereas FOIL is restricted to ground background

knowledge, mFOIL is able to process intensionally de�ned background pred-

icates as well. Furthermore, compared to FOIL, mFOIL allows the user to

declare additional informations on the background predicates which reduce the

number of possible body literals constructed during induction and thus help to

gain e�ciency.

mFOIL is available as Prolog source code running with Quintus Prolog at

http://www.gmd.de/ml-archive/ILP/public/software/mfoil. As reported

in [LD94], this implementation of mFOIL runs considerably slower than FOIL.

2.3 GOLEM

As FOIL, GOLEM [MF92] is a \classic" among empirical ILP systems. It

has been applied successfully on real-world problems such as protein structure

prediction [KMLS92] and �nite element mesh design [DM92].

GOLEM copes e�ciently with large datasets. It achieves this e�ciency

because it avoids searching a large hypothesis space for consistent hypotheses

like, for instance, FOIL, but rather constructs a unique clause covering a set

of positive examples relative to the available background knowledge. The prin-

ciple is based on the relative least general generalisations (rlggs) introduced

by Plotkin [Plo71a, Plo71b]. GOLEM embeds the construction of rlggs in a

covering approach. For the induction of a single clause, it randomly selects

several pairs of positive examples and computes their rlggs. Among these rlggs,

GOLEM chooses the one which covers the largest number of positive examples

and is consistent with the negative examples. This clause is further generalised.

GOLEM randomly selects a set of positive examples and constructs the rlggs

of each of these examples and the clause obtained in the �rst construction step.

Again, the rlgg with the greatest coverage is selected and generalised by the

same process. The generalisation process is repeated as long as the coverage

of the best clause stops increasing. GOLEM conducts a postprocessing step,

which reduces induced clauses by removing irrelevant literals.

In the general case, the rlgg may contain in�nitely many literals. Therefore,

GOLEM imposes some restrictions on the background knowledge and hypoth-

esis language which ensure that the length of rlggs grows at worst polynomially

with the number of positive examples. The background knowledge of GOLEM

is required to consist of ground facts. For the hypothesis language, the deter-

minacy restriction applies, that is, for given values of the head variables of a

clause, the values of the arguments of the body literals are determined uniquely.

The complexity of GOLEM's hypothesis language is further controlled by two

parameters, i and j, which limit the number and depth of body variables in a

hypothesis clause.

GOLEM learns Horn clauses with functors. It may be run as a batch

learner or in interactive mode where the induction can be controlled manually.

5

GOLEM is able to learn from positive examples only. Negative examples are

used for clause reduction in the postprocessing step, as well as input/output

mode declarations for the predicates the user may optionally supply. For dealing

with noisy data, GOLEM provides a system parameter enabling the user to

de�ne a maximum number of negative examples a hypothesis clause is allowed

to cover.

GOLEM is coded in C. It is provided as an executable running on Sun

SparcStations. Additionally, a tar-�le is available containing the source �les, a

README �le explaining the usage of GOLEM and some example datasets. A

copy of GOLEM is found at

http://www.gmd.de/ml-archive/ILP/public/software/golem.

2.4 LINUS

LINUS [LD94] is an ILP learner which incorporates existing attribute-value

learning systems. The idea is to transform a restricted class of ILP problems

into propositional form and solve the transformed learning problem with an

attribute-value learning algorithm. The propositional learning result is then

re-transformed into the �rst-order language. On the one hand, this approach

enhances the propositional learners with the use of background knowledge and

the more expressive hypothesis language. On the other hand, it enables the

application of successful propositional learners in a �rst-order framework. As

various propositional learners can be integrated and accessed via LINUS, LI-

NUS also quali�es as an ILP toolkit o�ering several learning algorithms with

their speci�c strengths. The present distribution of LINUS provides interfaces

to the attribute-value learners ASSISTANT, NEWGEM, and CN2. Other

propositional learners may be added. LINUS can be run in two modes. Run-

ning in class mode, it corresponds to an enhanced attribute-value learner. In

relation mode, LINUS behaves as an ILP system. Here, we focus on the

relation mode only.

The basic principle of the transformation from �rst-order into propositional

form is that all body literals which may possibly appear in a hypothesis clause

(in the �rst-order formalism) are determined, thereby taking into account vari-

able types. Each of these body literals corresponds to a boolean attribute in

the propositional formalism. For each given example, its argument values are

substituted for the variables of the body literal. Since all variables in the body

literals are required to occur also as head variables in a hypothesis clause, the

substitution yields a ground fact. If it is a true fact, the corresponding proposi-

tional attribute value of the example is true, and false otherwise. The learning

results generated by the propositional learning algorithms are retransformed in

the obvious way. The induced hypotheses are compressed in a postprocessing

step.

In order to enable the transformation into propositional logic and vice versa,

6

some restrictions on the hypothesis language and background knowledge are

necessary. As in most systems, training examples are ground facts. These may

contain structured, but nonrecursive terms. Negative examples can be stated

explicitly or generated by LINUS according to the CWA. LINUS o�ers several

options for controlling the generation of negative examples.

The hypothesis language of LINUS is restricted to constrained deductive

hierarchical database clauses, that is, to typed program clauses with nonrecur-

sive predicate de�nitions and nonrecursive types where the body variables are

a subset of the head variables. Besides utility functions and predicates, hy-

pothesis clauses consist of literals unifying two variables (X = Y) and of literals

assigning a constant to a variable (X = a). Certain types of literals may appear

in negated form in the body of a hypothesis clause.

Background knowledge has the form of deductive database clauses, that

is, possibly recursive program clauses with typed variables. The variable type

de�nitions which are required to be nonrecursive have to be provided by the user.

The background knowledge consists of two types of predicate de�nitions, namely

utility functions and utility predicates. Utility functions are predicates which

compute a unique output value for given input values. The user has to declare

their input/output mode. When occuring in an induced clause, the output

arguments are bound to constants. Utility predicates are boolean functions

with input arguments only. For a given input, these predicates compute true or

false.

LINUS is implemented in Quintus Prolog. The distribution provided at

http://www.gmd.de/ml-archive/ILP/public/software/linus includes an ex-

ecutable of CN2 [CB91] running with SunOS 4.1.3.

An empirical comparison of FOIL, mFOIL and GOLEM can be found in

[D�ze93]. [DL91] provides an empirical comparison of LINUS and FOIL.

2.5 PROGOL

The system PROGOL [Mug95] provides the user with a standard Prolog inter-

preter augmented with inductive capacities. PROGOL can be run interactively

or in batch mode. In interactive mode, PROGOL behaves similar to a stan-

dard Prolog interpreter allowing the user to pose queries or assert new clauses.

Additionally, the user can request the system to generalise the examples. In

batch mode, PROGOL is called from the operating shell with the name of an

input �le containing examples and background knowledge as an argument.

PROGOL employs a covering approach like, e.g., FOIL. That is, it selects

an example to be generalised and �nds a consistent clause covering the example.

All clauses made redundant by the found clause including all examples covered

by the clause are removed from the theory. The example selection and gener-

alisation cycle is repeated until all examples are covered. When constructing

7

hypothesis clauses consistent with the examples, PROGOL conducts a general-

to-speci�c search in the theta-subsumption lattice of a single clause hypothesis.

In contrast to other general-to-speci�c searching systems, PROGOL computes

the most speci�c clause covering the seed example and belonging to the hypoth-

esis language. This most speci�c clause bounds the theta-subsumption lattice

from below. On top, the lattice is bounded by the empty clause. The search

strategy is an A

�

-like algorithmguided by an approximate compression measure.

Each invocation of the search returns a clause which is guaranteed to maximally

compress the data, however, the set of all found hypotheses is not necessarily

the most compressive set of clauses for the given example set. PROGOL can

learn ranges and functions with numeric data (integer and oating point) by

making use of the built-in predicates \is", <, =<, etc.

The hypothesis language of PROGOL is restricted by the means of mode

declarations provided by the user. The mode declarations specify the atoms to

be used as head literals or body literals in hypothesis clauses. For each atom,

the mode declaration indicates the argument types, and whether an argument

is to be instantiated with an input variable, an output variable, or a constant.

Furthermore, the mode declaration bounds the number of alternative solutions

for instantiating the atom. The types are de�ned in the background knowledge

by unary predicates, or by Prolog built-in functions.

PROGOL's syntax for examples, background knowledge and hypotheses

is Dec-10 Prolog with the usual augmentable set of pre�x, post�x and in�x

operators. However, unlike in the Edinburgh DEC-10 Prolog syntax, a dis-

tinction is drawn in Progol between assertions, which are terminated in a \."

and queries, which are terminated in a \?". Arbitrary Prolog programs are

allowed as background knowledge. Besides the background theory provided

by the user, standard primitive predicates are built into PROGOL and are

available as background knowledge. Positive examples are represented as ar-

bitrary de�nite clauses. Negative examples and integrity constraints are rep-

resented as headless Horn clauses. Using negation by failure (CWA), PRO-

GOL is able to learn arbitrary integrity constraints. For instance, a clause

man(X) _ woman(X) normal(X), represented as the Prolog integrity con-

straint :- normal(X), not(man(X)), not(woman(X)). can be learned using

the four mode declarations :- modeh(1,false)?, :- modeb(1,normal(+p))?,

:- modeb(1,not(man(+p)))?, and :- modeb(1,not(woman(+p)))?, from ex-

amples like :- normal(leslie1).

PROGOL provides a range of parameters for controlling the generalisa-

tion process. These parameters specify the maximum cardinality of hypothesis

clauses, a depth bound for the theorem prover, the maximum layers of new

variables, and an upper bound on the nodes to be explored when searching for

a consistent clause. PROGOL allows to relax consistency by setting an upper

bound on the number of negatives that can be covered by an acceptable clause.

POGOL (Version 4.1) is distributed as C source code together with a manual

8

and examples on ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Progol4.1/.

It is freely available for academic research. Progol is also available under li-

cense for commercial research.

PROGOL4.2 is an upward compatible with version 4.1 but learns from

positive-only data. The system is available from the author upon request. Pa-

pers describing PROGOL4.2, can be obtained as Postscript by anonymous ftp

from ftp.comlab.ox.ac.uk in �les pub/Packages/ILP/Papers/poslearn1.ps

and pub/Packages/ILP/Papers/slp.ps.

2.6 SPECTRE

SPECTRE (SPECialization by TRansformation and Elimination) [BIA94] is

an empirical ILP system that can handle large example sets very e�ciently.

Given sets of positive and negative examples and an overly general initial

theory, that is, a theory which covers all positive and some of the negative

examples, SPECTRE specialises an overly general initial theory in order to

�nd a hypothesis which entails all positive examples but no negative examples.

SPECTRE employs a divide-and-conquer technique to specialize the overly

general hypothesis until no negative examples are covered. Specialisation of the

theory is performed by combining clause removal with the transformation rule

unfolding. When SPECTRE �nds a clause that covers a negative example and

no positive examples, it removes the clause. When it �nds a clause that covers

both negative and positive examples, it unfolds the clause. Unfolding a clause

requires the selection of a literal of the clause. The clause is resolved with all

clauses in the theory with heads unifying with the selected literal. Then, the

clause is replaced by the resulting resolvents. The choice of which literal to

unfold upon is made such that the entropy of the resolvents is minimized. The

resulting hypothesis consists of those clauses that cover positive examples only.

SPECTRE uses the overly general theory as a declarative bias that not only

restricts what predicate symbols may occur in bodies of learned clauses, but also

how these can be invoked. Specialised clauses de�ning the target predicate can

only contain literals which occur in the initial target predicate de�nition or in

clauses resolving with the initial or intermediate target predicate de�nitions.

Therefore, the initial theory is crucial for the success of the induction.

In order to run SPECTRE, two input �les are needed, namely a theory

�le containing the overly general theory in the form of a Prolog program in the

Edinburgh syntax, and an example �le with unit clauses in the Edinburgh syntax

de�ning the positive and negative examples as arguments of the predicates pos/1

and neg/1, respectively. SPECTRE assumes that the target predicate is non-

recursive, i.e., the target predicate is not allowed to appear in bodies of clauses.

Background predicates, however, may be recursive. SPECTRE provides a

graphical interface. No system parameters need to be set.

SPECTRE (Version 1.0) is implemented in SICStus Prolog 3.1 and is pro-

9

vided both as a stand-alone application for SUN OS 4 and as a SICStus Prolog

object �le (requiring SICStus 3.1). SPECTRE's homepage is located at

http://www.dsv.su.se/~henke/SPECTRE/SPECTRE.html.

2.7 MERLIN

MERLIN (Model Extraction by Regular Language INference) [Bos96] is a non-

interactive, multiple predicate learning system that has the ability to invent new

predicates. Like SPECTRE, it uses an overly general hypothesis in the form of

a logic program together with sets of positive and negative examples in order to

�nd an inductive hypothesis which entails all positive examples but no negative

examples.

The basic idea of the approach is to learn �nite-state automata that represent

allowed sequences of resolution steps. MERLIN �rst �nds SLD-refutations

for all examples using the overly general hypothesis, and then tries to �nd

the minimal �nite-state automaton that can generate all sequences of input

clauses in the SLD-refutations of the positive examples and no sequences of

input clauses in the SLD-refutations of the negative examples. After having

learned the automaton,MERLIN produces a new theory that allows only those

sequences of resolution steps which are allowed by both the initial theory and

the learned automaton. This is done by calculating the intersection of the

automaton and a grammar that corresponds to the overly general hypothesis.

The intersection is used to derive the �nal hypothesis in the form of a logic

program. During this process MERLIN may introduce new predicate symbols,

i.e., it carries out a form of predicate invention.

As the induced hypothesis allows only such resolution sequences which are

possible in the initial theory, the initial theory de�nesMERLIN's language bias.

For instance, as the resolution sequences produced by the new theory involve

only those clauses which are also part of resolution sequences allowed by the

initial theory (besides clauses de�ning the newly introduced predicates), it is

important that all relevant clauses occur in the resolution sequences produced

by the initial theory.

MERLIN expects as input a theory �le containing the initial theory in form

of a Prolog program in Edinburgh syntax, and an example �le with unit clauses

that de�ne the positive and negative examples as arguments of the predicates

pos/1 and neg/1, respectively. The arguments of the predicates pos/1 and neg/1

are instances of the same atom. MERLIN assumes that each positive example

has at least one SLD-refutation such that there is no negative example with an

SLD-refutation that has the same sequence of input clauses.

MERLIN provides a graphical interface. No parameters are to be set.

MERLIN (Version 1.0) is implemented in SICStus Prolog 3.1 and is provided

both as a stand-alone application for SUN OS 4 and as a SICStus Prolog object

�le requiring SICStus 3.1. Merlin can be found at

10

http://www.dsv.su.se/~henke/MERLIN/MERLIN.html.

2.8 FOIDL

�

FOIDL [MC95] is a descendant of FOIL di�ering from its predecessor in the

following three ways. First, FOIDL is able to process intensionally de�ned

background knowledge. Second, it substitutes the assumption of output com-

pleteness for explicit negative examples. The output completeness assumption

requires that a mode declaration for the target predicate is given. It states that

for every unique input pattern appearing in the training set, all correct output

patterns occur in the examples in training the set. Together with the mode dec-

laration, the positive examples then implicitly determine the negative examples.

The third di�erence between FOIDL and FOIL is that FOIDL supports the

induction of decision lists. A decision list is an ordered set of clauses each ending

with a cut. When answering a query, the decision list returns the answer of the

�rst clause in the ordered set which succeeds in answering the query. FOIDL

generates the clauses in the decision list in reverse order, that is, clauses learned

�rst appear at the end of the decision list. As the covering algorithm tends

to learn more general clauses covering many positive examples �rst the more

general clauses are placed as default cases at the end of the decision list.

FOIDL (version 1.0 Alpha) is provided as source code for Quintus Pro-

log (version 3.1.3). This version of FOIDL only creates non-recursive programs

and always creates decision lists, so it is useful only for functional, non-recursive

concepts. Furthermore, two Lisp implementations of FOIDL are available, one

version incorporating a Prolog interpreter, the other incorporating a Prolog com-

piler. The �les are located at ftp://ftp.cs.utexas.edu/pub/mooney/foidl/.

2.9 FOCL

�

The system FOCL [PK92] learns Horn clause programs from examples and,

optionally, background knowledge. It integrates an explanation-based learning

component with the inductive learning approach of FOIL. FOCL is able to

use intensionally de�ned background knowledge and accepts as input a partial,

possibly incorrect rule as an approximation of the target predicate. User-de�ned

constraints which realise a declarative language bias allow to restrict the search

space.

FOCL is available as a machine learning program in the form of Common

Lisp source code running on a variety of machines, and as a Macintosh applica-

tion.

The Macintosh version of FOCL adds a graphical interface to the ma-

chine learning program that graphs the search space explored by FOCL, so

it is a useful pedagogical tool for explaining inductive and explanation-based

learning. In addition, it provides facilities for creating and graphically editing

11

knowledge-bases, tracing rules, and generating explanations, so the Mac ver-

sion may be used as an expert system shell. FOCL's homepage is located at

/www.ics.uci.edu/AI/ML/FOCL.html.

2.10 HYDRA

�

The relational concept learner HYDRA [AP93] extends the machine learning

program FOCL by adding likelihood ratios to the induced classi�cation rules.

HYDRA learns a concept description for each class. The concept descriptions

compete to classify test examples using the likelihood ratios assigned to clauses

of that concept description. This reduces the algorithm's susceptibility to noise.

HYDRA is implemented in Common Lisp. The source code is available at

http://www.ics.uci.edu/~mlearn/Hydra.html.

2.11 FORTE

�

FORTE [RM95] (First Order Revision of Theories from Examples) is a sys-

tem for automatically revising function-free �rst-order Horn clause theories.

FORTE integrates a collection of specialisation and generalisation operators

and conducts an iterative hill-climbing search through the space of revision op-

erations. The system includes the operators delete-antecedent and delete-rule,

adopted from propositional theory revision, FOIL-like operators for adding an-

tecedents and new rules, two generalisation operators based on inverse resolu-

tion, and an antecedent-adding operator termed `relational path�nding'. Each

iteration of the search identi�es all possibilities for applying the operators. The

revision operation resulting in a maximum increase in theory accuracy is per-

formed. The revision process continues as long as revisions produce an improve-

ment in accuracy or a reduction in theory size.

FORTE is provided as Quintus Prolog source code. A copy can be retrieved

by ftp://ftp.cs.utexas.edu/pub/mooney/forte/.

2.12 CHILLIN

�

CHILLIN [ZMK94] is an ILP algorithm combining elements of top-down and

bottom-up induction methods. CHILLIN's input consists of sets of ground

facts representing positive and negative examples, and a set of background pred-

icates expressed as de�nite clauses. Examples may contain functors. Basically,

CHILLIN tries to construct a small, simple theory covering the positive, but

not the negative examples by repeatedly compacting its current version of the

program. Compactness is measured as the syntactic size of the theory.

The algorithm starts with a most speci�c theory, namely the set of all posi-

tive examples. Then it generalises the current theory, aiming to �nd a general-

12

isation which allows to remove a maximum number of clauses from the theory

while all positive examples remain provable.

Similar to GOLEM's approach, the generalisation algorithm �nds a random

sampling of pairs of clauses in the current program. These pairs are generalised

by constructing their least-general-generalisations under theta-subsumption. If

a generalisation covers negative examples, it is specialised by adding antecedents

using a FOIL-like algorithm. If the specialisation with background predicates is

not su�cient for preventing negative examples from being covered, CHILLIN

tries to invent new predicates for further specialisation of the clause. At each

step, CHILLIN considers a number of possible generalisations and implements

the one that best compresses the theory.

CHILLIN is able to learn recursive predicates. It avoids generating theo-

ries leading to endless recursion by imposing syntactic restrictions on recursive

predicates. However, CHILLIN may learn recursive predicates covering nega-

tive examples.

In the actual implementation, the CHILLIN algorithm employs a modi�ed

search strategy in order to gain e�ciency. As reported in [ZMK94], the system

is able to handle induction problems with thousands of examples when running

on a SparcStation 2. CHILLIN (version 1.0 Alpha) is made available as source

code running with Quintus Prolog version 3.1.3 by

ftp://ftp.cs.utexas.edu/pub/mooney/chillin/.

3 Programming assistants

3.1 FILP

FILP [BG93a, BG93b] is an interactive system which learns functional logic

programs. Functional means that for each sequence of input values for a predi-

cate there is exactly one sequence of output values the predicate produces. This

restriction applies to the induced predicates as well as to the predicates de�ned

in the background knowledge. The functions are required to be total, i.e., for

any input, an output must exist. The restriction to functional programs does not

signi�cantly a�ect the expressive power as any computable function can be rep-

resented by a functional logic program. The requirement that functions should

be total is more restrictive. However, in practise some non-total functions can

be learned as well (for instance, quicksort not using the append predicate quick-

sort(X,Acc,Y)) provided that appropriate examples and background knowledge

are speci�ed.

The restriction to functional programs is central to the approach. As an

explicit restriction of the set of allowed hypotheses, it makes the learning task

a lot easier, since it excludes a priori many clauses which otherwise must be

generated and checked against the examples. Furthermore, it enables FILP to

learn from positive examples only, since negative examples of the behaviour of

13

induced predicates are implicitly given as the ones with the same input values

but with di�erent output values than the positive examples.

Unlike some other approaches, FILP does not require an example set which

is complete up to a certain example complexity for the predicates to be learned,

since, due to the functionality requirement, FILP can determine the examples

needed for learning besides the given ones. For collecting the missing infor-

mation, FILP queries the user. It presents examples with instantiated input

values, and the user �lls in the corresponding output values. This allows to start

learning with a very limited number of initial examples, and more examples are

added on request. This interactive way of example input is more convenient for

the user than specifying the whole set of examples in advance, since FILP asks

for all and only for the examples it really needs.

The background knowledge can be de�ned intensionally or extensionally.

When using extensional background knowledge, FILP collects missing infor-

mation on these background predicates as well. FILP is able to induce an

intensional de�nition for such background predicates, thus realizing multiple

predicate learning. FILP provably learns complete and consistent programs,

that is, programs that cover all positive and no negative examples. Further-

more, if a complete and consistent program exists, FILP is guaranteed to �nd

it. This is not the case for other approaches using extensionally de�ned back-

ground knowledge without example completion.

FILP works with attened clauses, where functions are transformed into

predicates. Besides the example set and background knowledge, the information

FILP needs for learning includes a set of all the literals which may occur as body

literals in the de�nition of the induced predicate. This literal set determines the

hypothesis space for learning. As it a�ects the e�ciency of learning and the

number of literals FILP requests, this literal set should be speci�ed carefully.

Furthermore, the user has to provide mode declarations for the induced

predicate as well as for all background predicates. These mode declarations

specify which arguments of a predicate are input arguments and which are

output arguments. An aditional means for the user to inuence induction is to

declare `forbidden clauses', that is clauses which must not be part of a solution

even if satis�ed by the positive examples.

FILP learns list manipulation programs such as member, quicksort or re-

verse, which are induced within a few seconds. For example, learning a func-

tional variant of the member predicate member(Elem,List,yes/no) required four

examples and about 12 seconds [BG93b].

FILP is written in C-prolog (interpreted). The C-prolog interpreter is pro-

vided together with the system and runs on a SUN SPARCstation 1 as well as on

a SUN4/200 under SunOS, but has problems running under Solaris. The system

is obtained at http://www.gmd.de/ml-archive/ILP/public/software/filp.

14

3.2 LILP

The system LILP [Mar95] encorporates an approach to concept learning from

positive-only examples whose basic technique is borrowed from lambda-calculus.

It relies on a generality ordering between Horn clauses called �-subsumption,

which is stronger than �-subsumption and weaker than generalized subsumption.

�-subsumption allows to compare clauses in a local sense, i.e., with respect to a

partial interpretation of the background knowledge. Consequently, the locality

of �-subsumption allows to search for clauses which are correct with respect to

a small subset of the set of atoms they generally cover.

Induction of a single clause starts with a seed example. Variabilizing one

argument of the seed example and keeping the other arguments �xed results in

a logical expression which can be viewed as a function of the variable, say X.

This function maps instances of X on true if the resulting instantiation of the

expression matches an example, and on false otherwise. The set of true instances

forms the � calculus model of the expression. The algorithm searches a set of

body literals which de�nes the set of true instances of the variable. This is done

for each head argument in turn, and the found body literals are combined to a

clause body. If more than one clause for a seed example is found, the system

keeps the best one according to the proof complexity criterion. This technique

is embedded into a covering algorithm. LILP postprocesses the clause set in

order to remove redundant clauses. It does not alert the user if is not able to

induce a clause set covering all positive examples.

Like FILP, LILP does not assume a Closed World in the sense that the set of

positive examples up to a given example complexity must be complete. Rather,

complete �-models are required. LILP learns from positive examples, but is

able to utilize negative examples if available. By providing negative examples,

the user can force LILP to allow singleton head variables or to induce the

more speci�c predicate de�nition when several predicate de�nitions of varied

generality �t the given data.

When using LILP, the user has to specify the name and arity of predicates to

be used as background knowledge as well as constants occuring in the examples

and not be variabilised in the predicate de�nition, thus de�ning the system's

language bias. The hypothesis language is further adjusted by two system pa-

rameters, one specifying the maximum number of body literals determining a

single head argument, the other de�ning the maximum number of determinate

literals in a clause. As FILP, LILP works with attened clauses where func-

tions are de�ned by predicates. Structured terms may occur, but are treated

as constants. Due to implementation reasons, lists must not occur in examples.

However, at a deeper level they are allowed.

The system is so fast as to induce, e.g., a de�nition for quicksort from exten-

sionally de�ned background knowledge in less than a second.

Lilp is supplied as Prolog source code written for Poplog Prolog with Dec10

library at http://www.gmd.de/ml-archive/ILP/public/software/lilp. Run-

15

ning Lilp with Quintus Prolog requires some minor adaptions such as adding

dynamic statements and loading libraries.

3.3 MARKUS

MARKUS [Gro92, Gro93], a derivative of Shapiro's Model Inference System

MIS [Sha83], is a system for inducing Prolog programs from positive and nega-

tive examples. Like FILP and LILP, MARKUS employs a covering strategy.

Unlike these systems, MARKUS induces clauses with functions and is able to

start induction with a preliminary incomplement or inconsistent de�nition of

the target predicate which is then re�ned.

For inducing single clauses, MARKUS searches a re�nement graph. The

search starts with the most general clause which is specialised by applying the

re�nement operators taken over fromMIS. In contrast toMIS,MARKUS gen-

erates an optimal re�nement graph, i.e., a re�nement graph without duplicate

nodes, thus improving e�ciency. The re�nement graph is searched by iterative

deepening search. When MARKUS encounters a clause covering at least one

yet uncovered positive and no negative example, the clause is added to the pred-

icate de�nition. Redundant clauses are removed from the predicate de�nition.

AsMARKUS realizes an exhaustive search, restricting the hypothesis space

is crucial for learning. Therefore, MARKUS o�ers elaborate mechanisms for

explicit and implicit declaration of the language bias. First of all, the language

bias which is de�ned implicitlyby the re�nement operator can be adjusted to the

learning task by choosing the appropriate re�nement operator, as MARKUS

o�ers a re�nement operator for learning DCG clauses and a general re�nement

operator for inducing logic programs. The application of the general re�nement

operator is guided by input/output mode declarations and type de�nitions for

the arguments of the target and background predicates speci�ed by the user.

A set of parameters determines the form of clauses generated by the re�ne-

ment operator. E.g., these parameters allow to de�ne the maximum number

of body literals, and the maximum structure depth of head arguments. For

further tuning of the search space, the user can specify various concrete syntac-

tic restrictions within individual type and background predicate de�nitions in

a uniform manner. E.g., these restrictions make it possible to de�ne argument

symmetry or to prevent particular combinations of literals.

MARKUS is a non-interactive learner, learning from positive and negative

examples which o�ers various options for adjusting the system bias. It uses

logic with functors and is able to generate hypothesis clauses with negated

body literals. The background knowledge is de�ned intensionally. The user has

to provide mode declarations and type de�nitions for the arguments of target

and background predicates.

With default parameter settings,MARKUS learns quicksort from 4 positive

and 3 negative examples in 24.317 seconds on a Sun4/100.

16

MARKUS is available at

http://www.gmd.de/ml-archive/ILP/public/software/markus/. The sys-

tem runs without modi�cations on Quintus Prolog (Vax, Sun), SICStus Prolog

(Sun, HP) and Arity Prolog (IBM PC).

4 Interactive ILP systems

4.1 MOBAL

MOBAL [MWKE93] is a knowledge acquisition environment which assists the

user in developing a model of an application domain in a �rst-order logical

representation formalism. It implements the balanced cooperative modeling

paradigm where knowledge acquisition is viewed as a cyclic and highly inter-

active modeling process. The system comes with a convenient graphical user

interface providing means for manual input and inspection of a domain model,

and access to a range of tools covering many of the substasks involved in knowl-

edge acquisition, e.g., automated discovery of rules, knowledge revision, and

theory restructuring. Additionally, MOBAL facilitates integration of external

ILP tools, thus extending its own method pool as well as adding an interactive

graphical interface to non-interactive ILP programs.

MOBAL's internal learning algorithmRDT solves the ILP task by inducing

rules from positive and negative examples. The negative examples can be listed

explicitly by the user or, optionally, can be de�ned implicitly via the Closed

World Assumption. The logical dialect used by RDT is the function-free subset

of Horn clause logic extended by negated literals. Negation is not treated as

negation by failure as, for instance, in FOIL, but rather as proper negation,

i.e., the negation of an atom is considered as true only when there exists a

corresponding negated fact.

RDT requires extensionally de�ned background knowledge for learning. If

intensional predicate de�nitions are entered into the system, MOBAL's built-

in inference engine e�ciently computes the corresponding extensional predicate

de�nitions up to a prespeci�ed depth limit. RDT's hypothesis space is spanned

by a set of rule models speci�ed by the user. A rule model is a rule where pred-

icate variables replace actual domain predicates. RDT searches the hypothesis

space de�ned by the given rule models by instantiating the predicate variables

with compatible domain predicates.

Compatibility of predicates is de�ned with respect to a sort taxonomy and

predicate topology holding in the domain model. The sort taxonomy divides

the arguments of predicates into classes. The predicate topology reects the

inferential structure of the domain, i.e., it states which predicates are useful for

de�ning other predicates. Ensuring that argument sorts and predicates in an

instantiated rule model are compatible excludes useless rules from the hypothesis

space. User-de�ned parameters control when to accept a rule as a hypothesis

17

clause. Among others, these parameters take into account the number of positive

and negative instances of the rule.

Rule models, sort taxonomy, and predicate topology enable very �ne-grained

adjustment of RDT's hypothesis space with explicit user control, however at the

price that their speci�cation can be quite demanding. Assistance in this task

is o�ered by MOBAL's tools MAT (Model Acquisition Tool), PST (Predicate

Structuring Tool), and SST (Sort Taxonomy Tool), which automatically derive

rule models, a predicate topology, and a sort taxonomy from the current domain

model. These provide insight into the structure of the domain model evolved

so far and serve as a starting point for the speci�cation of the structure of the

intended domain model.

Further important components of MOBAL are a knowledge revision tool

(KRT), a concept learning tool (CLT), and a theory restructuring tool (RRT).

KRT assists in correcting inconsistencies which may arise while gradually de-

veloping a knowledge base. MOBAL's concept learning component CLT learns

concept de�nitions from examples. Whereas rule induction algorithms such as

RDT or FOIL usually produce rules stating su�cient conditions for a concept,

CLT also searches for necessary conditions as well as for all other rules that use

the concept. These tools interact in the following way. When the knowledge

revision process indicates that more concepts are needed for the compact repre-

sentation of the revised knowledge base, KRT calls CLT for the generation of

such concepts. Thus, the system realizes predicate invention. For learning rules

for the new concepts, CLT calls RDT.

MOBAL's theory restructuring tool (RRT) assesses the quality of the do-

main theory according to a set of formal and statistical criteria and helps to

clean up the knowledge base.

In summary, MOBAL is a complex and sophisticated system, and fully

exploiting its functionality requires some training. Usage and getting started

are facilitated by a comprehensive userguide and an online tutorial.

MOBAL is provided as an executable that runs on Sun Sparcs (sun arch

4) only. MOBAL's interface is based on Tcl/Tk. As MOBAL's README

states, the windowing system (Open Windows, Motif, etc.) seems irrelevant as

long as it is based on X11. The current version ofMOBAL is developped under

SunOS 4.1.�, but running it under Solaris has shown to be unproblematic as well.

MOBAL's homepage is http://nathan.gmd.de/projects/ml/mobal/mobal.html.

4.2 MILES

MILES [ST93] is an ILP test environment designed to facilitate experiments

with ILP methods and algorithms. It is not a ready-to-use ILP system in the

sense that a user provides examples and background knowledge and the system

returns a consistent theory. Rather, MILES contains an extensive collection

of ILP operators used by common ILP algorithms and systems without embed-

18

ding these operators into a �xed control mechanism and facilitates the integra-

tion of new operators. Thus, MILES is useful for investigating and comparing

the e�ects of the available and newly de�ned operators as well as in teaching

ILP methods. MILES facilitates rapid prototyping of speci�c ILP systems by

adding a control mechanism which guides the application of operators taken

fromMILES's operator pool. A generic control procedure is provided.

MILES contains �ve types of operators, namely generalisation operators,

specialisation operators, for generalising or specialising clauses or sets of clauses,

reformulation operators, preprocessing operators, and evaluation operators.

The generalisation operators generalise single clauses or sets of clauses.

MILES provides six variants of least general generalisation operators (e.g., the

rlgg operator used byGOLEM), nine inverse resolution operators and �ve trun-

cation operators. There are four specialisation operators for single clauses (in-

cluding three of the MIS operators also applied by MARKUS). Specialisation

of sets of clauses is performed by a minimal base revision operator similar to the

MOBAL's revision operator KRT. This operator and the fourth single clause

specialisation operator specialise by inventing new predicates. The reformula-

tion operators transform the knowledge base equivalently in order to facilitate

the learning task. MILES provides a reduction operator for single clauses and

the attening/unattening operators which transform a knowledge base into

function-free logic and vice versa.

MILES' preprocessing operators serve for extracting implicit informations

from the examples and for initializing hypothesis clauses. The �rst operator

automaticallydetermines argument types for all example predicates. The second

operator determines a set of clause heads covering the positive examples based

on the structure of the example arguments.

The evaluation operators de�ned inMILES assess the quality of the knowl-

edge base according to di�erent criteria. MILES contains predicates for check-

ing whether the knowledge base is complete and consistent with respect to the

examples and procedures for detecting culprit clauses, in case that it is not com-

plete nor consistent. MILES provides an operator for evaluating the clauses in

the knowledge base by determining the positive and negative examples they

cover as well as the derivations of examples in which the clauses participate.

These informations allow to compute commonly employed measures as, for in-

stance, the information gain used by FOIL. Furthermore,MILES contains two

operators for computing the compression of the knowledge base. These opera-

tors can be instantiated with six di�erent encoding schemes.

The generic control procedure available inMILES takes twelve parameters.

These have to be instantiated with predicates de�ning the initialization of the

hypothesis, a stopping criterion for the induction process, a quality criterion for

accepting hypothesis clauses, the selection of the appropriate re�nement opera-

tor etc. Example instantiations of the generic control realizing ILP algorithms

for special types of logic programs (regular unary logic programs, de�nite clause

grammars, constrained programs), and a FOIL-like algorithm are included.

19

ComparingMILES toMOBAL we �nd out that, although the systems con-

tain similar components (knowledge base access and maintenance procedures,

an inference mechanism, knowledge induction and revision operators, mecha-

nisms for deriving argument types, theory evaluation criteria) they serve quite

di�erent purposes. Whereas MOBAL provides an ILP toolbox to be used for

applications,MILES is a toolbox for investigation of and experimentation with

ILP methods. Since MILES serves for rapid prototyping of ILP algorithms, it

may also be viewed as an ILP construction kit. AsMILES is a very exible sys-

tem providing a large range of operators with various parameters and options,

a user either requires good knowledge of ILP or the willingness to acquire it.

MILES o�ers a graphical X interface which, however, does not include access

to the generic control. Usage and function of the operators are described in

detailed comments in the source code of MILES.

MILES is provided as source code running with Quintus Prolog v3.1.1 or

later. You can �nd it at

http://www.gmd.de/ml-archive/ILP/public/software/miles. For usingMILES's

X interface, v3.1.1 is strictly required, later versions will fail.

4.3 CLINT

CLINT [Rae92, DRB92] is an interactive theory revisor which allows the user to

incrementally build and revise a logical knowledge base. It is often described as

opportunistic, i.e., learning self-initiatively whenever possible, and user-friendly,

i.e., easy to use without knowledge of its internal mechanisms.

CLINT is interactive in the sense that it queries the user in order to collect

missing information on the predicates to be learned. The queries posed by

CLINT are moderately complex, being either membership questions (the user

is asked whether a given ground fact is true or false in the intended knowledge

base), or existential questions (the user is asked to enter a ground substitution

for a given non-ground fact such that the instantiated fact is true in the intended

knowledge base). This contrasts to interactiveness in MOBAL's sense, where

interactive means that the user and the system's components cooperate and, in

particular, that the system relies on the user to determine which step should be

taken next.

CLINT's prominent features include the integration of an integrity theory

de�ning constraints satis�ed by the knowledge base, an abductive component,

postponing of examples, parameterized language series for declaring and shifting

the system's language bias, and a set of special multi-valued logical frameworks

to be chosen by the user.

CLINT learns from positive and negative examples and from integrity con-

straints. Its hypothesis language is a subset of range-restricted functor-free Horn

logic. Building and revising complete knowledge bases, CLINT is able to learn

multiple predicates, so that the examples may concern several predicates.

20

CLINT's basic algorithm is a loop where the user repeatedly enters a new

example or integrity constraint and CLINT revises the current theory in order

to make it consistent with the new input. First, we briey sketch the way

CLINT processes examples. If the user enters examples consistent with the

current theory, it su�ces to simply remember these examples, otherwise the

theory has to be revised. If a newly entered negative example is covered by the

theory, CLINT searches the clauses used for proving the negative examples for

an incorrect clause and retracts it. The incorrect clause is identi�ed with the

help of user queries. Positive examples which become uncovered by removing

the incorrect clause are input into CLINT's basic loop and thus trigger further

theory revision. If CLINT encounters an uncovered positive example, it calls

its abductive or inductive procedure. The abductive procedure completes the

knowledge base by learning new facts. It constructs incomplete proofs of the

uncovered positive example which are to be completed by entering ground facts

to the theory (without making the theory inconsistent).

If no such facts can be found, the inductive procedure for learning new rules is

triggered. CLINT's induction algorithm consists of two steps. In the �rst step,

the so-called justi�cations for positive example are generated. A justi�cation

is a most speci�c Horn clause covering the positive example and not covering

any negative examples. In the second step, the justi�cations are generalised

by dropping literals. CLINT relies on negative examples and user queries to

determine which literals can be dropped safely.

The justi�cations which can be constructed for a positive example depend

on the hypothesis language the system employs. In CLINT, parameterized

languages are used for declaring the language bias. The language parameters

specify the number and depth of variables in hypothesis clauses. The languages

are ordered into sequences with increasing generality. If the system detects that

the current language is not su�cient for learning a consistent predicate de�ni-

tion, it automatically shifts its bias to the next general language in the series.

CLINT o�ers four prede�ned series, but the user may customize additional

series as well.

Postponing of examples becomes necessary when none of the available lan-

guages contains a consistent justi�cation for a positive example. In this case,

the knowledge base misses relevant information. CLINT then automatically

postpones the uncovered positive example until more information is available.

CLINT can learn from integrity constraints as well. An integrity constraint

is a �rst-order clause describing properties of the knowledge base to be built.

CLINT treats integrity constraints as generalised examples. Roughly speaking,

this is done as follows. If CLINT detects that an integrity constraint is violated

by the current knowledge base, the violated literal in the constraint is located

via user queries. A violated body literal (i.e., a body literal that is wrongly true

when instantiated by the violated substitution of the constraint) corresponds to

a negative example, a violated head literal (i.e., a literal that is wrongly false)

corresponds to a positive example. Both cases are passed into CLINT's main

21

loop and processed accordingly.

Among a range of other user-adjustable parameters, CLINT enables the

user to select a suitable logical framework. Besides the default setting, where

negation is treated as negation by failure, there are three variants of multi-

valued logic, providing the truth-values inconsistent, unknown or both of them

in addition to the truth-values true and false.

CLINT runs on Apple Macintosh computers under system 7 with at least

two megabytes of free memory. It o�ers a convenient window-based interface

designed according to Apple's standards. CLINT is available at

http://www.gmd.de/ml-archive/ILP/public/software/clint.

5 Alternative ILP tasks

5.1 Inductive data engineering: INDEX

INDEX [Fla93] is a system for inductive data engineering. Inductive data

engineering denotes the interactive process of restructuring a knowledge base

by means of induction.

The underlying idea is to analyse a given database in order to detect hidden

regularities which can be used for restructuring the database, yielding a more

compact and meaningful representation. This approach does not conform to

the classical ILP setting where the aim is to induce a hypothesis which, when

combined with the background theory, explains the given examples, thus com-

pleting the theory. Rather, the approach uncovers information which is, though

hidden, already present in the data. As Flach states, the process is nonetheless

inductive, since it derives general rules from speci�c data [Fla93]. The general

setting, of which INDEX realizes a variant, is called the nonmonotonic setting

of ILP [MDR94] or the con�rmatory setting of ILP [Fla95].

INDEX expects as input an extensional relation, that is, a set of ground

facts de�ning the relation. This relation is searched for funtional and multi-

valued dependencies among the attributes, i.e., arguments of the relation. Let

X and Y denote sets of attributes. A functional dependency X ! Y states that

whenever two tuples in the relation have identical values of attributes X, they

also have identical values of attributes Y . A multi-valued dependency X !! Y

generalises a functional dependency to sets of values of the dependent attributes.

This means that the values of the dependent attributes Y are not determined

uniquely by the values of the attributes X, but rather, each of a �xed set of

attribute value combinations of Y occurs in the relation for given values of

X. INDEX searches the relation for functional and multivalued dependencies

in a MIS-like manner [Sha83], thereby exploiting the generality ordering of

dependencies.

In the second step, INDEX restructures the relation, based on the attribute

dependencies it has found to be holding in or violated by the relation. In

22

either case, restructuring means that the relation is split into smaller relations

allowing to reconstruct the original relation. Since the restructuring of the

database involves the construction of new relations, INDEX performs predicate

invention.

If an attribute dependency X ! Y or X !! Y is found to hold in the rela-

tion, it induces a so-called horizontal decomposition. The dependent attributes

Y are removed from the original relation, and stored in a separate relation

together with the determining attributes X. This yields two new, smaller rela-

tions from which the original relation is reconstructed by a join operation on

the common attributes X. This type of split of a relation is called a horizontal

decomposition since it is to reverted by the horizontal join operation [Fla93].

If INDEX discovers a satis�ed attribute dependency, it automatically performs

the horizontal decomposition and constructs the clause which expresses the join

reverting it. INDEX queries the user to enter meaningful names for the new

relations resulting from the decomposition.

Attribute dependencies which are violated in the relation induce vertical

decompositions of a relation. The relation is divided into smaller relations such

that the attribute dependency holds in each of the partial relations. This type

of decomposition operation is reverted by union operations. In general, an

attribute dependency induces many alternative decompositions of a relation.

The selection of meaningful decompositions is guided by heuristics, but still

requires user interaction.

INDEX is an experimental system which is not yet able to process large

datasets. It is available as Quintus Prolog source code at

ftp://ftp.gmd.de/MachineLearning/ILP/public/software/index/.

5.2 Clausal discovery: CLAUDIEN

The interactive system CLAUDIEN [DRD95] performs the task of clausal dis-

covery, that is, it searches a given database for hidden regularities. Both the

database and the regularities are represented as �rst-order clausal theories. As

the system INDEX, CLAUDIEN belongs to nonmonotonic setting of ILP.

Whereas INDEX utilises detected regularities for restructuring the database,

CLAUDIEN regards the discovered regularities as an aim of themselves. As

CLAUDIEN provides a powerful mechanism for specifying the type of regular-

ities to be detected, CLAUDIEN can be applied for detecting various kinds of

regularities in databases, such as integrity constraints in databases, functional

dependencies and determinations, or properties of sequences.

The basic principle of CLAUDIEN's discovery algorithm is to subseqently

generate the clauses contained in the hypothesis language and check them

against the database. The clauses which are found to represent an actual reg-

ularity of the data are added to the hypothesis. The algorithm searches the

hypothesis space from general to speci�c, thereby exploiting the subsumption

23

relations among of clauses for pruning the search space. While running, CLAU-

DIEN successively enlarges the set of discovered regularities. The longer the

algorithm runs, the more regularities may be found. As the search outputs a

valid hypothesis whenever it is interrrupted, CLAUDIEN can be regarded as

an anytime algorithm.

CLAUDIEN's background theory and examples (termed `observations') are

represented as conjunctions of �rst order Horn clauses. The hypothesis may con-

sist of arbitrary clauses. CLAUDIEN incorporates a mechanism for the syn-

tactical declaration of the hypothesis language called DLab. This mechanism

allows the user to specify general clause templates for hypothesis clauses. Each

template de�nes sets of clauses. DLab derives re�nement operators from the

clause templates which map the expansion of the template into clause sets on

sequences of specialisation operations under theta-subsumptions. This enables

enables pruning of the search.

CLAUDIEN provides a range of control parameters. Some of these allow

further control of the hypothesis language. Another group concerns semanti-

cal aspects of the hypothesis as, e.g., the minimum accuracy and coverage of

discovered clauses. Additionally, the user can choose among four search strate-

gies. Optionally, the system can be requested to produce non-redundant hy-

potheses, that is, hypotheses not containing clauses which are logically entailed

by the background knowledge or other discovered regularities. Furthermore,

CLAUDIEN provides mechanisms for the convenient management of di�erent

con�gurations of discovery experiments.

CLAUDIEN (version 3.0) is implemented in BIM Prolog. It is available for

academic purposes as a stand-alone system running without a Bim Prolog sys-

tem. If a BimProlog compiler is available,CLAUDIEN is able to make use of it,

thereby signi�cantly improving its execution times. The URL for CLAUDIEN

is http://www.cs.kuleuven.ac.be/cwis/research/ai/Research/claudien-E.shtml

The DLab mechanism is also available as a Prolog library for the use with

concept learning and knowledge discovery approaches other than CLAUDIEN.

It is obtained via anonymous ftp at

ftp://ftp.cs.kuleuven.ac.be/pub/logic-prgm/ilp/dlab.

References

[AP93] K. Ali and M. Pazzani. HYDRA: A noise-tolerant relational con-

cept learning algorithm. In Proceedings of the Thirteenth Inter-

national Joint Conference on Arti�cial Intelligence. Morgan Kauf-

mann, 1993.

[BG93a] F. Bergadano and D. Gunetti. Functional inductive logic program-

ming with queries to the user. InMachine Learning: ECML-93, Eu-

24

ropean Conference on Machine Learning, Wien, Austria. Springer,

1993.

[BG93b] F. Bergadano and D. Gunetti. An interactive system to learn func-

tional logic programs. In Proc. of IJCAI-93, pages 1044 { 1049,

Chamb�ery, 1993.

[BIA94] H. Bostr�om and P. Idestam-Almquist. Specialization of logic pro-

grams by pruning sld-trees. In Proc. of the 4th International

Workshop on Inductive Logic Programming, volume 237 of GMD-

Studien, pages 31{48. Gesellschaft f�ur Mathematik und Datenver-

arbeitung mbH, 1994.

[Bos96] H. Bostr�om. Theory-guided induction of logic programs by infer-

ence of regular languages. In Proc. of the 13th International Confer-

ence on Machine Learning, pages 46{53. Morgan Kaufmann, 1996.

[CB91] P. Clark and R. Boswell. Rule induction with CN2: Some recent

improvements. In Proc. Fifth European Working Session on Learn-

ing, pages 151{163, Berlin, 1991. Springer.

[DL91] S. D�zeroski and N. Lavrac. Learning relations from noisy examples:

An empirical comparison of linus and foil. In Proc. of the Eighth

International Conference on Machine Learning, Evanston. Morgan

Kaufmann, 1991.

[DM92] B. Dolsak and S. Muggleton. The application of inductive logic pro-

gramming to �nite element mesh design. In S. Muggleton, editor,

Inductive Logic Programming. Academic Press, 1992.

[DRB92] L. De Raedt and M. Bruynooghe. An overview of the interactive

concept-learner and theory revisor Clint. In Stephen Muggleton, ed-

itor, Inductive Logic Programming, pages 163{188. Academic Press,

1992.

[DRD95] L. De Raedt and L. Dehaspe. Clausal discovery. Technical report,

Katholieke Universteit Leuven, 1995.

[D�ze93] S. D�zeroski. Handling imperfect data in inductive logic program-

ming. In Proc. Fourth Scandinavian Conference on Arti�cial Intel-

ligence, pages 111{125, Amsterdam, 1993. IOS Press.

[Fla93] P. Flach. Predicate invention in inductive data engineering. In

P. Brazdil, editor, Proc. of the Sixth European Conference on Ma-

chine Learning, Lecture Notes in Art�cial Intelligence, pages 83{94.

Springer{Verlag, 1993.

25

[Fla95] P. A. Flach. Conjectures: an inquiry concerning the logic of induc-

tion. PhD thesis, Katholieke Universiteit Brabant, 1995.

[Gro92] M. Grobelnik. MARKUS | an optimized model inference sys-

tem. In Proc. ECAI'92 Workshop on Logical Approaches to Ma-

chine Learning, Vienna, Austria, 1992.

[Gro93] M. Grobelnik. Induction of prolog programs with MARKUS.

In Proc. LOPSTR'93 Workshop on Logic Program Synthesis and

Transformation, Louvain, Belgium, 1993.

[KMLS92] R.D. King, S. Muggleton, R. Lewis, and M.J.E. Sternberg. Drug

design by machine learning: the use of Inductive Logic Program-

ming to model the structure-activity relationships of trimethoprim

analogues binding to dihydrofolate reductase. In Proc. Natl. Acad.

Sci, number 89, pages 11322{11326, 1992.

[LD94] N. Lavra�c and S. D�zeroski. Inductive Logic Programming. Tech-

niques and Applications. Ellis Horwood, 1994.

[Mar95] Z. Markov. A functional approach to ILP. In L. DeRaedt, editor,

Proc. 5th International Workshop on Inductive Logic Programming,

Scienti�c Report. Department of Computer Science, K.U. Leuven,

1995.

[MC95] R.J. Mooney and M.E. Cali�. Induction of �rst-order decision lists:

Results on learning the past tense of English verbs. Journal of

Arti�cial Intelligence Research 3, pages 1{24", 1995.

[MDR94] S. Muggleton and L. De Raedt. Inductive Logic Programming:

Theory and methods. Journal of Logic Programming, Special Issue

on 10 Years of Logic Programming, 1994.

[MF92] S. Muggleton and C. Feng. E�cient induction of logic programs.

In S. Muggleton, editor, Inductive Logic Programming. Academic

Press, 1992.

[Mug95] S. Muggleton. Inverse entailment and progol. New Generation

Computing Journal, 13:245{286, 1995.

[MWKE93] K. Morik, S. Wrobel, J. Kietz, and W. Emde. Knowledge Aqui-

sition and Machine Learning: Theory Methods and Applications.

Academic Press, 1993.

[PK92] M.J. Pazzani and D> Kibler. The utility of knowledge in inductive

learning. Machine Learning 9/1, pages 57{94, 1992.

26

[Plo71a] G. Plotkin. Automatic methods of inductive inference. PhD thesis,

University of Edingburgh, 1971.

[Plo71b] G. Plotkin. A further note on inductive generalisation. In

B. Meltzer and D. Michie, editors, Machine Intelligence, volume 6,

pages 101{124. Edinburgh University Press, 1971.

[QCJ93] J.R. Quinlan and R.M. Cameron-Jones. Foil: A midterm report.

InMachine Learning: ECML-93, European Conference on Machine

Learning. Springer, 1993.

[Rae92] L. De Raedt. Interactive Theory Revision: an Inductive Logic Pro-

gramming Approach. Academic Press, 1992.

[RM95] Bradley L. Richards and Raymond J. Mooney. Re�nement of �rst-

order horn-clause domain theories. Machine Learning, 19(2):95{

131, 1995.

[Sha83] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[ST93] I. Stahl and B. Tausend. MILES { a modular inductive logic pro-

gramming experimentation system. Deliverable STU1.2 of ESPRIT

BRA 6020: Inductive Logic Programming (ILP), 1993.

[ZMK94] J. M. Zelle, R. J. Mooney, and J. B. Konvisser. Combining top-

down and bottom-up techniques in inductive logic programming.

In Proceedings of the Eleventh International Workshop on Machine

Learning (ML-94), pages 343{351, 1994.

27

