
Explanation Based Learning: A Comparison of Symbolic

and Neural Network Approaches

Tom M. Mitchell

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Tom.Mitchell@cs.cmu.edu

Sebastian B. Thrun

University of Bonn

Institut f�ur Informatik III

R�omerstr. 164, D-5300 Bonn, Germany

Thrun@uran.informatik.uni-bonn.de

Abstract

Explanation based learning has typically

been considered a symbolic learning method.

An explanation based learning method that

utilizes purely neural network representa-

tions (called EBNN) has recently been devel-

oped, and has been shown to have several de-

sirable properties, including robustness to er-

rors in the domain theory. This paper briey

summarizes the EBNN algorithm, then ex-

plores the correspondence between this neu-

ral network based EBL method and EBL

methods based on symbolic representations.

1 Introduction

Explanation based learning (EBL) is an important

paradigm for machine learning because it o�ers a

means of using prior knowledge to generalize more cor-

rectly from fewer training examples. EBL was origi-

nally conceived as a symbolic learning method ([?],

[?]), based on creating and analyzing explanations de-

rived from symbolic rules. While it has been used suc-

cessfully to learn control knowledge to speed up search

([?], [?]), the chief limit to its usefulness lies in the re-

quirement that its prior knowledge, or domain theory,

be complete and correct. Recent research has pro-

duced a number of proposals for extending EBL ap-

proaches to accommodate imperfect domain theories

(e.g., for several dozen, see the Workshop of Combin-

ing Inductive and Analytical Learning [?]). Despite

progress in this area, we still have not found the �nal

answer to the question of how to best unify EBL and

inductive learning.

An explanation based learning method based purely on

neural network representations has recently been pro-

posed [?], [?], which provides a means of combining an

inductive learning component (neural network Back-

propagation) with an explanation based learning com-

ponent. In preliminary experiments, this algorithm

(called EBNN) has been demonstrated to successfully

use approximate, previously learned, domain knowl-

edge of widely varying quality to guide generalization.

EBNN is a direct analog to symbolic EBL methods in

that it maintains separate representations of the do-

main theory and the target function, and uses the do-

main theory to explain and generalize each individual

training example.

The goal of this paper is to examine the correspon-

dence between EBL methods based on symbolic and

neural network representations. To ground the com-

parison, we consider two speci�c algorithms: a pro-

totypical pure symbolic EBL algorithm, Prolog-EBG

[?], and explanation based neural network learning,

EBNN. We �rst present an overview of the EBNN al-

gorithm. Following this we de�ne the abstract EBL

problem and EBL method that is common to both

symbolic and neural network approaches. Finally, we

examine key di�erences in detailed representations and

algorithms, that lead to di�erent capabilities and con-

vergence properties for these two approaches. The

main result revealed by this analysis is a fundamen-

tal di�erence in the types of information that can be

extracted from symbolic versus neural network expla-

nations, and a fundamental di�erence in convergence

characteristics when learning a target function repre-

sented by sets of rules versus a single neural network.

2 An Overview of EBNN

This section summarizes the EBNN learning algorithm

and presents preliminary experimental results illus-

trating its robustness to errors in the domain theory.

Additional details regarding the algorithm and the ex-

perimental results are available in [?] and [?]. Note

this section is a summary extracted from those papers.

2.1 Neural Network Domain Theories

In EBNN, the domain theory is represented by arti�-

cial neural networks. By using neural network learn-

ing algorithms such as the Backpropagation procedure

[?], the domain theory can be learned from scratch and

Figure 1: Training Episode: Starting from the initial state s

1

, the action sequence a

1

; a

2

; . . . ; a

n�1

was observed to

produce the �nal state s

n

, a goal state. The domain knowledge represented by neural networks can be used to explain

how the observed state-action sequence resulted in achieving the goal. EBNN extracts slopes of the target function (i.e.,

the derivative of the goal feature of the �nal state with respect all features of the initial state) from this explanation.

does not require the availability of a priori knowledge

from a human trainer. As in symbolic EBL, EBNN

uses the domain theory to guide learning of the target

concept by explaining and analyzing observed training

examples.

To illustrate EBNN, consider an agent (perhaps a

robot) which must learn a strategy for choosing which

of its actions to apply in any given state in order to

(eventually) achieve its goal. Consider, for example,

the episode shown in �gure ??. Starting from an ini-

tial state s

1

, the sequence of actions a

1

; a

2

; . . . ; a

n�1

is observed to produce the goal state s

n

. The learn-

ing task is this case is to learn the concept \the class

of states, s for which the action a will lead eventually

to a goal state." This concept will be represented by

a boolean function from states and actions to f0;1g.

Once learned, this evaluation function allows the agent

to select actions that achieve its goal.

2.2 Explaining and Analyzing Observed

Episodes

One could apply standard explanation-based learning

methods to this problem, provided the agent initially

possessed a perfect domain theory describing the ef-

fects of its actions on the world state. Instead, we

consider the case where the robot has only an approx-

imate, previously learned theory of the e�ects of its

actions. This domain theory is represented by a col-

lection of neural networks, one for each action. The

network characterizing action a

i

takes as input the

description of an arbitrary state, and produces as out-

put a description of the predicted resulting state (i.e.,

each network represents the same type of informa-

tion as typically represented by symbolic precondition-

postcondition action descriptions). EBNN applies

these action model networks to explain and learn from

each observed episode in which it achieves its goal.

More precisely, EBNN applies the following three step

process to each observed episode in which the agent

successfully achieves its goal:

1. Explain: An explanation is a post-facto predic-

tion of the observed episode using the domain knowl-

edge. Explanations are constructed by using the neu-

ral network domain theory to post-facto predict, and

thus explain, why action a

1

applied at state s

1

led

to the observed state s

2

, why a

2

led to s

3

, and so on.

Note that predicted states usually deviate from the ob-

served ones, since inductively learned domain theories

are only approximately correct.

2. Analyze: The role of the explanation is to elu-

cidate how achieving the �nal goal depends on the

various features of the observed initial state, s

1

. In

symbolic EBL, this dependency is used to extract the

weakest precondition under which the same explana-

tion would have produced the same outcome. Since

EBNN represents its domain theory by neural net-

works, it is di�cult to extract weakest preconditions.

However, since neural networks are real-valued di�er-

entiable functions, one can use the dependencies in the

explanation to extract the derivatives (i.e., slopes) of

the �nal goal feature with respect to each feature of the

initial state, s

1

. EBNN examines the speci�c chain of

neural net activations and weights in the explanation,

to analytically extract these derivatives.

More speci�cally, consider the last state-action pair

hs

n�1

; a

n�1

i shown in �gure ??, which led to the goal

state s

n

. Neural networks correspond to di�erentiable

functions. Using the last step of the explanation for

this episode, the slopes of the goal features of the pre-

dicted �nal state s

n

with respect to s

n�1

and a

n�1

can be extracted by computing the derivative of the

neural network function. These slopes describe the

dependence of the �nal state s

n

on the previous state

s

n�1

, and action a

n�1

. In particular, they measure

how in�nitesimally small changes applied to s

n�1

or

a

n�1

will change the �nal state s

n

. The extraction of

slopes can be chained back through the entire episode

by applying the chain rule of di�erentiation to the en-

tire explanation. The result of this analysis is the set of

derivatives (slopes) of the target concept (goal state)

with respect to each state-action pair in the observed

Figure 2: Fitting slopes: Let f be a target func-

tion for which three examples hx

1

; f(x

1

)i, hx

2

; f(x

2

)i, and

hx

3

; f(x

3

)i are known. Based on these points the learner

might generate the hypothesis g. If the slopes are also

known, the learner can do much better: h.

episode. As stated above, these slopes measure the

pointwise dependence of the target concept on the fea-

tures of the states and actions in the observed episode.

3. Re�ne: The slopes extracted from the expla-

nation, along with the observed training example it-

self, are used to re�ne the learner's hypothesis re-

garding the target function. The target function in

EBNN is represented by a separate neural network

(or any other representation appropriate for approx-

imating real-valued functions from sample values and

sample slopes). This is analogous to symbolic EBL, in

which the learned target function is also represented

separately from the initial domain theory. However,

whereas symbolic EBL produces a new rule for each ex-

plained example, EBNN uses just a single network

1

to

represent the target function. This single target func-

tion network is incrementally updated with each new

training example, both inductively and analytically,

to iteratively approximate the true target function. In

the episode from our example, each state-action pair in

the episode, hs

i

; a

i

i becomes a training example for in-

ductively and analytically re�ning the target network.

The inductive component of learning corresponds

to updating the target network to produce the target

output value (e.g., 1 if the example leads to achieving

the goal). Inductive learning is crucial for compensat-

ing for errors in the domain theory. The analytical

component of learning corresponds to updating the

network to �t the target output slopes, extracted ana-

lytically from the explanation. As shown in �gure ??,

these slopes inuence the learned network by overrid-

ing the default bias of interpolating between observed

points. Therefore the analytical component in EBNN

enables faster generalization from less training data,

if slopes are su�ciently accurate. In the case that

the target function is represented by a neural network,

the Backpropagation algorithm can be extended to �t

slopes as well as values, as may be found in [?].

1

In our experiments we used 5 networks, one for each

action. The important point is that the target function

is represented in a �xed (set of) networks, rather than a

growing number of rules. We also experimented with a

nearest neighbor representation of the target function.

To summarize, the target concept is iteratively ap-

proximated by updating it (a) inductively, to �t the

empirically observed training values of the target func-

tion, and (b) analytically, to �t the analytically derived

training slopes obtained by explaining the observed ex-

ample in terms of a previously learned domain theory.

2.3 Accommodating Imperfect Domain

Theories

Since the domain theory is learned inductively from

training instances

2

, its accuracy might thus be arbi-

trarily poor, resulting in arbitrarily poor explanations

and extracted slopes. How can the learner avoid the

damaging e�ects of such incorrect slopes arising from

a poor domain theory?

EBNN reduces the undesired inuence of incorrect

domain theory predictions by estimating the accu-

racy of the extracted slopes, based on the �t between

the observed sequence of states and those predicted

by the explanation (this heuristic is called LOB*).

More speci�cally, each time the domain theory is used

for post-facto predicting a state s

k+1

, its prediction

s

predicted

k+1

may deviate from the observed state s

observed

k+1

.

We de�ne the 1-step prediction accuracy at state s

k

,

denoted by c

1

(i), as 1 minus the normalized prediction

error:

c

1

(i) := 1 �

jjs

predicted

i+1

� s

observed

i+1

jj

max prediction error

For a given episode we de�ne the n-step accuracy c

n

(i)

as the product of the 1-step accuracies in the next n

steps. For states n steps away from the end of the

episode, the analytically derived training information

(slopes) is weighted by the n-step accuracy times the

weight of the inductive component (values). Although

the experimental results reported in Section ?? are

promising, the generality of this approach is an open

question, due to the heuristic nature of the assumption

LOB*.

2.4 Experimental Results in a Simulated

Robot Learning Domain

EBNN was evaluated in a simulated robot navigation

domain. The world and the action space are depicted

in Figure ??a&b. The learning task is to �nd an evalu-

ation function Q, for which the greedy policy navigates

the agent to its goal location (circle) from arbitrary

starting locations, while avoiding collisions with the

walls or the obstacle (square). States are described by

the local view of the agent, in terms of distances and

angles to the center of the goal and to the center of

the obstacle. Note that the world is deterministic in

these experiments, and there is no sensor noise.

2

This process is not to be confused with the inductive

learning of the target function.

robot

obstacle

goal

(a)

a

1

a

2

a

3

a

4

a

5

robot

(b)

error

number of

training examples

(c)

Figure 3: a. The simulated robot world. b. Actions. c. The squared generalization error for each of nine domain theories

trained on di�erent numbers of training examples.

In order to allow exploration of the robot environ-

ment and to compensate for the necessary non-optimal

action choices, we applied EBNN to Watkins' Q-

Learning [?] together with Sutton's temporal di�er-

ence learning TD(�) [?] (with � = 0:7 and a reward

discount = 0:8)

3

. Each discrete action was modeled

by a separate neural network. We used neural network

Backpropagation learning for learning action models.

The evaluation functions Q were approximated by an

instance-based local approximation technique, model-

ing the Q separately for each action. In this instance-

based technique, each training instance, together with

its slopes, was explicitly memorized. Given a new

point as a query, generalization was achieved by �t-

ting a local second order polynomial over the three

nearest neighbors in the instance memory. This poly-

nomial �t both the values and the slopes. In our

initial experiments, this instance-based technique out-

performed neural networks for representing the target

functions.

Experiment 1: \What is the impact of the ana-

lytical component of EBNN, given a strong do-

main theory?" In this experiment we �rst allowed

the agent to train each of the action modeling networks

that form its domain theory using 8192 randomly gen-

erated training examples. This results in a fairly ac-

curate, but still imperfect, domain theory, which was

then used by EBNN. The results of EBNN are shown

by the thick black line in Figure ??. In contrast, the

results of applying standard inductive learning (Back-

propagation) are shown by the line marked \without

analytical learning". EBNN required signi�cantly less

training data than inductive learning in order to reach

the same level of performance.

Experiment 2: \How does EBNN degrade with

3

We will omit the somewhat lengthy details here, since

they are not essential for the understanding of EBNN. See

[?] and [?] for a detailed description.

progressively weaker domain theories?" We re-

peated Experiment 1 using weaker domain theories,

trained with 5, 10, 20, 35, 50, 75, 100, 150, and

8192 training examples per action network. The ad-

ditional curves in Figure ?? show the results of us-

ing EBNN with these weaker domain theories. These

curves demonstrate that EBNN degrades gracefully to

the performance of pure induction, as the accuracy of

the domain theory decreases.

3 Correspondence between Symbolic

and Neural Network EBL

As described above, EBNN is the neural network ana-

log of symbolic explanation-based learning methods.

In this section we describe the common abstraction of

symbolic EBL and EBNN. We then explore the spe-

ci�c di�erences between these two algorithms, and the

signi�cant impact that these algorithmic di�erences

have on their relative capabilities. While there are

many variants of symbolic EBL, for the purposes of

grounding the discussion we will consider only one pro-

totypical algorithm: Prolog-EBG, as described in [?].

Furthermore, while both neural networks and nearest-

neighbor schemes have been used to represent the tar-

get function in EBNN, in this discussion we assume the

target function is represented by a neural network.

It is also important to note that a variety of techniques

have been proposed for combining analytical and in-

ductive learning, which do not involve explaining in-

dividual training examples, and which are therefore

outside the scope of this discussion. These include, for

example, Shavlik's [?] and Fu's [?]) methods for using

symbolically encoded domain knowledge to initialize

the topology and weights of neural networks which are

then inductively re�ned.

�

50

X

X

X

X

X

Xy

without analytical learning

�

10,20,35,75,100

�

8192

�

�

�+

150

Q

Q

Qk

5

number of

episodes

Prob(success)(a)

Figure 4: EBNN using various domain theories, compared against pure induction. The bold grey line is the learning curve

for pure inductive learning, i.e., Q-Learning and TD(�). Other curves show the performance of EBNN, using domain

theories of di�ering accuracies, pre-trained with from 5 to 8192 training examples for each action model network. The

performance (vertical axis) is measured on an independent test set of 20 starting positions. All curves are averaged over

3 learning runs and are also locally window-averaged.

3.1 The Explanation-Based Learning

Problem

The common problem addressed by the symbolic

Prolog-EBG method and the neural network EBNN

method can be characterized as follows:

Given:

Target function: the function to be learned.

Domain theory: prior knowledge capable of

predicting/explaining the output of the tar-

get function given its input

Training instances: examples of input, output

pairs of the target function

Operationality criterion: constraints on how

the learned function must be described

Determine:

An operational representation of the target func-

tion that best �ts both the observed training in-

stances and the given domain theory

Note that while both Prolog-EBG and EBNN make

use of a domain theory, it is represented in very dif-

ferent forms in the two cases. In Prolog-EBG, the

domain theory is described by a collection of horn

clauses, whereas in EBNN it is a collection of neu-

ral networks. Note that each neural network in the

domain theory can be interpreted as a complex infer-

ence rule, capable of concluding an output assertion

(represented by its output activations) from the input

assertion (represented by its input activations).

The operationality criterion, which speci�es the ac-

ceptable form for the learned target function, is similar

in Prolog-EBG and EBNN. In both cases, the target

function value is computed directly from the observ-

able attributes of the example. In Prolog-EBG this

target function is represented by horn clauses, while in

EBNN it is represented by a neural network or some

other approximator for real-valued functions.

Notice that the above problem de�nition requires that

the learned function be a best �t to both the training

instances and the domain theory. Strictly speaking,

Prolog-EBG is used only when the training examples

are consistent with the domain theory, and it there-

fore produces learned rules that constitute a perfect

�t to both the domain theory and observed examples.

However, much current work on symbolic EBL (e.g.,

[?], [?], [?]) deals with the same class of situations as

EBNN: situations in which the observed training ex-

amples are not strictly entailed by the domain theory,

and for which the goal is therefore to learn a function

that best �ts both the imperfect domain theory and

the observed training examples.

3.2 The Explanation-Based Learning Method

The common abstraction of the Prolog-EBG and

EBNN algorithms is to perform, for each observed

training example, i, the following steps:

1. Explain i, by showing how the domain theory pre-

dicts the value of the target function for input i

2. Analyze this explanation to determine the rele-

vance of di�erent features of i with respect to the

target function

3. Re�ne the current representation of the target

function to take into account this new training

example and the information about feature rele-

vance extracted from the explanation.

Both Prolog-EBG and EBNN construct similar expla-

nations: chains of inferences based on the domain the-

ory, predicting the observed target function value from

attributes of the examples. However, they di�er signif-

icantly in the ways in which they use their explanations

to re�ne the hypothesized target function.

The key di�erence in the use of explanations stems

from the di�erence in representing dependencies using

symbolic versus neural network domain theories: sym-

bolic rules typically refer to (i.e., match) only a subset

of the training example attributes, whereas neural net-

works compute their output based on weighted combi-

nations of all example attributes. Therefore, symbolic

explanations typically indicate that the target function

value depends on only some subset of the training ex-

ample attributes, whereas neural network explanations

indicate that the explained value depends to some de-

gree on every training example attribute.

In Prolog-EBL, the features of the training example

that are mentioned in the symbolic explanation are

easily distinguished from those that are not, and the

regression of the target concept expression through

the explanation yields the weakest preconditions un-

der which that explanation will hold. A new rule is

then created using these weakest preconditions for its

antecedent, and the explained target function value as

its consequent.

With explanations based on neural networks, the pro-

cess of regressing logical expressions in order to ex-

tract weakest preconditions cannot be applied. In-

stead, the dependency of the target function value on

example features is extracted in the form of partial

derivatives of the target function with respect to the

example attributes, evaluated at the training example

point. These partial derivatives, or slopes, summa-

rize the knowledge implicit in the domain theory as

it applies to the current explanation. These analyti-

cally derived slopes are then used to update the neural

network that de�nes the target function. In particular,

the weights of the target function network are adjusted

to make its slope closer to the slope suggested by the

explanation.

The key di�erences between symbolic and neural net-

work EBL methods include the following:

Di�erence in dependencies extracted from ex-

planations. As discussed above, symbolic EBL

extracts weakest preconditions from explanations,

whereas neural network EBL extracts partial deriva-

tives of the target function with respect to example

attributes.

Di�erence in target function coverage and cor-

rectness. As new training examples are encountered,

symbolic EBL methods acquire an increasing number

of rules that allow it to predict the target function

value for an increasing proportion of the space of ex-

amples. In contrast, neural network EBL begins with

a (very poor) description of the target function that

covers the entire space of examples. As it acquires ex-

amples, its improvement lies in improving the quality

of its approximation to the target function, rather than

its coverage. In brief, symbolic EBL learns a function

that is always correct and increasingly complete in its

coverage, whereas neural net EBL learns a function

that is always complete and increasingly correct.

Di�erence in mechanisms for learning new fea-

tures. Symbolic EBL procedures have been demon-

strated to acquire new features analytically, as a side-

e�ect of extracting weakest preconditions (e.g., [?]).

In contrast, Backpropagation neural net learning has

been demonstrated to acquire useful new features in-

ductively, in the hidden layer units of the network

(e.g., [?]). In EBNN, both analytical and inductive

components have an inuence on the features that are

acquired in the hidden layer of the target function.

While we have not explored this issue, it seems an

interesting opportunity for combining the analytical

derivation of useful features based on prior knowledge

with the statistical approaches associated with induc-

tive neural network learning.

Di�erence in permanence of memory. Symbolic

methods that learn rules update the target function

by adding new rules which are usually assumed to be

permanent. EBNN, however, has no corresponding no-

tion of permanent memory. Instead, all new informa-

tion, whether empirically or analytically derived, can

at most cause an incremental change to the weights

of the learned network. Furthermore, the inuence of

that new information will eventually be forgotten as it

is incrementally overridden by subsequent data. This

di�erence in memory permanence is primarily a result

of the di�erence between bounded memory representa-

tions (e.g., �xed-size neural networks) and unbounded

(e.g., arbitrarily large rule sets). If EBNN is used with

a nearest neighbor (unbounded memory) representa-

tion of the target function, then the situation changes

signi�cantly. The di�erence in permanence of memory

appears to have important implications for recover-

ing from incorrect learning, for learning performance

in cases where certain rare experiences are very impor-

tant, and for maintaining consistency when the domain

theory and target function are being simultaneously

learned.

3.3 Di�erences in Capabilities

The above sections have described the EBL problems

addressed by symbolic and neural network EBL meth-

ods, as well as the correspondence between the repre-

sentations and algorithms they employ. These di�er-

ences in algorithms have a number of implications for

the relative capabilities of these two approaches:

Robustness to errors in domain theory and

training data. One central motivation for developing

the EBNN algorithm was to provide an explanation-

based learning mechanism capable of using imperfect

training data and domain theories which were them-

selves learned from scratch and of unknown reliabil-

ity. As shown in the experimental results, EBNN

is able to successfully learn from very weak or very

strong domain theories. Its robustness follows from

two characteristics: First, for each individual training

example it uses both inductive and analytical meth-

ods for updating the target function. Second, it relies

more strongly on the analytical learning component

for examples that are explained accurately, and more

strongly on the inductive component for poorly ex-

plained examples. While a variety of symbolic EBL

methods have been developed that address imperfect

domain theories none has yet been demonstrated to

operate over the broad spectrum of learned domain

theories of varying quality illustrated for EBNN.

Scaling issues. One well-known scaling problem as-

sociated with EBL (and other rule learning methods)

is that the more rules learned, the longer it can re-

quire to match them to a new example. Because neu-

ral nets have a �xed response time regardless of how

much they are trained, they have an advantage along

this dimension. However, an o�setting issue has to do

with the ability to represent arbitrarily complex func-

tions. Because symbolic methods create collections of

rules, each of which may cover some particular part

of the domain, they can represent arbitrarily complex

target functions by arbitrarily large rule sets. Here

neural networks are at a disadvantage, since for any

�xed-size network there will be complex functions that

cannot be accurately represented. Put briey, neural

networks provide �xed response time but sacri�ce �-

delity in approximating the target function, whereas

symbolic rules can provide better �delity but sacri�ce

response time.

Ability to learn real-valued functions. Symbolic

EBL is typically applied to problems where the target

function can take on only a �nite number of possible

values. In part this is because a distinct learned rule

is typically required for each observed output value of

the target function. Neural net EBL o�ers the oppor-

tunity to apply explanation based methods to learning

real-valued functions, such as the Q function learned in

the robot control example. One potential advantage of

learning real-valued functions is that it provides a way

of applying EBL to learning about optimizing search

(again, as illustrated by the robot learning example

in which the goal is to maximize the robot's total re-

ward). For example, consider the task of learning rules

to control search. Symbolic EBL has been applied with

great success to learning rules that recommend actions

leading to a goal state, but has been remarkably unsuc-

cessful at learning rules that lead along the minimum

cost solution path. The reason is that explaining why

one action has lower cost than another involves ex-

planations regarding real-valued quantities, typically

leading to very detailed explanations and very speci�c

rules. The robot Q-Learning example above demon-

strates that EBNN can be practically applied to learn-

ing such optimizing search control.

Human understandability. Symbolic rule-based

representations are without doubt more understand-

able to humans than neural network representations.

While there is work on extracting symbolic summaries

of the knowledge implicit in neural network weights,

an acceptable general-purpose method is still not avail-

able.

4 Summary and Conclusions

We have examined the correspondence between EBL

methods using symbolic and neural network represen-

tations. The main points following from this discussion

may be summarized as follows:

1. Explanation-based learning which has previously

been considered a symbolic learning method can

naturally be extended to neural network repre-

sentations. The EBNN algorithm represents both

the domain theory and the target function as neu-

ral networks, and successfully uses explanations of

individual examples to guide generalization of the

target function.

2. There is a qualitative di�erence between the infor-

mation that can naturally be extracted from ex-

planations based on symbolic rules and explana-

tions based on neural networks: symbolic expla-

nations yield weakest preconditions under which

the explanation holds, whereas neural net expla-

nations yield partial derivatives of the target func-

tion with respect to each of its inputs, evaluated

at the training example point. These constitute

two di�erent ways of characterizing the relevance

of training example attributes with respect to the

target function.

3. There is a qualitative di�erence between the con-

vergence properties stemming from neural net

versus rule based representations for the target

function. Neural net learning involves incremen-

tally approximating the complete target function,

whereas learning sets of rules involves incremen-

tally extending the piecewise coverage of the tar-

