
Inductive Learning of Answer Set Programs
v3.1.0

User Manual

Authors:
Mark Law &

Alessandra Russo &
Krysia Broda

August 16, 2017

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

Contents

1 Background and Installation 2

1.1 Answer Set Programming . 2

1.2 Installation . 4

1.2.1 Linux . 4

1.2.2 Mac OSX . 4

1.3 How to run ILASP . 5

1.3.1 Options . 5

2 Learning from Answer Sets 6

2.1 Specifying simple learning tasks in ILASP . 6

2.2 Language Bias . 7

2.2.1 Extra options for mode declarations . 8

2.3 Example Tasks . 9

2.3.1 Sudoku . 9

3 Learning Weak Constraints using ILASP 11

3.1 Language Bias for Weak Constraints . 12

3.2 Example Tasks . 14

3.2.1 Scheduling . 14

4 Specifying Learning Tasks with Noise in ILASP 17

4.1 Example: Noisy Sudoku . 17

5 Context Dependent Examples 19

5.1 Hamiltonian Graphs Example . 19

5.1.1 Hamiltonian graphs in ILPLOAS : non-context dependent examples 19

5.1.2 Hamilton B: context dependent examples . 21

5.2 Context Dependent Ordering Examples . 21

5.2.1 Note on weak constraints in contexts . 21

6 Hypothesis length 22

i

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

Abstract

ILASP[8] (Inductive Learning of Answer Set Programs) is a system for learning ASP (Answer Set Program-
ming) programs from examples. It is capable of learning normal rules, choice rules and constraints through positive
and negative examples of partial answer sets. ILASP can also learn preferences, represented as weak constraints
in ASP by considering example ordered pairs of partial answer sets.

1

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

1 Background and Installation

Inductive Logic Programming (ILP)[12] is the field of research considering logic-based machine learning. The goal
is to find an hypothesis which, together with some given background knowledge, entails a set of positive examples
and does not entail any of a set of negative examples. Mostly, ILP research has addressed the problem of learning
definite clauses intended for use in Prolog programs.

More recently, there has been work on learning under the stable model semantics[6]. In [14], the concepts of brave
and cautious induction were introduced. The task of brave induction is to find an hypothesis H such that B ∪ H
(the background knowledge augmented with H) has at least one answer set which satisfies the examples; cautious
induction on the other hand requires that B ∪H is has at least one answer set and that every answer set satisfies
the examples.

Early algorithms such as [2, 13] solved brave induction tasks. In [7], we gave examples of hypotheses which could
not be learned by brave or cautious induction alone and presented a new learning framework Learning from Answer
Sets which is capable of expressing both brave and cautious induction in the same learning task.

Our algorithm, ILASP (Inductive Learning of Answer Set Programs) is sound and complete with respect to the
optimal (shortest) Learning from Answer Sets tasks. In [9], we presented an extension to our Learning from Answer
Sets framework, Learning from Ordered Answer Sets which is capable of learning preferences represented as weak
constraints.

ILASP2, is sound and complete with respect to the optimal solutions of any Learning from Ordered Answer Sets
task.

1.1 Answer Set Programming

This document should not be used as an introduction to Answer Set Programming (ASP). Good introductions to
ASP are [1, 5, 4]. In this section, we introduce the subset of ASP which ILASP uses.

In this document, we consider a literal to be either an atom, the negation as failure of an atom (written not a for
an atom a) or a comparison between two terms such as X > 2 or 4! = Y.

A normal rule is written: h :- b1, . . . , bn where h1 is an atom and b1 . . . bn are literals. Such a normal rule is read as
“if b1 . . . bn are all true, then h must also be true”.

A normal logic program is a set of normal rules. The Herbrand Base of a program P (written HBP) is the set of all
ground atoms which can be constructed using predicate names, constant symbols and function symbols in P . The
Herbrand Interpretations of P are the subsets of HBP and each interpretation I is interpreted as assigning any atom
in I to be true and any other atom to false.

To solve a normal program P for answer sets, it is first replaced with an equivalent ground program. An interpretation
I is an answer set of a ground program P if and only if it is a minimal model of the reduct of P with respect to I.
This reduct (written P I) is construced in two steps: firstly, remove any rule in P which contains the negation of an
atom in I; secondly, remove any remaining negative literals from the remaining rules. For more details, see any of
the references mentioned at the beginning of this section.

A (hard) constraint, is essentially a normal rule without a head. This empty head is often read as false. The meaning
of a constraint :- b1, . . . , bn is that if b1 . . . bn are satisfied by an interpretation, then it cannot be an answer set.

A choice rule is written l{h1; . . . ; hm}u :- b1, . . . , bn. where l and u are integers such that 0 ≤ l ≤ u ≤ n. Informally,
the meaning of such a rule is that if the body is satisfied then between l and u of the atoms h1, . . . , hn must be
satisfied. A simplified version of the reduct for programs containing normal rules, choice rules and constraints can
be found at [10].

The final type of rule that we allow in ILASP is called a weak constraint. Weak constraints do not effect the answer
sets of a program P , but they specify an ordering over the answer sets of P saying which answer sets are preferred
to others. ASP can solve programs for optimal answer sets (answer sets which are not less preferred than any other
answer set).

2

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

Example 1.1. Consider the program:

coin(1..3). % Note that this is a shorthand for coin(1). coin(2). coin(3).

1 { heads(C); tails(C) } 1 :- coin(C).

:~ heads(C).[1@2, C]

:~ tails(C).[1@1, C]

The choice rule in this program says that every coin is either heads or tails. This naturally leads to 8 answer sets in
which the 3 coins take every combination of values.

The first weak constraint has priority 2 (read from the “@2”), whereas the second has priority 1. This means that the
first weak constraint is more important and we solve this first. By this, we mean we select the answer sets which are
best according to this weak constraint. If there is more than one such answer set, then we compare these remaining
answer sets using the lower priority weak constraint.

The first weak constraint says that we must pay a penalty of 1 for every coin that takes the value heads. This means
that if we have 0 coins which are heads we pay 0, if we have 1 head we pay 1 etc. This means that the only optimal
answer set is the one in which all coins are tails.

The list terms appearing at the end of a weak constraint (after the priority level) are there to specify which constraints
should be considered unique; for example, if we ground the first weak constraint in the previous program we get:

coin(1..3). % Note that this is a shorthand for coin(1). coin(2). coin(3).

:~ heads(1).[1@2, 1]

:~ heads(2).[1@2, 2]

:~ heads(3).[1@2, 3]

This means that each weak constraint is considered unique, and so we must pay the penalty for each weak constraint
whose body is satisfied.

Consider instead the similar program:

coin(1..3). % Note that this is a shorthand for coin(1). coin(2). coin(3).

1 { heads(C); tails(C) } 1 :- coin(C).

:~ heads(C).[1@2]

:~ tails(C).[1@1, C]

The answer sets of this program remain the same, but now when we ground the first weak constraint we get:

coin(1..3). % Note that this is a shorthand for coin(1). coin(2). coin(3).

:~ heads(1).[1@2]

:~ heads(2).[1@2]

:~ heads(3).[1@2]

As “[1@2]” occurs for all three weak constraints, we only have to pay the penalty once if we have any heads. This
means that we pay penalty 0 if we have no heads, and penalty 1 if we have 1, 2 or 3 heads.

More formally, a weak constraint is written :∼ b1, . . . , bn.[w@l, t1, . . . , tm] where b1, . . . , bn are literals, w is either a
variable or an integer called the weight, l is an integer called the level and t1, . . . , tm are terms. A ground weak
constraint of this form has the meaning that if b1, . . . , bn are satisfied by an answer set A then we must pay the
penalty w. The terms ti are to specify which of the ground weak constraints should be considered distinct (if two
weak constraints have the same w, l and t1, . . . , tn we will only pay the penalty once, even if both bodies are satisfied).
The aim is to find an answer set which pays the minimum penalty. The idea of the levels are that we should solve
the higher levels first (considering them as a higher priority). Only if two answer sets pay equal penalties for all
levels above l do we consider the weak constraints of level l.

3

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

1.2 Installation

1.2.1 Linux

Note that although in theory ILASP should work on any Linux distribution, we have only tested it on Ubuntu 16.04.

Clingo. [3] ILASP depends on clingo version 4.3.0. It is important that exactly this version1 is used due to dif-
ferences in clingo’s built in scripting language in later versions. At the time of writing clingo 4.3.0 can be downloaded
from http://downloads.sourceforge.net/project/potassco/clingo/4.3.0/clingo-4.3.0-x86_64-linux.tar.

gz. The clingo executable should then be copied somewhere in your PATH. Our recommended approach is to copy
the executable into the /usr/local/bin/ directory.

It is now possible to run ILASP with newer versions of clingo. For details, see Section 1.3.1.

Poco. Older versions of ILASP use the poco library. This library can be installed in Ubuntu using the command
sudo apt-get install libpoco-dev. This is not necessary from ILASP 3.0.0 onwards.

The current version of ILASP for linux can be obtained from http://sourceforge.net/projects/spikeimperial/

files/ILASP/. It is recommended that you again copy the executable to /usr/local/bin/.

1.2.2 Mac OSX

ILASP has been built and tested on OSX 10.12 (Sierra).

Clingo. [3] ILASP depends on clingo version 4.3.0. It is important that exactly this version1 is used due to
differences in clingo’s built in scripting language in later versions. At the time of writing clingo 4.3.0 can be down-
loaded from http://downloads.sourceforge.net/project/potassco/clingo/4.3.0/clingo-4.3.0-macos-10.

9.tar.gz. The clingo executable should then be copied somewhere in your PATH. Our recommended approach is to
copy the executable into the /usr/local/bin/ directory.

It is now possible to run ILASP with newer versions of clingo. For details, see Section 1.3.1.

Poco. Older versions of ILASP use the poco library. This library can either be downloaded from http://

pocoproject.org/download/ or installed in OSX using the brew2 package manager (brew install poco). This is
not necessary from ILASP 3.0.0 onwards.

The current version of ILASP for OSX can be obtained from http://sourceforge.net/projects/spikeimperial/

files/ILASP/. It is recommended that you again copy the executable to /usr/local/bin/.

1Note that if you decide to compile clingo 4.3.0 from source, it is vital that you compile it with Lua support
2for details of how to install brew see http://brew.sh.

4

http://downloads.sourceforge.net/project/potassco/clingo/4.3.0/clingo-4.3.0-x86_64-linux.tar.gz
http://downloads.sourceforge.net/project/potassco/clingo/4.3.0/clingo-4.3.0-x86_64-linux.tar.gz
http://sourceforge.net/projects/spikeimperial/files/ILASP/
http://sourceforge.net/projects/spikeimperial/files/ILASP/
http://downloads.sourceforge.net/project/potassco/clingo/4.3.0/clingo-4.3.0-macos-10.9.tar.gz
http://downloads.sourceforge.net/project/potassco/clingo/4.3.0/clingo-4.3.0-macos-10.9.tar.gz
http://pocoproject.org/download/
http://pocoproject.org/download/
http://sourceforge.net/projects/spikeimperial/files/ILASP/
http://sourceforge.net/projects/spikeimperial/files/ILASP/
http://brew.sh

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

1.3 How to run ILASP

Once you have installed ILASP, you should be able to run the example tasks available at http://sourceforge.net/
projects/spikeimperial/files/ILASP/. Assuming you have an ILASP task stored at the location “path to task”,
you can use ILASP to solve this task for an optimal solution by using a command of the following form:

ILASP --version=[1|2|2i|3] [options] path_to_task

Note that from ILASP version 3.1.0 onwards, it is required to specify the version of the ILASP algorithm that you
wish to run. Different versions of ILASP are suited for different types problems, so it is recommended that you
experiment with the various versions. A summary of the strengths and weaknesses of the different versions is given
below.

• ILASP1 is available only for completeness, and is unlikely to outperform ILASP2.

• ILASP2 is likely to perform best on tasks with few examples. It does not scale with large numbers of examples.

• ILASP2i is an iterative version of the ILASP2 algorithm, which is designed to scale with the number of
examples. ILASP2i does not scale very well with large numbers of noisy examples.

• ILASP3 is targeted at learning from large numbers of noisy examples. It does a lot of work in processing the
examples individually, rather than all at once. In some cases, the computational cost of this processing can
sometimes be more expensive than the time it saves, especially in tasks with large hypothesis spaces.

1.3.1 Options

ILASP has several options which can be given before or after the path to the task which is to be solved. These are
summarised by table 1.

Option Description

-s Print the search space for the task.
-q Solve the task as normal, but only print the hypothesis.
-d Solve the task as normal, and print debugging information throughout the computation (this

is only applicable in 2i and 3).
-t In ILASP1 and ILASP2, this prints the ILASP ASP encoding for the task and exits. In

ILASP2i, it causes each of the intermediate ASP encodings to be written to a file (the name
of which is displayed in the debugging output).

-pt Solve the task, first pre-translating away the contexts (should be used together with version
2).

-ni (for use with version 3) Solve the task with no implication check.
-np (for use with version 3) Solve the task with no propagation.
--clingo

"path to clingo

clingo options"

use the specified path to clingo and options to clingo. Note that some options will interfere
with the output ILASP is expecting, and are not safe to use. This should really only be
used to change the heuristics and configuration parameters for clingo.

--clingo4.5 This tells ILASP that the clingo executable it is using expects the clingo 4.5 input format
(by default, ILASP expects clingo 4.3).

--clingo5 This tells ILASP that the clingo executable it is using expects the clingo 5 input format.

Table 1: A summary of the main options which can be passed to ILASP.

5

http://sourceforge.net/projects/spikeimperial/files/ILASP/
http://sourceforge.net/projects/spikeimperial/files/ILASP/

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

2 Learning from Answer Sets

In [7] we specified a new Inductive Logic Programming task for learning ASP programs from examples of partial
interpretations.

A partial interpretation E is a pair of sets of atoms Einc and Eexc, called the inclusions and exclusions of E. We
write E as 〈Einc, Eexc〉. An answer set A is said to extend E if it contains all of the inclusions (Einc ⊆ A) and none
of the exclusions (Eexc ∩A = ∅)).

In Learning from Answer Sets (ILPLAS), given an ASP program B called the background knowledge, a set of ASP
rules S called the search space and two sets of partial interpretations E+ and E− called the positive and negative
examples respectively, the goal is to find another program H called an hypothesis such that:

1. H is composed of the rules in S (H ⊆ S).

2. Each positive example is extended by at least one answer set of B ∪H (this can be a different answer set for
each positive example).

3. No negative example is extended by any answer set of B ∪H.

This task was later upgraded to support context-dependent examples, which allow extra (specific) background knowl-
edge to be given with each example. Context-dependent examples are discussed in Section 5.

2.1 Specifying simple learning tasks in ILASP

A positive example 〈{einc1 , . . . eincm }, {eexc1 , . . . , eexcn }〉 can be specified in ILASP as the statement: #pos(example name,
{einc1 , . . . , eincm }, {eexc1 , . . . , eexcn }). where example name is a unique identifier for the example. Similarly a negative
example can be specified using the predicate #neg.

A rule r in the search space with length l is specified as l ∼ r and finally, rules in the background knowledge are
specified as normal. The length of rules in the search space is used when determining which hypotheses are optimal.

Example 2.1. The ILASP task:

p :- not q.

q :- not p.

% At least one answer set should contain but not

% contain r.

#pos(p1, {q}, {r}).

% At least one answer set should contain both q

% and r.

#pos(p2, {q, r}, {}).

% At least one answer set should contain p.

#pos(p3, {p}, {}).

% No answer set should contain both p and r.

#neg(n1, {p, r}, {}).

1 ~ r.

1 ~ s.

2 ~ r :- not p.

2 ~ r :- p.

2 ~ s :- not p.

2 ~ s :- p.

1 ~ :- not p.

1 ~ :- p.

2 ~ s :- not r.

2 ~ s :- r.

1 ~ :- not r.

1 ~ :- r.

2 ~ r :- not s.

2 ~ r :- s.

1 ~ :- not s.

1 ~ :- s.

3 ~ s :- not p, not r.

3 ~ s :- p, not r.

3 ~ s :- not p, r.

3 ~ s :- p, r.

2 ~ :- not p, not r.

2 ~ :- p, not r.

2 ~ :- not p, r.

2 ~ :- p, r.

3 ~ r :- not p, not s.

3 ~ r :- p, not s.

3 ~ r :- not p, s.

3 ~ r :- p, s.

2 ~ :- not p, not s.

2 ~ :- p, not s.

2 ~ :- not p, s.

2 ~ :- p, s.

2 ~ :- not r, not s.

2 ~ :- r, not s.

2 ~ :- not r, s.

6

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

2 ~ :- r, s.

3 ~ :- not p, not r, not s.

3 ~ :- p, not r, not s.

3 ~ :- not p, r, not s.

3 ~ :- p, r, not s.

3 ~ :- not p, not r, s.

3 ~ :- p, not r, s.

3 ~ :- not p, r, s.

3 ~ :- p, r, s.

when solved with ILASP gives the output:

r :- not p, not s.

s :- not r.

Pre-processing : 0.003s

Solve time : 0.018s

Total : 0.021s

In this case, the answer sets of B ∪ H are {p, s}, {q, s} and {q, r}. Note that these three answer sets extend the
three positive examples, and no answer set extends the negative example.

2.2 Language Bias

The ILASP procedure depends on a search space of possible hypotheses in which it should search for inductive
solutions. Although in ILASP the search space can be given in full as in the previous section, the conventional way
of specifying this search space is to give a language bias specified by mode declarations (this is sometimes called a
mode bias).

A placeholder is a term var(t) or const(t) for some constant term t. The idea is that these can be replaced by
any variable or constant (respectively) of type t.

Each constant c which is allowed to replace a const term of type t should be specified as #constant(t, c)

A mode declaration is a ground atom whose arguments can be placeholders. An atom a is compatible with a mode
declaration m if each of the placeholder constants and placeholder variables in m has been replaced by a constant or
variable of the correct type (the user does not have to list the variables which can be used, but ILASP will ensure
that no variable occurs twice in the same rule with a different type).

There are three types of mode declaration: modeh the normal head declarations; modeha, the aggregate head

declarations; modeb, the body declarations; and modeo, the optimisation body declarations. Each mode declaration
can also be specified with a recall, which is an integer specifying the maximum number of times that mode declaration
can be used in each rule.

A user can specify a mode declaration stating that the predicate p with arity 1 can be used in each rule up to two
times with a single variable of type type1, for example, as #modeb(2, p(var(type1))).

The maximum number of variables in any rule can be specified using the predicate #maxv; for example #maxv(2)

states that at most 2 variables can be used in each rule of the hypothesis. Similarly, #max penalty specifies an upper
bound on the size of the hypothesis returned. By default, this is 15. Lower values for this are likely to increase the
speed of computation, but in some cases larger bounds are needed (as in the sudoku example in the next section).

Example 2.2. The language bias:

#modeha(r(var(t1), const(t2)))

#modeh(p)

#modeb(1, p)

#modeb(2, q(var(t1)))

#constant(t2, c1)

#constant(t2, c2)

#maxv(2).

Leads to the search space:

7

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

:- q(V1).

:- p.

:- not p.

:- q(V1), p.

:- q(V1), not p.

p.

p :- q(V1).

0 { r(V1, c1) } 1 :- q(V1).

0 { r(V1, c1) } 1 :- q(V1), p.

0 { r(V1, c1) } 1 :- q(V1), not p.

0 { r(V1, c2) } 1 :- q(V1).

0 { r(V1, c2) } 1 :- q(V1), q(V2).

0 { r(V1, c2) } 1 :- q(V1), q(V2), p.

0 { r(V1, c2) } 1 :- q(V1), p.

0 { r(V1, c2) } 1 :- q(V1), q(V2), not p.

0 { r(V1, c2) } 1 :- q(V1), not p.

0 { r(V1, c1); r(V1, c2) } 1 :- q(V1).

0 { r(V1, c1); r(V1, c2) } 1 :- q(V1), p.

0 { r(V1, c1); r(V1, c2) } 1 :- q(V1), not p.

1 { r(V1, c1); r(V1, c2) } 1 :- q(V1).

1 { r(V1, c1); r(V1, c2) } 1 :- q(V1), p.

1 { r(V1, c1); r(V1, c2) } 1 :- q(V1), not p.

1 { r(V1, c1); r(V1, c2) } 2 :- q(V1).

1 { r(V1, c1); r(V1, c2) } 2 :- q(V1), p.

1 { r(V1, c1); r(V1, c2) } 2 :- q(V1), not p.

0 { r(V1, c1); r(V2, c1) } 1 :- q(V1), q(V2).

0 { r(V1, c1); r(V2, c1) } 1 :- q(V1), q(V2), p.

0 { r(V1, c1); r(V2, c1) } 1 :- q(V1), q(V2), not p.

1 { r(V1, c1); r(V2, c1) } 1 :- q(V1), q(V2).

1 { r(V1, c1); r(V2, c1) } 1 :- q(V1), q(V2), p.

1 { r(V1, c1); r(V2, c1) } 1 :- q(V1), q(V2), not p.

1 { r(V1, c1); r(V2, c1) } 2 :- q(V1), q(V2).

1 { r(V1, c1); r(V2, c1) } 2 :- q(V1), q(V2), p.

1 { r(V1, c1); r(V2, c1) } 2 :- q(V1), q(V2), not p.

0 { r(V1, c1); r(V2, c2) } 1 :- q(V1), q(V2).

0 { r(V1, c1); r(V2, c2) } 1 :- q(V1), q(V2), p.

0 { r(V1, c1); r(V2, c2) } 1 :- q(V1), q(V2), not p.

1 { r(V1, c1); r(V2, c2) } 1 :- q(V1), q(V2).

1 { r(V1, c1); r(V2, c2) } 1 :- q(V1), q(V2), p.

1 { r(V1, c1); r(V2, c2) } 1 :- q(V1), q(V2), not p.

1 { r(V1, c1); r(V2, c2) } 2 :- q(V1), q(V2).

1 { r(V1, c1); r(V2, c2) } 2 :- q(V1), q(V2), p.

1 { r(V1, c1); r(V2, c2) } 2 :- q(V1), q(V2), not p.

0 { r(V1, c2); r(V2, c2) } 1 :- q(V1), q(V2).

0 { r(V1, c2); r(V2, c2) } 1 :- q(V1), q(V2), p.

0 { r(V1, c2); r(V2, c2) } 1 :- q(V1), q(V2), not p.

1 { r(V1, c2); r(V2, c2) } 1 :- q(V1), q(V2).

1 { r(V1, c2); r(V2, c2) } 1 :- q(V1), q(V2), p.

1 { r(V1, c2); r(V2, c2) } 1 :- q(V1), q(V2), not p.

1 { r(V1, c2); r(V2, c2) } 2 :- q(V1), q(V2).

1 { r(V1, c2); r(V2, c2) } 2 :- q(V1), q(V2), p.

1 { r(V1, c2); r(V2, c2) } 2 :- q(V1), q(V2), not p.

Note that ILASP will try to omit rules which will never appear in an optimal inductive solution; for example, as p

:- q(V1), q(V2). is satisfied if and only if p :- q(V1). is satisfied, the former will never be part of an optimal
solution, and so is not generated.

For details of how we assign lengths to rules in the search space, see section 6.

2.2.1 Extra options for mode declarations

A final argument may be given to any mode declarations, which is a tuple to restrict the use of this mode declaration.
The idea is that this can be used to further steer the search away from hypotheses which are uninteresting and thus
improve the speed of the search.

This final argument is a tuple which may contain the any of the constants: anti reflexive, symmetric, positive.
The meaning of these constants is as follows:

1. anti reflexive is intended for use on predicates of arity 2. It means that the predicate should not be generated
with 1 variable repeated for both arguments; for example, p(X,X) is not compatible with
#modeh(p(var(t),var(t)),(anti reflexive)).

2. symmetric is intended for use on predicates of arity 2. It means that, for example, given the mode declaration
#modeh(p(var(t),var(t)),(symmetric)), rules containing p(X, Y) are considered equivalent to the same
rule replaced with p(Y, X) and, as such, only one is generated.

3. positive means that the negation as failure of the predicate in the mode declaration should not be generated.

Other options, aimed mainly at choice rules (as it is very easy to generate a search space with a massive number
of choice rules) are #disallow multiple head variables, which prevents more than one variable being used in the
head of a rule; #minh and #maxh which are predicates of arity 1 specifying the minimum and maximum number of
literals which can occur in the head of a choice rule.

8

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

2.3 Example Tasks

In this section, we give example learning tasks encoded in ILASP. The first shows how ILASP can be used to learn
the rules of sudoku. Further examples may follow in later editions of this manual.

2.3.1 Sudoku

Consider the following learning task whose background knowledge contains the definitions of what it means to be a
cell, and for two cells to be in the same row, column and block:

cell((1..4,1..4)).

block((X, Y), tl) :- cell((X, Y)), X < 3, Y < 3.

block((X, Y), tr) :- cell((X, Y)), X > 2, Y < 3.

block((X, Y), bl) :- cell((X, Y)), X < 3, Y > 2.

block((X, Y), br) :- cell((X, Y)), X > 2, Y > 2.

same_row((X1,Y),(X2,Y)) :- X1 != X2, cell((X1,Y)), cell((X2, Y)).

same_col((X,Y1),(X,Y2)) :- Y1 != Y2, cell((X,Y1)), cell((X, Y2)).

same_block(C1,C2) :- block(C1, B), block(C2, B), C1 != C2.

#pos(a, {

value((1, 1), 1), % This positive examples says that there should be at

value((1, 2), 2), % least one answer set of B union H which represents a

value((1, 3), 3), % board extending the partial board:

value((1, 4), 4), %

value((2, 3), 2) % #-------#-------#

}, { % | 1 : 2 | 3 : 4 |

value((1, 1), 2), % | - + - | - + - | such that the first cell

value((1, 1), 3), % | : | 2 : | does not also contain a

value((1, 1), 4) % #-------#-------# value other than 1.

}). % | : | : |

% | - + - | - + - |

% | : | : |

% #-------#-------#

#neg(b, { value((1, 1), 1), value((1, 3), 1) },{}).

#neg(c, { value((1, 1), 1), value((3, 1), 1) },{}).

#neg(d, { value((1, 1), 1), value((2, 2), 1) },{}).

% The negative examples say that there should be no answer set corresponding to a

% board extending any of the partial boards:

%

% #-------#-------# #-------#-------# #-------#-------#

% | 1 : | 1 : | | 1 : | : | | 1 : | : |

% | - + - | - + - | | - + - | - + - | | - + - | - + - |

% | : | : | | : | : | | : 1 | : |

% #-------#-------# #-------#-------# #-------#-------#

% | : | : | | 1 : | : | | : | : |

% | - + - | - + - | | - + - | - + - | | - + - | - + - |

% | : | : | | : | : | | : | : |

% #-------#-------# #-------#-------# #-------#-------#

#modeha(value(var(cell),const(number))).

#modeb(2,value(var(cell),var(val))).

#modeb(1,same_row(var(cell), var(cell)), (anti_reflexive)).

#modeb(1,same_block(var(cell), var(cell)), (anti_reflexive)).

#modeb(1,same_col(var(cell), var(cell)), (anti_reflexive)).

9

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

#modeb(1,cell(var(cell))).

#constant(number, 1).

#constant(number, 2).

#constant(number, 3).

#constant(number, 4).

#minhl(4).

#maxhl(4).

#disallow_multiple_head_variables.

#max_penalty(30).

Calling ILASP on this task will give an output similar to:

:- value(V0,V1), value(V2,V1), same_col(V0, V2).

:- value(V0,V1), value(V2,V1), same_block(V0, V2).

:- value(V0,V1), value(V2,V1), same_row(V2, V0).

1 {value(V0,4); value(V0,3); value(V0,2); value(V0,1) } 1 :- cell(V0).

Pre-processing : 0.028s

Solve time : 0.91s

Total : 0.938s

This hypothesis represents the rules of a 4×4 version of the popular game of sudoku. The choice rule says that every
cell takes exactly one value between 1 and 4 and the three constraints rule out the 3 cases of illegal board where
values occur more than once in the same column, block or row.

10

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

3 Learning Weak Constraints using ILASP

In [9], we defined a new task, Learning from Ordered Answer Sets which extends Learning from Answer Sets with
the capability of learning weak constraints. As positive and negative examples do not incentivise learning weak
constraints, we introduced a new notion of ordering examples. These come in two kinds, brave and cautious.

Definition 1. An ordering example is a tuple o = 〈e1, e2〉 where e1 and e2 are partial interpretations. An ASP
program P bravely respects o if and only if ∃A1, A2∈AS(P) such that A1 extends e1, A2 extends e2 and A1 �P A2.
P cautiously respects o if and only if for each A1, A2 ∈AS(P) such that A1 extends e1 and A2 extends e2, it is the
case that A1 �P A2.

The partial interpretations in ordering examples must be positive examples. Given two positive examples e1 and e2
with identifiers id 1 and id 2, the ordering example 〈e1, e2〉 can be expressed as #brave ordering(order name, id1, id2)
or #cautious ordering(order name, id1, id2) where order name is an optional identifier for the ordering example.

Example 3.1. Consider a learning task with positive examples #pos(p1, {p}, {}) and #pos(p2, {}, {p}) and a single
ordering example #brave ordering(o1, p1, p2). ILASP will search for the shortest hypothesis H such that B ∪H
has answer sets to cover each positive example, and there is at least one answer set which contains p which is more
optimal than at least one answer set which does not contain p.

If we consider the same positive examples, but now with the ordering example #pos(p2, {}, {p}), then ILASP will
search for an hypothesis H such that B ∪H has answer sets to cover each positive example, and every answer set
which contains p is more optimal than every answer set which does not contain p.

We now define the notion of Learning from Ordered Answer Sets by extending Learning from Answer Sets with
ordering examples.

Definition 2. A Learning from Ordered Answer Sets task is a tuple T = 〈B,SM , E+, E−, Ob, Oc〉 where B is as
ASP program, called the background knowledge, SM is the search space defined by a mode bias with ordering M ,
E+ and E− are sets of partial interpretations called, respectively, positive and negative examples, and Ob and Oc are
both sets of ordering examples over E+. An hypothesis H is an inductive solution of T (written H ∈ ILPLOAS(T))
if and only if:

1. H ′ ∈ ILPLAS(〈B,SLAS
M , E+, E−〉)3

2. ∀o ∈ Ob B ∪H bravely respects o

3. ∀o ∈ Oc B ∪H cautiously respects o

Example 3.2. Consider the learning task:

animal(cat). animal(dog). animal(fish). eats(cat, fish). eats(dog, cat).

0 { own(A) } 1 :- animal(A).

#pos(p1, { own(fish) }, { own(cat) }). #pos(p2, { own(cat) }, { own(dog), own(fish)}).

#pos(p3, { own(dog), own(cat), own(fish) }, {}). #pos(p4, { own(dog)}, { own(fish) }).

#pos(best, { own(dog), own(fish) }, { own(cat) }).

#brave_ordering(best, p1).

#brave_ordering(best, p2).

#brave_ordering(best, p3).

#cautious_ordering(best, p4).

% These ordering examples all use an example "best" in

% which a dog and a fish is owned and a cat is not owned.

%

% "best" is better than some situations where we

% own a fish but no cat.

% "best" is better than some situations where we

% own a cat but no fish or dog.

% "best" is better than some situations where we

% own a fish, dog and cat.

% "best" is better than every situation in which

% we own a dog but no fish.

3SLAS
M is the subset of SM which are not weak constraints.

11

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

1 ~ :~ eats(V0, V1).[1@1, 1, V0, V1]

1 ~ :~ eats(V0, V1).[1@2, 2, V0, V1]

1 ~ :~ eats(V0, V1).[-1@1, 3, V0, V1]

1 ~ :~ eats(V0, V1).[-1@2, 4, V0, V1]

1 ~ :~ own(V0).[1@1, 5, V0]

1 ~ :~ own(V0).[1@2, 6, V0]

1 ~ :~ own(V0).[-1@1, 7, V0]

1 ~ :~ own(V0).[-1@2, 8, V0]

2 ~ :~ eats(V0, V1), not own(V0).[1@1, 9, V0, V1]

2 ~ :~ eats(V0, V1), not own(V0).[1@2, 10, V0, V1]

2 ~ :~ eats(V0, V1), not own(V0).[-1@1, 11, V0, V1]

2 ~ :~ eats(V0, V1), not own(V0).[-1@2, 12, V0, V1]

2 ~ :~ eats(V0, V1), not own(V1).[1@1, 13, V0, V1]

2 ~ :~ eats(V0, V1), not own(V1).[1@2, 14, V0, V1]

2 ~ :~ eats(V0, V1), not own(V1).[-1@1, 15, V0, V1]

2 ~ :~ eats(V0, V1), not own(V1).[-1@2, 16, V0, V1]

2 ~ :~ eats(V0, V1), own(V0).[1@1, 17, V0, V1]

2 ~ :~ eats(V0, V1), own(V0).[1@2, 18, V0, V1]

2 ~ :~ eats(V0, V1), own(V0).[-1@1, 19, V0, V1]

2 ~ :~ eats(V0, V1), own(V0).[-1@2, 20, V0, V1]

2 ~ :~ eats(V0, V1), own(V1).[1@1, 21, V0, V1]

2 ~ :~ eats(V0, V1), own(V1).[1@2, 22, V0, V1]

2 ~ :~ eats(V0, V1), own(V1).[-1@1, 23, V0, V1]

2 ~ :~ eats(V0, V1), own(V1).[-1@2, 24, V0, V1]

2 ~ :~ own(V0), own(V1).[1@1, 25, V0, V1]

2 ~ :~ own(V0), own(V1).[1@2, 26, V0, V1]

2 ~ :~ own(V0), own(V1).[-1@1, 27, V0, V1]

2 ~ :~ own(V0), own(V1).[-1@2, 28, V0, V1]

3 ~ :~ eats(V0, V1), not own(V0),

not own(V1).[1@1, 29, V0, V1]

3 ~ :~ eats(V0, V1), not own(V0),

not own(V1).[1@2, 30, V0, V1]

3 ~ :~ eats(V0, V1), not own(V0),

not own(V1).[-1@1, 31, V0, V1]

3 ~ :~ eats(V0, V1), not own(V0),

not own(V1).[-1@2, 32, V0, V1]

3 ~ :~ eats(V0, V1), own(V0),

not own(V1).[1@1, 33, V0, V1]

3 ~ :~ eats(V0, V1), own(V0),

not own(V1).[1@2, 34, V0, V1]

3 ~ :~ eats(V0, V1), own(V0),

not own(V1).[-1@1, 35, V0, V1]

3 ~ :~ eats(V0, V1), own(V0),

not own(V1).[-1@2, 36, V0, V1]

3 ~ :~ not eats(V0, V1), own(V0),

own(V1).[1@1, 37, V0, V1]

3 ~ :~ not eats(V0, V1), own(V0),

own(V1).[1@2, 38, V0, V1]

3 ~ :~ not eats(V0, V1), own(V0),

own(V1).[-1@1, 39, V0, V1]

3 ~ :~ not eats(V0, V1), own(V0),

own(V1).[-1@2, 40, V0, V1]

3 ~ :~ not eats(V1, V0), own(V0),

own(V1).[1@1, 41, V0, V1]

3 ~ :~ not eats(V1, V0), own(V0),

own(V1).[1@2, 42, V0, V1]

3 ~ :~ not eats(V1, V0), own(V0),

own(V1).[-1@1, 43, V0, V1]

3 ~ :~ not eats(V1, V0), own(V0),

own(V1).[-1@2, 44, V0, V1]

3 ~ :~ eats(V0, V1), own(V0),

own(V1).[1@1, 45, V0, V1]

3 ~ :~ eats(V0, V1), own(V0),

own(V1).[1@2, 46, V0, V1]

3 ~ :~ eats(V0, V1), own(V0),

own(V1).[-1@1, 47, V0, V1]

3 ~ :~ eats(V0, V1), own(V0),

own(V1).[-1@2, 48, V0, V1]

ILASP will produce the output:

:~ eats(V0, V1), own(V0), own(V1).[1@2, 1, V0, V1]

:~ own(V0).[-1@1, 2, V0]

Pre-processing : 0.004s

Solve time : 0.079s

Total : 0.083s

This hypothesis means that the top priority is to not own animals which eat each other. Once this has been optimised,
the next priority is to own as many animals as possible (note that the negative weight corresponds to maximising
rather than minimising the number of times the body of this constraint is satisfied).

3.1 Language Bias for Weak Constraints

As before, it is possible in ILASP to simply give a search space containing weak constraints in full; however, it is
more conventional, and more convenient to express a search space using a mode bias. There are tree additional
concepts required to do this: #modeo behaves exactly like #modeb, but expresses what is allowed to appear in the
body of a weak constraint; #maxp is used much like #maxv to express the number of priority levels allowed to be used
in the hypothesis (ILASP will use 1 to n, where n is the value given for #maxp); and finally, #weight is an arity one
predicate which can take as an argument, either an integer or a type which is used in the variables of some #modeo.

In this version of ILASP, it is not possible to specify which terms should appear at the end of a weak constraint.
ILASP will generate weak constraints which contain the full set of terms in the body of the weak constraint and one

12

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

additional unique term identifying the rule. If you need more control over this, then you can still input the weak
constraints manually with your own terms.

Example 3.3. The language bias:

#modeo(assigned(var(day), var(time)), (positive)).

#modeo(1, type(var(day), var(time), const(course)), (positive)).

#modeo(1, var(day) != var(day)).

#constant(course, c2).

#weight(1).

#maxv(4).

#maxp(2).

specifies the search space:

:~ assigned(V0, V1).[1@1, 1, V0, V1]

:~ assigned(V0, V1).[1@2, 2, V0, V1]

:~ type(V0, V1, c2).[1@1, 3, V0, V1]

:~ type(V0, V1, c2).[1@2, 4, V0, V1]

:~ assigned(V0, V1),

assigned(V0, V2).[1@1, 5, V0, V1, V2]

:~ assigned(V0, V1),

assigned(V0, V2).[1@2, 6, V0, V1, V2]

:~ assigned(V0, V1),

assigned(V2, V1).[1@1, 7, V0, V1, V2]

:~ assigned(V0, V1),

assigned(V2, V1).[1@2, 8, V0, V1, V2]

:~ assigned(V0, V1),

assigned(V2, V3).[1@1, 9, V0, V1, V2, V3]

:~ assigned(V0, V1),

assigned(V2, V3).[1@2, 10, V0, V1, V2, V3]

:~ assigned(V0, V1),

type(V0, V1, c2).[1@1, 11, V0, V1]

:~ assigned(V0, V1),

type(V0, V1, c2).[1@2, 12, V0, V1]

:~ assigned(V0, V1),

type(V0, V2, c2).[1@1, 13, V0, V1, V2]

:~ assigned(V0, V1),

type(V0, V2, c2).[1@2, 14, V0, V1, V2]

:~ assigned(V0, V1),

type(V2, V1, c2).[1@1, 15, V0, V1, V2]

:~ assigned(V0, V1),

type(V2, V1, c2).[1@2, 16, V0, V1, V2]

:~ assigned(V0, V1),

type(V2, V3, c2).[1@1, 17, V0, V1, V2, V3]

:~ assigned(V0, V1),

type(V2, V3, c2).[1@2, 18, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

assigned(V0, V3).[1@1, 19, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

assigned(V0, V3).[1@2, 20, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

assigned(V3, V1).[1@1, 21, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

assigned(V3, V1).[1@2, 22, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

assigned(V3, V2).[1@1, 23, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

assigned(V3, V2).[1@2, 24, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

assigned(V2, V3).[1@1, 25, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

assigned(V2, V3).[1@2, 26, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

assigned(V3, V1).[1@1, 27, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

assigned(V3, V1).[1@2, 28, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

type(V0, V1, c2).[1@1, 29, V0, V1, V2]

:~ assigned(V0, V1), assigned(V0, V2),

type(V0, V1, c2).[1@2, 30, V0, V1, V2]

:~ assigned(V0, V1), assigned(V0, V2),

type(V0, V2, c2).[1@1, 31, V0, V1, V2]

:~ assigned(V0, V1), assigned(V0, V2),

type(V0, V2, c2).[1@2, 32, V0, V1, V2]

:~ assigned(V0, V1), assigned(V0, V2),

type(V0, V3, c2).[1@1, 33, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

type(V0, V3, c2).[1@2, 34, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

type(V3, V1, c2).[1@1, 35, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

type(V3, V1, c2).[1@2, 36, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

type(V3, V2, c2).[1@1, 37, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V0, V2),

type(V3, V2, c2).[1@2, 38, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

type(V0, V1, c2).[1@1, 39, V0, V1, V2]

:~ assigned(V0, V1), assigned(V2, V1),

type(V0, V1, c2).[1@2, 40, V0, V1, V2]

:~ assigned(V0, V1), assigned(V2, V1),

type(V0, V3, c2).[1@1, 41, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

type(V0, V3, c2).[1@2, 42, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

type(V2, V1, c2).[1@1, 43, V0, V1, V2]

:~ assigned(V0, V1), assigned(V2, V1),

type(V2, V1, c2).[1@2, 44, V0, V1, V2]

:~ assigned(V0, V1), assigned(V2, V1),

type(V2, V3, c2).[1@1, 45, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

type(V2, V3, c2).[1@2, 46, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

type(V3, V1, c2).[1@1, 47, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

type(V3, V1, c2).[1@2, 48, V0, V1, V2, V3]

13

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

:~ assigned(V0, V1), assigned(V2, V3),

type(V0, V1, c2).[1@1, 49, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V3),

type(V0, V1, c2).[1@2, 50, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V3),

type(V0, V3, c2).[1@1, 51, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V3),

type(V0, V3, c2).[1@2, 52, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V3),

type(V2, V1, c2).[1@1, 53, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V3),

type(V2, V1, c2).[1@2, 54, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V3),

type(V2, V3, c2).[1@1, 55, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V3),

type(V2, V3, c2).[1@2, 56, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V1),

V0 != V2.[1@1, 57, V0, V1, V2]

:~ assigned(V0, V1), assigned(V2, V1),

V0 != V2.[1@2, 58, V0, V1, V2]

:~ assigned(V0, V1), assigned(V2, V3),

V0 != V2.[1@1, 59, V0, V1, V2, V3]

:~ assigned(V0, V1), assigned(V2, V3),

V0 != V2.[1@2, 60, V0, V1, V2, V3]

:~ assigned(V0, V1), type(V2, V1, c2),

V0 != V2.[1@1, 61, V0, V1, V2]

:~ assigned(V0, V1), type(V2, V1, c2),

V0 != V2.[1@2, 62, V0, V1, V2]

:~ assigned(V0, V1), type(V2, V3, c2),

V0 != V2.[1@1, 63, V0, V1, V2, V3]

:~ assigned(V0, V1), type(V2, V3, c2),

V0 != V2.[1@2, 64, V0, V1, V2, V3]

3.2 Example Tasks

In this section, we give example learning tasks involving ordering examples encoded in ILASP. The first shows how
ILASP can be used to learn soft constraints in a simple scheduling problem and is motivated by the running example
in the paper [9]. Further examples may follow in later editions of this manual.

3.2.1 Scheduling

The following scheduling example task is motivated by the running example in the paper [9]. It shows how we can
learn preferences using ILASP2 in the setting of interview scheduling.

Example 3.4. Consider the following learning task describing an interview scheduling problem. There are 9 slots
to be assigned (3 each on 3 days) and each slot is for a candidate on one of two courses (c1 or c2).

slot(mon,1..3). % Three slots each on Monday, Tuesday and Wednesday.

slot(tue,1..3).

slot(wed,1..3).

type(mon,1,c2). % The following interview slots for c1 and c2 are to be assigned:

type(mon,2,c1). %

type(mon,3,c1). % ---------------------

type(tue,1,c1). % | | Mon | Tue | Wed |

type(tue,2,c1). % =====================

type(tue,3,c2). % | 1 | c2 | c1 | c1 |

type(wed,1,c1). % |---+-----+-----+-----|

type(wed,2,c2). % | 2 | c1 | c1 | c2 |

type(wed,3,c1). % |---+-----+-----+-----|

% | 3 | c1 | c2 | c1 |

% ---------------------

0 { assigned(X, Y) } 1 :- slot(X, Y).

#modeo(assigned(var(day), var(time)), (positive)).

#modeo(1, type(var(day), var(time), const(course)), (positive)).

#modeo(1, var(day) != var(day)).

14

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

#constant(course, c2).

#weight(1).

% For each example, we show the corresponding partial timetable. "Yes" means

% that the person was definitely assigned the slot; "No" means that the person

% definitely was not assigned the slot; "?" meas that whether this slot was

% assigned to this person is unknown.

#pos(pos1, { % ---------------------

assigned(mon,1) % | | Mon | Tue | Wed |

}, { }). % =====================

% | 1 | Yes | ? | ? |

% |---+-----+-----+-----|

% | 2 | ? | ? | ? |

% |---+-----+-----+-----|

% | 3 | ? | ? | ? |

% ---------------------

#pos(pos2, { % ---------------------

assigned(mon,3), % | | Mon | Tue | Wed |

assigned(wed,1), % =====================

assigned(wed,3) % | 1 | No | ? | Yes |

}, { % |---+-----+-----+-----|

assigned(mon,1), % | 2 | ? | ? | No |

assigned(tue,3), % |---+-----+-----+-----|

assigned(wed,2) % | 3 | Yes | No | Yes |

}). % ---------------------

#pos(pos3, { % ---------------------

assigned(mon,1), % | | Mon | Tue | Wed |

assigned(wed,3) % =====================

}, {}). % | 1 | Yes | ? | ? |

% |---+-----+-----+-----|

% | 2 | ? | ? | ? |

% |---+-----+-----+-----|

% | 3 | ? | ? | Yes |

% ---------------------

#pos(pos4, { % ---------------------

assigned(mon,1), % | | Mon | Tue | Wed |

assigned(mon,2), % =====================

assigned(mon,3) % | 1 | Yes | Yes | Yes |

}, { % |---+-----+-----+-----|

assigned(tue,1), % | 2 | No | No | No |

assigned(tue,2), % |---+-----+-----+-----|

assigned(tue,3), % | 3 | No | No | No |

assigned(wed,1), % ---------------------

assigned(wed,2),

assigned(wed,3)

}).

#pos(pos5, { % ---------------------

assigned(mon,2), % | | Mon | Tue | Wed |

assigned(mon,3) % =====================

},{ % | 1 | No | Yes | Yes |

assigned(mon,1), % |---+-----+-----+-----|

assigned(tue,1), % | 2 | No | No | No |

assigned(tue,2), % |---+-----+-----+-----|

assigned(tue,3), % | 3 | No | No | No |

assigned(wed,1), % ---------------------

15

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

assigned(wed,2),

assigned(wed,3)

}).

#pos(pos6, { % ---------------------

assigned(mon,2), % | | Mon | Tue | Wed |

assigned(tue,1) % =====================

},{ % | 1 | No | Yes | No |

assigned(mon,1), % |---+-----+-----+-----|

assigned(mon,3), % | 2 | Yes | No | No |

assigned(tue,2), % |---+-----+-----+-----|

assigned(tue,3), % | 3 | No | No | No |

assigned(wed,1), % ---------------------

assigned(wed,2),

assigned(wed,3)

}).

#cautious_ordering(pos4, pos3).

#cautious_ordering(pos2, pos1).

#cautious_ordering(pos2, pos3).

#brave_ordering(pos5, pos6).

#maxv(4).

#maxp(2).

As the positive examples are already covered by the background knowledge (and there are no negative examples),
there is no need to change the answer sets of this program. For this reason, we only need to learn weak constraints
which cover the brave and cautious orderings. When run with ILASP, this task produces the output:

:~ assigned(V0, V1), type(V0, V1, c2).[1@2, 1, V0, V1]

:~ assigned(V0, V1), assigned(V2, V3), V0 != V2.[1@1, 2, V0, V1, V2, V3]

Pre-processing : 0.01s

Solve time : 0.801s

Total : 0.811s

The first, higher priority weak constraint says that this person would like to avoid having interview slots for the
course c2. The second, lower priority weak constraint says that the person would like to avoid pairs of slots which
occur on different days.

16

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

4 Specifying Learning Tasks with Noise in ILASP

Most real data has some element of noise in it. The tasks specified so far assume noise free data and, as such, require
that all examples should be covered by any inductive solution.

In fact, ILASP does have a mechanism for dealing with noisy data. Any example (including ordering examples) can
be given a weight w (a positive integer) to indicate that this example might be noisy. The goal of ILASP without
noise is to search for an hypothesis H which covers all the examples such that |H| is minimal. Any example which
is not given a weight is considered noise-free and, as such, must be covered.

If we let W be the sum of the weights of examples which might be noisy and is not covered, then the goal of ILASP
is now to find an hypothesis which covers all the noise-free examples and minimises |H|+ W .

These weights are specified in ILASP by giving example name@weight in place of the usual example name. If an
example has been treated as noisy by the inductive solution which ILASP has found then it will report: % Warning

example: ‘example name’ treated as noise.

4.1 Example: Noisy Sudoku

Recall the sudoku task from section 2.3.1. If we now assign weights to the examples then the hypothesis might
change as it might be more costly to cover an example than to pay the corresponding penalty. Note that the original
hypothesis had length 26 with each of the constraints having length 3 and the choice rule having length 17.

Example 4.1. If we set the weights as:

#pos(a@10, {

value((1, 1), 1),

value((1, 2), 2),

value((1, 3), 3),

value((1, 4), 4),

value((2, 3), 2)

}, {

value((1, 1), 2),

value((1, 1), 3),

value((1, 1), 4)

}).

#neg(b@10, { value((1, 1), 1), value((1, 3), 1) },{}).

#neg(c@10, { value((1, 1), 1), value((3, 1), 1) },{}).

#neg(d@10, { value((1, 1), 1), value((2, 2), 1) },{}).

then ILASP returns:

% Warning: example ‘a’ treated as noise.

Pre-processing : 0.032s

Solve time : 0.135s

Total : 0.167s

This means that the optimal solution is to return the empty hypothesis. This covers the three negative examples
and so the only penalty paid is 10 for the single positive example.

Example 4.2. If we set the weights as:

#pos(a@100, {

value((1, 1), 1),

value((1, 2), 2),

17

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

value((1, 3), 3),

value((1, 4), 4),

value((2, 3), 2)

}, {

value((1, 1), 2),

value((1, 1), 3),

value((1, 1), 4)

}).

#neg(b@10, { value((1, 1), 1), value((1, 3), 1) },{}).

#neg(c@10, { value((1, 1), 1), value((3, 1), 1) },{}).

#neg(d@10, { value((1, 1), 1), value((2, 2), 1) },{}).

then ILASP returns:

:- value(V0,V1), value(V2,V1), same_col(V0, V2).

:- value(V0,V1), value(V2,V1), same_block(V2, V0).

:- value(V0,V1), value(V2,V1), same_row(V0, V2).

1 {value(V0,4); value(V0,3); value(V0,2); value(V0,1) } 1 :- same_row(V0, V1).

Pre-processing : 0.027s

Solve time : 1.857s

Total : 1.884s

This means that the optimal solution is to return the optimal hypothesis from the original task (without noise).

Example 4.3. If we set the weights as:

#pos(a@100, {

value((1, 1), 1),

value((1, 2), 2),

value((1, 3), 3),

value((1, 4), 4),

value((2, 3), 2)

}, {

value((1, 1), 2),

value((1, 1), 3),

value((1, 1), 4)

}).

#neg(b@1, { value((1, 1), 1), value((1, 3), 1) },{}).

#neg(c@4, { value((1, 1), 1), value((3, 1), 1) },{}).

#neg(d@4, { value((1, 1), 1), value((2, 2), 1) },{}).

then ILASP returns:

% Warning: example ‘b’ treated as noise.

:- value(V0,V1), value(V2,V1), same_block(V0, V2).

:- value(V0,V1), value(V2,V1), same_row(V2, V0).

1 {value(V0,4); value(V0,3); value(V0,2); value(V0,1) } 1 :- same_row(V0, V1).

Pre-processing : 0.032s

Solve time : 3.191s

Total : 3.223s

18

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

Note that as examples c and d have weight 4 it is less costly to learn their corresponding constraints (of length 3);
whereas, because example b only has weight 1, it is less costly to treat this example as noise and pay the penalty
than to learn an extra constraint of length 3.

ILASP3, which is targeted at running noisy tasks with large numbers of examples, and may be much faster than
ILASP2 or ILASP2i on these types of task.

5 Context Dependent Examples

Until now, we have focused on finding a hypothesis H such that H explained the examples using one fixed background
knowledge B. In some settings, however, it is useful to be able to express that in one context, B ∪H should explain
some examples, and in another context, it should explain other examples. Recently, we introduced the notion of a
context dependent partial interpretations [11]. The context of an example is an extra bit of background knowledge,
which only applys to a specific example. Context dependent examples are implemented in version 2.6 of ILASP.

5.1 Hamiltonian Graphs Example

One learning task which can make use of these context dependent examples is learning the definition of whether
or not a graph contains a Hamilton cycle (i.e. whether it is Hamiltonian). The four node Hamiltonian graph G in
figure 1 can be represented by the set of facts FG. We first show how this can be represented without context, in
ILPLOAS ; and then show a much simpler representation using context dependent examples. Interestingly, context
dependent examples do more than simplify the representation: they provide useful information to ILASP when
solving. ILASP2i is designed to take advantage of this information, and solves the context dependent task much
faster than the non context dependent one.

1 2

3 4

FG =

node(1..4).
edge(1, 2).
edge(2, 3).
edge(3, 4).
edge(4, 1).

Figure 1: An example of a Hamiltonian Graph G and its corresponding representation in ASP, FG.

To decide whether a graph is Hamiltonian or not, we can use the program H below:

reach(V0) :- in(1,V0).

reach(V1) :- in(V0,V1), reach(V0).

0 {in(V0,V1) } 1 :- edge(V0, V1).

:- node(V0), not reach(V0).

:- in(V0,V1), in(V0,V2), V1 != V2.

If for a graph G and its corresponding set of facts FG, G is Hamiltonian if and only if FG ∪H is satisfiable. In Hamilton A
and Hamilton B, we give two alternative encodings of a task which aims to learn H: the first in ILPLOAS and the second
in ILP context

LOAS . Both learning tasks have the same hypothesis space, consisting of 104 normal rules, choice rules and hard
constraints.

5.1.1 Hamiltonian graphs in ILPLOAS : non-context dependent examples

In an ILPLOAS representation of the learning task, the background B knowledge needs to generate the possible graphs of size
1, . . . , 4. B is as follows.

1 { size(1); size(2); size(3); size(4) } 1.

0 { edge(N1, N2) } 1 :- node(N1), node(N2).

node(1).

19

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

node(2) :- size(S), S > 1.

node(3) :- size(3).

node(3) :- size(4).

node(4) :- size(4).

20

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

Our examples then contain details of which edges are in (and not in) each graph. For example, one positive example is:

#pos({

size(3),

edge(1,3),

edge(2,1),

edge(2,3),

edge(3,2)

}, {

edge(1,2),

edge(3,1)

}).

An ILPLOAS task for this learning task can be downloaded from https://www.doc.ic.ac.uk/~ml1909/ILASP/benchmarks/

hamiltonA.las

5.1.2 Hamilton B: context dependent examples

We now demonstrate how to make use of the context dependent examples in ILP context
LOAS . We don’t need any background

knowledge (it is empty), and instead encode the graphs in the contexts of examples such as in the positive example:

#pos({}, {}, {

node(1..3).

edge(1,2).

edge(2,1).

edge(2,3).

edge(3,1).

}).

An ILP context
LOAS task for this learning task can be downloaded from https://www.doc.ic.ac.uk/~ml1909/ILASP/benchmarks/

hamiltonB.las

5.2 Context Dependent Ordering Examples

We also support using context dependent partial interpretations in ordering examples. The ordering examples refer to the ID’s
of the context dependent partial interpretations in the same way as with the non context dependent partial interpretations.

5.2.1 Note on weak constraints in contexts

We do not support using weak constraints in contexts. This is because we do not see a use case for an ordering example
〈e1, e2〉 such that e1 and e2 are compared on different weak constraints.

21

https://www.doc.ic.ac.uk/~ml1909/ILASP/benchmarks/hamiltonA.las
https://www.doc.ic.ac.uk/~ml1909/ILASP/benchmarks/hamiltonA.las
https://www.doc.ic.ac.uk/~ml1909/ILASP/benchmarks/hamiltonB.las
https://www.doc.ic.ac.uk/~ml1909/ILASP/benchmarks/hamiltonB.las

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

6 Hypothesis length

When specifying the search space in full you must also specify the length of each rule. This length is used to determine the
length of each hypothesis. The goal of ILASP is to search for an inductive solution which minimises this length.

If you use mode declarations to specify your search space then ILASP will assign a length to each rule. Usually, the length of a
rule R (written |R|) is just the number of literals in the rule. The only exceptions to this are choice rules. The aggregate in the
head of a choice rule is not counted simply as the number of atoms it contains, as this tends to (in our opinion unreasonably)
favour learning hypotheses containing choice rules.

A counting aggregate l{h1, . . . , hn}u has length

n×
u∑

i=l

nCi

The inuition behind this is that this is the length of the counting aggregate once it has been converted to disjunctive normal
form.

Example 6.1. The counting aggregate 1{p, q}2 represented in disjunctive normal form would be (p ∧ not q)∨
(not p ∧ q) ∨ (p ∧ q); so, this is counted as length 6 rather than just length 2.

In our opinion, and for the examples we have tried, this weighting of choice rules better reflects the added complexity they
bring to an hypothesis.

If you wish to use a our search space, but with a different measure of hypothesis length then our suggested solution is to call
ILASP with the option -s which will produce our search space with our weights. You can then edit the weights and add the
rules to the search space manually (omitting the original mode bias).

22

Inductive Learning of Answer Set Programs - User Manual M. Law, A. Russo, K. Broda

References

[1] Baral, C. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press, New
York, NY, USA, 2003.

[2] Corapi, D., Russo, A., and Lupu, E. Inductive logic programming in answer set programming. In Inductive Logic
Programming. Springer, 2012, pp. 91–97.

[3] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Schneider, M. Potassco: The
Potsdam answer set solving collection. AI Communications 24, 2 (2011), 107–124.

[4] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Thiele, S. A users guide to gringo,
clasp, clingo, and iclingo, 2008.

[5] Gelfond, M., and Kahl, Y. Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-
Set Programming Approach. Cambridge University Press, 2014.

[6] Gelfond, M., and Lifschitz, V. The stable model semantics for logic programming. In ICLP/SLP (1988), vol. 88,
pp. 1070–1080.

[7] Law, M., Russo, A., and Broda, K. Inductive learning of answer set programs. In Logics in Artificial Intelligence
(JELIA 2014). Springer, 2014.

[8] Law, M., Russo, A., and Broda, K. The ILASP system for learning answer set programs. https://www.doc.ic.ac.

uk/~ml1909/ILASP, 2015.

[9] Law, M., Russo, A., and Broda, K. Learning weak constraints in answer set programming. Theory and Practice of
Logic Programming 15, 4-5 (2015), 511–525.

[10] Law, M., Russo, A., and Broda, K. Simplified reduct for choice rules in ASP. Tech. Rep. DTR2015-2, Imperial
College of Science, Technology and Medicine, Department of Computing, 2015.

[11] Law, M., Russo, A., and Broda, K. Iterative learning of answer set programs from context dependent examples.
Theory and Practice of Logic Programming (to appear) (2016).

[12] Muggleton, S. Inductive logic programming. New generation computing 8, 4 (1991), 295–318.

[13] Ray, O. Nonmonotonic abductive inductive learning. Journal of Applied Logic 7, 3 (2009), 329–340.

[14] Sakama, C., and Inoue, K. Brave induction: a logical framework for learning from incomplete information. Machine
Learning 76, 1 (2009), 3–35.

23

https://www.doc.ic.ac.uk/~ml1909/ILASP
https://www.doc.ic.ac.uk/~ml1909/ILASP

	Background and Installation
	Answer Set Programming
	Installation
	Linux
	Mac OSX

	How to run ILASP
	Options

	Learning from Answer Sets
	Specifying simple learning tasks in ILASP
	Language Bias
	Extra options for mode declarations

	Example Tasks
	Sudoku

	Learning Weak Constraints using ILASP
	Language Bias for Weak Constraints
	Example Tasks
	Scheduling

	Specifying Learning Tasks with Noise in ILASP
	Example: Noisy Sudoku

	Context Dependent Examples
	Hamiltonian Graphs Example
	Hamiltonian graphs in ILPLOAS : non-context dependent examples
	Hamilton B: context dependent examples

	Context Dependent Ordering Examples
	Note on weak constraints in contexts

	Hypothesis length

