Fachbereich Informatik der Universitat Hamburg
Vogt-Kolln-Str. 30, D-22527 Hamburg / Germany

CGPro — a PROLOG Implementation
of Conceptual Graphs

Heike Petermann
Lutz Euler

University of Hamburg
Computer Science Department
Natural Language Systems Division
peterman@informatik.uni-hamburg.de
lutz.euler@pink.de

Kalina Bontcheva

Bulgarian Academy of Sciences
Linguistic Modelling Laboratory
kalina@sirma.bg

FBI-HH-M-251 / 95
October 1995

Abstract

Natural language processing requires efficient and powerful tools for representing and process-
ing knowledge. This paper introduces the system CGPro which implements the Conceptual
Graphs (CG) formalism. CGs are a logic-based formalism developed by John F. Sowa on the
basis of Charles S. Peirce’s existential graphs and semantic networks. Conceptual structures
proved to be rather convenient as a semantic representation for natural language. CGPro is
an efficient and powerful implementation of a Conceptual Graphs representation in Prolog
and provides all the operations which are most useful for natural language processing. This
paper introduces the functionality of CGPro and describes the motivation for design decisions
as well.

Zusammenfassung

Die Verarbeitung natiirlicher Sprache erfordert leistungsfihige Werkzeuge zur Reprisentation
und Verarbeitung von Wissen. In diesem Papier wird das System CGPro vorgestellt, das den
Formalimus der Conceptual Graphs (CGs) implementiert. CGs wurden von John F. Sowa
auf der Grundlage der Existenzgraphen von Charles S. Peirce entwickelt. Conceptual Graphs
eignen sich besonders gut zur semantischen Repridsentation natiirlicher Sprache. CGPro re-
alisiert eine effiziente und méichtige Reprasentation von CGs in Prolog und liefert eine Imple-
mentierung der fiir die maschinelle Sprachverarbeitung wichtigsten Operationen. In diesem
Papier wird sowohl die Funktionaltit von CGPro vorgestellt als auch die Motivation der
Entwurfsentscheidungen dargelegt.

Contents

1 Introduction

2 Representing Conceptual Graphs in PROLOG
2.1 Graph representation L Lo
2.2 Representation of the Concept’s Referent Field
2.3 Representation of Individuals 0 oo o oo
2.4 Type Definitions
2.5 Relation Definitions L o
2.6 Type Hierarchy
2.7 Attribute Lists L Lo
2.8 Other Prolog Representations,
2.8.1 Representing Conceptual Graphs as triples
2.8.2 Representing Conceptual Graphs as Concept and Relation lists
3 Implementation of some operations on CGs
3.1 Overview . . .ol o e e
3.2 General Conventions L e
3.2.1 Programming Conventions.
3.2.2 Format of the Predicate Descriptions
3.3 Concepts, Graphs, Types, Individuals and Referents as Abstract Data Types
3.3.1 Conceptls oo e
3.3.2 Graphs . . oL
3.3.3 Types . . .o e e e e e
3.34 Individuals oL
3.3.5 Referents L
3.3.6 Miscellaneous L Lo
3.4 The four canonical formation rules o 0oL
3.5 Match, Projection and Maximal Join 0.
3.6 Type and Relation Expansion/Contraction!
4 Service Features
4.1 Attribute Lists o Lo
4.2 Initializing and Saving the Knowledge Base
4.2.1 Loading, Saving and Restoring the Knowledge Base
4.2.2 Parsing Conceptual Graphs In Linear Notation
5 Conclusion

© WO W W 0o~ ~] LW W -

—
<

11
11
12
12
12
12
13
15
18
20
21
25
25
27
28

31
31
33
33
34

35

1 Introduction

This paper describes in detail the Prolog representation of Conceptual Graphs (CGs) which
was used for CGPro and all basic CG operations. With the introduced implementation we
aimed at solving the problems associated with representing contexts and n-adic relations of
other existing systems.

First, we introduce our representation of graphs, referent fields, individuals and lambda ab-
stractions. Afterwards, we compare it to other existing Prolog representations. Section 3
contains a description of predicates implementing basic access functions for the data struc-
tures defined in the previous section. Furthermore we outline the implementation of the
“real“ CG operations — copy, restrict, join, simplify, maximal join, projection, and a special
”extended “ projection algorithm.

Special attention was paid to the representation of the referent field. We have chosen feature
structures because they can be handled and compared easily. Therefore we are able to obtain
the resulting referent field of a join-operation by simple unification of the feature structures.

With CGPro, we satisfy the needs of two application projects — a project for knowledge
acquisition from natural language texts and a German-Bulgarian Machine Aided Translation
project?.

2“DB-MAT?”, funded by Volkswagen Foundation for three years (7/1992-6/1995).

2 Representing Conceptual Graphs in PROLOG

2.1 Graph representation

With our representation, we want to fulfill the postulates concerning features of a good CG
representation given in (Sowa and Way1986):

e connectivity (traverse the entire graph starting from a concept)

e generality (adequate representation of n-adic relations and several arcs pointing to or
from a concept)

e 1o priviledged nodes (each concept can be a head)

e canonical formation rules (copy, restrict, join, simplify), which are efficiently imple-
mented for the selected representation

All known and available representations (see section 2.8) lack at least one of these features.
Therefore, we propose the following representation satisfying all points mentioned above:

cg(GraphlID, RelationList).
cgc(ConceptlD, ContextFlag, ConceptName, Referentl'ield, AnnotationField).

RelationList == [cgr(RelName, ArgList, Annotation), ...]

ArgList [ConceptlD, ...]

ContextFlag normal | special.

ConceptName = Specialname | Identifier.

Specialname context | neg_context | situation | statement | proposition.

The basic building blocks in this representation are graphs and concepts. Both are represented
as facts, namely c¢g/2 (“Conceptual Graph”) and ege/5 (“Conceptual Graph Concept”).
Every graph and concept has a unique identifier (Id). Relations between concepts do not
have identifiers and occur only as terms in cg/2 facts.

GraphID and ConceptID are unique identifiers for all graphs or concepts. Even though
the representation is unambiguos concerning the kind of identifiers at each argument place,
it is easier to handle only one sort of identifiers for GraphlDs and ConceptlDs.

ArgList is an ordered list of concepts, where the number of the arc corresponds to the
concept’s place in this list. For an n-adic relation, the arcs are numbered from 1 to n, and
the outgoing arc is the last one.

Sowa distinguishes between simple and compound graphs. Simple graphs are those without
nested contexts and lines of identity®. In this case, the RelationList contains the list of the
relations of the simple graph, or, if the graph consists of only one concept and thus of no
relation, a one-element list with the special relation name norel. In the latter case, ArgList
is a list of only one element.

A compound graph consists of one or more ‘toplevel’ simple graphs that may contain nested
graphs. These toplevel graphs need not be connected directly, but in this case they must
contain nested graphs that are connected by a line of identity. In a compound graph the
RelationList contains the list of all of the relations of the toplevel graphs. It is not dis-
tinguished which toplevel graph a relation belongs to. Each of the relations may again be a
norel relation if the corresponding graph consists of only one concept.

Graph nesting is implemented as follows: A context is established as a special kind of concept
whose referent field contains a list of the Ids of the nested graphs.

Coreferent concepts in a graph (i.e. those that share the same variable in the linear form or
those that belong to the same line of identity) are represented internally as one concept. As a
consequence of this a concept can occur in several contexts at once as long as these contexts
belong to the same (compound) graph.

Concepts are represented as 5-Tupels. ContextFlag is a flag which is set if the concept is
of a special type e.g. context, situation, proposition, and so on. In this case, ContextFlag
has the value special, otherwise it is normal. ConceptName is a typename or the name of
a special context, respectively. For description of the ReferentField, see section 2.2 below.
Since the possible applications of the AnnotationField are not clearly defined, all given
examples contain empty annotation fields.

An example of a simple conceptual graph containing a situation is given in figure 1 in graphical
notation, in figure 2 in linear form and in figure 3 in the internal representation.

SITUATION:

| CHASE |

(AGl\;T//)\ (pTNT) EVENING

\ CAT \ \ MOUSE \

Figure 1: A simple conceptual graph with a situation in graphical form

®Note that a line of identity is only a way to show concept equivalence when a concept occurs in multiple
contexts and thus is never needed for simple graphs.

[SITUATION:
[CAT] <-(AGNT) <-[CHASE]->(PTNT)->[MOUSE]]
-> (PTIM) -> [EVENING].

Figure 2: The same simple conceptual graph in linear form

cg(513, [cgr(ptim, [25, 26], J)]).
cg(514, [cgr(agnt, [27, 28],), cgr(ptnt, [27, 29], J)]).

cge(25, special, situation, [514], _).

cge(26, normal, evening, [fs(num,sing)], -).
cge(27, normal, chase, [fs(num,sing)],).
cge(28, normal, cat, [fs(num,sing)],).
cge(29, normal, mouse, [fs(num,sing)],).

Figure 3: The given simple conceptual graph in our representation

2.2 Representation of the Concept’s Referent Field

In the basic conceptual graph notation only three kinds of referent fields are permitted —
generic (existential), individual marker, and literal. Measures, sets, names, and quantifiers
are extended referents, i.e. they are the result of some contraction operation. In our system
we want to support all these extended referents, especially the four kinds of set referents —
collective, distributive, cumulative and disjunctive (see (Sowal984, Sowal992)). Therefore we
introduce the following representation for the referent field.

Table 1: Exmaples of the Concept’s Referent Field

Referent NL Example Representation
Field Type translation
Generic a book [BOOK: *] [num:sing]
Individual lexicon entry [PERSON: #123] [num:sing type:def,reflD:123]
Individual John PERSON:John] num:sing,name:’John’]
Individual John PERSON:John#1] | [num:sing type:def,reflD:1 name:’John’]
Definite ref. | the book BOOK: #] num:sing, type:def]
Set John and Mary | [PERSON: [num:plural,type:def,
{John,Mary}] name:["John’, "Mary’]]

Partial Set John Mary [PERSON: [num:plural,

and others {John Mary,*}] name:["John’, "Mary’]]
Generic Set | books BOOK: {*}] num:plural]
Counted Set | three books BOOK: {*}@3] num:plural, type:meas, quant:3]
Quantifiers every book [BOOK: every] [num:sing, quant:every|
Question which book [BOOK: 7] [num:sing type:quest]
Plural quest. | which books BOOK: {*}7] num:plural type:quest]
Variable BOOK: *x] quant: lambda]

In table 1 there is a summary of the most frequently used kinds of referent fields together

with an example, its natural language reading and the corresponding representation.?
<Referent> m= 7[” <RefNumber> [?)” <RefType>] [?,” <RefQuant>]
[’ <ReflD>] [7,” <RefName>] [7,” <QuantScope>] ”]”
<RefNumber> == num ”:” <ReferentNumber>
<RefType> = type ”:” <ReferentType>
<RefQuant> = quant 7" <QuantType>
<ReflD> = reflD 7?7 <IndivID>
<RefName> = name ”:” <Marker>
<QuantScope> = scope 7" <Scope>
<ReferentNumber> = sing | plural
<Referent Type> = def | meas | quest
<QuantType> = every | lambda
<Scope> = disjunct | dist | col | cum
<Marker> = <IndName> | <RefSet>
<IndivID> = Number
<IndName> = 7 7 ” UpperLetter|SmallLetter ... 7 > 7
<RefSet> m= 7" <IndName> [”,” <IndName>]... ”]”

Figure 4: A BNF grammar of the referent field structure

Figure 4 contains a BNF grammar specifying the possible attributes and their values.

The referent field will be represented as a Prolog list of binary terms:
[fs(F1,V1), fs(F2,v2), ...]

Predicates operating on the referent field are described in section 3.3.5.

2.3 Representation of Individuals

Individuals are represented as ternary relations in the knowledge base:
ind(IndId,Name,Type)

IndId must be provided by the user in the referent field of concepts. Name is the name of the
individual and Type is a type of the type hierarchy. Example:

[CAT: TOM #123] ind(123, TOM, CAT)
[CAT: TOM #] is not an individual as the user has not defined an Id

2.4 Type Definitions

In the conceptual graph formalism new concept types are introduced by type definitions.
The operations acting upon them are type expansion and type contraction. Following Sowa’s

*Most of the examples are taken from (Sowal993).

definition (Sowal984, pp.106 — 112), type definitions are represented as binary relations:
typedef (TypeName, lambda(VarList, GraphId))

The linear form of type definitions will be interpreted by the linear form parser (see sec-
tion 4.2.2):

TypeDef ::= "type” <TypeName>" (" <VarList>")” ”is” < Graph >

typedef/2 and Graph will be asserted in the knowledge base and its Graphld will be included
in the typedef/2 relation. VarList is a regular Prolog list of all arguments of the defined
type. Example:

type POSITIVE(x) is [NUMBER: *x] -> (”>") -> [NUMBER: 0]

will be asserted in the knowledge base in the following relations:

cg(l, [cgr('<",[2,3]1)]1)

cgc(2,normal, ’NUMBER’ , [quant : lambda] , _)
cgc(3,normal, ’NUMBER’ , [type:meas,name:0],_)

typedef (°’POSITIVE’, lambda([x],1))

Note that type definitions do not expand the type hierarchy automatically. The user is
responsible for providing the corresponding isa/2 relations.

2.5 Relation Definitions

Relation definitions are supported similarly to type definitions. They will be represented in
the knowledge base as binary relations:

reldef (RelName, lambda(VarList, GraphId))
This relation is a result of parsing the following linear form:
RelDef ::= "relation” <RelName>"(”<VarList>")" ”is” < Graph >

reldef/2 and Graph are asserted into the knowledge base by the parser.

2.6 Type Hierarchy

The type hierarchy is represented as binary relations:
isa(SubType,SuperType)

It can be loaded from a file with loadKBase/2. isa/2 relations are not parsed by the linear
form parser but are consulted by the Prolog system.

2.7 Attribute Lists

It is very important for the user developing a real world application that there is a possibility
for organizing graphs in groups. For this reason, the system supports a mechanism for marking
graphs with attributes. Some useful attributes might be: ’canonical’; ’typedefs’; 'reldefs’,
temp’. For this purpose, attribute lists are provided:

attrList(Name,GraphId)

In principle the user should take care of managing these lists. The system provides some
predicates for this (see section 4.1). All operations changing the knowledge base work
with the current attribute list. This variable can be handled with setCurAttrList/1 and
getCurAttrList/1.

2.8 Other Prolog Representations
2.8.1 Representing Conceptual Graphs as triples

We would like to introduce the representation adopted in (Hook and Ahmad1992).

Each conceptual graph is decomposed into canonical graphs® consisting of two concepts linked
by a relation. The investigation made by the authors of (Hook and Ahmad1992) proved that
all relations in a Terminology Knowledge Base (TKB) are binary, i.e. connecting exactly
two concepts. Their conceptual graph TKB consists of a set of canonical graphs and a type
hierarchy. All canonical graphs are stored as:

is_canonical_graph(’emission control device’ : type : ’catalytic converter’).
Each conceptual graph is represented as a Prolog list of triples:
concept : relation : concept

In (Hook and Ahmad1992) the type hierarchy is generalized to a set of conceptual graphs
containing the type relation. Due to the fact that the inheritance mechanism depends on the
type hierarchy, the type relation is of particular importance.

This representation handles very simple conceptual graphs. They are suitable mainly for
knowledge bases in very specific domains, where all relations are binary. Another problem
of that approach is the redundant information. Each concept participating in more than one
relation occurs more than once in the list. When specialization is performed, the list should
be searched completely for all occurences of a certain concept (the one to be restricted).

5Here the term ‘canonical’ is used in its general meaning. Thus these ‘canonical graphs’ are not Sowa’s
‘canonical graphs’, but simply a normalized form of a graph representation.

2.8.2 Representing Conceptual Graphs as Concept and Relation lists

(Sowa and Way1986) proposed a more structured representation:

cg(<ConceptList>, <RelationList>)

ConceptList := [cge(<ConceptNo>, <ConceptName>, <Referent>), ...]
RelationList := [cgr(<ConceptNo>, <RelationName>, <ConceptNo>), ...]

Although one graph is represented as only one data structure, e.g. graph traversing will be
easier than in (Hook and Ahmad1992), we do encounter the following problems:

1. Graph referents: [PROPOSITION: Graph] is transformed into
[PROPOSITION] -> (STMT) -> Graph
The same holds for STATE, SITUATION and CONTEXT.

2. 3-adic relation representation. Let’s take BETW for example. Using the above repre-
sentation, we are forced to have 2 or 3 entries in the RelationList for one relation. Apart
from that, we do not have a clearly defined order of the relation arcs, which contradicts
to the fact that the arcs should be numbered for all n-adic relations (n > 3).

3. There is redundant information in the cge-structure. If we have the same concepts in
different CGs then all that information is included in every cge-structure. Representing
all concepts into a separate concept table avoids this kind of redundancy. Additionally,
garbage collection techniques can be applied in order to abandon all concepts not used
in the knowledge base.

3 Implementation of some operations on CGs

Although our internal representation handles complex graphs properly, some of the operations
are implemented only for simple graphs with situations, propositions, and statements. Our
further goal will be to extend our algorithms for complex graphs. But nevertheless the set of
operations handled by the system is complete and will remain unchanged.

3.1 Overview

The following sections contain a structured description of our Prolog implementation with
predicate names, arguments and brief explanations. First we introduce some abstract data
types - concepts (see 3.3.1), conceptual graphs (see 3.3.2), types (see 3.3.3), individuals (see
3.3.4) and referents (see 3.3.5). A set of standard operations belongs to all ADTs — contructors,
destructors, accessors, copy and equality test. Additionally, each ADT has some specific
operations (eg. subConcept, minComSuperType), and their semantics is taken from the CG
theory.® Since we rely on the reader’s knowledge of conceptual graphs, we have ommited all
functionality details of implemented operations.

The ADTs comprise a basis which the four canonical formation rules and some other CG
operations are built upon. All CG operations have both destructive and non-destructive
versions. Section 3.4 contains the definitions of copy, restrict, simplify and join. Match,
projection and mazimal join are introduced in section 3.5. Apart from the standard projection
algorithm we have implemented an extended projection (see 3.5) that has proven to be rather
useful for some Natural Language (NL) applications. Type and relation expansion/contraction
operations (see 3.6) enable the active use of new types and relations.

In order to distinguish between various kinds of graphs, we have introduced attribute lists
(see 4.1). They are used to group the graphs according to their semantics (eg. canonical,
situations, type definitions, etc.). The system always deals with the current attribute list.

Finally, we introduce some predicates for handling the Knowledge Base (KB) - load, load with
convert, save and restore (see 4.2.1). For initializing the knowledge base, we implemented

a linear notation parser which converts files containing graphs in linear notation into the
internal representation (see 4.2.2).

3.2 General Conventions
3.2.1 Programming Conventions

Concerning uppercase vs. lowercase and the use of underscores, predicate and variable names
are represented as follows: predicateName(VarName, ...). Underscores are never used

5For a short introduction see (Sowal992).

10

except of course as identifier for the anonymous variable.

All predicates obey the following rules concerning the order of arguments:

Relational binary predicates have their arguments in the order that renders identifying
the relation as an infix naturally. Example: isa(V1, V2) means V1 isa V2.

Data structure accessors have the output argument in the last position.

e Functional predicates have the output argument in the last position. join(G1,G2,G3)
joins G1 and G2 to yield G3.

Destructive operations have the input/output argument in the first position. join(G1,G2)
joins G1 with G2 and returns the modified G1.

3.2.2 Format of the Predicate Descriptions

Below, the predicates are described in the following format:

predicate(Argumentl, ...)

Description text

Arguments:
Argumentl Type of Argumentl

In the first line the argument’s names are preceded by one of three mode specifiers: + means
the argument must be instantiated, — means it must be free, and ? means it can be anything.
Note that Id arguments of objects that are modified by the operation have mode + because
the Id is not changed.

3.3 Concepts, Graphs, Types, Individuals and Referents as Abstract Data
Types

Generally, the operations on compound objects comprise constructors (that build a new object
from its parts), destructors, accessors (that return the parts of a given object), a copy oper-
ation and an equality test. The name of the constructor for datatype object is newObject, of
the destructor deleteObject and of the accessors objectSlot. The copy operation is named
copyObject and the equality test equalObject.

Also generally all objects are referred to internally by their Ids, e.g. when being passed as
arguments. This holds for graphs, concepts and individals. Some operations on these data

11

structures work destructively. This means that the data structure pointed to by the Id changes
while the Id of the input and the result is the same. A nondestructive operation returns a
new Id for these kinds of objects.

All operations on graphs take care of creating new concepts where necessary to ensure that
any concept is contained in one graph at most. For instance the destructive “join” operation
— that modifies one of the input graphs — copies the other input graph so that only new
concepts are joined to the first graph.

3.3.1 Concepts

Concepts are represented as 5-tupels:

cgc(ConceptID, ContextFlag, ConceptName, ReferentField, AnnotationField)

newConcept(+4Category, +Type, TReferent,
?Annotation, ?Concept)
Creates a new concept given its category, type, referent and annotation. Returns the Id of

the new concept. For special concepts the referent is a graph Id. If Concept is ground it is
used as the Id of the concept, else a new Id is acquired and returned.

Arguments:
Category normal or special
Type Atom

Referent Term or list of graph Ids
Annotation Term or _
Concept Concept Id

deleteConcept(+Concept)

Deletes the Concept. The user is responsible for assuring that there are no references to this
concept left.

Arguments:
Concept Concept Id

12

conceptSlots(+Concept, -Category, -Type, -Referent, -Annotation)

Gets the parts of Concept.

Arguments:
Concept Concept Id
Category normal or special
Type Atom
Referent Term or list of graph Ids
Annotation Term or _

copyConcept(+Conceptln, -ConceptOut)

Copy a concept. In case this is a special concept, the contents of the referent field are copied
recursively. Returns the Id of the copy.

Arguments:
Conceptln Concept Id
ConceptOut Concept Id

equalConcept(4+Conceptl, +Concept2)

Succeeds if the two concepts are equal. This is the case if their types and referents are equal.
In case of special concepts the nested graphs are compared recursively.

Arguments:
Conceptl Concept Id
Concept2 Concept Id

subConcept(+SubConcept, +SuperConcept)

Succeeds if SubConcept is a subconcept of SuperConcept.

Arguments:
SubConcept ~ Concept Id
SuperConcept Concept Id

conceptCategory(+Concept, -Category)

Get the category of a concept.

Arguments:
Concept Concept Id
Category normal or special

13

conceptType(+Concept, -Type)
Get the type (from the hierarchy) of a concept.

Arguments:
Concept Concept Id
Type Atom

conceptReferent(4Concept, -Referent)

Get the referent field of a concept.

Arguments:
Concept Concept Id
Referent Term or list of graph Ids

3.3.2 Graphs

Graphs are represented as binary prolog facts:

cg(GraphID, RelationList)

newGraph(+Relations, ?Graph)

Create a new graph consisting only of the Relations. The new graph is added to the current
attribute list. If Graph is ground it is used as the Id of the graph, else a new Id is acquired
and returned.

Arguments:
Relations List of terms cgr/3
Graph Graph Id

newGraph(?Graph)

Create a new empty graph. The new graph is put on the current attribute list.

Arguments:

Graph Graph Id

14

deleteGraph(+Graph)

Delete the Graph. This does not delete the concepts contained in the graph. The user is
responsible to assure that there are no more references to the graph. The graph is removed
from all attribute lists it is on.

Arguments:

Graph Graph Id

modifyGraphRelations(+Graph, +NewRelations)

Modify the Graph to consist of the relations in the list NewRelations.

Arguments:
Graph Graph Id
Relations List of terms cgr/3

graphRelations(+Graph, -Relations)

Get the list of relations of a graph.

Arguments:
Graph Graph Id

Relations List of relations, i.e. terms with functor cgr

addGraphRelation(+Graph, +RelName, +Concepts, +Annotation)

Insert n-ary relation with name RelName in the Graph on the n concepts from the list
Concepts. The concepts are ordered and the last one belongs to the outgoing arc. Annotate
the relation with Annotation. The graph is modified.

Arguments:
Graph Graph Id
RelName Atom
Concepts List of Concept Ids
Annotation Atom

deleteGraphRelation(+Graph, +RelName, +Concepts)

Delete the relation with name RelName connecting the Concepts from the Graph. Fails if
there is no such relation.

Arguments:
Graph Graphld
RelName Atom

Concepts List of Concept Ids

15

copyGraph(+Graphln, -GraphOut)
Copy a graph.

Arguments:

Graphln Graph Id
GraphOut Graph Id

copyGraph(+GraphOrig, -GraphCopy, -MapOut)

Copy GraphOrig and recursively graphs nested in it yielding GraphCopy. The mapping of
old concepts and graphs onto the new ones is returned in MapOut. This can be used to trace
concepts and subgraphs through the process of copying.

Arguments:
GraphOrig Graph Id
GraphCopy Graph Id
MapOut Term map/2

The graph copy operation is actually already one of Sowa’s CG operations. It is nevertheless
defined here because it is needed for completeness of the ADT.

equalGraph(+Graphl, +Graph?2)

Succeeds if the two graphs are equal. This is checked recursively for all nested subgraphs,
too.

Arguments:

Graphl Graph Id
Graph2 Graph Id

graphConcept(4Graph, -Concept)

Given Graph, succeeds once for each Concept that occurs in the graph. If Graph contains
nested graphs, the concepts in these graphs are neglected.

Arguments:
Graph Graph Id
Concept Concept Id

Automatic Management of Attribute Lists

The newGraph operation puts the new graph on the current attribute list. Some operations,
e.g. join, use temporary graphs that are deleted in the course of the operation. This is

16

accomplished by using the predicate deleteGraph which besides deleting the graph also
removes it from all attribute lists. As an additional way to delete graphs there is the predicate
deleteAllGraphs that deletes all graphs that are on a given attribute list and clears this list.
This way the implementation takes care that no attribute list contains a reference to a deleted
graph and that every graph is at least on one attribute list.

3.3.3 Types

The type hierarchy is represented as:

isa(SubType,SuperType)

typelist(-Types)

Returns a list of all types. These include top, bottom and the special types like context etc.
The list is topologically sorted in ascending order.

Arguments:
Types List of types

These operations are undirected binary Prolog relations. ‘Undirected’” means they can be
used both for checking and for generation.

equalType(+Typel, +Type2)
Succeeds if Typel and Type2 are of the same type name.

Arguments:
Typel Type
Type2 Type

isa(?SubType, ?SuperType)
Succeeds if SubType is an immediate subtype of SuperType.

Arguments:
SubType Type
SuperType Type

17

subType(?SubType, ?SuperType)
Succeeds if SubType is a subtype of SuperType.

Arguments:
SubType Type
SuperType Type

Ternary relations (directed):

subType(+SubType, +SuperType, -List)

Succeeds if SubType is a subtype of SuperType. List will be unified with the path between
Typel and Type2.

Arguments:
SubType Type
SuperType Type
List List of Types

maxComSubType(+Typel, +Type2, -Type3)

Type3 is the maximal common subtype of Typel and Type2.

Arguments:
Typel Type
Type2 Type
Type3 Type

maxComSubType(+Typel, +Type2, -Type3, -PathList1, -PathList2)

Type3 is the maximal common subtype of Typel and Type2. PathList1 will be unified with
the path between Typel and Type3, and PathList2 will be unified with the path between
Type2 and Type3.

Arguments:
Typel Type
Type2 Type
Type3 Type
PathListl List of Types
PathList2 List of Types

18

minComSuperType(+Typel, +Type2, -Type3)
Type3 is the minimal common supertype of Typel and Type2.

Arguments:
Typel Type
Type2 Type
Type3 Type

minComSuperType(+Typel, +Type2, -Type3,
-PathList1, -PathList2, -PathList3)

Type3 is the minimal common supertype of Typel and Type2. PathList1 will be unified with
the path between Typel and Type3, PathList2 will be unified with the path between Type2
and Type3 and PathList3 will be unified with the path between Type3 and univ.

Arguments:
Typel Type
Type2 Type
Type3 Type
PathListl List of Types
PathList2 List of Types
PathList3 List of Types

typeDefinition(+Type, -Definition)
Returns the type definition (a term lambda/2) of the Type.

Arguments:
Type Type
Definition Type definition

3.3.4 Individuals

Individuals are represented as:

ind(IndId,Name,Type)

The conformity relation must be defined. It has a type and an individual as arguments.
The type is the smallest one the individual conforms to. Individuals are referred to by their
Id. This is always provided by the user as a number — it is never automatically generated
by the system. When parsing a conceptual graph, new individuals occuring inside it are
automatically asserted. Additionally, there is a predicate to assert them manually.

19

newlndividual(+Id, +Type, ?Name)

Create a new Individual. Arguments are the Id, the smallest conforming type and optionally
the name. The new individual is asserted.

Arguments:
Id Number
Type Type

Name Atom or anonymous variable

deletelndividual (+Individual)

Delete the Individual. The user is responsible for assuring that there are no references to
the individual left.

Arguments:
Individual Individual Id

individual Type(+Individual, -Type)

Get the type of an Individual, i.e. the smallest type the individual conforms to.

Arguments:
Individual Individual Id
Type Type

individualName(+Individual, -Name)

Get the name of an Individual.

Arguments:
Individual Individual Id
Name Atom or _

3.3.5 Referents

Referents are represented as feature structures (see 2.2).

setRefNumber(+ReferentIn, +Number, -ReferentOut)

Changes the num-Feature in ReferentIn and returns the result as ReferentOut.

Arguments:
ReferentIn Referent
Number Atom

ReferentOut Referent

20

getRefNumber(+Referent, -Number)

Unifies Number with the value of the num-Feature in Referent.

Arguments:
ReferentIn Referent
Number Atom

setRefType(4+ReferentIn, +Type, -ReferentOut)

If type does not exist as a feature in ReferentIn, then setRefType adds the feature type
with value Type to ReferentIn. Otherwise, setRefType changes the value of type to Type
in ReferentIn. The result will be unified with ReferentOut.

Arguments:
Referentln Referent
Type Atom

ReferentOut Referent

getRefType(+Referent, -Type)

Unifies Type with the value of the type-Feature in Referent.

Arguments:
ReferentIn Referent
Type Atom

setRefQuant(+ReferentIn, +Quant, -ReferentOut)

If quant does not exist as a feature in ReferentIn, then setRefQuant adds the feature quant
with value Quant to ReferentIn. Otherwise, setRefQuant changes the value of quant to
Quant in ReferentIn. The result will be unified with ReferentOut.

Arguments:
Referentln Referent
Quant Atom

ReferentOut Referent

getRefQuant(+Referent, -Quant)

Unifies Quant with the value of the quant-Feature in Referent.

Arguments:
ReferentIn Referent
Quant Atom

21

setRefld(+ReferentIn, +1d, -ReferentOut)

If refID does not exist as a feature in ReferentIn, then setRefId adds the feature refID
with value Id to ReferentIn. Otherwise, setRefId changes the value of refID to Id in
ReferentIn. The result will be unified with ReferentOut.

Arguments:
ReferentIn Referent
Id Atom

ReferentOut Referent

getRefld(+Referent, -Id)

Unifies Id with the value of the refID-Feature in Referent.

Arguments:
ReferentIn Referent
Id Atom

setRefName(+ReferentIn, +Name, -ReferentOut)

If name does not exists as a feature in ReferentIn, then setRefName adds the feature name
with value Name to ReferentIn. Otherwise, setRefName changes the value of name to Name
in ReferentIn. The result will be unified with ReferentOut.

Arguments:
ReferentIn Referent
Name Atom

ReferentOut Referent

getRefName(+Referent, -Name)

Unifies Name with the value of the name-Feature in Referent.

Arguments:
ReferentIn Referent
Name Atom

setRefScope(+ReferentIn, +Scope, -ReferentOut)

If scope does not exists as a feature in ReferentIn, then setRefScope adds the feature
scope with value Scope to ReferentIn. Otherwise, setRefScope changes the value of scope
to Scope in ReferentIn. The result will be unified with ReferentOut.

22

Arguments:
ReferentIn Referent
Scope Atom
ReferentOut Referent

getRefScope(+Referent, -Scope)

Unifies Scope with the value of the scope-Feature in Referent.

Arguments:
ReferentIn Referent
Scope Atom

equalReferent(+Referentl, +Referent?2)

Succeeds if Referentl and Referent?2 are equal.

Arguments:
Referentl Referent
Referent2 Referent

matchReferent(+Referentl, +Referent2, -Referent3)

This predicate will be used in join, maximal join and projection. It matches the referent fields
of concepts. The following rules are applied in this order:

1. Given that Referentl represents a variable then it matches everything if the rest of the
referent field is unifyable with the Referent2. In this case, Referent3 is the result of
the unification. Otherwise the predicate fails.

2. If rule 1 was not successful and Referentl represents a question, then is matches ev-
erything if the rest of the referent field is unifyable with Referent2. Referent3 is the
result of the unification. Otherwise the predicate fails.

3. If rule 1 and 2 were not successful, Referent1 is generic or a partial set and Referent?2
is of type measure, then the match succeeds if the number of elements of the set in
Referent1 is less than the number of elements in Referent2 and the feature structures
are unifyable.

4. If none of the rules above were successful, then Referent3 is the result of feature
structure unification of Referent1 and Referent?2.

5. Else try to succeed matchReferent(Referent2, Referentl, Referent3).

Arguments:
Referentl Referent
Referent2 Referent
Referent3 Referent

23

3.3.6 Miscellaneous

relationDefinition(4Relation, -Definition)

Returns the relation definition (a term lambda/2) of the Relation.

Arguments:
Relation Relation
Definition Relation definition

3.4 The four canonical formation rules

copy(+Graphln, -GraphOut)

Copy a conceptual graph. In LPA-Prolog this operation is called copyCG/2 as there is already
a system predicate copy/2 with different semantics. This is the same operation as the ‘copy’
operation of the graph ADT.

Arguments:

Graphln Graph Id
GraphOut Graph Id

The following operations are provided in two different versions, one that modifies one of the
input arguments and one that does not. The destructive versions are useful for avoiding
excess garbage generation if several operations are executed for a graph in sequence.

restrict(+Graph, +Concept, +Type, +Referent)
restrict(+Graphln, +Concept, +Type, +Referent, -GraphOut)

Given a graph and a concept in it, change the type or/and the referent by restrictimg them
further. This is allowed only if the conformity relation still holds after the operation. The type
may be restricted by replacing it by a subtype. The referent may be restricted by replacing
a generic marker by an individual, conforming to the (new) type, or by feature-structure
operations, corresponding to specialisation. The first version modifies Graph, the second one
returns the new GraphOut as its result.

Arguments:
Graph Graph Id
Concept Concept Id
Type Type
Referent Referent
Graphln Graph Id
GraphOut Graph Id

24

join(4+Graphl, +Graph2)

join(4+Graphl, +Graph2, -GraphOut)

join(4+Graphl, +Conceptl, +Graph2, +Concept2)

join(4+Graphl, +Conceptl, +Graph2, +Concept2,
-GraphOut, -ConceptOut)

This joins Graphl and Graph2. The four versions differ in two aspects, namely whether they
modify Graphl or not and whether the concepts on which to join the graphs are provided
explicitly. In the first two versions the concepts are not provided. They deliver all possible
joins on backtracking. In the last two versions Conceptl is the concept in Graphl and
Concept2 is the concept in Graph2 on which to join the graphs. Both concepts must be
equal, otherwise the join will fail. To achieve a join on compatible concepts that are not
equal the input concepts must be made equal by restricting them in advance. The resulting
concept is provided in ConceptOut. The first and third version modify Graphl and the second
and fourth version provide the result in a new graph GraphOut. Graph2 is always copied in
advance and never modified.

Arguments:
Graphl Graph Id
Graph?2 Graph Id

GraphOut Graph Id

Concept1 Concept Id
Concept?2 Concept Id
ConceptOut Concept Id

simplify(4+Graph)
simplify(+Graphln, -GraphOut)

Simplify a graph by deleting all duplicate relations in it. The first version modifies Graph,
the second one returns the simplified GraphIn as GraphOut and leaves GraphlIn as it was.

Arguments:
Graph Graph Id
Graphln Graph Id
GraphOut Graph Id

25

3.5 Match, Projection and Maximal Join

match(4+Graphl, Graph2)

Succeeds if Graphl is a generalization of Graph2. Comparing concepts takes into account the
type hierarchy and will match the referents (compare matchReferent/3.

Arguments:

Graphl Graph Id
Graph2 Graph Id

maximalJoin(4+Graphl, +Graph2)
maximalJoin(4+Graphl, +Graph2, -Graph3)

These predicates realize the maximal join operations for conceptual graphs. For the definition
refer to (Sowal984, p.104). The two versions differ in modifying Graph2; maximalJoin/2
modifies Graph2 which is the result of this operation. Graph2 should be more specific than
Graphl. maximalJoin will take into account the type hierarchy and will match the referents
(compare matchReferent/3).

Arguments:

Graphl Graph Id
Graph2 Graph Id
Graph3 Graph Id

projection(+Graphl, +Graph2, -Graph3)

Given two conceptual graphs find the projection of Graphl on Graph2. The resulting Graph3
is not empty if and only if Graph2 is a specialization of Graphl. The projection operation is
type, relation and structure preserving. For the respective algorithm see (Sowal984, p.99).

Arguments:

Graphl Graph Id
Graph2 Graph Id
Graph3 Graph Id

extendedProjection(4+Graphl, +Graph2, -Graph3)

Graph3 is the extended projection” of Graph2 (the query graph) on Graphi. The most
important feature is that Graph2 contains at least one uninstantiated concept (corresponding
to a question referent). In a NL application this graph might be created as a semantic
representation of a user’s question. The resulting graph is obtained by finding the projection

"This predicate is not yet implemented.

26

of Graph2 on Graphl and adding all concepts directly linked to an uninstantiated concept
from the query graph. Let us consider the following graphs:

Graphl: [CAT]-> (ON) -> [MAT] -> (ATTR) -> [RED]

Graph2: [CAT]-> (ON) -> [7]

The result of the normal projection algorithm is just:

[CAT] -> (ON) -> [MAT]

The result of the extended projection algorithm is the whole Graphl.

Possible modification of this algorithm includes a parameter for the depth of the extension,

i.e. for depth n add all concepts, being n relations ’far’ from an uninstantiated concept in

the query graph. This parameter can be also dependent on the relation types in the query
8

graph.

Arguments:

Graphl Graph Id
Graph2 Graph Id
Graph3 Graph Id

3.6 Type and Relation Expansion/Contraction®

Since we support both type and relation definitions (i.e. give a mechanism for defining new
types and relations), we also provide expansion and contraction operations. In our imple-
mentation we stick to the algorithms described in (Sowal984, pp. 107-109, p.115). It is
recommended to apply these operations on canonical graphs, since Sowa has proved that the
result is also a canonical graph (i.e. in this case the operations are truth-preserving).

All four operations take as input a graph Id (the graph to be expanded/contracted), an Id
of a differentia graph (type definition) or a relator graph (relation definition). The output
graph is always the last argument.

8 For some other ideas about extending the projection operation see (Velardi, Pazienza, and Giovanettil988).
®These predicates are not yet implemented.

27

typeExpansion(4Graphl, +Graph2)
typeExpansion(+Graphl, +Graph2, -Graph3)

This predicate realizes the type expansion operation on conceptual graphs. Graph1 is a graph,
Graph?2 is the differentia of a type definition and Graph3 is the resulting graph.

The two versions differ in modifying Graphi; typeExpansion/2 modifies Graphl which is the
result of this operation.

Arguments:
Graphl Graph Id
Graph2 Graph Id
Graph3 Graph Id

typeContraction(+Graphl, +Graph?2)
typeContraction(+Graphl, +Graph2, -Graph3)

This predicate realizes the type contraction operation. Graphl is a graph, Graph?2 is the
differentia of a type definition and Graph3 is the resulting graph from which a subgraph has
been deleted and replaced by a single concept (the genus of the type definition).

The two versions differ in modifying Graphl; typeContraction/2 modifies Graphl which is
the result of this operation.

Arguments:
Graphl Graph Id
Graph2 Graph Id
Graph3 Graph Id

relationExpansion(+Graphl, +Graph2)
relationExpansion(+Graphl, +Graph2, -Graph3)

This predicate realizes the relation expansion operation on conceptual graphs. Graphil is a
graph, Graph2 is the relator of a relation definition. Graph3 is the resulting graph obtained
from Graphl after a conceptual relation, and its attached concepts are replaced with Graph2.
The two versions differ in modifying Graphi; relationExpansion/2 modifies Graphil, which
is the result of this operation.

Arguments:
Graphl Graph Id
Graph2 Graph Id
Graph3 Graph Id

28

relationContraction(+Graphl, +Graph?2)
relationContraction(+Graphl, +Graph2, -Graph3)

Graphl is a graph, Graph2 is a subgraph of Graphl and the relator of a relation definition.
Graph3 is the resulting graph obtained from Graphl after the subgraph Graph2 is replaced
by a single conceptual relation defined by the relation definition.

The two versions differ in modifying Graphl; relationContraction/2 modifies Graphi,
which is the result of this operation.

Arguments:

Graphl Graph Id
Graph2 Graph Id
Graph3 Graph Id

29

4 Service Features

For a more convinient use of the system, we added some service features described in this
section. Attribute lists are provided for graph organization. File operations help saving and
restoring the knowledge base.

4.1 Attribute Lists

In this chapter, predicates for managing attribute lists are described. The system provides this
feature for the user to organize the graphs in groups and to assign attributes to them. Some
useful attributes could be canonical, typedef, temporary. The user is fully responsible for
managing these lists. The system supports a current attribute list, and all newly created
graphs are inserted there automatically. Therefore the system provides some predicates for
managing the current attribute list. All existing attribute lists are saved and restored together
with the rest of the KB (see 4.2.1).

getCurAttrList(-Name)

Unifies Name with the name of the current attribute list.

Arguments:
Name Atom

setCurAttrList(+Name)

Sets the current attribute list to Name.

Arguments:
Name Atom

addAttrList(+Name, +Graph)

Adds Graph to the attribute list named Name. If there is no such attribute list, it will be
created.

Arguments:
Name Atom

Graph Graph ID

30

deleteAttrList(?Name, ?Graph)

Removes the Graph from the attribute list named Name. The Graph itself is not deleted. In
case one or both arguments are variables, during backtracking all matching pairs of Name and
Graph are deleted.

Arguments:
Name Atom

Graph Graph ID

getAttrList(?Name, ?7Graph)

Succeeds if Name is the name of an attribute list Graph is contained in. If one or both
arguments are variables on backtracking all matching pairs are found. This allows finding all
graphs on a given attribute list or all attribute lists of a given graph.

Arguments:
Name Atom

Graph Graph ID

deleteAllGraphs(+Name)

All graphs that are on the attribute list named Name are deleted from the knowledge base,
and the list is emptied. Name must be completely bound to avoid deleting all graphs on all
lists accidentally.

Arguments:
Name Atom

deleteAllAttrLists(4+Graph)

The Graph is removed from all attribute lists it is on. It is not deleted itself. Graph must be
completely bound to avoid accidentally deleting all graphs on all lists.

Arguments:

Graph Graph ID

31

4.2 Initializing and Saving the Knowledge Base

4.2.1 Loading, Saving and Restoring the Knowledge Base

loadKKBase(+File)

This predicate will load and parse a file, containing the following relations in prolog syntax.

e cg(CG) - CG is a conceptual graph satisfying the linear form, including type and relation
definitions.

e isa(Subtype, Supertype)

The current attribute list is initialized with the value defaultAttrList.

Arguments:
File Atom

loadKBasewithconvert(+File)

This predicate reads a file and converts the content. The user gives the rules for converting
Terml into Term2:

convert(+Terml, +Term2) :- <converting rules>.
It is possible to have more then one converting rule but only one rule per Terml. Example:

convert(lex(Word,Graph) ,plex(Word,ID)) :-
parseCG(ID,Graph).

The current attribute list is initialized with the value defaultAttrList.

Arguments:
File Atom

Working with the system it is important to be able to save and restore sessions. Therefore
the system offers two predicates. Saving and restoring includes all parts of the knowledge
base:

32

Table 2: Parts of the Knowldege Base to be saved with saveKBase/1

conceptual graphs cg/2
cge/b
type hierarchy isa/2
type definitions typedef/2
relation definitions relationdef/2
individuals ind/3
attribute lists attrlist/2
name of current attribut list | curAttrList (global variable)
current identifier nextld (global variable)

For the exact format of relations in table 2 see section 2.

saveKBase(+File)

Save all parts of the knowledge base in File. If File does not exist the system will search
for file File.cg.

Arguments:
File Atom

restoreKBase(+File)

Restore the conceptual graph knowledge base from File. If File does not exist the system
will search for file File.cg. It is important that File is a file that has been created by
saveKBase.

Arguments:
File Atom

4.2.2 Parsing Conceptual Graphs In Linear Notation

The system provides a parser which converts the linear form to our internal representation

(see section 2). The parser accepts conceptual graphs in linear notation as it is specified in
(Esch et al.1994).

33

parseCG(4LGraph, -GraphlID)

The predicate parseCG/2 parses the first argument LGraph. The identifier of the parsed
graph will be unified with GraphID and the graph and all concepts will be asserted into the
knowledge base. The graph will be added to the current attribute list (if existing).

Arguments:
LGraph Atom; CG in linear form
GraphlD Atom

5 Conclusion

This paper has introduced a thorough description of a CG representation in Prolog and the
basic graph operations. We have introduced abstract data types (ADTs) for concepts, graphs,
types, referents and individuals. For each ADT, a list of operations has been provided. These
data types have been used as building blocks for the implementation of all basic CG operations
(e.g. copy, maximal join, etc.).

A running implementation exists both for SNI and LPA Prolog. There are some algorithms
that need further refinement, but the main part is completed. Additional work aims at the
development of new algorithms for proper handling of complex graphs, and the type and

relation expansion/contraction operations.

Some further steps are for instance the implementation of a generator for the linear form and
a query operation for searching through the knowledge base.

Although we still have a lot of ideas concerning the environment of CGPro it is already now
a useful tool for comparing and joining graphs as well as dealing with the type hierarchy.

Acknowledgements

We would like to thank Dr. Galja Angelova for implementing some of the algorithms and her
useful comments concerning referent fields, projection and type and relation expansion.

Finally we thank Alexandra Klein and Jens-Uwe Méller for their comments on our work.
However, any mistakes that still remain are our own.

34

References

Esch, John, Maurice Pagnucco, Michel Wermelinger, and Heather Pfeiffer. 1994. Linear
- linear notation interface. In Gerard Ellis and Robert Levinson, editors, 1C'CS’9 Third
PFEIRCE Workshop: A Conceptual Graph Workbench, pages 45-52, College Park, MD,
USA. University of Maryland.

Hook, S. and K. Ahmad. 1992. Conceptual graphs and term elaboration: Explicating
(terminological) knowledge. Translator’s Workbench Project ESPRIT 11 No. 2315 10, Uni-
versity of Surrey, July.

Sowa, John F. 1984. Conceptual Structures Information Processing in Mind and Machine.
Addison-Wesley Publishing Company.

Sowa, John F. 1992. Conceptual graphs summary. In Timothy E. Nagle, Janice A. Nagle,
Laurie L. Gerholz, and Peter W. Eklund, editors, Conceptual Structures current research
and practice. Ellis Horwood, chapter 1 1, pages 3-51.

Sowa, John F. 1993. Relating diagrams to logic. In Guy W. Mineau, Bernard Moulin, and
John F. Sowa, editors, Conceptual Graphs for Knowledge Representation; First Interna-
tional Conference on Conceptual Structures, ICCS’°93; Quebec City, Canada, August 4-7,
1993; Proceedings, pages 1-35. Springer-Verlag, August.

Sowa, John F. and Fileen C. Way. 1986. Implementing a semantic interpreter using
conceptual graphs. IBM Journal of Research and Development, 30(1):57-69, Jan.

Velardi, Paola, Maria Teresa Pazienza, and Mario De’ Giovanetti. 1988. Conceptual graphs
for the analysis and generation of sentences. IBM J. Res. Develop., 32(2):251-267, March.

35

