
Fachbereich Informatik der Universit�at HamburgVogt-K�olln-Str. 30, D-22527 Hamburg / Germany
CGPro { a PROLOG Implementationof Conceptual GraphsHeike PetermannLutz EulerUniversity of HamburgComputer Science DepartmentNatural Language Systems Divisionpeterman@informatik.uni-hamburg.delutz.euler@pink.deKalina BontchevaBulgarian Academy of SciencesLinguistic Modelling Laboratorykalina@sirma.bgFBI{HH{M{251 / 95October 1995

AbstractNatural language processing requires e�cient and powerful tools for representing and process-ing knowledge. This paper introduces the system CGPro which implements the ConceptualGraphs (CG) formalism. CGs are a logic-based formalism developed by John F. Sowa on thebasis of Charles S. Peirce's existential graphs and semantic networks. Conceptual structuresproved to be rather convenient as a semantic representation for natural language. CGPro isan e�cient and powerful implementation of a Conceptual Graphs representation in Prologand provides all the operations which are most useful for natural language processing. Thispaper introduces the functionality of CGPro and describes the motivation for design decisionsas well. ZusammenfassungDie Verarbeitung nat�urlicher Sprache erfordert leistungsf�ahige Werkzeuge zur Repr�asentationund Verarbeitung von Wissen. In diesem Papier wird das System CGPro vorgestellt, das denFormalimus der Conceptual Graphs (CGs) implementiert. CGs wurden von John F. Sowaauf der Grundlage der Existenzgraphen von Charles S. Peirce entwickelt. Conceptual Graphseignen sich besonders gut zur semantischen Repr�asentation nat�urlicher Sprache. CGPro re-alisiert eine e�ziente und m�achtige Repr�asentation von CGs in Prolog und liefert eine Imple-mentierung der f�ur die maschinelle Sprachverarbeitung wichtigsten Operationen. In diesemPapier wird sowohl die Funktionalt�at von CGPro vorgestellt als auch die Motivation derEntwurfsentscheidungen dargelegt.

Contents1 Introduction 12 Representing Conceptual Graphs in PROLOG 32.1 Graph representation . 32.2 Representation of the Concept's Referent Field 52.3 Representation of Individuals . 72.4 Type De�nitions . 72.5 Relation De�nitions . 82.6 Type Hierarchy . 82.7 Attribute Lists . 92.8 Other Prolog Representations . 92.8.1 Representing Conceptual Graphs as triples 92.8.2 Representing Conceptual Graphs as Concept and Relation lists 103 Implementation of some operations on CGs 113.1 Overview . 113.2 General Conventions . 123.2.1 Programming Conventions . 123.2.2 Format of the Predicate Descriptions 123.3 Concepts, Graphs, Types, Individuals and Referents as Abstract Data Types 123.3.1 Concepts . 133.3.2 Graphs . 153.3.3 Types . 183.3.4 Individuals . 203.3.5 Referents . 213.3.6 Miscellaneous . 253.4 The four canonical formation rules . 253.5 Match, Projection and Maximal Join . 273.6 Type and Relation Expansion/Contraction1 284 Service Features 314.1 Attribute Lists . 314.2 Initializing and Saving the Knowledge Base 334.2.1 Loading, Saving and Restoring the Knowledge Base 334.2.2 Parsing Conceptual Graphs In Linear Notation 345 Conclusion 35

1 IntroductionThis paper describes in detail the Prolog representation of Conceptual Graphs (CGs) whichwas used for CGPro and all basic CG operations. With the introduced implementation weaimed at solving the problems associated with representing contexts and n-adic relations ofother existing systems.First, we introduce our representation of graphs, referent �elds, individuals and lambda ab-stractions. Afterwards, we compare it to other existing Prolog representations. Section 3contains a description of predicates implementing basic access functions for the data struc-tures de�ned in the previous section. Furthermore we outline the implementation of the"real\ CG operations { copy, restrict, join, simplify, maximal join, projection, and a special"extended\ projection algorithm.Special attention was paid to the representation of the referent �eld. We have chosen featurestructures because they can be handled and compared easily. Therefore we are able to obtainthe resulting referent �eld of a join-operation by simple uni�cation of the feature structures.With CGPro, we satisfy the needs of two application projects { a project for knowledgeacquisition from natural language texts and a German-Bulgarian Machine Aided Translationproject2.

2\DB-MAT", funded by Volkswagen Foundation for three years (7/1992-6/1995).1

2

2 Representing Conceptual Graphs in PROLOG2.1 Graph representationWith our representation, we want to ful�ll the postulates concerning features of a good CGrepresentation given in (Sowa and Way1986):� connectivity (traverse the entire graph starting from a concept)� generality (adequate representation of n-adic relations and several arcs pointing to orfrom a concept)� no priviledged nodes (each concept can be a head)� canonical formation rules (copy, restrict, join, simplify), which are e�ciently imple-mented for the selected representationAll known and available representations (see section 2.8) lack at least one of these features.Therefore, we propose the following representation satisfying all points mentioned above:cg(GraphID, RelationList).cgc(ConceptID, ContextFlag, ConceptName, ReferentField, AnnotationField).RelationList ::= [cgr(RelName, ArgList, Annotation), ...]ArgList ::= [ConceptID, ...]ContextFlag ::= normal j special.ConceptName ::= Specialname j Identi�er.Specialname ::= context j neg context j situation j statement j proposition.The basic building blocks in this representation are graphs and concepts. Both are representedas facts, namely cg/2 (\Conceptual Graph") and cgc/5 (\Conceptual Graph Concept").Every graph and concept has a unique identi�er (Id). Relations between concepts do nothave identi�ers and occur only as terms in cg/2 facts.GraphID and ConceptID are unique identi�ers for all graphs or concepts. Even thoughthe representation is unambiguos concerning the kind of identi�ers at each argument place,it is easier to handle only one sort of identi�ers for GraphIDs and ConceptIDs.ArgList is an ordered list of concepts, where the number of the arc corresponds to theconcept's place in this list. For an n-adic relation, the arcs are numbered from 1 to n, andthe outgoing arc is the last one. 3

Sowa distinguishes between simple and compound graphs. Simple graphs are those withoutnested contexts and lines of identity3. In this case, the RelationList contains the list of therelations of the simple graph, or, if the graph consists of only one concept and thus of norelation, a one-element list with the special relation name norel. In the latter case, ArgListis a list of only one element.A compound graph consists of one or more `toplevel' simple graphs that may contain nestedgraphs. These toplevel graphs need not be connected directly, but in this case they mustcontain nested graphs that are connected by a line of identity. In a compound graph theRelationList contains the list of all of the relations of the toplevel graphs. It is not dis-tinguished which toplevel graph a relation belongs to. Each of the relations may again be anorel relation if the corresponding graph consists of only one concept.Graph nesting is implemented as follows: A context is established as a special kind of conceptwhose referent �eld contains a list of the Ids of the nested graphs.Coreferent concepts in a graph (i.e. those that share the same variable in the linear form orthose that belong to the same line of identity) are represented internally as one concept. As aconsequence of this a concept can occur in several contexts at once as long as these contextsbelong to the same (compound) graph.Concepts are represented as 5-Tupels. ContextFlag is a
ag which is set if the concept isof a special type e.g. context, situation, proposition, and so on. In this case, ContextFlaghas the value special , otherwise it is normal. ConceptName is a typename or the name ofa special context, respectively. For description of the ReferentField, see section 2.2 below.Since the possible applications of the AnnotationField are not clearly de�ned, all givenexamples contain empty annotation �elds.An example of a simple conceptual graph containing a situation is given in �gure 1 in graphicalnotation, in �gure 2 in linear form and in �gure 3 in the internal representation.SITUATION: CHASE�������)�
 �	AGNT HHHHHj�
 �	PTNT?CAT ?MOUSE -�
 �	PTIM - EVENINGFigure 1: A simple conceptual graph with a situation in graphical form3Note that a line of identity is only a way to show concept equivalence when a concept occurs in multiplecontexts and thus is never needed for simple graphs. 4

[SITUATION: [CAT] <-(AGNT) <-[CHASE]->(PTNT)->[MOUSE]]-> (PTIM) -> [EVENING].Figure 2: The same simple conceptual graph in linear formcg(513, [cgr(ptim, [25, 26],)]).cg(514, [cgr(agnt, [27, 28],), cgr(ptnt, [27, 29],)]).cgc(25, special, situation, [514],).cgc(26, normal, evening, [fs(num,sing)],).cgc(27, normal, chase, [fs(num,sing)],).cgc(28, normal, cat, [fs(num,sing)],).cgc(29, normal, mouse, [fs(num,sing)],).Figure 3: The given simple conceptual graph in our representation2.2 Representation of the Concept's Referent FieldIn the basic conceptual graph notation only three kinds of referent �elds are permitted {generic (existential), individual marker, and literal. Measures, sets, names, and quanti�ersare extended referents, i.e. they are the result of some contraction operation. In our systemwe want to support all these extended referents, especially the four kinds of set referents {collective, distributive, cumulative and disjunctive (see (Sowa1984, Sowa1992)). Therefore weintroduce the following representation for the referent �eld.Table 1: Exmaples of the Concept's Referent FieldReferent NL Example RepresentationField Type translationGeneric a book [BOOK: *] [num:sing]Individual lexicon entry [PERSON: #123] [num:sing,type:def,refID:123]Individual John [PERSON:John] [num:sing,name:'John']Individual John [PERSON:John#1] [num:sing,type:def,refID:1,name:'John']De�nite ref. the book [BOOK: #] [num:sing, type:def]Set John and Mary [PERSON: [num:plural,type:def,fJohn,Maryg] name:['John', 'Mary']]Partial Set John,Mary [PERSON: [num:plural,and others fJohn,Mary,*g] name:['John', 'Mary']]Generic Set books [BOOK: f*g] [num:plural]Counted Set three books [BOOK: f*g@3] [num:plural, type:meas, quant:3]Quanti�ers every book [BOOK: every] [num:sing, quant:every]Question which book [BOOK: ?] [num:sing,type:quest]Plural quest. which books [BOOK: f*g?] [num:plural,type:quest]Variable [BOOK: *x] [quant: lambda]5

In table 1 there is a summary of the most frequently used kinds of referent �elds togetherwith an example, its natural language reading and the corresponding representation.4<Referent> ::= "[" <RefNumber> ["," <RefType>] ["," <RefQuant>]["," <RefID>] ["," <RefName>] ["," <QuantScope>] "]"<RefNumber> ::= num ":" <ReferentNumber><RefType> ::= type ":" <ReferentType><RefQuant> ::= quant ":" <QuantType><RefID> ::= refID ":" <IndivID><RefName> ::= name ":" <Marker><QuantScope> ::= scope ":" <Scope><ReferentNumber> ::= sing j plural<ReferentType> ::= def j meas j quest<QuantType> ::= every j lambda<Scope> ::= disjunct j dist j col j cum<Marker> ::= <IndName> j <RefSet><IndivID> ::= Number<IndName> ::= " ' " UpperLetterjSmallLetter ... " ' "<RefSet> ::= "[" <IndName> ["," <IndName>]... "]"Figure 4: A BNF grammar of the referent �eld structureFigure 4 contains a BNF grammar specifying the possible attributes and their values.The referent �eld will be represented as a Prolog list of binary terms:[fs(F1,V1), fs(F2,V2), ...]Predicates operating on the referent �eld are described in section 3.3.5.2.3 Representation of IndividualsIndividuals are represented as ternary relations in the knowledge base:ind(IndId,Name,Type)IndId must be provided by the user in the referent �eld of concepts. Name is the name of theindividual and Type is a type of the type hierarchy. Example:[CAT: TOM #123] ind(123, TOM, CAT)[CAT: TOM #] is not an individual as the user has not de�ned an Id2.4 Type De�nitionsIn the conceptual graph formalism new concept types are introduced by type de�nitions.The operations acting upon them are type expansion and type contraction. Following Sowa's4Most of the examples are taken from (Sowa1993).6

de�nition (Sowa1984, pp.106 { 112), type de�nitions are represented as binary relations:typedef(TypeName, lambda(VarList, GraphId))The linear form of type de�nitions will be interpreted by the linear form parser (see sec-tion 4.2.2): TypeDef ::= "type" <TypeName>"("<VarList>")" "is" < Graph >typedef/2 andGraph will be asserted in the knowledge base and its GraphId will be includedin the typedef/2 relation. VarList is a regular Prolog list of all arguments of the de�nedtype. Example:type POSITIVE(x) is [NUMBER: *x] -> (">") -> [NUMBER: 0]will be asserted in the knowledge base in the following relations:cg(1,[cgr("<",[2,3])])cgc(2,normal,'NUMBER',[quant:lambda],_)cgc(3,normal,'NUMBER',[type:meas,name:0],_)typedef('POSITIVE', lambda([x],1))Note that type de�nitions do not expand the type hierarchy automatically. The user isresponsible for providing the corresponding isa/2 relations.2.5 Relation De�nitionsRelation de�nitions are supported similarly to type de�nitions. They will be represented inthe knowledge base as binary relations:reldef(RelName, lambda(VarList, GraphId))This relation is a result of parsing the following linear form:RelDef ::= "relation" <RelName>"("<VarList>")" "is" < Graph >reldef/2 and Graph are asserted into the knowledge base by the parser.2.6 Type HierarchyThe type hierarchy is represented as binary relations:isa(SubType,SuperType)It can be loaded from a �le with loadKBase/2. isa/2 relations are not parsed by the linearform parser but are consulted by the Prolog system.7

2.7 Attribute ListsIt is very important for the user developing a real world application that there is a possibilityfor organizing graphs in groups. For this reason, the system supports a mechanism for markinggraphs with attributes. Some useful attributes might be: 'canonical', 'typedefs', 'reldefs','temp'. For this purpose, attribute lists are provided:attrList(Name,GraphId)In principle the user should take care of managing these lists. The system provides somepredicates for this (see section 4.1). All operations changing the knowledge base workwith the current attribute list. This variable can be handled with setCurAttrList/1 andgetCurAttrList/1.2.8 Other Prolog Representations2.8.1 Representing Conceptual Graphs as triplesWe would like to introduce the representation adopted in (Hook and Ahmad1992).Each conceptual graph is decomposed into canonical graphs5 consisting of two concepts linkedby a relation. The investigation made by the authors of (Hook and Ahmad1992) proved thatall relations in a Terminology Knowledge Base (TKB) are binary, i.e. connecting exactlytwo concepts. Their conceptual graph TKB consists of a set of canonical graphs and a typehierarchy. All canonical graphs are stored as:is canonical graph('emission control device' : type : 'catalytic converter').Each conceptual graph is represented as a Prolog list of triples:concept : relation : conceptIn (Hook and Ahmad1992) the type hierarchy is generalized to a set of conceptual graphscontaining the type relation. Due to the fact that the inheritance mechanism depends on thetype hierarchy, the type relation is of particular importance.This representation handles very simple conceptual graphs. They are suitable mainly forknowledge bases in very speci�c domains, where all relations are binary. Another problemof that approach is the redundant information. Each concept participating in more than onerelation occurs more than once in the list. When specialization is performed, the list shouldbe searched completely for all occurences of a certain concept (the one to be restricted).5Here the term `canonical' is used in its general meaning. Thus these `canonical graphs' are not Sowa's`canonical graphs', but simply a normalized form of a graph representation.8

2.8.2 Representing Conceptual Graphs as Concept and Relation lists(Sowa and Way1986) proposed a more structured representation:cg(<ConceptList>, <RelationList>)ConceptList := [cgc(<ConceptNo>, <ConceptName>, <Referent>), ...]RelationList := [cgr(<ConceptNo>, <RelationName>, <ConceptNo>), ...]Although one graph is represented as only one data structure, e.g. graph traversing will beeasier than in (Hook and Ahmad1992), we do encounter the following problems:1. Graph referents: [PROPOSITION: Graph] is transformed into[PROPOSITION] -> (STMT) -> GraphThe same holds for STATE, SITUATION and CONTEXT.2. 3-adic relation representation. Let's take BETW for example. Using the above repre-sentation, we are forced to have 2 or 3 entries in the RelationList for one relation. Apartfrom that, we do not have a clearly de�ned order of the relation arcs, which contradictsto the fact that the arcs should be numbered for all n-adic relations (n � 3).3. There is redundant information in the cgc-structure. If we have the same concepts indi�erent CGs then all that information is included in every cgc-structure. Representingall concepts into a separate concept table avoids this kind of redundancy. Additionally,garbage collection techniques can be applied in order to abandon all concepts not usedin the knowledge base.
9

3 Implementation of some operations on CGsAlthough our internal representation handles complex graphs properly, some of the operationsare implemented only for simple graphs with situations, propositions, and statements. Ourfurther goal will be to extend our algorithms for complex graphs. But nevertheless the set ofoperations handled by the system is complete and will remain unchanged.3.1 OverviewThe following sections contain a structured description of our Prolog implementation withpredicate names, arguments and brief explanations. First we introduce some abstract datatypes - concepts (see 3.3.1), conceptual graphs (see 3.3.2), types (see 3.3.3), individuals (see3.3.4) and referents (see 3.3.5). A set of standard operations belongs to all ADTs { contructors,destructors, accessors, copy and equality test. Additionally, each ADT has some speci�coperations (eg. subConcept, minComSuperType), and their semantics is taken from the CGtheory.6 Since we rely on the reader's knowledge of conceptual graphs, we have ommited allfunctionality details of implemented operations.The ADTs comprise a basis which the four canonical formation rules and some other CGoperations are built upon. All CG operations have both destructive and non-destructiveversions. Section 3.4 contains the de�nitions of copy, restrict, simplify and join. Match,projection andmaximal join are introduced in section 3.5. Apart from the standard projectionalgorithm we have implemented an extended projection (see 3.5) that has proven to be ratheruseful for some Natural Language (NL) applications. Type and relation expansion/contractionoperations (see 3.6) enable the active use of new types and relations.In order to distinguish between various kinds of graphs, we have introduced attribute lists(see 4.1). They are used to group the graphs according to their semantics (eg. canonical,situations, type de�nitions, etc.). The system always deals with the current attribute list.Finally, we introduce some predicates for handling the Knowledge Base (KB) - load, load withconvert, save and restore (see 4.2.1). For initializing the knowledge base, we implementeda linear notation parser which converts �les containing graphs in linear notation into theinternal representation (see 4.2.2).3.2 General Conventions3.2.1 Programming ConventionsConcerning uppercase vs. lowercase and the use of underscores, predicate and variable namesare represented as follows: predicateName(VarName, ...). Underscores are never used6For a short introduction see (Sowa1992). 10

except of course as identi�er for the anonymous variable.All predicates obey the following rules concerning the order of arguments:� Relational binary predicates have their arguments in the order that renders identifyingthe relation as an in�x naturally. Example: isa(V1, V2) means V1 isa V2.� Data structure accessors have the output argument in the last position.� Functional predicates have the output argument in the last position. join(G1,G2,G3)joins G1 and G2 to yield G3.� Destructive operations have the input/output argument in the �rst position. join(G1,G2)joins G1 with G2 and returns the modi�ed G1.3.2.2 Format of the Predicate DescriptionsBelow, the predicates are described in the following format:predicate(Argument1, . . .)Description textArguments:Argument1 Type of Argument1... ...In the �rst line the argument's names are preceded by one of three mode speci�ers: + meansthe argument must be instantiated, - means it must be free, and ? means it can be anything.Note that Id arguments of objects that are modi�ed by the operation have mode + becausethe Id is not changed.3.3 Concepts, Graphs, Types, Individuals and Referents as Abstract DataTypesGenerally, the operations on compound objects comprise constructors (that build a new objectfrom its parts), destructors, accessors (that return the parts of a given object), a copy oper-ation and an equality test. The name of the constructor for datatype object is newObject, ofthe destructor deleteObject and of the accessors objectSlot. The copy operation is namedcopyObject and the equality test equalObject.Also generally all objects are referred to internally by their Ids, e.g. when being passed asarguments. This holds for graphs, concepts and individals. Some operations on these data11

structures work destructively. This means that the data structure pointed to by the Id changeswhile the Id of the input and the result is the same. A nondestructive operation returns anew Id for these kinds of objects.All operations on graphs take care of creating new concepts where necessary to ensure thatany concept is contained in one graph at most. For instance the destructive \join" operation{ that modi�es one of the input graphs { copies the other input graph so that only newconcepts are joined to the �rst graph.3.3.1 ConceptsConcepts are represented as 5-tupels:cgc(ConceptID, ContextFlag, ConceptName, ReferentField, AnnotationField)newConcept(+Category, +Type, ?Referent,?Annotation, ?Concept)Creates a new concept given its category, type, referent and annotation. Returns the Id ofthe new concept. For special concepts the referent is a graph Id. If Concept is ground it isused as the Id of the concept, else a new Id is acquired and returned.Arguments:Category normal or specialType AtomReferent Term or list of graph IdsAnnotation Term orConcept Concept IddeleteConcept(+Concept)Deletes the Concept. The user is responsible for assuring that there are no references to thisconcept left.Arguments:Concept Concept Id
12

conceptSlots(+Concept, -Category, -Type, -Referent, -Annotation)Gets the parts of Concept.Arguments:Concept Concept IdCategory normal or specialType AtomReferent Term or list of graph IdsAnnotation Term orcopyConcept(+ConceptIn, -ConceptOut)Copy a concept. In case this is a special concept, the contents of the referent �eld are copiedrecursively. Returns the Id of the copy.Arguments:ConceptIn Concept IdConceptOut Concept IdequalConcept(+Concept1, +Concept2)Succeeds if the two concepts are equal. This is the case if their types and referents are equal.In case of special concepts the nested graphs are compared recursively.Arguments:Concept1 Concept IdConcept2 Concept IdsubConcept(+SubConcept, +SuperConcept)Succeeds if SubConcept is a subconcept of SuperConcept.Arguments:SubConcept Concept IdSuperConcept Concept IdconceptCategory(+Concept, -Category)Get the category of a concept.Arguments:Concept Concept IdCategory normal or special 13

conceptType(+Concept, -Type)Get the type (from the hierarchy) of a concept.Arguments:Concept Concept IdType AtomconceptReferent(+Concept, -Referent)Get the referent �eld of a concept.Arguments:Concept Concept IdReferent Term or list of graph Ids3.3.2 GraphsGraphs are represented as binary prolog facts:cg(GraphID, RelationList)newGraph(+Relations, ?Graph)Create a new graph consisting only of the Relations. The new graph is added to the currentattribute list. If Graph is ground it is used as the Id of the graph, else a new Id is acquiredand returned.Arguments:Relations List of terms cgr/3Graph Graph IdnewGraph(?Graph)Create a new empty graph. The new graph is put on the current attribute list.Arguments:Graph Graph Id 14

deleteGraph(+Graph)Delete the Graph. This does not delete the concepts contained in the graph. The user isresponsible to assure that there are no more references to the graph. The graph is removedfrom all attribute lists it is on.Arguments:Graph Graph IdmodifyGraphRelations(+Graph, +NewRelations)Modify the Graph to consist of the relations in the list NewRelations.Arguments:Graph Graph IdRelations List of terms cgr/3graphRelations(+Graph, -Relations)Get the list of relations of a graph.Arguments:Graph Graph IdRelations List of relations, i.e. terms with functor cgraddGraphRelation(+Graph, +RelName, +Concepts, +Annotation)Insert n-ary relation with name RelName in the Graph on the n concepts from the listConcepts. The concepts are ordered and the last one belongs to the outgoing arc. Annotatethe relation with Annotation. The graph is modi�ed.Arguments:Graph Graph IdRelName AtomConcepts List of Concept IdsAnnotation AtomdeleteGraphRelation(+Graph, +RelName, +Concepts)Delete the relation with name RelName connecting the Concepts from the Graph. Fails ifthere is no such relation.Arguments:Graph GraphIdRelName AtomConcepts List of Concept Ids 15

copyGraph(+GraphIn, -GraphOut)Copy a graph.Arguments:GraphIn Graph IdGraphOut Graph IdcopyGraph(+GraphOrig, -GraphCopy, -MapOut)Copy GraphOrig and recursively graphs nested in it yielding GraphCopy. The mapping ofold concepts and graphs onto the new ones is returned in MapOut. This can be used to traceconcepts and subgraphs through the process of copying.Arguments:GraphOrig Graph IdGraphCopy Graph IdMapOut Term map/2The graph copy operation is actually already one of Sowa's CG operations. It is neverthelessde�ned here because it is needed for completeness of the ADT.equalGraph(+Graph1, +Graph2)Succeeds if the two graphs are equal. This is checked recursively for all nested subgraphs,too.Arguments:Graph1 Graph IdGraph2 Graph IdgraphConcept(+Graph, -Concept)Given Graph, succeeds once for each Concept that occurs in the graph. If Graph containsnested graphs, the concepts in these graphs are neglected.Arguments:Graph Graph IdConcept Concept IdAutomatic Management of Attribute ListsThe newGraph operation puts the new graph on the current attribute list. Some operations,e.g. join, use temporary graphs that are deleted in the course of the operation. This is16

accomplished by using the predicate deleteGraph which besides deleting the graph alsoremoves it from all attribute lists. As an additional way to delete graphs there is the predicatedeleteAllGraphs that deletes all graphs that are on a given attribute list and clears this list.This way the implementation takes care that no attribute list contains a reference to a deletedgraph and that every graph is at least on one attribute list.3.3.3 TypesThe type hierarchy is represented as:isa(SubType,SuperType)typelist(-Types)Returns a list of all types. These include top, bottom and the special types like context etc.The list is topologically sorted in ascending order.Arguments:Types List of typesThese operations are undirected binary Prolog relations. `Undirected' means they can beused both for checking and for generation.equalType(+Type1, +Type2)Succeeds if Type1 and Type2 are of the same type name.Arguments:Type1 TypeType2 Typeisa(?SubType, ?SuperType)Succeeds if SubType is an immediate subtype of SuperType.Arguments:SubType TypeSuperType Type 17

subType(?SubType, ?SuperType)Succeeds if SubType is a subtype of SuperType.Arguments:SubType TypeSuperType TypeTernary relations (directed):subType(+SubType, +SuperType, -List)Succeeds if SubType is a subtype of SuperType. List will be uni�ed with the path betweenType1 and Type2.Arguments:SubType TypeSuperType TypeList List of TypesmaxComSubType(+Type1, +Type2, -Type3)Type3 is the maximal common subtype of Type1 and Type2.Arguments:Type1 TypeType2 TypeType3 TypemaxComSubType(+Type1, +Type2, -Type3, -PathList1, -PathList2)Type3 is the maximal common subtype of Type1 and Type2. PathList1 will be uni�ed withthe path between Type1 and Type3, and PathList2 will be uni�ed with the path betweenType2 and Type3.Arguments:Type1 TypeType2 TypeType3 TypePathList1 List of TypesPathList2 List of Types 18

minComSuperType(+Type1, +Type2, -Type3)Type3 is the minimal common supertype of Type1 and Type2.Arguments:Type1 TypeType2 TypeType3 TypeminComSuperType(+Type1, +Type2, -Type3,-PathList1, -PathList2, -PathList3)Type3 is the minimal common supertype of Type1 and Type2. PathList1 will be uni�ed withthe path between Type1 and Type3, PathList2 will be uni�ed with the path between Type2and Type3 and PathList3 will be uni�ed with the path between Type3 and univ.Arguments:Type1 TypeType2 TypeType3 TypePathList1 List of TypesPathList2 List of TypesPathList3 List of TypestypeDe�nition(+Type, -De�nition)Returns the type de�nition (a term lambda/2) of the Type.Arguments:Type TypeDe�nition Type de�nition3.3.4 IndividualsIndividuals are represented as: ind(IndId,Name,Type)The conformity relation must be de�ned. It has a type and an individual as arguments.The type is the smallest one the individual conforms to. Individuals are referred to by theirId. This is always provided by the user as a number { it is never automatically generatedby the system. When parsing a conceptual graph, new individuals occuring inside it areautomatically asserted. Additionally, there is a predicate to assert them manually.19

newIndividual(+Id, +Type, ?Name)Create a new Individual. Arguments are the Id, the smallest conforming type and optionallythe name. The new individual is asserted.Arguments:Id NumberType TypeName Atom or anonymous variabledeleteIndividual(+Individual)Delete the Individual. The user is responsible for assuring that there are no references tothe individual left.Arguments:Individual Individual IdindividualType(+Individual, -Type)Get the type of an Individual, i.e. the smallest type the individual conforms to.Arguments:Individual Individual IdType TypeindividualName(+Individual, -Name)Get the name of an Individual.Arguments:Individual Individual IdName Atom or3.3.5 ReferentsReferents are represented as feature structures (see 2.2).setRefNumber(+ReferentIn, +Number, -ReferentOut)Changes the num-Feature in ReferentIn and returns the result as ReferentOut.Arguments:ReferentIn ReferentNumber AtomReferentOut Referent 20

getRefNumber(+Referent, -Number)Uni�es Number with the value of the num-Feature in Referent.Arguments:ReferentIn ReferentNumber AtomsetRefType(+ReferentIn, +Type, -ReferentOut)If type does not exist as a feature in ReferentIn, then setRefType adds the feature typewith value Type to ReferentIn. Otherwise, setRefType changes the value of type to Typein ReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentType AtomReferentOut ReferentgetRefType(+Referent, -Type)Uni�es Type with the value of the type-Feature in Referent.Arguments:ReferentIn ReferentType AtomsetRefQuant(+ReferentIn, +Quant, -ReferentOut)If quant does not exist as a feature in ReferentIn, then setRefQuant adds the feature quantwith value Quant to ReferentIn. Otherwise, setRefQuant changes the value of quant toQuant in ReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentQuant AtomReferentOut ReferentgetRefQuant(+Referent, -Quant)Uni�es Quant with the value of the quant-Feature in Referent.Arguments:ReferentIn ReferentQuant Atom 21

setRefId(+ReferentIn, +Id, -ReferentOut)If refID does not exist as a feature in ReferentIn, then setRefId adds the feature refIDwith value Id to ReferentIn. Otherwise, setRefId changes the value of refID to Id inReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentId AtomReferentOut ReferentgetRefId(+Referent, -Id)Uni�es Id with the value of the refID-Feature in Referent.Arguments:ReferentIn ReferentId AtomsetRefName(+ReferentIn, +Name, -ReferentOut)If name does not exists as a feature in ReferentIn, then setRefName adds the feature namewith value Name to ReferentIn. Otherwise, setRefName changes the value of name to Namein ReferentIn. The result will be uni�ed with ReferentOut.Arguments:ReferentIn ReferentName AtomReferentOut ReferentgetRefName(+Referent, -Name)Uni�es Name with the value of the name-Feature in Referent.Arguments:ReferentIn ReferentName AtomsetRefScope(+ReferentIn, +Scope, -ReferentOut)If scope does not exists as a feature in ReferentIn, then setRefScope adds the featurescope with value Scope to ReferentIn. Otherwise, setRefScope changes the value of scopeto Scope in ReferentIn. The result will be uni�ed with ReferentOut.22

Arguments:ReferentIn ReferentScope AtomReferentOut ReferentgetRefScope(+Referent, -Scope)Uni�es Scope with the value of the scope-Feature in Referent.Arguments:ReferentIn ReferentScope AtomequalReferent(+Referent1, +Referent2)Succeeds if Referent1 and Referent2 are equal.Arguments:Referent1 ReferentReferent2 ReferentmatchReferent(+Referent1, +Referent2, -Referent3)This predicate will be used in join, maximal join and projection. It matches the referent �eldsof concepts. The following rules are applied in this order:1. Given that Referent1 represents a variable then it matches everything if the rest of thereferent �eld is unifyable with the Referent2. In this case, Referent3 is the result ofthe uni�cation. Otherwise the predicate fails.2. If rule 1 was not successful and Referent1 represents a question, then is matches ev-erything if the rest of the referent �eld is unifyable with Referent2. Referent3 is theresult of the uni�cation. Otherwise the predicate fails.3. If rule 1 and 2 were not successful, Referent1 is generic or a partial set and Referent2is of type measure, then the match succeeds if the number of elements of the set inReferent1 is less than the number of elements in Referent2 and the feature structuresare unifyable.4. If none of the rules above were successful, then Referent3 is the result of featurestructure uni�cation of Referent1 and Referent2.5. Else try to succeed matchReferent(Referent2, Referent1, Referent3).Arguments:Referent1 ReferentReferent2 ReferentReferent3 Referent 23

3.3.6 MiscellaneousrelationDe�nition(+Relation, -De�nition)Returns the relation de�nition (a term lambda/2) of the Relation.Arguments:Relation RelationDe�nition Relation de�nition3.4 The four canonical formation rulescopy(+GraphIn, -GraphOut)Copy a conceptual graph. In LPA-Prolog this operation is called copyCG/2 as there is alreadya system predicate copy/2 with di�erent semantics. This is the same operation as the `copy'operation of the graph ADT.Arguments:GraphIn Graph IdGraphOut Graph IdThe following operations are provided in two di�erent versions, one that modi�es one of theinput arguments and one that does not. The destructive versions are useful for avoidingexcess garbage generation if several operations are executed for a graph in sequence.restrict(+Graph, +Concept, +Type, +Referent)restrict(+GraphIn, +Concept, +Type, +Referent, -GraphOut)Given a graph and a concept in it, change the type or/and the referent by restrictimg themfurther. This is allowed only if the conformity relation still holds after the operation. The typemay be restricted by replacing it by a subtype. The referent may be restricted by replacinga generic marker by an individual, conforming to the (new) type, or by feature-structureoperations, corresponding to specialisation. The �rst version modi�es Graph, the second onereturns the new GraphOut as its result.Arguments:Graph Graph IdConcept Concept IdType TypeReferent ReferentGraphIn Graph IdGraphOut Graph Id 24

join(+Graph1, +Graph2)join(+Graph1, +Graph2, -GraphOut)join(+Graph1, +Concept1, +Graph2, +Concept2)join(+Graph1, +Concept1, +Graph2, +Concept2,-GraphOut, -ConceptOut)This joins Graph1 and Graph2. The four versions di�er in two aspects, namely whether theymodify Graph1 or not and whether the concepts on which to join the graphs are providedexplicitly. In the �rst two versions the concepts are not provided. They deliver all possiblejoins on backtracking. In the last two versions Concept1 is the concept in Graph1 andConcept2 is the concept in Graph2 on which to join the graphs. Both concepts must beequal, otherwise the join will fail. To achieve a join on compatible concepts that are notequal the input concepts must be made equal by restricting them in advance. The resultingconcept is provided in ConceptOut. The �rst and third version modify Graph1 and the secondand fourth version provide the result in a new graph GraphOut. Graph2 is always copied inadvance and never modi�ed.Arguments:Graph1 Graph IdGraph2 Graph IdGraphOut Graph IdConcept1 Concept IdConcept2 Concept IdConceptOut Concept Idsimplify(+Graph)simplify(+GraphIn, -GraphOut)Simplify a graph by deleting all duplicate relations in it. The �rst version modi�es Graph,the second one returns the simpli�ed GraphIn as GraphOut and leaves GraphIn as it was.Arguments:Graph Graph IdGraphIn Graph IdGraphOut Graph Id
25

3.5 Match, Projection and Maximal Joinmatch(+Graph1, Graph2)Succeeds if Graph1 is a generalization of Graph2. Comparing concepts takes into account thetype hierarchy and will match the referents (compare matchReferent/3.Arguments:Graph1 Graph IdGraph2 Graph IdmaximalJoin(+Graph1, +Graph2)maximalJoin(+Graph1, +Graph2, -Graph3)These predicates realize the maximal join operations for conceptual graphs. For the de�nitionrefer to (Sowa1984, p.104). The two versions di�er in modifying Graph2; maximalJoin/2modi�es Graph2 which is the result of this operation. Graph2 should be more speci�c thanGraph1. maximalJoin will take into account the type hierarchy and will match the referents(compare matchReferent/3).Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Idprojection(+Graph1, +Graph2, -Graph3)Given two conceptual graphs �nd the projection of Graph1 on Graph2. The resulting Graph3is not empty if and only if Graph2 is a specialization of Graph1. The projection operation istype, relation and structure preserving. For the respective algorithm see (Sowa1984, p.99).Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph IdextendedProjection(+Graph1, +Graph2, -Graph3)Graph3 is the extended projection7 of Graph2 (the query graph) on Graph1. The mostimportant feature is that Graph2 contains at least one uninstantiated concept (correspondingto a question referent). In a NL application this graph might be created as a semanticrepresentation of a user's question. The resulting graph is obtained by �nding the projection7This predicate is not yet implemented. 26

of Graph2 on Graph1 and adding all concepts directly linked to an uninstantiated conceptfrom the query graph. Let us consider the following graphs:Graph1: [CAT] -> (ON) -> [MAT] -> (ATTR) -> [RED]Graph2: [CAT] -> (ON) -> [?]The result of the normal projection algorithm is just:[CAT] -> (ON) -> [MAT]The result of the extended projection algorithm is the whole Graph1.Possible modi�cation of this algorithm includes a parameter for the depth of the extension,i.e. for depth n add all concepts, being n relations 'far' from an uninstantiated concept inthe query graph. This parameter can be also dependent on the relation types in the querygraph.8Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Id3.6 Type and Relation Expansion/Contraction9Since we support both type and relation de�nitions (i.e. give a mechanism for de�ning newtypes and relations), we also provide expansion and contraction operations. In our imple-mentation we stick to the algorithms described in (Sowa1984, pp. 107-109, p.115). It isrecommended to apply these operations on canonical graphs, since Sowa has proved that theresult is also a canonical graph (i.e. in this case the operations are truth-preserving).All four operations take as input a graph Id (the graph to be expanded/contracted), an Idof a di�erentia graph (type de�nition) or a relator graph (relation de�nition). The outputgraph is always the last argument.
8For some other ideas about extending the projection operation see (Velardi, Pazienza, and Giovanetti1988).9These predicates are not yet implemented. 27

typeExpansion(+Graph1, +Graph2)typeExpansion(+Graph1, +Graph2, -Graph3)This predicate realizes the type expansion operation on conceptual graphs. Graph1 is a graph,Graph2 is the di�erentia of a type de�nition and Graph3 is the resulting graph.The two versions di�er in modifying Graph1; typeExpansion/2 modi�es Graph1 which is theresult of this operation.Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph IdtypeContraction(+Graph1, +Graph2)typeContraction(+Graph1, +Graph2, -Graph3)This predicate realizes the type contraction operation. Graph1 is a graph, Graph2 is thedi�erentia of a type de�nition and Graph3 is the resulting graph from which a subgraph hasbeen deleted and replaced by a single concept (the genus of the type de�nition).The two versions di�er in modifying Graph1; typeContraction/2 modi�es Graph1 which isthe result of this operation.Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph IdrelationExpansion(+Graph1, +Graph2)relationExpansion(+Graph1, +Graph2, -Graph3)This predicate realizes the relation expansion operation on conceptual graphs. Graph1 is agraph, Graph2 is the relator of a relation de�nition. Graph3 is the resulting graph obtainedfrom Graph1 after a conceptual relation, and its attached concepts are replaced with Graph2.The two versions di�er in modifying Graph1; relationExpansion/2 modi�es Graph1, whichis the result of this operation.Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Id 28

relationContraction(+Graph1, +Graph2)relationContraction(+Graph1, +Graph2, -Graph3)Graph1 is a graph, Graph2 is a subgraph of Graph1 and the relator of a relation de�nition.Graph3 is the resulting graph obtained from Graph1 after the subgraph Graph2 is replacedby a single conceptual relation de�ned by the relation de�nition.The two versions di�er in modifying Graph1; relationContraction/2 modi�es Graph1,which is the result of this operation.Arguments:Graph1 Graph IdGraph2 Graph IdGraph3 Graph Id

29

4 Service FeaturesFor a more convinient use of the system, we added some service features described in thissection. Attribute lists are provided for graph organization. File operations help saving andrestoring the knowledge base.4.1 Attribute ListsIn this chapter, predicates for managing attribute lists are described. The system provides thisfeature for the user to organize the graphs in groups and to assign attributes to them. Someuseful attributes could be canonical, typedef, temporary. The user is fully responsible formanaging these lists. The system supports a current attribute list, and all newly createdgraphs are inserted there automatically. Therefore the system provides some predicates formanaging the current attribute list. All existing attribute lists are saved and restored togetherwith the rest of the KB (see 4.2.1).getCurAttrList(-Name)Uni�es Name with the name of the current attribute list.Arguments:Name AtomsetCurAttrList(+Name)Sets the current attribute list to Name.Arguments:Name AtomaddAttrList(+Name, +Graph)Adds Graph to the attribute list named Name. If there is no such attribute list, it will becreated.Arguments:Name AtomGraph Graph ID 30

deleteAttrList(?Name, ?Graph)Removes the Graph from the attribute list named Name. The Graph itself is not deleted. Incase one or both arguments are variables, during backtracking all matching pairs of Name andGraph are deleted.Arguments:Name AtomGraph Graph IDgetAttrList(?Name, ?Graph)Succeeds if Name is the name of an attribute list Graph is contained in. If one or botharguments are variables on backtracking all matching pairs are found. This allows �nding allgraphs on a given attribute list or all attribute lists of a given graph.Arguments:Name AtomGraph Graph IDdeleteAllGraphs(+Name)All graphs that are on the attribute list named Name are deleted from the knowledge base,and the list is emptied. Name must be completely bound to avoid deleting all graphs on alllists accidentally.Arguments:Name AtomdeleteAllAttrLists(+Graph)The Graph is removed from all attribute lists it is on. It is not deleted itself. Graph must becompletely bound to avoid accidentally deleting all graphs on all lists.Arguments:Graph Graph ID
31

4.2 Initializing and Saving the Knowledge Base4.2.1 Loading, Saving and Restoring the Knowledge BaseloadKBase(+File)This predicate will load and parse a �le, containing the following relations in prolog syntax.� cg(CG) - CG is a conceptual graph satisfying the linear form, including type and relationde�nitions.� isa(Subtype, Supertype)The current attribute list is initialized with the value defaultAttrList.Arguments:File AtomloadKBasewithconvert(+File)This predicate reads a �le and converts the content. The user gives the rules for convertingTerm1 into Term2:convert(+Term1, +Term2) :- <converting rules>.It is possible to have more then one converting rule but only one rule per Term1. Example:convert(lex(Word,Graph),plex(Word,ID)) :-parseCG(ID,Graph).The current attribute list is initialized with the value defaultAttrList.Arguments:File AtomWorking with the system it is important to be able to save and restore sessions. Thereforethe system o�ers two predicates. Saving and restoring includes all parts of the knowledgebase: 32

Table 2: Parts of the Knowldege Base to be saved with saveKBase/1conceptual graphs cg/2cgc/5type hierarchy isa/2type de�nitions typedef/2relation de�nitions relationdef/2individuals ind/3attribute lists attrList/2name of current attribut list curAttrList (global variable)current identi�er nextId (global variable)For the exact format of relations in table 2 see section 2.saveKBase(+File)Save all parts of the knowledge base in File. If File does not exist the system will searchfor �le File.cg.Arguments:File AtomrestoreKBase(+File)Restore the conceptual graph knowledge base from File. If File does not exist the systemwill search for �le File.cg. It is important that File is a �le that has been created bysaveKBase.Arguments:File Atom4.2.2 Parsing Conceptual Graphs In Linear NotationThe system provides a parser which converts the linear form to our internal representation(see section 2). The parser accepts conceptual graphs in linear notation as it is speci�ed in(Esch et al.1994).
33

parseCG(+LGraph, -GraphID)The predicate parseCG/2 parses the �rst argument LGraph. The identi�er of the parsedgraph will be uni�ed with GraphID and the graph and all concepts will be asserted into theknowledge base. The graph will be added to the current attribute list (if existing).Arguments:LGraph Atom; CG in linear formGraphID Atom5 ConclusionThis paper has introduced a thorough description of a CG representation in Prolog and thebasic graph operations. We have introduced abstract data types (ADTs) for concepts, graphs,types, referents and individuals. For each ADT, a list of operations has been provided. Thesedata types have been used as building blocks for the implementation of all basic CG operations(e.g. copy, maximal join, etc.).A running implementation exists both for SNI and LPA Prolog. There are some algorithmsthat need further re�nement, but the main part is completed. Additional work aims at thedevelopment of new algorithms for proper handling of complex graphs, and the type andrelation expansion/contraction operations.Some further steps are for instance the implementation of a generator for the linear form anda query operation for searching through the knowledge base.Although we still have a lot of ideas concerning the environment of CGPro it is already nowa useful tool for comparing and joining graphs as well as dealing with the type hierarchy.AcknowledgementsWe would like to thank Dr. Galja Angelova for implementing some of the algorithms and heruseful comments concerning referent �elds, projection and type and relation expansion.Finally we thank Alexandra Klein and Jens-Uwe M�oller for their comments on our work.However, any mistakes that still remain are our own.34

ReferencesEsch, John, Maurice Pagnucco, Michel Wermelinger, and Heather Pfei�er. 1994. Linear- linear notation interface. In Gerard Ellis and Robert Levinson, editors, ICCS'94 ThirdPEIRCE Workshop: A Conceptual Graph Workbench, pages 45{52, College Park, MD,USA. University of Maryland.Hook, S. and K. Ahmad. 1992. Conceptual graphs and term elaboration: Explicating(terminological) knowledge. Translator's Workbench Project ESPRIT II No. 2315 10, Uni-versity of Surrey, July.Sowa, John F. 1984. Conceptual Structures Information Processing in Mind and Machine.Addison-Wesley Publishing Company.Sowa, John F. 1992. Conceptual graphs summary. In Timothy E. Nagle, Janice A. Nagle,Laurie L. Gerholz, and Peter W. Eklund, editors, Conceptual Structures current researchand practice. Ellis Horwood, chapter I 1, pages 3{51.Sowa, John F. 1993. Relating diagrams to logic. In Guy W. Mineau, Bernard Moulin, andJohn F. Sowa, editors, Conceptual Graphs for Knowledge Representation; First Interna-tional Conference on Conceptual Structures, ICCS'93; Quebec City, Canada, August 4-7,1993; Proceedings, pages 1{35. Springer-Verlag, August.Sowa, John F. and Eileen C. Way. 1986. Implementing a semantic interpreter usingconceptual graphs. IBM Journal of Research and Development, 30(1):57{69, Jan.Velardi, Paola, Maria Teresa Pazienza, and Mario De' Giovanetti. 1988. Conceptual graphsfor the analysis and generation of sentences. IBM J. Res. Develop., 32(2):251{267, March.

35

